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“[...] la primera condición para cambiar
la realidad consiste en conocerla .”

Eduardo Galeano, “Las venas abiertas de América Latina”



Abstract

The AdS/CFT correspondence, a explicit example of the holographic principle, was started
as an application of string theory, in a decoupling limit, as a tool to solve nonperturbative
aspects of quantum field theories at the conformal fixed point, since it shows is a special
duality between theories that allows one to map operators from one to the other, but in-
verting the coupling parameter. One important application is to condensed matter theory,
dubbed AdS/CMT, and in particular to transport in such systems. Since we are looking at
a phenomenological level, we don’t need a ”top-down model” from string theory.

Transport coefficients has been modeled using holography in ( [1–3]). We want to
expand these results to include various issues related to S-duality and transport in such
models: the effect of a topological term in the gravity theory, needed for S-duality; the
presence of both external fields and an explicit breaking of translational invariance due to
an axion field; and the equivalence of different models for transport.

We also compare phenomenological models (bottom-up) with those top-down through
the calculation of thermodynamical quantities, in particular with the calculation of the
susceptibilities.

Key-words: Holography, AdS/CMT, Transport Coefficients, S-duality, Quantum grav-
ity, Nersnt Effect



Resumo

A correspondência AdS/CFT, um exemplo explı́cito do princı́pio holográfico, iniciou
como uma consequência de teoria das cordas, em um limite de desacoplamento, como
uma ferramenta para resolver aspectos não-perturbativos de teoria quântica de campos no
ponto fixo conforme, já que esta mostra uma dualidade especial entre teorias que permite
mapear operadores de uma para outra (dualidade forte-fraca), mas invertendo o parâmetro
de acoplamento, através de um mapa holográfico. Um imporante desenvolvimento é para
matéria condensada, chamada AdS/CMT, e em particular para transporte nestes sistemas.
Como estamos olhando em um nı́vel fenomenológico, nós não precisamos de um modelo
construı́do a partir de teoria de cordas.

Coeficientes de transporte tem sido estudados usando holografia em ( [1–3]). Nós
queremos expandir estes resultados para incluir varios efeitos relacionados a S-dualidade
e transporte nestes modelos: o efeito de um temo topológico na teoria gravitacional.
essencial para a S-dualidade; a existência de ambos campos externos e uma quebra ex-
plicita da invariancia translacional através de um campo axion; e a equivalência dos difer-
entes modelos de transporte.

Também comparamos modelos fenomenológicos (bottom-up) com os construı́dos a
partir de cordas (top-down) através do cálculo de quantidades termodinâmicas gerada por
estes, em particular pelo cálculo da susceptibilidade.

Palavras-chave: Holografia, AdS/CMT, Coeficientes de Transporte, S-dualidade, Gravi-
dade Quântica, Efeito Nersnt
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Chapter 1

Introduction

Perturbation theory is quintessential in analysing models in modern physics. The idea is
to take intractable problems and approximate to models that we know how to deal with.
For example, let’s say we have a model that we can get absolute results H0. We want to
study this model under a new interaction H1(α), where α is a parameter of this new term.
Then we can write the model we are interested in as

H0 +H1(α). (1.1)

It often happens that this new model is challenging to calculate (sometimes impossi-
ble), then one method that we can use is to expand the interaction term in a series

H0 + c0 + c1α + c2α
2 + c3α

3 + ... (1.2)

where the constants ci are to be determined.

Of course, this method only makes sense if the power series converges, i.e., α < 1.
We say that such theories are perturbative, and since we usually have α as a coupling
constant of the interaction, we can also call this as a weakly coupled theory.

Not all physical systems are perturbative though, as many materials are studied in
condensed matter have strongly coupled electrons. Some of this materials are created and
observed in laboratories. An example of great interest to cosmology is the Quark Gluon
Plasma (QGP), which strong evidence points it to be a strongly coupled fluid [4].

The holographic principle gives us a technique to deal with strongly coupled theories
[5]. The method is to map out the theory to a d+1-dimensional theory. The main gain on
doing this is that the new theory has a S-duality with the original one, i.e., if the coupling
constant of one of the theories is α, the other one is 1/α. This means that even in the
range of nonpertubative parameters (α > 1) we can change our focus to a perturbative
theory (with 1/α < 1). Then, since the descriptions of the two theories are the same,
we can conjecture that the perturbative results we get from one can be mapped out to the
other theory.

Although the principle is a conjecture, we have explicit examples of this realization.
The AdS/CFT correspondence [6] matches a quantum field theory with a string theory.
When applied to quantum condensed matter theories we use the name AdS/CMT.

8
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The correspondence also works in the other direction, we may use CMT methods to
solve problems from quantum gravity. This process would involve coming up with novel
effective field theories in order to compute important questions involving the extensions
of the standard model to include gravity. This could lead to new experiments for string
theory and its competitors.

The scope of this work will be to explore the correspondence in order to calculate
transport coefficients of condensed matter using the mathematics of a black hole in AdS
space. This was introduced in [7] and [8], with one of the first example of such calcu-
lations: a minimal value for the ratio of viscosity and entropy of a fluid, known as the
KSS bound [1]. Later work using similar calculations led to the computation of thermo-
electric conductivities ( [2] and [3]) from a dyonic black hole in the gravity dual, with a
more general analysis in [9] (see also, for instance, more recently [10]). We aim to expand
the result in these latter references by introducing new terms in the quantum gravity de-
scription, and computing what these new terms impact the dual condensed matter theory.

One set of methods was considered, more recently, in [11–17], where one considers an
Einstein-Maxwell-dilaton (gµν , Aµ,Φ) system in the gravity dual, also coupled to axions
(χ1, χ2), that allows for a more general analysis of transport, from the horizon of a black
hole, based on the application of the membrane paradigm to AdS/CFT in the form started
in [18], relating the horizon to the boundary, where standard AdS/CFT quantities are
obtained, via a radial evolution equation. In [19–21], an extension of the analysis was
considered, by adding a topological W (Φ)FµνF̃

µν term and considering the resulting S-
duality properties. One can also use the attractor mechanism and Sen’s entropy function
[22] to calculate conductivities from black hole horizons [17], and this method was also
used in [20].

In this thesis we are interested in considering the effect of aW (Φ) topological term on
the calculation of thermodynamics and tranport in [2,3], as well as the calculations via the
attractor mechanism. We will first consider the case of a constantW (Φ) and then, in order
to obtain more nontrivial results, we try to consider varying W (Φ). However, it turns out
that the simplest possible model is to consider directly a fixed W (Φ(z)) = W (z), with z
the radial direction, since otherwise solving the equations is very difficult. This work was
summarized in the paper [23].

The AdS/CFT correspondence usually relates strongly coupled field theory to weakly
coupled string theory in its classical supergravity limit, with ”top-down” models, derived
from systems of branes in a decoupling limit. Common applications to condensed matter
are usually phenomenological, ”bottom-up” constructions. That applies in particular to
models of transport in condensed matter systems.

However, there are a few examples of top-down models as well, most notably the
ABJM vs. AdS4×CP3 correspondence [24], which has been used as a sort of a prototype
for transport in strongly coupled 2+1 dimensional condensed matter systems. Of course,
it is not a top-down model in the sense that there is no derived relation of the ABJM
model to any condensed matter system (unlike supersymmetric SU(N) gauge theories
in 3+1 dimensions, thought of as an extension of the gluon theory for QCD), only a
phenomenological one: it gives similar physics. But the holographic map is derived. At
nonzero temperature, the dyonic black hole in AdS4 has been used as a model for 2+1
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dimensional transport in the presence of a magnetic field. This is the origin ot the model
describe by [2, 3].

In [21], for the transport found the generic case in [20], the Wiedemann-Franz law was
obtained by a combination of the two methods. In particular, the matrix of susceptibilities
χs, calculated as the second order derivatives of the thermodynamic potential in the dyonic
black hole background, and was related via the matrix of diffusivities D to the matrix of
conductivities (as expected from the general theory of the hydrodynamic limit), for which
the results in the perturbative background from [20].

But that implies the assumption that dyonic black hole background of [2, 3] and the
perturbative one of [20] give the same thermodynamics, which is not obvious. Therefore
in this paper we investigate the possibility of these two results giving the same answer.
This has implications beyond the specific case considered here, as it measures the correct-
ness of importing results from a top-down construction to a bottom-up one, or vice versa.
This work was summarized in the paper [25].

The following is divided into two parts:

• Part 1 will be a review of how we use AdS/CMT to model transport coefficients of
condensed matter theories.

– Chapter 2 will review the Condensed Matter Theory aspects we will try to
reproduce in the Holographic model.
We show the classical models of transport, from Boltzmann equation and its
relativistic version to thermoelectric transport.

– Chapter 3 will be a lighting review of the AdS/CFT correspondence. We avoid
using too much results from string theory in order to keep to the most impor-
tant aspects of the duality for this work.
We first define and give examples of the S-duality, an important duality we
will look for in our models in Part 2, we also define AdS spaces and confor-
mal fields, to later then introduce the correspondence between them. We take
a more historical approach in this review, giving the intuition behind the dis-
coveries.

– Chapter 4 reviews how we can introduce temperature to a quantum field the-
ory, and apply it to also construct temperature for the dual theory, which is
necessary for the calculation of thermoelectric properties of transport.
The theory of black hole thermodynamics, developed by Beckentein and Hawk-
ing, is the starting step for us to develop the appropriate background for our
theory in the gravity side of the duality in order to retrieve a dual quantum
theory with the wanted properties.

– Chapter 5 reviews how we can obtain transport coefficients using the holo-
graphic dual of a theory. We also give a historical review of the KSS bound.

• Part 2 will discuss the results from this work.

– In chapter 6 we reproduce the calculation done in [2] in order to obtain thermo-
electric transport coefficients from dyonic black holes, and we then introduce



CHAPTER 1. INTRODUCTION 11

topological terms into the string theory action to expand the condensed matter
theories that this method can model. We calculate the thermodynamics, the
holographic transport coefficients σab and αab from the Kubo formulas at the
boundary, and then the attractor mechanism using Sen’s entropy function, to
write these in terms of charges and parameters at the horizon.

– In chapter 7 we define a new model with a radially dependent topological
term so that we can gain new non-trivial contributions to the transport coeffi-
cient. We find the solutions for fluctuations, though the holographic transport
coefficients are too complicated to write, as are the results of the entropy func-
tion formalism. The effect of S-duality is explained, as is the introducing of
anisotropy in the model.

– In chapter 8 we first consider the perturbative model with topological term, but
only B,B1 external fields, and calculating the thermodynamics, the magneti-
zations and the susceptibilities with this simplified version of the fluctuations.
We then calculate the transport coefficients for a more general version of the
model, with E and ξ = (∇T )/T as external fields as well. After that we
calculate the susceptibilities for this general case, and compare with the AdS4

dyonic black hole results.

– In chapter 9 we conclude.

In Appendix A we give a quick review of bosonic string theory as to explain where
the particles in our models comes from, and in the Appendices B and C contain
some long formulas.



Part I

Review of AdS/CMT models of
transport

12



Chapter 2

CMT

2.1 Classical Transport

We review the transport coefficients in hydrodynamics and electromagnetic theory from
classical mechanics. Methods for calculating this properties using the gauge/gravity du-
ality were developed in the last decades as an alternative to methods from quantum field
theory that utilizes perturbation theory. The hope is that the duality is going to be able to
calculate the coefficients in regimes where perturbation theory is computationally hard or
even impossible.

The review of classical Hydrodynamics follows [26]. It’s going to be necessary for us
to understand the arguments behind the Kubo’s formula, the main mechanism behind the
AdS/CFT method to calculate the transport coefficients. We then later introduce one of
the main first cases of applications of this method, the KSS bound.

2.1.1 Boltzmann Equation

We start with the classical Boltzmann equation that describes the fluid dynamics with a
thermal gradient:

We start by analysing a fluid with N particles in some volume. We define f(r, v, t)
the distribution function of the system, such that:

N =

∫
f(r, v, t)d3rd3v. (2.1)

We also can define the number density of particles:

n =

∫
f(r, v, t)d3v (2.2)

And the particle current density is

Ji =

∫
vidn (2.3)

13
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The average of any function A can be described as

⟨A⟩ = 1

n

∫
Af(r, v, t)d3v (2.4)

Now consider the ideal case of the system flowing in one direction without any type
of collision between the particles, then we would have

df = 0. (2.5)

Expanding the differential form then

∂f

∂t
dt+∇rf · dr +∇vf · dv = 0 (2.6)

In the existence of collisions, we will have a differential due to it, then

∂f

∂t
dt+∇rf · vdt+∇vf · adt = (∆f)coldt (2.7)

where we used the fact that adt = dv and vdt = dr.

It’s very common to assume the collision part of the above equation to have a depen-
dence of a relaxation time τC , such that

(∆f)col =
f − f0
τC

, (2.8)

where f0 is the distribution at thermal equilibrium. Then the Boltzmann equation can be
written in its most usual form:

∂f

∂t
+∇rf · v +∇vf · a =

f − f0
τC

. (2.9)

Now, let’s assume a function g(v) that is conserved in collisions. This means that∫
g(∆f)cold

3v = 0 (2.10)

This comes from the fact that the above average is constant. Then utilizing the Boltzmann
equation we have ∫

g
∂f

∂t
d3v +

∫
g∇rf · vd3v +

∫
g∇vf · ad3v = 0. (2.11)

Note that
∇vf · ga = ∇v(gav)− f∇v · (ga) (2.12)

So, after some integral manipulations o the Boltzmann equation, we end up with

∂

∂t
(n⟨g⟩) +∇r · (n⟨gv⟩)− na · ⟨∇vg⟩ = 0, (2.13)

where we consider the integral over the first term in the right hand side of 2.12 zero since
it is a boundary term. This formula is known as the continuity equation. It’s one of the
main results of the Boltzmann theory.



CHAPTER 2. CMT 15

2.1.2 Viscous Navier-Stokes Equation

To make it easier, let us start with a fluid without any viscosity. We recall the continuity
equation and we take g = mv as the conserved quantity (the collisions in the fluid con-
serve momentum). Then we have, where ρ = mn is the mass density,

∂

∂t
(ρ⟨vi⟩) +∇r · (ρ⟨viv⟩) = ρa · ⟨���*1

∇vvi ⟩. (2.14)

Defining the tensor
Πij = ρ⟨vivj⟩ = ρ⟨vi⟩⟨vj⟩+ Pij, (2.15)

called momentum flux density tensor, where

Pij = ρ⟨(vi − ⟨vi⟩)(vj − ⟨vj⟩)⟩, (2.16)

and noting that any external forces are given by Fi = mai the continuity equation becomes

∂

∂t
(ρvi) +

∂

∂xj
Πij = nFi (2.17)

In the case of no external forces and an isotropic fluid we have that Pij = pδij , where
p is pressure, then we have

∂

∂t
(ρvi) = − ∂

∂xj
Πij

Πij = ρvivj + pδij.

(2.18)

The generalization to viscous fluids comes from an addition of a viscous stress tensor
σij in Πij

Πij = ρvivj + pδij + σij. (2.19)

Since we are dealing with a type of friction in fluids, we expect terms that are spatial
derivatives in the velocity. Here we assume that we can expand the viscosity term in the
number of derivatives, and the hydrodynamic limit is the one which only linear terms of
the derivatives is considered. The idea is that in this range we gain an effective theory at
large scales. So, separating the trace and traceless part, we get the ansatz

σij = η

(
∂ivj + ∂jvi −

2

3
δij∂kvk

)
+ ζδij∂kvk, (2.20)

where η > 0 is called shear viscosity and ζ > 0 is called bulk viscosity.

Then the continuity equation becomes the Navier-Stokes equation:

ρ

(
∂vi
∂t

+ (v · ∇(vi)

)
=

∂

∂xi
p+

∂

∂xj

(
η

(
∂jvi + ∂ivj −

2

3
δij∂kvk

)
+ ζ∂kvk

)
. (2.21)
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2.2 Relativistic Hydrodynamics

The relativity generalization for the Navier-Stokes equation needs to satisfy the conserva-
tion of the energy momentum tensor T µν , the generalization of Πij ,

∇µT
µν = 0. (2.22)

For a viscous fluid, T µν can be written as, where uµ is the 4-velocity,

T µν = ρuµuν + pP µν +Πµν
(1). (2.23)

where
P µν = gµν + uµuν (2.24)

Here the symmetric viscosity term Πµν
(1) is going to be in the hydrodynamic limit, i.e.,

it is expanded up to linear terms of the derivatives ∂u.

We are left with a choice of the frame of reference we choose. Historically it has
been studied in the Eckart frame, the one that moves with the particles of the fluid, and
the Landau-Lifshitz frame, the one with no energy dissipation fluid. We choose the latter
since it has been shown to solve ambiguity problems in the derivation of the equations
[27].

In our notation, the Landau frame amounts to

Πµν
(1)uµ = 0. (2.25)

Then the general form it can take, considering it is symmetric, composed of linear
derivatives and satisfies the equation above,

Πµν
(1) = −2ησµν − ζθP µν , (2.26)

where

θ = ∇µu
µ,

σµν = ∇(µuν) + u(µaν) − 1

d− 1
θP µν ,

aµ = uν∇νu
µ.

(2.27)

We see that the coefficients η and ζ play the same role as before, separating a traceless
and a trace part.

2.3 Thermo-Electrodynamical transport

The (linear) response of the current function due to an electric field perturbation is the
classical Ohm’s law

⟨J⃗⟩ = σE⃗. (2.28)
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There is also a possibility of considering another term coming from a temperature
gradient −α∇T in the sense of a Nernst thermoelectric effect.

⟨J⃗⟩ = σE⃗ − α∇⃗T (2.29)

In the side of the (linear) response of the heat current, we have a response coming
from the temperature gradient (as usual)

⟨Q⃗⟩ = −κ̄∇⃗T (2.30)

And a response from the energy generated by the electric field αTE in the same sense
as it does the resistance of a material.

⟨Q⃗⟩ = −κ̄∇⃗T + αTE⃗ (2.31)

The equations above can be summarized in the symmetric matrix below:(
⟨Ji⟩
⟨Qi⟩

)
=

(
σ αT
αT κ̄

)(
Ei

−∇iT/T

)
. (2.32)

Note that σ, α and κ are matrices, so we could have, for a flow in the x − y plane,
σ = σxxI + σxyϵ. The same for the other matrices.



Chapter 3

AdS/CFT and S-Duality

3.1 S-Duality

Our description of the dynamics of the universe is very sensible to scales our system of
interest is in. For example, quarks and gluons under the effects of QCD can experience
an asymptotic freedom when at high energy scales, i.e., the forces between them are very
weak, so one can use perturbation theory to study this system. But at low energy scale the
coupling is strong, so strong that perturbative methods are impossible to be applied.

In this context, the so called S-duality (or strong-weak duality) exists. The name
duality means that we are going to find a relation between two different theories (usually
a quantum field theory or a string theory) so that we can translate a computation from
one theory to the other. S-duality is then a duality from one theory with strong coupling
to a theory with weak coupling. The usefulness of such relations happens when we have
a very hard (or impossible) problem for a theory, then we use the duality to solve this
problem in the other theory, and in this new theory the problem may be trivial. We the
use the duality again to translate the solutions to the original theory.

There are many examples of S-dualities in the literature. We are going to show
the most simple of such examples where this duality happens, the symmetries of the
Maxwell’s equations.

The Maxwell’s equations in the vacuum are written as

∇ · E = 0

∇ ·B = 0

∇× E = −∂tB
∇×B = µ0ϵ0∂tE.

(3.1)

Note now that if we make the substitution E → B and B → −µ0ϵ0E the equations
above are unchanged. This symmetry is called the Maxwell duality, we can relate two
different physical systems together since they have the same equations of motion.

18
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The duality breaks when we consider the equations with charges and currents

∇ · E =
ρe
ϵ0

∇ ·B = 0

∇× E = −∂tB
∇×B = µ0Je + µ0ϵ0∂tE.

(3.2)

The electric charge is defined as

q =

∫
V

ρedV (3.3)

In order to restore the Maxwell duality we consider magnetic charge (h) and current
(Jm). Then the equations are

∇ · E =
q

ϵ0
δ3(x)

∇ ·B = µ0hδ
3(x)

∇× E = −µ0Jm − ∂tB

∇×B = µ0Je + µ0ϵ0∂tE.

(3.4)

Then the duality exists with the transformations

E → B

B → −µ0ϵ0E

Je → µ0ϵ0Jm

Jm → −Je
q → µ0ϵ0h

h→ −q

(3.5)

This are the equations that describes the Dirac magnetic monopole, developed by
Dirac in the 1930’s. He found that the quantization condition for this system is

qh = 2πℏN, N ∈ Z. (3.6)

This condition can be an explanation as to why the electric charge of the electron and the
proton are the same. There are no experimental evidence for magnetic monopoles yet,
but there are many interesting model that describe it as a feature of the topology of the
manifold our physical system lives.

3.1.1 Example of S-Duality: The 2D Ising Model

The Ising Model describes electron’s spins that can be either up or down (or any list of
variables Si that can be either +1 or −1). Define N as the total number of electrons. The
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system is in a 2D-lattice space and the lattice has a number of links L where the spins
interact with intensity J at temperature T . The Hamiltonian for this system is

H = −K
∑
i,j

SiSj K = J/T. (3.7)

This system shows an interesting duality between the model at low temperatures and
another model at high temperatures, called Kramers-Wannier duality ( [28], [29]). The
derivation of the duality in this will follow [30]. For a different and topological way of
looking at this and other dualities in the Ising Model see [31].

Usual statistical mechanics methods shows that the model has two different phases
depending on the temperature:

• At low T the spins are going to point at the same direction to minimize the energy.
This phase is know as ordered phase,

• At high T thermal fluctuations are going to dominate and the spins will point to
random direction. This phase is known as disordered phase.

To show the duality, lets compute the partition function:

Z(K) =
∑

e−βE(K) (3.8)

At high temperatures (let’s use Kh to denote K in this range), one can expand Z to
find that

Zhigh(Kh) = (coshKh)
L2N(1 +N(tanhKh)

2 + ...). (3.9)

At low temperatures (let’s use Kl to denote K in this range) we have another expan-
sion

Zlow(Kl) = 2eKlL(1 +N(e−2Kl)2 + ...). (3.10)

If we make the substitution

e−2Kl = tanhKh (3.11)

the two partition functions are going to be the same up to a multiplicative term in front of
the series.

The free energy per site is

F = −J 1

N
lnZ (3.12)

Then we have that the free energy for low and high temperatures are going to be
related by

Fl = FH +
1

2
KhT ln (sinh (2Kh)). (3.13)

The critical value we must have Kh = KL = KC , then

KC =
2J

ln (1 +
√
2)

(3.14)
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Note that this duality between a theory with temperature T > TC and a theory tem-
perature T < TC is a strong-weak duality between two theories with the same degrees
of motion and the same number of dimensions, since in fact is a duality of a theory with
itself (usually called a self-duality).

The AdS/CFT duality that is going to be the main topic of this paper, although it is
also a strong-weak duality, differs from the Kramers-Wannier duality in the sense that it
is a duality between two different theories that have different dimensions and different
degrees of motion. This comes from the fact that the principle behind the AdS/CFT is the
Holographic principle, to be described in a later section.

3.2 AdS

We start with the Einstein Equation in general relativity:

Gµν + Λgµν = Rµν −
1

2
Rgµν + Λgµν = κ2Tµν (3.15)

Note that we have a cosmological constant Λ. This equation can also be understood
as the Euler-Lagrange equation of the Einstein-Hilbert action:

SEH =
1

2κ2

∫
ddx

√
−g(R− 2Λ + LM), (3.16)

where LM is the Lagrangian of the matter content that generates the tensor Tµν . The
Einstein equation then tells us that the matter content shapes the geometry of space defined
by the Einstein tensor Gµν .

Euclidean Geometry

Let us focus on empty space Tµν = 0. We want to find solutions for 3.15 such that the
spaces have maximal symmetry. For Riemannian manifolds (Locally Euclidean) the full
solution to this problem is (using the notation in [32]):

ds2 =
dχ2

1− kχ2
+ χ2dΩ2

d−1, (3.17)

where k = {0,±1},

• k = 0 corresponds to flat Euclidean space,

• k = 1 corresponds to a sphere,

• k = −1 corresponds to a hyperboloid.



CHAPTER 3. ADS/CFT AND S-DUALITY 22

Lorentzian Geometry

If we try to look for Lorentzian manifolds (locally Minkowski), we also have 3 solutions
that differ depending on the sign of the cosmological constant Λ1:

• For Λ = R = 0 we have flat Minkowski space,

• For Λ > 0 we have the de Sitter space,

• For Λ < 0 we have the Anti-de Sitter space.

The d+1 dimensional AdS space can be written as an embedding in a (2, d) Minkowski
space (for i = {1, ..., d}):

ds2 = −(dx0)2 + (dxi)2 − (dxd+1)2, (3.18)

with the constraint
−(x0)2 +

∑
i

(xi)2 − (xd+1)2 = −α2, (3.19)

where α is known as the radius of the AdS space.

Thus we say that the AdS space is quasi-sphere2 of radius α in a (2, d)-dimensional
space given by the metric (3.18).

This manifold has a boundary at

∂(AdSd+1) =

{
x

∣∣∣∣∣−(x0)2 +
∑
i

(xi)2 − (xd+1)2 = 0

}
. (3.20)

The Einstein equation is satisfied for the AdS space with

Λ = −d(d− 1)

2α2
. (3.21)

This result is used to define the relation between the Cosmological constant and the radius
of the space.

The Ricci curvature is given by

Rµν =
−(d− 1)

α2
gµν (3.22)

and so the Ricci scalar is

R =
−d(d− 1)

α2
. (3.23)

1And consequently on the sign of the Ricci scalar R as well.
2A generalization to the hyper-sphere and hyper-plane in Euclidean spaces to Lorentzian spaces is called

a quasi-sphere.
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Global coordinates

We can also define, from the following coordinate changes (X → (τ, ρ, θ, ϕ1, ..., ϕd−3):

X1 = α cosh ρ cos τ

X2 = α cosh ρ sin τ

Xi = α sinh ρx̂i .

(3.24)

Where x̂i parametrize Sd−2 and τ ∈ [0, 2π). Then the AdS metric becomes

ds2 = α2(dρ2 + cosh2 ρ dτ 2 + sinh2 ρ d(dxi)2) (3.25)

Now taking r = α sinh ρ and t = ατ we can write the metric of the AdS space as

ds2 = −
(
1 +

r2

α2

)
dt2 +

1

1 + r2

α2

dr2 + r2(dxi)2, (3.26)

known as the global coordinates.

Poincaré metric

We can also define, from the following coordinate changes (X → (t, r, x⃗):

X1 =
α2

2r
cosh ρ cos τ

X2 =
r

α
t

Xi =
r

α
xi

Xn+i =
α2

2r

(
1− r2

α4

(
α2 − x⃗2 + t2

))
,

(3.27)

the metric below

ds2 =
r2

α2
(−dt2 + (dxi)2) +

α2

r2
dr2 (3.28)

known as the Poincaré metric, where the boundary of the AdS-space is located at r → ∞.

This coordinates only cover half of the space, known as the Poincare patch. Another
parameterization commonly used in physics defines z = α2/r and we get

ds2 =
α2

z2
(−dt2 + (dxi)2) +

α2

z2
dz2. (3.29)

The boundary of the AdS space is then at z = 0.

In Figure (3.1) we can view this metric as a Minkowski space being scaled by the
coordinate z.

This coordinate system is the one usually used in AdS/CFT correspondence applica-
tions.



CHAPTER 3. ADS/CFT AND S-DUALITY 24

Figure 3.1: The AdS space in the Poincare coordinates (3.29) can be viewed as a
Minkowski space ηµν being scaled by the coordinate z with α2

z2
ηµν . Note that the AdS

boundary is at z → 0.

3.3 CFT

Quantum field theories (QFT) with conformal symmetry are called conformal field the-
ories (CFT). They have an immense number of applications, from statistical mechanics,
condensed matter and string theory. From one side, they are fixed points of the renormal-
ization group flow, i.e., quantum field theories tend to become conformal at high or low
energy scales (outside of some more exotic behaviours like limit cycles [33]), therefore
CFT’s describe a large number of theories of interest at a critical point. Also, a large
number of interesting effective theories in condensed matter have conformal symmetry.

The extra symmetries gives CFTs unique properties, for example at 2 dimensions the
algebra is infinite dimensional and sometimes one can solve the theory exactly. Higher di-
mensional conformal theories became more relevant since the conjecture of the AdS/CFT
correspondence (to be explained later). Traditional and relevant references for CFT are
[34], [35].

For any metric gµν of a space with coordinates xµ, the set o transformations δ(xµ) =
x′µ that leave the metric invariant up to a scale factor

gµνdx
µdxν = Ω2(x)gµνdx

′µdx′ν (3.30)

is called the conformal group (or angle-preserving group). It consist of the Poincaré
Group (translations and rotations) generated by Pµ and Mµν as any relativistic quantum
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Figure 3.2: CFTs are fixed points in the renormalization group equations. That means
that when the energy scale µ changes, the couplings that define a quantum theory also
change, unless the theory is conformally invariant. The picture shows the RG flow for the
O3 QFT, and the points corresponds to the set of parameters where the thoery becomes
conformal. Usually QFTs goes either to infinite coupling or to a fixed point at the limits
µ→ 0 and µ→ ∞. Image taken from [33].

field theory,
x′µ = aµ +mµνxν , (3.31)

scale transformations generated by D

x′µ = λxµ (3.32)

and the special conformal transformation generated by Kµ

x′µ = x2bµ − 2xαbαx
µ, (3.33)

where we can write the generators as

Pµ = −i∂µ, D = −xµ∂µ,
Mµν = −i(xµ∂ν − xν∂µ), K = 2ixµxν∂ν − ix2∂µ.

(3.34)
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One can now easily check the commutation relations of 3.34 to define the conformal
algebra.

[Mµν , Pρ] = i(δµρPν − δνρPµ),

[Mµν ,Mρ,σ] = i(δµρMνσ + δνσMµρ − δνρMµσ − δµσMνρ),

[Mµν , Kρ] = i(δµρKν − δνρKµ),

[Kµ, Pν ] = 2δµνD − 2iMµν ,

[D,Kµ] = −Kµ, [D,Pµ] = Pµ.

(3.35)

Its usual to write these generators in a single form JMN , M,N = {0, 1, ..., d+ 2} as
the d+ 2× d+ 2 dimensional matrix:

JMN =

 Mµν
Kµ−Pµ

2

Kµ+Pµ

2

−Kµ−Pµ

2
0 D

−Kµ+Pµ

2
−D 0

 . (3.36)

3.4 Correspondence

In [30] the author gives a good comparison between the terms:

• AdS/CFT: A duality between a Conformal field Theory and a gravity theory formu-
lated in string theory in a Anti de Sitter space. First conjectured by Maldacena [6],
more specifically for the CFT N = 4SYM. The methods behind this duality has
been expanded to include more than just CFTs and AdS spaces. An important early
work on the development of the correspondence was done by Witten [36].

• Holographic Principle: First proposed by Gerard ’t Hooft [37], Charles Thorn [38]
and Leonard Susskind [39], it conjectures that a theory on volume of a space can
described by a theory on its boundary. Therefore we have a description of a theory
by a theory with a smaller number of dimensions. The mapping of this two func-
tions is called Holographic mapping.

The idea came from black hole thermodynamics, where the maximum entropy of a
region, given by

S =
A

4
, (3.37)

scales with the surface area A instead of the volume, as one would expect.

The idea for this came from the idea that if a gas with some entropy falls into a black
hole event horizon, that entropy cannot be destroyed since this would violate the
second law of thermodynamics. For this reason it was conjectured by Bekenstein
[40] that black holes have entropy.

And since the nature of the event horizon of a black hole says that an infalling matter
would take an infinite time to cross it for a frame of reference of a remote observer,
the entropy must be proportional to the area of the horizon, and not the volume
of the entire black hole. Hawking derivation that the area of a black hole always
increase with time [41] was a stronger evidence for it to be a form of entropy.
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It is relevant to say that there are solutions to the Einstein equations that vio-
late Bekenstein’s rule for the maximum entropy, and collectively they are called
Wheeler’s bag of gold, published first in the rare book [42], which are a class of
solutions that shows that a surface area can enclose an arbitrary amount of volume.
These conflicts the holographic principle, since it relies on the result of black hole
thermodynamics that the entropy is dependent on the area, although recent devel-
opments suggest that this is only an apparent paradox in AdS spaces [43].

• Gauge/Gravity duality: It’s an umbrella term for any dualities between gauge theo-
ries and gravity theories. Can be though of a generalization of the AdS/CFT term
since it can includes theories that are not conformal (in the gauge side of the duality)
and theories not in AdS (in the gravity side), like the dS/CFT correspondence [44].

The AdS/CFT correspondence comes directly after the discovery by Polchinski of a
equality between D-branes and extremal p-branes [45]. Both object came from String
Theory, and a short explanation of them are:

• D-branes: Suppose that we have extended one-dimensional object in space. They
are said to be open if their endpoints (their boundary) are not located in the same
point in space. A D-brane is a region of space where the endpoints of strings live.
For the case of D = 3 the theory that lives on them is the conformal field theory
N = 4SYM plus corrections.

• p-brane: A p-brane is a p-dimensional object that generalizes the 0-dimensional
black-hole. Strings are p-branes with p = 1. It can carry electric charge Q, and
extremal means Q = M . Closed strings on a space curved by A p-brane gives a
supergravity theory plus corrections.

The equality described above means that we can write the boundary of a space curved
by a D3-brane with the description of N = 4SYM on a D3-brane. Properly writing the
metric of this gravitational theory gives us the metric of AdS5 × S5 space. Then we have
a duality between

• N = 4SYM with gauge group SU(N),

• Gravity theory in the boundary of AdS5 × S5.

This is the duality called AdS/CFT correspondence.

The duality is valid for large N and gYM → 0. It is believed that it can be extended
for all values of N and gYM . We will see later that this limit is known as the ’t Hooft
limit.

More details on this argument can be seen in the reviews [46] and [47].

The AdS/CFT duality is formulated in term of string theory. So a proper review of the
subject would require some previous knowledge on string and supersymmetric theories.
A traditional textbook for it is [48] and [49]. Also relevant for this author is [50]. For a
full introduction on AdS/CFT, we recommend the textbooks [32] and [47].
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There is a large number of works that try to define the duality, either in more formal
description in the hopes that the limits of the correspondence becomes more clear, either
by giving an alternative motivation for the existence of this paradigm. We list some ref-
erences regarding the so called Bottom-Up approach to the correspondence, which is the
one we are going to use going forward, [51], [52], [53], [54], [55] and [56].

Also some references for the holographic principle seen by the renormalization group
equations are [57] and [58].

3.5 Correspondence at classical gravity level

In the interest of time, we are going to review this topic using hand-waving arguments
when it comes to string theory. The already cited reference [30] names as an ”string-less”
introduction to AdS/CFT, the method that shows some motivations for the duality that can
be understood without much knowledge on string-theory.

The validity of a string-less duality happens when we consider that the gravity side of
the duality is in the regime of classical gravity. In this limit, the string theory effects can
be neglected and the duality gains a weaker version, named Bottom-Up. A good review
is in the lecture notes [51].

Essentially, we want the length scales were our system lives L to be much bigger that
the string scale ls, so in this scale there is no extended objects(

L

ls

)
≫ 1. (3.38)

Also the limit of classical gravity requires that the scales are also much bigger then
the plank scale lp, where quantum effects would show up:(

L

lp

)
≫ 1. (3.39)

Turns out that this limit is interesting for a bunch of applications. Given a Yang-Mills
theory with gauge group SU(N) and coupling gYM on the gauge side of the duality, the
Lagrangian is described as:

L = Tr(FµνF
µν + fields) (3.40)

with
Fµν = ∂µAν − ∂νAµ + igYM [Aµ, Aν ]. (3.41)

In 1974 ’t Hooft showed that in the limit of N → ∞ the system is actually easier to
solve [59], [60]. The limit can be properly written as

N → ∞,

gYM → 0,

λ = g2YMN fixed.
(3.42)
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At this limit, it is possible to expand the Lagrangian in terms of λ. At the limit of large
N , only the planar diagrams survives and we can solve this system using perturbation
theory. The limit where perturbation theory is valid is for λ≪ 1, i.e.,

λ ≥ 1 nonperturbative regime. (3.43)

The limit of large N is especially interesting for the study of quantum chromodynam-
ics (QCD), that is a gauge theory that describes the dynamics of quarks and gluons, and
the gauge group is SU(3). The discussion if N = 3 is large enough for the ’t Hooft
expansion to be valid is a complicated one and we are not going to present here, but some
phenomenological effects have been studied. Also, there has been some efforts to con-
sider higher orders of the expansion. Yet, some interesting effects of QCD only happen
at the non-perturbative regime, such as quark confinement and aspects of the theory of
quark-gluon plasma. So it would seem that this expansion is not useful for these phenom-
ena.

The mapping described earlier between string theory gravity on AdS and a CFT at
large N , the AdS/CFT correspondence, maps the λ and gYM from the CFT side to the
string coupling gs and α′, a quantity related to the string tension T

T =
1

2πα′ , (3.44)

from the gravity side as:
α′/R2 ∝ (λ)−1/2, (3.45)

gs ∝ g2YM , (3.46)

where R is given by
R =

√
α′(4πgsN)1/4 (3.47)

The perturbation theory in String theory is an expansion of order α′/R2, since we are
looking at classical gravity, we want a low value of this quantity. That corresponds to
high values of λ in the N = 4SYM theory, the nonperturbative regime of this theory.

Therefore, the limit at which Gauge theories are intractable using traditional methods
corresponds the limit at which the string theory approaches gravity solution. This is one
of the main motivations for the study of the AdS/CFT correspondence in the last decades.
But during this time, a variety of applications of the duality has been found.

3.6 Dictionary

The bridge between the two sides of the duality can be displayed as a list of quantities that
are mapped under the holographic mapping. This list is usually known as the Dictionary.
In this section we aim to give a practical introduction of this concept in the same spirit as
it was done in [52].

First let us say that the (d+1)-dimensional gravitational theory on the bulk has an
action of the form

Sbulk(gµν , Aµ, ϕ) (3.48)
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where the fields are respectively the graviton, the dilaton and a connection. The first two
appear in the spectrum of string theory (in the vacuum of superstrings)3, while the last
one gives rise to the Maxwell part of the action4.

We could have more fields corresponding to other interactions. This fields are (d+1)-
dimensional as well, so we have Φ(r, x), where Φ is a list of all the bulk fields.

On the d-dimensional CFT side we have an action

SCFT =
∑∫

ciOi, (3.49)

where the fields are operators Oi. We can add to the CFT Lagrangian a deformation from
an operator O with source ϕ0 as ∫

ϕ0Oddx, (3.50)

Standard QFT procedure says that we can define W (ϕ0) from the equation

eW (ϕ0) = ⟨e
∫
ϕ0O⟩. (3.51)

The dictionary comes from an equation called the GPKW master equation [36], [61]
that relates functionals from both sides of the correspondence. It is written as:

W (ϕ0) = −Sbulk

[
lim
r→0

Φ(r, x) = ϕ0

]
, (3.52)

i.e., the CFT is going to equal the gravity theory at the boundary (r → 0). From this
equation, we can find the relations from fields by setting the pair (ϕ0, O) appropriately.
In [61] the authors gives a good example on how to do it with full details.

The most relevant results for this procedure gives the first lines of the dictionary:

CFT gravity

energy-momentum tensor T µν metric gµν

current Jµ connection Aµ

scalar operator O scalar field ϕ
... ...

We can increase the dictionary with any fields we can input in the master equation.
For now we only show some of the most common fields in these theories.

3Which we show how in the appendix A in a quick review of bosonic strings
4Or technically speaking Yang-Mills term if the connection forms a non-abelian group
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Thermodynamics

4.1 Finite Temperature

A common method to include temperature at quantum field theories at equilibrium is
using the imaginary time formalism. It is possible to describe non-equilibrium process
[62], but that’s beyond what we need for this thesis.

A better insight from this formalism come from the relationship between QFTs and
statistical field theory. We review the explanation o chapter V.2 of [63]. An understand-
able review of thermal QFT can be found in [64]1.

Intuitively, we can interpret a mapping from a real time t to an imaginary time τ ,
t→ −iτ , as a mapping from a Lorentzian spacetime

ds2 = −dt2 + (dx⃗)2 (4.1)

to an Euclidean spacetime

ds2 = −(d(−iτ))2 + (dx⃗)2 = dτ 2 + (dx⃗)2 . (4.2)

We are going to see how this mapping also connects quantum mechanics to statistical
physics.

The transition amplitude between two states |n⟩ and |m⟩ in quantum mechanics is
given by

⟨m| e−itH |n⟩ , (4.3)

where H is the Hamiltonian of the system, and t is the time difference between the two
states.

Now consider that the end state is the same as the beginning state |n⟩ = |m⟩, which
we are going to say is a part of a periodic process, and we make the change t → −iτ , a
imaginary time, we get that the amplitude becomes

⟨n| e−τH |n⟩ = Tr
[
e−τH

]
. (4.4)

1A more complete reference by the same author is [65].

31
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Now note that the partition function in statistical mechanics for a system with Hamil-
tonian H and temperature T = 1/β is given by

Z = Tr
[
e−βH

]
. (4.5)

This lead us to assert that if τ is made to be equal to β we connect quantum mechanics
and statistical mechanics.

To generalize this to field theory, let’s consider the fact that the transition amplitude
can also be written in terms of the path integral formalism as

⟨m| e−τH |n⟩ =
∫

Dq(t)eiS[q(t)] , (4.6)

where q(t) is the position of the state.

And on statistical field theory we have that the partition function for a state ϕ(q⃗, t)
over periodic trajectories with period β is given by in Euclidean time

Z = Tr
[
e−βH

]
=

∫
Dϕe−SE [ϕ] (4.7)

Then we understand that the if we take the Wick rotation t → −iβ and S → iSE for
going from Lorentzian time to Euclidean time we connect a (D+1)-dimensional QFT to
a D-dimensional quantum statistical field theory with temperature T .

4.2 Black Hole Thermodynamics

We are not going to review the work by Stephen Hawking on deriving the thermodynamics
of a black hole and the fact that they emit radiation [66], but we are going to indicate the
results of it. A good review applied to AdS/CFT discussions can be found at [67] and
at [26].

We first start with the Schwarzschild metric (G = 1) for the black hole

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

+ r2dΩ2 . (4.8)

Following the procedure of the last section, we Wick rotate it to Euclidean time

ds2 =

(
1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

+ r2dΩ2 . (4.9)

Note that the horizon rh = 2M is special for this metric, since crossing would change
the signature of the space. That does not happens in Lorentzian time, since time and space
can change roles when crossing the horizon. So it seems that rh is a singularity that should
not exist.

Now one can show that for a periodic time τ/4M , it the period is 2π then the metric
is exactly flat space and there are no singularities at the horizon.
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We discussed that this imaginary time should be periodic with period β. Therefore we
have that β = 8Mπ, or equivalently we have the temperature of the black hole

TBH =
1

8πM
, (4.10)

where BH stands for Bekenstein and Hawking. This method of finding the temperature
of black holes is the one used throughout this thesis for many different metrics.

Most times this quantity is given in terms of the surface gravity κ, which for the black
hole described above is κ = 1/4M , so

TBH =
κ

2π
. (4.11)

The entropy of a black hole can also be defined and we discussed this briefly in section
3.4. Let’s take the result seen there that the entropy is related to the area of a black hole;

S =
A

4
. (4.12)

When summarizing the discoveries of the field of black hole thermodynamics, the
authors2 of [68] defined four laws that can be compared to the four laws of classical
thermodynamics:

• Zero-th law: The surface gravity κ is constant for a stationary solution.

This gives the understanding that κ is the black hole version of temperature.

• First law: The variation of mass is given by dM = κ
8π
dA.

• Second law: dA ≥ 0.

The first and second laws confirms the entropy nature of the area of a black hole,
while the mass is related to the energy.

• Third law: It is impossible for a process of finite steps to lead κ to zero.

4.3 Witten Metric

In this section we are going to show a intuitive path to deform pure AdS/CFT correspon-
dence by introducing finite temperature.

We have seen the correspondence from the AdS gravity with a scale invariant field
theory. The gravity theory has a dilatation symmetry (giving rise to the dilaton field) and
that corresponds to the scale invariance in the dual theory. We can think of breaking this
symmetry by adding relevant operators and removing the scale invariance or by adding
finite temperature to the ensemble, and due to the duality this corresponds to the breaking
of the dilatation symmetry in the gravity theory [5].

2James M. Bardeen, B. Carter and S.W. Hawking
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If we start with the metric of the AdS space:

ds2 =
L2

z2
(−dt2 + (dxi)2 + dz2)), (4.13)

we can break the scale invariance by deforming this metric with functions f(z), g(z) and
h(z) such that

ds2 =
L2

z2
(−f(z)dt2 + g(z)(dxi)2 + h(z)dz2)). (4.14)

Note that this metric is still rotationally and translationally symmetric.

Let’s take, for simplicity, g(z) = 1 and h(z) = 1/f(z). Then, imposing the Einstein’s
equation for this metric

Rµν +
3

L2
gµν = 0, (4.15)

we need for f(z) to satisfy
3− 3f(z) + zf ′(z) = 0, (4.16)

which leads our final metric to

ds2 =
L2

z2
(−f(z)dt2 + (dxi)2 +

1

f(z)
dz2)) (4.17)

with
f(z) = 1− (z/zh)

3. (4.18)

Here, zh is a constant of integration coming from the solution of (4.16), and for now we
set zh = 1. Since f(z) goes to 1 as z goes to 0, we have an asymptotically AdS space.

The metric we arrived is the same as the one from a black hole. This suggests that the
dual to a CFT at finite temperature is a gravity theory with a black hole in the space.

In short, say we have an (Euclidean) action of a quantum gravity theory

S = − 2

κ24

∫
dτdx2dz

√
−g
(
−1

4
R− 3

2

1

L2

)
+ Ict, (4.19)

with euclidean time τ where Ict is the counterterms for this actions (see [69], [70] and
[71]):

Ict = lim
z→0

1

2κ24

∫
dτdx2

√
γ

(
−K +

2

L

)
, (4.20)

where γ is the induced metric and K is the trace of the extrinsic curvature.

With the metric given by (4.17), this now tells us that there is a constraint in this
Euclidean space time, since for z = 1 we have f(1) = 0.

The necessity for the space-time to be regular can be achieved if we demand period-
icity in τ

τ → τ +
4π

|f ′(z)|
= τ +

4π

3
(4.21)
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The prescription to include temperature in AdS/CFT was found by Witten , and thus
the AdS black hole metric we used is known as the Witten metric3. In Euclidean time τ
the metric is an altered version of the global coordinates

ds2 =

(
ρ2

L2
− Ld−2

ρd−2

)
dτ 2 +

1
ρ2

L2 − Ld−2

ρd−2

dρ2 + ρ2(dxi)2 (4.22)

Then following Hawking’s derivation of the temperature of a black hole, for us to
avoid singularities we need a periodic τ with period (ρh being the location of the horizon)

β =
1

T
=

ρ2h
L2 − Ld−2

ρd−2
h

4π
=

d

4π
. (4.23)

Going to the more familiar coordinates we have (in Minkowiski time t)

ds2 =
L2

z2

(
−f(z)dt2 + (dxi)2 +

dz2

f(z)

)
, (4.24)

where f(z) = 1 − z3/z30 , z0 being the location of the horizon of the black hole, usually
taken to be z0 = 1. The previous procedure gives the temperature to be, in d = 3,

T =
3

4π
. (4.25)

4.4 Dyonic Black Hole

Finite temperature is added to quantum field theories considering a wick rotation to a
periodic euclidean time of period 1/T . We saw in the previous section that for gravity the
procedure to consider temperatures comes from the thermodynamics of black hole. Thus
its important for us to study black holes in AdS spaces if we want to compare them to
QFTs.

The description given in the previous section gave us a black hole with no charges.
To include electric and magnetic charges we start by imposing a gauge term in the action
giving us the Einstein-Maxwell action:

S = − 2

κ24

∫
dτdx2dz

√
−g
(
−1

4
R− 3

2

1

L2
+
L2

4
F µν
µν

)
+ Ict, (4.26)

where the curvature tensor is determined by F = dA, where the connection A is given by

A = B(z)xdy + E(z)dt. (4.27)

Here, the magnetic (B) and electric (E) fields can depend on the scale dimension z. Let’s
take B = h a magnetic charge and E = q and electric charge.

3You can read a review in the lecture notes [72] or in the books [26] and [47].
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Then the solution to the Einstein equations of motion

Rµν = 2L2FµσF
σ
ν − L2

2
gµνFσρF

σρ − 3

L2
gµν , (4.28)

∇µF
µν = 0. (4.29)

Gives us the Reissner-Nordstrom black hole4.

ds2 =
L2

z2
(−f(z)dt2 + (dxi)2 +

1

f(z)
dz2)) (4.30)

with
f(z) = 1− (1 + h2 + q2)z3 + (h2 + q2)z4. (4.31)

Therefore, we only need to rewrite the f(z) term from the description of the black
holes without charges.

The temperature of the black hole then becomes, using the previous procedure,

T =
(3− h2 − q2)

4π
. (4.32)

4The Reissner-Nordstrom black hole is a solution to gravity and Maxwelll equations where a black hole
has electrical charge, temperature and a mass M ( [73], [74], [75], [76]). A generalization would be if the
black hole is rotating, which is called a Kerr–Newman metric.



Chapter 5

Transport Coefficients

5.1 Kubo’s Formula

The Ads/CFT correspondence can be applied to compute transport coefficients of strongly
correlated CFT’s, that using traditional quantum field theories would be a intractable prob-
lem, through the use of equations called Kubo formulas.

Named after Ryogo Kubo, who derived these equations in 1957 ( [77]- [78]), defines
the linear response of an observable when its under a time-dependant perturbation. More
specifically, we can write the linear response in terms of integrals of correlation functions.
In this form, they receive the name of Green-Kubo relations.

We review in this section how correlators in AdS/CFT correspondence is defined and
how we can apply them using the Kubo formulas. The reference [26] has a good review
of this subject. A quick introduction can also be found in [79]. The original references
that were also used in this text are [7] and [8].

One of the most import results of this method is the so called KSS bound, where the
shear viscosity of a fluid is found to obey the relation:

η

s
≥ 1

4π
. (5.1)

We will show this result in the next section and, at the writing of this, experimental results
seems to hold truth. The original reference is [1].

5.1.1 Retarded Green Function

Given two observables OA and OB, the retarded propagator is defined as, in the metric of
a Minkowski space in d-dimensions:

GR
OAOB

(k) = −i
∫
ddxe−ik·xθ(t)⟨[OA(x),OB(0)]⟩. (5.2)

Here we defined x = (t, X⃗) and k = (ω, k⃗).
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Note that the use of the Heaviside function θ(t) ensures that this Green function is
retarded. The advanced propagator, in its turn, is defined as

GA
OAOB

(k) = i

∫
ddxe−ik·xθ(−t)⟨[OA(x),OB(0)]⟩. (5.3)

The other relevant propagator is the symmetrized Wightman function:

GOAOB
(k) =

1

2

∫
ddxe−ik·x⟨(OA(x)OB(0) +OB(0)OA(x))⟩. (5.4)

Every other propagator can be written in terms of the propagatorsGR
OAOB

,GA
OAOB

and
GOAOB

.

We are dealing with Minkowski space propagators. But the original prescription of
AdS/CFT allowed the calculations of correlators in the boundary CFT using Euclidean
space.

In Euclidean space we define xE = (tE, X⃗) and kE = (ωE, k⃗), where tE is the Eu-
clidean time and ωE are called Matsubara frequencies. The most common propagator in
Euclidean time is the Matsubara propagator:

GE
OAOB

=

∫
ddxEe

−ikE ·xE⟨TEOA(xE)OB(0)⟩, (5.5)

where TE is the Euclidean time-ordering operator

TEOA(x)OB(0) =

{
OA(xE)OB(0) if tE < 0

OB(0)OA(xE) if tE > 0.
(5.6)

If OB (0) and OA are bosonic operators, the Matsubara frequencies are multiples of
2πT .

The relation between the Matsubara correlator and the previously defined Minkowski
correlators are [7]:

GR
OAOB

(2πiTn, k⃗) = −GE
OAOB

(2πTn, K⃗), (5.7)

for the retarded Green function and

GA
OAOB

(−2πiTn, k⃗) = −GE
OAOB

(−2πTn, K⃗), (5.8)

for the advanced Green function.

5.1.2 Response of a perturbation

The propagators defined last section calculate the response of the observable OA due to a
time dependent perturbation coupled to OB.

To study this, let’s consider the Hamiltonian

H = H0 + δH(t) (5.9)
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where δH is the perturbation

δH =

∫
dd−1x⃗δϕB(0)(x)OB(x). (5.10)

Here δϕB(0) is the source of the perturbation of OB.

The (unnormalized) density matrix ρ(t)

ρ(t) = e−βH (5.11)

satisfies the Liouville–von Neumann equation

i
∂ρ

∂t
= [H, ρ]. (5.12)

We want to compute the VEV of the operator OA under this perturbation. The VEV
can be written as

⟨OA⟩ = Tr(ρOA). (5.13)

In the interaction picture, the time evolution of the perturbation H0 is absorbed by the
operators. Then we obtain the equation

⟨OA⟩(x) = Tr(ρ0U−1(t)OA(x⃗)U
1)). (5.14)

In here, ρ0 is the density matrix of the original Hamiltonian

ρ0 = e−βH0 , (5.15)

and the operator U(t) is the time evolution operator

U(t) =
1

β
e−i

∫ t
0 δH(t)dt′ . (5.16)

Now taking the variation of the equation (5.14) we obtain

δ⟨OA⟩(x) = Tr
[
ρ0U

−1OA(x⃗)U
1

(
−i
∫ t

0

δH(t)dt′
)]

= −iTr
[
ρ0

∫ t

0

OA(x)δH(t)dt′
]
.

(5.17)

Now inputting the explicit definition of δH

δ⟨OA⟩(x) = −iTr
[
ρ0

∫ t

0

OA(x)

(∫
dd−1x⃗ϕB(0)(x)OB(x)

)
dt′
]

= −iTr
[
ρ0

∫
dd−1x⃗

∫ t

0

dt′OA(x)OB(x)ϕB(0)(x)

]
= −i

∫
dd−1x⃗

∫ t

0

dt′Tr [ρ0OA(x)OB(x)]ϕB(0)(x).

(5.18)
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Now using the definition of the VEV

δ⟨OA⟩(x) = −i
∫
ddxθ(t)⟨[OA(x)OB(x)]⟩ϕB(0)(x) (5.19)

This is pretty much what we needed to relate the Green function with the response of
the perturbation, except that we defined the Green functions in momentum space (ω, k⃗).
So we only need to do a Fourier transformation on the previous equation for us to get

δ⟨OA⟩(k) = −i
∫
ddxe−ik·xθ(t)⟨[OA(k)OB(k)]⟩ϕB(0)(k)

= GR
OAOB

(k)ϕB(0)(k).

(5.20)

Therefore we have the final result

GR
OAOB

(k) =
δ⟨OA⟩(k)
ϕB(0)(k)

. (5.21)

Then we have the proof that the Green function measures the linear response of the
operator OA under a perturbation sourced by ϕB(0)(k).

5.1.3 Thermal Susceptibility

In order to calculate the Green functions we found in the last subsections, we have to find
mathematical tools to help us. An important equation of functions of the complex plane
to the complex plane are the Kramers-Kronig relations, stated as:

Kramers-Kronig Relations

Given a complex function
χ : C → C.

Let us write χ(ω) of complex ω such that

χ(ω) = χ1(ω) + iχ2(ω)

where χ1 and χ2 are real functions.

Assume that χ satisfies:

1. χ is analytic in the closed upper-half plane (Im(ω) ≥ 0).

2. χ goes to zero as |ω| → ∞ faster that 1/|ω|.

Then we have that

χ1(ω) =
1

π
P
∫ ∞

−∞

χ2(ω
′)

ω′ − ω
dω′

χ2(ω) = − 1

π
P
∫ ∞

−∞

χ1(ω
′)

ω′ − ω
dω′
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where P denotes the Cauchy principal value.

There are a number of ways to derive these equations. In order to see them, as well as
many applications on physics, we invite the reader to check chapter 19 of [80].

The Cauchy principal value before the integral indicates that when we are close to the
singularity at ω′ = ω we consider the limit, since without it the integral would become
ill-defined.

Now let us take the retarded Green function GR
OAOB

(k) = GR
OAOB

(ω, k⃗) and assume
ω can take complex values, in order for us to take the analytic continuation thatg gives us
the function GR

OAOB
(ω).

Let us also assume that this functions satisfies property 2. of the box above. The the
Kramers-Kronig relations can be applied and we write for the first equation:

ReGR
OAOB

(ω) =
1

π
P
∫ ∞

−∞

ImGR
OAOB

(ω′)

ω′ − ω
dω′ (5.22)

Now we define the quantity

χAB = lim
ω→0

ReGR
OAOB

(ω) (5.23)

We call this as the static thermodynamic susceptibility, since it satisfies

χAB =
∂⟨OA⟩
∂ϕB(0)

, (5.24)

as an allusion to the way we define electric susceptibility

χE =
∂D

∂E
. (5.25)

5.1.4 Electric Conductivity

A very simple application of the study of linear response is given as the calculation of the
transport coefficient of the electric field.

Given a perturbation of the electric for some Hamiltonian given by a gauge perturba-
tion δA. We assume the gauge δA0 = 0. Then we have a perturbed electric field given by

Ei = ∂tδAi. (5.26)

In Fourier space this becomes

Ei = −iωδAi. (5.27)

At a linear level, the response is calculated by the Ohm’s law

⟨Ji⟩ = σEi, (5.28)
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where σ is the electric conductivity. But according to what we calculated in subsection
5.1.2, the linear response is given by

⟨Ji⟩ = GR
JiJi

(ω, k⃗)δAi. (5.29)

Therefore we have the equation

σ(ω, k⃗) = i
GR

JiJi
(ω, k⃗)

ω
(5.30)

This is known as the Kubo’s formula for the electric conductivity.

Since we are usually interested on the real part of the conductivity, we also could have
called the following relation as the Kubo formula:

σ(ω, k⃗) = −
ImGR

JiJi
(ω, k⃗)

ω
(5.31)

And the DC conductivity is obtained taking ω to zero

σ(0, k⃗) = − lim
ω→0

ImGR
JiJi

(ω, k⃗)

ω
(5.32)

5.1.5 Thermoelectric transport

We have seen how we can compute the linear response due to an electric perturbation.
Let’s add to that a thermal response due to a mix between electrical current and thermal
current (heat). (

⟨Ji⟩
⟨Qi⟩

)
=

(
σ αT
αT κ̄

)(
Ei

−∇iT/T

)
. (5.33)

We have shown the Kubo’s formula for σ. Now using the same logic as the previous
subsection, we write the Kubo’s formula for:

α(ω, k⃗) = i
GR

QiJi
(ω, k⃗)

ω
(5.34)

and

κ̄(ω, k⃗) = i
GR

QiQi
(ω, k⃗)

ω
. (5.35)

As before, we could have defined these formulas only for the real part of α and κ̄:

α(ω, k⃗) = −
ImGR

QiJi
(ω, k⃗)

ω
(5.36)

and

κ̄(ω, k⃗) = −
ImGR

QiQi
(ω, k⃗)

ω
. (5.37)
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The static quantities are given by, as before, taking ω going to zero:

α(0, k⃗) = − lim
ω→0

ImGR
QiJi

(ω, k⃗)

ω
(5.38)

and

κ̄(0, k⃗) = − lim
ω→0

ImGR
QiQi

(ω, k⃗)

ω
. (5.39)

5.2 KSS Bound

Of course, there are many other interesting Kubo’s formulas to be described for a num-
ber of different perturbations. The prescription described in the previous section can be
applied for many other perturbations, and from the Green functions we are going to have
interesting results for different Hamiltonians. In this section we want to cover one of the
main results of the theory, the KSS-bound, named after the authors of [1].

This result sets a bound for the ratio of the shear viscosity with the entropy. The
calculation of the value of the viscosity comes from a Kubo’s formula, and then applied
to a model that inputs the Green function to the formula.

We then first show the derivation of this equation.

5.2.1 Kubo’s Formula for Shear Viscosity

We have seen in section 2.1 that the relativistic hydrodynamics equation sets the energy-
momentum tensor to satisfy

∇µT
µν = 0 (5.40)

Here, the energy-momentum tensor is of the form

T µν = ρuµuν + pP µν − 2ησµν − ζθP µν , (5.41)

where η is the shear viscosity and ζ is the bulk viscosity and the formulas for P µν and σµν

were given in section 2.1:
P µν = gµν + uµuν , (5.42)

and
σµν = ∇(µuν) + u(µuα∇αu

ν) − 1

d− 1
∇αu

αP µν . (5.43)

Let us take the case of the fluid at rest uµ = (1, 0, 0, 0) and to it we will add a pertur-
bation that will give the viscosity term. The fluid at rest is given by

T µν = ρδµt δ
ν
t + p(gµν + δµt δ

ν
t ). (5.44)

Where we see that the viscosity terms disappear.
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Now we consider the perturbation hxy to the metric gµν . Since we want to focus on
the shear viscosity term, we assume that the bulk viscosity term can be neglected for this
perturbation. Later calculations may include this term.

At linear level, the energy-momentum tensor with the perturbation is changed at the
indices (µ, ν) = (x, y), where this term becomes

Txy = phxy + η∂thxy +O(h2xy) +O(∂2hxy) (5.45)

Linearization of a Perturbation

Here we show a algorithmic way of linearizing equations with perturbation. Of
course, the equation above is quite easy to linearize, but later we are going to do
this for much more complicated equations, and we are going to use the power of the
algorithms to help us.

To start, we take the bare metric without the perturbation

g0µν .

Then we add to this the perturbation

gµν = g0µν + ϵhµν

Here, ϵ > 0 plays the role of counting the order of perturbations. Then in order to
get the quantity

T µν

in linear term of the perturbation we just need to take the expansion of T µν in powers
of ϵ, then the term of order ϵ1 is the result we are looking for.

Since we want the equation in terms of ω we transform to Fourier space

Txy(ω, k⃗) = −iωη(ω, k⃗)hxy. (5.46)

The prescription of linear response developed in the last section tell us that

⟨Txy(ω, k⃗)⟩ = GR
TxyTxy

(ω, k⃗)hxy. (5.47)

Then we have that

η(ω, k⃗) = i
GR

TxyTxy
(ω, k⃗)

ω
. (5.48)

This is the Kubo’s formula for the shear viscosity. As before, usually we only care
about the real part of the viscosity, so we can write as the formula the following:

Then we have that

η(ω, k⃗) =
ImGR

TxyTxy

ω
. (5.49)

And for static viscosity we take ω to zero

η(0, k⃗) = lim
ω→0

ImGR
TxyTxy

(ω, k⃗)

ω
. (5.50)
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5.2.2 The original calculation of the bound

Now we get to the main result calculated by [1]. The authors start with the thermal field
theory dual to the gravity theory of a black brane (a D-dimensional generealization of a
black hole) with some metric.

ds2 = f(ξ)(dx2 + dy2) + gµν(ξ)dξ
µdξν . (5.51)

As an example of such space, the authors gives an example of the near-extremal D3-
brane in type IIB supergravity, the space that is dual to the N = 4SYM

ds2 =
r2

R2

[
−
(
1− r40

r4

)
dt2 + dx2 + dy2 + dz2

]
+

R2

r2(1− r40/r
4)
dr2. (5.52)

The results found here works for the general case of equation 5.51.

The temperature in the field theory is going to be the Hawking temperature of the black
brane. At the same time, the entropy of the field is also going to be found calculating the
entropy of the brane, which is proportional to the area of the horizon

S =
A

4G
. (5.53)

Now the authors aim to solve the (static) Kubo’s formula for the shear viscosity

η = lim
ω→0

ImGR
TxyTxy

(ω, k⃗)

ω
= lim

ω→0

1

2ω

∫
dtdxeiωt⟨[Txy(t, x), Txy(0, 0)]⟩. (5.54)

Now we consider a perturbation on the xy component of the metric hxy. The Einstein
equation, that can be written in the form

RMN = TMN − T

D − 2
gMN , (5.55)

can be linearized to the order of the perturbation, like we said in the previous subsection.

In order for these equations to be respected, we get (after a calculation described in
some detail in [1]) the constraint on hxy

□hxy = 0. (5.56)

Then the authors cite that this situation is the same as massless scalar, which has a
theorem, described in [81] and [82], that tells us that the cross section defined by

σ(ω) = −2
κ2

ω
ImGR

TxyTxy
(ω, k⃗), (5.57)

is given by the fraction of the area over the volume

lim
ω→0

σ(ω) = A/V. (5.58)
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Therefore, we get that

η =
σ(0)

2κ2
=

1

2κ2
A

V
. (5.59)

Recalling that the entropy is proportional to the area, and taking s as the entropy
density

s =
S

V
(5.60)

we get

η =
4G

2κ2
s. (5.61)

The equation above can be rewritten in its most familiar form since κ2 = 8πG

η

s
=

1

4π
. (5.62)

This value is conjectured to set a minimal bound for more general scenarios

η

s
≥ 1

4π
. (5.63)

An argument for this is the calculations of the ratio η/s in more orders of perturbation,
and those corrections are always positive. We can see that experimentally the bound is
respected for common fluids in figure 5.1.

It is of importance to say that there are theoretical calculations that can violate the
bound, specifically in a case of a system with a Bjorken-flow [93] or in the case of
Gauss-Bonnet gravity [94,95], which is an extension of Einstein’s equations that includes
quadratic terms. That is to say, if we find experimental cases where the bound is violated,
this could be an indication that we need extra terms in our calculations of general relativ-
ity, although this is still up to debate.
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Figure 5.1: Experimental data of the shear viscosity-entropy bound for some known flu-
ids. Figure taken from [83]. Earlier versions of this can be found at [84] and [85]. The
experimental data comes from [86], [87], [88], [89], [90], [91] and [92]. The figure shows
that the KSS bound is respected for these fluids.



Part II

Results and Future work

48



Chapter 6

Thermoelectric conductivities from
Kubo formulas, with topological term

6.1 Model with a constant Topological Term

We want to expand the results found in [2, 3], where the author calculated the transport
coefficients from fluctuations around a dyonic black hole without a topological term, and
the results in [9], where it was calculated for magnetic field B = 0. We are interested in
the case B ̸= 0 and with topological term, considered in [20, 21].

The gravitational action considered in [2] includes a Maxwell term and a cosmological
constant − 1

L2 . We modify this action to include a topological term proportional to a
constant W .

I =
2

κ24

∫
d4x

√
−g
(
−1

4
R +

L2

4
FµνF

µν − 3

2

1

L2
+W

L2

4
FµνF̃

µν

)
. (6.1)

Right now we could set W = 1, but we make a choice to keep from doing it since it will
help us for future calculations and it’s going to be easier to see the results of including
this new term to this action.

In the action we have the curvature from a connection Aµ:

Fµν = ∂µAν − ∂νAµ, (6.2)

and its dual
F̃µν =

1

2
EµνρσF

ρσ, (6.3)

where Eµνρσ is the Levi-Civita tensor, which can be written in terms of the Levi-Civita
symbol ϵ as

Eµνρσ =
√
−gϵµνρσ. (6.4)

In terms of differential forms, the dual utilizes the Hodge star operator ⋆

F̃ = ⋆F. (6.5)

Some good references for electromagnetic fields in curved spacetimes are [96–98].
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Also, g is the determinant of gµν ,R the Ricci scalar and κ24 a constant for 4d-gravitational
theories that normalizes to

2L2

κ24
=

√
2N3/2

6π
. (6.6)

The equations of motion for the gravity and for the connection are:

Rµν = 2L2FµσF
σ
ν − L2

2
gµνFσρF

σρ − 3

L2
gµν , (6.7)

∇µ

(
F µν +WF̃ µν

)
= 0. (6.8)

Since since F is antisymmetric rank 2 tensor, we can write

∇µF
µν = ∂µF

µν + Γµ
µρF

ρν + Γν
µρF

µρ

= ∂µF
µν +

(
1√
−g

∂ρ
√
−g
)
F ρν

=
1√
−g

∂µ(
√
−g)F µν .

(6.9)

Then we can write the equations of motion in the same form as in [20]:

1√
−g

∂µ
√
−g
(
F µν +WF̃ µν

)
= 0. (6.10)

Note that the topological term does not affect the gravity equation. Then we can use
the solution in [2]:

1

L2
ds2 = −α

2

z2
f(z)dt2 +

α2

z2
(dx2 + dy2) +

1

z2
dz2

f(z)
, (6.11)

where f(z) carries the magnetic and electric charge,

f(z) = 1 + (h2 + q2)z4 − (1 + h2 + q2)z3. (6.12)

The horizon of the black hole is at z = 1. The space boundary of AdS is in the asymptotic
z → 0. We can now see that

√
−g = L4α3

z4
. (6.13)

The solution for the connection in [2] still works for 6.8:

A = hα2xdy + qα(z − 1)dt, (6.14)

giving the curvature equal to (using coordinates {t, x, y, z}):

Fµν =


0 0 0 −qα
0 0 hα2 0
0 −hα2 0 0
qα 0 0 0

 , (6.15)
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and the dual becomes:

F̃ µν =
z4

L4α3


0 0 0 hα2

0 0 −qα 0
0 qα 0 0

−hα2 0 0 0

 . (6.16)

We can compute the temperature of the black hole by

T =
αf ′(1/z)|z=1

4π
=
α(3− h2 − q2)

4π
. (6.17)

In order to compute the thermodynamics of the black hole we use the definition for
the Grand Canonical Ensemble Ω = TI . But a the solutions found the action becomes
infinite. The reason is that we actually need to renormalize the action.

Iren = I + counterterms (6.18)

We can use the counterterms that comes from the boundary of the AdS found in the
references [69–71]:

Ict =
1

κ24

∫
d3x

√
−γθ − 2

κ24

1

L

∫
d3x

√
−γ. (6.19)

We will show what the terms above mean. First we define a unit vector that is normal
to the boundary nµ ∝ (0, 0, 0, 1). We find the normalization from

nµnµ = 1. (6.20)

In our case

nµ = z

√
f(z)

L
. (6.21)

The boundary metric γMN is the 3d-metric of the boundary induced by gµν . Note that
the metric goes to infinity at the boundary z → 0. To avoid this, we will consider our
calculations at some point near the boundary at z = ϵ for some small ϵ > 0. Then the
induced metric becomes

γMN = −α
2

ϵ2
f(ϵ)dt2 +

α2

ϵ2
(dx2 + dy2). (6.22)

We could had considered the induced metric in 4d by defining γµν = gµν − nµnν . One
can check that this gives the same metric.

The other term to be considered is the extrinsic curvature defined by

θMN = −1

2
(∇µnν+∇νnµ) =


L
√

f(ϵ)(ϵf ′(ϵ)−2f(ϵ))

2ϵ2
0 0

0 −L
√

f(ϵ)α2

ϵ2
0

0 0 −L
√

f(ϵ)α2

ϵ2

 , (6.23)
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and its trace is

θ = γMNθMN =
ϵf ′(ϵ)− 6f(ϵ)

2L
√
f(ϵ)

. (6.24)

Then plugging this in 6.19 and realising that the integral in t becomes a finite temper-
ature β we get, in a power series of ϵ

Ict = βV

√
2N3/2

6π
α3

(
−1

ϵ3
+

1 + h2 + q2

2
+O(ϵ)

)
, (6.25)

where V =
∫
dxdy.

With this we can now see our solutions in the unrenormalized action and we are going
to have (integrating in z form ϵ to 1):

I = βV

√
2N3/2

6π
α3

(
1

ϵ
− 1 + h2 − q2 − 2Whq +O(ϵ)

)
. (6.26)

Then the full action becomes,

Iren = lim
ϵ→0

(I + Ict) = βV

√
2N3/2

6π

α3

4

(
−1− q2 + 3h2 − 4Whq

)
. (6.27)

The Grand Canonical Ensemble is defined as the action times the temperature

Ω = TIren, (6.28)

therefore

Ω =

√
2N3/2

6π

α3V

4

(
−1− q2 + 3h2 − 4Whq

)
. (6.29)

The magnetic field and the chemical potential are found from the z → 0 limit of A in
(6.14) and its field strength F in (6.15),

B = α2h , µ = −αq. (6.30)

The grand canonical ensemble in terms of this parameters is:

Ω =

√
2N3/2

6π

α3V

4

(
−1− µ2

α2
+ 3

B2

α4
+ 4W

µB

α3

)
. (6.31)

And the temperature is

T =
α

4π

(
3− µ2

α2
− B2

α4

)
. (6.32)

While this potential depends on W , the entropy S and energy E derived from it must
not, since they depend only on the geometry of the black hole. Indeed, for the entropy

S = − ∂Ω

∂T

∣∣∣∣
B,µ

= −
(
∂Ω

∂α

)∣∣∣∣
B,µ

/(
∂T

∂α

)∣∣∣∣
B,µ

, (6.33)
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we first find from the relations for Ω (6.31) in and the T in (6.32) that

dT |B,µ =
dα

4π

(
3 + 3

B2

α4
+
µ2

α2

)
, (6.34)

dΩ|B,µ = −
√
2N3/2

6π

α2dαV

4

(
3 + 3

B2

α4
+
µ2

α2

)
, (6.35)

so that

S = − ∂Ω

∂T

∣∣∣∣
B,µ

=

√
2N3/2

6
α2V, (6.36)

As for the energy, we first need to compute the electric charge Q, so, from deriving
equation (6.32) with T,B fixed, we get µ = µ(α) as

dα

(
3 +

µ2

α2
+ 3

B2

α4

)
= 2µ

dµ

α
, (6.37)

and then

dΩ|T,B =
∂Ω

∂α

∣∣∣∣
µ,T,B

dα +
∂Ω

∂µ

∣∣∣∣
α,T,B

dµ

=

√
2N3/2

6π

V

4

{
dα

[
−3α2 − µ2 − 3

B2

α2

]
+ dµ [−2αµ+ 4BW ]

}
=

√
2N3/2

6π

V

4

{
−2µ

dµ

α
α2 + dµ [−2αµ+ 4BW ]

}
,

(6.38)

so that

Q = − ∂Ω

∂µ

∣∣∣∣
T,B

=

√
2N3/2

6π
V (αµ−BW ). (6.39)

Then the energy is

E = Ω+ TS + µQ =

√
2N3/2

6π

α3V

2

(
1 + q2 + h2

)
. (6.40)

Again from (6.32), when T, µ are fixed, we get α = α(B),

dα

(
3 +

µ2

α2
+ 3

B2

α4

)
= 2B

dB

α3
, (6.41)

and then

dΩ|T,µ =
∂Ω

∂α

∣∣∣∣
B,T,µ

dα +
∂Ω

∂µ

∣∣∣∣
α,T,µ

dµ

=

√
2N3/2

6π

V

4

{
dα

[
−3α2 − µ2 − 3

B2

α2

]
+ 6

BdB

α
+ 4WµdB

}
=

√
2N3/2

6π

V

4

{
−2B

dB

α3
α2 + 6

BdB

α
+ 4WµdB

}
.

(6.42)

so that

M =
dΩ

dB

∣∣∣∣
T,µ

=

√
2N3/2

6π

V

α
(B +Wαµ) . (6.43)

So the charge and magnetization do get aW term, while the entropy and energy don’t.
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6.1.1 Susceptibilities

We also wish to compute the susceptibilities of this theory so that we may compare with
other models in the following chapters.

Let’s first aim to calculate

χE,E = − 1

V

∂2Ω

∂µ2

∣∣∣∣
T,B

, (6.44)

which can be also written as

χE,E = − 1

V

∂Q

∂µ

∣∣∣∣
T,B

. (6.45)

We can write

dQ|T,B =
∂Q

∂α

∣∣∣∣
B,T,µ

dα +
∂Q

∂µ

∣∣∣∣
α,T,µ

dµ

=

√
2N3/2

6π
V (µdα + αdµ)

=

√
2N3/2

6π
V

(
α +

2α3µ2

3B2 + 3α4 + α2µ2

)
dµ .

(6.46)

So then

χE,E = −
√
2N3/2

6π
α

(
3α4 + 3B2 + 3α2µ2

3α4 + 3B2 + α2µ2

)
= −

√
2N3/2

6π
3α

(
1 + h2 + q2

3 + 3h2 + q2

)
.

(6.47)

We can do the same for

χT,T = − 1

V

∂2Ω

∂T 2

∣∣∣∣
B,µ

= − 1

V

∂S

∂T

∣∣∣∣
B,µ

. (6.48)

Note that

∂S

∂T

∣∣∣∣
B,µ

=
∂S

∂α

∣∣∣∣
B,µ

/
∂T

∂α

∣∣∣∣
B,µ

=

√
2N3/2

6
V

8α5

3α4 + 3B2 + α2µ2
.

(6.49)

So we have

χT,T = − 1

V

∂2Ω

∂T 2

∣∣∣∣
B,µ

= −
√
2N3/2

6

8α

3 + 3h2 + q2
. (6.50)
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We can also calculate the cross term

χT,E = − 1

V

∂

∂T

∣∣∣∣
B,µ

∂

∂µ

∣∣∣∣
T,B

Ω (6.51)

by taking either a derivative on Q or in S

χT,E = − 1

V

∂Q

∂α

∣∣∣∣
B,µ

/
∂T

∂α

∣∣∣∣
B,µ

= − 1

V

∂S

∂µ

∣∣∣∣
T,B

. (6.52)

Regardless of the choice, the result is

χT,E = −
√
2N3/2

6π

4α4µ

3α4 + 3B2 + α2µ2

= −
√
2N3/2

6π

4µ

3 + 3h2 + q2
.

(6.53)

This reproduces the results in [21]n although the authors use a different notation. But
we can move forwad and also compute

χB,B = − 1

V

∂2Ω

∂2B

∣∣∣∣
T,µ

(6.54)

χT,B = − 1

V

∂

∂T

∣∣∣∣
B,µ

∂

∂B

∣∣∣∣
T,µ

Ω (6.55)

χB,E = − 1

V

∂

∂B

∣∣∣∣
T,µ

∂

∂µ

∣∣∣∣
T,B

Ω . (6.56)

We can compute these in a similarly fashion than the others before, and we can get
the following matrix

χ =

χE,E χT,E χT,B

χT,E χT,T χB,E

χT,B χB,E χB,B

 (6.57)

to be equal to

χ = −
√
2N3/2

6


α(1 + h2 + q2)

3 + 3h2 + q2
4µ

3 + 3h2 + q2
4πB

α2(3 + 3h2 + q2)
4µ

3 + 3h2 + q2
8πα

3 + 3h2 + q2
2qh

3 + 3h2 + q2
+W

4πB

α2(3 + 3h2 + q2)

2qh

3 + 3h2 + q2
+W

3 + h2 + q2

α(3 + 3h2 + q2)

 .

(6.58)

Note that only one of the entries depend on the topological term as can be seen by the
presence of the constant W .
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6.2 Magnetization term

In order to get the transport coefficients from the Kubo Formula we need to consider green
functions of fluctuations of the AdS background. The general fluctuations was calculated
in [2] for the theory without the topological term and with translational symmetry, and
in [3] the authors considered a specific ansatz for the fluctuations. We aim to use this
ansatz in our analysis.

The Kubo formula for systems with B ̸= 0 must subtract the magnetic currents [99]

Jmag
i = ϵij∂jM, (6.59)

Tmag
ti = ϵij∂jM

E, (6.60)

where M and ME are respectively the magnetization and the energy magnetization den-
sities.

We consider background fields δA0
µ that is coupled to a source current Jµ and a δg0tν

that sources Ttν . We consider fluctuations that at the boundary gives us this fields:

lim
z→0

δAy = xB, (6.61)

lim
z→0

δGy = xBE, (6.62)

where Gy = gtyz
2/α. The ansatz we take from [3] For these fluctuations is

δAy = x(B − qBEz), (6.63)

δGy = xf(z)BE. (6.64)

Also, we consider that we are going to need only δAt(z) to compensate δAy and δGy in
the equations of motion at the linear level of perturbation.

We then proceed to consider the on-shell action 6.1 at the linear level of these fluctua-
tions. The process is similar to the linearization of gravity described in chapter 40 of [100]
and in chapter 18 of [101]. Here we are going to have a more ”brute force” approach to
this method. We introduce a parameter ϵ so that our new metric and connection becomes

gµν = gbackground
µν + ϵδgµν , (6.65)

Aµ = Abackground
µ + ϵδAµ. (6.66)

Then we compute the equations of motion 6.8 and 6.7 using the definitions above, and
we expand the result in a Taylor series in epsilon. We expect the 0-th term to be zero
since they are just the equations of motion of the background. The result for the gravity
equation is:

0 = 2L2FµσF
σ
ν − L2

2
gµνFσρF

σρ − 3

L2
gµν −Rµν . (6.67)

For example, for (µ, ν) = (x, x) the right hand side of the above expression gives

2z2(Bh−BEqhz + qαδA′
t(z))ϵ+O(ϵ2). (6.68)
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Prime denotes partial derivation of the coordinate z. So in order for it to respect the
equations of motion at linear level of perturbation we need

δA′
t(z) = −Bh−BEqhz

qα
(6.69)

The full calculation shows that the same expression above cancels every linear term for
every pair (µ, ν) = {t, x, y, z}.

For the gauge equation of motion (first without theW term) we do the same procedure

∇µF
µt =

z4

α3
(BEh− αδA′′

t (z))ϵ+O(ϵ2). (6.70)

Then

δA′′
t (z) =

BEh

α
. (6.71)

The solution for the differential equations 6.70 and 6.71 is

δAt(z) =
hBE

2α
(z2 − 1)− hB

qα
(z − 1), (6.72)

where the integration constants were chosen such that δAt goes to 0 at the horizon. This
result matches [3].

We then add the equations of motion for the topological term. As expected since the
topological term is a constant, we get

∇µF̃
µν = 0, (6.73)

therefore in order for the fluctuations to impact on the equations of motion we will have
to consider the coefficient W as a function.

6.3 Computing the Green functions

6.3.1 Recipe

In other to compute the Green function of our models, we use the prescription from [8]:

1. From the classical action for a field ϕ, recognize the function A(z) in front of the
kinetic term (∂µϕ)

2

Scl =
1

2

∫
dzdx2A(z)(∂µϕ)

2 (6.74)

2. Solve the linearized field equations for phi in terms of its value at the boundary ϕ0:

ϕ(z) = fω(z)ϕ0, (6.75)

therefore we require that fω(z) = 1 at the boundary. Also, we need to impose
incoming-wave boundary conditions
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3. The retarded Green function is given by

GR = lim
z→0

A(z)f−ω(z)∂zfω. (6.76)

We are going to show how [2] implemented this prescription for their model1. First
we assume fluctuations of the form δAi = Ai(z)e

iωt and δGi = Gi(z)e
−iωt for i ∈ {x, y}

and αGi = gtiz
2, and then we compute the linearized Maxwell’s equations of motion for

theses fluctuations:
f(fA′

x)
′ + ω̄Ax + iω̄hGy + qfG′

x = 0

f(fA′
y)

′ + ω̄Ay + iω̄hGx + qfG′
y = 0

(6.77)

Here, prime denotes derivation by z. One can check that the gravity equations of
motion leads to the same equations. We have defined, in the notation of [2], the dimen-
sionless frequency ω̄ = ω/α.

Now we impose incoming wave solutions

Ai(z) =f(z)
νai(z)

Gi(z) =f(z)
(1+ν)gi(z),

(6.78)

where ν = iω̄/(h2 + q2 − 3). We require the functions ai and gi to be regular at the
horizon z = 1.

We also have a constant solution

Gy =
iω̄

h
Ax

Gx =− iω̄

h
Ay.

; . (6.79)

6.3.2 Fluctuations in the Hydrodynamic Limit

We want to solve the solutions at the hydrodynamic limit ω̄ → 0. for this, we expand the
fluctuations around the frequency while maintaining h and q fixed:

ai(z) =a
(0) + ω̄a

(1)
i (z) + ...,

gi(z) =g
(0) + ω̄g

(1)
i (z) + ...

(6.80)

The solution for this can be found in detail in [2]. In first order we get

Gx(z) = −iω̄
h
δy + f(z)1+ν

(
G0

x +
iω̄

h
δy − iω̄G0

x

∫ z

0

du

ψ2(u)
P5(u)

)
, (6.81)

and

Ax(z) = δx + f(z)ν
(
A0

x − δx − (G0
x +

iω̄

h
)qz + iω̄qG0

x

∫ z

0

du(z − u)

ψ2(u)
P5(u)

−iω̄
∫ z

0

du

f(u)
(G0

xQ4(u) +G0
yQ3(u))

)
.

(6.82)

1The model topological term with a constant W doesn’t affect linear perturbations, therefore the results
showed here are going to work for the model that includes it.
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Where ψ(z) = f(z)/z, the functions P5(u), Q3(u) and Q4(u) are polynomial found
at Appendix 1 of [2] and δi are constants that depends on the boundary values of the fields

δx = A0
x +

G0
yh(h

2 + q2 − 3)− 3G0
xq(1 + h2 + q2)

4(h2 + q2)
. (6.83)

And similarly for δy.

6.3.3 Quadratic Action

We need the classical quadratic action for the description of the Green functions. We do
this by writing 6.1 up to linear order in perturbation an then expanding in on shell.

It may be easier to see how this is done term by term. First, let us neglect the metric
perturbations and only consider those coming from the Maxwell fields, then we have

2

κ24

∫
d4x

√
−g
(
L2

4
FµνF

µν +W
L2

4
FµνF̃

µν

)
→

αL2

κ24

∫
d4x

(
ω̄

f(z)
(A2

x + A2
y) + f(z)((A′

x)
2 + (A′

y)
2) + 2iWω̄(A′

xAy − AxA
′
y)

)
(6.84)

Integrating by parts and neglecting terms calculated at the horizon (z = 1) and at
lowest order in ω gives us

2

κ24

∫
d4x

√
−g
(
L2

4
FµνF

µν +W
L2

4
FµνF̃

µν

)
→

αL2

κ24

∫
d3x lim

z→0
f(z)

[
(A′

xAx + A′
yAy) + 2iω̄WϵabAaAb

] (6.85)

Bringing back the perturbations from the metric gives us the result

I → αL2

κ24

∫
d3x lim

z→0

(
f 1/2 − 1

2z3f 1/2
(GxGx +GyGy) + q(AxGx + AyGy)+

− 1

8z2
(GxG

′
x +GyG

′
y) +

f

2
(AxA

′
x + AyA

′
y) + 2iω̄WϵabAaAb

)
.

(6.86)

which, except for the new extra term with W matches the result in [2].

We can now expand this result in Fourier modes for the fields

A0
x(t) =

∫ ∞

−∞

dω

2π
A0

x(ω)e
−iωt (6.87)
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Then inputting the on-shell linearized fluctuations 6.82 we have:

Iquadratic =
i

2

∫
dω

2π
dx2ω(A0

x(ω)A
0
y(−ω)− A0

y(ω)A
0
x(−ω))

( q
h
−W

)
+

−3i(1 + h2 + q2)

4h

∫
dω

2π
dx2ω(A0

x(ω)G
0
y(−ω)− A0

y(ω)G
0
x(−ω))+

9iq(1 + h2 + q2)2

32(h2 + q2)

∫
dω

2π
dx2ω(G0

x(ω)G
0
y(−ω)−G0

y(ω)G
0
x(−ω))+

i(−3 + h2 + q2)2

32(h2 + q2)

∫
dω

2π
dx2ω(G0

x(ω)G
0
x(−ω)−G0

y(ω)G
0
y(−ω)).

(6.88)

which is now in the form where we can use the recipe for calculating holographic retarded
Green’s functions. Note that the leading terms of order O(ω̄0) have cancelled, and the
only contributions are: from the mixing of terms alluded before (Gx containing A0

y, etc.)
for the Maxwell and gravity terms, leading to an extra ω̄, but from the leading term in the
topological one, and seeing as we already had a ω̄, this is of the same order.

We can now go back to the recipe to read off the Green functions. Recalling that
the magnetic field isB = hα2, The charge density is ρ = qα2 and the energy density is
ϵ = (1 + h2 + q2), we have

GR
Ja,Jb

= −iωϵa,b
( q
h
−W

)
= −iωϵa,b

( ρ
B

−W
)
, (6.89)

GR
Ja,Ttb

=− iωϵa,b
3(1 + h2 + q2)

2h
= −iωϵa,b

ϵ

2B
, (6.90)

and finally the correlator between energy-momentum tensors:

GR
Tta,Ttb

= −iωϵab
9q(1 + h2 + q2)2

32(h2 + q2)
+ iωδab

(−3 + h2 + q2)2

32(h2 + q2)
. (6.91)

Plugging (6.89) to the Kubo formula gives us

σab = − lim
ω→0

ImGR
JaJb

ω
= ϵab

( ρ
B

−W
)
. (6.92)

The formulas for α and κ̄ follow the same path. As noted in section 6.2, we need to
consider the magnetization term from [99] in the Kubo formulas:

αab = − lim
ω→0

ImGR
TtaJb

ω
+
M

T
ϵab =

s

B
ϵab , (6.93)

and

κ̄ab = − lim
ω→0

ImGR
TtaTtb

ω
+

2(ME − µM)

T
ϵab . (6.94)

6.3.4 Anisotropy

In order to break isotropy, we consider two parameters (kx, ky) multiplying the boundary
space coordinates, giving a metric

1

L2
ds2 = −α

2

z2
f(z)dt2 +

α2

z2
(kxdx

2 + kydy
2) +

1

z2
dz2

f(z)
. (6.95)
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Note that then we obtain
√
−g =

√
kxkyL

4α3/z4.

From the equations of motion for gravity, we obtain the condition

kx = 1/ky. (6.96)

Nothing new is obtained from this moment on, and the analysis proceeds as before,
with no new physics. We have shown this, however, since in the next section, when we
have varying W (z), there will be new results.

6.3.5 Conductivity from entropy function via attractor mechanism
and membrane paradigm

The conductivity can also be obtained using the attractor mechanism, for calculations at
the horizon, via Sen’s entropy function [22]. The application of Sen’s entropy function
formalism to holography was considered in [102] (see also [103]), while the application
to the calculation of conductivity was done in [17], and was also used in [20] for the case
of metrics with charge density and magnetic field, defined only near the horizon. The fact
that we can calculate the conductivity at the horizon, as well as at its natural AdS/CFT
location, the boundary, is related to the application of the membrane paradigm to the AdS
black holes, as argued initially by Iqbal and Liu [18].

The near-horizon geometry of an extremal 4-dimensional planar black hole (such as
obtained in the attractor mechanism) is AdS2 × R2, written as

ds2 = −vr2 dt2 + w(dx2 + dy2) +
v

r2
dr2 , (6.97)

where r = 1/z. Note that this is for a planar black hole, but the formalism works as well
as for the spherical (S2 instead of R2) black hole case [22]. Also, sometimes v and w are
denoted by v1 and v2, in order to emphasize their similarities.

The values of the magnetic and electric fields at the horizon are FA
xy = BA (soeme-

times denoted pA) and FA
zt = eA, and for the scalars we have the horizon values ϕs = us.

Defining the function f as the integral over the horizon of the Lagrangian density,

f(u, v, w,BA, eA) =

∫
dxdy

√
−gL , (6.98)

as shown by Sen, the Einstein equations imply that the us, v and w are extrema of f , while
the charges QA can be defined as its variations with respect to the electric fields, so

∂f

∂us
= 0 ,

∂f

∂v
= 0 ,

∂f

∂w
= 0 ,

∂f

∂eA
= QA. (6.99)

Then Sen’s entropy function is

E(us, v, w, eA, BA;QA) = 2π(eAQ
A − f(us, v, w, eA, B

A)) , (6.100)

and is value at its extremum, defined by the attractor equations

∂E
∂us

= 0 ,
∂E
∂v

= 0 ,
∂E
∂w

= 0 ,
∂E
∂eA

= 0. (6.101)
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In our case we don’t have a scalar, and we have a single electromagnetic field, with
electric field e, so we only have 3 attractor equations. The function f in our case is then
(with 4πGN = 1)

−f =

∫
dx dy

√
−g
(
−1

4
R +

L2

4
FµνF

µν − 3

2

1

L2
+W

L2

4
FµνF̃

µν

)
=

1

2

∫
dxdy

(
B2L2v

w
+ w

(
1− 3v

L2
− e2L2

v

)
+ 2BeL2W

)
, (6.102)

and the entropy function is

E = 2πe(Q̃−BL2W ) + π
B2L2v

w
+ πw

(
1− 3v

L2
− e2L2

v

)
, (6.103)

where Q̃ = Q/Vol. The attractor equations are then

w2

(
3− e2L4

v2

)
−B2L4 = 0

L2

(
B2v

w2
+
e2

v

)
+

3v

L2
− 1 = 0

L2 (ew −BvW )

v
− Q̃ = 0. (6.104)

We use the last equation to solve for e in terms of Q̃ (inverting it), and the other two
to solve for v and w. Then the parameters v, w, e of the ansatz are written in terms of
the charge density Q̃ and the magnetic field B, as well as the parameters L and W in the
action, as

v =
L2

6
,

w =

√
B2L4 (W 2 + 1)− 2BL2Q̃W + Q̃2

√
3

,

e =
BL2W − Q̃

2
√
3z2
√
B2L4 (W 2 + 1)− 2BL2Q̃W + Q̃2

. (6.105)

Since the charge density of the field theory, ρ, is dual (couples) to At, we have

ρ =
δS

δAt

, (6.106)

which gives, on the solution, the same result as the charge density parameter of the black
hole,

ρ =
√
−g(F tz +WF̃ tz) =

Q̃

L2
. (6.107)

For the entropy density, the extremum of the entropy function gives the same as the
Hawking formula,

s =

√
B2L4 (W 2 + 1)− 2BL2Q̃W + Q̃2

4
√
3GN

=
w

4GN

, (6.108)
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and this is identified with the entropy density in the field theory.

We can now use these formulas for the entropy density s and the charge density ρ of
the field theory in the formulas already derived, from Kubo formulas, for the electric and
thermoelectric conductivities, to find these as functions of the charges of the black hole.
We find

σab = ϵab

( ρ
B

−W
)
= ϵab

(
Q̃

BL2
−W

)
,

αab = ϵab

√
B2L4 (W 2 + 1)− 2BL2Q̃W + Q̃2

4
√
3BGN

. (6.109)

We note that now, with the holographic transport coefficients written in terms of Q̃,
B and W via the attractor mechanism, the explicit W dependence becomes more compli-
cated.

6.3.6 S-duality

As observed in [20], and made more precise in [21], the general formulas for transport
coefficients obtained from fluctuations around a solution near the horizon of a black hole
have an action of S-duality (Sl(2;Z)) on them, coming from the S-duality invariance of
the gravitational action.

If we consider the action

I = − 4

2κ24

∫
d4x

√
−g
(
−1

4
R + Z

L2

4
FµνF

µν +W
L2

4
FµνF̃

µν

)
− 3

2

1

L2
, (6.110)

Which is the same as before but with the addition of Z in front of the Maxwell action,
the invariance is under

Fµν → ZF̃µν −WFµν

Z → − Z

Z2 +W 2

W → W

Z2 +W 2
. (6.111)

This led to the duality relation on the complex conductivity σ ≡ σxy + iσxx,

σ′ = − 1

σ
. (6.112)

In our case, this is less obvious, since we have effectively fixed Z to 12, but the duality
is there.

In the case of the dyonic black hole of [2, 3], which gives a subset of the formulas
in [20], the action of S-duality was hard to understand, as the only relevant limit is the

2We worked with Z = 1 so far to approximate to the results in [2] with just the W term added. Going
forward we are not going to set Z = 1 anymore.
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one that takes ρ → 0, followed by s → 0 in the transport coefficients, and previously
there was nothing left.

With the introduction of the W term in this dyonic black hole calculation, and the
associated entropy function result, it becomes relevant to take the limit ρ→ 0, and obtain

σxx = 0 , σxy = −W , αxx = 0 , αxy =
s

B
. (6.113)

S-duality then acts nontrivially, as

W → 1

W
⇒ σxy → − 1

σxy
. (6.114)

The limit ρ → 0 is understood, from the point of view of the dyonic black hole,
as the limit when the electric charge goes to zero, keeping the magnetic charge finite.
Considering also the entropy function calculation leading to (6.108), we obtain that in
this limit,

αxy =
s

B
=

c√
3

√
W 2 + 1 , (6.115)

where

c =
L2

4GN

=
πZ

g24
(6.116)

is the central charge of the dual field theory, with the second form being due to our fixing
Z/g24 .

But, moreover, if we would keep Z free, we would obtain
√
W 2 + Z2 in (6.115),

which is an S-duality invariant, see (6.111).



Chapter 7

Thermoelectric conductivities from
Kubo formulas, with radially varing
terms

7.1 Model with a dilaton field

In this section we consider a more general model, with a field dependent topological term,
so an Einstein-Maxwell-dilaton model with a nontrivial dilaton, as considered for instance
in [20, 21],

I =
2

κ24

∫
d4x

√
−g
(
−1

4
R − 1

2

[
(∂ϕ)2 + Φ(ϕ)((∂χ1)

2 + (∂χ2)
2)
]
− V (ϕ)+

+Z(ϕ)
L2

4
FµνF

µν +W (ϕ)
L2

4
FµνF̃

µν

)
.

(7.1)

This model without the topological term has been studied by [11] and in [20] the authors
added the topological term to it.

The reason for introducing W (ϕ) is to have a nontrivial contribution to the Einstein
equation (and the Maxwell equation); otherwise, as we saw in the previous section, this
is a topological term.

Here the axions χi are introduced to have a breaking of translational invariance of the
theory, via a linear axion ansatz

χ1 = k1x
χ2 = k2y. (7.2)

We will go back to the isotropic case by considering k1 = k2 = k.

In order for the ansatz above to be consistent with the axion equations of motion,

Φ(ϕ)∂µ∂
µχ(1,2) + Φ′(ϕ)∂µχ(1,2)∂

µϕ = 0 , (7.3)

we will assume that the dilaton is static and only depends on the radial direction, so
ϕ = ϕ(z).

65
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The equation of motion for the dilaton is

∂µ∂
µϕ−V ′(ϕ)−1

2
Φ′(ϕ)

[
(∂χ1)

2 + (∂χ2)
2
]
+
L2

4
(Z ′(ϕ)Fµν+W

′(ϕ)FµνF̃
µν) = 0. (7.4)

To guarantee that we have a solution, we must impose that

V (0) =
−6

L2
,

V ′(0) = 0. (7.5)

7.2 Radially varying topological term

However, the ansatz considered so far is still too complicated to solve, so instead of the
arbitrary functions of the dilatonW (ϕ),Φ(ϕ), V (ϕ) and Z(ϕ), on top of the radially vary-
ing dilaton ϕ(z), we will simplify further and directly consider independent functions of
the radial coordinate z, so W (z),Φ(z), V (z) and Z(z). The resulting reduced Einstein-
Maxwell-dilaton model is

I =
2

κ24

∫
d4x

√
−g
(
−1

4
R − 1

2

[
(∂ϕ)2 + Φ(z)((∂χ1)

2 + (∂χ2)
2)
]
− V (z)+

+Z(z)
L2

4
FµνF

µν +W (z)
L2

4
FµνF̃

µν

)
.

(7.6)

Now the gauge field equation of motion becomes

1√
−g

∂µ
√
−g
(
Z(z)F µν +W (z)F̃ µν

)
= 0. (7.7)

We take the same ansatz for the metric as in the previous section,

1

L2
ds2 = −α

2

z2
f(z)dt2 +

α2

z2
(dx2 + dy2) +

1

z2
dz2

f(z)
, (7.8)

where f(z) is the same function,

f(z) = 1 + (h2 + q2)z4 − (1 + h2 + q2)z3 , (7.9)

and the ansatz for the field strength is also unchanged,

F = hα2dx ∧ dy + qαdz ∧ dt⇒ Fµν =


0 0 0 −qα
0 0 hα2 0
0 −hα2 0 0
qα 0 0 0

 . (7.10)

Then the Maxwell equation of motion gives

hW ′(z)− qZ ′(z) = 0 , (7.11)
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solved by

Z(z) =
hW (z)

q
+ Z0 , (7.12)

where Z0 is a constant.

The Einstein equations,

Rµν = Kµν +
1

2
gµνV (z) + Z(z)

(
2L2FµσF

σ
ν − L2

2
gµνFσρF

σρ

)
, (7.13)

give 3 independent equations, which can be taken to be the xx, zz and xy components,
for instance, and can be used to fix Kzz(z), Kxx(z) = Kyy(z) and V (z) , where

Kzz =
1

2
(∂zϕ)

2 , Kxx =
1

2
Φ(z)k21 , Kyy =

1

2
Φ(z)k22. (7.14)

The solution of the equations of motion is then

Kzz(z) = 0 ,

Kxx(z) = −2α2z2 (h2 + q2) (hW (z) + q(Z0 − 1))

q
,

V (z) =
2hz4 (h2 + q2)W (z) + 2q (z4(Z0 − 1) (h2 + q2)− 3)

L2q
. (7.15)

Note that, strictly speaking, the above solution means that ϕ is constant, so Φ, V, Z,W
should have been constant as well. Except, of course, in a correct solution we should have
varied Φ(ϕ), V (ϕ), Z(ϕ),W (ϕ) with the chain rule to obtain the correct dilaton equation
of motion, which was not done here.

So the above must be thought of as a simple toy model for the correct case. We have
fixed Z(z),Φ(z), V (z) in terms of the independent W (z) from the equations of motion,
considered as the only variable, set by hand.

7.2.1 Fluctuations

To calculate the quadratic action for fluctuations around the background solution, and find
the holographic Green’s functions and the transport coefficients through Kubo formulas,
we proceed as in the previous section.

We add fluctuations to the off-diagonal metric and gauge field in the spatial boundary
directions,

gtx =
αϵGx(z)e

−itω

z2
,

gty =
αϵGy(z)e

−itω

z2
,

dAx = ϵAx(z)e
−itω ,

dAy = ϵAy(z)e
−itω , (7.16)

and consider the same ansatz with infalling boundary conditions at the horizon,

Ax(z) = f(z)νax(z) ,
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Gx(z) = f(z)(1+ν)gx(z). (7.17)

At linear level, we now obtain the equations of motion

iω̄G′
x(z) = −4z2(hW (z) + qZ0)

q
[−iqω̄Ax(z)

+h(z − 1)A′
y(z)

{
z
(
z
[
z
(
h2 + q2

)
− 1
]
− 1
)
− 1
}
+ hqGy(z)

]
,

q(z − 1)
{
z
(
z
[
z
(
h2 + q2

)
− 1
]
− 1
)
− 1
}
×

×
[
4z3A′

x(z)(hW (z) + qZ0)− 2G′
x(z) + zG′′

x(z)
]

= 4ihω̄z3Ay(z)(hW (z) + qZ0) + 4qz3Gx(z)
(
h2 − hqW (z)− q2(Z0 − 1)

)
.

(7.18)

We expand again the solutions in orders of ω̄:

ax(z) = a0x(z) + ω̄a1x(z) + ...
gx(z) = g0x(z) + ω̄g1x(z) + ... (7.19)

We solve the equations of motion order by order in ϵ and in ω̄, as before, focusing on
the linearized perturbations (first order in ϵ) At zeroth order in ω̄, we obtain

a0′x (z) = −qg0x(z) ,

g0′′x (z) = −2g0′x (z) (3h
2z4 − 2h2z3 + 3q2z4 − 2q2z3 − 2z3 − 1)

(z − 1)z (h2z3 + q2z3 − z2 − z − 1)

= −2
ψ′(z)

ψ(z)
g0′x (z) , (7.20)

which matches what we got in the previous section for constant W , as expected. So the
same solution as before is also valid now,

a0x(z) = αx − qzγxg
0
x(z) = γx (7.21)

where γx and αx are constants.

At first order in ω̄, we obtain the equation for ax

a1′x (z) =
θ(z) + γ(z) + ψ(z)

4h(z − 1)z2 (z (z (z (h2 + q2)− 1)− 1)− 1) (hW (z) + qZ0)
, (7.22)

where we have defined the functions

θ(z) = −4qh(z − 1)z2g1x(z)
(
z
(
z
(
z
(
h2 + q2

)
− 1
)
− 1
)
− 1
)
(hW (z) + qZ0) ,

γ(z) = q
4iz2(hW (z) + qZ0)

q (h2 + q2 − 3)

(
h3z2(4z − 3)(γxqz − αx) + h2q(γyqz − αy)+

+hz2
(
q2(4z − 3)− 3

)
(γxqz − αx) + q

(
q2 − 3

)
(γyqz − αy)

)
,

ψ(z) = −qiγyz2
(
4z
(
h2 + q2

)
− 3

(
h2 + q2 + 1

))
. (7.23)

There is also a similarly complicated equation for g1x. But it turns out that we can write
both these equations (for ax and g1x) in the same form as we did in the previous section,

a1′x (z) + qg1x(z) = A0
x(z) ,
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g1′′x (z) + 2
ψ′(z)

ψ(z)
g1′x (z) = G0

x(z) , (7.24)

except with different G0
x and A0

x(z). Solving the equations in the same way (see [2]), we
obtain

g1′x (z) =
c2

ψ(z)2
+

1

ψ(z)2

∫ z

0

G0
x(u)ψ(u)

2du. (7.25)

This again blows up at z = 1, so we must impose regularity by putting c2 = 0, and∫ 1

0

G0
x(u)ψ(u)

2du = 0 , (7.26)

which relates γx to the other integration constants,

γx =− (h2 + q2 − 3) (γyq (2Z0 (h
2 + q2) + h2 + q2 + 3)− 4αyZ0 (h

2 + q2))

3h (h2 + q2 + 1)
+

+
i (h2 + q2 − 3)

3 (h2 + q2 + 1)

∫ 1

0

−4i (h2 + q2)W (z)(γyqz − αy)

q
dz

(7.27)

and similarly for γy. Therefore we have the solution

a1x(z) = αx − q

∫ z

0

g1x(u)du− i

∫ z

0

A0
x(u)du ,

g1x(z) = γx − i

∫ z

0

1

ψ(u)2
γxW(u)du , (7.28)

where W(u) is a function depending on the parameters of the solution, which we write,
together with A0

x(u), in the Appendix B.

Next one would need to calculate the quadratic action as we did in (6.3.3) and (6.88),
and extract the transport coefficients, but it is now too involved (one could do numerics
for it, but we leave that for further work).

Note that, as before, besides the solutions with ansatz (7.17), with ±ν, we also have a
constant solution,

Ax = δx , Gx = −iω̄
h
δx ,

Ay = δy , Gy =
iω̄

h
δy. (7.29)

The solutions become near the boundary at z = 0

A0
x = δx + αx(γx, γy) ,

G0
x = −iω̄

h
δx + γx ,

A0
y = δy + αy(γx, γy) ,

G0
y =

iω̄

h
δy + γy. (7.30)
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7.3 Anisotropy

We can introduce anisotropy as in the previous chapter, via a metric ansatz with kx ̸= ky,

1

L2
ds2 = −α

2

z2
f(z)dt2 +

α2

z2
(kxdx

2 + kydy
2) +

1

z2
dz2

f(z)
, (7.31)

and now it is not trivial anymore. The Einstein equations give now different values for
Kxx and Kyy, and we find

V (z) =
2
(
hz4W (z) (h2 + kxkyq

2) + q
√
kxky (h

2z4Z0 − kxky (z
4 (h2 − q2Z0 + q2) + 3))

)
L2q(kxky)3/2

,

Kxx(z) = −
2α2kxz

2
(
W (z) (h3 + hkxkyq

2) + q
√
kxky (h

2(Z0 − kxky) + kxkyq
2(Z0 − 1))

)
q(kxky)3/2

,

Kyy = −
2α2kyz

2
(
W (z) (h3 + hkxkyq

2) + q
√
kxky (h

2(Z0 − kxky) + kxkyq
2(Z0 − 1))

)
q(kxky)3/2

.

(7.32)

Repeating the procedure from the previous subsection, we obtain the γx and γy given
in the Appendix C.

7.4 Conductivity from entropy function

Considering the sameAdS2×R2 ansatz for the near-horizon metric of the planar extremal
black hole in 4 dimensions,

ds2 = − v

z2
(dt2 − dz2) + w(dx2 + dy2) , (7.33)

we compute as before the boundary spatial integral of the Lagrangian density,

f =

∫
dxdy

∫
d4x

√
−gL , (7.34)

and finally Sen’s entropy function, which becomes

E =
π

α2vwz2
Γ +

π

α2eAvw2z2
Θ , (7.35)

where

Γ =4α4h2vwz2
(
w2 − L2vZ0

)
− 4e2w2z4

(
v − L2Z0

)
+

+ α2(L2Z0

(
−B2v2 + e2w2z2

(
z2 − 4w

)
+ 4h2v2z4

)
+

+ vw
(
2ez2

(
2ew2 + Z0

)
− 4h2wz4 − 13w

)
)

(7.36)

and

Θ =αL2vW (z)(e2w2z2
(
−2αB + α2h

(
z2 − 4w

)
+ 4hz2

)
+

− α2hv2
(
B2 − 4h2z2

(
z2 − α2w

))
).

(7.37)
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The attractor equations are, as before

∂E
∂v

= 0 ,
∂E
∂w

= 0 ,
∂E
∂eA

= 0. (7.38)

The full solutions for v, w and e are too big to be shown here, though it should be
possible to find them numerically.

7.5 S-duality

One important reason to consider the more general action (7.1) is S-duality. As explained
in the previous chapter, such an action is manifestly invariant under S-duality acting on
Z(ϕ) and W (ϕ).

However, we considered the “toy model” with only z dependence for W (z), Z(z),
V (z) and Φ(z), so we need to check S-duality on the solutions. Of course, we see that the
Maxwell equation (7.11) is indeed S-duality invariant, but in order to have the solutions
be as well, we need that Z0 = 0 in (7.12).

Since W (z) and Z(z) are functions of the radial coordinate z, now we have to ask:
at what position z is the action of S-duality relevant to transport coefficients to be con-
sidered? On the one hand, by virtue of calculating the holographic Green’s functions and
using the Kubo formulas at the boundary, that is where it seems we should consider them.
But on the other hand, the conductivity calculated from Sen’s entropy function in the at-
tractor mechanism is obtained at the horizon, so that is where it seems to be needed in this
case.

The two calculations are related by the application to AdS/CFT of the membrane
paradigm, as done by Iqbal and Liu, and as shown for instance in [20], but in the case
of our toy model, that is guaranteed by the fact that Z(z), as well as V (z) and Φ(z), are
related to W (z), and Z(z) is related to it via a duality-invariant proportionality relation,

Z(z) =
h

q
W (z) , (7.39)

which is one reason why the toy model set-up is a sensible one.



Chapter 8

Susceptibilities for the model with
dilaton field

So far, we have seen that, at nonzero temperature, the dyonic black hole in AdS4 has been
used as a model for 2+1 dimensional transport in the presence of a magnetic field [2, 3]
and to the presence of a topological term in the action in [23]. We have calculated the
thermodynamic quantities, and transport from fluctuations around the dyonic background.

The generic transport is necessarily obtained from a background obtained by adding
perturbations at infinity (and perhaps the horizon of the black hole), so that the full back-
ground solution is not known, following the method in [11–17]. One rather generic case
was considered in [20]. In [21], the Wiedemann-Franz law was obtained by a combina-
tion of the two methods. In particular, the matrix of susceptibilities χs, calculated as the
second order derivatives of the thermodynamic potential in the dyonic black hole back-
ground, and was related via the matrix of diffusivities D to the matrix of conductivities
(as expected from the general theory of the hydrodynamic limit), for which the results in
the perturbative background from [20]. In this thesis we reproduced the calculation of χs

giving enough details.

But that implies the assumption that dyonic black hole background of [2, 3] and the
perturbative one of [20] give the same thermodynamics, which is not obvious. Therefore
we aim to investigate the possibility of these two results giving the same answer. This has
implications beyond the specific case considered here, as it measures the correctness of
importing results from a top-down construction to a bottom-up one, or vice versa.

In the next section we consider the perturbative model with topological term, but only
B,B1 external fields, and calculating the thermodynamics, the magnetizations and the
susceptibilities with this simplified version of the fluctuations, and for the other sections
we construct the susceptibilities for the general case.

8.1 AdS/CMT perturbative model and boundary condi-
tions at the black hole horizon

The action in [20] is given by:

72
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I =

∫
dx4

√
−g
[

1

16πGN

(
R− V (ϕ)− 1

2
(∂µϕ)(∂µϕ)−

1

2
((∂χ1)

2 + (∂χ2)
2)Φ(ϕ)

)
−FµνF

µνZ(ϕ)

4g24
− FµνF̃

µνW (ϕ)

]
,

(8.1)

Thus is the same action we have studied before, but now we are not going to make the
assumption that W (ϕ) = W (z).

We want to study electrical and thermal transport in the presence of a magnetic field.
We consider the Euclidean action in the bulk, in the absence of axion perturbations, as

SE =

∫
d4x

√
g

(
1

16πGN

(
R +

1

2
(∂ϕ)2 + V (ϕ)

)
+
Z(ϕ)

4g24
FµνF

µν −W (ϕ)FµνF̃
µν

)
.

(8.2)

In this case, the response of the euclidean action with the change in the magnetic field
gives the magnetization density,

M = − 1

Vol
∂SE

∂B
. (8.3)

We also need to consider the response of the action with respect to a fluctuations in
the metric of the type δgtx = −B1y, which gives the energy magnetization density,

ME = − lim
B1→0

1

Vol
∂SE

∂B1

. (8.4)

These two affect the background solutions by adding a term to Ax and a non-diagonal
term to the metric,

A =a(r)dt+ (−B1 + (a(r)− µ)B1y)dx, (8.5)

ds2 =− U(r)(dt+B1ydx)
2 +

dr2

U(r)
+ e2V (r)(dx2 + dy2). (8.6)

Then on-shell, the gauge terms equal

FµνF
µν = 2E−4V (r)(B +B1µ−B1a(r))

2 − 2a′(r)2 (8.7)

FµνF̃
µν = 4e−2V (r)a′(r)(−B1a(r) +B +B1µ) , (8.8)

and the Ricci scalar is given by

R = U(r)

(
1

2
B2

1e
−4V (r) − 6V ′(r)2 − 4V ′′(r)

)
− 4U ′(r)V ′(r)− U ′′(r). (8.9)

Taking the derivatives

−1

Vol
∂SE

∂B
=

∫ Λ

rh

dr

(
B +B1µ−B1a(r)

g24
e−2V (r)Z(ϕ)− 4W (ϕ)a′(r)

)
(8.10)
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−1

Vol
∂SE

∂B1

=

∫ Λ

rh

dr

[
B1e

−2V (r)U(r)

16πGN

+

(
B +B1µ−B1a(r)

g24
e−2V (r)Z(ϕ)− 4W (ϕ)a′(r)

)
(µ− a(r))

]
(8.11)

and then the limit of B1 going to zero, we get the magnetization densities,

M =

∫ Λ

rh

dr

(
Be−2V (r)Z(ϕ)

g24
− 4W (ϕ)a′(r)

)
(8.12)

ME =

∫ Λ

rh

dr

(
Be−2V (r)Z(ϕ)

g24
− 4W (ϕ)a′(r)

)
(µ− a(r)). (8.13)

We can also define the heat magnetization density as MQ =ME − µM , giving

MQ = −
∫ Λ

rh

dr

(
Be−2V (r)Z(ϕ)

g24
− 4W (ϕ)a′(r)

)
a(r). (8.14)

We can also define
Q = −∂SE

∂µ
(8.15)

which give us

Q = −Vol
∫ Λ

rh

dr

(
B1e

−2V (r)Z(ϕ)

g24
(B +B1(µ− a(r)))− 4B1W (ϕ)a′(r)

)
. (8.16)

Note that this goes to zero when B1 → 0.

8.1.1 Susceptibilities

We define the susceptibilities, as usual, as the second derivatives of the thermodynamical
potential, which in holography equals the Euclidean action, which is a priori a function
of B,B1, µ and T , and in the most general case to be considered in the next section, also
of E and ξ, SE(B,B1, µ, T ;E, ξ). In this case, the magnetization susceptibility is the
derivative of the magnetization with respect to B,

χBB = − ∂

∂B

(
− 1

Vol
∂SE

∂B

)∣∣∣∣
B1,µ,T

, (8.17)

and more generally, we can also define other susceptibilities if we replace any B with a
B1, so we can write

χBiBj
= − ∂

∂Bi

(
− 1

Vol
∂SE

∂Bj

)∣∣∣∣
Bk,µ,T

. (8.18)
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Then, by taking the derivative of equations (8.10-8.11), we get

χBB =

∫ Λ

rh

e−2V (r)Z(ϕ)

g24
dr,

χBB1 = −
∫ Λ

rh

e−2V (r)Z(ϕ)

g24
(µ− a(r))dr,

χB1B1 =

∫ Λ

rh

e−2V (r)U(r)

16πGn

+
e−2V (r)Z(ϕ)

g24
(µ− a(r))2dr.

(8.19)

For completeness, we can calculate also the derivatives of the heat magnetizations
MQ,

∂MQ

∂B

∣∣∣∣
µ,T

= −
∫ Λ

rh

e−2V (r)Z(ϕ)

g24
(a(r))dr (8.20)

and

∂MQ

∂B1

∣∣∣∣
µ,T

= −
∫ Λ

rh

e−2V (r)U(r)

16πGn

+
e−2V (r)Z(ϕ)

g24
(−µa(r) + a(r)2)dr. (8.21)

Here we see that no terms proportional to W (ϕ) appear in the susceptibilities χBiBj
.

We can also compute the double derivatives coming from Q:

χEE = − ∂

∂µ

(
− 1

Vol
∂SE

∂µ

)∣∣∣∣
B1,B,T

,

χEB = − ∂

∂µ

(
− 1

Vol
∂SE

∂µ

∣∣∣∣
B1,µ,T

∣∣∣∣∣
B1,B,T

,

χEB1 = − ∂

∂µ

(
− 1

Vol
∂SE

∂µ

∣∣∣∣
µ,B,T

∣∣∣∣∣
B1,B,T

.

(8.22)

Taking the derivatives we get

χEE = −
∫ Λ

rh

B2
1e

−2V (r)Z(ϕ)

g24
dr ,

χEB = −
∫ Λ

rh

B1e
−2V (r)Z(ϕ)

g24
dr ,

χEB1 = −
∫ Λ

rh

(
(B + 2B1(µ− a(r))e−2V (r)Z(ϕ)

g24
− 4W (ϕ)a′(r)

)
dr ,

(8.23)

Note that as we had in the more simple model in 6.1.1 only one of the double deriva-
tives depends on the topological terms a seen by the presence of the W term.

Also, note that we haven’t calculated the derivatives related to the temperature. This
because we are leaving the results in terms of functions to be discovered, and the tem-
perature would appear as we calculate the limits of the integrals, since it comes from the
horizon term

U(rh) = 4πT , (8.24)
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following the 0-th law of black hole thermodynamics.

To complete these calculations we may look for an ansatz that solves the equations of
motion.

8.2 Ansatz and Transport Coefficients

We are interested in calculating the susceptibilities for the model with general perturba-
tions, using the ansatz from [20]. In this section we review the calculation of the transport
coefficients in [20], since the results are going to be used later.

The source of fluctuations are the same as in the previous section at B1 = 0, a mag-
netic field A(0)

x = −By, but now we also consider a nonzero electric field Ex = E and
thermal gradient 1

T
∇xT = ξ. We also add general fluctuations for all fields depending

on the sources from the Einstein equations of motions, δhµν for the metric, δAµ for the
gauge field and δχi for the axion fields.

The resulting fields with all their fluctuations are: -the metric field,

gµν =


−U(r) 0 ϵ(δhtxe

2V (r) − ξtU(r)) ϵδhtye
2V (r)

0 1
U(r)

ϵδhrxe
2V (r) ϵδhrye

2V (r)

ϵ(δhtxe
2V (r) − ξtU(r)) ϵδhrxe

2V (r) e2V (r) 0
ϵδhtye

2V (r) ϵδhrye
2V (r) 0 e2V (r)


(8.25)

-the gauge field,

At =a(r)

Ax =−By + tϵ(ξa(r)− E) + ϵδAx

Ay =ϵδAy

(8.26)

-and the axion fields
χ1(r) = k1x+ ϵδχ1 (8.27)

χ2(r) = k2y + ϵδχ2. (8.28)

Here, ϵ is added as a mathematical tool in order to account for the order in the fluctu-
ations, since we are considering B, E and ξ small.

8.2.1 Maxwell’s equations of motion

The gauge equations of motion are given by

1√
−g

∂µ
√
−g
(
F µν +WF̃ µν

)
= 0. (8.29)

In the equation for ν = x only the µ = r term survives

∂r

[√
−g
(
F rx +WF̃ rx

)]
= 0. (8.30)
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and in the equation for ν = y we have an extra term that also survives

∂r

[√
−g
(
F ry +WF̃ ry

)]
= −4ξa′(r)W (ϕ)ϵ− BξZ(ϕ)

g24

√
e−2V (r)ϵ. (8.31)

Note that the second term in the equation above is the same as the integrand times ξ of
the magnetization found in (8.12).

As explained in [20], in order to do a calculation without having the full solution, we
can take advantage of the fact that there are generalized currents that are r-independent,
Ji, following the general idea of the membrane paradigm in the form of Iqbal and Liu
[18]. We can define these currents for the model modified by the magnetization term as

J x =
√
−g
(
F rx +WF̃ rx

)
J y =

√
−g
(
F ry +WF̃ ry

)
− ϵξM(r).

(8.32)

Note that we do in fact have ∂rJ i = 0. On-shell, we have

J x =
ϵe4V (r)Z(ϕ)

(
δhtxa

′(r) + U(r)e−2V (r) (Bδhry + δA′
x)
)

g24

J y =
ϵe4V (r)Z(ϕ)

(
δhtya

′(r) + U(r)e−2V (r)
(
δA′

y −Bδhrx
))

g24
+

+ 4ϵe4V (r)W (ϕ)(ξa(r)− E)− ϵξM(r).

(8.33)

The currents are going to be useful for us because they don’t depend on the coordinate
r, and thus we can relate the fields for any r to values at the horizon or the boundary:

J i(r) = J i(rh) = lim
r→∞

J i(r). (8.34)

At the horizon we have that the magnetization vanishes, M(rh) = 0, directly from the
result in (8.12). Also, we can impose regularity conditions near the horizon [11],

δAx = −E ln(r − rh)

4πT
+O(r − rh) (8.35)

δAy = O(r − rh) (8.36)

δhrx =
δhtx
U(r)

+
ξe−2V (r) log(r − rh)

4πT
+O(r − rh) (8.37)

δhry =
δhty
U(r)

+O(r − rh) (8.38)

δχi = O(r − rh). (8.39)

We then obtain that at the horizon the usual currents J i equal the generalized currents
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J i, and equal

Jx = Jx(rh) = lim
r→rh

e2V (r)Z(ϕ)
(
δhtxe

2V (r)a′(r) +Bδhty − E
)

g24
(8.40)

Jy = Jy(rh) = lim
r→rh

e2V (r)Z(ϕ)
(
δhtye

2V (r)a′(r)−Bδhtx
)

g24
+ 4W (ϕ)(ξa(r)− E).

(8.41)

(8.42)

We still need to deal with δhti, appearing in the above formulas, and for that we must
use the gravity equations of motion.

8.2.2 Einstein’s equations of motion

The equations of motion for gravity are

Rµν =
1

2
∂µϕ∂νϕ+

1

2
V (ϕ) +

16πGN

4g24

(
2FµσF

σ
ν − 1

2
gµνFσρF

σρ

)
. (8.43)

We calculate them on-shell at linear level in ϵ. The derivation of the formulas can
get involved, so, since we are interested in the result near horizon, we can expand the
background field near this region,

a(r) = ah(r − rh) + ...

V (r) = Vh + ...

ϕ = ϕh + ...

(8.44)

Using this, for µν = ty, we end up with the Einstein equation

1

2
U(r)e2V (r)

(
δh′′ty + 4δh′tyV

′(r)
)
−B2δhtye

−2V (r)Z(ϕ)+

+
1

4

(
k21 + k22

)
δhtye

2V (r)Φ(ϕ)− 2BhrxU(r)a
′(r)Z(ϕ)

= −2U(r)a′(r)δA′
yZ(ϕ) + 2Be−2V (r)Z(ϕ)(ξa(r)− E).

(8.45)

We can rewrite the above expression so we get a more familiar result [11]

U(e4V δh′ty)
′ −
(
κ

g24
B2Z +

1

2
(k21 + k22)e

4VΦ

)
δhty −

2κ

g24
UBZe2V a′hrx =

= −2κ

g24
UZe2V a′δA′

y +
2κ

g24
BZ(ξa− E).

(8.46)

A similar expression can be found for µν = tx,

U(e4V δh′tx)
′ −
(
κ

g24
B2Z +

1

2
(k21 + k22)e

4VΦ

)
δhtx −

2κ

g24
UBZe2V a′hry =

= −2κ

g24
UZe2V a′δA′

x.

(8.47)
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We need impose the regularity conditions (8.35 - 8.37), and another expansion near
the horizon for the function U(r),

U(r) = (r − rh)U
′(rh) + ..., (8.48)

where the coefficient in the expansion is given, as usual, by the temperature

U ′(rh) = 4πT. (8.49)

Note that
δA′

x = − E

4πT

1

r − rh
= −E

U
. (8.50)

Then we have(
κ

g24
ZB2 +

1

2
e2V (k21 + k22)Φ

)
δhtx −

2κ

g24
ZBe2V ahδhty = −2κ

g24
Ze2V ahE + e2V 4πTξ(

κ

g24
ZB2 +

1

2
e2V (k21 + k22)Φ

)
δhty −

2κ

g24
ZBe2V ahδhtx = −2κ

g24
ZBE , (8.51)

and we can solve for δhtx and δhty in terms of ξ, E,B.

With this result, we can rewrite the currents (8.40-8.41) and then equate with the
general formula for transport

Ji = σxiE − αxiTξ , (8.52)

and thus we can identify the thermoeletric transport coefficients, obtaining (when com-
paring with [20] note that here we have considered the more general case with k1 ̸= k2)

σxx =
1

2

e2V (k21 + k22)Φ(2κ
2
4g

4
4ρ

2 + 2κ24B
2Z2 + g24Ze

2V (k21 + k22)Φ/2)

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V (k21 + k22)Φ/2)
2

∣∣∣∣
rh

(8.53)

σxy = 4κ24Bρ
κ24g

4
4ρ

2 + κ24B
2Z2 + g24Ze

2V (k21 + k22)Φ/2

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V (k21 + k22)Φ/2)
2
− 4W

∣∣∣∣
rh

(8.54)

αxx =
2κ24g

4
4sρe

2V (k21 + k22)Φ/2

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V (k21 + k22)Φ/2)
2

∣∣∣∣
rh

(8.55)

αxy = 2κ24sB
2κ24g

4
4ρ

2 + 2κ24B
2Z2 + g24Ze

2V (k21 + k22)Φ/2

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V (k21 + k22)Φ/2)
2

∣∣∣∣
rh

. (8.56)

Here
ρ = −Ze2V ah (8.57)

is the charge density and
s = 4πe2Vh (8.58)

is the entropy density.

One important observation for the following is that there are is explicit dependence on
T in the above formulas (the only explicit dependence on T in δhtx, δhty was through the
factor Tξ, which was factored out in order to obtain the coefficients αxi, σxi).
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8.3 Susceptibilities of the general model with perturba-
tions

The susceptibilities of the model are the double derivatives of the thermodynamic poten-
tial,

χab =
1

Vol

∂2Ω

∂a∂b

∣∣∣∣
other vars.

, (8.59)

where a and b stand for the thermodynamic variables.

The potential is given by the on-shell Euclidean action times the temperature

Ω = TSE , (8.60)

so we need to compute the Euclidean action

SE =

∫
d4x
(
−FµνF

µνZ(ϕ)

4g24
− FµνF̃

µνW (ϕ)

R− V (ϕ) +
−1

2
(∂µϕ)(∂µϕ)− 1

2
((∂χ1)

2 + (∂χ2)
2)Φ(ϕ)

16πGN

)
(8.61)

on the ansatz (8.25 8.28), this time up to quadratic terms in ϵ.

The integral over time cancels with the temperature in (8.60), and the integrals over
x and y turn into an overall volume Vol =

∫
dx
∫
dy, so in the end our result will only

depend on an integral over r.

8.3.1 Susceptibilities with (a, b) ∈ (ξ, E,B)

The full quadratic Lagrangian is too big for us to show in this paper, but luckily a lot of
terms goes to zero when we take the double derivatives. Furthermore, counterterms also
do not contribute at this level.

Here we calculate and show these facts for the off-diagonal susceptibilities involving
the magnetic B and electric E fields and the thermal gradient ξ:

χEξ =

∫ Λ

rh

dr

(
−a(r)Z(ϕ)

g24U(r)

)
, (8.62)

χBE =

∫ Λ

rh

dr

(
−δhtyZ(ϕ)

g24U(r)

)
, (8.63)

χξB =

∫ Λ

rh

dr

(
a(r)δhtyZ(ϕ)

g24U(r)
+O(t)

)
. (8.64)
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We also obtain formulas for the diagonal susceptibilities involving the same:

χEE =

∫ Λ

rh

dr

(
Z(ϕ)

g24U(r)

)
, (8.65)

χξξ =

∫ Λ

rh

dr

(
a(r)2Z(ϕ)

g24U(r)
+O(t2)

)
, (8.66)

χBB =

∫ Λ

rh

dr

(
Z(ϕ)

g24U(r)

((
δh2tx + δh2ty − U(r)2

(
δh2rx + δh2ry

))
2

− U(r)e−2V (r)

)
+O(t)

)
.

(8.67)

8.3.2 Susceptibilities with (a, b) = (T, ...)

We wish to also compute the susceptibilities involving the temperature T as (at least) one
of the variables (a, b). One way to do this is to solve the integral of r and get a result
that depends on the fields at the boundary and at the horizon, while the latter is related to
the temperature. This proved to be a hard challenge in this general case, since we obtain
functions that are not calculable with the methods we employ.

Instead, the path we explored is to make use of the already computed result for the
electrical currents (8.32), and consider only the case that the T dependence comes only
from explicit dependence, not from implicit T dependence in the conductivities σxx, αxx

(previously computed) and in the metric fluctuations δhtx, δhry.

First, we use the fact that

J i(r) = J i(rh) = J i , (8.68)

since Ji does not depend on r. Thus we can relate the fields at any r through the result
for the thermoelectric response (8.52),

J i = σxiE − αxiTξ , (8.69)

where we have computed σxi and αxi in subsection 8.2, where we noted that they had no
explicit T dependence.

Then we obtain
√
−g
(
F ri +WF̃ ri

)
− ϵξM(r)δiy = σxiE − αxiTξ. (8.70)

Solving for ξ the above equation for i = x, we have

ξ =
Z(ϕ)

(
δhtxe

2V (r)a′(r) + U(r) (Bδhry + δA′
x)
)
+ Eg24σxx

αxxg24T
. (8.71)

Then we substitute ξ as a function of T from the above formula in the quadratic
Lagrangian, and after taking derivatives (and assuming δhtx, δhry and σxx, αxx are T -
independent, i.e., considering only the explicit dependence in their formulas) we have, at
lowest order in T ,

χET =

∫ Λ

rh

dr
2σxxa(r)

2Z(ϕ)

α2
xxg

4
4T

3U(r)

(
Z(ϕ)

(
δhtxe

2V (r)a′(r)
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+U(r) (Bδhry + δA′
x)) + Eg24σxx

)
. (8.72)

Rewriting this, we get the final form,

χET =

∫ Λ

rh

dr

(
2σxxa(r)

2Z(ϕ)ξ

αxxg24T
2U(r)

)
. (8.73)

We can do the same procedure to find the other susceptibilities involving T , at the
lowest order in T ,

χBT =

∫ Λ

rh

dr 2ϵ2a(r)2δhryZ(ϕ)
2

(
Z(ϕ)δhtxe

2V (r)a′(r)

α2
xxg

6
4T

3

+
Z(ϕ)U(r) (Bδhry + δA′

x(r)) + Eg24σxx
α2
xxg

6
4T

3

)
χTT = − T

Vol

∂Ω

∂T 2

∣∣∣∣
B,µ

=

∫ Λ

rh

dr3ϵ2a(r)2Z(ϕ)×

×

((
Z(ϕ)

(
δhtxe

2V (r)a′(r) + U(r) (Bδhry + δA′
x)
)
+ Eg24σxx

)2
α2
xxg

6
4T

4U(r)

)
.(8.74)

Note the sign difference, and the multiplication by T , which are standard for χTT .

Rewriting these, we get

χBT =

∫ Λ

rh

dr

(
2ϵ2a(r)2δhryZ(ϕ)

2ξ

αxxg44T
2

)
χTT =

∫ Λ

rh

dr

(
3ϵ2a(r)2Z(ϕ)ξ2

αxxg44T
2U(r)

)
. (8.75)



Chapter 9

Conclusion

The duality between SU(N) Yang-Mills theory at the conformal fixed point and string
theory on AdS space 1-dimensional higher, called AdS/CFT correspondence, provides us
with a new framework to study both quantum gravity and quantum field theories. We used
this duality to study strong correlated operators in CFT by creating a holographic map
to a gravity dual using the GPKW master rule. This leads us to a theory that is weakly
coupled, so perturbative methods are applicable again.

We gave an utilitarian review of the correspondence, giving the historical context of
its discovery. The first ideas of a duality between theories of different dimensions, called
holographic principle, that would help us understand the quantum nature of gravity was
inspired by black hole thermodynamics developed by Beckenstein-Hawking, where the
entropy of a black hole depends on its area instead on its volume.

We reviewed the AdS/CMT method for computing low frequency transport coeffi-
cients for strongly coupled condensed matter models in the hydrodynamic limit by con-
sidering the gravity dual of a dyonic black hole in AdS-space. We utilize the previously
mentioned theory by Hawking to understand how we can introduce temperature and other
thermodynamics notions to the black hole in the quantum gravity theory.

The method of holographic transport can be applied as an algorithm for different mod-
els for the gravity background and the connection to our goal is made from the Kubo’s
Formula. This allows us to study effects related to transport, such as quantum Hall effect,
Nersnt effect and viscosity, in regimes that weren’t possible to model before.

We expanded the model studied in [2, 3] to include a topological term WFµνF̃
µν in

the 3+1 dimensional gravitational action for the Einstein-Maxwell model, and we used
it to holographically calculate transport coefficients in strongly coupled 2+1 dimensional
materials, using a dyonic black hole background that asymptotes to AdS space.

Considering first a constant W , we have found that the results match the general re-
sults in [20] from the calculation in an a priori unknown metric, at the horizon of the
black hole. Using also the attractor mechanism and Sen’s entropy function, the transport
coefficients were written in terms of ρ = Q̃, B and W , and we have found the action of
S-duality on them.

In order to gain new terms, we include a dilaton field, a type of field very common in
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quantum gravity theories. We also include the presence of axions to possibly break spatial
symmetries and thus consider even more generic models.

A toy model for this complicated case of a general solution with nontrivialW (ϕ), Z(ϕ),
V (ϕ),Φ(ϕ) was the case with functions of the radial coordinate z, W (z), Z(z), V (z) and
Φ(z). We obtained the solutions for fluctuations, which were very complicated, so we did
not proceed to find the transport coefficients, though those could be found numerically
from our results. We have also shown how to introduce anisotropy in this case, and found
the solutions for fluctuations in this case. We have set up the case of the attractor mecha-
nism and Sen’s entropy function, again leaving the complete (and very ugly) formulas for
later. S-duality arguments sharpened the idea of the toy model, as well as its relevance.

Anisotropy might give us a path to find a model that can interpret an interesting class
of condensed matter materials, like the one Strongly Coupled Anisotropic Plasma studied
in [104], where a possible future work would be to utilise the methods seen here for this
material.

This work led to the paper [23] co-written by this author. We are still interested if its
possible to obtain the numerical values of the transport coefficients. This is viewed as a
first step towards a case based on a more complete solution, involving not only a dyonic
black hole, but nontrivial ϕ(z) and W (ϕ), Z(ϕ), V (ϕ),Φ(ϕ).

We also can expand the methods seen here to explore other models. For example,
in [105], the authors used this formalism to compute the conductivities in in Gauss-Bonnet
gravity with momentum dissipation, and found that they are independent of the Gauss-
Bonnet coupling, so their results (even after the Sen’s entropy calculations) are the same
as ours.

We have also calculated thermodynamic susceptibilities, the second order derivatives
of the thermodynamic potential, whose matrix is related to the conductivity matrix by the
general theory of the hydrodynamic limit.

We first did it for the simple model in [2] with constant topological term, and we
expanded the results in [21] to include the derivatives in the chemical potential µ. We
showed that only one of this second derivatives depends on the topological factor.

We then compute the susceptibilities for a general holographic model with external
fields B,B1, where we also get that only of them depends on the topological term.

And then for the general model with E,B, µ, ξ introduced as perturbations at infinity.
In the process, we have also found more general formulas for the thermoelectric con-
ductivities in the case that not only translational invariance, but isotropy is also broken,
through general linear dilatons χ1 = k1x, χ2 = k2y, k1 ̸= k2.

We have then compared the formulas with formulas obtained in the standard analysis
using the ”top-down” AdS4 dyonic black hole, and we have found that the results do
not match. While there is a possibility that one of the assumptions in our calculation is
unwarranted, we think that unlikely. More likely, calculations using different types of
assumptions (the fields are nonperturbatively introduced in the dyonic black hole, while
perturbatively introduced at infinity in the case considered here) are not expected to match
in general, so one should be careful when exporting them from one model to the other.

This work led to the paper [25] co-written by this author.
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The holographic principle can also be applied to more broader problems in physics,
and can lead to a many other research options with models like the one studied in this
work. Quark-gluon plasma is believed to be a strong coupled fluid, so we believe that the
duality may give us quantitative results that we can observe in laboratories in the future.
Also, we incorporate models for Holographic QCD, and it is hoped that effects that only
happens at the strong coupling regime of chromodyamics, such as confinement, can be
modeled from a gravity dual. We also hope for quantum gravity models for cosmology
that can be studied from a condensed matter dual, and thus creating a bridge string theory
and experiments to be tested in laboratories.



Appendix A

Lightining review of Bosonic Strings

Polyakov Action

We start our review with the Polyakov action that define the strings

SP =
−1

4πα′

∫
M

dτdσ
√
−γγab∂aXµ∂bX

νηµν . (A.1)

In this, the fields are γ that represents a metric for the spacetime where X(τ, σ) is the
embedding that describes a surface (the string).

The equations of motion for γ can be defined as constraints for X ,

Tab = −4π
1√
−γ

δSP

δγab
/; , (A.2)

while the eom for X is

∂

∂σ+

∂

∂σ−X
µ = 0 (A.3)

In the following, we will work with γab = ηab (called conformal gauging) and with
the coordinates

σ± = τ ± σ , (A.4)

(called light-cone coordinates).

Mode expansion

In the light cone coordinates the equation of motion

∂

∂σ+

∂

∂σ−X
µ = 0 (A.5)

ha a solution given by a left-moving and a right-moving parts

Xµ(σ, τ) = XL(σ
+) +XR(σ

−) . (A.6)
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For closed strings that obey the boundary conditions

Xµ(τ, l) = Xµ(τ, 0), (A.7)

we have the expansions:

Xm
L u(σ

+) =
1

2
xµ +

α′

2
pµ(σ+) +

i
√
2α′

2

∑
n̸=0

1

n
α̃µ
ne

−inσ+

.

Xm
R u(σ

−) =
1

2
xµ +

α′

2
pµ(σ−) +

i
√
2α′

2

∑
n̸=0

1

n
αµ
ne

−inσ−
.

(A.8)

where we can identify
(αµ

−n) = (αµ
n)

†. (A.9)

While for open strings that satisfies Neumann boundary conditions with string length
= π,

∂

∂σ
X(τ, σ = 0, π) = 0 (A.10)

we have
Xmu(σ, τ) = xµ + 2α′pµτ + i

√
2α′
∑
n̸=0

1

n
αµ
ne

−inτ cosnσ (A.11)

We identify the momentum with the zero modes: For open strings,

αµ
0 =

√
2α′pµ (A.12)

and for closed strings:

α̃µ
0 = αµ

0 =

√
α′

2
pµ (A.13)

Quantization

The constraints we need to satisfy is

Tab = 0, (A.14)

where

T00 =T11 =
1

2α′ (∂τX
2 + ∂σX

2) = 0,

T01 =T10 =
1

α′ (∂τX
2 · ∂σX2) = 0.

(A.15)

We can redefine this on-shell as,

T++ = =
1

2
(T00 + T01) =

1

α′∂τX
2
L,

T−− = =
1

2
(T10 + T11) =

1

α′∂τX
2
R.

(A.16)
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Then wrapping around the constraints we have

Lm =
1

2π

∫
dσe−imσT−− =

1

2

∑
n

αµ
m−nα

µ
n,

L̃m =
1

2π

∫
dσe−imσT++ =

1

2

∑
n

α̃µ
m−nα̃

µ
n.

(A.17)

The Hamiltonian of this system, given by

H =
1

2π

∫ π

0

dσT00, (A.18)

can be calculated so we get

H =
1

2

∑
n

(αi
−nα

i
n + α̃i

−nα̃
i
n). (A.19)

So the constraint for L0 gives H = 0, which in turn gives us

α2
0 = −2

∑
n≥1

αµ
−nα

µ
n (A.20)

The constraints for the light cone then give

α+
n = ατ

n + ασ
n = 0 (A.21)

and

α−
n = ατ

n − ασ
n =

√
2α′

2p+

∑
m

αi
n−mα

i
m. (A.22)

where i = 1, .., D − 2 is a transverse dimension.

The quantization process (exchanging Poisson brackets for −i times commutators)
then gives similar results to the operators in the quantum harmonic oscillator aµn but with
a rescaling

αµ
n =

√
naµn. (A.23)

Number of dimensions

At quantum level, the n = 0 mode is ambiguous, so we modify the above expression

α−
n = ατ

n − ασ
n =

√
2α′

2p+

∑
m

αi
n−mα

i
m − aδn,0 (A.24)

for some number a to be determined.

This modifies the mass operator as such

M2 =
1

α′ (N − a) (A.25)
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where we have defined the number operator

N =
∑
n≥1

αi
−nα

i
n and Ñ =

∑
n≥1

α̃i
−nα̃

i
n. (A.26)

Now lets propose we have a vacuum state |0⟩. The next excited state, (αi
1)

† |0⟩ would
have mass

M2(αi
1)

† |0⟩ = 1− a

α′ . (A.27)

But this state would be a transverse vector in D-dimensions, which only makes sense
if it is massless, since a massive vector would have D − 1 physical components, and not
D − 2 as is this case. Therefore we have a = 1.

we can also compute the zero point energy of our system comparing with the harmonic
oscillator (remeber the rescaling n)

H |0⟩ = −a |0⟩ =
∑
n

D−2∑
i=1

n

2
|0⟩ = D − 2

2

∑
n

n |0⟩ . (A.28)

This final sum looks a dead end, but we can interpret as the Riemann zeta function

ζ(s) =
∑
n

n−s (A.29)

calculated at s = 1. There is an unique analytical continuation to the zeta function, and
we get

ζ(−1) = − 1

12
. (A.30)

So we have that our zero point energy is

a =
D − 2

24
, (A.31)

and since a = 1 we have that we need D = 26. Therefore the theory for bosonic string
must be a 26-dimensional theory.

Closed String Spectrum

We have the following equivalent formulas for the mass operator M2 = −pµpµ for closed
strings:

M2 =
2

α′

∑
n≥1

(αi
−nα

i
n + α̃i

−nα̃
i
n − 2) =

2

α′ (N + Ñ − 2), (A.32)

So for the vacuum state |0⟩ we have M2 = −4/α′. This tell us that our theory has a
tachyon present.

The next state is given by N = 1 and Ñ = 1, so

(αi
1)

†(α̃i
1)

† |0⟩ = |ij⟩ . (A.33)

This state is decomposed of three irreducible parts of the SO(D − 2) group.
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• A symmetric tensor |(i, j)⟩, which can be identified as the graviton gij .

• An antisymmetric tensor |[i, j]⟩, which can be identified as the Kalb-Rammond field
Bij .

• A scalar trace given by |ii⟩, identified as the dilaton ϕ.

It is currently unknown if the instability of the theory caused by the tachyon presence
can be fixed or not. Moreover, bosonics strings have an infinite number of states, all inter-
acting with each other, so an instability of one particle means an instability for the entire
theory. That is one reason why we use superstring theories for realistic applications,
since in this the tachyon is not present, and bosonic string theory is regarded as a toy
model.

Even so, the bosonic states defined earlier appear in the superstring spectrum, but
now as the states of the vacuum. The mass for the states still increases with 1/

√
α′, so

in the classical limit α′ → 0 we are left with only the massless modes as the classical
background, plus α′ quantum corrections.

The effect on them in the action are: gµν gives the curvature replacing ηµν ,Bµν couples
to an antisymetric tensor and gives a quantity called Wess-Zumino term, and the dilaton ϕ
couples with a topological invariant term and is identified with extra holes in the world-
sheet, so it is identified with the string coupling gs as gs = eϕ.



Appendix B

Solutions for fluctuations in the radially
varing case

W(u) =− i

γx

∫ u

0

−i
(
4 (h2 + q2)W (z)(γyqz − αy)

q

)
dz

− u
γxh

3 (u2 (2q2(u− 1)(4u− 3)− 7u+ 6) + 4)

γxh (h2 + q2 − 3)

− u
2h2 (γyq

3(3− 2u) + (2q2 − 3)Z0(γyqu− 2αy) + 3γyq(u− 1))

γxh (h2 + q2 − 3)

− u
h4(γyq(2u(Z0 − 1) + 3)− 4αyZ0) + γxh

5(u− 1)u2(4u− 3)

γxh (h2 + q2 − 3)

− u
γxh (q

2 (u2 (q2(u− 1)(4u− 3)− 7u+ 6) + 4) + 3u2)

γxh (h2 + q2 − 3)

− u
q (q2 − 3) (3γy + γyq

2(2u(Z0 − 1) + 3)− 4αyqZ0)

γxh (h2 + q2 − 3)
.

(B.1)

A0
x(u) = i

(h3z2(4z − 3)(γxqz − αx) + h2q(γyqz − αy)

h(z − 1) (h2 + q2 − 3) (z (z (z (h2 + q2)− 1)− 1)− 1)

+ i
hz2 (q2(4z − 3)− 3) (γxqz − αx) + q (q2 − 3) (γyqz − αy))

h(z − 1) (h2 + q2 − 3) (z (z (z (h2 + q2)− 1)− 1)− 1)

+
iγyq (h

2(3− 4z) + q2(3− 4z) + 3)

4h(z − 1) (z (z (z (h2 + q2)− 1)− 1)− 1) (hW (z) + qZ0)

(B.2)

and similarly for A0
y(u).
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Appendix C

Solution for fluctuations for the
anisotropic model

γy =
(h2 + q2 − 3)

3hkx (h2 + q2 + 1)

(
−ihkx

∫ 1

0

4ikyW (z) (h2 + kxkyq
2) (γxqz − αx)

q(kxky)3/2
dz

−4αxZ0

(
h2 + kxkyq

2
)

+γxq
(
kxky

(
h2 + 2q2Z0 + q2 + 3

)
+ 2h2Z0

)) (C.1)

and

γx =
(h2 + q2 − 3)

3hky (h2 + q2 + 1)

(
ihky

∫ 1

0

4ikxW (z) (h2 + kxkyq
2) (γyqz − αy)

q(kxky)3/2
dz

−4αyZ0

(
h2 + kxkyq

2
)

+γyq
(
kxky

(
h2 + 2q2Z0 + q2 + 3

)
+ 2h2Z0

)) (C.2)
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