• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.2008.tde-04092008-154828
Document
Author
Full name
Pedro Valadão Carelli
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2008
Supervisor
Committee
Pinto, Reynaldo Daniel (President)
Araujo Filho, Joaquim Procopio de
Oliveira, Mario Jose de
Santos, Rita Maria Zorzenon dos
Silva Filho, Antonio Carlos Roque da
Title in Portuguese
Modelagem estocástica de neurônios e sua interação em tempo real com neurônios biológicos
Keywords in Portuguese
Modelo estocástico
Redes Neurais
Abstract in Portuguese
Desenvolvemos um modelo estocástico da atividade elétrica de um neurônio motor do gânglio estomatogástrico de crustáceos, a partir de um modelo determinístico eletrofisiologicamente plausível. Com isso recuperamos características da dinâmica neural sempre observadas em neurônios isolados, tais como irregularidades nos padrões de disparos que não são reproduzidas pelo modelo determinístico original. Implementamos otimizações e simplificações no método numérico de simulação estocástica que permitiram rodar a simulação em tempo real para interagir modelos computacionais com neurônios biológicos, implementando sinapses artificiais entre eles. Por fim utilizamos o modelo e os métodos de simulação desenvolvidos para substituir neurônios do gânglio estomatogástrico e construir sistemas híbridos, que foram usados para verificar como ocorre a transmissão de informação entre neurônios biológicos e artificiais, quando a dinâmicas destes é estocástica ou determinística.
Title in English
Stochastic neural modelling and interfacing neurons and models in real-time
Keywords in English
Neural networks
Stochastic model
Abstract in English
We developed a mathematical model of the electrical activity of a motor neuron from the stomatogastric ganglion of crustaceans. It was inspired on a previous existing deterministic model which is considered as electrophysiologically plausible in the recent literature. However, this deterministic model were not able to reproduce the irregular bursting behavior found in those biological neurons when isolated from the neural circuit. Our model, based on the microscopic stochastic behavior of the membrane ion channels, successfully reproduced the intrinsic irregular properties that were missing in the original deterministic model. To allow the real time performing of the stochastic model simulations we have to deal with some simplifications and to implement several optimizations that are also describe in detail. The real time version of our stochastic model was implemented in a dynamic clamp protocol to interface the computational model to real neurons. Finally, we applied the implemented versions of real time simulation and interfacing protocols to replace some biological bursting neurons of the stomatogastric ganglion. These hibrid neural networks were used to study how the information (diferent patterns of interspike intervals) is transmitted between biological and two types of artificial neurons: deterministic and stochastic.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tesePedro.pdf (5.90 Mbytes)
Publishing Date
2008-09-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.