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Abstract

The manipulation of electron counting and orbital occupation via chemical doping, chem-
ical pressure, applied hydrostatic pressure, or strain can tune the ground state of a material.
Iron-based superconductors (FeSC) are a class of materials in which high-temperature super-
conductivity (SC) can emerge using these strategies. This transition occurs in the presence of
strong magnetic fluctuations, suggesting a low sensitivity to magnetic impurities. Surprisingly,
when it comes to transition metal substitution, electron dopants can cause SC to emerge, while
hole dopants do not.

This study employs Angle-Resolved Photoemission Spectroscopy (ARPES) to investigate
the effect of hole doping in the Fe site of Ba(Fe1−xMx)2As2 (M = Mn, Cr) samples, probing the
electronic band structure and its dependency on composition and temperature. The presented
results show that for the case of Mn-substituted samples (MnBFA), electron and hole pockets
remain nested, with Mn introduction mainly increasing the incoherence of the electronic bands
and electronic correlations. These findings suggest that Mn tunes the material to a region be-
tween the correlated metal phase in BaFe2As2 and the Mott insulating phase in BaMn2As2,
where disordered electronic phases can emerge. In the case of Cr substituted samples (CrBFA),
hole doping was shown to take place, detuning the nesting condition between hole and electron
states, and the electronic correlations increase with Cr content. However, no evidence of Mott
phase behavior is observed in the ARPES experiments of a Cr-doped sample near the half-filling
condition.

Moreover, Resonant Inelastic x-ray Scattering (RIXS) was applied to probe the Fe-derived
magnetic excitations in these materials. The RIXS experiments of CrBFA suggest a scenario
that is slightly different from that for MnBFA samples but also shows strong magnetic scattering
between Fe and Cr-derived excitations.

This study explains the absence of SC in MnBFA as a combination of magnetic pair-
breaking, disorder, and electronic correlations, while in CrBFA this absence is understood to be
caused mainly because of magnetic pair-breaking and suppression of the itinerant spin fluctua-
tions which promote the SC. These results shed light on the complex interplay between doping,
magnetism, and electronic correlations in FeSC and correlated electron systems in general.

Keywords: iron arsenide, ARPES, RIXS, electronic correlation, disordered electronic phase





Resumo

A manipulação da contagem de elétrons e da ocupação orbital por meio de dopagem química,
pressão química, pressão hidrostática ou deformação uniaxial pode ajustar o estado fundamental
de um material. Os supercondutores baseados em ferro (FeSC) são uma classe de materiais em
que a supercondutividade de alta temperatura (SC) pode surgir usando essas estratégias. Essa
transição ocorre na presença de fortes flutuações magnéticas, sugerindo uma baixa sensibili-
dade a impurezas magnéticas. Surpreendentemente, quando se trata de substituição de metais
de transição, dopantes eletrônicos podem fazer a SC surgir, enquanto dopantes de buracos não.

Empregando a Espectroscopia de Fotoemissão com Resolução Angular (ARPES) para in-
vestigar o efeito da dopagem com buracos no sítio de Fe em amostras de Ba(Fe1−xMx)2As2 (M
= Mn, Cr), esta tese investiga a estrutura de bandas eletrônicas e sua dependência na composição
e temperatura. Os resultados apresentados mostram que, no caso das amostras substituídas por
Mn (MnBFA), os bolsões de elétrons e buracos permanecem aninhados, com a introdução de
Mn aumentando principalmente a incoerência das bandas eletrônicas e as correlações eletrôni-
cas. Essas descobertas sugerem que o Mn ajusta o material para uma região entre a fase metálica
correlacionada em BaFe2As2 e a fase isolante de Mott em BaMn2As2, onde fases eletrônicas
desordenadas podem emergir. No caso das amostras substituídas por Cr (CrBFA), a dopagem
com buracos ocorre efetivamente, desajustando a condição de aninhamento entre estados de
elétrons e buracos, e as correlações eletrônicas aumentam com o conteúdo de Cr. No entanto,
nenhuma evidência de comportamento de fase de Mott é observada nos experimentos ARPES
de para a amostra dopada com Cr próxima à condição de meio-preenchimento.

Além disso, a Espalhamento Inelástico de Raios X Ressonante (RIXS) foi aplicada para
sondar as excitações magnéticas derivadas do Fe nesses materiais. Os experimentos de RIXS
nos CrBFA sugerem um cenário ligeiramente diferente daquele para amostras de MnBFA, mas
também mostram forte espalhamento magnético entre excitações derivadas do Fe e do Cr.

Este estudo explica a ausência de SC nas MnBFA como uma combinação de quebra de par
magnético, desordem e correlações eletrônicas, enquanto nas CrBFA essa ausência é entendida
como causada por quebra de pares magnéticos e supressão das flutuações de spin itinerante
que promovem a SC. Esses resultados lançam luz sobre a complexa interação entre doping,
magnetismo e correlações eletrônicas em FeSC e sistemas eletrônicos correlacionados em geral.

Palavras-chave: arseneto de ferro, RIXS, ARPES, correlação eletrônica, fases eletrônicas des-
ordenadas
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Chapter 1

Introduction

For strongly correlated materials, the interplay of spin, charge, lattice, and orbital degrees
of freedom is known to be an important ingredient for the formation of quantum phenomena
and different ground states. These degrees of freedom are described in terms of the concept of
quasi-particles, which invoke particle-like properties of the low-lying energy excitations associ-
ated with the mentioned degrees of freedom. The resulting quasi-particles may interact among
themselves. For instance, one speaks in terms of spin excitations and about how electrons,
the charge degrees of freedom, interact with spin excitations. Another major coupling is the
electron-phonon coupling, describing the coupling between electrons and the lattice degrees of
freedom.

In the case of unconventional high-temperature superconductivity (HTSC) that appears for
cuprates, iron-pnictides, nickelates, and heavy fermions, important ingredients that are believed
to have a part in the Cooper-pair formation are [1, 2]: i) balance between localization and itin-
erancy of d (or f ) electrons; ii) proximity to an antiferromagnetic (AF) order and magnetic
fluctuations; iii) Fermi surface properties, nesting and topology; iv) bonding properties, includ-
ing Hund’s interaction, resulting spins, and bonding height and lengths.

To experimentally probe excitations and properties related to some of these ingredients,
many techniques have been used over the years. In this work, the focus is to use a combination of
Angle-Resolved Photoemission Spectroscopy (ARPES) and Resonant Inelastic x-ray Scattering
(RIXS) to study transition metal substituted BaFe2As2, a prominent parent compound for Iron-
based superconductivity (FeSC) [3].

The main features of FeSC are related to their multiband aspects. For instance, the most
accepted order parameter symmetry of the superconducting state of most FeSC materials is the
fully gapped s+− gap symmetry. This is only possible for at least a two-band system wherein
in each band the s-wave gap develops with an opposite phase sign than the other.

Additionally, Hund’s interaction arises from the orbital-filling configuration, and it is be-
lieved to play a role in the different ground states in the FeSC phase diagram. In this regard,
the electron-electron interaction, or electronic correlations, is believed to play a less prominent
role when compared with Hund’s interaction [4]. This is in contrast with the cuprates, where
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the on-site Hubbard repulsion is the most important interaction, and for heavy-fermion materi-
als, for which the Kondo coupling of the localized and itinerant electrons is the most important
interaction.

The purpose of this work is to explore the non-superconducting sector of the phase diagrams
in chemically substituted BaFe2As2. We focus on Mn and Cr substituted BaFe2As2, intending to
investigate what impairs the formation of superconductivity in these materials and to contribute
to the discussion about the HTSC mechanism.

In this regard, previous optical conductivity experiments explored the differences between
these two substitutions and Co-doped BaFe2As2 [5], revealing the drastic decrease of Drude
coherent peaks for both Mn and Cr substitution and larger impurity derived peak response for
the Mn case. ARPES experiments were performed for the low Mn substitution range before [6]
but with low resolution in momentum and energy. No trend of the electronic structure was dis-
cussed as a function of Mn. RIXS results for low Mn content were also reported, evidencing the
anisotropic damping of magnetic excitations with Mn introduction [7]. BaCr2As2 was investi-
gated by ARPES, revealing very sharp spectral weight lines associated with the energy bands,
and a Fermi surface structure different from the one for BaFe2As2, with no electron pockets.

Nevertheless, no study so far has combined ARPES and RIXS for probing different doping
levels of either Mn or Cr phase diagrams. Based on theoretical predictions, the results here
presented can shed light on some proposed explanations for the absence of superconductivity
in these materials. Consequently, is possible to elucidate the main ingredients that are relevant
for the HTSC formation.

R. M. Fernandes et al. [8, 9] explain the absence of a superconducting ground state by a
combination of Néel fluctuations and magnetic pair-breaking impurity scattering for the case of
Mn substituted system. The Néel fluctuations have a (π, π) symmetry and would compete with
the Fe-Fe spin fluctuations of (π, 0) symmetry, that supposedly allow the formation of the s+−

state. M. N. Gastiasoro et al. [10, 11] explain the absence of superconductivity for the Mn-
substituted system due to a cooperative behavior of the magnetic impurities through the RKKY
interaction mediated by conduction electrons. This interaction, in the presence of electronic
correlations, would result in the drastic reduction of superconductivity transition temperature
Tc and would explain the formation of cluster order of the Mn impurities. Therefore, a combi-
nation of disorder, magnetic impurities, and electronic correlations would suppress the HTSC.
This picture highlights the importance of impurity effects and their interaction with conduction
electrons, more than just acting as magnetic scatterers.

D. S. Inosov et al. [12] suggested the existence of a Griffiths-type phase for the Mn substi-
tuted samples, consisting in the formation of antiferromagnetic rare regions without orthorhom-
bic distortion, starting from the 12% Mn samples. In this phase, there would be a coexistence
of paramagnetic regions and locally ordered clusters, resulting in the observed glassy behavior
of the Mn local spins. The formation of a spin glass would be expected when putting together
interacting magnetic impurities that are randomly localized, however, the Griffiths-type phase
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is not the only explanation for this behavior, and the investigation of a quantum critical point in
the phase diagram would be necessary to benchmark the existence of this phase.

The results here presented point in the direction that, although Mn and Cr substitutions
would act as hole dopants, the effective doping is different for both cases. The ARPES results
show this difference in effective hole dope and also in band coherence for these two materials,
with evidence of cluster order only for the Mn case. The absence of SC in MnBFA is explained
as a combination of magnetic pair-breaking, disorder, and electronic correlations, following
what is predicted by the Gastiasoro picture, while in CrBFA this absence is understood to be
caused mainly because of magnetic pair-breaking and suppression of the itinerant spin fluctua-
tions which promote the SC, agreeing with Fernandes picture. These results help to understand
the complex interplay between doping, magnetism, and electronic correlations in iron arsenides.

In Chapter 2 a review of the materials properties and phase diagrams is presented, with an
explanation for different achievable phases and the characterized properties of the samples used
in this study. In Chapter 3 the ARPES technique is explained in the theoretical and experimental
aspects, along with the ARPES experimental methods for the results presented afterward. In
Chapter 4 the ARPES results for the Mn substituted samples are presented, with analysis of
Mn introduction and temperature effects, and spectral analysis. The results are discussed in
context with a previous RIXS experiment. In Chapter 5 the results for the slightly Cr-substituted
samples are presented, with the respective spectral analysis. In Chapter 6 the ARPES results for
BaCr2As2 and Ba(Fe0.515Cr0.485)2As2 are presented. For the former, a complete spectral analysis
was performed for all the bands, which are very well resolved, while for the latter RIXS results
are presented and discussed. Finally, in Chapter 7, all the main results are discussed together
with the final remarks, conclusions, and outlook.

Additionally, there is an Appendix A with an explanation of theoretical and experimental
aspects of the RIXS technique along with the optical study and simulation for the design and
operation of the RIXS spectrometer of IPE beamline, the first Brazilian RIXS beamline.
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Chapter 2

BaFe2As2 properties and phase diagrams

High-temperature superconductivity is a broad and somewhat recent field of study. Its origin
dates back to 1986, with a paper entitled "Possible high Tc superconductivity in the Ba-La-Cu-O

system" [13]. In this work, the observed transition temperature to the superconducting state was
30 K. This was enough to create a research area since the mechanisms known at the time for the
formation of a superconducting state dictate that it would happen at a much lower temperature.
Besides, superconductivity in the Ba-La-Cu-O system was quite unexpected, because this type
of material is an oxide and was known to be an insulator.

Since then, many compounds based on the presence of Cu in which high-temperature super-
conductivity (HTSC) appears were synthesized and characterized [14], even though complete
theoretical descriptions to explain such behavior were still lacking. This class of materials is
called cuprates or CuSC and a long list of literature has been published in the past years con-
cerning experimental results, different techniques, density functional theory calculation, theo-
retical descriptions, etc for this family of materials [15–18]. The highest transition temperature
Tc achieved for the CuSC so far is 164 K, reported in 1994 for the mercury-based compound
HgBa2Ca2Cu3O8+δ under high pressure of 45 GPa [19].

Many attempts to reproduce high-temperature superconductivity in compounds based on
other transition metals were made, but the transition temperatures were never as high as the
ones from the cuprates.

Nevertheless, in the year 2008, a paper was published with the title Iron-Based Layered Su-

perconductor La[O1−xFx]FeAs (x = 0.05−0.12) with Tc = 26 K [20], where high-temperature
superconductivity was firstly reported in iron-based materials, 22 years after the cuprates. It was
expected that this new class of superconductors would help understand the behavior and origin
of superconductivity in cuprates, however, it turned out to have its own different physics and
mechanisms [21], which raised many more questions.

This class of materials is known as iron-based superconductors (FeSC), in which super-
conductivity appears upon chemical substitution or applied pressure. There are several parent
compounds, with different unit cells and overall structure, but they all share in common a layer
of Fe coordinated by a pnictogen (As, P) or a chalcogen (Se, Te). Such a configuration can be
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Figure 2.1: Structure for different types of parent compounds in the FeSC family of materials.
From left to right: 11, 111, 122, and 1111 structure types. They all share in common a layer of
Fe forming a square lattice that appears twice in the unit cell. From Ref. [22].

thought of as a corrugated plane, so this structure is basically 2D, as in the case of CuSC. This
is illustrated in Figure 2.1. The FeSC are all classified by their stoichiometry and structure, for
example, the RFeAsO, with R = rare earth is called 1111 materials, the EFe2As2, with E =

alkaline metal or alkaline earth metal, are called 122 materials, the AFeAs with A = alkali
metal are called 111 materials, etc. In this work, the focus is on the 122 family, with the parent
compound BaFe2As2. More specifically, in the transition metal substituted samples, with pu-
tative hole doping and no superconducting dome. In the next sections, I’ll further explain the
properties of this parent compound, its phase diagrams, the different types of orders, and the
expected effects on the electronic structure.

2.1 Phase diagrams for Ba(Fe1−xMx)2As2, M= Cr, Mn

The parent compound BaFe2As2 undergoes a spin density wave (SDW) phase transition
at about 140 K [23]. This transition is followed by a structural transition from tetragonal to
orthorhombic geometry, with a small orthorhombic distortion of about 0.5% [24]. The state in
between is characterized as a nematic order.

In simple terms, the spin density wave (SDW) state is a magnetically ordered state that forms
a spatial modulation of the spin density in metallic materials. It is fundamentally different from
localized magnetically ordered states, such as ferromagnetism (FM) and antiferromagnetism
(AFM), both in terms of its coupling mechanism and the importance of electronic states at
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the Fermi surface (FS). In FM and AFM states, the exchange interaction between neighboring
spins causes the spins to align in a preferred direction upon cooling, for a more energetically
favorable configuration. In contrast, for SDW states (and charge density waves, which are
analogous but involve charge instead of spin), the relevant interaction can arise from the nesting
of the Fermi surface, with a characteristic interaction vector coupling different parts of the FS.
The modulation of the spin density in the SDW state has a characteristic order vector defined
by the new periodicity.

The nematic ordered state, by its turn, is a type of ordered phase that can occur in certain
materials, particularly in liquid crystals. In a nematic ordered state, the long-range orientation
is not fixed, but instead, there is some degree of directional order, with a preferred direction or
axis of alignment. The nematic ordering does not involve a periodic arrangement of the atoms
in the material. Instead, the ordering is typically more fluid and flexible, allowing the material to
exhibit a range of interesting properties. In the case of FeSC, electronic nematicity refers to the
spontaneous breaking of the rotational symmetry of the electronic states in the material. This
means that the electronic states become preferentially aligned along one or more directions,
forming a nematic order that is analogous to the nematic order observed in liquid crystals. The
nematic order is speculated to be driven by a coupling between the electronic degrees of freedom
and the lattice degrees of freedom. This coupling can give rise to a distortion of the lattice that
breaks the rotational symmetry of the electronic states and leads to the observed nematic order.

In the BaFe2As2 phase diagram, the superconducting state can be achieved by multiple
partial chemical substitution strategies [25–36]. A general phase diagram for the family of
BaFe2As2 is shown in Figure 2.2. The substitution of Ba by K is called hole doping since it
substitutes an atom for one with fewer electrons in the valence state. It results in the appearance
of a superconducting transition for x up to x = 1, which means total substitution. On the
other hand, the electron doping replacing Fe by Co presents superconductivity up to just about
x ∼ 0.12. That means that electron doping and hole doping are not equivalent when it comes
to the formation of the superconducting pair in these materials.

SDW phase transition not only creates a magnetic periodic superstructure modulation in
the material but is also accompanied by an orthorhombic structural distortion at a temperature
slightly above the magnetic transition. This distortion is very small in a way that the lattice pa-
rameters can be approximated to the tetragonal phase ones. However, the whole crystal structure
and magnetic lattices have rotational symmetry broken from C4 to C2. FeSC phase diagrams
usually show a suppression of the SDW phase and it was believed that the instability of the
SDW phase would be an ingredient to the unconventional superconductivity (SC), making the
SDW fluctuations part of the pairing mechanism [38].

At the SDW phase, the smaller orthorhombic direction becomes ferromagnetic (FM) while
the greater direction becomes antiferromagnetic (AFM), resulting in a stripe order as shown in
Figure 2.3(a). This order also breaks the translational symmetry in the AFM direction, doubling
the periodicity, which corresponds to folding in the reciprocal space illustrated in figure 2.3(b).
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Figure 2.2: Phase diagram for the Ba1−xKxFe2As2 and Ba(Fe1−xCox)2As2 samples as a function
of x. The superconducting dome occurs in both hole (K) or electron (Co) substitution, but not
in a symmetrical way. From Ref. [37].

Between the structural phase transition and the SDW phase transition, there exists a phase
called nematic order [41]. Similarly to the SDW phase, the nematic order breaks the rotational
symmetry. It is complicated to describe the order parameter for this phase since it is accom-
panied by other transitions. One of these transitions is the mentioned orthorhombic distortion,
which is of structural/phonon origin, breaking the rotational C4 symmetry down to C2 without
breaking the translational symmetry [40]. A second one is an orbital transition, presenting a
break of degeneracy between dxz and dyz orbitals occupations, which is of electronic origin and
implies an energy shift of both bands in opposite directions [42]. The third is the break of C4 ro-
tational symmetry for the static spin susceptibility χ(q), which becomes different for qx and qy
directions even before the appearance of SDW divergence in the susceptibility. R. M. Fernandes
et al. has described this problem as an "egg and chicken" problem [41] since all these transitions
are intrinsically related to one another. They have argued that the nematic phase is electronic-
driven using a Ginzburg-Landau free energy argument and with experimental evidence. The
coupling to lattice degrees of freedom perturbs the idealized pure nematic transition, raising its
expected critical temperature [2]. Even the electronic origin of the nematic transition, however,
is still up for debate. It can be argued that the orbital degrees of freedom are responsible for
the transition, with their interaction spontaneously lifting the degeneracy between dxz and dyz
orbitals [43] and distorting the Fermi Surface. On the other hand, it can also be argued that the
proximity to an antiferromagnetic instability, with stripe-like symmetry, beaks the rotational
symmetry before the order takes place [44].

It is very challenging to separate both SDW and nematic influence on the band structure
since their transition temperatures Tnem and TSDW are very close and the structural, electronic,
and magnetic properties are very similar in this small temperature range. Therefore, it is im-
portant to note that even with the SDW phase having some similar broken orders to the nematic
phase, both phases are different mainly by the break of translational symmetry and the diver-
gence in spin susceptibility χ(q) in the SDW phase.
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Figure 2.3: (a) Illustration of 2D Fe sublattice after the nematic transition and SDW transition.
The red lattice corresponds to 1 Fe unit cell while the gray one corresponds to 2 Fe unit cell
with As alternating between above and below Fe plane, from ref [39]. (b) Illustration of SDW
band folding in the 1 Fe cell Fermi surface. The dxy, dxz, and dyz orbitals are represented by the
colors blue, red, and green respectively. Adapted from refs [39, 40].

With these considerations about the parent compound in mind, the attention can be turned
to the phase diagrams of interest for this work. Among the possible strategies to achieve super-
conductivity, one that was largely explored was transition metal substitution [45, 35]. Systems
with electron doping, such as Co, Ni, Cu, Rh, Pd, Pt, Au, Rh [26–29, 31–33], or isoelectronic
substitution, such as Ru [34], present superconductivity. However SC is not observed in the
cases of nominal hole doping with Cr [46, 47], Mn [6, 48–51, 5] or V [52]. Intriguing it is that
for other substitutions, such as K, Rb, or Cs at the Ba site, superconductivity can be observed
with hole doping [53–56]. This calls for speculation about the absence of SC in Mn and Cr
substituted phase diagrams, which is the main purpose of this work.

The phase diagrams for the Mn and Cr substituted samples are shown in Figures 2.4, 2.5,
and 2.6. In Figure 2.4, from Ref. [5], the differences between Mn substituted (MnBFA) and
Cr substituted (Cr) samples are illustrated. For MnBFA the suppression of the SDW transition
temperature TSDW, forming the antiferromagnetic orthorhombic (AFO) phase, is almost linear
up to 10% substitution. After, the orthorhombic distortion no longer takes place, making a
crossover region of the phase diagram. For the CrBFA the TSDW suppression seems to drop
more rapidly for lower Cr concentrations and the orthorhombic distortion prevails for higher
substitution levels.

To better understand the CrBFA phase diagram, the neutron diffraction study made by K.
Marty et al. [46] can be inspected, which includes samples with x up to 0.47. Their phase
diagram is illustrated in Figure 2.5 along with the ordered moment measured as a function of
Cr concentration. The rapid drop of TSDW for low Cr content is more evident here. For x & 0.3,
the average momentum drops to zero, indicating a G-type localized antiferromagnetic order.
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Figure 2.4: Phase diagram for the Ba(Fe1−xTMx)2As2 (TM = Cr, Mn) samples as a function of
x. From Ref. [5], with data from Refs. [48, 46].

This is also the ground state for BaCr2As2 samples [57–60], indicating that after the crossover
region of x ∼ 0.3, the ground state must be the same for the rest of the phase diagram. Indeed,
for BaFeCrAs2 the ground state was found to have a G-type order and transition temperature of
TN = 265 K, while TN = 580 K for BaCr2As2 [58].

It was speculated that BaCr2As2 could be analogous to BaFe2As2, due to the proximity
of the Fe 3d6 and Cr 3d4 electronic configuration to half-filling [60]. Not only the transition
temperature and degree of electronic correlation and localization are remarkably different, but
also it is believed that the spins will be aligned along the c-axis for BaCr2As2, as is the case
of EuCr2As2 [61]. For BaFe2As2 the SDW order is on the ab plane, with a strong influence of
antiferromagnetic second neighbors super-exchange interaction [62], which is believed to play
a role in the Cooper pair formation [2].

BaMn2As2, by its turn, has a localized antiferromagnetic order with TN = 625 K [63–65]
and it is believed that Mn substitution would continuously tune the system to the Mott insulator
BaMn2As2 [66, 67]. A negligible band renormalization is expected for BaMn2As2 [65] and a
DFT+DMFT study shows the importance of the Hund’s exchange coupling JH to achieve the
insulating ground state [68].

In this sense, considering that Mn with a 2+ oxidation state has five d electrons, a half-
filling configuration would take place. Such configuration favors localization and it can be
speculated that BaFeCrAs will also have, on average, five d electrons per Fe/Cr atom. Naively
speaking, and disregarding random occupancy and disorder effects, the x = 0.5 CrBFA would
be electronically equivalent to the Mott insulator BaMn2As2. An x-ray emission and absorption
spectroscopy study have shown evidence of this increasing localization, pushing the system to
a putative Mott insulator for x up to 0.47 [69].

However, such simplification can not be fully trusted. For the MnBFA samples, the theo-
retical scenario nowadays is more complex. The debate about this topic revolves around the
relative relevance attributed to disorder, magnetic and impurity scattering, and the evolution
of electronic band structure caused by Mn substitution. In this regard, it was theoretically
predicted that a combination of disorder, magnetic impurities, and electronic correlations, sup-
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Figure 2.5: Phase diagram for the Ba(Fe1−xCrx)2As2 samples as a function of x. The lower
panel shows the average ordered Fe/Cr moment as a function of x in the ordered state obtained
using the neutron diffraction technique. From Ref. [46].

presses HTSC [10, 11]. Although, the role of magnetic excitations promoted by the newly
introduced spins and their symmetries can also explain the absence of SC [8, 70] and the detun-
ing of the SDW nesting conditions can also be speculated to destroy an important interaction
for the electron pair formation.

One of the main differences between the Mn and Cr phase diagrams, beyond the different
substitution concentrations needed to fully suppress the SDW phase and the hindering of the or-
thorhombic transition, is the effective hole doping for these two systems. Some studies suggest
that Mn does not introduce holes into the electronic structure [6, 51], while it was confirmed
by Hall coefficient analysis extracted from resistivity measurements that holes are indeed intro-
duced by Cr substitution [71].

For MnBFA substitution levels close to the mentioned crossover region, it was suggested the
existence of a Griffiths-type phase [12], consisting in the formation of antiferromagnetic rare
regions starting from the 12% Mn samples even above the TSDW of the parent compound. In
this phase, there would be a coexistence of paramagnetic regions and locally ordered clusters,
resulting in a glassy behavior of the Mn local spins. The formation of a spin glass would be
expected when putting together interacting magnetic impurities that are randomly localized.
This is illustrated in Figure 2.6.

Considering all these differences and predictions, ARPES results will help to elucidate the
doping mechanisms and degree of localization and correlation as a function of Mn and Cr
content, as we shall see.
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Figure 2.6: Phase diagram for the Ba(Fe1−xMnx)2As2 samples as a function of x. The green-
shaded region denotes the existence of spin glass (SG) fluctuation and cluster glass (CG) for-
mation above the transition temperature. From Ref. [12].

2.2 BaFe2As2 crystal structure, reciprocal space and high sym-
metry points

BaFe2As2 (BFA) at room temperature has a body-centered tetragonal (bct) crystal structure
with the symmetry of its base belonging to the I4/mmm space group [72]. This is shown in
Figure 2.7. However, since the electronic structure near the Fermi level is mainly composed by
Fe derived contributions, it is also usual to interpret experimental data and to perform theoretical
modeling based on the Fe unit cell, with a primitive tetragonal (pt) crystal structure rotated
by π/4 from the BFA unit cell and lattice parameters multiplied by a factor of

√
2/2 in the

directions a and b and by a factor of 1/2 in the direction c.

The reciprocal space primitive unit cell, known as Brillouin Zone (BZ), of both bct and pt
lattices, are represented in Figure 2.8. As expected, the smaller lattice in real space will result
in a larger BZ at the reciprocal space, as observed for the Fe pt lattice. It is important to notice
that, at the reciprocal space for equally oriented tetragonal lattices, the M point in the pt BZ
is at the same position as the X point in the bct BZ [72], this is the point where the electron
pocket is located for BFA. As mentioned, the Fe pt lattice vectors are rotated by π/4 from the
bct lattice. So their Γ-X and Γ-M directions will coincide as Figure 2.8 suggests, where only
the pt lattice high-symmetry points are depicted.

All magnetism and most of the electronic structure for BaFe2As2 is originating from Fe
atoms. The models based on Fe atoms are usually approximated by 2D square lattices since
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Figure 2.7: BaFe2As2 crystal structure at room temperature consisting of a body-centered
tetragonal lattice with symmetry I4/mmm. The gray atoms represent Ba, while black is As
and red is Fe. The iron plane is indicated by a red rectangle.

the inter-plane magnetic coupling is weak and the out-of-plane dispersion on the electronic
structure can be neglected in some models.

The 2D square lattice has a square BZ with point X at (1,0) and M at (1,1) in units of π/a,
as shown in Figure 2.9. The 1-Fe square unit cell will be rotated by π/4 from the bct unit cell,
having the Γ-X and Γ-M directions coinciding with the 3D tetragonal lattice notation.

However, the high-symmetry point notation can become a little more complicated when we
think in terms of the magnetic phase superstructure. Since the orthorhombic distortion is very
small, it can be neglected in the SWD phase, which can be modeled in terms of the 2-Fe square
lattice with the same basis vectors as the bct lattice. The reciprocal space of the 2-Fe square
lattice will have half the area of the 1-Fe square lattice. This is understood in terms of folding
in the reciprocal space. The point X at the 1-Fe square lattice will become the point M at the
2-Fe square lattice. This is shown with more details in Figure 2.9 and summarized in Table 2.1.

The 2-Fe square lattice is also referred to as folded. As mentioned, this is because the BZ for
2-Fe can be obtained by folding the corners of the 1-Fe BZ square to the Γ point. This can also
be interpreted as translation symmetry operations that can unfold the 2-Fe to a 1-Fe Brillouin
zone.

The reciprocal space folding occurs because the new lattice has 2-Fe atoms and has its
periodicity multiplied by a factor of

√
2 due to the magnetic modulation. As a result, the

reciprocal space will be reduced to half for the 2-Fe square lattice.

Also, when considering the alternating As atoms above and below the Fe plane, the full
electronic orbital structure contributions from both Fe 3d orbitals and As 2p orbitals will be
included only in the 2-Fe unit cell.

Table 2.1 was used to orient the experimental alignment for ARPES results in the next chap-
ters. Since the sample is naturally oriented in its growth process by the a and b directions of the
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Figure 2.8: Body-centered tetragonal (blue) and primitive tetragonal (red) Brillouin zones. The
primitive tetragonal unit cell corresponds to the Fe pt lattice, while the body-centered tetragonal
unit cell corresponds to the BFA bct lattice. From ref. [73].

Dimension 3D 2D
Lattice geometry BFA (bct) Fe (pt) 2-Fe (square) 1-Fe (square)

a (Å) 3.96 2.80 3.96 2.80
c (Å) 13.04 6.52 - -

Basis Vector orientation 0 45◦ 0 45◦

Sample aligned at 0◦ Γ-M Γ-M Γ-X Γ-M
Sample aligned at 45◦ Γ-X Γ-X Γ-M Γ-X

Table 2.1: The lattice parameters and lattice orientations for different types of 2D e 3D lattices
used on literature to model the reciprocal space of FeSC. The basis vectors’ orientation is in
relation to the body-centered tetragonal (bct) basis vectors which also define the sample growth
and sample orientation. The used lattice parameters are for the BaFe2As2 material.

bct unit cell, the sample positioned experimentally with the azimuthal angle equal to 0◦ (sample
x-axis coinciding with the detector slit), and measured for its band structure horizontally, will
be probed along the Γ-X direction for the 2-Fe lattice, which is equivalent to Γ-M in the other
lattices as shown in 2.1. Similarly, a sample positioned experimentally with the azimuthal angle
equal to 45◦, and measured for its band structure horizontally, will be probed along the Γ-M for
the 2-Fe lattice, which is equivalent to Γ-X for the other lattices symmetry points notation.

In this work, the adopted notation is the bct structure, once the c-axis dispersion of the
electronic structure will also be probed. In this notation, the BFA Fermi surface electron pockets
will be at the X/Y points [72]. Since the sample properties are notation independent, is it
important to stress that the electron pockets are always probed for the diagonal (sample aligned
at 45◦) direction of the sample growth.

The samples studied in this work are Ba(Fe1−xMx)2As2, M =Mn, Cr. They were grown
by the In-flux method as described in [74], by the Group of Optical and Magnetic Properties of
Solids (Grupo de Propriedades Ópticas e Magnéticas de Sólidos - GPOMS) at the University of
Campinas. This technique can be used to grow samples with different transition metal substitu-
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Figure 2.9: Real and reciprocal square lattices for 1 Fe unit cell and 2 Fe unit cell. The dashed
lattice and red symmetry points refer to unfolded BZ. The solid line and black points refer to
folded BZ. From ref. [72].

Batch Dopant x Short name a (Å) c (Å) TSDW (K) TAF (K)
PGJ009 - 0 BFA 3.9587 13.035 134 -
PGJ589 Cr 0.03 Cr3% 3.95247 13.04303 109 -
PGJ761 Cr 0.085 Cr8.5% 3.97124 13.21435 79 -
PGJ762 Cr 0.485 BFCA 4.01449 13.34905 - 265 [58]
PGJ763 Cr 1 BCA 3.95228 13.63006 - 580 [58]
PGJ808 Mn 0.035 Mn3.5% 3.969215 13.13315 99 -
PGJ807 Mn 0.075 Mn7.5% 3.9402 13.0201 80 -

Table 2.2: Characterization table of the Mn and Cr substituted BaFe2As2 samples.

tions, by adjusting the heat treatment for each substitution to maximize the metal incorporation.
The resulting crystals have the form of shiny platelets with dimensions of about 2.0×2.0×0.05

mm3.

With the use of several characterization techniques, such as Electron Spin Resonance (ESR),
x-ray powder diffraction, electrical resistivity, and magnetic susceptibility, the quality of the
samples was verified. The results showed no sign of bulk In incorporation, a lower concentration
of defects, and the general high quality of the samples. The characterization performed by
GPOMS is summarized in Table 2.2 for the x range. The transition metal proportion x for the
samples of interest is presented in the notation Ba(Fe1−xMx)2As2.

Compared with other common methods such as self-flux and Sn-flux, the In-flux samples
have shown a comparable or higher quality. The Sn-flux method has shown Sn incorporation,
which is a disadvantage, despite the larger crystals resulting from this method. On the other
hand, self-flux samples can present stoichiometric variations from 122 due to the excess of
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FeAs.

2.3 Normal state and SDW phase band structure for BaFe2As2

The Fermi Surface (FS) of most of the iron pnictides, as is the case for BaFe2As2, consists
of electron pockets at the X/Y points of the BZ and concentric hole pockets at the center of the
BZ, at point Γ. The SDW order vector is QSDW = (π, 0, π) or (0, π, π) and it is believed that
this type of fluctuation is the origin for s+− SC state [75].

Theoretically, for all iron arsenides, the Fe-As layers can be used to model the band structure
in simple phenomenological models, such as tight-binding. Also, density functional theory can
be used to calculate the band structure from first principles within some approximations. It
was found theoretically, employing Hartree-Fock calculations, that the interaction between two
electron pockets of the Néel type, QSDW = (π, π, 0) compete with Q and can be stabilized, but
it has higher energy than the SDW ground state [76, 77].

It calls for speculation, once the BaMn2As2 has an insulating antiferromagnetic state, where
Néel interaction is present along the Mn substituted BFA (MnBFA) phase diagram. Therefore,
one can expect that Néel fluctuations would become energetically favorable, and that localiza-
tion will play a role to suppress the metallicity.

It was predicted and experimentally confirmed that the tetrahedral crystal field in which Fe
atoms are located inside BaFe2As2 structure makes the Fe t2g orbitals (dxy, dxz and dyz) slightly
above the eg orbitals (dz2 and dx2−y2). The electronic band structure at the Fermi level will be
mostly dominated by the t2g orbitals [39]. In the simplest model, the FeSC electronic bands
derive from Fe 3d-states that are subjected to the effects of the As ligands, which break the Fe
3d-states degeneracy and instill a strong orbital character to the electronic bands [3, 2].

The three hole pockets at Γ and two electron pockets at X/Y are mainly composed of Fe
dxz/dyz orbitals, hybridized from the four-fold rotational symmetry of the crystal lattice, and
also from dxy orbital. This is shown in Figure 2.10, which is based on a five orbitals model for
LaFeAsO compound and is qualitatively the same as the one for BaFe2As2 [3].

A Spin Density Wave (SDW) is a low-energy ordered state that appears in solids. It appears
in low temperatures of low-dimensional materials and consists of the formation of a superstruc-
ture with a periodic modulation of the density of spins. This superstructure has a periodicity
q, which can be observed with the use of the neutron diffraction technique or extracted from
susceptibility measurements. If the periodicity q is a multiple or a rational fraction of the lat-
tice constants, the SDW is termed commensurate. If it is an irrational multiple or fraction, it is
called incommensurate.

However, when we think about the nematic splitting of electronic bands and SDW folding,
the effects on the resulting electronic bands in the ordered state are a little complicated. On top
of that, there is also the SDW gap opening which is highly orbital-dependent and difficult to
observe experimentally, due to the multi-band aspect of the electronic band.
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Figure 2.10: Orbital contribution to the hole pockets at Γ and electron pockets at X/Y for FeSC
in the 1 Fe (unfolded) BZ. The C4 rotational symmetry is present by considering dxz equivalent
to dyz. From [3].

In Figure 2.11 it is possible to observe a tight-binding model describing BaFe2As2 electronic
bands and their orbital composition at the normal state. As expected, there are three hole pockets
at Γ and two electron pockets at X/Y with a symmetry between the Fe-derived 3d orbitals dxz
(red) and dyz (green).

The nematic state, as discussed before, presents a symmetry break between dxz and dyz

orbitals, with energy splitting shifting both orbitals in different energy directions. The arrows
at the middle panel in Figure 2.11 illustrate such a shift, with the original bands as dotted lines
and the shifted bands as full lines. The effect in the hole pocket at Γ is small, with one of the
bands being pushed at the Fermi energy level. The effect is more pronounced in the electron
pockets, with one of the electron pockets shifted up out of FS for the XZ and ΓY directions.
The resulting FS has one less contribution in the horizontal direction to the electron pockets and
an enlargement of the ZY electron pocket in the vertical direction.

As explained in the previous sections, the Brillouin Zone can be folded to change between
different representations and periodicity of the crystal structure. However, such a folding can
also be employed to model the increasing periodicity of a magnetically ordered state. Therefore,
the SDW ordered state can also imply a folding, achieved by folding XZ and ΓY in half into
themselves and folding YZ into ΓX, as shown in figure 2.3(b). The resulting electronic bands
are shown in the lower panel of Figure 2.11 with the ticker lines corresponding to the origi-
nal shifted bands of the nematic phase and the thinner lines showing the folded bands. From
this, we can see that the experimental observation of those electronic bands can be extremely
challenging. Even with enough instrumental resolution to separate the bands’ contributions,
the band assignment is quite tricky. Heike Pfau et al. [42] have done it in their work with the
parent compound BaFe2As2 for the paramagnetic and SDW states. The comparison between
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Figure 2.11: Resulting electronic bands for BaFe2As2 calculated from a tight-binding model for
the 1 Fe unit cell in the normal state and manipulated to depict the nematic and SDW states. The
X, Y, and Z points here correspond to the My, Mx and Γ’ in figure 2.3(b) and the color codes
for orbitals are the same with the dxy, dxz and dyz orbitals being represented by the colors blue,
red and green respectively. The nematic phase is achieved by the shift in opposite directions of
bands dxz and dyz. The SDW folding is achieved by folding XZ and ΓY in half into themselves
and folding YZ into ΓX. No SDW gap effect is considered here. From ref [42].

both states permitted them to perform a band assignment. However, it showed some differences
with the model because the gap opening was disregarded.

Ming Yi et al. have shown in their review paper [40], that the SDW gap opening is orbital
dependent and can be quite large for BaFe2As2. The largest one occurs for the dxy orbital at the
Y point and is larger than 50 meV. This gap results in the total absence of a dxy contribution
in the Y electron pocket since the electronic contribution does not cross the Fermi level. The
same does not occur for the X electron pocket. The second-largest gap opening occurs for the
dyz orbital at the X point in the vertical direction of the BZ. This gap is of the size of about 30

meV and it is not large enough to push the electron and hole pockets out of FS.

As a result of SDW band folding and isotropic orbital dependent gap opening, the Fermi
Surface topology at the ordered state not only will have the symmetry between dxz and dyz

orbitals broken but also the dxy contribution can appear at one electron pocket and not at the
other, changing the orbital weight beyond the polarization selection rules, as it will be explained
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in Section 3.1.4.
This will be further discussed when interpreting the orbital contribution to the Fermi surface

of the MnBFA and CrBFA samples, with an electronic structure much closer to the parent
compound BFA. The effects of Mn and Cr introduction were explored mainly with the use of
ARPES, as will be explained in the following chapter.
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Chapter 3

Angle Resolved PhotoEmission
Spectroscopy (ARPES)

Immediately after the discovery of Iron-based superconductors (FeSC), there was a high
number of theoretical and experimental research groups investigating the electronic structure
and Fermi Surface (FS) of some compounds of this family employing Angle-Resolved PhotoE-
mission Spectroscopy (ARPES) [78–80, 6].

ARPES is a technique that permits direct access to the energy-momentum relationship of
electrons in a material, which is known as its electronic band structure, exploring the photoelec-
tric effect. A soft-energy X-ray beam hits the sample, and then an electron analyzer detects the
number of emitted electrons as a function of energy and angle, making it a photon-in electron-
out technique. The angular degree of freedom and its resolution in the experiment permits to
access a wide range of the Brillouin Zone in the momentum space.

By analyzing the energy and momentum of the ejected electrons, ARPES can reveal the
shape and dispersion of the energy bands, as well as the locations of band gaps and Fermi
surfaces. This information can provide insight into the fundamental physical properties of a
material, such as its electronic conductivity, magnetic behavior, and optical properties. The
measured energy bands permit to perform analysis of band renormalization and effective mass
relation by resolving the bands, and the lineshape allows the extraction of the single-particle
self-energy related to each band.

ARPES is widely used in materials science and condensed matter physics and has applica-
tions in the development of new materials for electronic and optoelectronic devices. It is also
used in the study of surface chemistry, where it can be used to investigate the interaction of
molecules with surfaces and the electronic structure of thin films and interfaces, for example.

In the case of superconducting materials, it is possible to extract the superconducting energy
gap from the Energy Distribution Curves (EDCs). One of the most important results in this
aspect is the symmetry of the gap at the reciprocal space, which is reminiscent of the symmetry
of the energetic favorable Cooper pairing. Indeed, the experimental study of the SC gap can
support or discard a theoretical scenario for the SC mechanism.
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Among the most important ARPES results for the FeSC materials in the first years of their
discovery, we can list [81]:

• the multi-band aspect of the band structure, consisting of different contributions of the 3d

orbitals from Fe;

• the presence of several electron and hole pockets in the FS;

• a more prominent 3D aspect to the electronic structure than in the case of cuprates;

• the symmetry of the order parameter is in general isotropic, characterized with s+− sym-
metry.

In this regard, light polarization can be used to separate different orbital contributions to
the band distribution [40]. Through the matrix elements formed by the initial and final states
of the photoemission process, we can observe which orbital contribution will appear for each
polarization, as we shall see.

In this chapter, I will cover the basic theoretical and experimental concepts behind the re-
alization and analysis of an ARPES experiment. The results for the 122 Ba(Fe1−xMnx)2As2

Ba(Fe1−xCrx)2As2 samples will be presented along with self-energy and band character analy-
sis in the following chapters.

3.1 Fundamentals

In an ARPES experiment, electrons are detected by an electron analyzer, a device that can
focus an incoming beam of electrons to a slit and then deflect it in a semi-circle, using the
potential lens effect, and make it hit the detector with different positions as a function of kinetic
energies. The concept so far is the same as Photoemission spectroscopy (PES), with which we
can measure the binding energies of electrons in the material by photoelectric effect intensity.

The Angle-Resolved part comes from having an analyzer with angular acceptance in the
slit and an area detector. It permits the formation of an image of detected electrons intensity
as a function of both energy and angle. This angle is related to the electron pre-emission mo-
mentum. To do so, however, the sample must be a single crystal with its alignment previously
known by other methods. As we shall see, the detected intensity can be associated with the
electronic band structure of the material and the Fermi surface (FS) can be reconstructed by
those measurements.

As a consequence of photoemission, a hole is created in the solid. Theoretically, the creation
of this photohole and its relation to ARPES can be described by the spectral function, also called
the one-electron removal function.

However, simply measuring the electronic band structure and Fermi surface using ARPES
may not be enough to understand the origin and mechanisms responsible for different ground
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states in quantum materials, where strong electron correlations, electron-phonon coupling, and
different phenomena can be present. For this, theoretical models and calculations can be helpful
to utilize ARPES results’ full potential.

3.1.1 Photoemission process

ARPES is a photon-in electron-out technique since it is based on the photoelectric effect.
The monochromized light incident on the sample, with energy hν in the region of soft x-rays, is
absorbed by an electron. When the energy is greater than a characteristic work function φ, the
electron is emitted with kinetic energy following equation 3.1, a well-known equation for the
photoelectric effect.

Ek = hν − φ (3.1)

A more evolved theoretical description of the ARPES process includes the sample’s many-
body effects which are complex to describe. However, a complete approach can be achieved
using quantum-mechanical perturbation theory to describe the transition rate. To do so, let us
consider a Hamiltonian describing the electron on the solid plus the photon field as a weak
time-dependent perturbation

Ĥ = Ĥ0 + Vinte
−iωt, (3.2)

where H0 is the unperturbed Hamiltonian with known eigenstates and eigenvalues, and Vint

is the photon field factor, given by:

Vint = − e

mc
A · p, (3.3)

with A being the magnetic vector potential and p = i~∇ the momentum operator. The
expression for the photon field is deduced by considering a weak radiation field such that the
two-photon process term proportional to A2 can be discarded, and adopting a choice of gauge
to eliminate the scalar potential ϕ: ∇ ·A = 0.

The transition rate from the initial state withN electrons to a final state withN electrons can
be evaluated using Fermi’s Golden Rule for a first-order perturbation as shown in equation 3.4
[82], where ΨN

i is the initial and ΨN
f is the final N electron states. The first term represents the

transition matrix elements from the initial to the final state. The last term represents the energy
conservation, where the final state energy EN

f is equal to the initial state energy EN
i summed

with the absorbed photon energy.

wi→f =
2π

~
∣∣〈ΨN

f

∣∣Vint
∣∣ΨN

i

〉∣∣2 δ (EN
f − EN

i − hν
)

(3.4)

However, to include surface properties, which are fundamentally different from the bulk
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Figure 3.1: A comparison between one-step and three-step models for the photoemission pro-
cess. Adapted from ref [84].

ones, the crystal Hamiltonian H0 can become greatly complicated. Thinking of the photoemis-
sion process in this way is known as one-step model. One phenomenological model often used
to describe this same process is the three-step model developed by Berglund and Spicer [83].
This model consists of breaking the photoemission process into three separate and independent
processes: the bulk electron excitation by absorbing the photon energy, the transport of the elec-
tron from bulk to the surface, and the electron release into the vacuum. The comparison between
one-step and three-step models is depicted in figure 3.1. The photoemission intensity will be
defined by the product of the three processes probabilities. The second term can be described in
a phenomenological way by the mean free path of the electron based on the internal scattering.
It will be related to the penetration depth of the ARPES technique since bulk electrons deeper
than the mean free path will hardly reach the sample surface. The third term can be described
by the material surface energy barrier known as inner potential V0, composed by work function
φ and potential difference E0 between the kinetic energy of an electron inside the crystal and at
the vacuum. Therefore, all information regarding the electronic structure will be present in the
first term.

Focusing on the first step, the ARPES intensity can be described by the transition rate from
an initial to a final state both with N electrons. However, the creation of the photohole will
imply different Hamiltonians and eigenstates in the final state. To avoid such complications, the
sudden approximation is used. It consists of considering that the electron leaves the surface im-
mediately after the excitation, not giving any time window to the relaxation process to interfere
with the electron wavefunction. Therefore, instead of having a N electrons final state at the end
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of the first step, the final state will have N − 1 electrons and a free electron with wavefunction
with momentum k. The approximation is represented by equations 3.5.

∣∣ΨN
f

〉
≈ φk

f

∣∣ΨN−1
m

〉∣∣ΨN
i

〉
≈ φk

i

∣∣ΨN−1
i

〉 (3.5)

The final N − 1 electrons state can be excited to different eigenfunctions
∣∣ΨN−1

m

〉
, where

m is a set of quantum numbers containing all possible excitations of the final state [85], after
the electron removal and before the decay. Therefore the total transmission probability will be
given by the sum over m of all possible excited states.

The initial state fits into the sudden approximation if we consider it to be within the Hartree-
Fock approximation, meaning that the total wave function can be written as a product of each
electron wave function. Therefore, before the electron absorbs the photon energy, its state can
be factorized from the total wave function.

With this, the transition matrix elements can be written as

〈
ΨN
f

∣∣Vint
∣∣ΨN

i

〉
=
∑
m

〈
φk
fΨN−1

m

∣∣Vint
∣∣φk
i ΨN−1

i

〉
=
∑
m

〈
φk
f

∣∣Vint
∣∣φk
i

〉 〈
ΨN−1
m

∣∣ΨN−1
i

〉
≡
∑
m

Mk
i,fCm,i

(3.6)

where Mk
i,f is the one-electron transition matrix element and Cm,i is the N − 1 electrons

state overlap integral. To calculate the total ARPES intensity, we need to integrate wi→f for all
i, j and it will be a function of the detected kinetic energy and momentum according to equation
3.7:

I(k, Ek) =
2π

~
∑
m

∑
i,f

∣∣Mk
i,f

∣∣2 |Cm,i|2 δ (Ek + EN−1
m − EN

i − hν
)

(3.7)

From this, we expect that if the electrons do not interact with each other, the removal of one
electron would not affect the initial state, making Cm,i coefficient equal to 1 for m = i and zero
otherwise. With electron interaction, the Cm,i coefficient will represent a spectrum of weights
for the photoemission intensity. Therefore, the one-electron spectral function can be defined as
in equation 3.8. All the information regarding the sample electronic structure, which is the first
step of the three-step model, will be included in this term.

A(k, Ek) =
∑
m

|Cm,i|2 δ
(
Ek + EN−1

m − EN
i − ~ν

)
(3.8)
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However, temperature effects are not included in equation 3.7 for the ARPES intensity. A
simplified way to account for such effects is to multiply the intensity by a Fermi-Dirac distri-

bution function f(E, T ) =
(
e

E
kBT + 1

)−1

, resulting in the most common expression for the
ARPES intensity:

I(k, E) = I0(k,A)A(k, E)f(E, T ), (3.9)

withE as the electron energy with respect to the Fermi levelEf and I0(k,A) ∝
∑

i,f

∣∣Mk
i,f

∣∣2
as the transition matrix elements, which can be considered constant for a given geometry, but is
also affected by the polarization and orbital spatial dependency, as we shall see in section 3.1.4.

It is important to remark that the equation 3.9 for the ARPES intensity does not account for
experimental effects such as finite energy and momentum resolution. This model based on the
three-step model and sudden approximation of Fermi’s golden rule for the transition probabil-
ity is somewhat limited due to the simplifications, but it permits us to understand the meaning
of the resulting ARPES spectra. For quantitative analysis, other than phenomenological mod-
els, calculations based on the one-step model can be required to correctly compare theory and
experiments.

3.1.2 One-particle spectral function and self-energy

From the equation 3.8 for the spectral function, the non-interacting picture (Cm,i = 1 for
m = i and 0 otherwise) would result in ARPES bands with no width whatsoever, that is, a
delta function. Nevertheless, the electrons do interact, and the resulting ARPES spectra will
always present a characteristic broadening of the lines. Following our formalism and within our
approximation, the best way to approach this enlargement of band lines is by the use of Green’s
function [84].

The spectral function defined in equation 3.8 is connected to the single-particle Green’s
function by:

A(k, E) = − 1

π
Im(G(k, E)). (3.10)

Mathematically, a Green’s function is defined as a solution to an inhomogeneous linear
differential equation that results in a δ-type function. Physically, it is used to describe the time
retarded response, or propagation, of an operator. The Green’s function can always be expressed
by an expansion of the operator eigenvalues. In the case of photoemission, the related Green’s
function will be defined by the one-electron removal operator from the N electrons system
previously discussed, from which is possible to derive the spectral function by another method.

Additionally, to account for electron correlation effects, Green’s function can be written in
terms of the electron self-energy Σ(k, E):
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G(k, E) =
1

E − εk − Σ(k, E)
, (3.11)

where Σ(k, E) is defined as having a real part Σ′(k, E), related to energy renormalization
when compared with a non-interacting system, and an imaginary part Σ′′(k, E), related to the
photoemission lifetime [82]. εk is the electron band energy at a given k. From this, the spectral
function can be written as:

A(k, E) = − 1

π

Σ′′

(E − εk − Σ′)2 − Σ′′2
. (3.12)

By the conservation of energy, a detected photoelectron will have energy equal to its band
energy summed with a self-energy factor when electron correlations are accounted for. Also, if
the self-energy components are constant, the spectral function will have the form of a Lorentzian
distribution with its full width at half maximum (FWHM) related to 2Σ′′ and center at εk + Σ′.

Since the self-energy components are complex to derive analytically, under some experi-
mental conditions they could be estimated experimentally. However, in this case, the energy
and momentum resolutions, neglected so far, become most important, because the resolution
capacity to the line width is limited by the experimental resolution.

To account for these factors and the temperature effects, we need to multiply the spectral
function by the Fermi-Dirac distribution as in eq. 3.7, and convoluted it by a 2D Gaussian with
widths associated with energy and momentum resolution. Experimentally, it is usual to get the
scattering rate Γ, associated with the imaginary part of the self energy Σ′′ by a renormalization
factor Z [86, 87]:

Γ = −2ZΣ′′. (3.13)

With this, the spectral function can be rewritten in terms of Γ, which is directly associated
with experimental FWHM:

A(E,k) =
1

π
Z(E,k)

Γ(E,k)/2

(E − ε∗k)2 + (Γ(E,k)/2)2
, (3.14)

where ε∗k is the renormalized particle dispersion. However, the experimental scattering rate
may include terms that are not of a single particle, such as electron-phonon interactions and
elastic scattering [87]. The elastic scattering by defects can be accounted as a constant back-
ground [88], in a semiclassical approximation. Otherwise, the elastic term dependency on E
can be estimated as it relates to the band velocity as Γel(E) = Γ(0)v(E)/v(0), where E = 0

refers to the Fermi energy.

For a simple Fermi liquid regime, we would expect that the renormalization function Z =

m/m∗ is just a multiplicative constant, where m∗ is the renormalized electron mass, and that
the scattering rate would follow a quadratic behavior. However, for materials for which HTSC
is present, the electronic behavior cannot be put into a simple framework. To explain the linear
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in T resistivity for the cuprate superconductors it was proposed a marginal Fermi liquid (MFL)
theory [89], where quantum critical fluctuations are related both to HTSC and to the linear in T
resistivity [90], and the scattering of fermions in the presence of such fluctuations would result
in a MFL.

In the MFL regime, the normalization function is energy dependent following the relation

ZMF(E) =
Cint

1 + λMF ln

(
Ec
x

) , (3.15)

where x = max(|E|, kBT ) ≈ [E2 + (π
2
kBT )]

1
2 and Ec is a cuttoff energy, Cint is an intensity

multiplicative factor and λMF is a coupling constant that should be λ = 1 in a Planckian limit
[91]. When E >> kBT , x is linear in energy. For the MFL, the self-energy is given by

ΣMF(E) = λMF

[
E ln

(
Ec
x

)
+ i

π

2
x

]
. (3.16)

Therefore, for E >> kBT , ImΣMF is linear in energy for a MFL. From this equation, as
every term is real and Σ′′ = πx/2 , we can express the Marginal Fermi Liquid Scattering rate
ΓMF in the case that ZMF is not linear as:

ΓMF(E) = −2ZMFλMF
π

2
x =

πλMFx

1 + λMF ln

(
Ec
x

) . (3.17)

The MFL model will be used in our self-energy analysis as a possible scenario for the
electronic behavior for the 122 Ba(Fe1−xMnx)2As2 and Ba(Fe1−xCrx)2As2 materials. As we
shall see, the Fermi Liquid response is not observed in our materials, justifying this approach.

3.1.3 Angle-resolved and momentum dependency of photoemission pro-
cess

The ARPES spectrum is the intensity map as a function of momentum and binding energy
for a given sample orientation. The binding energy is defined as a shift of the detected kinetic
energy so that the Fermi energy EF occurs when the binding energy EB is equal to zero, as
shown in equation 3.18. In this context, we can think of EF as the minimum energy necessary
to extract an electron from the material.

Ek = hν − φ− |Eb| (3.18)

The momentum dependency is associated with the angle of detection. The momentum paral-
lel to the surface of the sample is conserved and this allows mapping the photoemission intensity
as a function of parallel momentum and binding energy of the photoelectron. However, due to
the media discontinuity in the perpendicular direction, the momentum will not be conserved.
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This is illustrated in Figure 3.2.

Figure 3.2: A schematic representation of an ARPES experiment with incident light of energy
hν. The detector is positioned at a polar angle θ and azimuthal angle ϕ. The parallel to the sam-
ple surface projection of the detected momentum is shown in the blue box. k is the momentum
inside the material, while K is the momentum at vacuum. From ref. [81]

EK =
~2K2

2m
(3.19)

The momentum of an electron inside the sample can be decomposed into parallel and per-
pendicular contributions k = k⊥ + k‖, where k⊥ = kz and k‖ = kx + ky. Using the electronic
dispersion for a free electron (eq. 3.19), which associates the kinetic energy to the momentum
in the vacuum, it is possible to decompose also the electron momentum in vacuum K as stated
by equations 3.20, where K = |K|.

Kx = kx =

√
2mEk
~

sin θ cosϕ

Ky = ky =

√
2mEk
~

sin θ sinϕ

Kz =

√
2mEk
~

cos θ

(3.20)

Here, θ is the polar angle and ϕ is the azimuthal angle, as shown in Figure 3.2. The an-
alyzer slit takes a θ interval, so when ϕ = 0, the ky value will be fixed and the measurement
will be along kx. The in-plane components are conserved, but the perpendicular, out-of-plane
component is not. The kz component can be deduced from the energy conservation, as shown
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Figure 3.3: The rotational degrees of freedom for an ARPES experiment. The dashed red line
marks a high-symmetry path ΓXMΓ. (a) At normal incidence, the momentum probed will be
centered at the center of the BZ (Γ) and along the slit direction. (b) Rotating the polar angle θ
changes the momentum center, without changing the high-symmetry direction. (c) Rotating the
tilt angle φ changes the ky probed value. (d) Rotating the azimuthal angle ϕ changes the sample
direction being probed along the slit. Adapted from [92].

in equation 3.21: the inner potential V0 has to be accounted for the electron leaving the material
and be detected.

Ek + V0 =
~2

2m
(k2
⊥ + k2

‖)

k2
⊥ =(Ek + V0)

2m

~2
− 2m

~2
Ek sin2 θ

k⊥ =

√
2m(Ek cos2 θ + V0)

~

(3.21)

Therefore, to characterize the full 3D Brillouin zone, one has to perform an ARPES exper-
iment scanning for different angles to access different kx and ky values, as shown in equation
3.20 and illustrated in Figure 3.3. By changing the tilt angle φ it is possible to probe a kx range
for ky 6= 0.

To perform the measurements along some different high-symmetry directions, the azimuthal
angle ϕ is changed. In the case of a sample with 4-fold rotational symmetry, every 90◦ rotation
will theoretically make no difference. So the other high-symmetry rotation different than 0◦

would be 45◦.

Additionally, it can be necessary to perform scans changing the incoming energy hν to
estimate the V0 value necessary to identify the kz high-symmetry points at the reciprocal space.

Nevertheless, some materials’ electronic structure changes very little as a function of kz.
These are considered 2D materials when it comes to the Fermi surface, as is the case of the
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cuprates. In the case of FeSC, although slightly, there is still some kz dispersion.

3.1.4 Matrix elements and light-polarization effect on ARPES intensity

As shown previously, the ARPES intensity depends on the transition matrix elements, as the
term I0(k,A) is proportional to

∣∣Mk
i,f

∣∣2. Those matrix elements were defined in equation 3.6
as Mk

i,f =
〈
φk
f

∣∣Vint
∣∣φk
i

〉
, where Vint ∝ A · p as defined in equation 3.3. This integral can be

zero if the resulting integrand is an odd function with relation to the mirror plane, defined by
the incoming light and the sample normal directions, as shown in Figure 3.4. It would result in
no ARPES signal. So, to properly probe the electronic bands, the resulting integrand must be
an even function with respect to the mirror plane. The incidence plane is defined by the incident
light and detection direction, as shown as a transparent plane in Figure 3.4. The detector slit is
positioned along the mirror plane.

The final state
∣∣φk
f

〉
can be assumed to be a plane wave, which is always even. From this,

the ARPES intensity will be non-zero if both the potential term Vint and the initial state
∣∣φk
i

〉
are

either odd or even simultaneously.

To analyze the parity of the potential term, we can write A as Aε̂, with ε̂ a unitary vector
with the light polarization direction, supposing it is linearly polarized. Also, based on canonical
commutation relations, p can be transformed into position r. So the parity will be defined by
the light polarization projection in the position space, meaning that we only need to look for the
ε̂ symmetry with respect to the mirror plane. If the polarization is parallel to the mirror plane,
it is therefore even with respect to the mirror plane. This is defined as p or π light polarization.
If the light polarization is perpendicular to the mirror plane, it will be odd with respect to the
mirror plane. This is defined as s or σ polarization, as shown in Figure 3.4 [40, 42].

For the initial state parity, things are not so simple. Since the initial state is about the electron
state at the material, it is basically about the orbital the electron is in. To illustrate, let us think
about the d orbitals, most important for transition metals, such as Cu and Fe. If the sample is
positioned with its x axis along the mirror plane direction (azimuthal angle ϕ = 0), the orbitals
xy and yz will be odd whit respect to the x axis, while the orbitals z2, x2 − y2 and xz will be
even. From this, we can expect that the orbitals xy and yz will be detected only with σ light
polarization while the orbitals z2, x2−y2 and xz will be detected only with π light polarization.
Of course, if the sample has a four-fold rotational symmetry, the xz, and yz orbitals will be
equivalent, resulting in a hybridization of the orbital weights to the ARPES intensity [93].

However, as we shall see, positioning the sample with azimuthal angle ϕ = 45◦ permits to
probe of a high-symmetry direction for square or tetragonal lattices. With this, the parity of the
light polarization does not change, but the parity of the orbitals does. Now, the orbitals xy and
z2 are even with respect to the mirror plane, while the orbital x2 − y2 is odd. The orbitals xz
and yz are neither even nor odd, so they will contribute to ARPES intensity for both linear light
polarization, which will be termed as "mixed parity" here. These rules are illustrated in Table
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Figure 3.4: Illustration of orbital dependent ARPES intensity based on the transition matrix
elements. (a) The mirror plane is defined by the incoming light and the sample’s normal direc-
tions. (b) A representation of the d orbitals, which are relevant to the electronic and magnetic
structure of the transition metals. The light and dark areas represent different phases for the
orbital wave function.

3.1 for the BaFe2As2 derived materials. Several works have already presented this discussion
[40, 42, 93–96], and they are the basis for the definitions considered here.

Pol. Direction dx2−y2 dz2 dxz dyz dxy
Γ-X x x x
Γ-M x m m xπ-pol
Γ-Y x x x
Γ-X x x
Γ-M x m mσ-pol
Γ-Y x x

Table 3.1: Polarization and direction dependency of 3d orbitals contribution to the hole pock-
ets at the Fermi Surface. The high symmetry directions are from the body-centered tetragonal
structure of BaFe2As2. Yellow "m" represents mixed parity, while green "x" represents match-
ing parity with polarization.

Nevertheless, these rules apply to the center of the Brillouin Zone and to a mirror plane de-
fined as crossing this center. For these samples, due to the inequivalence of the As coordination,
the mirror plane can be defined differently [95]. This will result in different polarization selec-
tion rules for the electron pockets. This is illustrated in Table 3.2. The polarization selection
rules will be further discussed in terms of the ARPES results for the specific samples in the next
chapters.
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Pol. e pocket direction dxz dyz dxy
X-Γ x
X-Y m m mπ-pol
X-Z x x
X-Γ x x
X-Y m m mσ-pol
X-Z x

Table 3.2: Polarization and direction dependency of 3d orbitals contribution to the electron
pockets at the Fermi Surface. The high symmetry directions are from the body-centered tetrag-
onal structure of BaFe2As2. Yellow "m" represents mixed parity, while green "x" represents
matching parity with polarization.

3.2 Instrumentation

The instrumentation for performing ARPES includes the x-ray source, the sample environ-
ment in ultra-high vacuum, and the electron analyzer, as will be discussed. Apart from the
environment, the sample holder must have position and angular degrees of freedom to align it
with the photon beam and to scan different k-space points.

The X-ray source doesn’t need to be a synchrotron, usually, it is a helium lamp or a laser
with emitted energy of a few eVs. However, the use of a synchrotron enables one to perform
measurements in particular conditions that are inaccessible at the usual table-top ARPES setup.
The synchrotron properties and components are explained in Appendix A.

The energy tunability provided by a synchrotron source permits access to different values
of kz at the measured spectra, which gives information on out-of-plane dispersion of the elec-
tronic structure as explained in section 3.1.3. This is important when the Fermi surface is not
exactly 2D. Also, some tuning is required to find with precision the high-symmetry points at
the reciprocal space.

Additionally, the use of higher energies is needed to reach further points in the reciprocal
space, once the absolute value of k is proportional to the square root of the photoelectron kinetic
energy.

One further advantage of using a synchrotron facility is that their high photon allows for per-
forming ARPES experiments with different incident light polarization, which is needed when
aiming to perform orbital-dependent studies of the electronic band structure, as discussed in
Section 3.1.4.

To change the polarization, the most natural way to think is to change the electron analyzer
position to rotate the entire incidence plane. Given the experimental setup, however, this is
impracticable. Therefore, to change the light polarization, the vertical polarization is selected
after leaving the undulator, defining a σ polarization with relation to the fixed incidence plane,
which normally has lower photon counting than the incident π light polarization.
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3.2.1 Vacuum and cryogenics

For soft X-rays, all elements should be in ultra-high vacuum (UHV), since the presence of
air would absorb and scatter the photons with low energy. Therefore, in an ARPES setup, all the
optical components, sample, and detection environments should be at pressure with a vacuum
better than 10−10 torr.

To manipulate the sample inside the vacuum chamber, the sample holder is positioned in-
side a cryomanipulator, used to rotate and adjust the position of the sample inside the cooling
ambient. To perform measurements at low temperatures, most beamlines count with liquid he-
lium cryogenic systems. Liquid nitrogen can also be used to achieve temperatures that are not
so low.

The photoemission process is surface sensitive, due to its low penetration depth of a few
angstroms. Therefore, to perform a good quality measurement, the sample must be cleaved
inside the vacuum chamber, to avoid oxidation and pollution to the measured surface.

The cleaving can be done by different methods. For example, for some Van der Waals
materials, a scotch tape can be enough to beak the out-of-plane bonds and remove an entire
layer of the sample, exposing a fresh surface inside the UHV environment. Some other samples
require stronger gluing methods due to stronger bonds. This is the case of FeSC, which need to
be glued to the sample holder using silver epoxy, and a metal pin is glued on top of the sample.
Once inside the vacuum, the metal pin is removed with the help of a wobble stick, exposing a
clean surface for photoemission. This process can be a little tricky and even prohibited for some
specific samples, so the experience with the material of interest will direct the better method to
have a clean surface.

Another possibility is to have the crystal growing inside a preparation vacuum chamber from
the beginning, using evaporation or sputtering techniques, and having the sample transferred to
the measuring chamber afterward through a UHV transfer line, with separated components with
their vacuum pumps and transfer "doors". Not all facilities or setups support this process but it
is possible in the most modern synchrotron beamlines.

It is important to maintain all vacuum components clean and free of contaminants, so the
ARPES setup maintenance is very critical to attaining a good operating condition.

3.2.2 Electron analyzer

The electron analyzer, or spectrometer, consists of a hemispherical device able to deflect
incoming electrons, in a curved trajectory, for different detection positions as a function of
their kinetic energies. This deflection is based on the potential lens effect, where the beam of
electrons can be focused by an electronic potential similarly as a photon beam can be affected
by an optical lens system.

The electron analyzer functioning can be separated in a few steps: first, an electrostatic lens
system decelerates and focuses the electron beam on the analyzer entrance slit; second, elec-
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trons that pass through the entrance slit are deflected in the electric field between two spherical
hemispheres; third, the electrons pass the exit slit and are detected.

The spectrometer components must be contained within an Ultra High Vacuum (UHV) en-
vironment to avoid scattering and absorption from air particles, besides the already mentioned
sample surface oxidation. Also, the potential lens system is susceptible to magnetic field effects
on electron trajectories. Therefore, the ARPES environment must ideally be far from magnetic
field influence.

After the photoelectrons leave the sample, they are emitted in a wide range of directions.
The slit width at the entrance of the electrostatic lens system and its distance from the sample
defines the acceptance angle for the spectrometer. This angle is related to the maximum k range
for the measured spectra. The electron lens system will focus the electron beam at the detector
entrance, resolving the electrons by their angle around a certain θ about the sample normal.
The electrostatic lens also will accelerate and decelerate the electrons, making all their kinetic
energy around a certain value called Pass Energy (Ep), which will be ultimately related to the
energy resolution.

Additionally, between the potential lens, some slits are placed to avoid vertical angular
dispersion, assuring that the angular dispersion is along the entrance slit direction (horizontal)
and that all electrons will enter the hemispherical analyzer at about the same vertical position,
to be later separated by energy in this direction.

The hemispherical analyzer itself consists of two half-spheres with radius R1 and R2, kept
at a potential difference V. When the beam of electrons enters the space between both half-
spheres, it is deflected in a way that electrons with lower kinetic energy are more affected by
the potential, being more deflected. This way, electrons with greater kinetic energy will describe
a trajectory with a larger radius and hit the exit slit closer to the outer sphere, while the slower
electron will hit the exit slit closer to the inner sphere. Therefore, the energy dispersion is
created, as illustrated in Figure 3.5(a). For the electron detection to be resolved both in angle
and energy, electrons with different angles and the same kinetic energy must travel along a plane
perpendicular to the one resolving energy. This is shown in Figure 3.5(b).

After the exit slit, electrons will have their position determined by their respective kinetic
energy and hit a set of microchannel plates (MCP), where each one of them works as an elec-
tron multiplier through secondary emission processes triggered by an electric field. Then, the
electrons hit a florescent phosphor screen, generating an equivalent photon beam to be detected
by a charge-coupled device (CCD).

The electrons are linearly dispersed in energy around the pass energy Ep, therefore, with
higher EP , the final intensities will be higher while the energy resolution will be lower. Such
relation is summarized in equation 3.22, where w is the entrance slit width, R0 = (R1 +R2)/2

is the mean radius between both spheres, and α is the acceptance angle.

∆E = Ep

(
w

R0

+
α2

4

)
(3.22)
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Figure 3.5: (a) A schematic representation of a spherical electron analyzer with internal radius
R1 and external radius R2. (b) An example of spectral function measured at the exit slit for
graphene as a function of angle and energy is shown in the entrance slit image. From ref [92]

The momentum resolution, in its turn, is related to the number of angle channels at the
MCP and to the acceptance angle. Lower acceptance angles and a large number of channels
will delivery better angle resolution at the final spectra, the former at the cost of intensity.

Therefore, technical advances in the field of electron analyzers are required to improve the
ARPES experiment resolution, intensity, and feasibility altogether. In that sense, one important
characteristic of an electron analyzer is its intrinsic work function. Achieving a lower analyzer
work function enables probing ARPES spectra for lower binding energies and to work more
efficiently with laser sources, with energies typically in the ultraviolet range.

At the Bloch beamline, the electron analyzer is the DA30 manufactured by Scienta Omi-
cron. This type of analyzer has the advantage of using deflecting lens to acquire electrons in an
area perpendicular to the slit direction. It allows probing Fermi surface maps without moving
the sample at all, avoiding longer collection times, intensity inhomogeneities, and alignment
problems. However, the probed Fermi Surface will have a circular shape, instead of a square
typically measured when acquiring maps by moving the tilt angle. Therefore, some features for
higher momentum points can be missed.

The DA30 has only discrete options of pass energy Ep = 1, 2, 5, 10, 20, 50, 100, 200 eV,
making the tuning of energy resolution, electron counting, and binding energy range more lim-
ited. However, it is one of the available analyzers with greater resolution, and with a manipulator
designed by Scienta Omicron, it can achieve small steps and good reproducibility in the sample
position.

3.3 ARPES methods

The results presented here were performed at the Bloch beamline of the Max IV synchrotron
in Lund, Sweden. The detection was made using the Scienta DA30 photoelectron analyzer. The
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total energy resolution was set at about 8 to 10 meV for incident photon energies between 60

and 81 eV, and angular resolution of 0.1◦. The samples were glued on a Mo sample holder using
silver epoxy and were cleaved using Al posts inside the main preparation chamber (vacuum of
3× 10−10 mbar) and then transferred to the analyzer chamber (vacuum of 2× 10−11 mbar) for
the experiments.

For all samples, measurements were performed at 150 K and 20 K, corresponding to above
and below TSDW, respectively. The cooling was performed through a 6-axis cryo manipulator
using a closed-cycle liquid Helium system.

The choice of energy was intended to probe the 2D electronic structure around the Γ and Z
points of the material’s Brillouin zone (BZ). The kz position for BaFe2As2 was calculated by
considering an inner potential V0 of 14 eV and work function W of 4.4 eV [97], following the
equation 3.21 divided by a factor of 2π/c. With it, kz will be in multiples of 2π/c, resulting
even integer for Γ point, and an odd integer for a Z point.

The experiments were carried out along the high symmetry directions Γ X and Γ M for
both Γ and Z kz levels, with the high symmetry points following the body-centered crystal
structure. Linear horizontal (π) and vertical (σ) polarized X-rays were used to probe different
Fe-3d orbital contributions to the ARPES signal.
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Chapter 4

ARPES results of Mn substituted
BaFe2As2

In this chapter, the ARPES experimental results for the Mn-substituted samples (MnBFA)
Ba(Fe1−xMnx)2As2 are presented. The probed samples have x = 0, 0.035, 0.075, which will be
referred to as BFA, Mn3.5%, and Mn7.5%, respectively, as defined in Table 2.2.

To describe the experimental ARPES results and its analysis, the crystal body-centered
tetragonal geometry was adopted to label the Brillouin zone (BZ) high-symmetry points, as
indicated in Table 2.1. As explained in chapter 2, for this notation the electron pockets are in
the ΓX direction. The tetragonal paramagnetic (PM) state results, measured with T = 150 K for
these samples, will also be termed as high-temperature (HT) results, whereas the orthorhombic
spin density wave (SDW) state results, measured at 20 K, will be termed as low-temperature
(LT) results.

The methods for the ARPES measurements are described in Section 3.3, and the results here
presented will be briefly discussed and put in context with previous RIXS results [7] in Section
4.3.

4.1 High-temperature results

As explained in Section 3.3, a very complete set of ARPES data was taken for each sample.
For two different states (or temperatures), electronic band maps and Fermi maps were measured
for different incident photon energies, light polarization, and sample high-symmetry directions.
In Figure 4.1, it is shown a survey of the electronic band structures, as a function of Mn content,
in the tetragonal PM state (T = 150 K) of the MnBFA samples. Measurements were taken
along the high-symmetry directions and adopting linear beam polarization as indicated in each
panel, for incident energy ∼ 80 eV for the three samples. It is possible to note how the spectral
function depends on the polarization, which permits the association of the spectral features to a
main orbital character, as explained in Section 3.1.4. This strong orbital character of the bands
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Figure 4.1: Overview of the measured electronic band maps of the (a) BFA, (b) Mn3.5% and
(c) Mn7.5% samples for high temperature. Measurements were taken along the ΓX and ΓM
directions and for σ and π polarizations, as indicated. Higher intensities are darker on the color
map.
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Figure 4.2: Maximum EDC position for the band associated with the dz2 orbital as a function of
Mn content, for the Γ point. The points correspond to the orange arrows marked in the panels
of Figure 4.1.

is key in all theories of the FeSC materials [98–100, 40]. A feature that is easily distinguishable
is the dz2 derived band that appears only for π light polarization for energies close to EB = 0.5

eV, in absolute values. This is marked as an orange arrow in the panels of Figure 4.1 for each
sample.

To compare the evolution of the dz2 band feature as a function of Mn content, the peak
dz2 position was obtained, as shown in Figure 4.2. It was determined by taking the energy
distribution curve (EDC) for the π polarized data for kx = Γ = 0, which means considering the
intensity as a function of energy for a fixed value of momentum, and taking the energy value
corresponding to the maximum intensity peak position. The peak is moving to higher binding
energy (smaller in absolute value) as the Mn percentage increases. With this, it is expected that
the energy bandwidth associated with this band is getting smaller, corresponding to a higher
localization of this electronic band, associated with lower hybridization of the dz2 band with
other orbitals. This was shown already for MnBFA in a direction-dependent X-ray absorption
spectroscopy study [101].

It is interesting to note that, despite being small, there is a kz direction band dispersion in
these materials, which can also be enhanced or hindered by the Mn introduction. To inspect this,
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Figure 4.3: Overview of the measured electronic band maps of the (a) BFA, (b) Mn3.5% and
(c) Mn7.5% samples for high temperature. Measurements were taken along the ZX and ZM
directions and for σ and π polarizations, as indicated.

Figure 4.3 shows a similar survey of the electronic band structures than the one from Figure 4.1,
but this time for incident energies ∼ 61 eV for the three samples. It is noteworthy that the dz2

derived band is missing for this kz level, for the π polarized measurements. This contribution
is expected to be pushed upwards with kz dispersion until it vanishes above the Fermi energy
[102]. Additionally, the hole pockets are larger for this energy, and the X electron pockets
visible for the σ polarized measurements are more shallow in EB.

The kz =Z data will be further discussed for the low-temperature results. For now, the
analysis will be focused in the kz = Γ data.

The band determination and orbital assignment can be difficult by direct observation of the
raw data when there is an overlap of several bands. The FeSC materials are multi-orbital and
the electronic substitution causes the broadening of the bands. To overcome these difficulties,
the data analysis can be supported by the second derivative analysis, a widespread method in
the ARPES community [103, 104]. This type of analysis takes the second derivative of the
momentum or energy distribution curves (MDCs or EDCs) as a function of momentum and/or
energy. The resulting intensity can be convoluted with a Gaussian function compatible with
the energy and momentum resolution. Although there are some other advanced methods to
perform the band characterization, such as the curvature method [105], or machine learning
methods [106, 107], the second derivative is reliable to some extent and well implemented, and
was used for the analysis here presented.

For the MnBFA samples, the second derivative data is presented in Figure 4.4. The band
features are more distinguishable and clear, but it also depends on the type of derivative. For the
ΓX σ polarization, for example, the band closer to the X point, related to the electron pocket,
is only visible for momentum derivatives. With these new spectra, it is possible to fit the band
point position and determine the band shape and changes with the Mn introduction. Since
the spectral function is expected to have a Lorentzian shape (see equation 3.14), its second
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Figure 4.4: MnBFA high-temperature second derivative maps. The high-symmetry direction
and polarization for each measurement is indicated. (a) BFA sample results, (b) Mn3.5% sample
results, and (c) Mn7.5% sample results. The band points were fitted to the darker point.

Figure 4.5: Overview of the fitted band points for the (a) BFA, (b) Mn3.5% and (c) Mn7.5%
samples obtained from the second derivatives of Figure 4.4. The orbital character of each band
is indicated by the legend color code and was assigned following Tables 3.1 and 3.2.

derivative will have a minimum point in the position of the Lorentzian peak. Therefore, the
darker spots represent these Lorentzian maximum points, because for the second derivatives the
color scale is reversed than the one for the raw bands.

The fitted points are presented in Figure 4.5, where the orbital character is represented in a
color code in the legend. The Γ point has two inner, locally degenerated, bands with dxz and
dyz characters and one outer band with dxy characters. Visible in the ΓX direction, the electron
pocket region presents two bands, one that does not cross the Fermi level and is almost flat,
of dxz character, for π polarization measurements, and other that forms a deep electron pocket
band, of dxy character, for σ polarization. These two bands in the electron pocket region will be
termed "flat" and "deep" bands.

To further investigate the electron pockets, is possible to recur to the Fermi maps. These
maps are measured either by joint band measurements with different tilt angles φ, or, if the
analyzer has the deflecting lens, by a band map measurement taken without moving the sample.
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Figure 4.6: High-temperature Fermi Surface measured for the BFA sample. Measurements
were taken along the ΓX, ΓM, and ZX directions and for σ and π polarizations, as indicated.
The dashed red lines delimit the first BZ.

As explained in Section 3.2.2, the electron analyzer at Bloch beamline permits to do the second
type of acquisition. These maps are three-dimensional matrices with axis related to kx, ky, and
binding energy EB.

Fixing the map binding energy to the Fermi level (EB = 0), it is possible to plot the Fermi
Surface (FS). In Figures 4.6, 4.7, and 4.8 there are presented the measured Fermi surfaces (FS)
for the samples BFA, Mn3.5%, and Mn7.5%, respectively. Again, it is possible to observe
the polarization selectivity for the spectral function. The dashed red lines delimit the first BZ,
revealing the rotation of the sample high-symmetry direction being probed.

For the FS it is clear that the hole pockets at Γ are larger for the kz =Z photon energy. Also,
the electron pockets measured for the ΓX/ZX directions show different relative intensities for
σ polarization. This is a consequence of the selection rules, since this direction is associated
with the dxz orbital that forms the X electron pocket, and its intensity is zero for σ polarization,
leaving only the dxy weak contribution.

For the Mn substituted samples Mn3.5% and Mn7.5%, the changes in the Fermi surface are
mainly in the broadening of the spectral features. The pocket sizes are not notably different
with Mn introduction. As we shall see, that will not be the case for the CrBFA samples.

To inspect the pocket size as a function of Mn closely the focus will be the X electron pocket
for ΓX direction and σ light polarization. In Figure 4.9 there is a comparison of the FS maps
taken in these conditions, for the three samples at high temperature. A planar cut of the Brillouin
Zone (BZ) is plotted above the FS, with the high-symmetry points highlighted. It is possible to
observe the dxy contribution electron pockets at the X points, and the stronger intensity for the
Y electron pockets. The green dashed line marks the YZ high-symmetry direction.

Furthermore, by fixing the map ky to a high-energy point, it is possible to plot the electronic
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Figure 4.7: High-temperature Fermi Surface measured for the Mn3.5% sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarizations, as indi-
cated. The dashed red lines delimit the first BZ.
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Figure 4.8: High-temperature Fermi Surface measured for the Mn7.5% sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarizations, as indi-
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centered hole-like bands. (d)-(e) X/Y centered electron-like bands.

band as a function of kx and EB for a different high-symmetry direction, parallel to the mea-
sured ΓX direction. This is shown in Figure 4.10, where is possible to see the electron pockets
for the YZ high-symmetry direction. These spectra have lower resolution than the electronic
bands of figure 4.1, since the Fermi map acquisition mode is different and for achieve the same
resolution would take several hours. The spectral weight associated with the electron pocket,
however, is still visible by choosing a more contrasting color scale. By taking the energy sec-
ond derivatives of the spectra, it is possible to fit the electron band points, as shown in the lower
panels of Figure 4.10. This electron band will be termed "shallow" electron pocket.

The electron pocket is composed of a minor and a major axis, forming an ellipse. This
is possible due to the C4 symmetry of the crystal structure, which makes the X and Y points
equivalent, but the direction perpendicular to ΓX/Y does not need to be equivalent. Electronic
states at the electron pockets around the X/Y points have, therefore, C2v point symmetry which
is reflected in the idealized elliptical shape of the pockets. The minor axis is determined by the
shallow electron pocket, of dyz orbital character, while the major axis is determined by the deep
electron pocket, of dxy orbital character.

After identifying three hole pocket bands and two electron pocket bands, it is possible to
compare the effect of Mn substitution in these bands. This comparison is shown in Figure 4.11.
The focus is on the states in the vicinity of EF . The hole pockets change as a function of Mn
content is summarized in Figures 4.11(a)-(c), while the electron pockets changes are in Figures
4.11(d)-(e).

Naively thinking in terms of band filling, increasing hole pockets and shrinking electron
pockets would be the putative effects of the nominal hole doping caused by Mn. However,
the experimentally determined scenario is more involved. Bands forming the hole pockets and
the deep electron-like band are barely affected by Mn, whereas the intersection of the shallow
electron-like band with EF is systematically decreasing. In turn, it is only the minor semi-
axis of the idealized elliptical electron pocket which shrinks with Mn content. Thus, a fraction
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Figure 4.12: ARPES spectral function analysis. Fittings (blue lines) of several MDCs (red dots)
for increasing binding energies. (a)-(c) data obtained for σ polarization, measured along ΓX
for samples BFA, Mn3.5% and Mn7.5%, as indicated, with a single band fitting. (d)-(f) data
obtained for π polarization, measured along ΓM for samples BFA, Mn3.5% and Mn7.5%, with
a double band fitting.

of electron and hole states retain their original nesting condition. This distinct behavior of
shallow and deep electron-like bands and the lack of change in the hole pockets are completely
unanticipated and are evidence that Fe substitution by Mn atoms is changing the electronic band
structure instead of simply changing its electronic filling.

4.1.1 Self-energy analysis

As demonstrated by the band analysis, the role played by Mn is more complicated than nom-
inal hole doping, demanding a quantitative analysis of the ARPES spectral function A(k, E).
To do so, it is usual to perform a spectral analysis by fitting the momentum distribution curves
(MDCs) to the expression for the one-particle A(k, E) (equation 3.14). This one-particle spec-
tral function can be used for a system of weakly correlated electrons [39]. The objective is to
extract the electronic scattering rate Γ(E) as a function of the binding energy E.

The analysis for the band in ΓX direction and σ light polarization, with dyz main orbital
character, is presented in Figures 4.12(a)-(c) for samples BFA, Mn3.5% and Mn7.5%, respec-
tively. This analysis follows Refs [87, 86], where a method of fitting directly Γ for all MDCs at
once following a given band dispersion is presented. The dispersion relation will determine the
maximum position of the Lorentzian peaks. This method, termed as “all at once” fitting, takes
into account the experimental resolution for energy and momentum and finite temperature ef-
fects and was shown to be reliable for different kinds of band dispersions, such as linear bands,
Dirac cones, parabolic bands, and bands with a "kink" anomaly resulting from electron–phonon
coupling [87]. It was particularly useful for single parabolic bands in the ΓX direction and
σ light polarization for 122 FeSC [86], however, when the multiband character is in play, the
method could not be implemented, due to the twice as large number of parameters necessary to
minimize the square fitting of all MDCs simultaneously.

Therefore, for the analysis of the band with dyz main orbital character, measured along the
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and (c) ΓX single hole pocket band. The blue and purple lines indicate linear fittings close to
the Fermi level. (d) resulting linear coefficients from panels (b) and (c) and the TSDW behavior
as a function of Mn content.

ΓM direction and π light polarization, a more commonly used method was employed. It consists
of one-by-one fittings of the MDCs, where the spectrum is considered a linear combination of
each band Lorentzian peaks and the dispersion relation does not need to be given in advance.
The fitting is a usual multiple Lorentzian and the scattering rate is obtained by multiplying the
peaks’ full width at half maximum (fwhm) by the local band velocity [108]. To implement
this method for these samples, a Python code was written, where the Lorentzian peak positions
can have as the initial guess the bands obtained from the second derivative process, the points
of Figure 4.5. The resulting fitting of two bands is presented in Figures 4.12(d)-(f). Energy
and momentum finite resolution and finite temperature were not considered, but suitable fittings
could be performed nevertheless.

Given the two methods used, the results cannot be reliably compared between bands fitted
with these different methods, and only the trend as a function of Mn for each band is a trust-
worthy result. To analyze this trend it is possible to compare the scattering rates as a function of
binding energy Γ(E) for the three samples, as shown on the top panels of Figures 4.13(a)-(c),
where the (a) and (b) panels are results from the two-band fitting of ΓM direction and the (c)
panel have the results of one-band all-at-once fitting of ΓX direction.

As explained in Section 3.1.2, if the system is a Fermi liquid, a quadratic dependence of the
scattering rate as a function of energy is expected, and the renormalization factor that relates the
scattering rate Γ(E) with the imaginary part of the self-energy Σ′′ (or ImΣ(E)) is expected to
be constant. The scattering rateE dependence clearly distinct from ImΣ(E), a result suggesting
that the renormalization function Z is not a simple constant as a function of E. In this case, a
marginal Fermi liquid (MFL) behavior is needed to analyze the data. Therefore, the relation
between Γ(E) and Σ′′ will follow the expression 3.17, from where Σ′′ can be extracted, as
shown on the bottom panels of Figures 4.13(a)-(c).
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Figure 4.14: (a) Schematic FS for the parent compound BaFe2As2. (b) Mn substituted FS,
the bands are enlarged and the electron pocket shrinks in the minor axis direction. (c) Low-
temperature FS for BFA, with the SDW folding. The color code indicates the orbital character
of the pockets.

In the vicinity of EF , for all bands, Γ(E) and ImΣ(E) are fairly well described as linear
functions of E, within the paradigm of an MFL regime. The slopes, or angular coefficients,
related to Γ(E) and ImΣ(E) can be defined as α and β, respectively.

Physically, being Γ(E) proportional to the inverse of the quasiparticle lifetime, α is a mea-
surement of the electronic states’ coherence. In this sense, an increase in α as a function of Mn
content would correspond to a stronger response of Γ(E) to the binding energy which trans-
lates into an increase in band incoherence and electron-electron interaction inelastic scattering
[109]. Similarly, an increase in β is related to increasing electronic correlations, due to electron-
electron interaction response. The α and β angular coefficients of the curves of Figures 4.13 (b)
and (c) are obtained as a function of Mn content and are presented in Figure4.13(d) for bands
with main dyz (top panel) and dxy (middle panel) orbital character. The lower panel shows the
TSDW as a function of Mn content.

A linkage between the α(dyz) dependence as a function of K and Co content and TSC was
found [86]. In the MnBFA case, it can be speculated about a connection between either α(dyz)

or α(dxy), either β(dyz) or β(dxy) and TSDW, which is the relevant energy scale of these sam-
ples. Overall, α(dyz) and α(dxy) increase when Mn is introduced whereas β(dyz) increases and
β(dxy) is nearly constant as a function of Mn percentage.

The increase of the α parameters, observed for all bands, suggests that electronic disorder
dominates and controls the TSDW behavior, exemplifying the key role of substitution disorder
[45, 59, 60, 86, 110–112] in the phase diagram of FeSC materials. Given the impurity scattering
on Co substituted BaFe2As2 [113, 114], with Co being close to Fe, one would expect similar
behavior in MnBFA. However, it behaves similarly to Zn which, in principle, is a much stronger
impurity scatter. The increase of β, which is observed only for bands with dyz character, is an
effect of increasing electronic interactions and illustrates the orbital specificity of the chemical
substitution effects in FeSC materials, which was largely reported and theorized about [96, 111,
101, 115–120].

To summarize the results in the high-temperature paramagnetic state for the MnBFA sam-
ples, Figure 4.14(a) illustrates the parent compound BaFe2As2 FS at the paramagnetic state with
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two hole pockets and one electron pocket. Nested electron and hole states are connected by a
(π, 0) vector. Figure 4.14(b) shows the schematics for Mn substitution, where Mn causes the
partial detuning of the nesting condition and a significant broadening of all electronic states.

Figure 4.14(c) illustrates the effect of the SDW folding, as explained in Section 2.3. The
SDW vector qAFM = (π, 0, π) has a kz component, causing the folding of the electron pocket at
Z level into the hole pocket at Γ level. The low-temperature results and the folding effect as a
function of Mn content are the topics of the following section.

4.2 Low-temperature results

The same measurements performed for all samples, incident light polarization, and high-
symmetry directions for the paramagnetic stare were replicated in the magnetically ordered
state. In Figure 4.15 there is a survey of the electronic band structures as a function of Mn
content in the orthorhombic SDW state, measured at T = 20 K for photon energy ∼ 80 for all
three samples. Again, the polarization selectivity is notable for the band structure. However,
the bands are more visible due to less thermal broadening and reduced effect of the Fermi-Dirac
distribution close to the Fermi level. New band features are visible for the BFA sample in panel
(a), firstly, the splitting of the "flat" band in the electron pocket region, for ΓX direction π

polarized measurements, and secondly, a new electron-like band with EB = 100 meV, at the Γ

point. These two features originated from the nematic splitting and the expected SDW folding,
respectively. This is in close agreement with the observations for BFA sample reported before
[42]. The folded band is associated with a main dxy orbital character, as a result of the deep
electron band folding, as shown in Figure 4.14.
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Mn7.5% samples for low temperature. Measurements were taken along the ZX and ZM direc-
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Figure 4.16: MnBFA low-temperature second derivative maps. The high-symmetry direction
and polarization for each measurement are indicated. (a) BFA sample results, (b) Mn3.5%
sample results, and (c) Mn7.5% sample results. The band points were fitted to the darker point.

To better visualize such bands, the second derivative can be employed again to gain contrast
of the band maximum points. This is shown in Figure 4.16. The mentioned new features are
clearer for the BFA sample in panel (a), where the bands resulting from the folding reconstruc-
tion are visible. However, for the Mn3.5% sample, the band resulting from the band folding
has a bigger binding energy of EB = 200 meV. This is visible for ΓM direction and π light
polarization. The Mn7.5% sample, in its turn, does not show any sign of SDW folding.

The band folding absence can be confirmed by looking at measurements for incoming pho-
ton energy probing the kz = Z plane of the reciprocal space, shown in Figure 4.17. taken with
incident energies∼ 61 eV for the three samples. For the Mn3.5% sample, the new band is clear
and marked by a yellow arrow for the π polarized data. For the Mn7.5% sample, it is again
absent.

The low-temperature measurements for ZX and ZM directions also show the band splitting
of the dxz/dyz orbitals for the almost flat electron band, visible for the ZX direction measure-
ments using π light polarization. Also, the same kz direction band dispersion is expected for
the LT data. It is noteworthy that the dz2 derived band is missing for this kz level again.

The folded band absence for the Mn7.5% sample can be evidence that increasing Mn content
has the effect of suppressing the band folding that is associated with the onset of the SDW state.
Is possible to speculate that this occurs for two reasons: first, the dxy derived bands become more
incoherent with increasing Mn content; and second, the local character of Fe local moment is
amplified by Mn [5]. It was argued before that band folding does not occur even for the parent
compound, as explained in ref. [121], making the ordered state band structure a consequence
of the orthorhombic crystal structure and AFM order (see Section 2.3).

The band splitting, by its turn, is currently understood as evidence of nematic ordering and
consequence of the orthorhombic distortion. The predicted nematic band splitting is visible for
all samples, but the spectral feature gets broader and weaker for the Mn-substituted samples. To
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Figure 4.17: Overview of the measured electronic band maps of the (a) BFA, (b) Mn3.5% and
(c) Mn7.5% samples for low temperature. Measurements were taken along the ZX and ZM
directions and for σ and π polarizations, as indicated. Higher intensities are darker on the color
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Figure 4.18: MnBFA low-T flat band fitted points, evidencing the nematic splitting.
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Figure 4.19: Low-temperature Fermi Surface measured for the BFA sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarizations, as indi-
cated. The dashed red lines delimit the first BZ.

better visualize it, EDCs can be used to fit the spectral minimum as a function of momentum.
The resulting fitted points are shown in Figure 4.18. The nematic splitting is evidenced by the
breaking of degeneracy between dxz and dyz bands, with a characteristic splitting size.

To gain a more detailed understanding of the splitting, it is important to closely examine the
minor axis of the electron pocket, the shallow electronic band. Unlike the major axis, of dxy
character, which does not undergo any splitting, the shallow band has a dxz/dyz character. To
analyze this, the FS maps will be inspected.

In Figures 4.19, 4.20, and 4.21 there are presented the measured Fermi surfaces (FS) for
the samples BFA, Mn3.5%, and Mn7.5%, respectively, similarly for what was shown for HT.
The dashed red lines delimit the first BZ, reveling the rotation of the sample high-symmetry
direction being probed.

For the parent compound, the kz = Z photon energy was not probed. Instead, the sample
was rotated by 90◦ to probe the possibility of twin domains. As explained, in the orthorhombic
direction the kx and ky directions become inequivalent. If the sample was detwinned, we would
expect to see different bands and FS for the ΓX and ΓY direction, and the nematic splitting
would never be visible for a single measurement. Therefore, we confirm with the ΓY direction
measurements in the SDW state that the samples are indeed twinned.

Again, for the Mn substituted samples Mn3.5% and Mn7.5% it, is clear that the hole pockets
at Γ are larger for the kz = Z photon energy. Furthermore, the relative different intensities reveal
the polarization selectivity for the spectral function. For these ordered state measurements, the
pocket sizes are not notably different with Mn introduction.

For the three samples, it is possible to observe weak signatures of the 4-fold "petal"-like
electron pocket formation, observed recently with nano-ARPES for the BFA sample [121].
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cated. The dashed red lines delimit the first BZ.

This is clearer, for example, in the ΓM σ polarized FS, or for the ΓX π polarized band. The full
electron pocket visualization, however, is impaired by the limited k reach of the Γ centered FS.
Measurements centered at the electron pocket were not taken.

For the inspection of the electron pocket minor axis, it is possible to reconstruct the YZ
cut of the low-temperature band maps, as illustrated in Figure 4.22. This provides valuable
insights into the size and nature of the nematic splitting. To fit the band point positions, second
derivatives can be employed. This is shown in the lower panels of figure 4.22.

To better understand the effect of Mn substitution for the nematic splitting, the comparison
between the splitting size for both flat and shallow bands are shown in Figure 4.23 as a function
of Mn content. The energy values were estimated by using EDCs to fit the band positions and
superimposing the bands performing a rigid energy shift on the lower duplicated band.

For both electronic bands, there is no scaling between the nematic splitting size and TSDW:
indeed, the splitting decreases only about 20% from its value for BFA whereas TSDW decreases
by about 60%. Mn substitution, however, is believed to suppress the transition temperature
[49, 12] but the splitting dependence on Mn content is not reflecting this phenomenology. It
can be speculated if the SDW transition is indeed associated with nematic splitting and how the
orthorhombic distortion is vital for this magnetic order.

There is still debate about the nematic splitting size for these materials [122], reported as 60

meV for FeSe thin film [123] and 70 meV for BFA [124], which is in good agreement with our
findings. The nematic splitting for the shallow electron-like band was reported as 40 meV for
BFA [94].
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Figure 4.21: Low-temperature Fermi Surface measured for the Mn7.5% sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarizations, as indi-
cated. The dashed red lines delimit the first BZ.
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4.3 Magnon dispersion results

The spectral function investigation of Section 4.1.1 can be employed for a deeper examina-
tion of previous Resonant Inelastic X-ray Scattering (RIXS) experiments of MnBFA samples
[7], which characterized the magnon dispersions along ΓX and ΓM as a function of Mn. In
Figure 4.24, RIXS extracted parameters, for measurements in the SDW state (T = 20 K) are
shown. In this analysis, the magnon peak was fitted as a damped harmonic oscillator, for it is
proportional to the complex part of the dynamic susceptibility [125, 126]. The oscillator fre-
quency is defined as ωq =

√
ω2

0 − (γ/2)2, where γ is the magnon damping coefficient and ω0

is the magnon bare frequencies.

These coefficients are shown in Figure 4.24 for BFA and Mn8.0% samples, as a function
of the in-plane momentum, ||q||, along the main symmetry directions. As a function of Mn,
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ω0 remains unaffected, whereas γ increases, with the excitations becoming overdamped (ω0 /

γ/2) for almost all values of ||q|| in the case of the Mn8.0% sample. This abnormally large
magnon damping is not observed in RIXS results for other FeSC materials [126–128].

The RIXS measured magnons in these materials were related to spin flips associated with
the dxy orbitals [129]. Therefore, the vanishing of the folded band with dxy character provides a
natural explanation for the large damping of the RIXS detected magnons and, in addition, makes
a direct connection between the increasing band incoherence and the evolution of magnetic
properties, here represented by the large scattering of the magnons.
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Chapter 5

ARPES results of lightly Cr substituted
BaFe2As2

In this chapter, the ARPES experimental results for the Cr-substituted samples (CrBFA)
Ba(Fe1−xCrx)2As2 are presented. The probed samples are x = 0, 0.03, 0.085, referred to as
BFA, Cr3%, and Cr8.5%, respectively, as defined in Table 2.2.

To describe the experimental ARPES results and their analysis, the same notation and con-
vention of the previous chapter were adopted. For the Cr3% sample, however, only the elec-
tronic structure of the paramagnetic (PM) phase was measured (at T = 150 K). Therefore, the
low-temperature (LT) analysis presented for the low doping region of the CrBFa phase diagram
is more limited.

The methods for the ARPES measurements are described in Section 3.3, and the results here
presented will be discussed and put in context with the Mn results for the low doping region of
the phase diagram described in the previous Chapter 4.

5.1 High-temperature results

Figure 5.1 shows a survey of the electronic band structures, as a function of Cr content, in
the tetragonal PM state (T = 150 K) of the CrBFA samples. Measurements were taken along
the high-symmetry directions and adopting linear beam polarization as indicated in each panel,
for incident energy 80 eV for the BFA sample, 78 eV for the Cr3% sample, and 81 eV for
the Cr8.5% sample. It is possible to note how the spectral function depends on the polarization,
which again allows associating the spectral features to a main orbital character. Since the degree
of substitution is small and the phases are the same, similar bands to the MnBFA case are
expected. This time, however, an increase of the hole pockets for the Cr8.5% sample is visible,
mainly for the ΓX direction measurements. This will be discussed for the band comparison and
the Fermi Surface (FS) data later in this chapter.

Once more, the dz2 derived band appears only for π light polarization for energies close to
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Figure 5.1: Overview of the measured electronic band maps of the (a) BFA, (b) Cr3%, and
(c) Cr8.5% samples for high temperature. Measurements were taken along the ΓX and ΓM
directions and for σ and π polarizations, as indicated. Higher intensities are darker on the color
map.

EB = 0.5 eV, in absolute values. This is marked as orange arrows in the panels of Figure 5.1
for each sample. To inspect the evolution of the dz2 band feature as a function of Cr content,
the peak dz2 position was obtained, as shown in Figure 5.2. It was determined with the same
method employed for the MnBFA samples. The peak moves to higher binding energy (smaller
in absolute value) as the Cr percentage increases.

To compare these results with the one presented in the previous chapter, the Cr percentage
was multiplied by two, since the amount of holes theoretically introduced by a Cr atom is twice
the amount introduced by Mn. It is possible to observe that the changes in CrBFA are smaller
even without considering the doubled amount of holes, with the dz2 peak moving very little. It
means that the electronic band derived from dz2 retains a larger bandwidth in the case of CrBFA
samples which, in turn, suggests that the hybridization of the dz2 orbitals in CrBFA materials is
larger than for the MnBFA samples. Here, again, it is exemplified a case wherein the change in
orbital hybridization is a more relevant parameter to understand the evolution of the electronic
bands than electronic doping.

To inspect the kz direction band dispersion for the CrBFA samples, Figure 5.3 shows a
similar survey of the electronic band structures to the one from Figure 5.1, but this time for
incident energy 62 eV for the BFA sample, 60 eV for the Cr3% sample, and 67 eV for the
Cr8.5% sample. It is noteworthy that the dz2 derived band is missing for this kz level, for the π
polarized measurements. The hole pockets are larger for all samples in this energy, and the X
electron pockets visible for the σ polarized measurements are more shallow inEB. Furthermore,
there is a considerable change for the Cr8.5% sample band structure compared with the other
samples.

The second derivative data for the CrBFA samples at Γ BZ plane is presented in Figure 5.4.
The darker spots represent the Lorentzian maximum points. The band features are more distin-
guishable and clear, but it also depends on the type of derivative. For the ΓX σ polarization,
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Figure 5.3: Overview of the measured electronic band maps of the (a) BFA, (b) Cr3% and
(c) Cr8.5% samples for high temperature. Measurements were taken along the ZX and ZM
directions and for σ and π polarization, as indicated.
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Figure 5.4: CrBFA high-temperature second derivative maps for kz = Γ energy. The high-
symmetry direction and polarization for each measurement are indicated. (a) BFA sample re-
sults, (b) Cr3% sample results, and (c) Cr8.5% sample results. The band points were fitted to
the darker point.

for example, the band closer to the X point, related to the electron pocket, is only visible for
momentum derivatives. With these new spectra, it is possible to fit the band point position and
determine the band shape and changes with the Cr introduction.

The fitted points are presented in Figure 5.5, where the orbital character is represented in
a color code in the legend. The Γ point has two inner hole bands with dxz and dyz characters
and one outer band with dxy character. Visible in the ΓX direction, the electron pocket region
presents two bands, one that does not cross the Fermi level and is almost flat, of dxz character,
for π polarization measurements, and another that forms a deep electron pocket band, of dxy
character, for σ polarization. These two bands in the electron pocket region will be termed
"flat" and "deep" bands.

The results for the Cr3% sample are remarkably similar to the ones presented for the MnBFA
samples in chapter 4. For the Cr8.5% sample, however, there are some changes. Firstly, the
outer band with dxy character is visible for σ light polarization for ΓX measurements. This is
clear in the second derivative of Figure 5.4. This band is only visible in this experimental con-
figuration for the Cr8.5% sample. Secondly, the flat electron band seems to be moved up and
it is much flatter when compared with the BFA sample, which is visible in the ΓX π polarized
measurements. Additionally, the dxz/yz hole pockets are bigger and there is a clear distinction
between the two bands. It can be speculated that the degree of hybridization with As-derived or-
bitals is changing the band’s main orbital character and symmetry. This can be further analyzed
regarding changes in electronic correlations, as shall be discussed for the spectral analysis.

To further investigate these changes for the Cr8.5% sample and the electron pockets, it is
possible to recur to the Fermi maps. Fixing the map binding energy to the Fermi level (EB = 0),
it is possible to plot the Fermi Surface (FS). In Figures 5.6, and 5.7 there are presented the
measured Fermi surfaces (FS) for the samples Cr3%, and Cr8.5%, respectively. Again, it is
possible to observe the polarization selectivity for the spectral function. The dashed red lines
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Figure 5.6: High-temperature Fermi Surface measured for the Cr3% sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarization, as indicated.
The dashed red lines delimit the first BZ.

delimit the first BZ, revealing the rotation of the sample high-symmetry direction being probed.

For the Cr3% sample, it is clear that the hole pockets at Γ are larger for the kz = Z photon
energy, as in the case of the MnBFA samples. Again, the electron pockets measured for the
ΓX/ZX directions show different relative intensities for σ polarization. This is a consequence of
the selection rules, since this direction is associated with the dxz orbital that forms the X electron
pocket, and its intensity is zero for σ polarization, leaving only the dxy weak contribution.

For the ΓX π polarized measurements, it is even more evident the sizable increase of the
hole pocket for the Cr8.5% sample. For the same sample, also, the electron pockets for ΓM σ

polarized results seem to get more elongated in the ΓX direction, which can be further inspected
with high-symmetry cuts reconstruction.

To inspect the electron pocket size as a function of Cr closely, we focus on the X-centered
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Figure 5.7: High-temperature Fermi Surface measured for the Cr8.5% sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarization, as indicated.
The dashed red lines delimit the first BZ.

Figure 5.8: Fermi Surface measured for ΓX direction with σ polarization with the BZ drawn
and its high-symmetry points indicated for samples (a) BFA, (b) Cr3% and (c) Cr8.5%. The
green dashed lines indicate the cut based upon which the electron pockets of Figure 5.9 were
reconstructed.
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Figure 5.9: High-temperature energy maps for the YZ direction and its second derivatives for
samples (a) BFA, (b) Cr3% and (c) Cr8.5%. The marked points represent the points forming
the electron pocket band at Y.

electron pocket for ΓX directions and σ light polarization. In Figure 5.8, there is a comparison
of the FS maps, for ΓX direction, for the three samples at high temperature. A planar cut of the
Brillouin Zone (BZ) is plotted above the FS, with the high-symmetry points highlighted. It is
possible to observe the dxy contribution electron pockets at the X points, and the stronger inten-
sity for the Y electron pockets. The green dashed line marks the YZ high-symmetry direction.

In analogy to what was done for the MnBFA samples, by fixing the map ky to a high-energy
point, it is possible to plot the electronic band as a function of kx and EB for a different high-
symmetry direction, parallel to the measured ΓX direction. This is shown in Figure 5.9, where
is possible to see the electron pockets for the YZ high-symmetry direction. These spectra have
lower resolution than the electronic bands of figure 5.1, since the Fermi map acquisition mode
is different and achieving the same resolution would take several hours. The spectral weight
associated with the electron pocket, however, is still visible by choosing a more contrasting
color scale. By taking the energy second derivatives of the spectra, it is possible to fit the
electron band points, as shown in the lower panels of Figure 5.9. This electron band will be
termed a "shallow" electron pocket.

As mentioned, the electron pocket dxz/yz contribution seems to get more elongated with the
Cr introduction, but this is not visible in the shallow electron pocket, due to its dxy character.
Therefore, in Figure 5.10 there is a similar procedure performed to the ΓM direction XY high-
symmetry cut, to obtain another direction to compare the electron pocket evolution. The orange
dashed lines indicate the k′x cut for which the XY direction maps of the lower panels were
reconstructed. It is possible to fit, using second derivatives, the band points corresponding to
the X pocket right half and Y pocket left half. This is shown as red dots in Figure 5.10. This
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Figure 5.10: Fermi Surface measured for ΓM direction with σ polarization with the BZ drawn
and its high-symmetry points indicated for samples (a) BFA, (b) Cr3% and (c) Cr8.5%. The
orange dashed lines indicate the cut based upon which the electron pockets of the lower panels
were reconstructed. The red dots are the fitted band points from the second derivatives.

band will be termed a "diagonal" electron pocket.

After identifying three hole pocket bands and three electron pocket cuts, it is possible to
compare the effect of Cr substitution in these bands. This comparison is shown in Figure 5.11.
The focus is on the states in the vicinity of EF . The hole pockets change as a function of Mn
content is summarized in Figures 5.11(a)-(c), while the electron pockets changes are in Figures
5.11(d)-(f).

Treating the evolution of the electronic band structure in terms of the BFA Fermi Surface, as
illustrated in figure 4.14 for the MnBFA case, the electron pocket can be considered to consist
of a minor and a major axis, forming an ellipse. The minor axis is determined by the shallow
electron pocket, of dyz orbital character, while the major axis is determined by the deep electron
pocket, of dxy orbital character. By performing a±

√
2π/a shift in the ΓX deep electron pockets

it is possible to have the parabola as shown in Figure 5.11(e). Similarly, a ±π/a shift in the XY
diagonal electron pocket is possible to achieve the parabola of Figure 5.11(f).

This time, one can observe an increase in the hole pockets as a consequence of the hole
doping caused by Cr, at least for the Cr8.5% sample. Bands forming the hole pockets seem
to increase their Fermi energy crossing point positions in momentum kF . This is particularly
visible for the outer dxy hole pocket. The bands forming the electron pocket, however, seem
less affected by Cr. This represents a greater detuning of the nesting condition when compared
with the MnBFA results. To better visualize these changes, Figure 5.12 shows the extracted
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kF from each band of Figure 5.11 and for the electron pocket high-symmetry cuts of Figures
5.9 and 5.10. As expected, the most striking change occurs for the outer hole pocket with dxy
character, which increases considerably as a signature of the hole doping. At the same time,
electron pockets are getting systematically smaller with Cr, but the observed changes are within
error bars.

With these results, it is clear that the same degree of transition metal substitution acts differ-
ently for the MnBFA and CrBFA systems. This will be further explored in the spectral analysis
in the following section.

5.1.1 Self-energy analysis

It is interesting to perform a quantitative analysis of the ARPES spectral function A(k, E)

to compare with what was previously found for the MnBFA samples. To do so, the spectral
analysis was done by fitting the momentum distribution curves (MDCs) to the expression for
the one-particle A(k, E) (equation 3.14). The objective is to extract the electronic scattering
rate Γ(E) as a function of the binding energy E.

The analysis for the band in ΓX direction and σ light polarization, with dyz main orbital
character, is presented in Figures 5.13(a)-(c) for samples BFA, Cr3% and Cr8.5%, respectively.
This analysis again follows Refs. [87, 86], where the “all at once” fitting method is presented.
When the multiband character is in play, however, the method could not be implemented, due to
the twice as large number of parameters necessary to minimize the square fitting of all MDCs
simultaneously.
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Figure 5.13: ARPES spectral function analysis. Fittings (blue lines) of several MDCs (red dots)
for increasing binding energies. (a)-(c) data obtained for σ polarization, measured along ΓX for
samples BFA, Cr3% and Cr8.5%, as indicated, with a single band fitting. (d)-(f) data obtained
for π polarization, measured along ΓM for samples BFA, Cr3% and Cr8.5%, with a double
band fitting.

Therefore, for the analysis of the band with dyz main orbital character, measured along the
ΓM direction and π light polarization, a one-by-one fitting of the MDCs was performed. These
two methods are described in Section 4.1.1. The Lorentzian peak positions can have as the
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initial guess the bands obtained from the second derivative process, the points of Figure 5.5.
The resulting fitting of two bands is presented in Figures 5.13(d)-(f). For the one-by-one fitting
method the energy and momentum finite resolution and finite temperature were not considered,
but suitable fittings could be performed nevertheless.

Given the two methods used, the results cannot be reliably compared between bands fitted
with these different methods, and only the trend as a function of Cr for each band is a trustworthy
result. To analyze this trend it is possible to compare the scattering rates as a function of binding
energy Γ(E) for the three samples, as shown on the top panels of Figures 5.14(a)-(c), where the
(a) and (b) panels are results from the two-band fitting of ΓM direction and the (c) panel have
the results of one-band all-at-once fitting of ΓX direction.

Again, a marginal Fermi liquid (MFL) behavior is employed to analyze the data, due to
the linear behavior of Γ(E). Therefore, the relation between Γ(E) and Σ′′ will follow the
expression 3.17, from where Σ′′ can be extracted, as shown on the bottom panels of Figures
5.14(a)-(c).

In the vicinity of EF , for all bands, Γ(E) and ImΣ(E) are fairly well described as linear
functions of E, within the paradigm of an MFL regime. The slopes, or angular coefficients,
related to Γ(E) and ImΣ(E) can be defined as α and β, respectively.

Again, α is a measurement of the electronic states’ coherence. In this sense, a decrease of
α as a function of Cr content would correspond to a weaker response of Γ(E) to the binding
energy which translates into a decrease in band incoherence. On the other hand, an increase
in β is related to increasing electronic correlations. The α and β angular coefficients of the
curves of Figures 5.14 (b) and (c) are obtained as a function of Cr content and are presented in
Figure5.14(d) for bands with main dyz (top panel) and dxy (middle panel) orbital character. The
lower panel shows the TSDW as a function of Cr content.
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T = 20 K Ba(Fe1-xCr2)2As2
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Figure 5.15: Overview of the measured electronic band maps of the (a) BFA and (b) Cr8.5%
samples for low temperature. Measurements were taken along the ΓX and ΓM directions and
for σ and π polarization, as indicated.

Overall, α(dyz) decreases with Cr introduction while α(dxy) is almost constant. β(dyz) in-
creases and β(dxy) oscillates in function of Cr percentage. An increase of electronic correlations
is expected on the CrBFA phase diagram [69], this is reflected on the dyz derived orbital, but
not on the dxy. This can be rationalized in terms of effective hole doping. Since the dxy is the
higher orbital in energy [4, 101], it would form the hole pocket with the highest depleting of
electrons, hindering the increase of electronic correlations associated with this orbital.

5.2 Low-temperature results

The same measurements performed for all samples, incident light polarization, and high-
symmetry directions for the paramagnetic stare were replicated in the magnetically ordered
state. In Figure 5.15 there is a survey of the electronic band structures as a function of Cr
content in the orthorhombic SDW state, measured at T = 20 K for BFA and Cr8.5% samples.
The bands are more visible due to less thermal broadening and reduced effect of the Fermi-
Dirac distribution close to the Fermi level. The nematic splitting and the expected SDW folding
features are visible for the BFA sample, as explained in the previous chapter.

Without the low-temperature data for the Cr3% sample is not possible to perform a low-
temperature study as a function of Cr content, such as was done for the paramagnetic state. In
this case, this brief section is focused on inspecting the properties of the Cr8.5% sample on
the ordered state. In this regard, in Figure 5.15 it is visible that, as in the case of Mn7.5%

sample, the Cr8.5% sample shows no sign of SDW band folding. The bands are the same as
the paramagnetic ones, with the difference in the splitting of the dxz flat electron band, visible
for the ZX direction measurements using π light polarization, being very smeared out. The
increase in the hole pockets is again clear, and the outer hole pocket spectral weight for the ΓX
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Figure 5.16: Overview of the measured electronic band maps of the Cr8.5% sample for low
temperature. Measurements were taken along the ZX and ZM directions and for σ and π polar-
ization, as indicated.
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Figure 5.17: Low-temperature Fermi Surface measured for the Cr8.5% sample. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarization, as indicated.
The dashed red lines delimit the first BZ.

To investigate the absence of band folding, measurements for incoming photon energy prob-
ing the kz = Z plane of the reciprocal space can be inspected. In Figure 5.16, for the π polarized
data there is no sign of the dz2 band, as expected, but there is also no sign of band folding.

For the case of Mn7.5%, this was rationalized in terms of increasing incoherence of the
dxy electron pocket that folds into the Γ point and increasing localization of the Fe moments.
For the Cr8.5% sample, however, the αxy parameter associated with this orbital incoherence
is almost constant, leaving only the increasing localization as an explanation. This absence of
folded bands in both cases calls for more investigation.
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The overview of the Fermi Surfaces for the Cr8.5% sample is shown in Figure 5.17, where
the dashed red lines delimit the first BZ. The hole band increased size is visible in all directions
and polarization. By a close inspection of ΓX and ZX π polarized data, it is possible to see
small dot-like pockets around the X point. This was observed before [121] for BFA and was
interpreted in terms of a twinned AFM reconstruction, not derived from folding. If the ordered
electronic band structure results from a different mechanism for the samples BFA and Cr8.5%

it is still up for debate.

5.3 RIXS results

Resonant Inelastic X-ray Scattering (RIXS) is a powerful technique that allows the investi-
gation of low-energy excitations in a material. These excitations must be charge-neutral and are
limited in their energy scale by the experimental energy resolution. This technique is described
in detail in Appendix A, where the fundamentals and experimental setups are explained and
presented along with the optical study of the IPE beamline spectrometer.

For CrBFA, the magnetic ground state changes between an itinerant SDW state with stripe
order symmetry to a localized AFM state with G-type order symmetry [46, 58]. Therefore,
the substitution of Fe by Cr leads to the coexistence of magnetic fluctuations with different
symmetries, which compete to form different ground states along the phase diagram. Besides,
the SDW order is preceded by a structural orthorhombic transition related to the nematic phase.
In the AFM state, a such transition does not occur, revealing a suppression of nematic transition
as a function of Cr content [130].

With RIXS results for the Cr3% and Cr8.5% samples at the Fe edge, it is possible to inves-
tigate the magnetic excitations as a function of high-symmetry direction and momentum and
compare it with previous BFA and MnBFA results [7].

Figure 5.18: RIXS experimental geometry. The backscattering angle is defined as ψ = θ + α
and was kept as ψ = 130◦
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The RIXS results here presented were taken at the I21 beamline of the Diamond Light
Source, in April 2023. All spectra were taken with incident photon energy at the maximum
resonance of FeL3 XAS spectrum with hν = 709.5 eV, using π polarized light and for a fixed
temperature of T = 15 K. The total energy resolution of the experiment was about 30 meV,
extracted from the full width at half maximum (FWHM) of the elastic scattering of a carbon-
filled acrylic tape.

The measurements were taken with backscattering geometry, defined by an acute angle be-
tween the incidence direction and the detection direction. This geometry allows detecting pho-
tons with higher momentum transfer to the sample, following the equations 5.1 and 5.2, where λ
is the incoming photon wavelength, ψ is the scattering angle, Q is the total transferred momen-
tum and q‖ is the transferred momentum projection into the sample plane. Such configuration
is illustrated in Figure 5.18.

|Q| = 4π

λ
sin (

ψ

2
) (5.1)

|q‖| = |Q| sin (
ψ

2
− θ) (5.2)

During the experiments, the scattering angle was kept as ψ = α + θ = 154◦, with the
spectrometer arm fixed, and the sample was rotated inside the experimental chamber to vary the
incident angle θ. As lower as θ is, the higher will be the transferred momentum projection q‖.
The corresponding variation of the out-of-plane component q⊥ is not considered since the Fe
order is expected to be almost 2D.

Considering mechanical limitations and the efficiency of sample surface reflection, the
smallest angle to achieve is θ ≈ 15◦, corresponding to the grazing incidence direction. The
smaller possible q‖ = 0 will be when θ = α = ψ/2, with no in-plane momentum transfer,
which is called specular geometry.

The samples were glued to the sample holder using silver epoxy. A metal cylindrical pin
was glued on top of the sample for the cleaving inside the load lock, with pressures close to
1 × 10−8 mbar. A pressure of 3 × 10−10 mbar or better was achieved in the sample chamber.
All results here described are adopting a 1-Fe 2D unit cell, as shown in Table 2.1, with a lattice
parameter of a = 2.80 Å. In this notation, the [100] direction corresponds to the diagonal of
the 1-Fe lattice, along (π,π), while the [110] direction corresponds to the Fe-Fe first neighbor
distance along (π,0). To keep parallel with the ARPES results, these directions will also be
referred to as ΓM for (π,π) and ΓX for (π,0).

For each high-symmetry direction, some different points of θ were used to probe a RIXS
spectrum with different q‖ values. This results in several RIXS spectra to be analyzed for their
magnetic excitation contribution.

Figure 5.19 shows the RIXS spectrum and fittings for the BFA sample along the Fe second
neighbor, or [100], direction and momentum transfer of Q = 0.63 Å−1. In the left panel, the
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Figure 5.19: Left: RIXS spectrum for the BFA sample along the crystallographic [100] direction
and momentum transfer of Q = 0.63 Å−1. The red line represents the curve fitted to extract the
fluorescence background contribution. Right: the black points represent the resultant spectrum
after the subtraction, which is fitted to the red curve. The fitting contributions are discussed in
the text.

fluorescence background related to charge excitations is fitted to a model, shown as a red line
and described below, and it is then subtracted, resulting in the black points of the right panel.

After this subtraction, the resulting spectrum is then fitted to a function, shown as a red line
in the right panel, consisting of the sum of a magnon peak (blue line) and a quasi-elastic (QE)
part, which is composed of the elastic line contribution (green line) and a phonon peak (orange
line), both fitted using energy resolution limited Gaussian peaks.

The fluorescence background was fitted to a phenomenological model introduced by Yang
et al. [131] as implemented already for the 11 and BFA compounds [132, 126]. The model
separates the background into three regions with two crossover functions between them. The
regions correspond to a linear behavior close to energy transfer E ≈ −1 eV, shown as a yellow
line, one exponential curve in the region to −4.5 / E / −2 eV, shown as a green line, and
another exponential curve in the region −6 / E / −4.5 eV, represented by a navy blue line.
The complete model is depicted with the red line, which is a sum of the other three lines.

This model is described in equation 5.3, where the three curves are weighted by coefficients
α, β, and γ. In this model, the frequency ω corresponds to the transferred energy, which is
defined as negative by E = Ed − Ei, where Ed is the detected photon energy and Ei = µh is
the incident photon energy. The parameter a, b, and c determine the exponential shape.

Ifluo = α exp(−aω)ω(1− gΓ1) + β exp(bω)gΓ1 + γ exp(cω)− gΓ2 (5.3)

The function that is responsible for the crossover between the curves is described in equation
5.4, where ω1,2 is the crossover position in transferred energy E and Γ1,2 determines the width
of the crossover region.
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gΓ1,2 = (exp(−(ω − ω1.2)/Γ1,2) + 1)−1 (5.4)

Figure 5.20: RIXS spectrum and fittings for the BFA sample along the crystallographic [100]
direction and momentum transfer of Q = 0.16 Å−1. The curves and fitting contributions are
discussed in the text.

Figure 5.21: RIXS spectrum and fittings for the BFA sample along the crystallographic [110]
direction and momentum transfer of Q = 0.63 Å−1. The curves and fitting contributions are
discussed in the text.

Examples of fittings for the highest and lowest momentum points of each direction for each
sample are shown in Figures 5.19 to 5.30. The sample, direction, and transferred momentum
are described in each figure. The data were normalized by the maximum fluorescence intensity,
allowing a proper comparison of the quasi-elastic and magnon peaks intensity as a function of
momentum and Cr concentration.

As we can observe, the quasi-elastic peak gets bigger as a function of Cr content, getting
more intense than the fluorescence background for the Cr8.5% sample. The magnon peak, by
its turn, is clearly visible for the maximum transferred momentum point for every sample, but
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Figure 5.22: RIXS spectrum and fittings for the BFA sample along the crystallographic [110]
direction and momentum transfer of Q = 0.16 Å−1. The curves and fitting contributions are
discussed in the text.

Figure 5.23: RIXS spectrum and fittings for the Cr3% sample along the crystallographic [100]
direction and momentum transfer of Q = 0.63 Å−1. The curves and fitting contributions are
discussed in the text.

when the transferred moment gets smaller, it resembles a shoulder of the quasi-elastic peak,
revealing the magnon dispersive behavior.

To gain a more quantitative insight into the magnon behavior, it can be fitted to the complex
part of the dynamic susceptibility χ′′(ω), as shown in Equation 5.5 [126, 125], where the q

dependency reveals the magnon dispersion. This equation has the form of an antisymmetric
Lorentzian peak. To avoid redundant notation, the peak FWHM will be called γ in the RIXS
results.

χ′′(ω) =
χ′′0
2ωq

(
γ/2

(ω − ωq)2 + (γ/2)2
− Γ/2

(ω + ωq)2 + (γ/2)2

)
(5.5)

Within this approach, the peak can be interpreted like a damped harmonic oscillator [7],
where χ′′0 is an intensity constant, γ is the excitation lifetime, and ωq is the propagation fre-
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Figure 5.24: RIXS spectrum and fittings for the Cr3% sample along the crystallographic [100]
direction and momentum transfer of Q = 0.16 Å−1. The curves and fitting contributions are
discussed in the text.

Figure 5.25: RIXS spectrum and fittings for the Cr3% sample along the crystallographic [110]
direction and momentum transfer of Q = 0.63 Å−1. The curves and fitting contributions are
discussed in the text.

quency of the excitation along the q direction. The excitation bare frequency without the damp-
ing effect can be defined as ω0 =

√
ω2
q + (γ/2)2.

By inspecting the ∆E(q) in Figure 5.31, which is the maximum position of the fitted mag-
netic peak as a function of momentum, it is possible to observe the energy dispersion of the
magnon peak as a function of direction and transferred momentum. For the (π, π) direction,
the Cr3% sample dispersion is almost the same as the one for the parent compound measured
in the same experimental conditions. The Cr8.5% sample dispersion is not dispersing as much,
showing the suppression of the Fe second neighbors spin excitation with Cr introduction.

For the (π, 0) direction, the Cr3% sample dispersion is suppressed when compared with the
BFA samples, revealing an anisotropic magnon hindering in this substitution level. The Cr8.5%

is equally suppressed in both directions, which is in contrast with the Mn8% sample, as we saw
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Figure 5.26: RIXS spectrum and fittings for the Cr3% sample along the crystallographic [110]
direction and momentum transfer of Q = 0.16 Å−1. The curves and fitting contributions are
discussed in the text.

Figure 5.27: RIXS spectrum and fittings for the Cr8.5% sample along the crystallographic [100]
direction and momentum transfer of Q = 0.62 Å−1. The curves and fitting contributions are
discussed in the text.

in the previous chapter. In this regard, it seems like 3% Cr acts similarly to 8% Mn substitution
when it comes to magnon dispersion anisotropic damping, suppressing the Fe-Fe direction spin
excitation.

To further investigate this effect, we can analyze also the trend of the bare frequency ω and
the damping coefficient γ, as shown in Figures 5.32 and 5.33.

The bare frequency is almost sample independent, showing a q dispersion very similar for
both (π, 0) and (π, π) directions for all samples. On the other hand, analyzing the corresponding
damping, it is possible to conclude that, for the Cr8.5% sample, the oscillator is overdamped in
both directions, which represents the hindering of the magnon excitations in a more isotropic
fashion. For the Cr3% sample, the magnon peak is overdamped for the (π, π) direction, meaning
an isotropic hindering of spin excitations, which is stronger for Fe-Fe direction.
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Figure 5.28: RIXS spectrum and fittings for the Cr8.5% sample along the crystallographic [100]
direction and momentum transfer of Q = 0.17 Å−1. The curves and fitting contributions are
discussed in the text.

Figure 5.29: RIXS spectrum and fittings for the Cr8.5% sample along the crystallographic [110]
direction and momentum transfer of Q = 0.53 Å−1. The curves and fitting contributions are
discussed in the text.

Overall, the CrBFA samples Fe-derived magnon dispersion behavior is the same as BFA
for the (π, π) direction, while for the (π, 0) direction the excitation is overdamped, but is still
dispersive. This is an indication of the strong magnetic interaction anisotropy that appears for
the CrBFA phase diagram, with the (π, 0) Fe-Fe direction excitation being strongly suppressed.
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Figure 5.30: RIXS spectrum and fittings for the Cr8.5% sample along the crystallographic [110]
direction and momentum transfer of Q = 0.18 Å−1. The curves and fitting contributions are
discussed in the text.
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Figure 5.31: RIXS fitted magnetic peak position ∆E for all momentum points for samples BFA,
Cr3% and Cr8.5% at (π, 0) direction and (π, π) direction.
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Figure 5.32: RIXS fitted peak bare frequency ω0 for all momentum points for samples BFA,
Cr3% and Cr8.5% at (π, 0) direction and (π, π) direction.
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Figure 5.33: RIXS fitted peak damping γ for all momentum points for samples BFA, Cr3% and
Cr8.5% at (π, 0) direction and (π, π) direction.
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Chapter 6

ARPES and RIXS results of BaCr2As2 and
Ba(Fe0.515Cr0.485)2As2

In this chapter, the ARPES experimental results for the samples Ba(Fe0.515Cr0.485)2As2 and
BaCr2As2 are presented. The samples will be referred to as BFCA and BCA, respectively, as
defined in Table 2.2.

To describe the experimental ARPES results and their analysis the same notation and con-
vention as the previous chapters were adopted. The methods for the ARPES measurements are
described in Section 3.3, and the results here presented will be discussed and put in context
with some preliminary RIXS results taken at the ADRESS beamline of the Swiss Light Source
[133, 134].

6.1 ARPES results

Figure 6.1 shows a survey of the electronic band structures in the ordered state of the BCA
sample, measured at T = 20 K. Measurements were taken along the high-symmetry directions
and adopting linear beam polarization as indicated in each panel, for incident energy 74 eV for
the kz = Γ energy level and 89 eV for the kz = Z energy level.

It is possible to note how the spectral function depends on the polarization, and this time
the selection rules are not as clear as in BaFe2As2. This is a consequence that in BaCr2As2 the
Cr-derived bands are more hybridized with the As-derived orbitals than in BaFe2As2 [57].

By inspecting the band measurements, it is visible that the bands are much sharper when
compared with the ones found in previous chapters. This is an indication of the coherent elec-
tronic properties at the ordered state of BCA. There are three hole pockets, visible in almost all
directions and polarizations, and no electron pockets. The hole pockets will be termed inner,
middle, and outer, accordingly to previous ARPES results for this sample [60, 59].

In previous ARPES studies, the BCA electronic bands’ orbital character was discussed. P.
Richard et al. [60] identified the inner and the middle hole pockets as having a predominant
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Figure 6.1: BaCr2As2 electronic band maps measure for kz = Γ and kz = Z energies. Measure-
ments were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarization, as
indicated. Higher intensities are darker on the color map.

Cr-derived dxz/yz character, with even and odd main symmetries, respectively. The outer hole
pocket was identified as having a main Cr-derived dxy character. These findings were supported
by local density approximation (LDA) calculations. J. Nayak et al. [59], on the other hand,
had identified that the inner hole pocket has a Cr3dxy character mixed with As4pz contribution,
while the middle and outer hole pockets have a combination of Cr3dxz/yz, Cr3dz2 and As4px/y
contributions. This was also supported by LDA contribution, even though resulting in different
orbital characters.

For our results, the intense hybridization is evident, as mentioned. The main orbital depen-
dencies are: the vanishing of the middle band for ΓX direction σ polarization; weak contribu-
tions of the outer band for ΓX π results and its vanishing for ΓM σ polarized data; the stronger
intensity of the inner band for σ polarized band maps. Inspecting the Table 3.1, the main orbital
character associated with these three bands consists of the inner band being of main dyz charac-
ter, the middle band with predominant dxz character, and the outer band of main dxy character.
This is aligned with what was previously reported by P. Richard et al. Additionally, there is a
broad spectral weight close to EB = −0.2 eV only present for π polarized data, from which the
dz2 orbital character can be attributed. The polarization dependency will be further discussed
for the Fermi Surface (FS) data later in this chapter, where the full direction dependency can be
explored at the Fermi level.

Since the bands are not overlapping as much as in the case of BaFe2As2 and they are sharper,
the full spectral analysis can be performed for this sample, as will be discussed in Section 6.1.1.

ARPES measurements for the BFCA sample, close to the putative d5 configuration at the
center of the phase diagram can be compared with the BCA sample results to elucidate the
evolution upon Cr substitution. Figure 6.2 shows a survey of the electronic band structures in
the ordered state of the BFCA sample, measured for T = 20 K. Measurements were taken along
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Figure 6.2: Ba(Fe0.515Cr0.485)2As2 low-temperaure electronic band maps measure for kz = Γ
and kz = Z energies. Measurements were taken along the ΓX, ΓM, ZX, and ZM directions and
for σ and π polarization, as indicated. Higher intensities are darker on the color map.

the high-symmetry directions and adopting linear beam polarization as indicated in each panel,
for incident energy 77 eV for the kz = Γ energy level and 93 eV for the kz = Z energy level.

As we can see, the overall aspect is kept, but the bands are much broader and less defined.
It is not possible to distinguish the three hole pockets for any of the directions or polarizations.
The only band that can be clearly identified without overlap is the inner hole pocket, but only in
the ΓX direction with σ polarized light. Again, there is a broad contribution close toEB = −0.2

eV only present for π polarized data, that can be attributed to a dz2 orbital character.

The spectral analysis for the BFCA sample, as shown in Section 6.1.1, cannot be as complete
as the one for the BCA sample. But the broadness of the electronic bands can give information
about the electronic coherence and disorder effects.

The electronic band structure was also measured for higher temperatures of T = 150 K,
but still within the ordered state. The survey of these bands is shown in Figure 6.3. There is
no remarkable difference between these results and the T = 20 K results. The same bands
are present, but less defined and with some thermal broadening close to the Fermi level for the
T = 150 K case. Therefore, only the T = 20 K data will be analyzed further in this work.

To further investigate the electronic band changes and properties for these two samples, it is
possible to recur to the Fermi maps. Fixing the map binding energy to the Fermi level (EB = 0),
it is possible to plot the Fermi Surface (FS). In Figures 6.4, and 6.5 there are presented the
measured Fermi surfaces (FS) for the samples BFA, and BFCA, respectively. The dashed red
lines delimit the first BZ, revealing the rotation of the sample high-symmetry direction being
probed.

By inspecting the Fermi maps of Figure 6.4 it is possible to see how sharp the bands are,
where the three hole pockets are distinguishable and their shape and kz dispersion are visible.
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Figure 6.3: Ba(Fe0.515Cr0.485)2As2 high-temperature electronic band maps measure for kz = Γ
and kz = Z energies. Measurements were taken along the ΓX, ΓM, ZX, and ZM directions and
for σ and π polarization, as indicated. Higher intensities are darker on the color map.
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Figure 6.4: BaCr2As2 Fermi Surfaces measured for kz = Γ and kz = Z energies. Measurements
were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polarization, as indicated.
The dashed red lines delimit the first BZ
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Figure 6.5: Ba(Fe0.515Cr0.485)2As2 Fermi Surfaces measured for kz = Γ and kz = Z energies.
Measurements were taken along the ΓX, ΓM, ZX, and ZM directions and for σ and π polariza-
tion, as indicated. The dashed red lines delimit the first BZ

The inner hole pocket is the most circular and is not visible or very weak for the kz = Z level,
but the size does not seem to change a lot, indicating a weak kz dispersion but strong intensity
dependency. The middle hole pocket is the most squarish, looking like a diamond shape for
the ΓX direction. Its size, therefore, is changing with direction but not as much with kz. The
outer hole pocket is the most affected with kz, changing its shape and size. For kz = Γ it looks
more "flower" like, or with a clover shape, while for kz = Z it seems like a circle in which
the middle pocket square is circumscribed inside. All these changes will be quantified in the
spectral analysis.

On the other hand, the Fermi maps of Figure 4.19, with broader less defined bands, limit the
possibility of analyzing in such details the shapes and anisotropies. It seems like the squarish
contribution is present, but overlapped with the inner pocket, except for the ΓX direction and σ
polarization. Contributions from the putative third hole pocket are very weak and can seem like
elongations of the pocket’s shape. Therefore, some resemblance with the BCA Fermi Surface
is present but the contributions can not be separately analyzed.

With these results, a systematic quantitative analysis as a function of Cr content is very
difficult and will not be performed in analogy with previous chapters. The inner hole pocket
self-energy analysis is presented for both samples in the following Section, but a more detailed
spectral study is present only for the BCA sample.

6.1.1 Self-energy analysis

A quantitative analysis of the ARPES spectral function A(k, E) can be made to compare
with what was previously found for the BFA sample. To do so, the spectral analysis was done by
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Figure 6.6: ARPES spectral function analysis. Fittings (blue lines) of several MDCs (red dots)
for increasing binding energies. (a)-(c) data obtained for σ polarization, measured along ΓX
for samples BFA, BFCA, and BCA, as indicated, with a single band fitting.

fitting the momentum distribution curves (MDCs) to the expression for the one-particleA(k, E)

(equation 3.14). The objective is to extract the electronic scattering rate Γ(E) as a function of
the binding energy E.

The analysis for the band in ΓX direction and σ light polarization, with dyz main orbital
character, is presented in Figure 6.6(a)-(c) for samples BFA, BFCA and BCA, respectively.
This analysis again follows Refs. [87, 86], where the “all at once” fitting method is presented.
This method where the energy and momentum finite resolution and finite temperature were
considered is described in Section 4.1.1. It is possible to observe how the Lorentzian peaks are
getting more separated and sharp with Cr introduction. It reflects in increasing hole pocket size
and band coherence as a function of Cr content.

To further analyze the trend of the spectral features as a function of Cr content, it is possible
to compare the scattering rates as a function of binding energy Γ(E) for the three samples, as
shown in Figure 6.7(a). Again, a marginal Fermi liquid (MFL) behavior is employed to analyze
the data, due to the linear behavior of Γ(E) close to the Fermi level. Therefore, the relation
between Γ(E) and Σ′′ will follow the expression 3.17, from where Σ′′ can be extracted, as
shown in Figure 6.7(b).

In the vicinity of EF , for all bands, Γ(E) and ImΣ(E) are fairly well described as linear
functions of E, within the paradigm of an MFL regime. The slopes, or angular coefficients,
related to Γ(E) and ImΣ(E) can be defined as α and β, respectively, in analogy to what was
done for the MnBFA and slightly doped CrBFA.

Again, α is a measurement of the electronic states’ coherence. In this sense, a decrease of
α as a function of Cr content would correspond to a weaker response of Γ(E) to the binding

102



2

1

0

α

100500
Cr %

0.6

0.4

0.2

0.0

β

ΓX σ-pol dxz

0.8

0.6

0.4

0.2

Γ 
(e

V
)

0.2 0.1 0.0
EB (eV)

 BFA
 BFCA
 BCA
 linear fit

0.4

0.3

0.2

0.1|Im
(Σ

)| 
(e

V
)

0.2 0.1 0.0
EB (eV)

(a) (b) (c)

Figure 6.7: ARPES spectral function analysis resulting (a) scattering rate Γ(E) and (b) imag-
inary part of self-energy ImΣ(E) for ΓX single hole pocket band as a function of Cr content.
The blue lines indicate linear fittings close to the Fermi level. (c) resulting linear coefficients
from panels (a) and (b).

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

X Γ X

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

M Γ M

-0.6

-0.4

-0.2

0.0
E

B
 (

eV
)

X Z X

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

M Z M

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

X Γ X

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

M Γ M

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

X Z X

-0.6

-0.4

-0.2

0.0

E
B
 (

eV
)

M Z M

π

σ

ΓX ΓM ZX ZMT = 20 K BaCr2As2

Figure 6.8: BaCr2As2 fitted band points for the electronic band maps of Figure 6.1. Red dots
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were fitted, for comparison.

energy which translates into a decrease in band incoherence. On the other hand, a decrease in β
is related to decreasing electronic correlations. The α and β angular coefficients of the curves
of Figures 6.7 (a) and (b) are obtained as a function of Cr content and are presented in Figure
6.7(c) for the inner hole pocket band with main dyz orbital character.

For the BaCr2As2 spectra, it is possible to perform a detailed spectral analysis for the three
hole pockets with MDC fitting. Each MDC can be individually fitted to six Lorentzians, fol-
lowing again the expression 3.14, and a constant background. The spectrum is considered a
linear combination of each band Lorentzian peaks and the dispersion relation does not need to
be given in advance.

The resulting fitted point obtained by this process is shown as red dots in Figure 6.8. This
analysis was performed for directions ΓX and ZX with σ light polarization and directions ΓM
and ZM with π light polarization, for which the three bands were most visible. The points
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the bands of Figure 6.8 used to perform these fittings, with a zoom on the EF region. The
bottom panels show the extracted scattering rates with their respective linear fittings for each of
the bands. The color code follows the legend at the bottom.

were then fitted to a parabolic dispersion, represented by yellow lines. The pale pink lines are
intended to compare the fitted points to the bands in the complementary polarization from which
they were fitted.

The Fermi wave vectors kF in units of π/a were obtained from the band points EB de-
pendency and the Fermi velocities vF in units of eVa/π were calculated using the parabolic
dispersion derivative for kF . The scattering rate is obtained by multiplying the peaks’ full width
at half maximum (fwhm) by the local band velocity [108] for each EB cut or each MDC. In
Figure 6.9 it is possible to observe, on top panels, a closer zoom for the fitted bands in the
region of EF . Again, the red dots are the fitted Lorentizian maximum positions and the solid
yellow lines show the fitted parabolic dispersion. On the lower panels the extracted scattering
rates Γ(E) for the fitted bands are shown along with linear fittings. The colors represent the
main orbital character of each band, as already discussed, with green, red, and blue points being
the results for the inner, middle, and outer bands respectively.

To calculate the effective mass m∗ from the band parabolic dispersion, the expression 6.1
can be employed, where a is the parabolic quadratic coefficient. To convert this formula from
SI units for the units of [a] = eV Å2, and to display the resulting mass in terms of electron mass
me, the transformation of equation 6.2 can be made, where e is the electron charge, converting
the energy from J to eV and the 10−20 term converts the distance to Å units.

m∗ =
~2

d2E(k)/dk2
=

~2

2a
(6.1)

m∗

me

=
~2

2a
× 10−20

eme

=
3.80998

a
(6.2)
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Hole pocket Inner Middle Outer

kF (π/a)

ΓM 0.31± 0.05 0.63± 0.05 0.78± 0.05
ZM - 0.63± 0.05 0.81± 0.05
ΓX 0.30± 0.05 0.71± 0.05 0.95± 0.05
ZX 0.31± 0.05 0.71± 0.05 0.81± 0.05

vF (eVa/π)

ΓM 1.08± 0.10 1.04± 0.10 1.08± 0.10
ZM - 0.95± 0.10 1.12± 0.10
ΓX 1.49± 0.10 1.31± 0.10 0.86± 0.10
ZX 1.74± 0.10 1.81± 0.10 0.63± 0.10

m∗/me

ΓM 1.39± 0.10 2.91± 0.10 3.49± 0.10
ZM - 3.21± 0.10 3.48± 0.10
ΓX 0.98± 0.10 2.64± 0.10 5.38± 0.10
ZX 0.88± 0.10 1.93± 0.10 6.32± 0.10

α

ΓM 0.61± 0.10 0.48± 0.10 1.36± 0.20
ZM - 0.62± 0.20 2.76± 0.30
ΓX 0.71± 0.10 0.65± 0.20 0.70± 0.20
ZX 1.25± 0.10 0.90± 0.10 0.81± 0.10

Table 6.1: Quantitative results from spectral analysis of BaCr2As2, showing the Fermi wave
vectors kF (π/a), Fermi velocities vF (eVa/π), mass renormalizations m∗/me, and slopes α of
the scattering rate Γ(E) for the three hole pockets for different directions.

Table 6.1 shows all the quantitative results from this analysis with the Fermi wave vectors
kF (π/a), Fermi velocities vF (eVa/π), mass renormalizations m∗/me, and slopes α of the
scattering rate Γ(E) for the three hole pockets for four different directions.

As expected from the Fermi Surfaces of Figure 6.4, the inner hole pocket does not change
its size with direction and kz, evidencing its circular shape and 2D character, without significant
kz dispersion. The middle hole pocket, by its turn, also shows no kz dependency, but is larger
along ΓX/ZX direction than along ΓM/ZM, illustrating its squarish shape, with vertices on
the X direction. Finally, the outer hole pocket shows the most significant dependency with kz
along the ΓM direction, while the ΓX direction is unaffected. This means a significant shape
distortion for this particular hole pocket, as observed in Figure 6.4, with the smaller radius of
the clover-like shape increasing to a more round shape.

The Fermi velocity and mass renormalization change significantly with pocket and direc-
tion. Systematically, the outer role pocket, of mainly dxy character, shows the smallest velocities
and strong renormalizations, both as a consequence of smaller parabolic quadratic coefficients.
The inner hole pockets, on the contrary, have larger Fermi velocities and weaker renormaliza-
tion, closer to 1. These findings are in agreement with what was found by J. Nayak et al. [59],
but their work only inspected the ΓM/ZM direction.

The α coefficient, extracted from the slope of the scattering rates of Figure 6.9, does not
show a clear trend as a function of the hole pocket. However, it seems to achieve the greatest
values for the outer pocket, as was observed by J. Nayak [59].

In summary, the self-energy analysis depicts a scenario where the correlations are stronger
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for the BFCA sample, and that Cr introduction enhances the band coherence for these materials.
Furthermore, the Fermi Surface three hole pockets were inspected, resulting in a trend in which
the inner pocket is less renormalized and the outer hole pocket is more renormalized. The outer
hole pocket also has a stronger kz dependency, changing drastically its shape.

6.2 RIXS results

For CrBFA, as mentioned in the previous chapter, the substitution of Fe by Cr leads to
the coexistence of magnetic fluctuations with different symmetries, which compete to form
different ground states along the phase diagram. These magnetic, electronic, and structural
degrees of freedom can be related to the putative Mott localization associated with the proximity
to a half-filling d5 state for these materials when x ≈ 0.5, in an analogy to the BaMn2As2 case.

The ARPES results give no evidence of an orbital-selective Mottness that would occur for
these materials. In this case, an orbital-dependent gap should appear in the ordered state for the
BFCA sample. This points out that the most likely scenario is for the localization being of a
Hund’s metal, characterized by spin-orbital energy scale separation [135]. In this scenario, the
localization would be a consequence of Hund’s coupling in the multiorbital system.

With RIXS results for the x = 0.485 (BFCA) sample at the Fe edge, it is possible to in-
vestigate the magnetic excitations as a function of high-symmetry direction and momentum and
compare it with previous BFA and MnBFA results [7]. This can bring a more complete scenario
of the evolution of magnetic degrees of freedom along the phase diagram.

The RIXS results here presented were taken at the ADRESS beamline of the Swiss Light
Source, in June 2021, while I was in a research internship abroad at the University of Fribourg,
Switzerland. The only probed sample was BFCA, from the same batch as the ARPES measure-
ments (PGJ762, see Table 2.2).

All spectra were taken with incident photon energy at the maximum resonance of FeL3 XAS
spectrum with hν = 707.7 eV, using π polarized light and for a fixed temperature of T = 20

K, the same as ARPES results of Figure 6.2. The total energy resolution of the experiment was
about 93 meV, extracted from the full width at half maximum (FWHM) of the elastic scattering
of a carbon-filled acrylic tape.

The measurements were taken with backscattering geometry, defined by an acute angle be-
tween the incidence direction and the detection direction. This geometry allows detecting pho-
tons with higher momentum transfer to the sample, following the equations 6.3 and 6.4, where λ
is the incoming photon wavelength, ψ is the scattering angle, Q is the total transferred momen-
tum and q‖ is the transferred momentum projection into the sample plane. Such configuration
is illustrated in Figure 6.10.

|Q| = 4π

λ
sin (

ψ

2
) (6.3)
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Figure 6.10: RIXS experimental geometry. The backscattering angle is defined as ψ = θ + α
and was kept as ψ = 130◦

|q‖| = |Q| sin (θ − ψ

2
) (6.4)

During the experiments, the scattering angle was kept as ψ = α + θ = 130◦, with the
spectrometer arm fixed, and the sample was rotated inside the experimental chamber to vary the
detection angle θ. As higher as θ is, the higher will be the transferred momentum projection q‖.
The corresponding variation of the out-of-plane component q⊥ is not considered since the Fe
order is expected to be almost 2D.

Considering mechanical limitations and the efficiency of sample surface reflection, the
larger angle to achieve is θ ≈ 110◦, to leave ≈ 20◦ for the grazing incidence direction. The
smaller possible q‖ = 0 will be when θ = α = ψ/2, with no in-plane momentum transfer.

The sample was aligned using Laue diffraction, to identify the [100] and [110] directions
in the ab plane, and glued to the sample holder using silver epoxy. A metal cylindrical pin
was glued on top of the sample for in situ cleaving. A pressure of 2 × 10−10 mbar or better
was achieved in the sample chamber. All results here described are adopting a 1-Fe 2D unit
cell, as shown in Table 2.1, with a lattice parameter of a = 2.84 Å. In this notation, the [100]

direction corresponds to the diagonal of the 1-Fe lattice, along (π,π), while the [110] direction
corresponds to the Fe-Fe first neighbor distance along (π,0). To keep parallel with the ARPES
results, these directions will also be referred to as ΓM for (π,π) and ΓX for (π,0).

For each high-symmetry direction, four points of θ were used to probe a RIXS spectrum,
probing different q‖ points in that direction. This results in 8 RIXS spectra to be analyzed for
their magnetic excitation contribution.

In Figure 6.11(a) the XAS spectrum measured for the BFCA sample is shown. The maxi-
mum resonance energy of 707.7 eV was chosen for the RIXs measurements. It is a typical L3

edge with a single Fe 2+ valency, showing that Cr introduction is not disturbing the Fe valency.
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Figure 6.11: (a) Total Fluorescence Yield XAS spectra for the BFCA sample. (b) A represen-
tative RIXS spectrum for the BFCA sample evidences the intense elastic line and fluorescence
peak.

Figure 6.11(b) shows a representative RIXS spectrum for the (π, 0) direction with momentum
transfer of q‖ = 0.3 in units of π/a.

It is possible to observe that the elastic line contribution is very intense. This is due to
the substitution disorder introduced by Cr and agrees with ARPES scattering rate results for
the BFCA sample. Nevertheless, this intense contribution disturbs the determination of the
magnetic excitation peak, which should appear in an energy range of≈ 100 meV. To perform the
magnetic peak analysis, an elastic subtraction procedure should be employed. This procedure
consists of some steps: i) normalize the RIXS intensity by the maximum of the interpolated
fluorescence signal at around 2 eV transferred energy; ii) define the elastic peak central position
by its maximum interpolated point, and shift the data, if necessary, so that this point corresponds
to zero transferred energy; iii) define the elastic line by taking the positive half and symmetrizing
around E = 0 [136]; iv) Subtract the defined elastic peak from the shifted data.

The data of Figure 6.11(b) is already normalized and shifted. By performing this procedure
for all spectra, we can observe the extracted elastic line and compare it with the carbon tape
elastic line. This is shown in Figure 6.12. For this comparison, the carbon tape spectrum was
normalized to the peak with the higher momentum of the same graph. As can be observed, the
shape and width of the peaks compare well with the carbon tape reference, which is expected
to result in a pure elastic line with no inelastic excitations. In this sense, the elastic contribution
subtraction can be considered reliable enough for the magnetic analysis quantitative results.

After subtracting the elastic contribution of Figure 6.12, the resulting spectrum includes the
magnetic peak and the fluorescence contribution. The latter can be treated as a background
in the magnon region and fitted to a parabolic background. Figure 6.13 shows the resulting
inelastic intensities after the elastic peak subtraction. The fluorescence background is almost
linear in the region of the magnon peak. To gain insight into the magnon behavior, this inelastic
signal can be fitted to a combination of a complex part of the dynamic susceptibility χ′′(ω),
representing the magnon peak, and a quadratic background. The former is shown in Equation
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Figure 6.13: RIXS inelastic intensities for all momentum points for (a) (π, 0) direction and (b)
(π, π) direction.
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Figure 6.14: RIXS extracted magnetic peaks for all momentum points for (a) (π, 0) direction
and (b) (π, π) direction.

6.5 [126, 125] and has the form of an antisymmetric Lorentzian peak. To avoid redundant
notation, the peak FWHM will be called γ in the RIXS results.

χ′′(ω) =
χ′′0
2ωq

(
γ/2

(ω − ωq)2 + (γ/2)2
− Γ/2

(ω + ωq)2 + (γ/2)2

)
(6.5)

Within this approach, the peak can be interpreted like a damped harmonic oscillator [7],
where χ′′0 is an intensity constant, γ is the excitation lifetime, and ωq is the propagation fre-
quency of the excitation along the q direction. The excitation bare frequency without the damp-
ing effect can be defined as ω0 =

√
ω2
q + (γ/2)2.

With the fitting result, it is possible to subtract the quadratic fluorescence background to
obtain a signal that should be of the pure magnon excitation. This is shown in Figure 6.14.
A subtle change in energy, intensity, and width can be observed in the peaks as a function of
q, especially for the (π, π) direction. To further inspect it, the fitting coefficients are shown
as a function of direction and momentum q in Figures 6.15, 6.16, and 6.17. Alongside these
coefficients for the BFCA sample, there are the results for the BFA and Mn8% samples as
discussed in Section 4.3, for comparison.

By inspecting the ∆E(q) in Figure 6.15, which is the fitted magnetic peak maximum posi-
tion as a function of momentum, it is possible to observe the energy dispersion of the magnon
peak as a function of direction and transferred momentum. For the (π, π) direction the excita-
tion energy dispersion seems compatible with what was found for BFA and Mn8%, with almost
the same behavior as a function of q. For the (π, 0) direction, however, the dispersion is getting
suppressed for the BFCA sample, with almost no q dependency within error bars. The Mn8%

result still has some dispersion but is hindered when compared with the BFA sample. There-
fore, the effect of Mn substitution of suppressing Fe-Fe direction magnon excitation dispersion
is even more strong for Cr close to x = 0.5.
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Figure 6.15: RIXS fitted magnetic peak position ∆E for all momentum points and compared
with results BFA and Mn8% samples for (π, 0) direction and (π, π) direction.
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Figure 6.16: RIXS fitted peak bare frequency ω0 for all momentum points and compared with
results BFA and Mn8% samples for (π, 0) direction and (π, π) direction.
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Figure 6.17: RIXS fitted peak damping γ for all momentum points and compared with results
BFA and Mn8% samples for (π, 0) direction and (π, π) direction.

In Figure 6.16 is possible to observe the magnon bare frequency ω0(q) as a function of
momentum. Again, for (π, π) direction, a very similar result to what was previously found for
BFA and Mn8% appears, with similar values and q dependency. For the (π, 0) direction, on the
other hand, the frequency is almost constant as a function of q. This is in contrast with BFA
and Mn8% results, where the bare frequency was increasing in both directions.

To better understand the relation of these coefficients for the BFCA sample, the damping γ
can be analyzed, as shown in Figure 6.17. When compared with BFA and Mn8% samples, the
(π, π) direction damping seems larger for the BFCA sample, but in the (π, 0) case, the damping
is almost constant as a function of q for BFCA, on a similar damping level as BFA, and smaller
than the damping of Mn8%.

Overall, the BFCA samples Fe-derived magnon dispersion behavior is the same as BFA
for the (π, π) direction, while for the (π, 0) direction the excitation is overdamped like Mn8%

but almost non-dispersive. This is an indication of the strong magnetic interaction anisotropy
that appears for the middle point of the CrBFA phase diagram, with the (π, 0) Fe-Fe direction
excitation being suppressed, probably due to the average suppression of Fe-Fe first neighbors
bonding with this substitution level of Cr.
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Chapter 7

Conclusion and outlook

This thesis presents a comprehensive ARPES/RIXS study of Mn and Cr substituted BaFe2As2

samples. The aim of exploring these phase diagrams is to study the absence of superconduc-
tivity in these materials, their ground state properties, the mechanisms behind transition metal
substitution, and how it affects Fe-Fe correlations and interactions.

For the MnBFA samples, Fermi surface analysis revealed that a fraction of electron and hole
states remain nested as in the parent compound for Mn introduction up to 7.5%, meaning that
nominal hole doping does not take place. Mn introduction increases electronic correlations and
the incoherence of the dxy-derived bands. The disorder associated with the Mn introduction
reflects the increasing electronic incoherence.

Overall, the absence of superconductivity for MnBFA can be interpreted as a combination
of disorder, magnetic impurities, and electronic correlations. This is aligned with the picture
described by Gastiasoro et al. [11], where the cooperative behavior of the magnetic impurities in
the presence of magnetic interactions results in strong suppression of electron-phonon coupling
and superconductivity. This reveals the importance of impurity effects and their interaction with
conduction electrons, more than just their role as magnetic scatterers.

When compared with previous RIXS results for the MnBFA samples [7], a direct connection
between the increasing band incoherence and the evolution of the magnon dispersion can be
made. Additionally, the observed vanishing of the folded band with dxy character for Mn7.5%

sample in ARPES provides a natural explanation for the large damping of the RIXS detected
magnons, once the magnetic excitation is mainly related to dxy derived electrons.

For the CrBFA sample, the ARPES results show that Cr indeed introduces hole doping into
the system while Mn does not. The hole doping is observed as an increase of hole pockets
Fermi vectors kF , mainly for the dxy-derived outer hole pocket, and with a decrease of kF

for the electron pockets. The electronic correlations increase with Cr content, as expected, but
the Cr8.5% dxy-derived orbital escapes this trend. This behavior is attributed to the effective
hole doping, depleting the highest energy orbital dxy from electrons and preventing the increase
of correlation in this specific orbital. In terms of electronic disorder, CrBFA compares to Mn
substituted samples, but no sign of cluster order was ever reported. These findings point to
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the importance of Hund interactions and orbital-specific correlation and localization effects. It
is possible to infer that SC is absent in CrBFA mainly because of magnetic pair breaking and
suppression of the itinerant spin fluctuations which promote the SC.

Looking for the BFCA sample RIXS results, it is suggested that the trend in the magnons
dispersion is the same as for Mn8%, but with stronger damping and almost no dispersion in
the (π, 0) direction. This indicates that the Fe-Fe magnetic interaction that could promote the
electron phonon-coupling is hindered for these two non-superconductor materials.

Comparing MnBFA and CrBFA systems, which seem analogous at first glance, is not a
novel idea. It was previously reported [5], in an optical conductivity study as a function of
Mn and Cr concentration, some different responses of these two systems to the transition metal
concentration. It was found that a new impurity-induced peak appears in the optical conductivity
spectrum. This peak showed a larger increasing energy rate for Mn when compared with Cr.
This suggests different impurities’ interaction strengths. Additionally, using a Drude-Lorentz to
fit the optical conductivity, it was found that coherent spectral weight is drastically reduced with
Mn/Cr introduction, while it increases for Co substitution. The incoherent spectral weight, by its
turn, is kept constant for Co and slightly decreases for Mn while it increases a little for Cr. These
differences evidence the possible mechanisms to hinder the emergence of superconductivity in
Mn/Cr substituted samples while showing the differences between the two systems. It can be
speculated from this that Mn impurities are more likely to show collective behavior and cluster
order, which is in agreement with ARPES results.

The electron/hole-doping asymmetry was also evidenced in an ARPES study [110], where
a stronger incoherence of the charge carries, associated with the scattering rate, was found for
hole-doped K-BFA when compared with electron-doped Co-BFA. This incoherence is associ-
ated with strong electronic correlations. This is because the scattering rate is proportional to the
effective on-site Coulomb interaction Ueff and/or the Hund’s exchange interaction JH [109].
The scattering rate can also be enhanced by the nesting between electron and hole pockets of
the Fermi surface, causing electron-hole interaction scattering [137].

Several results previously reported the enhancement of correlations in FeSC upon hole-
doping [138, 69, 59], which is interpreted in terms of proximity to a Mott insulator [139, 100].
However, the experimental evidence points to the existence of an electronic metal-like ground
state even when the magnetism seems localized. This can be understood in terms of an orbital-
selective Mott physics [100]. However, this scenario demands the opening of an orbital selective
gap induced by Coulomb interactions. Our results, clearly present Orbital Selective Physics, but
the role of Mott-like interactions is not observed. Indeed, the similarities between the electronic
state of BaCr2As2 and BaFeCrAs2 presented in this work, with no visible gap opening, supports
that Hund’s Physics should dominate.

Keeping in mind a Mott-like scenario, Pizarro et al. [140] have found, using density func-
tional theory (DFT) theoretical calculations, that for the Fe d6 electronic configuration, the
t2g orbitals are closer to half filling than the eg, whereas, for the Cr d4 configuration, the eg
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orbitals are closer to half filling. Since the Fermi Surface mainly consists of t2g orbitals for
BaFe2As2 and BaCr2As2, the latter is the more correlated material. This scenario also explains
why BaFeCrAs2 is not equivalent to BaMn2As2 in terms of correlation and localization.

On the other hand, a dynamical mean-field theory (DMFT) study [141] has shown that the
energy scales of the charge and orbital degrees of freedom of a three-band Hund’s metal are
different from the spin degrees of freedom. This implies that for intermediate temperatures the
spins can be localized while the charges are itinerant. This is the hallmark that separates the
Hund’s metal from a Mott insulator and seems to describe the physics of the BaCr2As2 and
BaMn2As2 materials, and their substitution phase diagram with BaFe2As2.

The theoretical approach to treat the impurities effects and different interaction energy scales
must combine perturbative methods, such as random phase approximation, with DMFT to cap-
ture the effects of local interactions between electrons. In this regard, the results of Chapters
5 and 6 will be published in collaboration with DMFT results to back up the conclusions here
presented.

In summary, this work highlights the ongoing importance of experimental and theoretical
research on FeSC. The techniques and theory developed to treat this family of materials are
examples of this relevance, such as multiple orbital orders and nematicity studies, strain-based
techniques, ARPES analysis tools, refinement of RIXS energy resolution and simulation, etc.
These findings not only advance the understanding of FeSC but also enrich the field of quantum
materials, paving the way for investigating novel materials and proposing interesting material
properties.

115



116



Bibliography

[1] H.-H. Wen, Journal of Physics: Conference Series 2323, 012001 (2022).

[2] R. M. Fernandes, A. I. Coldea, H. Ding, I. R. Fisher, P. J. Hirschfeld, and G. Kotliar,
Nature 601, 35 (2022).

[3] H. Hosono and K. Kuroki, Physica C: Superconductivity and its Applications 514, 399
(2015).

[4] K. Haule and G. Kotliar, New Journal of Physics 11, 025021 (2009).

[5] T. Kobayashi, M. Nakajima, S. Miyasaka, and S. Tajima, Physical Review B 94, 224516
(2016).

[6] H. Suzuki, T. Yoshida, S. Ideta, G. Shibata, K. Ishigami, T. Kadono, A. Fujimori,
M. Hashimoto, D. H. Lu, Z.-X. Shen, K. Ono, E. Sakai, H. Kumigashira, M. Matsuo,
and T. Sasagawa, Physical Review B 88, 100501 (2013).

[7] F. A. Garcia, O. Ivashko, D. E. McNally, L. Das, M. M. Piva, C. Adriano, P. G. Pagliuso,
J. Chang, T. Schmitt, and C. Monney, Physical Review B 99, 115118 (2019).

[8] R. M. Fernandes and A. J. Millis, Physical Review Letters 110, 117004 (2013).

[9] R. M. Fernandes and A. V. Chubukov, Reports on Progress in Physics 80, 014503 (2016).

[10] M. N. Gastiasoro and B. M. Andersen, Physical Review Letters 113, 067002 (2014).

[11] M. N. Gastiasoro, F. Bernardini, and B. M. Andersen, Physical Review Letters 117,
257002 (2016).

[12] D. S. Inosov, G. Friemel, J. T. Park, A. C. Walters, Y. Texier, Y. Laplace, J. Bobroff,
V. Hinkov, D. L. Sun, Y. Liu, R. Khasanov, K. Sedlak, P. Bourges, Y. Sidis, A. Ivanov,
C. T. Lin, T. Keller, and B. Keimer, Physical Review B 87, 224425 (2013).

[13] J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B Condensed Matter 64, 189
(1986).

[14] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179
(2015).

[15] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod. Phys. 87, 457 (2015).

[16] S. D. Edkins, A. Kostin, K. Fujita, A. P. Mackenzie, H. Eisaki, S. Uchida, S. Sachdev,
M. J. Lawler, E.-A. Kim, J. C. S. Davis, and M. H. Hamidian, Science 364, 976 (2019).

117

http://dx.doi.org/10.1088/1742-6596/2323/1/012001
http://dx.doi.org/ 10.1038/s41586-021-04073-2
http://dx.doi.org/https://doi.org/10.1016/j.physc.2015.02.020
http://dx.doi.org/https://doi.org/10.1016/j.physc.2015.02.020
http://dx.doi.org/10.1088/1367-2630/11/2/025021
http://dx.doi.org/10.1103/PhysRevB.94.224516
http://dx.doi.org/10.1103/PhysRevB.94.224516
http://dx.doi.org/ 10.1103/PhysRevB.88.100501
http://dx.doi.org/10.1103/PhysRevB.99.115118
http://dx.doi.org/10.1103/PhysRevLett.110.117004
http://dx.doi.org/10.1088/1361-6633/80/1/014503
http://dx.doi.org/10.1103/PhysRevLett.113.067002
http://dx.doi.org/10.1103/PhysRevLett.117.257002
http://dx.doi.org/10.1103/PhysRevLett.117.257002
http://dx.doi.org/10.1103/PhysRevB.87.224425
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1038/nature14165
http://dx.doi.org/10.1038/nature14165
http://dx.doi.org/10.1103/RevModPhys.87.457
http://dx.doi.org/10.1126/science.aat1773


[17] H.-H. Kim, S. M. Souliou, M. E. Barber, E. Lefrançois, M. Minola, M. Tortora, R. Heid,
N. Nandi, R. A. Borzi, G. Garbarino, A. Bosak, J. Porras, T. Loew, M. König, P. J. W.
Moll, A. P. Mackenzie, B. Keimer, C. W. Hicks, and M. L. Tacon, Science 362, 1040
(2018).

[18] E. H. da Silva Neto, B. Yu, M. Minola, R. Sutarto, E. Schierle, F. Boschini, M. Zonno,
M. Bluschke, J. Higgins, Y. Li, G. Yu, E. Weschke, F. He, M. L. Tacon, R. L. Greene,
M. Greven, G. A. Sawatzky, B. Keimer, and A. Damascelli, Science Advances 2,
e1600782 (2016).

[19] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert,
and H. K. Mao, Phys. Rev. B 50, 4260(R) (1994).

[20] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Journal of the American Chemi-
cal Society 130, 3296 (2008).

[21] A. Chubukov and P. J. Hirschfeld, Physics today 68, 46 (2015).

[22] J. Paglione and R. L. Greene, Nature physics 6, 645 (2010).

[23] M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen, Physical
Review B 78, 020503 (2008).

[24] S. Avci, O. Chmaissem, D. Y. Chung, S. Rosenkranz, E. A. Goremychkin, J. P. Castellan,
I. S. Todorov, J. A. Schlueter, H. Claus, A. Daoud-Aladine, D. D. Khalyavin, M. G.
Kanatzidis, and R. Osborn, Phys. Rev. B 85, 184507 (2012).

[25] A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Physical
Review Letters 101, 117004 (2008).

[26] J.-H. Chu, J. G. Analytis, C. Kucharczyk, and I. R. Fisher, Physical Review B 79, 014506
(2009).

[27] M. A. Tanatar, N. Ni, C. Martin, R. T. Gordon, H. Kim, V. G. Kogan, G. D. Samolyuk,
S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B 79, 094507 (2009).

[28] L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W.
Zhu, G. H. Cao, and Z. A. Xu, New Journal of Physics 11, 025008 (2009).

[29] N. Ni, A. Thaler, A. Kracher, J. Q. Yan, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B
80, 024511 (2009).

[30] S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, and G. Cao, Journal
of Physics: Condensed Matter 21, 382203 (2009).

[31] P. C. Canfield and S. L. Bud’ko, Annual Review of Condensed Matter Physics 1, 27
(2010).

[32] S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L.
Bud’ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, and A. I. Goldman, Phys. Rev.
Lett. 104, 057006 (2010).

[33] S. R. Saha, T. Drye, K. Kirshenbaum, N. P. Butch, P. Y. Zavalij, and J. Paglione, Journal
of Physics: Condensed Matter 22, 072204 (2010).

118

http://dx.doi.org/ 10.1126/science.aat4708
http://dx.doi.org/ 10.1126/science.aat4708
http://dx.doi.org/10.1126/sciadv.1600782
http://dx.doi.org/10.1126/sciadv.1600782
http://dx.doi.org/10.1103/PhysRevB.50.4260
http://dx.doi.org/ 10.1021/ja800073m
http://dx.doi.org/ 10.1021/ja800073m
http://dx.doi.org/10.1063/PT.3.2818
http://dx.doi.org/https://doi.org/10.1038/nphys1759
http://dx.doi.org/ 10.1103/PhysRevB.78.020503
http://dx.doi.org/ 10.1103/PhysRevB.78.020503
http://dx.doi.org/10.1103/PhysRevB.85.184507
http://dx.doi.org/ 10.1103/PhysRevLett.101.117004
http://dx.doi.org/ 10.1103/PhysRevLett.101.117004
http://dx.doi.org/10.1103/PhysRevB.79.014506
http://dx.doi.org/10.1103/PhysRevB.79.014506
http://dx.doi.org/10.1103/PhysRevB.79.094507
http://dx.doi.org/ 10.1088/1367-2630/11/2/025008
http://dx.doi.org/ 10.1103/PhysRevB.80.024511
http://dx.doi.org/ 10.1103/PhysRevB.80.024511
http://dx.doi.org/ 10.1088/0953-8984/21/38/382203
http://dx.doi.org/ 10.1088/0953-8984/21/38/382203
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1103/PhysRevLett.104.057006
http://dx.doi.org/10.1103/PhysRevLett.104.057006
http://dx.doi.org/ 10.1088/0953-8984/22/7/072204
http://dx.doi.org/ 10.1088/0953-8984/22/7/072204


[34] M. G. Kim, D. K. Pratt, G. E. Rustan, W. Tian, J. L. Zarestky, A. Thaler, S. L. Bud’ko,
P. C. Canfield, R. J. McQueeney, A. Kreyssig, and A. I. Goldman, Phys. Rev. B 83,
054514 (2011).

[35] M. G. Kim, J. Lamsal, T. W. Heitmann, G. S. Tucker, D. K. Pratt, S. N. Khan, Y. B.
Lee, A. Alam, A. Thaler, N. Ni, S. Ran, S. L. Bud’ko, K. J. Marty, M. D. Lumsden,
P. C. Canfield, B. N. Harmon, D. D. Johnson, A. Kreyssig, R. J. McQueeney, and A. I.
Goldman, Physical Review Letters 109, 167003 (2012).

[36] P. F. S. Rosa, C. Adriano, T. M. Garitezi, M. M. Piva, K. Mydeen, T. Grant, Z. Fisk,
M. Nicklas, R. R. Urbano, R. M. Fernandes, and P. G. Pagliuso, Scientific Reports 4,
6252 (2014).

[37] A. A. Kordyuk, Low Temperature Physics 38, 888 (2012).

[38] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003
(2008).

[39] J. A. Sobota, Y. He, and Z.-X. Shen, Reviews of Modern Physics 93, 025006 (2021).

[40] M. Yi, Y. Zhang, Z.-X. Shen, and D. Lu, npj Quantum Materials 2, 1 (2017).

[41] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nature Physics 10, 97 (2014).

[42] H. Pfau, C. R. Rotundu, J. C. Palmstrom, S. D. Chen, M. Hashimoto, D. Lu, A. F. Kem-
per, I. R. Fisher, and Z.-X. Shen, Physical Review B 99, 035118 (2019).

[43] W. Lv, F. Krüger, and P. Phillips, Phys. Rev. B 82, 045125 (2010).

[44] C. Fang, H. Yao, W.-F. Tsai, J. Hu, and S. A. Kivelson, Phys. Rev. B 77, 224509 (2008).

[45] H. Wadati, I. Elfimov, and G. A. Sawatzky, Phys. Rev. Lett. 105, 157004 (2010).

[46] K. Marty, A. D. Christianson, C. H. Wang, M. Matsuda, H. Cao, L. H. VanBebber, J. L.
Zarestky, D. J. Singh, A. S. Sefat, and M. D. Lumsden, Physical Review B 83, 060509(R)
(2011).

[47] J. P. Clancy, B. D. Gaulin, and A. S. Sefat, Physical Review B 85, 054115 (2012).

[48] M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian, J. L. Zarestky, M. A. Green,
S. L. Bud’ko, P. C. Canfield, R. J. McQueeney, and A. I. Goldman, Physical Review B
82, 220503 (2010).

[49] A. Thaler, H. Hodovanets, M. S. Torikachvili, S. Ran, A. Kracher, W. Straszheim, J. Q.
Yan, E. Mun, and P. C. Canfield, Physical Review B 84, 144528 (2011).

[50] A. Pandey, V. K. Anand, and D. C. Johnston, Physical Review B 84, 014405 (2011).

[51] Y. Texier, Y. Laplace, P. Mendels, J. T. Park, G. Friemel, D. L. Sun, D. S. Inosov, C. T.
Lin, and J. Bobroff, EPL (Europhysics Letters) 99, 17002 (2012).

[52] X.-G. Li, J.-M. Sheng, C.-K. Tian, Y.-Y. Wang, T.-L. Xia, L. Wang, F. Ye, W. Tian, J.-C.
Wang, J.-J. Liu, H.-X. Zhang, W. Bao, and P. Cheng, Europhysics Letters 122, 67006
(2018).

119

http://dx.doi.org/10.1103/PhysRevB.83.054514
http://dx.doi.org/10.1103/PhysRevB.83.054514
http://dx.doi.org/ 10.1103/PhysRevLett.109.167003
http://dx.doi.org/10.1038/srep06252
http://dx.doi.org/10.1038/srep06252
http://dx.doi.org/https://doi.org/10.1063/1.4752092
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/RevModPhys.93.025006
http://dx.doi.org/ 10.1038/s41535-017-0059-y
http://dx.doi.org/10.1038/nphys2877
http://dx.doi.org/10.1103/PhysRevB.99.035118
http://dx.doi.org/10.1103/PhysRevB.82.045125
http://dx.doi.org/ 10.1103/PhysRevB.77.224509
http://dx.doi.org/10.1103/PhysRevLett.105.157004
http://dx.doi.org/ 10.1103/PhysRevB.83.060509
http://dx.doi.org/ 10.1103/PhysRevB.83.060509
http://dx.doi.org/10.1103/PhysRevB.85.054115
http://dx.doi.org/10.1103/PhysRevB.82.220503
http://dx.doi.org/10.1103/PhysRevB.82.220503
http://dx.doi.org/10.1103/PhysRevB.84.144528
http://dx.doi.org/10.1103/PhysRevB.84.014405
http://dx.doi.org/10.1209/0295-5075/99/17002
http://dx.doi.org/10.1209/0295-5075/122/67006
http://dx.doi.org/10.1209/0295-5075/122/67006


[53] M. Rotter, M. Tegel, and D. Johrendt, Physical Review Letters 101, 107006 (2008).

[54] Z. Bukowski, S. Weyeneth, R. Puzniak, P. Moll, S. Katrych, N. D. Zhigadlo, J. Karpinski,
H. Keller, and B. Batlogg, Phys. Rev. B 79, 104521 (2009).

[55] G. Mu, H. Luo, Z. Wang, L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 79, 174501
(2009).

[56] P. Popovich, A. V. Boris, O. V. Dolgov, A. A. Golubov, D. L. Sun, C. T. Lin, R. K.
Kremer, and B. Keimer, Phys. Rev. Lett. 105, 027003 (2010).

[57] D. J. Singh, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, L. H. VanBebber, and
V. Keppens, Physical Review B 79, 094429 (2009).

[58] K. A. Filsinger, W. Schnelle, P. Adler, G. H. Fecher, M. Reehuis, A. Hoser, J.-U. Hoff-
mann, P. Werner, M. Greenblatt, and C. Felser, Physical Review B 95, 184414 (2017).

[59] J. Nayak, K. Filsinger, G. H. Fecher, S. Chadov, J. Minár, E. D. L. Rienks, B. Büchner,
S. P. Parkin, J. Fink, and C. Felser, Proceedings of the National Academy of Sciences
114, 12425 (2017).

[60] P. Richard, A. van Roekeghem, B. Q. Lv, T. Qian, T. K. Kim, M. Hoesch, J.-P. Hu, A. S.
Sefat, S. Biermann, and H. Ding, Physical Review B 95, 184516 (2017).

[61] S. Nandi, Y. Xiao, N. Qureshi, U. B. Paramanik, W. T. Jin, Y. Su, B. Ouladdiaf, Z. Hos-
sain, and T. Brückel, Phys. Rev. B 94, 094411 (2016).

[62] R. A. Ewings, T. G. Perring, R. I. Bewley, T. Guidi, M. J. Pitcher, D. R. Parker, S. J.
Clarke, and A. T. Boothroyd, Phys. Rev. B 78, 220501 (2008).

[63] Y. Singh, M. A. Green, Q. Huang, A. Kreyssig, R. J. McQueeney, D. C. Johnston, and
A. I. Goldman, Physical Review B 80, 100403 (2009).

[64] Y. Singh, A. Ellern, and D. C. Johnston, Physical Review B 79, 094519 (2009).

[65] W.-L. Zhang, P. Richard, A. van Roekeghem, S.-M. Nie, N. Xu, P. Zhang, H. Miao,
S.-F. Wu, J.-X. Yin, B. B. Fu, L.-Y. Kong, T. Qian, Z.-J. Wang, Z. Fang, A. S. Sefat,
S. Biermann, and H. Ding, Physical Review B 94, 155155 (2016).

[66] Y. X. Yao, J. Schmalian, C. Z. Wang, K. M. Ho, and G. Kotliar, Phys. Rev. B 84, 245112
(2011).

[67] A. Antal, T. Knoblauch, Y. Singh, P. Gegenwart, D. Wu, and M. Dressel, Phys. Rev. B
86, 014506 (2012).

[68] D. E. McNally, S. Zellman, Z. P. Yin, K. W. Post, H. He, K. Hao, G. Kotliar, D. Basov,
C. C. Homes, and M. C. Aronson, Phys. Rev. B 92, 115142 (2015).

[69] S. Lafuerza, H. Gretarsson, F. Hardy, T. Wolf, C. Meingast, G. Giovannetti, M. Capone,
A. S. Sefat, Y.-J. Kim, P. Glatzel, and L. de’ Medici, Physical Review B 96, 045133
(2017).

[70] X. Wang and R. M. Fernandes, Physical Review B 89, 144502 (2014).

120

http://dx.doi.org/10.1103/PhysRevLett.101.107006
http://dx.doi.org/10.1103/PhysRevB.79.104521
http://dx.doi.org/10.1103/PhysRevB.79.174501
http://dx.doi.org/10.1103/PhysRevB.79.174501
http://dx.doi.org/ 10.1103/PhysRevLett.105.027003
http://dx.doi.org/10.1103/PhysRevB.79.094429
http://dx.doi.org/10.1103/PhysRevB.95.184414
http://dx.doi.org/ 10.1073/pnas.1702234114
http://dx.doi.org/ 10.1073/pnas.1702234114
http://dx.doi.org/10.1103/PhysRevB.95.184516
http://dx.doi.org/10.1103/PhysRevB.94.094411
http://dx.doi.org/ 10.1103/PhysRevB.78.220501
http://dx.doi.org/ 10.1103/PhysRevB.80.100403
http://dx.doi.org/10.1103/PhysRevB.79.094519
http://dx.doi.org/10.1103/PhysRevB.94.155155
http://dx.doi.org/ 10.1103/PhysRevB.84.245112
http://dx.doi.org/ 10.1103/PhysRevB.84.245112
http://dx.doi.org/ 10.1103/PhysRevB.86.014506
http://dx.doi.org/ 10.1103/PhysRevB.86.014506
http://dx.doi.org/10.1103/PhysRevB.92.115142
http://dx.doi.org/10.1103/PhysRevB.96.045133
http://dx.doi.org/10.1103/PhysRevB.96.045133
http://dx.doi.org/10.1103/PhysRevB.89.144502


[71] T. Kobayashi, K. Tanaka, S. Miyasaka, and S. Tajima, Journal of the Physical Society of
Japan 84, 094707 (2015).

[72] D. C. Johnston, Advances in Physics 59, 803–1061 (2010).
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Appendix A

Resonant Inelastic X-ray Scattering
(RIXS)

Resonant Inelastic X-ray Scattering (RIXS) is a spectroscopic technique that uses x-rays to
probe the electronic and structural properties of materials. In RIXS, x-ray photons are absorbed
by an atom, which undergoes a transition to an excited state before emitting a secondary photon.
The energy and polarization of the emitted photon provide information about the electronic and
structural properties of the sample.

RIXS is particularly useful for studying materials with strongly correlated electrons, such
as high-temperature superconductors and transition metal oxides, for example. These materi-
als can present several interesting phenomena, such as magnetism, charge density waves, and
orbital ordering, which can be probed using RIXS. RIXS can also be used to study the dynam-
ics of electronic excitations, including phonons, plasmons, and magnons, and to investigate the
local environment around specific atoms in a material.

RIXS is increasingly standing out for applications in fields such as materials science, catal-
ysis, and energy storage. For example, RIXS can be used to study catalysis materials under re-
action conditions or to investigate the electronic properties of battery materials. Overall, RIXS
is a powerful spectroscopic tool that allows researchers to study a wide range of materials and
phenomena at the atomic scale.

The concepts behind RIXS are known for some decades: it is a photon-in photon-out
second-order process in which inelastic intensities are measured. RIXS is, therefore, an in-
elastic technique, where the energy and momentum that are incident in the sample can be dif-
ferent from the detected energy and momentum emitted by the sample. With it, it is possible
to measure the characteristic energy and momentum transfer to the sample, related to different
excitations present in a material.

It is an X-ray technique basically because, for the relevant wavelength (momentum) range
for solids, X-rays have the greatest energy when compared to neutrons or electrons, as shown in
Figure A.1 [142]. Consequently, it can fully probe a larger scattering phase space and reaches
the dispersion of characteristic low-energy excitations that appears on solids, with the energy
of the order 10−2 ∼ 101 eV as shown in Figure A.2. Since the photon is charge neutral, the
possible excitations to be measured must also be charge-neutral.

Lastly, RIXS is a resonant technique: it is element-specific. Upon choosing a characteristic
absorption edge of an atom in the material, it is possible to tune the energy for that specific atom
only, with the possibility of differentiating between different valencies, bonds, and orbitals. To
achieve this tunability of energy, it is needed to use an X-ray source of continuous energy range.
That is why RIXS requires the use of synchrotron light sources.
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Figure A.1: Energy of X-rays, neutrons, and electrons with different wavelengths. Figure from
[142].

Figure A.2: Excitations and their scale for strongly correlated electron materials such as
transition-metal oxides, which can be probed using RIXS. Figure from [142].

The RIXS spectrum, which is a plot of the intensity of the scattered photons as a function
of energy and polarization, provides detailed information about the electronic and structural
properties of the material. In particular, the RIXS spectrum can reveal information about the
valence electronic structure, the charge and spin excitations, and the local atomic environment
around specific atoms in the material. Additionally, only a small volume of sample is necessary
to have a good RIXS intensity, making it advantageous when compared to neutron scattering
to probe magnetic properties of materials, since the light-matter interaction is stronger when
compared to neutron-matter interaction [142].

Thinking about these definitions, one can wonder why the use of RIXS is so recent in the
experimental study of materials. Even though the concepts are not new, the RIXS process
has a great loss of photons, which demands a high flux of photons. Also, it needs a very
high energy resolution to separate the different characteristic features in the measured spectra.
Only with the improvement of the synchrotron light sources around the world, it was possible
to achieve the technology necessary to perform a good RIXS experiment with a variety of
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materials. This technique began to spread with third-generation synchrotron sources, but with
the next generation of sources, such as Sirius in Brazil, the potential of RIXS to several different
areas of study will be further explored.

Considering all these features, we can now address the basic concepts of this technique, the
theory, instrumentation, and more specifically, the analytical and numerical methods used to
model the spectrometer performance. This work was part of the IPE beamline commission for
the Sirius synchrotron facility in Campinas, Brazil.

A.1 Fundamentals
The theory behind Resonant Inelastic X-ray Scattering (RIXS) involves light-matter inter-

action, more specifically the interaction of x-ray photons with electrons in a material. In RIXS,
the incident x-ray photon energy is tuned to be resonant with a particular core level transition in
the material, enhancing the probability of the electron absorbing the photon and transitioning to
the excited state [143]. This occurs due to anomalous scattering cross-sections associated with
the x-ray absorption spectroscopy (XAS) resonance peak.

When the photons are incident on a material, they can be absorbed by electrons in the core
level, which causes the electron to transition to an excited state in the valence band. As a result,
there is an intermediate state that is very unstable, with a core hole with a lifetime typically
of a few fs [142]. After the electron is excited, an electron from the valence band can decay,
filling the core hole and emitting a secondary photon. This process is called direct RIXS and is
illustrated in Fig. A.3(a).

Figure A.3: (a) Illustration of a direct RIXS process. (b) Illustration of an indirect RIXS process.

The final product of this RIXS process is an electron-hole excitation, which can propagate
into the material with energy hνq and momentum q, where νq = ν − ν ′ and q = k− k′. Here
k and hν are the initial photon momentum and energy and k′ and hν ′ are for the final photon.

The main characteristic of the direct RIXS process is that it is dominated by transitions
permitted by selection rules, among which the strongest should be dipolar 1s → 2p (XAS K-
edge energies) and 2p → 3d (XAS L-edge energies) transitions. Since the inelastic process
requires a different p or d orbital to decay into the core hole, this permits us to probe the energy
difference between different occupied and unoccupied p and d levels, which is particularly
interesting for cuprate materials and other insulating transition-metal-based materials.

The polarization of this secondary photon depends on the polarization of the incident pho-
ton, and its energy is equal to the energy difference between the core level and the excited state.
If they have the same energy, no net energy was transferred to the material, and we have a reso-
nant process. The electronic and structural properties of the material will have a direct influence
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on this process, with particular energy scales. Spin-flip excitations can occur associated with
magnon for cuprate materials [144], for example.

The indirect RIXS process, by its turn, can only occur when the probability of transition
between the core hole and the valence band is weak [145]. In this case, it is more likely that the
incoming photon will promote a core electron to an empty state well above the Fermi energy, as
illustrated in Fig. A.3(b). In a simple picture, this would not result in an inelastic emission, since
we would not expect discrete energies for the possible decaying states close to the promoted
electron. However, the interaction between the valence states and the core hole tends to screen
the core hole in the intermediate state. As a result an electron-hole excitation, similar to the final
product of direct RIXS, is created in the valence state, permitting that, indirectly, the excited
electron can decay into the core hole.

At first, the resulting state of a direct and an indirect RIXS process seems very similar.
Nevertheless, This classification is useful in the sense that the physical properties, mechanisms,
and scattering cross-section that lead to each type of RIXS are quite different. In most transition
metal materials, the direct RIXS process dominates the detected intensities.

A.2 Instrumentation
The instrumentation for performing RIXS includes the light source beamline and the spec-

trometer. The light source, as mentioned, must be a synchrotron, due to the energy tunability
required to perform RIXS. Several beamlines have different optics to deliver at the sample a
well-collimated, highly monochromatic, and focused beam, which is essential to perform a
good RIXS experiment [142].

In this section, I will introduce the basic idea of a synchrotron light source and beamline,
and focus on the RIXS terminal of the IPE beamline at Sirius, especially the design of the
monochromator grating at the spectrometer. The details of optics and all types of considered
errors are explained, to present the optimization of the grating done by ray-tracing simulations
and analytical calculations.

A.2.1 Synchrotron Source
A synchrotron is a type of circular particle accelerator. It can accelerate charged particles

by using bending magnets. These magnets generate a field that bends the particle trajectory,
accelerating the electrons, which causes electromagnetic radiation emission. The light emitted
by this process is called synchrotron light.

The higher the velocity of electrons, the higher the emitted energy radiation. Larger rings
or stronger magnets, however, are needed to accelerate such electrons.

To generate the light, the synchrotron light source includes the storage ring, responsible for
maintaining the velocity of the accelerated electron, the linear accelerator (linac), which injects
the electron beam in the ring, and usually a booster ring that accelerates the electrons before
they are injected in the storage ring. This is illustrated in Figure A.4.

The radiation emitted is always tangent to the electron trajectory, and consequently tangent
to the storage ring. It is distributed to different experimental stations, called beamlines. The
beamlines are based upon straight lines coming out of the storage ring, as shown in Figure
A.4. The instrumentation in the beamline changes accordingly to the technique used at the
experimental station.

A wiggler or an undulator is used as an insertion device to deviate the radiation to the beam-
lines. The storage ring radiation is white, or polychromatic, so a monochromator is required at
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Figure A.4: Representative scheme of a synchrotron light source and beamline from [146].

the optical hutch to filter the desired incident energy. The optical hutch also includes focusing
and collimating elements to deliver a small beam of light to the experimental hutch.

Apart from energy tunability, the main properties of synchrotron radiation are their high flux
and high stability. When compared to the free-electron laser source, it is not that coherent, even
though some small fraction of the synchrotron x-ray can be made to be phase coherent (in this
case, it can allow better tomography and imaging techniques with high-flux sources). Also, it
permits the choice of the beam to be polarized linearly and circularly, which is interesting for
several investigations, such as magnetic and anisotropic properties in materials.

A.2.2 Beamline Optics
The main optical elements of a beamline are the monochromator, the collimator, and the

focusing elements.
The collimator is responsible for narrowing down the light beam, which reaches this optical

element with a larger dispersion. When collimated, the emergent photons diverge less in their
angles and additionally, the beam can become smaller. The ultimate effect is an improvement
in flux and mainly in resolution. Since the photon energies are separated by their angle in the
monochromator, any deviation in the initial beam will propagate to a worse resolution.

The monochromator "filters" the energy of interest, since the storage ring beam has photons
with different energies. For soft x-rays, diffraction gratings must be used to disperse the energy.

Finally, the focusing mirror will focus the monochromatic beam to the exit slit to the exper-
imental hutch.

The beamline optical elements are almost the same for every technique. The main differ-
ence usually lies in the experimental hutch, where the sample is placed and hit by synchrotron
radiation.

However, the beamline differs fundamentally for soft X-ray and hard x-ray regimes. While
the hard X-ray regime in general uses crystal monochromators, such as Si or Ge single crystals,
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for separating specific energy, it cannot be used for soft X-rays due to the high absorption of the
crystal atoms in this energy range.

Additionally, for soft X-rays, all optical elements should be in ultra-high vacuum (UHV),
since the presence of air would absorb and scatter the photons with low energy. This implies
another layer of technical considerations and difficulties.

Given that, for soft X-rays, the monochromator will be a blazed mirrored grating, which
uses the diffraction of a small periodic pattern that reflects the photons in different directions
depending on their wavelength. To obtain good reflectivity, low incident angles (grazing inci-
dence) must be used.

Figure A.5: Optical layout of IPE beamline at Sirius, from [147].

In the experimental hutch, by its turn, the X-rays hit the sample. Depending on the de-
sired experiment, the detection can be of ejected electrons, making it a photon-in/electron-out
technique. In the case of RIXS, we want to detect photons, so it is a photon-in/photon-out
technique.

Since RIXS is an inelastic technique, the emitted radiation should also be resolved in energy.
Therefore, the RIXS detection device, called spectrometer, includes a grating and a photon area
detector, for which each photon energy will land in a different position of the detector.

Nowadays, there are no manufacturers in the industry that sells high-resolution RIXS spec-
trometers. Each synchrotron beamline that wishes to pursue this technique has to project and
build its instruments. Therefore, it becomes necessary to study deeply the optics and theory to
determine which optical elements will be used for the spectrometer and their operating param-
eters.

The concept and theory behind the grating will be explained further in the next section,
where the optimization of the spectrometer grating will be explained.

Figure A.5 shows the beamline for both XPS (X-ray Photoelectron Spectroscopy) and RIXS
branches of the IPE beamline at Sirius. The main optical components are presented from the
front end to the optical hutch, and for the two experimental endstations. The plane deflecting
mirror is an element to choose between the two end stations, which can not receive radiation
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simultaneously. The RIXS spectrometer consists of everything after the sample: the grating and
the EM-CCD (Electron Multiplying Charge-Coupled Device) detector.

A.3 RIXS Spectrometer Optics
Depending on the energy regime the spectrometer is different: for hard X-rays, the radiation

emitted by the sample can be deflected by a monochromator and collected using a single crystal,
typically of Ge or Si. However, for soft X-rays, the use of such crystals is prohibited by the
longer wavelengths. Instead, a diffraction grating is used with grazing incident angle, which
gives origin to limitations in the collected angle and energy resolution.

Figure A.6: Specular reflectivity curves for Ni and Au at incident angles of 0.5, 1, 2, 4, 6, 8, 10,
and 20 degrees. From ref [148].

Grazing incidence is an optical geometry where the X-ray incidence angle is very small.
This is necessary due to the angle dependency in the reflectivity of a mirror at soft X-rays
energy: as shown in Figure A.6 for nickel and gold surfaces, the higher the angle, the fewer
photons are reflected. So, it is necessary to have a spectrometer based on low-angle incidence.

To do so, a mirror with a surface shape following a certain pattern is used to separate the dif-
ferent wavelengths, reflecting each energy in a slightly different direction: it is called a grating.
The idea is very simple and it is illustrated in Figure A.7. The optical path difference between
photons hitting different steps of the pattern is d(sinα−sin β), where d0 is the distance between
the grooves in the surface, α is the incoming angle defined positively between the normal and

Figure A.7: The optical path difference resulting from the periodic shape of the surface gives
origin to the grating equation. Both α and β are defined as being positive.
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Figure A.8: Different orders of diffraction for a single incident energy. Extracted from ref [148].

the incoming ray and β is the outgoing angle defined positively between the normal to the sur-
face and the outgoing ray. Considering constructive interference between those rays, the optical
path difference must be equal to an integer number of wavelengths. This gives origin to the
grating equation:

sinα− sin β =
mλ

d0

= a0mλ, (A.1)

where a0 is defined as the grating line density, usually in units of lines/mm. However, for a
certain pair of α and β, multiple wavelengths satisfy the equation. This is illustrated in figure
A.8. The same wavelength λ is reflected in several directions, being the m = 0 direction equal
for all wavelengths, as seen in the equation A.1. Therefore, this order is not of interest to
monochromator purposes.

Some different configurations or geometries can be chosen to solve this multiplicity of so-
lutions for λ and m. One such configuration is to set m = 1, which will have more photon
counting. Anyway, since the angles α and β are very large, there is better separation between
orders, and therefore better resolution, using the internal orders with m > 1. m = 2 could
be used, but it has a much lower intensity than m = 1 since the intensity of the reflections
decreases as m increases.

Another way to fix the relation between α and β for given energy is to choose a constant
focal distance cff , where

cos β

cosα
= cff, (A.2)

making the grating equation A.1 turns to

1−
(
mλ

d0

+ sin β

)2

=
cos2 β

c2
ff

(A.3)

Besides the diffraction properties, there are the focusing properties that we should be con-
cerned about. When the RIXS sample is hit with the incoming beam of photons, the scattering
process will emit in an isotropic manner. It demands a collecting mirror after the sample along
with the monochromator grating. However, the grating can be manufactured with a curved sur-
face, combining the effects of collecting and focusing the scattered photons and separating their
kinetic energies in a single optical element.
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Figure A.9: Illustration of an optical path from point A to B, passing through point P into the
mirror surface.

Additionally, we should remember that the source, the RIXS sample, is not punctual. It
emits not only with a finite size but also in all directions. In this regard, let us first think about
the focus of a punctual source. A perfect focusing mirror (or lens) would take all rays from
point A, through the mirror, at the same point B, independent of the wavelength of those rays,
this is illustrated in figure A.9. Following Fermat’s principle (or principle of least time), since
the light did not change its media of propagation, its velocity is constant, which means that the
path traveled to any light beam from point A to point B would have the same length. That is the
definition of an ellipse. From this, one can conclude that a perfect mirror to focus a punctual
and divergent source would be an ellipse.

On the other hand, one can wish to focus a pencil of parallel rays on the same point. In
this case, the source is approximate to have a finite size, but no divergence (or be already
well collimated), and, following similar arguments, the best mirror would be a parabolic one.
However, it is still very challenging and impracticable to fabricate an ellipsoidal mirror, and is
very hard to fabricate a parabolic mirror that is not huge.

So, in practice, beamline design is mostly based on using toroidal (spherical and cylindrical
are sub-cases here) and plane mirrors. The chosen grating for the IPE beamline RIXS spec-
trometer, called BRIXS, is cylindrical, with its curvature focusing in the meridional (vertical)
direction.

A.3.1 Variable Line Spacing gratings

Manufacture imperfections and optical aberrations due to the grating shape result in distor-
tion and deterioration of the focal and energy resolution qualities of the grating. One bright
solution to this problem is to project a grating that, instead of having constant line density a0,
would have a line density that is variable along the grating length. This is called a Variable Line
Spacing (VLS) grating and follows a polynomial line density following the expression [149]:

a(x) = a0 + a1x+ a2x
2 + a3x

3 + ... (A.4)

It is possible to expand the grating surface in Taylor’s series and write the optical path in
terms of this expansion. After applying the least action principle (Fermat) to the optical paths,
each an coefficient will be attributed to different orders. Annulling the derivative of such terms
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will be the good conditions for the x-ray path. The zero-order expression obtained by this
method is the grating equation A.1, already presented here by geometrical arguments. A first-
order expression obtained is the meridional focus equation, presented as equation A.5. By
its turn, a second-order expression is the aberration coma equation, presented as equation A.6.
The coma aberration is related to an asymmetric line shape on the intensity peak of detected
photons, causing an enlargement of the line width.

cos2 α

r1

+
cos2 β

r2

=
cosα + cos β

R
+ a1kλ (A.5)

sinα

2r1

(
cos2 α

r1

− cosα

R

)
− sin β

2r2

(
cos2 β

r2

− cos β

R

)
+

1

3
a2kλ = 0 (A.6)

Each equation depends on the angles α and β, grating curvature R, A and B points distance
r1 and r2, respectively, and on the line density polynomial coefficient term an related to that
expansion order. Therefore, it is possible to choose the terms an that minimize each of these
expressions, taking them as close as possible to zero, which means: perfect focus, no coma
aberration, etc.

A.3.2 Analytical optimization of the spectrometer

The spectrometer resolution depends on the parameters that define the diffraction geome-
try and VLS terms. Additionally, some important error parameters can be taken into account
analytically to estimate the energy separation capacity of the diffraction grating. These errors
include the source error ∆S , the slope error ∆SE , and the detection error ∆D. This is shown in
figure A.10. Another important term is the detector inclination γ, since it is possible to reduce
the effective detector pixel size by inclining the detector concerning the focal plane, defined by
equation A.7. This is, however, limited by the low penetration depth of the photons once the
inclination gets too small. The optimal inclination is around 20◦.

Figure A.10: Optical layout for the cylindrical VLS RIXS spectrometer of IPE beamline where
α and β are the incidence and diffraction angles, r1 and r2 are the input and output arm length,
γ is the focal plane inclination, ∆SE is the grating meridional slope error, ∆D is the detector
pixel size and ∆S incident beam size. Adapted from Ref [150].
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tan γ =
cos β

2 sin β − r2[(tan β])/R + a1/a0

(A.7)

The source error ∆S is related to the finite illuminated size of the sample emitting the scat-
tered radiation. This is directly connected to the spot size of the incoming beam at the sample
chamber position, therefore is an external parameter to the spectrometer itself, depending on
the previous optical elements.

The slope error ∆SE relates to the imperfections on the grating surface, which can be ex-
perimentally characterized by metrology techniques by average deviations of the ideal grating
surface angles. This is measured in angle units.

Finally, the detection error ∆D is the detector pixel size in mm. As the detector pixel gets
smaller, it can separate better the final position of the separated light by its final angle, which is
energy dependent. As a consequence, this affects the final energy resolution.

We can estimate the final energy resolution as a line width ∆E, which is a function of all
these parameters [151], following equation A.8. The final resolution will be a quadratic sum of
the different sources of error or line widths.

∆E =

√(
∆S

cosα

r1a0kλ
E

)2

+

(
∆SE

E

tan[(α− β)/2]

)2

+

(
∆D sin γ

cos β

r2a0kλ
E

)2

(A.8)

For the optimization process, as we saw, there are a lot of parameters to consider. The
important parameters can be divided into three groups: fabrication parameters (a0, a1, a2, a3,
R), operation or geometrical parameters (α, β, r1, r2, γ), and error parameters (∆S , ∆SE , ∆D).
Therefore, to optimize the fabrication parameters necessary to order a grating, we should fix
some of the other parameters, or at least give them some constraint. On the other hand, once
the grating is ready to use, we can use the same set of equations to optimize the operation
parameters while keeping the grating parameters fixed.

In my work on the IPE spectrometer commissioning, I took both approaches. The first is to
learn how to use the optimization tools and benchmark the ordered grating. The second is to
simulate the operational parameters to choose how to best use the spectrometer.

For the analytical optimization of the VLS grating parameters, I fixed the parameters: total
size of the spectrometer r1 + r2 = L, incidence angle α, detector inclination γ, and a0 line
density term. It leaves us with five parameters to optimize: β, r1, R, a1, and a2 using five
equations.

The fixed parameter values were chosen based on manufacture restrictions, better efficiency,
and previous studies and simulations [152, 153]. They are: reference energy E = 930 eV,
corresponding to the Cu L3-edge, a0 = 2000 lines/mm, diffraction order k = 1, α = 87.6 deg,
total spectrometer length L = 5000 mm, γ = 20 deg, source error ∆S = 1 × 10−3 mm, slope
error ∆SE = 0.217 × 10−6 rad, and pixel detector size ∆D = 5 × 10−3 mm. The choice of
α and a0 will also be justified by the grating efficiency simulation, as we shall see in section
A.3.4.

From the grating equation A.1, we can determine β. By minimizing the energy resolution
equation A.8, with the condition r1 + r2 = L, we can get the best r1 value. Solving the system
of meridional focus A.5 and focal plane inclination A.7 equations it is possible to solve for the
best a1 and R. Finally, the coma aberration equation A.6 gives us the best a2 value to minimize
the coma error.

The results of this method are listed in the table A.1. With these parameters, we estimate an
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analytical energy resolution of 20 meV for the reference photon energy of 930 eV.

r1 (mm) r2 (mm) β R (mm) a1 (mm−2) a2 (mm−3)
1525.78 3474.22 85.1736 51484.5 0.55411 -0.00011724

Table A.1: Grating and geometry parameters obtained by the analytical optimization method.

A.3.3 Optimization of IPE spectrometer by ray-tracing simulation

The analytical model described previously is very useful for the initial choice of the grating
manufacturing parameters. However, it has its limitations, the main being the paraxial ap-
proximation which does not describe well the grating for grazing incidence. Additionally, the
methods do not determine the a3 VLS parameter, which is related to the control and reduction
of the photon line width distribution at the detection plane.

To overcome these limitations still within the limits of geometrical optics, we can rely on
ray-tracing calculations [154]. In this paradigm, each beam is treated as a vector and each
optical element is treated as a matrix that transforms such vectors. It is possible to use a statis-
tical distribution of incoming beams with a finite size and angular divergence which propagates
through the optical system. With it, it is possible to count where the losses in photon count
occur, which helps design a system with the minimum loss possible.

There is some software for performing ray-tracing calculations. In this work, I employed
the SHADOW package, which was developed to use Monte Carlo simulation for X-ray optical
elements to simulate its propagation to describe all the main optical elements, such as gratings,
mirrors, monochromator crystals, slits, etc [155]. This code was recently implemented in the
OASYS platform (OrAnge SYnchrotron Suite) [156]. The OASYS interface and workflow
engine are based on the software Orange, which is a framework based in python designed for
data treatment and analysis and machine learning applications. With the SHADOW it is possible
to perform ray tracing calculations using a graphical interface to build the optical system and
it is possible to export the whole optical system as a python code, which can be edited and
implemented with other functions.

Figure A.11: Detected images for the SHADOW calculations using three incident energies,
separated by 30 meV around 930 eV. The left image has a2 = 0 and a3 = 0 and the right one
has a2 = −0.00011724 mm−3 and a3 = 0.
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In figure A.11 we can inspect the use of the shadow package to simulate the effect of the
a2 VLS parameter to reduce the coma aberration for the detected photons. For this, I prepare a
source beam with three different energies, separated by 30 meV around the reference energy of
930 eV. The source has a finite size with a Gaussian distribution of photons’ initial positions and
uniform horizontal and vertical angular divergence. After interacting with the grating, the image
is formed on a plane element that doubles as a detector. Since the grating has a vertical ruling
to separate the energies, we can integrate the horizontal image intensity. This is illustrated in
the right inset.

Both simulations show the calculated grating, but on the left one, we have a2 = 0 and
a3 = 0, while in the right one a2 = −0.00011724 mm−3 and a3 = 0. From this, we can see in
practice that the right choice of a2 can reduce the noise caused by asymmetric peaks. However,
there is still a symmetric noisy tail at the base of the peaks. This is what we expect to remove
by fine-tuning the a3 parameter.

To achieve this, the method used to optimize the a3 parameter consists of choosing a range
of a3 values, running the shadow code for a beam with 930 eV photon energy, and calculating
the standard deviation of the distribution at the detector plane after integrated on the horizontal.
The a3 value which results in the smaller standard deviation corresponds to a sharper peak with
less noise.

However, in practice, there is a small correlation between a2 and a3, since the optical path
expansion works better in the vicinity of the central beam, once the optical geometry takes a
punctual source for the expansion. Therefore, the optimization of a3 will be improved if we
optimize a2 on each run to ensure peak symmetry. The peak symmetry, by its turn, can be
related to the distribution skewness, which we want to be as close as possible to zero.

Grating R (m) a1 (mm−2) a2 (mm−3) a3 (mm−4)
Final calculation 51.5 0.554 −0.000119 3.6× 10−7

Manufactured 52.9± 0.2 0.532± 0.009 −0.000123± 0.000005 3.7± 0.3× 10−7

Table A.2: Final grating parameters obtained with the described method and compared to the
manufactured grating.

The final grating obtained by this calculation method is described in table A.2. Every value
was rounded to correspond to the fabrication precision parameters. When compared with the
grating ordered, based on previous studies, we see that the main difference lies in the grating
curvature radius R and in the a1 parameter. From the meridional focus equation A.5, we see
that their difference cancel out. This is a consequence of the fact that the analytical results are
sensitive to the initial set of fixed parameters. However, both gratings have the same energy
resolution capacity.

In Figure A.12 we can observe the SHADOW detected intensity profile for the final grating,
using the same source beam as in figure A.11. We can see that peaks are more Gaussian and that
the symmetrical noise was considerably reduced. This is a result that points to the SHADOW
tools and the methods here presented as good resources to simulate the grating operation.

A.3.4 Optimization of throughput using the REFLEC code
As explained, to perform RIXS experiments, not only the energy resolution should achieve

a threshold related to the interesting scales in the materials, but also there is an intense loss
of photons in the process. Therefore, we would like to have the spectrometer manufactured
and operating in conditions where the photon loss would be minimized. In this sense, we can
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Figure A.12: Imagem formada no detector com 3 energias incidentes separadas por 30 meV em
torno da energia central 930 eV para a grade final.

define the grating efficiency as the ratio between the diffracted light through reflection and the
collected light.

However, since the diffraction results from the light wave nature, it can not be simulated
by ray-tracing and geometric optical tools. To estimate the efficiency we should calculate the
electromagnetic fields in the proximity of a periodic medium, with a determined incidence
angle. Several numerical methods were developed to solve such a problem: the modal method,
the integral method, and the differential method [157–160]. The latter applies the Maxwell
equation in a differential form employing a Fourier expansion of the fields and the material’s
permissivity along the grating periodicity [161]. In this work, I rely on the implementation of
the differential method in a Fortran code called REFLEC, developed by the German synchrotron
Bessy II to perform simulations of the beamlines optics [162].

Using REFLEC it is possible to calculate the efficiency curve as a function of energy for
several fixed parameters. Among these parameters, the main ones are the grating surface, such
as coating material, the density of the coating, line density a0, and the roughness of the surface.
The geometrical parameters are also important, such as α or cff, as well as two parameters that
configure the groove shape in the ruling pattern: the aspect angle (apex) and the blaze angle,
corresponding respectively to the bigger angle at the top of the groove and the smaller angle at
the base of the groove.

For the REFLEC calculations, I fixed the parameters based on the manufactured grating,
with the coating material being Au, with density 19.3 g/cm3, and surface roughness of 0.01, a0

line density of 2000 lines/mm, and diffraction order k = 1. A study for the dependency of the
grating efficiency as a function of aspect and blaze angles is illustrated in the left panel of figure
A.13, where the grating optimization energy and α angle of 930 eV and 87.6◦ were used.

As we can observe, the best value for the aspect angle and the blaze angle are, respectively,
90◦ and 1.4◦. Using these values, we can see the effect of changing energy and α on the grating
efficiency in the right panel of figure A.13. To build this map, I run the REFLEC code for
80 < α < 89.5◦, with steps of 0.5◦ and using energies between 100 and 2000 eV with steps of
20 eV. The grating optimization energy and α are marked as dashed lines and we observe that
for lower photon energies the efficiency peak as a function of α shifts for lower values of α.
We see that, for line density 2000 lines/mm, the grating has a good efficiency performance for
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Figure A.13: Efficiency maps obtained using the REFLEC code as a function of the aspect and
blaze angles and as a function of the incident angle α and photon energy.

energies between 500 and 1600 eV.
However, to estimate the photon loss in the whole RIXS process and detection, one should

also think in terms of the collected fraction of photons, which can be resumed in two angular
factors 1: meridional and sagittal acceptance angles. These angles translate the fraction of
photons emitted by the sample that hits the grating. The meridional dispersion, in this case,
is equal to vertical dispersion, since the meridional plane is the plane defined by the source,
detector, and optical element center. The sagittal, then, is equal to the horizontal direction.

In a preliminary analysis, we can consider only the vertical acceptance, since this is the one
that changes with the change of geometrical operation parameters. Using trigonometry, it is
straightforward to calculate the vertical angular acceptance as a function of α and r1:

σv =
l cos(α)

r1

, (A.9)

where l is the grating length, fixed in 160 mm. In the left panel of figure A.14 we can observe
the vertical acceptance as a function of α and photon energy. Since the r1 parameter depends
on our optimization choice, the value obtained by the method described in the section A.3.2 can
be used for the analytical optimization. The result is that lower α values imply a larger fraction
of photons being collected by the grating, a different effect from the efficiency trend. To take
both calculations into account simultaneously, we can multiply the vertical acceptance by the
grating efficiency for each α and energy value, and the result will be the vertical transmittance
or vertical throughput. This is shown in the right panel of figure A.14.

Finally, it was possible to establish a method employing analytical and simulation tools for
the best design of the spectrometer grating. This method can support the design of other VLS
gratings, by aiming the choice of VLS parameters to cancel aberrations for geometries that
benefit the throughput.

A.3.5 Optimization of operation parameters
In the previous sections, the choice of α and its implication on the other geometry param-

eters was not uniquely defined. It was chosen for the analytical calculations to obtain r1 by
minimizing the energy resolution equation A.8, while α was fixed. Additionally, all optimiza-

1It can also be considered as a solid angle. However, the effects of focusing are different in the meridional and
sagittal directions, so both effects are counted separately.
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Figure A.14: Maps of vertical acceptance and total throughput as a function of the incident
angle α and photon energy.

tion was made for single photon energy, so when we have different energies the geometrical
parameters will change. These parameters will have an impact on the focal quality at the detec-
tor plane, in the energy resolution, and in the throughput.

Now that we have all the grating parameters defined, we can be flexible with the previous
constraints and explore a range of possible α, and instead of getting the best energy resolution,
it is possible to prioritize minimal coma aberrations, maximum throughput, or even considering
second-order diffraction, for instance. Therefore, the next step is to optimize the geometrical
operation parameters considering these different modes. After running several tests, it was clear
that the most important condition to keep the detection quality was to keep the coma aberration
as low as possible, and this could be done for any value of α. So we can use α as a main
geometrical variable, for which all other parameters can depend on.

For this purpose, the same equations used to optimize the grating can be used. Naturally,
the β parameter can be calculated again from the grating equation A.1 as a function of α and
energy E:

β(α,E) = arcsin(sinα− a0kλ). (A.10)

The r2 paramter can also be obtained as a function of α and E by replacing β(α,E) on the
meridional focal equation A.5:

r2(α,E) =
cos2 β

(cosα + cos β)/R− cos2 α/r1 + a1kλ
. (A.11)

However, r2 stills depends on r1, which can be obtained by replacing β(α,E) and r2(α,E)
into the coma equation A.6. The functional dependency is quite complicated because it is
implicit, but the final form of the coma equation depends only on α, E, and r1. So we can solve
it numerically to obtain the r1, which is the root of this equation for each value of α and E.
With this value of r1, we can get the r2, and some other interesting values, such as the vertical
acceptance (equation A.9) and analytical energy resolution (equation A.8).

One thing that must be considered is that the geometrical parameter range is restricted by the
mechanical constraints of the spectrometer design. There is a maximum and a minimum value
for the distances between the sample and the grating and the grating and the detector, r1 and r2,
respectively, as well as the total spectrometer length and its height, r1 +r2 and h. The incidence
angle α should also be within an interval, considering the surface efficiency properties already
explained. These limits are listed below:
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• 4000 < r1 + r2 < 5898 mm

• 1814 < r2 < 5148 mm

• 750 < r1 < 2288 mm

• 0 < h < 1000 mm

• 81◦ < α < 90◦

With the described optimization method, I generated a table with all parameter configura-
tions to operate the spectrometer grating. This table can be used to interpolate and plot the main
graphical results as a function of incident energy and α. When imposing the mechanical con-
straints, the main limitation turns out to be the spectrometer length r1 + r2, as shown in figure
A.15, where the black lines mark the mechanical limits. The region of allowed r1 +r2 is mainly
contained inside the range of 87 < α < 88.5◦. The allowed parameter range outside of this
interval is not interesting, because it is forcing higher α angles for the lowest photon energies,
which is not favorable for the throughput.
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Figure A.15: Spectrometer length, r1 + r2, as a function of energy and α. The black lines mark
the mechanical limits.

Therefore, I can recalculate, with more details, the geometrical parameters and other inter-
esting properties for a restricted α region and smaller steps. Choosing 87 < α < 88.5◦, with
steps of 0.1◦ and using energies between 100 and 2000 eV with steps of 10 eV, a new table,
denser in points, is calculated. The head of this table is shown in figure A.16, displayed by the
use of the pandas, a data analysis package for python language [163].

In this table, for every energy and α combination, the geometrical parameters r1, r2, r1 +
r2, γ, height h were calculated, along with vertical acceptance, horizontal acceptance, and
analytical energy resolution. However, restrained values are still included, with the mechanical
constraints being violated for some set of parameters. We can see, for example, that the solution
of γ following the focal plane inclination equation A.7 has a divergence and negative solutions,
which is unrealistic and interferes with the calculated analytical resolution.

To overcome this, we can use the pandas’ tools to filter out of the dataframe every line
where some constrain are not respected. This results in a new table, for which the calculated γ
is shown in figure A.17. The dashed line represents γ = 20◦, the value for which the grating
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Figure A.16: Numerically calculated table for the zero coma condition optimization, as a func-
tion of energy and α using the theoretical equations. Generated by pandas.

87.0 87.2 87.4 87.6 87.8 88.0 88.2 88.4
alpha (deg)

10

20

30

40

50

ga
m

m
a 

(d
eg

)

100 eV
200 eV
300 eV
400 eV
500 eV
600 eV
700 eV
800 eV
900 eV
1000 eV
1100 eV
1200 eV
1300 eV
1400 eV
1500 eV
1600 eV
1700 eV
1800 eV
1900 eV
2000 eV

Figure A.17: Allowed values of γ calculated numerically using the theory as a function of α for
a list of photon energies.
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Figure A.18: Theoretically expected energy resolution as a function of α for a list of photon
energies, for the allowed set of parameters.

parameters were optimized. This value presents less loss in the detector dead layer and reduces
the effective pixel size ∆D sin γ.

The analytically expected energy resolution is shown in figure A.18 for the allowed α and
for different photon energies. Even with throughput constraints, this grating is expected to
perform well in resolution for low energies.

To benchmark the process of choosing the zero coma condition as the best way to improve
the grating energy resolution, ray-tracing tools can be used again. This time, I simulate the
grating for a range of possible α and r1 values, for a fixed photon energy. Therefore, I can
fix β and r2 calculated by following the grating A.10 and meridional focus A.11 equations,
respectively, without forcing the zero coma condition. With this result, I inspect the detected
photon peak full width at half-maximum (fwhm) that is related in the ray-tracing simulation to
the energy resolution capacity of the grating, without the detector error considered.

An example is shown in figure A.19. The left panel shows the ray-tracing resulting fwhm
as a function of α and r1, for photon energy E = 530 eV (O K-edge). The lowest fwhm valley
represents the best energy resolution region. Fitting the minimum fhwm as a function of α for
fixed r1 is possible to get the blue points. Taking these points for different intervals of α and
comparing them to the analytical resolution points out that the best r1 as a function of α are
approximately the same for the ray-tracing and analytical zero coma results. This is shown in
the right panel of figure A.19 for photon energy E = 1530 eV (Yb M5-edge). It was tested for
different photon energies and α intervals and the minimum fwhm consistently coincides with
the zero coma condition.

However, there is still a degree of freedom to explore for the grating operation. Therefore,
the zero-coma analytical table can be used as our standard for the best energy resolution and to
access, along with REFLEC results, the grating throughput. In the next section, I will explain
and illustrate the methods and results for operating the grating with a fixed γ angle and a mode
to maximize the throughput for higher photon energies.

A.4 Operation modes
As mentioned, it is interesting to keep γ fixed, to avoid moving the detector too much. This

is the Fixed Inclination (FI) operation mode (figure A.20) and it is very advantageous in terms of
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Figure A.19: Ray-tracing simulated detected beam fwhm, as a function of α and r1.
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Figure A.20: Interpolated grating geometry and properties for the fixed inclination mode, as a
function of photon energy.
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Figure A.21: Expected throughput as a function of α for a list of photon energies, for the
allowed set of parameters.

mechanical maintenance and stability, with less necessity for calibration. It is also advantageous
for the energy resolution since the effective detector pixel size can be reduced with lower angles.
This is, however, limited for lower angles due to the absorption and reflectivity effect of the
detector coating surface.

It is possible to use the zero-coma analytical solution table to interpolate, for each energy
listed in the table, exactly the incident angle α that gives γ = 20◦. With the resulting geometry,
we can interpolate again the results as a function of energy to get the FI geometry for any
energies we want within the interpolated range. This is shown in figure A.20(a), where the blue
(orange) line represents the best α (r1) that results from the condition γ = 20◦, when it can be
fulfilled.

For all energies above 400 eV, there is a geometrical solution for which γ = 20◦. For lower
energies, the lowest allowed γ can be chosen, which always corresponds to having the minimal
r1 = 750 mm value. For example, for the C K-edge at 285 eV, γ can be 26.8◦. This is shown in
figure A.20(b).

The analytical resolution and throughput obtained by analytical calculations and REFLEC
results are shown in figure A.20(c)-(d). A good plateau for the spectrometer throughput exists
up to≈ 1200 eV. After this energy, the detected number of photons drops drastically. Therefore,
it is interesting to try to maximize the phonon counting for higher photon energies, even at the
expense of lowering the resolution.

For this purpose, we can inspect the throughput evolution as a function of α, as in figure
A.21, for a list of photon energies and only for allowed geometries. This is our motivation to
calculate the spectrometer operation in the maximum throughput (MT) mode.

The maximum throughput can be achieved for higher α angles. Therefore, we can use the
zero coma table to interpolate, for each energy listed in the table in the range between 1000 and
2000 eV, the configurations for the highest allowed α. This condition is equivalent to choosing
the minimum spectrometer length of r1 + r2 = 4000 mm.

With all conditions listed, we can interpolate the dependence of resulting parameters as a
function of energy, and use such functions to calculate the maximum throughput mode for any
energy we want, as was made for the FI mode.

This is illustrated in figures A.22 (a)-(b). In the (a) panel the blue (orange) line represents
the best α (r1) that results from the MT condition. On panel (b), we can see the calculated γ for
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Figure A.22: Interpolated grating geometry and properties for the maximum throughput mode,
as a function of photon energy.
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the maximum allowed value of α, as we can see, the detector plane is pushed to very low angles,
which can be harmful to the photon count in the end. This is a sign that a trade-off between
the geometric and reflectivity properties and the detector coating surface penetration depth. It is
expected that the second effect will be less important for this range of higher photon energies.

In figures A.22 (c)-(d) the analytical resolution and throughput obtained by analytical and
REFLEC calculations are shown. There is no considerable difference in energy resolution for
both modes, while the throughput is enhanced by a significant factor.

A.4.1 Conclusion
The analytical expressions for a VLS grating are a reliable tool to optimize the spectrometer

design and operation. However, some of the phenomena, such as errors, efficiency, etc are only
described by ray-tracing simulated grating and numerical calculations.

With a given VLS grating, optimized for Cu L3-edge energy, it is possible to reach the
best operating conditions to maximize the energy resolution by keeping the detector inclination
plane at a fixed angle of 20◦. This condition, however, reduces the photon counting at least
by half for energies above 1300 eV, so, by avoiding this condition and maximizing the photon
counting, we can choose the operation parameters that keep the photon counting up to 2000 eV
by a marginal cost of energy resolution.

The tools here presented were shown to be a reliable and reproducible way to study, design,
optimize, and commissioning a RIXS spectrometer. The final interpolation algorithm based on
the calculated table is implemented to the alignment of the spectrometer in the commissioning
state of the IPE beamline and hopefully, it will be useful for the user’s beamtime preparation.
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