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‘I accept chaos, does it accept me?”

Bob Dylan: ‘Chaos is a friend of mine. It’s like
I accept him, does he accept me?.’

Interviewer: ‘Do you see the world as chaos?’
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Abstract

Spatial diffusion of particles in periodic potential models has provided a good frame-
work for studying the role of chaos in global properties of classical systems. Here a
square-symmetric potential, classically modeled from an optical lattice Hamiltonian sys-
tem, was initially used to numerically study diffusion transitions under variation of the
control parameters. Sudden transitions between normal and ballistic regimes were found
and characterized by inspection of topological changes taking place in phase-space. Par-
ticular transitions, correlated with increases in global stability area, were seen to occur
for energy levels where local maxima points become accessible, deviating trajectories ap-
proaching them. These instabilities promote a slowing down of the dynamics and an
island myriad bifurcation phenomenon, along with the suppression of long flights within
the lattice.

On further investigating the island myriad, its structure was found to be intimately
related to the translational and rotational symmetries of the lattice potential. With a high
fractal pattern, the myriad of islands is concentrically organized in isochronous chains,
formed either by orbits with limited range or high escape transport. As the local max-
ima points change with the control parameters, the bifurcation of each chain sequentially
follows a separatrix reconnection, as in a local non-twist scenario. Due to the myriad’s
dependence on the tiling symmetry property of the square lattice, its presence was con-
jectured and confirmed also for a hexagonal lattice, although found in attenuated form
due to extra instabilities in the potential. Beyond that, the numerical techniques applied
for analyses along this work are of wide use and can be adapted to generic conservative
systems, allowing their study as their parameters change in an automated way.

Key-words: Diffusion, Periodic potential, Hamiltonian chaos, Dynamical Sys-
tems
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Resumo

A difusão espacial de partículas em potenciais periódicos têm fornecido bons cenários
para o estudo do papel do caos em propriedades globais na dinâmica de sistemas clássi-
cos. Neste trabalho, um potencial de simetria quadrada, classicamente modelado a partir
de um Hamiltoniano de rede óptica, foi inicialmente usado para o estudo de transições
de difusão conforme a variação dos parâmetros de controle. Transições repentinas entre
os regimes normal e balístico de difusão foram encontradas e descritas em termos das
mudanças topológicas acontecendo no espaço de fase. Em particular, transições correla-
cionadas com aumentos na área de estabilidade foram vistas para níveis de energia onde
máximos locais do potencial tornam-se acessíveis. Estas instabilidades promovem uma
desaceleração da dinâmica e um fenômeno de miríade de ilhas, assim como a supressão
de voos longos na rede.

Ao se investigar o fenômeno de miríade em detalhe, sua estrutura foi vista ser inti-
mamente ligada às simetrias translacional e rotacional do potencial da rede. Com alta
fractalidade, a miríade de ilhas organiza-se em camadas concêntricas de cadeias isócronas,
formadas tanto por órbitas de alcance limitado ou com alto transporte para escape. Con-
forme os pontos de máximo local variam com os parâmetros de controle, as cadeias de
ilha sequencialmente bifurcam seguindo reconexões de separatriz, em um cenário local
não-twist. Devido à dependência com a simetria de preenchimento da rede quadrada, a
presença da miríade foi conjecturada e confirmada também para uma rede hexagonal,
porém, em forma atenuada devido à fontes extras de instabilidade do potencial. Além
destes resultados, os métodos numéricos aplicados em análises ao longo deste trabalho são
de ampla aplicação e adaptáveis à sistemas dinâmicos genéricos, permitindo a automação
de seu estudo conforme seus parâmetros de controle mudam.

Palavras-chave: Difusão, Potencial periódico, Caos Hamiltoniano, Sistemas
dinâmicos
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1

Introduction

“O caos é mais divertido do que a ordem.”
Ricardo Araújo Pereira, Diário de Notícias (2004)



F rom a wide range of experimental scenarios, periodic potential functions arise
as simple yet rich models to a diversity of physical systems. Ranging from cold
gases in optical lattices [1–3], to ionic particles submitted to guided waves in

E × B fields and plasma physics [4, 5], to wave propagation in photonic crystals [6],
and to xenon atoms diffusion over platinum surfaces [7], periodic potentials provide a
mathematical description for the dynamical behavior of such systems.

Within the field of condensed matter physics, one may find optical lattices as ex-
perimental devices used to confine and control ultra-cold atoms from Lorentz gases or
Bose-Einstein condensates. These lattices are created from the superposition of multiple
stationary laser waves, which allow the imprisonment of particles inside the wave’s min-
ima regions [2]. Thus, given the natural periodicity of the waves that shape the lattice,
the confined particles dynamics is promptly described by a Hamiltonian formulation with
a periodic potential modeling the wave-particle interaction. It is this experimental setup
that motivates the mathematical model subjected to study for this work.

Experimentally, the use of these devices, besides confining and control, is to allow the
study of quantum properties of matter, such as energy bands structures with Dirac points
or quantum-classical correspondence of chaos for many-body systems, including, in the
latter, matter waves [1]. As shown by Thommen [8] and Mitchell [9], particles in quantum
lattices could present a behavior similar to classical chaos and fractality. Similarly, as
proposed by Prants [10, 11], inspired by a semi-classical model considering the particle-
field interaction for two-level atoms, the effect of chaos in particles displacement could be
observed experimentally.

From the theoretical perspective, particularly in classical dynamics, periodic dynami-
cal systems often appear as one of two ways. Either as classical billiards, where particles
move freely and collide with hard walls (Sinai billiards [12] – fig. 1), or as Hamiltonian
functions with a periodic potential. Billiard systems have been widely used as simple
models for Lorentz gases [13–15], where particles do not interact with each other and
are scattered by colliding with a series of surfaces. Such systems are usually studied via
discrete maps, or, whenever possible, with solutions via geometrical considerations. Al-
ternatively, in Hamiltonian formulations, particles are constrained to move in a smooth
potential surface (fig. 2) instead of bouncing between hard walls, thus being referred to
as ‘soft’ billiards. In this case, the dynamical evolution requires the integration of the
equations of motion.

The Hamiltonian scenario is particularly interesting since it provides the main frame-
work for deterministic chaos, where ‘stochastic’-like behavior emerges without the appli-
cation of random variables, being due purely to instabilities. It is possible to observe
either regular behavior (integrable trajectories) or chaotic motion (non-integrable) and
often the simultaneous presence of both kinds.
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Figure 1: Representation of a peri-
odic Sinai billiard. The distance d
between the scatterer circles is taken
as the control parameter of the sys-
tem. Reflections with hard walls are
assumed to be specular, i.e. the in-
cident and reflected angles are equal.

Figure 2: Representation of a smooth
potential surface from a bidimen-
sional lattice. The particles (in
green) can either remain trapped in
the minima regions or travel between
multiple lattice cells.

Among theoretical studies, diffusion is often the main inquired topic, that is, the
evaluation of spatial dispersion of particles throughout a given lattice and its dependence
with control parameters [13–15]. Special emphasis is given on understanding how such
systems can present diffusion regimes away from normal (i.e. anomalous diffusion), where
the squared average displacement of an ensemble of particles does not grow linearly as
t → ∞, as in the case of the normal regime in a classical random-walk or brownian
motion for example, but instead it presents growth rates with any deviation from linear.
As aforementioned, since movement in these models is oftentimes considered to occur
without collisions between particles or application of random forces, any deviation from
normal behavior is purely due to unstable solutions and their consequential chaos, thus
making these models a good framework for the study of chaotic dynamics.

Indeed, in previous studies for soft billiards, Zaslavsky performed some of the promi-
nent works for continuous flows and Hamiltonian models considering the variation of
control parameters [15–17]. Particularly in [17], for a periodic Q-model, were shown the
existence of long flights within the chaotic motion, the consequent anomalous diffusion
regime, the tail thickening effect in the position power-law distribution, and the occurrence
of sudden transitions in diffusion rate as a function of a control parameter. Similarly, Ar-
gonov and Prants [18–20] showed the fractal structure of escape time basins and the effect
of chaos in different diffusion regimes due to Lévy flights. The connection between these
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flights and anomalous regimes has been shown for a wide variety of models [4, 17, 21, 22],
including systems analogous to the one considered in this work.

Few recent works considered the same models selected for study here, with particular
mention to Horsley et al. [23], for a work on the square lattice, and Porter [24], for the
hexagonal one. Regarding classical aspects on quantum models, Porter [25] considered
a modified topology for the square lattice, including a quantum calculation for energy
bands and the effect of symmetry breaking. In [26], Prants studies the same Hamiltonian
function used here but taking into account a dipole-field interaction, in a semi-classical
approach. Although these works provided a classical treatment of the Hamiltonian and
presented the mixed nature of its phase-space, they did not consider diffusion and its
dependence on control parameters, nor the properties of phase-space for this matter, thus
differing in spirit and purpose from this current work.

Therewith, guided by this theoretical background, this thesis focuses on numerical
studies on the classical dynamics of particles in a 2D lattice system. Considering a Hamil-
tonian model with a bidimensional periodic potential, inspired by an optical lattice, the
diffusion of particles for a lattice with square symmetry was initially investigated. We
thus aimed to understand how some transitions in diffusion rate occur as the control
parameters of the system vary, namely its total energy and the couplings of waves that
form the lattice. Complementary details on the phase-space structure are given to de-
scribe these diffusion transitions via a series of numerical techniques. Later, as will be
detailed in the following chapters, a particular structure found in phase-space, namely an
island myriad bifurcation, is further investigated. Additionally for this purpose, a second
lattice model, with hexagonal symmetry, is also considered to provide information on the
phenomenon. We aimed to understand the role of classical chaos in dynamics and how
the symmetry properties of the potential simplify and give rise to particular structures
in phase-space. The applied numerical techniques themselves are also worth exploration
as they are widely applicable to conservative dynamical systems beyond the ones shown
here and allow for the automation of many phase-space diagnostics.

In what follows, chapter 2 starts by presenting Hamiltonian models for optical lattices
(sec. 2.1), emphasizing details on the potential functions used to model the square (sec.
2.2) and hexagonal lattices (sec. 5.3). Chapter 3 then presents the numerical methods
and dynamical systems theory used for phase-space diagnostics, from numerical integra-
tion of the motion equations (sec 3.1), to the calculation of diffusion exponent (sec 3.2)
and algorithms for the search of periodic orbits (sec 3.3), manifolds (sec 3.4) and chaotic
area measurement (sec 3.5). The main results obtained are organized into two chapters,
starting in chapter 4, regarding the behavior of the diffusion exponent µ as a function of
the control parameters (sec. 4.1), and the description of the diffusion transitions found,
considering the chaotic area (sec. 4.2), phase-space portraits (sec. 4.3) and bifurcation
of periodic orbits (sec. 4.4). Lastly, the island myriad phenomenon is discussed in detail

14



in chapter 5, with its structure described in terms of the main periodic orbits (sec. 5.1)
and how they evolve with the control parameters (sec. 5.2). The myriad phenomenon
was also conjectured and investigated for the hexagonal lattice potential (sec. 5.3). Com-
plementary information is provided in an appendix at the end and will be pointed out
through the text as they become suitable.
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2

Hamiltonian models

“The simplicities of natural laws arise through the complexities of the language we use
for their expression.”

Eugene Paul Wigner, Communications on Pure and Applied Algebra (1959)



T he two Hamiltonian models selected for our study consist of a purely classical
description based on optical lattices. We start by showing how the imprisonment
of particles is achieved in these lattices while deducing the resulting potential

function to which they are submitted (sec. 2.1). Next, details on the two potentials
geometry are described, one with square symmetry (sec. 2.2) and another with hexagonal
symmetry (sec. 2.3), and how their control parameters, namely the couplings, affect their
topology. Equilibrium points and symmetry properties are listed since they are of primal
importance to describe the dynamics and will be referred to along all this work.

2.1 Lattice Hamiltonians

In an optical lattice, the trapping of neutral atoms is realized by the interaction be-
tween each particle and a monochromatic standing laser wave [2]. When any wave is
reflected along its propagation direction with the specific phase that generates a con-
structive superposition of the incoming and the reflected waves, the result is a stationary
pattern, a sort of constant ‘frozen’ picture of it in time. For a laser, this state is achieved
with a pair of parallel and opposing mirrors for example.

Once a neutral particle interacts with such a wave, in spite of its null electrical charge,
the electric field will induce an oscillating dipole moment d⃗ in the particle along the wave’s
polarization direction (fig. 3) given by

d⃗(t) = ρ(ω)E⃗(r⃗, t), (2.1)

where r⃗ = (x, y, z) is the spatial position and ρ a polarizability factor dependent on the
wave angular frequency ω. This frequency shall not be close to the particle’s resonance
frequency ωR, otherwise absorbing the radiation and changing internal energy states,
producing a different dipolar response than the linear one from eq. 2.1. Also, since the
time scale for the center-of-mass motion of atoms is much slower than the inverse driving
frequency ω−1, the interaction with the field is well approximated by its time-averaged
intensity.

Figure 3: Schematic representation of a
particle trapped by a standing laser wave.
The electrical field E⃗ induces a dipole d⃗
that furthers re-interacts with the field,
causing horizontal forces that constrain
the particle’s movement along the wave
propagation axis (dotted line).

Once induced, the dipole re-interacts with the field further submitting the particle to
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a potential with amplitude directly proportional to the laser intensity [1, 27]

Vdip(r⃗) = −⟨d⃗(t) · E⃗(r⃗, t)⟩ = −1
2

ρ(ω)|E⃗(r⃗)|2, (2.2)

with the brackets denoting time average over rapid oscillating frequencies; thereby yielding
a force with direction perpendicular to the wave polarization axis

F⃗dip = −∇Vdip = 1
2

ρ(ω)∇|E⃗(r⃗)|2. (2.3)

Therewith, the particle is constantly being pushed towards the wave minima point under
the action of this restoring force, thus becoming trapped along the wave’s propagation
direction.

Applying stationary waves along multiple axes, one can trap the particle along a 1D
line, a 2D surface or a 3D ‘crystal’ lattice. These setups are illustrated in figure 4 for
the 2D and 3D cases. For physical scale reference, as obtained by Greiner et al. [28, 29],
half a million Rubidium (87Rb) atoms were stored inside a cigar-shaped magnetic cage of
approximate size of 45 × 4 µm. The unit cell size of the lattice is given by the wavelength
(λ = 852 nm).

Figure 4: Schematic repre-
sentation of two optical lat-
tice setups, for 2D and 3D
lattices. In the left column,
the incoming and reflected
wave pairs (forming a stand-
ing wave) in orthogonal di-
rections. In the right col-
umn, the spatial 3D rep-
resentation of the confine-
ment region where particles
are trapped. Reproduction
based on I. Bloch et al. [1].

Generically, the potential function for any optical lattice can be written as the super-
position of the multiple electrical fields from each incident wave. Writing the field for N
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monochromatic waves, one has

E⃗latt(r⃗, t) =
N∑

i=1
êi Ei

0 cos
(
k⃗i · r⃗ + ϕi − ωt

)
, (2.4)

with êi as the polarization versor, k⃗i the wave-vector and ϕi an arbitrary phase. From eq.
2.2, the resulting lattice potential is then

Vlatt (r⃗) = 1
2

ρ(ω)E2
0

 N∑
i=1

cos2
(
k⃗i · r⃗

)
+ 2

N∑
i=1

N∑
j>i

αij cos
(
k⃗i · r⃗

)
cos

(
k⃗j · r⃗

) , (2.5)

where the amplitudes Ei
0 are also taken as equal for simplicity. The coefficients αij are the

superposition coupling between waves i and j, and stand for the product of polarization
directions and phase difference: αij = (êi · êj) cos(ϕi − ϕj). They are, therefore, accessible
parameters to be controlled in the laboratory either by turning the laser beam direction
or the mirrors position to alter their relative phase.

As presented in the context of condensed matter, particles in optical lattices are
quantum systems and are thus described by wave functions and their dynamics by the
Schrödinger equation. However, spatial trajectories within the lattice may be regarded as
classical when interaction between pairs is negligible [1]. Therefore, the classical Hamil-
tonian model to be studied here can not be assumed as a faithful representation for an
experimental Bose-Einstein condensate, but instead, it is motivated by it and will be
treated in a purely classical scheme. Connections between the classical and quantum
regimes can be made from periodic classical solutions or even a correspondence between
classical and quantum chaos and tunneling [8, 30–33], although none of these topics are
treated in this work.

2.2 Square lattice

The potential form in equation 2.5 stands for the most generic lattice possible, with
the combination of multiple waves and incidence orientations of k⃗i. For a 2D lattice, all
laser beams must be co-planar and at least two of them linearly independent, constraining
the particle movement along two cartesian axes. Three or more waves propagating in the
same (k⃗1, k⃗2) plane can be placed in order to achieve different topologies, as will be shown
in section 2.3 for the hexagonal lattice.

The main lattice model considered here is a bidimensional one formed by two orthog-
onal waves in the (x, y) plane, as shown by the correspondent electrical fields in figure 5.
Writing the total field as the linear superposition of each stationary wave, the lattice field
reads

E⃗(r⃗, t) = E0x cos(kxx + ϕx)e−iωxt êx + E0y cos(kyy + ϕy)e−iωyt êy, (2.6)
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Note that the polarization directions êx and êy are contained respectively in the planes
(z, y) and (z, x), but can have any orientation in these planes.

Figure 5: Schematic representation of the two orthogonal electrical wave fields E⃗x and E⃗y that form a
bidimensional lattice.

For simplicity, both waves will be assumed as identical, meaning that wave vectors
k⃗x = kx̂, k⃗y = kŷ, frequencies ωx = ωy = ω and amplitudes Ex

0 = Ey
0 = E0 are chosen

to be the same. Thereupon, substituting equation 2.6 into equation 2.2 provides the
potential function for the 2D square lattice:

Vdip(x′, y′) = 1
2

ρ(ω)E2
0

(
cos2(kx′) + cos2(ky′) + 2α cos(kx′) cos(ky′)

)
. (2.7)

The lattice system is thus composed of a classical particle moving on a potential surface
given by equation 2.7, as illustrated in figure 2 in the introductory chapter.

The complete dynamical model will be given by the classical Hamiltonian

H ′(x′, y′, p′
x, p′

y) = 1
2m

(
(p′

x)2 + (p′
y)2
)

+ U ′
(
cos2(kx′) + cos2(ky′) + 2α cos(kx′) cos(ky′)

)
,

(2.8)
where (p′

x, p′
y) are canonical momenta, m is the mass and U ′ = 1

2ρ(ω)E2
0 > 0 an energy

scale parameter; as previously mentioned, the coupling is α = (êx · êy) cos(ϕx − ϕy). By
re-scaling space units to (x = kx′, y = ky′), momenta (px, py) = ( p′

x√
2m

,
p′

y√
2m

) and energy
H = 2mH ′, so that energy scale is U = 2mU ′, the Hamiltonian is simplified to

H(x, y, px, py) = p2
x + p2

y + U
(
cos2(x) + cos2(y) + 2α cos(x) cos(y)

)
. (2.9)

Since the Hamiltonian function in equation 2.9 is time-independent, the dynamics of
particles is conservative and has H itself as a constant of the motion, further identified
as the total energy E = H.

The energy scale U is of no relevance in the classical regime, in the sense that it does
not alter the topology of solutions whatsoever, and can be set to 1 by rescaling time. In the
quantum regime on the other hand, this energy scale relates to the accessible eigenstates
and thus has further relevance. For this study, we fix U = 20 following Horsley et al. [23]
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since it is a feasible value obtainable in experiments.
As seen from potential 2.7, the parameter α acts as a perturbation to the integrable

Hamiltonian of two pendulum-like potentials along x and y, coupling them for any α ̸= 0.
Although α ranges in the interval [−1, 1], it is only required to consider solutions for
[0, 1], since the negative counterpart is equivalent to a spatial translation by π in one of
the cartesian directions, thus not altering solutions properties.

Figure 6: Color plot and equipotential curves for the unit cell of potential V (x, y) for different couplings
parameter α. Equilibrium points are marked as: minima (yellow circles), maxima (green triangles) and
saddles (pink crosses).

A topographical view of the potential function, reduced to its unit cell ((x, y) ∈
[−π, π) × [−π, π)), is shown in figure 6 for different values of coupling α. As α increases
from 0 to 1, only the saddle points change position, moving towards the local maxima and
eventually coalescing with them at α = 1. At this point, the minimum of V (x, y) becomes
a ‘trench’ line given by yT (x) = cos−1 (± cos(x)). Table 1 lists all the equilibrium points
(x∗, y∗) in the unit cell along with their energy values V (x∗, y∗). These points are relevant
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to understand the dynamics as their stability indicates how local solutions may behave,
and their energy values provide a reference for transitions in the system. For example, the
saddle points energy level is the threshold between particles being trapped in oscillations
around lattice pits or traveling to neighboring cells.

Equilibrium points (x∗, y∗) V (x∗, y∗)

Minima

(
π
2 , π

2

)
0

(
−π

2 , −π
2

)(
π
2 , −π

2

)(
−π

2 , π
2

)
Maxima (global) (0, 0) 2U(1 + α)(π, π)

Maxima (local) (π, 0) 2U(1 − α)(0, π)

Saddle

(0, ± cos−1(−α))

U(1 − α2)(± cos−1(−α), 0)
(π, ± cos−1(α))
(± cos−1(α), π)

Table 1: Equilibrium points po-
sition (x∗, y∗), i.e. points where
∇V (x∗, y∗) = 0, and their energy
value V (x∗, y∗) within a unit cell of
the lattice potential; positions are
taken modulo 2π. At α = 1, saddle
points merge with local maxima and
form minimum trench lines given by
cos(yt(x)) = − cos(x).

As can be seen from equation 2.9 and figure 6, the potential is invariant under spatial
reflections (x → −x or y → −y), translations (x, y) → (x + nπ, y + mπ), for n, m ∈ Z,
and rotations of π

2 : (x, y) → (±y, ∓x). Moreover, the lattice presents a square symmetry,
in the sense that it is possible to define a unit cell as the region (x, y) ∈ [−π, π] × [−π, π],
thus allowing periodic boundary conditions, which simplifies simulations of trajectories.

2.3 Hexagonal lattice

Analogous to the construction of the square lattice, where two waves provided two
symmetry axes, the hexagonal lattice is built with a triple of co-planar waves (fig. 7). For
simplicity, the amplitudes |⃗ki| = k and angular spacing between the k⃗i directions will be
taken as δθk = π

3 , such that the wave-vectors are written as

k⃗i = k cos
(

i
π

3

)
x̂ + k sin

(
i
π

3

)
ŷ. (2.10)

From equation 2.5, the resulting potential is

V (x, y) = U ′

 cos2(kx) + cos2
(

k

2
x +

√
3k

2
y

)
+ cos2

(
−k

2
x +

√
3k

2
y

)

+ 2α12 cos (kx) cos
(

k

2
x +

√
3k

2
y

)
+ 2α13 cos (kx) cos

(
−k

2
x +

√
3k

2
y

)

+ 2α23 cos
(

k

2
x +

√
3k

2
y

)
cos

(
−k

2
x +

√
3k

2
y

).

(2.11)
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Figure 7: Schematic representa-
tion of the geometrical arrange-
ment of the triple of wave-vectors
that form the hexagonal lattice.

In the hexagonal lattice, the potential form 2.11 now presents three coupling coeffi-
cients αij, increasing the amount of control parameters to analyze. It is then convenient to
reduce them. Figure 8 shows potential surfaces obtained for different values of α, notably
for cases where the coupling value is the same for all wave pairs (α12 = α13 = α23 = α).
For this condition, some equilibrium points alter their stability but still remaining at the
same position, displaying its hexagonal symmetry and justifying the suggestive alterna-
tive name of honeycomb lattice. In this way, as α varies, the potential surface changes in
a similar way to that seen for the square lattice, where points may change their energy,
or stability, but not their position. Although restrictive and arbitrary, this simplification
is justified by the parameter space reduction and the preservation of symmetry required
for the purposes of this study, as will be made clear when discussing the island myriad
phenomenon.

Nonetheless, although there is no algebraic restriction to the condition αij = α, it is
important to validate if physically this choice is reasonable. Indeed, since the orientation
of one wave-vector alters its coupling with all the other waves, the couplings αij constrain
each other. It can be found that there is a limit to α in which the single coupling condition
holds, and that is the interval α ∈ [−1

2 , 1]. Details on the calculation of this result are
provided in appendix A.

Once the single coupling condition is assumed, and with the use of the identities

cos(a + b) cos(a − b) = 1
2

(cos(2a) + cos(2b)),

and
cos2(a + b) + cos2(a − b) = 1 + cos(2a) cos(2b),

the potential function is slightly condensed to the form

V (x, y, α) = 1 + cos
(√

3y
)

(α + cos(x)) + cos(x)
(

4α cos
(

x

2

)
cos

(√
3y

2

)
+ α + cos(x)

)
,

(2.12)
where, for simplicity, space was re-scaled (x = kx′, y = ky′) and the energy scale set as
U ′ = 1, without loss of generality. As before, the full dynamical model is given by the
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Hamiltonian function

H = p2
x + p2

y + 1 + (α + cos(x)) cos
(√

3y
)

+ cos(x)
(

4α cos
(

x

2

)
cos

(√
3y

2

)
+ α + cos(x)

)
,

(2.13)

Figure 8: Topographic color map of the hexagonal lattice for different α values, inside the single parameter
condition validity range α ∈ [− 1

2 , 1]. For these figures U = 1.

For the determination of equilibrium positions, generically for free αij it is not triv-
ial to find them analytically, and even with a single parameter, some of them are not
easily obtainable. However, as aforementioned, the single parameter condition maintains
symmetries that allow for the calculation with pure geometrical considerations on the
potential surface. Some points with particular relevance for the analysis to be made here
will be calculated in this way, as shown by the geometrical schematic in figure 9. In this
schematic, distances are promptly obtained since the selected points are vertices of a reg-
ular hexagon, and other points belong to inner hexagons circumscribed to the outermost
one that forms the unit cell of the honeycomb lattice. Besides, the six fold symmetry

25



guarantees that for any point found, any rotation of π
3 of its position will also be an

equilibrium point of the same kind (i.e. same stability and energy).

Figure 9: Geometric schematic used for equilibrium points calculation in the honeycomb lattice poten-
tial, assuming the single coupling condition. (Left) Equipotential lines (for α = 0.5) and the selected
equilibrium points. (Right) Schematization of the unit cell with the main hexagons and distances used
for calculations. Equal colors indicate equal energy levels.

As summarized in table 2, the calculated points were divided in three color groups,
each one made of points with same energy and stability, and arranged in accordance to
its position. For reference, labels were organized as follows:

• Pp: unit cell vertices

• Pc: unit cell center

• Lo: unit cell edges (in-between Pp)

• Li: midpoint between Pc and each Pp

• I: in-between Pc and each Lo

The two lattice topologies described here, the square and hexagonal ones, present an
extra feature of symmetry that will be of interest. Both these forms and the triangle are
the only regular polygons that allow for a complete and perfect tiling of the 2D space.
That is, any one of these shapes can be duplicated infinitely to fill a plane with no gaps
[34]. This extra periodicity condition not only allows for the use of periodic boundary
conditions, but it gives rises to particular periodic solutions in the dynamical system, as
will be discussed later in this work.
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Eq. point (x∗, y∗) V (x∗, y∗)

Pp (0, 0) 3 (1 + 2α)

Pc
4π√

3

(
cos

(
(2n+1)π

6

)
, sin

(
(2n+1)π

6

))
3 (1 + 2α)

Li
2π√

3

(
cos

(
(2n+1)π

6

)
, sin

(
(2n+1)π

6

))
3 − 2α

Lo 2π
(
cos

(
nπ
3

)
, sin

(
nπ
3

))
3 − 2α

I 4π
3

(
cos

(
nπ
3

)
, sin

(
nπ
3

))
7
4 + α

2

Table 2: Equilibrium positions
(x∗, y∗) and their energy V (x∗, y∗)
for some reference points in the
hexagonal unit cell (fig. 9). In the in-
dexes above, n = 0, 1, 2, 3, 4, 5, with
the periodic itentification n = 6 →
n = 0. Information on the labels is
given in the text.
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3

Methods

“Il peut arriver que des petites différences dans les conditions initiales en engendrent de
très grandes dans les phénomènes finaux.”
Poincaré, La Science et l’Hypothèse (1903)



F or the execution of this theoretical work, we start by briefly introducing dynam-
ical systems and how they are numerically evolved in time (sec. 3.1). Then, with
initial focus on the spatial diffusion of particles throughout the square lattice,

the diffusion calculation methodology is described (sec. 3.2). Once the main interest
was to understand the system as its main parameters change, i.e. the coupling α and
energy E = H(t), a series of numerical methods for phase-space diagnostics are described
in sections 3.3 to 3.5. The employed techniques are not only relevant for the particu-
lar investigation made here, but they have generic applicability to arbitrary conservative
Hamiltonian systems, enabling automated analysis as the system parameters change ‘con-
tinuously’. The motivation for the use of each one will be mentioned in the results chapter.

3.1 Dynamical systems and numerical integration

Generically, a dynamical system can be regarded as any set of equations, or rules,
defining the evolution of the current state of a system, described by a set of variables
s⃗ = (s1, ... , sN), into a future state [35]. For continuous systems, this evolution is achieved
in the form of differential equations

˙⃗s = f⃗(s⃗, t) =⇒ ṡi = fi(s⃗, t) for i ∈ [1, N ], (3.1)

with the dot denoting derivative in respect to the evolution variable, here exclusively set
as the time t.

The dynamical system considered here belongs to the particular class of the conserva-
tive Hamiltonian ones, where the Hamiltonian function (H) itself is a constant along the
time. In this case, states are represented by a vector s⃗ = (x, y, px, py) comprising the
particle position q⃗ = (x, y) and its conjugate momenta p⃗ = (px, py). The system evolution
(eq. 3.1) is then given by a vector field f⃗ from Hamilton’s equations of motion

f⃗(s⃗) =
(

∂H

∂px

,
∂H

∂py

, −∂H

∂x
, −∂H

∂y

)
. (3.2)

For the square lattice Hamiltonian (eq. 2.9), they yield

˙⃗s = f⃗(s⃗) −→



ẋ = 2px

ẏ = 2py

ṗx = 2U sin(x) (cos(x) + α cos(y))

ṗy = 2U sin(y) (cos(y) + α cos(x))

(3.3)

If one has knowledge of all possible solutions, for all the allowed initial conditions s⃗0 =
s⃗(t = 0), then one has a complete description of a system dynamics. However, generally for
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non-linear systems, solutions may not be easily obtainable due to cumbersome algebraic
difficulties, or even impossible, due to the presence of chaos, where non-integrability makes
it unfeasible to obtain solutions for arbitrary initial conditions and time intervals [36]. As
for the square lattice model considered here, it will be integrable (fully solvable) only for
α = 0, case in which the system is reduced to two uncoupled pendula. In this case an
analytical solution can be obtained via action-angle variables, as shown in appendix B.
For any other α ̸= 0, the coupling term in the Hamiltonian acts as a perturbation and
induces chaos in the system, as will be extensively shown along this work.

Nevertheless, in order to solve the motion equations (eqs. 3.3) and obtain trajectories
for any given initial state, one can rely on numerical integration methods. A variety of
such techniques are widely present in the literature and only the well-grounded Runge-
Kutta (RK) family will be briefly described here, with no details on the error theory
behind it [37]. Particularly, for all numerical integrations carried along this work, the
Runge-Kutta-Cash-Karp (RKCK) variant was used [38].

In generic form, any RK method sequentially evolves (integrates) a state point by
discretizing the equations of motion. Then, each time instant is advanced in discrete
steps of δt in the following way

s⃗n+1 = s⃗n + δt
m∑

i=1
bik⃗i, (3.4)

where m partial steps are taken for a single δt increment. Each partial step term k⃗i is
evaluated by the vector field f⃗ at intermediary points as

k⃗1 = f⃗(tn, s⃗n)

k⃗2 = f⃗(tn + c2δt, s⃗n + δt a21k⃗1)
...

k⃗m = f⃗(tn + cmδt, s⃗n + δt(am1k⃗1 + am2k⃗2 + · · · + am,m−1k⃗m−1)).

(3.5)

The coefficients bi, ci and aij are to be selected obeying the following relations:

m∑
i=1

bi = 1 and
i−1∑
j=1

aij = ci for i = 2, ..., m. (3.6)

Different RK methods consider different number m of partial steps (also referred to
as integration order), thus requiring particular choices for the coefficients. The RKCK
variant also includes an adaptive step-size control, increasing δt if the error committed
in integration is small, or decreasing it if it is too large, requiring more precision. Figu-
ratively, “many small steps should tiptoe through treacherous terrain, while a few great
strides should speed through smooth uninteresting countryside” [37]. This feature allows
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for great increase in CPU time performance. In RKCK method, the error is estimated
as the difference between steps made in 5th and 4th order (thus considered a 5-4 order
method), given by en+1 = |y⃗ 5th

n+1 − y⃗ 4th
n+1| = |h∑m

i=1(bi − b∗
i )k⃗i|. The coefficients for the

RKCK method construction can be found in the original reference [38].
Despite the high accuracy of the RKCK method, as asserted by its energy deviation

being smaller than order 10−9 (for total time t = 103), the method is not symplectic,
thereby not preserving the symplectic area invariant. In view of that, an alternative
symplectic algorithm, developed by Molei Tao [39], was considered for comparison with
the RKCK, as described in appendix C. Briefly, with Tao’s method, although conserving
symplectic area up to order 10−7 (for integrable orbits), energy conservation is only of
order 10−7. This indicates that RKCK can provide good statistical results, keeping tra-
jectory ensembles in a narrower energy interval, thus requiring a more careful use only
when particular analyses depend on the symplectic property. Moreover, the CPU time
efficiency for RKCK, given its adaptive control of step size, was more than 20 times faster
than Tao’s method, regarding the implementations available.

Once trajectories are numerically obtained, their four dimensional structure requires
the use of Poincaré surface sections (PSS) for visualization. This surface will define a
map for the crossings of an orbit with a given section Σ in phase-space, mapping one
intersection point into the next (fig. 10). For all phase-space portraits presented along
this work, we built a PSS map T : Σ → Σ : (x(ti), px(ti)) → (x(ti+1), px(ti+1)) by marking
the x and px coordinates whenever the plane y = π

2 is crossed in the positive y direction,
that is, if py > 0, ensuring the surface orientation.

Figure 10: Representation of a Poincaré
Surface Section (PSS). The intersection
points between an orbit and the oriented
surface Σ for y = const, define a 2D map
T on the plane (x, px). Red dots corre-
spond to a chaotic orbit, densely filling
a 2D area, whereas blue dots represent a
regular (non-periodic) orbit, densely fill-
ing an invariant curve.
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In general for area-preserving dynamical systems (thereby including conservative Hamil-
tonians), Liouville’s theorem implies the nonexistence of sources (repellers) or sinks (at-
tractors) points. Consequently, trajectories in phase-space can be thought as forming an
incompressible fluid, where any given volume can change its shape regarding that its inner
volume remains constant [40]. Furthermore, the Liouville-Arnold theorem on integrability
states that for any N -degrees-of-freedom system, there may be at most N independent
functions Fi that are constants of motion 1. When the N functions exist, the system is
integrable and its orbits are restrained to an invariant torus of dimension N (or to any
homeomorphic form) for each set of values of (F1, ..., FN). These theorems will not be
demonstrated here but they provide the arguments on why, in our 4-dimensional model,
regular orbits appear as lines in a PSS whereas chaotic orbits densely fill an area, since
in the latter case at least one of the Fi are not constant, thus not constraining the orbit
to surfaces where Fi = const (fig. 10).

3.2 Diffusion

In order to evaluate the spatial diffusion of particles throughout the lattice, an ensem-
ble of them is evolved for long periods of time and we compute the ‘scattering’ of each
one as the displacement Ri(t) from its initial position (x0, y0)

Ri(t) =
√

(xi(t) − x0,i)2 + (yi(t) − y0,i)2. (3.7)

The global dispersion then is evaluated as the average ⟨Ri(t)⟩ over particles in the en-
semble. One may note that for this calculation the periodic boundary conditions over the
unit cell are ignored, allowing particles to travel freely in the lattice. Classical diffusion
theory [15] thus indicates that for long times, the average displacement asymptotically
follows a power law

⟨R2⟩ ∝ tµ. (3.8)

The parameter µ in equation 3.8, named as diffusion exponent, provides a quantitative
measure of how fast and far particles travel through the lattice. Fitting ⟨R2⟩(t) as a
function of time, for a given ensemble and a series of fixed pairs of energy and coupling,
numerically yields the diffusion exponent µ as a function of the control parameters (E, α).
The value of µ may indicate if the diffusion regime is normal (µ = 1), as in the case of
brownian motion or the classical random walk; free, or ballistic (µ = 2), as in the case of
free particles; anomalous (1 < µ < 2) or sub-diffusive (µ < 1). Superdifusivity (µ > 2) is
not possible in the system considered here due to its conservative nature and the lower
boundedness for the potential function, preventing the kinetic energy to increase beyond

1By independent it is meant that their Poisson bracket is {Fi, Fj} =
N∑
k

(
∂Fi

∂qk

∂Fj

∂pk
− ∂Fi

∂pk

∂Fj

∂qk

)
= 0.
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the upper limit |p⃗| ≤
√

2mE.
It is worth mentioning that the ensemble of particles, here modeled as a high number

of initial conditions, is generated for constant energy and coupling, which remain fixed in
time. Besides, in order for diffusion to occur in the system, we must have E > Vsaddle,
providing enough kinetic energy for particles to surpass the saddle points between lattice
pits. Moreover, since Vsaddle = U (1 − α2), the higher the value of α (closer to 1) the lower
is the energy for diffusion onset.

For the creation of an ensemble with fixed energy that covers all phase-space, a Monte
Carlo approach was used. In detail, for each particle, a position (x0, y0) is randomly
generated in the space domain [0, π] × [0, π] around a lattice minimum. If the position
satisfies the energy constraint E > V (x0, y0), then the momentum vector p⃗ = (px,0, py,0)
is calculated directly from the energy equation

|p⃗| =
√

p2
0,x + p2

0,y =
√

E − V (x0, y0), (3.9)

with its direction randomly generated by a uniformly distributed angle θ ∈ [0, 2π). An
example of the resulting set of initial points can be seen in figure 11.

Figure 11: Ensemble of initial condition
space distribution for diffusion calcula-
tion. Each green point is a random posi-
tion (x0, y0) in an allowed region where
V (x0, y0) < E. The momentum vec-
tors, shown as yellow arrows, have mod-
ulus |p⃗| =

√
p2

x + p2
y =

√
E − V (x0, y0)

and direction given by an angle randomly
generated in θ ∈ [0, 2π).

For this work, a total of N = 2×104 particles were used and all evolved for a total time
of t = 3×103. It is important to mention that the average used for the diffusion exponent
fitting (eq. 3.8) is taken over phase-spaces that often present simultaneously regular and
chaotic behavior. This may be out of the original scope of brownian diffusion, which
commonly considers only chaotic movement, but still provides an indirect measure of how
much particles spread throughout the lattice. Moreover, the presence of regular orbits
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with high diffusivity (ballistic) may alter the global average, even with chaotic regions in
a slower diffusion regime. Therewith, smaller amounts of particles and shorter integration
times were tested in order to check how much statistical fluctuation the calculation may
present, as will be discussed further in the results chapter.

3.3 Periodic orbits and monodromy theory

Amidst all the infinite solutions to the motion equations, the set of periodic orbits
(PO) is of special importance. Formally, these are orbits that after some time t = τ

return to a previous state, such that: s⃗(t, s⃗0) = s⃗(t + τ, s⃗0). Given that POs are closed
curves in the 4D space, it is helpful to picture them from a Poincaré map framework. In
the intersection surface Σ, POs correspond to fixed points of the PSS map (or of its m-th
iterate), i.e. for the map T m : Σ → Σ, evolving one crossing of the PO with Σ into its
next one, any fixed point P ∗ = (x∗, p∗

x) would satisfy: T mP ∗ = P ∗, with m as the number
of map iterations (map period). Visually in the PSS, POs appear neither as densely filled
lines nor densely filled areas, but as m discrete points.

These fixed points present stability depending whether small displacements δs⃗ from P ∗

remain close to it, if the point is stable, or diverge from it exponentially, if it is unstable.
Consequently, stable fixed points correspond to the center of stability islands in a PSS
whereas unstable ones are immerged in chaotic regions [36]. As will be detailed in section
3.4 on manifolds, the unstable fixed points mold the dynamics within chaotic regions.

In order to numerically find POs and their stability, one can rely on monodromy
theory. Its core concept is resumed from its etymology, as quoted from M. Baranger et
al. [41]: “‘monodromy’ can be loosely translated as ‘Once-around-the-trajectory’, from
the Greek µoνos, meaning one or single, and δρoµos, meaning racecourse”. In practice,
for small displacements δs⃗ around a given PO point, after one period τ its deviation will
be linearly given by the so-called monodromy matrix [42]:

δs⃗(τ) = M δs⃗(0). (3.10)

The evaluation of M will be described further in this chapter, but for now we anticipate
without proof some of its main properties. The monodromy M is a 2n-order square matrix,
with n as the number of degrees of freedom of the system. It obeys the symplectic relation

MT JM = J, with J =

 0n In

−In 0n

 , (3.11)

and In as the n-th order identity matrix. This symplecticity implies that the 2n eigenvalues
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of M, ρi, will come in pairs of unitary product [43], that is
 if ρi ∈ R =⇒ ρi ↔ 1

ρi

if ρi ∈ C\R =⇒ ρi ↔ ρ∗
i and ||ρi|| = 1.

(3.12)

Furthermore, the Floquet-Lyapunov theorem [44] connects the eigenvalues ρi with the
critical exponents λi, as ρi = eλiτ , thus providing information on the PO’s stability. For
4D systems, this connection allows the determination of stability directly from the trace of
M, without the need to compute eigenvalues. Firstly, one may notice that ρi = ρ−1

i = 1 are
two immediate eigenvalues of M, since displacements of the orbit along its own direction
will follow the orbit path and return precisely at the same point. Then, the two remaining
eigenvalues yield different results for each stability scenario:

Stable: (λ = iθ) −→ tr(M) = 2 + eiθτ + e−iθτ = 2 (1 + cos(θτ)) ∈ [0, 4]

Unstable: (λ = θ) −→ tr(M) = 2 ±
(
eθτ + e−θτ

)
= 2 (1 ± cosh(θτ)) ∈ (−∞, 0] ∪ [4, ∞)

with θ ∈ R. Therefore, stable orbits will have tr(M) ∈ (0, 4) whilst unstable ones will
have any other value for tr(M). Particular situations when bifurcations occur to higher
order periodic orbits may present trace equal to 0 or 4.

The linear property in equation 3.10 motivated an algorithm for the numerical search
of POs, as developed by Baranger [41] and further detailed by Simonovic [45]. Considering
an n-degree of freedom Hamiltonian system, with separable kinetic and potential energies

H(q, p) =
n∑

i=1

p2
i

2mi

+ V (q),

any numerical solution s(t) will be a set of points evaluated at discrete times k∆t, for
k ∈ [0, K] and total integration time t = K∆t:

s(tk) = sk = (q1,k, · · · , qn,k, p1,k, · · · , pn,k) .

When linearizing the equations of motions around a periodic solution, the k-th local
displacement (or correction) δsk will be locally written as

δsk+1 = Λk+1δs1 + Γk+1, (3.13)

where the matrix Λk+1 and the vector Γk+1 are cumulatively calculated as the orbit is
followed as:

Λk+1 = UkΛk with Λ0 = I2n

Γk+1 = UkΓk + ck with Γ0 = 02n
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for Uk and ck given by

Uk =

 In ∆t Q
−∆t Pk+1 In − ∆t2Pk+1Q

 ; ck =



c′
1,k
...

c′
n,k

−∆t
n∑
i

V1i(q0
k+1)c′

i,k + c′
n+1,k

...

−∆t
n∑
i

Vni(q0
k+1)c′

i,k + c′
2n,k



.

The auxiliary quantities Q, Pk, c′
i,k and c′

i+n,k in turn are

Q =


m−1

1 · · · 0
... ...
0 · · · m−1

n

 ,

Pk =


V11(qk) · · · V1n(qk)

... . . . ...
Vn1(qk) · · · Vnn(qk)

 for Vij = ∂2V (q)
∂qi∂qj

,

c′
i,k = q0

i,k − q0
i,k+1 + ∆t

p0
i,k

mk

,

c′
i+n,k = p0

i,k − p0
i,k+1 − ∆t Vi(q0

k+1) for Vi = ∂V (q)
∂qi

and i ∈ [1, n].

Variables (qk, pk) with superscript 0 correspond to the orbit s(tk) points. At this moment,
imposing the closure condition (δsK+1 = δs1) into equation 3.13, in order to force a
periodic solution, returns a linear system to calculate the corrections δsi:

(I2n − ΛK+1) δs1 = ΓK+1 (3.14)

Therefore, the method algorithm consists in integrating an arbitrary initial condition
until time τ ; calculating ΛK+1 and ΓK+1 as the orbit evolves; solving the linear system 3.14
for corrections δsi; applying them for each orbit point; and re-submitting the corrected
orbit to the same procedure iteratively until convergence is reached. Here convergence is
evaluated as ||Γ|| → 0, or in practice, when it gets smaller than a precision limit ||Γ|| < ϵΓ.

The algorithm works similarly to a Newton-Raphson method, and, when converged,
equation 3.14 becomes a discretized version of the monodromy equation 3.10, with ΛK+1

the numerically calculated monodromy matrix, from which stability is obtained from its
trace.

As shown above, the algorithm can only converge to a PO with period equal to the
initial one proposed, τ . However, it is common that one desires to find a PO for a given
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fixed energy, letting the period be arbitrary. For this purpose, in addition to the orbit
points, the time step ∆t must also become a variable to be corrected and a new equation
(the conservation of energy) is added into the linear system. The final system to be solved
then is a modification of 3.13:(

I2n − ΛK+1 + 1
ϵ0

{∆K+1, Θ}
)

δs1 = ΓK+1 + η

ϵ0
∆K+1, (3.15)

where the new parameters η and ϵ0 are given by:

η = E1 −
n∑

i=1

(
p0

i,1

)2

2mi

− V (q0
3/2) and ϵ0 =

n∑
i=1

p0
i,1

2mi

V (q0
3/2), (3.16)

calculated at the half step position

q0
3/2 = q0

1 + q0
2

2
= q0

1 + ∆t0

2
Q p0

1

and new vector Θ given by:

Θ = (ϵ1, · · · , ϵ2n) −→

ϵi = Vi(q0
3/2)

ϵi+n = p0
i,1

mi
+ ∆t

2mi
Vi(q0

3/2) for i = 1, ..., n

for Vi := ∂V
∂qi

. The new matrix ∆K+1 is cumulatively calculated as:

∆k+1 = Un∆k + dk for ∆1 = 02n

and

dk =



p0
1,k

m1...
p0

n,k

mn

−∆t
n∑
i

V1i(q0
k+1)

p0
i,k

mi

− V1(q0
k+1)

...

−∆t
n∑
i

Vni(q0
k+1)

p0
i,k

mi

− Vn(q0
k+1)


The term in brackets {∆K+1, Θ} indicates a dyadic product, i.e. a matrix D with

elements Dij = (∆K+1)iΘj. The system in equation 3.15 is now considered converged
if both |η| and ||ΓK+1|| are null or smaller then the given precision thresholds (ϵη, ϵΓ);
usually set close to machine precision, around 10−12.

With such an algorithm to search for periodic orbits at hand, one can visualize bifur-
cations as the system’s main parameters E and α change. In general, for both parameters
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variation, POs may bifurcate into more POs of the same period, into higher period POs or
even change their stability. The latter is particularly relevant when stable orbits become
unstable, for we have the onset of chaos around the new unstable point, whence we can
also calculate its manifolds, since the monodromy matrix provides us the eigenvectors for
the manifold’s branches (as shown in the next section 3.4).

3.4 Manifolds

Despite its stereotypical random nature, chaotic behavior in conservative systems is
established over a deterministic geometry given by the invariant manifolds. Since most of
the phase-space analyses are made from Poincaré surface sections, they will be presented
within this context.

For a given saddle fixed point p∗ of a PSS map, although unstable, there are two
particular directions in which particles tend to approach it [46]. Analogously, if one
considers the reversed dynamics (from the inverse map), iterating orbits backwards in
time, the unstable directions become approximative. Therewith, the particular set of
points p that approach (leave) p∗ will form an invariant set named stable (unstable)
manifold [47]

Ws(p∗) := {p ∈ Σ : T n(p) → p∗, as n → ∞}

Wu(p∗) := {p ∈ Σ : T −n(p) → p∗, as n → ∞}
(3.17)

where Ws(p∗) (Wu(p∗)) is the label for the stable (unstable) manifold branch; as mentioned
in section 3.3, T is the map for the successive crossings of an orbit with a PSS, and T −1

its reverse form.

Figure 12: Homoclinic and heteroclinic manifolds for integrable and chaotic scenarios. (Top row) Het-
eroclinic connection, with invariant lines linking fixed points p∗ to g∗ (orange crosses). (Bottom row)
Homoclinic connection, where the manifold branch loops back towards p∗. Figure adapted from [46].
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When integrable, both manifold branches, stable and unstable, appear as invariant
curves forming the contour (separatrix) of stability islands. When integrability is broken,
these lines tangle with each other, giving rise to a chaotic layer. As illustrated in figure 12,
this tangling mechanism, referred to as Smale horseshoe, is due to the crossing between
unstable and stable manifolds, where any crossing point belongs simultaneously to both
branches. Therefore, due to the uniqueness of orbits, this point shall be mapped into
another intersection of the branches, forcing both curves to fold and intersect each other
infinitely many times [36]. As the curves fold and tangle in a fractal way, they densely fill a
finite-area of the map, destabilizing this region where nearby points are quickly separated
due to the tangled geometry, giving rise to the fundamental chaotic property of sensitivity
to initial conditions. Two scenarios are more commonly found for this phenomenon, one
where branches can loop and connect back to p∗ (homoclinic), or extend to a different
unstable fixed point g∗ (heteroclinic), as illustrated in figure 12.

The numerical calculation of such manifolds can be made from the monodromy ma-
trix described in section 3.3. For an unstable fixed point p∗ = (x∗, p∗

x), the matrix M
obtained from the periodic orbit related to p∗ yields the eigenvectors that provide the
linear approximate manifold branches directions (fig. 13).

Figure 13: Manifold unstable W ±
u (p∗) and

stable W ±
s (p∗) branches directions given

by the monodromy eigenvectors. The plus
and minus signs indicate that for each one,
its opposite counterpart will also be an
eigenvector. All vectors W ±

u,s and the fixed
point p∗ are placed in the surface Σ, while
the other UPO points pi are in the 4D
space.

Thus, setting a line of initial conditions close to p∗ and along the eigenvector direction,
the dynamical evolution of these points will follow the manifold (see fig. 14). Evolving
these points in time and taking the intersections of this line with Σ reproduce the manifolds
tangled structure and how it shapes the dynamics within a chaotic region.
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Figure 14: Initial points ni set along an
eigenvector direction (here shown for W +

s )
for manifold calculation. The points are
placed along the line starting at p∗ and
following the eigenvector direction.

One may point out that for a 4D system, manifolds will be tubes in the 4D space,
since each point of it acts as an unstable fixed point, as opposed to the 2D lines shown
in figure 12. The curves shown in figure 12 are indeed the intersection of such tubes
into the 2D PSS map. However, in some cases the crossing of the manifold tube with
a PSS can happen to produce closed loops (if the tube is intersected transversely), as
studied by Ozorio [48]. Although this behavior was not seen yet in this work, it is an
important difference between Hamiltonian flows and pure 2D symplectic maps not oftenly
mentioned.

3.5 Chaotic/Stable area calculation – SALI method

Whenever chaos emerges in a Hamiltonian system, it starts by appearing around
unstable fixed points and separatrices, further eroding the invariant island and eventually
spreading and forming a chaotic sea, possibly dominating the whole phase-space. Along
this process, it is thus interesting to evaluate how much area or volume of phase-space is
filled by chaos, therefore requiring a fast algorithm capable of numerically distinguishing
between chaotic and regular orbits.

For this purpose, the Smaller Alignment Index (SALI) method can be used, as devel-
oped by G. Skokos [49]. Briefly, the core idea behind SALI is that, for a given orbit ϕ,
small displacement vectors ω1 and ω2 will align to each other in case ϕ is chaotic while
remaining at a finite angle if ϕ is stable. This method is valid for any finite-dimensional
conservative dynamical system or symplectic map, and although it holds for an arbitray
number of degrees of freedom, for simplicity it will be exposed here for the 2 degrees case.

In detail, given the initial point ϕ(0) = (x0, y0, px0, py0), to determine whether ϕ is
chaotic or regular, one can take two vectors slightly displaced from it, namely ω1 =
(dx1, dy1, dpx1, dpy1) and ω2 = (dx2, dy2, dpx2, dpy2), and evolve them in time. The initial
point ϕ(0) is evolved with the standard equations of motion, while ω1 and ω2 are calculated
simultaneously with variation equations, i.e. they are evolved in tangent space as

dωi

dt
= Df(ϕ(t)) · ωi for i = 1, 2, (3.18)
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where Df(ϕ(t)) is the system’s Jacobian matrix evaluated at the orbit point ϕ(t). These
deviation vectors will then behave differently whether the orbit is chaotic or regular. When
chaotic, the tangent space will be elongated along the unstable manifold direction, and
compressed along the stable one, thereby aligning ω1 and ω2 to each other in a parallel
or anti-parallel way (figure 15).

Figure 15: Diagram for the alignment of de-
viation vectors for a chaotic orbit from ini-
tial point ϕ(0) to a point ϕ(t). The parallel-
ogram formed by the deviation unitary vec-
tors ω̂1,2 is flattened along the stable mani-
fold direction and stretched in the unstable
direction, making the vectors align (or anti-
align) to each other. Figure adapted from
[49].

On the other hand, in case ϕ(t) is a regular orbit, its movement is restrained to a torus,
where the tangent space tends to keep angles limited. Consequently, the two deviation
vectors will align to the tangent plane but not to each other, keeping a fixed angle between
them (figure 16).

Figure 16: Diagram of an orbit over
a stable torus from initial point ϕ(0)
to a point ϕ(t). The gray semi-planes
show the tangent space to ϕ and the
unitary displaced vectors ω̂1,2 moving
towards it while keeping their angle
limited (not aligned). Figure adapted
from [49].

Therefore, any measurement of the vectors angle can be indicative of the stability of
an orbit. Skokos then proposes the Smaller Alignment Index (SALI) as a quantity to
evaluate the alignment between vectors ωi, defined as:

SALI(t) := min (∥ω̂1 + ω̂2∥, ∥ω̂1 − ω̂2∥) , (3.19)

where the hat indicates normalized unitary vectors. Thus, in accordance to the above
reasoning, in case of chaotic motion the ωi vectors will become aligned parallel or anti-
parallel, making SALI(t) → 0 as t → ∞, while keeping at a finite non-zero value for a
regular one (SALI(t) ∈ (0,

√
2]).
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It is important to point out that, due to shear between nearby torus layers, it is possible
that even for regular orbits ω1 and ω2 still align, although this may occur for algebraically
rather than exponentially times, much longer than the one required for the alignment of
chaotic orbits. Besides, it is recommended to select orthogonal initial deviations, ensuring
that SALI is not immediately null. In practical simulations, the convergence of SALI is
ensured once it gets smaller than a precision threshold (e.g. 10−18, the standard machine
precision). Then, for an arbitrary orbit, one can evolve it for a sufficiently long time until
the index drops below the threshold, case in which it is considered chaotic, or otherwise
it is assumed to be regular.

Since only the direction of ωi matters for the evaluation of SALI(t), the deviation vec-
tors are normalized to ω̂1,2 at regular time intervals, also preventing their divergence due
to their exponential growth. As shown by Skokos in [50], the SALI index for chaotic orbits
goes to zero exponentially, at a rate depending on λ1 and λ2, the two biggest Lyapunov
exponents of the system: SALI(t) ∝ e−(λ1−λ2)t. Indeed, Lyapunov exponents themselves
can be used as numerical indexes for the orbits stability, such as in the maximum Lya-
punov exponent method (mLE), although usually requiring longer convergence times and
therefore demanding a higher computational cost.

With such a tool at hand, one can mesh the phase-space in tiny cells (area tiles or
volumetric cubes) and run the dynamics for an initial condition inside each one, whence
all tiles (cubes) can be summed, providing an estimate for the chaotic/regular portion of
area (volume) of phase-space. The estimate is as good as the smaller the size of the cell
and number of initial conditions taken.
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4

Results:
Diffusion and
Phase-space

“Prediction is very difficult, especially if it’s about the future.”
Niels Bohr



T he square lattice system investigation was initiated with the measure of the
spatial diffusion of particles and of how it changes as a function of the control
parameters (sec. 4.1). Then, inspecting the chaotic area (sec. 4.2), a particular

transition amidst all the sudden changes underwent by the diffusion exponent, namely
that for α = 0.1 and E = 36, is found to correlate with an island myriad phenomenon.
This transition is further detailed by inspection of the system’s phase-space (sec. 4.3) and
its main periodic solutions (sec. 4.4).

4.1 Diffusion exponent

When looking at the diffusion exponent µ for varying parameters, i.e. the total energy
(E = H) and lattice coupling (α), one expects variations due to the widening of channels
between cells in the potential, as either α or E increases (as seen in sec. 2.2), and to
changes in phase-space, due to bifurcations of orbits and emergence of chaos.

Figure 17: Diffusion exponent µ color map over the parameter space (E × α). The panel on the right
displays the energy lines for equilibrium points: Vsaddle = U(1 − α2) in green; Vl-max = 2U(1 − α) in
yellow and Vg-max = 2U(1 + α) in orange. Grid size is 150 × 150.

In fact, the color map of µ in figure 17, calculated over the whole parameter space,
presents a rather complex and intricate behavior. At first glance, one could expect the
diffusion exponent to vary smoothly with E and α once the system’s Hamiltonian is a
smooth function of these parameters. Instead, it is found that diffusion regimes drastically
and suddenly change in a non-trivial way, as shown by the complex shading from dark blue
(free diffusion) to white shades (normal diffusion), along different regions of parameter
space, either by varying E or α.

In the right frame of figure 17, the same portrait from the left is shown with the energy
lines for equilibrium points highlighted. Saddle points, shown in green, correspond to the
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diffusion onset threshold, where particles have enough energy to travel to neighboring
lattice cells, thus presenting null exponent below it (red shaded area). The yellow and
orange lines correspond to the local and global maxima energies, respectively; for them,
while the global maxima line does not correlate with any particular structure in parameter
space, the local maxima line superposes with a line with free diffusion regime, notably
around α ∈ [0.4, 0.8].

Since energies above the local maxima line indicate that particles can surpass these
points, one could expect diffusion to be predominantly free in this region. However, for
energies above it, frequently a normal diffusion behavior is seen correlating with a diffusion
suppression in the system. This apparently counter-intuitive aspect will be shown in the
next sections to be related to peculiar bifurcations of stability islands in phase-space.

In general, despite the expected increase in transport with the increase of α, due to the
pathway ‘opening’ between lattice cells as the local maxima energy diminishes, what is
found is mixed behavior. As an example, one may note for α ∈ [0.1, 0.4] and E ∈ [20, 35],
in between the lines for saddle and local maxima, a rippled alternation between free and
normal regimes; or around α ∈ [0.8, 1] and E ∈ [10, 40], above the local maxima line,
dark and light shades of blue over the whole range. Even for the highest energy regions,
where free diffusion dominates, some fluctuations are seen to slightly slower diffusion rates.
These of course occur due to changes in the dynamics, particularly to the coexistence of
regular and chaotic orbits and how they are altered with the control parameters.

Figure 18 portrays some diffusion profiles lines, considering fixed values for α, from
null perturbation (α = 0), when the system is integrable, to low (α = 0.1), medium
(α = 0.5) and maximum (α = 1.0) coupling. When integrable, the system dynamics is
reduced to two uncoupled pendula along x and y. In this case, above diffusion onset, a
particle will travel along each axis direction unobstructed in almost straight trajectories
through space, with no trapping of particles in lattice minima and thus keeping diffusion
at free-regime (fig. 18 for α = 0).

One may note no predominant sub-diffusion (µ < 1) for any case of α, regardless
of small fluctuations of µ around normal regime. This is an indication, although not a
proof, that stickiness, i.e. the property of chaotic orbits to follow regular orbits for longer
transient times, does not play a significant role in the system global dynamics. At least
not for times as long as t = 103.

Despite the general fluctuations observed in µ, all cases of α present a free diffusion
plateau for energies close to the potential’s global maxima level. This is explained since
in this case particles have a wider access to spatial regions where their velocity is not
abruptly deviated due to the ‘boundaries’ where V (x, y) = E. The smoother deviations
and a wider space for flights then allow for a higher diffusivity. Also, for energies above
global maximum, unstable points in the lattice that could scatter orbits can be regarded
as small perturbations, being less relevant as the higher the particle energy is.
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Figure 18: Diffusion exponent µ as a function of the energy E for different α. The dashed gray horizontal
lines denote the normal diffusion (µ = 1) and free diffusion (µ = 2) limits.

In the presence of chaos, one could expect it to always suppress direct straight flights
through the lattice and thereby to induce diffusion to be normal, as in a random walk.
However, even chaotic orbits can present different spread behavior, being more restricted
and keeping particles trapped for long times in lattice pits or allowing for longer straight
displacements, the so-called Lévy flights, as illustrated in figure 19. It is interesting to
note the range of displacements for each case, with flights summing up to thousands of
cells, whereas in a random walk the particle journey is mostly restrained to only tens or
hundreds of cells.

As described in section 3.2, the exponent µ(E, α) was numerically obtained by fixing
a pair (E, α) and calculating the average square displacement ⟨R2(t)⟩ along the time over
an ensemble of trajectories covering the whole available phase-space. For every parameter
pair, an ensemble of N = 2 × 104 points were used, each being integrated for a total
time t = 3 × 103. Since the power law behavior for ⟨R2(t)⟩ stands for asymptotically

48



long times, the data fitting is made only on the last 25% of the time series. Lower times
(t = 102) and particle number (N = 104) were also considered in order to check how
sensitive the results are to statistical fluctuations, as shown in appendix D. Briefly, it was
found that differences on µ did not exceed 10% for time or ensemble sizes of at least one
order of magnitude lower than the ones used, indicating good statistical convergence for
the values of t and N selected. Moreover, since long integration times are required, the
diffusion profile for α = 0.1 was also calculated with a symplectic integration method,
where differences no greater than 15% were found, as shown in appendix E.

Figure 19: Chaotic trajectories with different spatial spread. (Left) Lévy flights with long displacements
amidst short periods of restricted motion. (Right) Almost fully restricted motion. Green (red) dots mark
the start (end) point of the trajectory. Integration time is t = 105.

For a deeper look into the diffusion transitions found, from now on a particular case
will be brought into focus, namely that for coupling α = 0.1 and energy E = 36, as
shown in figure 18. In this case, as energy increases and surpasses the local maxima
level at E = 36, diffusion undergoes a sudden drop from free to normal regime (fig. 20).
As aforementioned, this behavior is rather unexpected since when particles have a wider
space for transport, their diffusion is suppressed. The investigation procedure will rely on
an analysis of how phase-space changes by inspecting it for energy values below, around
and above transition. Other transitions unrelated to local maxima points will be briefly
mentioned in section 4.2.
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Figure 20: Diffusion exponent
transition selected for analysis
depicted inside the blue column
region, for α = 0.1 and energy
around E = 36. As energy in-
creases, diffusion undergoes a
sudden drop from free (µ = 2)
to normal (µ = 1) regime.

4.2 Chaotic area

In order to explore the diffusion transition selected, we first examined the portion
of regular and chaotic solutions in phase-space. As described in section 3.5, the SALI
algorithm allows one to mesh a phase-space area (here over the PSS Σ) and calculate
the chaotic/regular areas by summing up over all grid cells. As a demonstration of this
procedure, figure 21 shows how clear is the discrimination between chaotic (in black) and
stable (in yellow) regions, with only thin layers of intermediate colors seen in between
them.

It is worth mentioning that the calculated area is taken over phase-space, whereas the
diffusion exponent µ is evaluated over orbits in position space. Thus, we compare two
quantities regardless of their direct connection, expecting to see whether they correlate
or not. Nevertheless, it is reasonable to expect some correlation since the emergence of
chaotic orbits replacing trajectories composed of long flights through the lattice could be
responsible for the diffusion suppression observed.

For the area calculation, as done for the diffusion exponent, a simulation is carried for
each point on parameter space (E, α). Figure 22 shows the result as a color map for the
chaotic area A, i.e. the fraction of the total area Atotal = Achaos + Aregular that is chaotic.
This normalization hides the fact that the total phase-space volume, and therefore the
total transversal area of the PSS, grows with the energy, but nonetheless providing the
desired information. To save CPU time, two features were used: first, all the crossings
of an orbit with the grid were set with the same SALI value as its initial condition,
thus avoiding the redundancy of calculating these crossings as new orbits, since they are
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already known to be chaotic or regular; second, the integration of an orbit that achieves
a cut SALI value of 10−12 is interrupted and considered chaotic, saving the extra time
required to reach machine precision (10−18).

Figure 21: Example of SALI method application over a PSS for orbits discrimination. In the left panel,
orbits intersections with the PSS Σ (black points). In the right panel, the color map with the SALI value
for each grid cell (log scaled); in black (yellow), initial points for chaotic (stable) orbits. Grid resolution
is Nx × Npx = 600 × 1050 and maximum integration time t = 2 × 103.

Just as seen for the diffusion exponent (fig. 17), the chaotic area presents non-trivial,
intricate fluctuations. Specifically, the energy lines displayed in the right panel now show
that both the global and local maxima lines correlate with a clear white line, indicating
the emergence of stability structures when these points are accessed. As will be exten-
sively described in the following sections, this relates to the appearance of a multitude
of islands in phase-space, associated to orbits approaching maxima equilibrium points,
a phenomenon named here as island myriad bifurcation. The fact that these lines ap-
pear also for global maxima is due to the topological similarity when compared to local
maxima.

Besides, the chaotic area color map (fig. 22) indicates that maxima energy lines are
thresholds for an ergodic limit, that is, regions where chaos dominates the entirety of
phase-space (shown as the dark region in between the green and yellow curves). Further-
more, system integrability is generally limited by the saddle energy line (in magenta),
even though chaos appears for energies slightly below it, showing that it can emerge even
without the access to unstable points directly. Also, integrability is seen for the α → 0
limit for arbitrary energies, as expected.
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Figure 22: Color map of the chaotic area portion in parameter space. Total chaos is indicated by A = 1
and total regularity by A = 0. In the right frame, energy lines for equilibrium points are displayed as:
Vsaddle = U(1 − α2) in magenta; Vl-max = 2U(1 − α) in green and Vg-max = 2U(1 + α) in yellow. Grid size
is 250 × 250.

Particularly within the ergodic region, a difference to the diffusion exponent diagram
was found, where multiple diffusion fluctuations take place, whereas the chaotic area dia-
gram does not present any whatsoever. As better detailed in appendix F, these diffusion
fluctuations are more likely to be related to the appearance of small islands comprising or-
bits with long flights through the lattice, increasing the global diffusion exponent towards
free regime but without altering the global phase-space structure.

Regarding the particular coupling value related to the transition selected previously,
figure 23 shows the area profile for the case α = 0.1. We firstly point out that even below
diffusion onset at E = 19.8, despite the predominance of regular area, chaos is already
noticeable, as seen from the growth in chaotic area starting at E ≊ 15. The presence of
this first chaotic layer will be detailed in section 4.4. With the diffusion onset follows an
increase in chaos, as expected due to the saddle point effect on orbits, inducing instability
in motion.

However, as observed for the diffusion transition of interest, where a suppression from
free (µ ≊ 2) to normal regime (µ = 1) takes place exactly at E = 36, one can notice a
prominent sharp peak of decrease (increase) of chaotic (stable) area at this energy value.
This indicates that a sudden appearance of stability structures marks the transition, as
will be shown with portraits of phase-space displaying the previously mentioned myriad
of islands (sec. 4.3).
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Figure 23: (Top) Normalized area ra-
tios A of chaotic and regular orbits as
a function of the energy E for α = 0.1,
calculated over the PSS Σ. Since A
is normalized to total area (Atotal =
Achaos +Aregular), the maximum value
A = 1.0 is marked with a dashed yel-
low line. At each simulated point of
E, a grid of 450 × 350 was used over
the PSS, and the maximum running
time was of t = 2 × 103 time units.
(Bottom) The selected diffusion pro-
file for α = 0.1 (fig. 20).

4.3 Phase-space

As anticipated, the diffusion transition selected for study is related to the increase of
stability area associated to the appearance of a multitude of islands. Thus, we inspect the
phase-space as the transition occurs by portraying it via the PSS Σ (sec. 3.1) for energy
values below the transition (E = 32, where µ(E) ≊ 2.0), at transition (E = 36.1, where
µ ≊ 1.4) and above it (E = 38, where µ = 1.0).

In order to extract information from these portraits, three diagnostics were applied,
they are the PSS map, an escape time color map and the manifolds. The PSS map simply
shows the orbits intersections with the oriented section chosen at y = π

2 ; the escape time
map colors a grid over the PSS corresponding to the time required for an initial condition
to escape a given box limit. The escape box used was of ten neighbor cells, corresponding
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to the square Box(n) = [−nπ, (n + 1)π] × [−nπ, (n + 1)π] for n = 10. The maximum
escape time allowed for particles was t = 2 × 102, after which an orbit is considered to be
trapped.

As described in chapter 3.4, manifolds can be calculated from a given unstable peri-
odic orbit (UPO); here the one located along the stable direction of the saddle point at
(xsad, ysad) = (0, arccos(−α)) was used (fig. 24). The fixed point related to it is located
in the PSS Σ at (x, px) = (0, 0).

Figure 24: Unstable periodic orbit Usad
used for manifold calculation along the sta-
ble direction of the saddle point located at
(xsad, ysad) = (0, arccos(−α)). The dashed
horizontal blue line indicates the Poincaré sec-
tion used (Σ). Black solid lines are the equipo-
tentials of V (x, y) for α = 0.1.

Therewith, figures 25, 26 and 27 show the phase-space portraits for the energy values
selected: E = 32, E = 36.1 and E = 38, respectively. Below transition, when the
system presents free diffusivity, the dynamics is divided into three main stability islands
surrounded by a chaotic sea (fig. 25, top). One may note an immediate correspondence
amidst the chaotic sea between the escape time color map and the manifold alone (fig.
25 center and bottom panels). This is a generic behavior for conservative systems and
is explained by the fact that chaotic orbits will follow the stable manifold along time,
approaching the saddle point and thus jumping from one lattice pit to another. The
manifold’s invariant lines thus indicate a route for chaotic orbits to escape cells and travel
faster through the lattice.

For E = 32, a finger-like structure from the manifolds is found around the central and
bottom islands. The low escape time (in black) in these islands is understood from the
SPO at the center of each one, which are straight flights through lattice cells, as shown
in figure 28. However, one may also note that these channels emanate from the islands
boundaries, merging between the manifold finger-like structure, already within the chaotic
sea.

When the transition occurs at E = 36, the two previous stability islands vanish and a
myriad of large period chains of islands emerge from the chaotic sea (fig. 26, top panel),
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giving rise to the aforementioned island myriad phenomenon. These structures last for a
narrow interval of energy, approximately of E ∈ [36, 36.3]. The escape time for this case
(fig. 26, center panel) reveals that all chains have even period, alternating between high
escape time (in yellow) and low escape time (in purple). Figure 29 shows an example
of a period 3 orbit from the myriad (orbit 1) and the particular orbit connecting two
local maxima (orbit 2). Differently from the chains SPOs, the latter is unstable and its
fixed point forms the center of the island myriad structure, around which all chains are
concentric. The second part of this chapter will be dedicated to more details on this
phenomenon.

The stable manifold from Usad in its turn shows a web-like structure folding between
the myriad chains (fig. 26, bottom panel), well showing that movement becomes more
restrained, as confirmed by the reddish tones in the chaotic region seen in the escape time
panel. Also, a great portion of orbits with higher escape time are concentrated around
the upper stability island, which presents its own set of islands around itself.

When diffusion is suppressed to normal regime (µ = 1), the myriad of islands com-
pletely vanishes and the phase-space becomes mostly chaotic, with only the upper island
still remaining with reduced size (fig. 27, top panel). The escape time map in this
case shows that the web-like tangled structure disappears, being replaced with a swirling
pattern within a more uniform chaotic space (fig. 27, center and bottom panels). Fur-
thermore, no significant low escape channels are seen, opposed to the scenario before the
transition occurs.

In summary, it was identified that as particles reach the energy level of local maxima
points, two major islands composed of long flights are suppressed as the manifold structure
folds into itself, forming a web-like pattern amidst which a myriad of islands appear,
thus increasing the stable areas observed. This myriad quickly disappears as the energy
increases, leaving behind itself a uniform chaotic sea with normal diffusion transport.
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Figure 25: Phase-space portraits for (E, α) = (32, 0.1). (Top) PSS with orbits crossing points. (Center)
Escape time color map. (Bottom) Stable manifolds from Usad.
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Figure 26: Phase-space portraits for (E, α) = (36.1, 0.1). (Top) PSS with orbits crossing points. (Center)
Escape time color map. (Bottom) Stable manifolds from Usad.
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Figure 27: Phase-space portraits for (E, α) = (38, 0.1). (Top) PSS with orbits crossing points. (Center)
Escape time color map. (Bottom) Stable manifolds from Usad.
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Figure 28: Periodic orbits for E = 32, α = 0.1. In the left panel, the PSS with fixed points highlighted.
The center and right panels show the respective spatial trajectories. The horizontal dashed blue line
marks the PSS position.

Figure 29: Periodic orbits for E = 36.1, α = 0.1. In the left panel, the PSS with fixed points highlighted.
The center and right panels show the respective spatial trajectories. The horizontal dashed blue line
depicts the PSS Σ section.

4.4 Periodic orbits and time-period diagram

Complementary to the visual inspection of phase-space, it is interesting to discriminate
how periodic orbits (PO) themselves change. Since stable periodic orbits (SPO) relate to
stability islands and unstable ones (UPO) rule the chaotic dynamics by means of their
manifolds, the set of periodic solutions provides a blueprint of the global dynamics – see
section 3.3.

We start by showing the first main orbit bifurcation taking place in the system (for
α = 0.1), occurring for small energies below diffusion onset. Figure 30 displays this
process as seen from the PSS Σ, where the initially stable orbit Sb undergoes a pitchfork
bifurcation at E ≈ 7.6, becoming unstable (Sb → Ub) while two new SPOs, Sy and Sr,
split from it. On further increasing the energy (E = 17.6), a thin chaotic layer becomes
visible around Ub, surrounding the bottom and central islands in which Sy and Sr are at
the center. For energies above saddle points (i.e. the diffusion onset at E = 19.8), the
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SPOs Sy and Sr overpass them and therefore reach neighbor cells, forming the first main
paths for particles diffusion, as seen for the two main islands in figure 25.

Figure 30: Pitchfork bifurcation for increasing energy as seen from the PSS Σ (top row) along with
the corresponding trajectories (bottom row) and their respective highlighted fixed points (colored dots).
Unstable (Stable) orbits are indicated by U (S) with a subscript for their color.

Soon after the diffusion onset, the system initially presents a free diffusion regime,
as presented in section 4.1 for α = 0.1. We thus look at the manifolds for this initial
scenario considering three UPOs, shown in panel B from figure 31, namely one over the
lattice minimum point (Ub), and two along the stable direction of the saddle points at
(xsad, ysad) = (0, arccos(−α)) (Uy) and (xsad, ysad) = (arccos(−α), 0) (Ux), for an energy
value slightly above diffusion threshold (E = 22). The resultant manifolds are shown in
panels C and D.

Even though these manifolds belong to the same compact chaotic domain (fig. 31,
panel A, one can notice in panel C that the dynamics in this region presents two transitory
regimes. An outer layer, with higher momentum values, is shown by the unstable branch of
Uy and indicates transport between lattice cells, as it connects unit cell minima regions at
x = 0 and x = π, whereas an inner layer, shown by the stable branch of Ub, is responsible
for chaotic motion around lattice pits. Besides, although these branches will eventually
cross each other infinitely many times, their turnstiles, i.e. the area between manifold
lobes crossings, are small, indicating weak mixing. When looking at the stable branch
from Ub along with the unstable one from Ux, one sees the same separation, with the
central island surrounded by the unstable branch.
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Figure 31: A) PSS Σ for E = 22. B) UPOs used for the calculation of the manifolds displayed at frames
C and D. C) Stable (green) and unstable (red) manifold for Ug (Uy). D) Stable (green) and unstable
(red) manifolds for Ug (Ux). In frame B, the blue dashed line marks the surface Σ and the blue dots in
the remaining frames the fixed points from UPOs within it.

In order to provide a wider picture of POs as the energy varies, one can make use
of the monodromy algorithm (sec. 3.3) and construct a diagram, with the period τ of
the orbits found in one axis, and their energy on another. This diagram can thus depict
orbits bifurcations and period increases along transitions. It is worth emphasizing that
the period considered for this calculation here is the dynamical one, i.e. the time evolved
until POs close themselves, instead of the integer period related to its fixed points in
a PSS map. Figure 32 shows such a diagram for α = 0.1. The algorithm was run by
exhaustively searching for periodic orbits with discrete period 1 and 2 in the PSS. Note
that, analogously to a Newton-Raphson method, the algorithm may not converge to the
desired PO for every initial condition given, thus being dependent on an ‘attraction basin’.

The two horizontal dashed lines in figure 32 mark the energy for diffusion onset, at
E = 19.8 and the transition selected for study here, at E = 36. One immediately notices
that a set of orbits diverge in period while reaching each of these lines, as though as
approaching the line asymptotically. These are homoclinic orbits, such as orbit 2 in figure
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29, that when approaching unstable equilibrium points take an infinite amount of time to
reach it, slowing down the dynamics. This phenomenon in commonly exemplified by the
pendulum model when it has enough energy to reach its unstable equilibrium position,
taking an infinite ‘period’ to complete a revolution. Here, this behavior is expected for
the set of orbits approaching either the saddle point, the local or global maxima.

Figure 32: Period-energy diagram
for α = 0.1. The dynamical period τ
corresponds to the time required for
orbit completion. In this case, only
orbits with map period of 1 and 2 are
considered. The horizontal dashed
gray lines mark the energy of sad-
dle equilibrium points E = 19.8 and
local maxima E = 36, where the dif-
fusion transition studied occurs.

It is worth pointing out that, since the potential function for the square lattice has
symmetry for rotations of π

2 and translations of 2mπ, for m ∈ Z, for any given trajectory,
its symmetrical counterpart will also be a solution; thus implying that identical periodic
orbits always occur by changing x ⇄ y. Therefore, symmetric pairs of POs end up having
the same dynamical period τ , thus appearing as a single overlapped point in the E × τ

diagram. This can be seen in figure 32 for the pitchfork bifurcation described in figure 30,
where the points relative to the new bifurcated orbits Sy and Sr correspond to a single
position in the diagram at E > 7.6.
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5

Results:
Island Myriad

“The chief forms of beauty are order and symmetry
and definiteness, which the mathematical sciences

demonstrate to a special degree.”
Aristotle, Metaphysics



F rom the previously identified island myriad phenomenon, a thorough investi-
gation and description of its features is given. Starting with the island chains
organization, the main periodic orbits are shown to reflect the potential function

symmetries, explaining its isochronous nature and the difference of transport rate between
chains (sec. 5.1). Beyond the particular transition previously studied (that for α = 0.1
and E = 36), the evolution of the myriad is analyzed along with the changes on local
maxima points with the control parameters (sec. 5.2). Based on the properties observed,
the existence of the phenomenon is also verified for a hexagonal lattice (sec. 5.3).

5.1 Island myriad

In what follows for the remaining sections, we turn to the investigation of the island
myriad found. Initially, it was seen that its structure is composed of multiple island
chains with even period, all of them concentric around the fixed point related to the UPO
along the line connecting two local maxima – orbit 2 in figure 29, forming an onion-like
structure. Figure 33 shows a colored map of the phase-space for the myriad. One can
notice that in between chains, smaller ones appear, displaying a clear fractal structure, as
it is expected for bifurcations of islands in accordance to the KAM theorem [36], although
not always as clearly seen as in this case.

Figure 33: Colorized phase-space
portrait of the island myriad for α =
0.1 and E = 36, exactly at the local
maxima energy level. Colors were set
using the SALI index value to em-
phasize island regions.

In detail, each chain is actually formed not by a single SPO with map period 2n, for
n ∈ Z, but instead by two orbits of period n, thus being referred to as isochronous islands
(fig. 34). The orbits that form each chain are symmetric pairs, translated by (nπ, mπ)
or rotated by (n + 1)π/2 in space, for n, m ∈ Z. This condition is only possible due to
the square lattice symmetries and in particular to its ‘tiling’ closure property, the same
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that allows for the use of periodic boundary conditions (PBC). Consequently, these orbits
appear in the same chain since they have the same rotation number2. It is also possible
that an isochronous chain may be formed by more than two twin orbits, in case the fixed
point period of a PO is the same when rotated more than two times by π

2 . Appendix G
shows an example of this feature for a period 12 chain within the myriad.

Figure 34: Isochronous orbits composing island myriad chains. The colored dots indicate the fixed points
of the trajectories relative to the PSS Σ (blue dotted line). The innermost period 8 chain is formed by
the blue and red orbits while the immediate next one, with period 10, by the yellow and black ones.

For clarity, it is worth emphasizing that the trajectories shown here take into account
PBC, in such a way that they are ‘cut’ and placed into the opposite boundary when passing
over the lattice unit cell limits (x, y ∈ [−π, π]). This aspect is particularly relevant to
understand the alternate escape time behavior observed in figure 26 (middle panel). In it,
some chains present the limit escape time, thus not escaping at all, whereas others escape
quickly.

When inspecting the SPOs associated to each kind of chain, it is found that some
return to their exact initial position, even when disregarding PBC (fig. 35), whereas
others only do so with PBC (fig. 36). Therefore, the former are closed loops and have
limited range, thereby never escaping, whereas the latter travel in almost direct flights
through the lattice, as shown in figure 37. Such a feature is only possible due to the
‘tiling’ periodicity property of the potential function, once that a translated position
(x, y) → (x ± 2nπ, y ± 2mπ), for n, m ∈ Z, will correspond to an identical site inside a
neighbor unit cell, thus allowing for periodic behavior without return to the exact position
where the trajectory starts.

2Among different applications, the winding number ω can be calculated as the average ratio of angular
growth for a variable θ(t) as ω = limn→∞

θn−θn−1
n . The angle variable can be defined from the canonical

space coordinates or over a PSS map, relative to the center of an island.
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Figure 35: Periodically closed orbits from island chains with high escape time (from the highlighted green
layers).

Figure 36: Periodically open orbits from island chains with low escape time (from the highlighted blue
layers).
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Figure 37: Examples of periodic
orbits with different spatial clo-
sure. On the left column, trajecto-
ries within the unit cell and PBC
applied. On the right column,
trajectories without PBC, ranging
through all space.

5.2 Separatrix reconnection

As asserted initially, the island myriad is expected to emerge anytime orbits reach the
energy level of unstable equilibrium points (see for example appendix H, showing the island
myriad for global maxima). However, the energy of these points changes with the coupling
α, thereby raising the possibility of analysing the myriad evolution as the unstable points
change themselves. For this purpose, figure 38 compiles phase-space portraits for energy
values along the local maxima energy Vl-max = 2U(1 − α), corresponding to the white line
in the chaotic area color map profile in figure 22.

For increasing α, the fractal structure of the myriad is well apparent until α ≈ 0.5,
as seen for α = 0.105 to α = 0.430 in figure 38. On further increasing the coupling, the
myriad innermost structure (centered at x = π

2 and px√
E

≈ −0.75) bifurcates into two
main islands (see α = 0.637 in fig. 38), with a more uniform chaotic layer surrounding
it. For even higher values of α, the myriad region furthers diminishes in area while the
phase-space is dominated by the uppermost stability island and secondary chains.
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Figure 38: Phase-space portraits for α values along the local maxima line.

A particular feature occurring when increasing the control parameters α and E over
the local maxima line is the bifurcation and further disappearance of the islands chains.
Within the myriad, one may note the central concentric layering of chains but also an
outer thin ring of islands right beyond a chaotic region, surrounding the whole myriad. As
the control parameters increase, the innermost chains move outwards and eventually meet
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with the outer ones that move inwards, relative to the fixed point center. The process of
collision of these chains is a phenomenon called separatrix reconnection [51], as illustrated
in figure 39, for two period 6 chains and in figure 40 for period 4 chains.

In this case, the outer and inner chains are interdigitated relative to each other, in the
sense that the stable centers of islands from one chain align with the saddles (unstable
points) of the other. When they meet, the separatrix is divided and changes its shape
and topology, with the previous outermost chain now inside the center myriad structure
and the former inner chain immersed in the chaotic area. This process keeps on going
continuously and sequentially as the inner chains move outwards, always in an interdigi-
tated configuration relative to the outer ones, then reconnecting and further disappearing,
eroding the myriad with chaos until it vanishes for α = 1 =⇒ E = 0.

Commonly, the scenario of separatrix reconnection is seen in non-twist systems, more
widely studied in the standard form [51]. In such systems, the twist property, i.e. the
monotonic increase of the winding number with the action variable, is violated, presenting
minimum or maximum points. These extreme points further indicate the existence of
shearless curves, forming transport barriers between chaotic regions, and the interdigitated
island chain pair are resonances occurring for equal winding number, above and below
the shearless curve. Here, this arrangement is seen when considering the local winding
number relative to the island myriad center. The related shearless curve would thus
be expected to occur between the interdigitated islands that reconnect; however, the
constant presence of the chaotic layer between them prevents a direct verification via
winding number calculation.
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Figure 39: Separatrix reconnection of islands within the myriad as (α, E) vary on the local maxima line.
The coupling increases from top to bottom, α = 0.295 → 0.305 and E = Vl-max(α).
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Figure 40: Separatrix reconnection of islands within the myriad as (α, E) vary on the local maxima line.
The coupling increases from top to bottom, α = 0.395 → 0.415 and E = Vl-max(α).

71



5.3 Hexagonal lattice

As conjectured, the island myriad phenomenon is expected to occur in any periodic
potential system when particles reach the energy level of unstable equilibrium points.
Furthermore, the tiling periodicity property is necessary to obtain solutions that have both
rotational and translational symmetries allowing for twin pairs, with identical winding
number and thereby forming isochronous chains. Therefore, based on these premises, one
immediately expects that lattices with triangle, square and hexagonal symmetries, that
is, the only regular convex polygonal shapes with such a feature, will present the myriad
phenomenon.

Thus, the case of a hexagonal lattice was investigated in order to assert the existence
of the myriad. As described in the model chapter (sec. 2.3), a single parameter scenario
was assumed; in this case, some equilibrium points are symmetrically arranged in space
and were selected as reference for the energy lines related to unstable equilibrium points.
Figure 41 shows how these reference points change their energy and stability in the single
coupling scenario. For clarity of notation, the coupling parameter for the hexagonal lattice
will be labeled as β.

Figure 41: Energy lines and sta-
bility for the selected equilibrium
points for the hexagonal lattice.
See table 2 for reference on the leg-
end.

Before turning to the energy lines, we anticipate that the myriad was found for the
hexagonal lattice only for β ≈ 0, and in less pronounced form, as shown in figures 42
and 43 for β ≳ 0 and β ≲ 0, respectively. As seen for β ≳ 0, two clear sets of islands
appear around a central major island and on the rightmost section of the PSS (β = 0.02
in fig. 42). Despite its small size, the myriad is notably visible due to a strong stickiness
effect, forming a permeable barrier between the chaotic region surrounding the central
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island and the remaining chaotic sea. As the coupling increases, islands increase in size
as well but decrease in number, although still preserving a semi-barrier effect (fig. 42 for
β = 0.04 and β = 0.06). For negative values of β, a different configuration is found in
the PSS but still presenting a semi-barrier (β = −0.03 in fig. 43), diminishing along with
the coupling until it completely vanishes, preserving only a few sparse islands amidst the
chaotic sea (β = −0.2 in fig. 43).

The presence of the myriad in attenuated form, with smaller islands and surrounded
by chaos, is credited to the presence of extra sources of instability, mostly due to unstable
points in the potential (not among the selected ones, as seen in figure 8). In this way,
the presence of the myriad only for β ≈ 0 must hold from the similar energy level that
points Pp,c and Lo,i have, as shown in the energy line diagram (fig. 41), and therefore act
as symmetrical scatterers, enabling periodic trajectories to be stable. For other values
of β along any of the energy lines shown, the presence of other saddles or maxima may
perturb these orbits and turn them unstable, thus preventing the myriad appearance.

Nonetheless, the same leveling of local maxima energy is seen for Lo,i and I equilibrium
points at β = 0.5, thus suggesting the phenomenon to occur at this coupling value also,
although the same was not observed. In fact, in this case, the energy level may be too
low, as compared to what is seen for the square lattice for α ≳ 0.5, where the myriad
structure becomes less visible for higher coupling. From a mathematical perspective, one
could argue that the potential in the Hamiltonian for the hexagonal lattice will always
be non-linearly coupled, even for null β, given that it is formed by three wave-vectors
over a plane, thereby making one of them linearly dependent of the others. This non
removable perturbation is then a source of instability that at the energy level of Lo,i and
I for β = 0.5 is non negligible.
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Figure 42: Phase-space portraits showing island myriads for the hexagonal lattice for coupling values for
β ≳ 0. In this case, the PSS is set for y = 0, py > 0.
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Figure 43: Phase-space portraits showing island myriads for the hexagonal lattice for coupling values for
β ≲ 0. PSS set for y = 0, py > 0.
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6

Conclusions

“Good judgement is the result of experience; experience is the result of bad judgement”
Mark Twain



T he study presented here initially focused on the spatial diffusion of particles in
a square lattice potential, as modeled by a classical Hamiltonian with periodic
potential. With the main interest of understanding how particles’ movement

through the lattice changes as its main parameters vary (i.e. the energy E and coupling
α), a diffusion exponent µ measure was carried on. When measuring µ, sudden and
unexpected transitions between normal and free (ballistic) regimes were found to occur
over all parameter space (E × α) (sec. 4.1). Regarding system control, the global map
obtained for µ allows one to discriminate whether particles remain more or less confined
within the lattice, based on the existence of different transport regimes.

In a first inquirement, calculations of the chaotic area revealed the emergence of sta-
bility structures in phase-space for particular transitions in diffusion regimes when local
maxima points of the potential become accessible (sec. 4.2). A particular coupling value,
namely α = 0.1, was then selected for a in depth analysis to describe this kind of tran-
sition. In this case, as the energy E varies, the diffusion exponent undergoes a sudden
suppression, dropping from free to normal regime, while correlating with a sharp peak
where stability area increases.

This suppression in transport can be regarded as counter-intuitive, for even though
local maxima are surpassed, thus widening the path for transport between lattice cells,
long flights vanish during the process. For an in deep description, a variety of numerical
techniques were employed to characterize the dynamics in phase-space (sec. 4.3). For the
particular case selected, it was found that previous to diffusion, two main stability islands
promote the transport of particles, as seen from their low escape time, with extensions to
the chaotic sea.

As the manifolds that delineate these islands fold and collapse, a web-like pattern is
formed from within which the emergence of stability structures appear as a myriad of is-
land chains. This island myriad lasts only for a narrow energy window during the moment
of transition, after which a chaotic sea with uniform normal diffusion rate dominates the
phase-space. Besides the myriad appearance and long flights suppression, at the energy
level of local maxima points homoclinic orbits reaching them diverge in period, promoting
a slow down of the dynamics (sec. 4.4). This first part of results (chapter 4) was published
under the reference: ‘M. Lazarotto, I. L. Caldas and Y. Elskens; “Diffusion transitions in
a 2D periodic lattice’, CNSNS, 112 (2022)” [52].

When focusing on the myriad structure found, it appears as a highly fractal layering
of island chains with even period, concentrically organized around the UPO fixed point
from the homoclinic orbit connecting local maxima (sec. 5.1). Due to the square lattice
translational and rotational symmetries, these chains are isochronous, being formed by
symmetric (twin) orbits with same winding number. As seen from escape time measure-
ments, different chain layers in the myriad present orbits that can either remain trapped in
the lattice or escape quickly. Each case relates to the property of SPOs to return to their
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initial position regardless of periodic boundary conditions, either forming closed loops
when they return or instead forming open curves when they do not, thereby promoting
unrestricted transport of particles.

For energy and coupling parameters varying over the local maxima energy line, the
concentric island chains are seen to undergo separatrix reconnection, being sequentially
destroyed by colliding with external chains in an interdigitated configuration, as commonly
seen in non-twist scenarios (sec. 5.2). It is interesting to note that the isochronous effect
and separatrix reconnection seen here arise from features in the potential function, being
rather intuitive to understand dynamically, opposed to mathematical scenarios where a
physical interpretation of these phenomena is lacking.

Complementarily, the island myriad was also observed for a hexagonal lattice, in
order to assert the hypothesis that the phenomenon is exclusive to potentials with tiling
symmetry (sec. 5.3). Indeed, the phenomenon was found but in attenuated form and for
a smaller coupling parameter window, since extra sources of instability in the potential
surface for the hexagonal lattice prevent the existence of stable orbits to form the myriad.
It is still an open problem if potentials with alternative tiling properties, such as Penrose
tilings [53], could present the same phenomenon.
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Appendix



Software and tools

All numerical simulations done for this work were carried on C/C++ programming
language [37] with particular use of GSL (GNU Scientific Library [54]) ordinary differential
equation library (gnu.org/software/gsl/doc/html/ode-initval.html) for the RKCK
integration method.

The analysis methods presented were based on the references cited throughout the text
but manually implemented, including Tao’s symplectic integration method, which is made
available at the online repository github.com/matheuslazarotto/SymplecticTao. Also,
the code for chaotic/regular area calculation is openly available at the Oscillation Control
Group repository page at: yorke.if.usp.br/OscilControlData/Chaotic-Stable-area/.
An application for dynamical systems analysis and exploration was developed along the
thesis work in collaboration with V. Oliveira and M. Palmeiro, and is made available at
github.com/segmentation-chaos/dynamical_systems.

A Single coupling condition for the hexagonal lattice

When assuming the single coupling condition for the hexagonal lattice, it is required
to check whether it is feasible physically, once the couplings αij can be related to each
other geometrically. Following Porter et al. [25], by assuming the first wave polarization
versor ê1 along the ẑ direction, the remaining ones can be written in terms of spherical
angles (θj, ϕj) as


ê1 = ẑ

ê2 = cos(ϕ2) sin(θ2) x̂ + sin(ϕ2) sin(θ2) ŷ + cos(θ2) ẑ

ê3 = cos(ϕ3) sin(θ3) x̂ + sin(ϕ3) sin(θ3) ŷ + cos(θ3) ẑ,

with ϕj ∈ [0, 2π) and θj ∈ [0, π]. The couplings are


α12 = ê1 · ê2 = cos(θ2)

α13 = ê1 · ê3 = cos(θ3)

α23 = ê2 · ê3 = sin(θ2) sin(θ3) (cos(ϕ2) cos(ϕ3) + sin(ϕ2) sin(ϕ3)) + cos(θ2) cos(θ3)

With the imposition of the same value for any αij, it must hold that θ2 = θ3 = θ,
further implying the equation

sin2(θ) cos(ϕ2 − ϕ3) + cos2(θ) = α,

and therefore
cos(ϕ2 − ϕ3) = α

1 + α
,
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which will have real solutions if and only if
∣∣∣ α

1+α

∣∣∣ < 1, thereby restraining the coupling
value to α ∈

[
−1

2 , 1
]
. In short, it will only be possible to set αij = α ∀i, j by selecting

θ2 = θ3 = θ, such that cos(θ) = α, and selecting values of ϕ2, ϕ3 such that (ϕ2 − ϕ3) =
cos−1

(
α

1+α

)
, for α ∈

[
−1

2 , 1
]
.

B Action-angle variables

Considering the Hamiltonian in equation 2.9 without coupling (α = 0), the dynamics
is separated into two symmetrical pendulum-like systems along each cartesian axis

H(x, y, px, py, α = 0) = Hx + Hy = Ex + Ey (6.1)

with
Hi = Ei = p2

i + U cos2(qi) for i = x, y. (6.2)

Consequently, the transformation to action angle variables (x, y, px, py) → (θx, θy, Jx, Jy)
can be carried separately and identically for each unperturbed Hamiltonian Hi.

From its definition, the action Ji is proportional to the area enclosed by a trajectory
in phase-space

Ji = 1
2π

∮
pidqi = 2

π

√
Ei

∫ q∗

π
2

√
1 − k̄2 cos2(qi)dqi (6.3)

with pi =
√

Ei − U cos2(qi). In the rightmost integral, the inferior limit of integration is
taken at the rest position and the superior one as as the maximum oscillation amplitude,
q∗ = π

2 + arcsin
(
k̄−1

)
, for k̄ =

√
U
Ei

> 1. These limits take into account symmetry
properties of the trajectory in phase-space, which can be separated into 4 equal pieces
of same area and be evaluated only during a quarter of a complete oscillation. Shifting
qi → ϑi + π

2 , the integral 6.3 is seen to be an elliptical integral of second kind

Ji = 2
π

√
Ei

∫ arcsin(k̄−1)

0

√
1 − k̄2 sin2(ϑi)dϑi

Ji = 2
π

√
Ei E(ϕ, k̄),

(6.4)

where ϕ = arcsin(k̄−1) is the phase parameter and k̄ the modulus parameter [55]. One may
note that for librational trajectories, k̄ is bigger than 1, requiring the extension relation

E(ϕ, k̄) = k̄1
[
k̄2E(ϕ1, k̄1) + k′2F(ϕ1, k̄1)

]
for k > 1, (6.5)

where F(ϕ, k) is the elliptical function of first kind and the auxiliary parameters are

k̄1 = 1
k̄

, sin(ϕ1) = k̄ sin(ϕ), k′2 = 1 − (k̄)2. (6.6)
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The extended phase ϕ1 is easily evaluated as

ϕ1 = arcsin(k̄ sin(arcsin(k̄−1))) = π

2
, (6.7)

thereby meaning that the elliptical functions in equation 6.5 are complete, in the sense
that the phase ranges from 0 → π

2 . The action is then written as

Ji = 2
π

√
U
[
E(ki) + (k2

i − 1)K(ki)
]

(6.8)

with new modulus parameter k2
i = (k̄i)−2 = Ei

U
< 1 and K(k) as the complete form of the

elliptical function of first kind F(ϕ, k).
Since (θi, Ji) are action-angles variables, the Hamiltonian Hi will depend only on the

action Ji, implying that the angle θi evolves linearly in time θi(t) = ωit, with frequency
calculated as

ωi = ∂Ei

∂Ji

= ∂Ei

∂ki

∂ki

∂Ji

ωi = 2Uki

[
∂

∂ki

( 2
π

√
U
(
E(ki) + (k2

i − 1)K(ki)
))]−1

ωi = π
√

U

K

(6.9)

where the partial derivative property ∂ki

∂Ji
=
(

∂Ji

∂ki

)−1
was used.

The time dependence of the cartesian position qi can be obtained by quadrature and
its dependence with θi(t)

dqi

dt
= ∂Hi

∂pi

= 2pi

1√
Ei

∫ qi(t)

π
2

1√
1 − k̄ cos2(q′

i)
dq′

i = 2t.
(6.10)

Similar to equation 6.4, by shifting qi → π
2 + φ the integral becomes the first elliptical

form for extended parameter k̄ > 1, thus yielding

1√
Ei

1
k̄
F(ϕ1, k) = 2t (6.11)

with extended phase ϕ1 = arcsin(k̄ sin(qi(t) − π
2 )). Comparing equations 6.11 and 6.9 and

noticing that θiω
−1
i = t, one can relate ϕ1(qi) with the modulus ki and angle θi

F(ϕ1, k) = 2Kθi

π
. (6.12)

Inverting the equation above requires the use of elliptical inverse Jacobi functions u =
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F(ϕ1, k̄), with the correspondent inverse sn(u|k) = sin(ϕ1), thus yielding q(ki, θi):

sn (F(ϕ1, k1)) = sn
(

2Kθi

π

)

ϕ1 = arcsin
(

sn
(

2Kθi

π

)) (6.13)

qi = π

2
+ arcsin

(
ki sn

(
2K(ki) θi

π

))

The correspondent momentum pi in its turn is promptly calculated by its motion
equation:

pi =1
2

q̇i

pi =1
2

1√
1 −

(
k sn(2K

π
θi)
)2

d

dt

(
k sn

(
2K
π

θi

))

pi =kK
π

1√
1 − k2 sn2(2K

π
θi)

cn
(

2K
π

θi

)
dn
(

2K
π

θi

)
θ̇i

pi =k
√

U cn
(

2K
π

θi

)
(6.14)

where the following relations for inverse Jacobi elliptical functions were used:

cn2 + sn2 = 1, cn2 + (1 − k2)sn2 = dn2,
d

dz
sn(z) = cn(z)dn(z). (6.15)

Therefore, for the unperturbed square lattice Hamiltonian, librational orbits are ana-
lytically found as

qi = π

2
+ arcsin

(
ki sn

(
2K(ki)

π
θi

))
pi = ki

√
Ucn

(
2K(ki)

π
θi

)
(6.16)

and the related action-angle variables

Ji = 2
π

√
U
[
E(ki) + (k2

i − 1)K(ki)
]

, θi =
√

Uπ

K(ki)
t for i = x, y. (6.17)

C Symplectic numerical integration

In order to evaluate the performance of RKCK for long integration times, a comparison
was made with an alternative symplectic method developed by Molei Tao [39]. Briefly,
Tao’s method integrates a d-degree of freedom Hamiltonian system H(q⃗, p⃗) by considering
a new Hamiltonian H̄, including new copy variables (q⃗c, p⃗c), which start from the same
initial point (q⃗c(0) = q⃗(0), p⃗c(0) = p⃗(0)) and are evolved along with the main variables q⃗
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and p⃗ from the joint Hamiltonian

H̄(q⃗, q⃗c, p⃗, p⃗c) = HA + HB + ωHC , (6.18)

where HA := H(q⃗, p⃗c) and HB := H(q⃗c, p⃗) are copies of the original Hamiltonian function
written with exchanged variables; ω is a scalar coupling factor and HC the coupling
perturbation

HC(q⃗, q⃗c, p⃗, p⃗c) := ||q⃗ − q⃗c||2

2
+ ||p⃗ − p⃗c||2

2
. (6.19)

An integration step of δt is thus made by the map ϕδt
2 from Hamiltonian 6.18 as

ϕδt
2 := ϕ

δt/2
HA

◦ ϕ
δt/2
HB

◦ ϕδt
ωHC

◦ ϕ
δt/2
HB

◦ ϕ
δt/2
HA

(6.20)

where each partial mapping is given by:

ϕδt
HA

:=


q⃗

p⃗

q⃗c

p⃗c

 →


q⃗

p⃗ − δt∇q⃗H(q⃗, p⃗c)
q⃗c + δt∇p⃗cH(q⃗, p⃗c)

p⃗c

 , ϕδt
HB

:=


q⃗

p⃗

q⃗c

p⃗c

 →


q⃗ + δt∇p⃗H(q⃗c, p⃗)

p⃗

q⃗c

p⃗c − δt∇q⃗cH(q⃗c, p⃗)


(6.21)

and

ϕδt
ωHC

:=


q⃗

p⃗

q⃗c

p⃗c

 → 1
2



q⃗ + q⃗c

p⃗ + p⃗c

+ R(δt)

q⃗ − q⃗c

p⃗ − p⃗c

q⃗ + q⃗c

p⃗ + p⃗c

− R(δt)

q⃗ − q⃗c

p⃗ − p⃗c



 where R(δ) :=

 cos(2ωδt)Id sin(2ωδt)Id

− sin(2ωδt)Id cos(2ωδt)Id


(6.22)

with Id as the d-dimensional identity matrix. Considerations on which value ω may have
are made further in this section. As showed above, Tao’s method will be 2nd order, thus
meaning 3rd order error 3, and it is explicitly symplectic as opposed to the more commonly
find implicit symplectic integration algorithms.

The adaptive step size RKCK method was implemented with the GSL library for
C/C++ [54] programing language whereas Tao’s method was implemented manually in
the same programming language with fixed time step of δt = 10−5.

To evaluate the integration precision, two functions for constants of the motion were
calculated. The energy E = H(t), which is an immediate constant for conservative
systems, and the symplectic 2-form δS between the vectors z⃗ = (zq

1, ..., zq
d, zp

1 , ..., zp
d) and

3Higher orders can be achieved by concatenating steps as ϕδ
l := ϕγlδ

l−2 ◦ ϕ
(1−2γl)δ
l−2 ◦ ϕγlδ

l−2, for γl =
(2 − 2

1
l+1 )−1 and l an even positive integer.
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w⃗ = (wq
1, ..., wq

d, wp
1, ..., wp

d) in a d-degrees-of-freedom space:

δS(z⃗, w⃗) :=
d∑

i=1
dqi ∧ dpi =

d∑
i=1

(
zq

i wp
i − zi

pwq
i

)
(6.23)

which is expected to be numerically conserved, at least for integrable orbits, if the inte-
gration method is symplectic.

For the calculation of the 2-form δS, a given initial condition is integrated along with
a second one, slightly displaced from it, with initial point: s⃗0 → s⃗0 + δ⃗, for |δ⃗| = 10−10.
The 2-form will thus measure how close the two paths remain throughout time evolution.
For chaotic orbits it is expected that this orbits diverge exponentially, but the longer it
takes for them to diverge, the better. For integrable orbits a good symplectic integration
is expected to keep the 2-form limited and the lowest possible.

Four orbits were arbitrarily selected, two integrable and two chaotic, all of them for
system parameters α = 0.1 and E = 25.0; the initial points for each one are:

• Trajectory 0 (Chaotic): (x0, y0, px0, py0) = (0.00000, 1.57070, −0.100000, 2.233745)

• Trajectory 1 (Regular): (x0, y0, px0, py0) = (1.57070, 1.57070, −0.100000, 4.999000)

• Trajectory 2 (Regular): (x0, y0, px0, py0) = (1.00000, 1.57070, 2.000000, 3.893746)

• Trajectory 3 (Chaotic): (x0, y0, px0, py0) = (1.57070, 1.57070, −3.000000, 4.000000)

The points above were integrated for a total time of t = 103, which has the same
magnitude as the longest time used in analysis over the 2D lattices, specifically on the
diffusion and chaotic/regular area calculation (SALI method).

Figures 44 and 46 show the space trajectories for each initial point for the RKCK and
Tao’s method respectively. One can notice how the chaotic orbits densely fill the available
space where V (x, y) < E but with different concentration of paths in some areas. The
energy and 2-form values are shown in figures 45, for RKCK, and 46 for Tao’s method.
Lastly, performances of both methods are summarized in table 3.

CPU time† δH δS

Runge-Kutta-Cash-Karp 40 sec 10−9 101 (All)
Symplectic Tao 16 min 10−7 101 (trajs 0,3) | 10−7 (trajs 1,2)

Table 3: Performances of integration methods for a total time t = 1000 for the square lattice system.
The values shown are in magnitude, not exact averages. For the symplectic 2-form, the result was split
between regular and chaotic orbits when they differ. (†) CPU time is approximately the same for all four
orbits, the value shown is the average.
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Figure 44: Spatial trajectories for the four initial conditions set integrated with RKCK for a total time
t = 1000.

Figure 45: Energy deviation δH = E0 − H(t) (left) and symplectic 2-form δS (right) of trajectories
integrated with the RKCK.

Figure 46: Spatial trajectories for the four initial conditions set integrated with the symplectic Tao
method, with fixed time step dt = 10−5 and total time t = 1000.
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Figure 47: Energy deviation δH = E0 − H(t) (left) and symplectic 2-form δS (right) of trajectories
integrated with the explicit symplectic Tao method with fixed time step dt = 10−5 and total time
t = 1000.

For the symplectic Tao method, the same coupling factor ω = 50 was used for all
orbits. To ensure this is a reasonable choice, a brief test on different ω values was made
and the results summarized in table 4. The lowest value of ω = 2 presented divergent
errors, both in energy and symplectic 2-form, whereas values higher than order 101 kept
conservation at order of magnitude 10−7.

δH δS

Symplectic Tao (ω = 2) 106 103 (all trajs)
Symplectic Tao (ω = 50) 10−7 101 (trajs 0,3) | 10−7 (trajs 1,2)
Symplectic Tao (ω = 100) 10−7 101 (trajs 0,3) | 10−7 (trajs 1,2)
Symplectic Tao (ω = 500) 10−7 101 (trajs 0,3) | 10−7 (trajs 1,2)
Symplectic Tao (ω = 2000) 10−7 101 (trajs 0,3) | 10−7 (trajs 1,2)

Table 4: Performance of symplectic Tao method for different choices of coupling factor ω for total
integration time of t = 1000 for the square lattice system. Values are shown in magnitude, not exact
averages. For the symplectic 2-form, the result was split between regular and chaotic orbits when they
differ.

D Statistical convergence of the diffusion exponent

In order to ensure the statistical reliability of the calculated diffusion profiles, this
section discusses the dependence of values of µ with the total integration time t and
ensemble size N . This is done by comparing the simulation in the best case scenario
(highest t or N , here taken as t = 3 × 103 and N = 3 × 104) with multiple other ones
with lower values of t and N . It can be asserted then that the fluctuations and transitions
found in the diffusion exponent are not due to statistical imprecision, but indeed caused
by changes in the dynamics.
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Figure 48: Diffusion exponent differ-
ence ∆µ = µN −µn between different
values of ensemble size n and the best
case for N = 3 × 104. For all cases:
t = 3000 and α = 0.1.

Figure 48 starts by showing the difference between ensemble sizes, ∆µ = µN −µn, with
µN evaluated for the largest ensemble size and µn for a smaller one, for a series of n. In
all cases, α = 0.1 and t = 3 × 103 are fixed. One can notice that the amplitudes of ∆µ for
different n are not large, with average difference being of order ∆µ ≈ 0.05. A particularly
larger deviation occurs around the energy value for diffusion onset, corresponding to
E = 19.8 for α = 0.1, although this is expected given the absolute amplitude variation
of µ itself. Even though the test presented here comprises only a single value of α, it is
expected that for other values this result still holds. One may also notice that simulations
could be optimized by selecting N at least one order of magnitude smaller than the value
used here, without qualitative loss on the final result.

Similarly, figure 49 shows the same procedure but for different integration times. Here
the comparison is made as ∆µ = µT −µt, with µT obtained for the longest integration and
µt for any smaller value. The results indicate a higher amplitude variation for the different
t, but still below 0.15 in average. As in the case of different N , the same sensitivity is
shown for energy values around transitions or high fluctuations of µ. Nonetheless, the
data for different integration times present a trend of increasing values of µ(E) towards
ballistic regime as the integration time increases. This is due to the presence of particles
moving at ballistic rate that dominate the average displacement of the ensemble. However,
the same result points out that convergence is close to the expected asymptotic limit.

In general, regardless of the sensitivity of ∆µ around regions with high variation of
µ, one can see that they occur at the same energy values. This allows us to assert that
the transitions found in the exponent µ as we change the energy are not mere statistical
artifacts. Also, some fluctuations become apparent just after a long transient; in fact they
are not transitions properly said, in the sense that they correlate with major topological
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changes in phase-space, but just a long time transient behavior due the appearance of
small islands composed of long flights that dominate the ensemble average displacement
(see appendix F).

Figure 49: Diffusion exponent difference ∆µ = µT − µt between different values of integration time t and
the best case for T = 3000. In all cases, N = 3 × 104.
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E Symplectic integration performance for diffusion calculation

In order to assess the performance of integration over the long times required for
diffusion exponent calculations, figure 50 compares the result between two methods: the
non-symplectic RKCK and a symplectic one developed by M. Tao (appendix C). The
particles ensemble is randomly generated in each simulation, but the remaining parameters
are equivalent, i.e., the total integration time t = 103 and ensemble size N = 104. The
final values for µ(E) present a divergence of less than 0.15 when compared between the
two methods. This indicates that even with the lack of symplecticity, RKCK method still
provides good average results, regardless of deviations in particular trajectories, mostly
due to its great energy conservation, which for the time considered is up to order 10−9.

As an adaptive time-step method, the RKCK absolute and relative precisions were
selected as: ϵabs = ϵrel = 10−13. For Tao’s method, time-step is fixed and was selected
as dt = 10−5. Also, Tao’s method requires a binding factor parameter, which was set
to ω = 100, since it provided the best performance regarding energy conservation (up to
10−5) and symplectic 2-form (up to 10−7) (see appendix C).

Figure 50: Comparison between
diffusion exponent µ(E) calculation
with RKCK and Tao’s symplectic
method.

F Local diffusion transitions

To fully explore the aspects of the diffusion profile obtained, this section briefly de-
scribes one example of a sudden change in diffusion uncorrelated with changes in chaotic
area. Cases such as this are particularly visible in the region between local and global
maxima lines in both diffusion and chaotic area color maps over parameter space (figs.
17 and 22 respectively).

As anticipated in the main text, area-uncorrelated transitions are associated to small
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stability islands. The islands are small enough not to affect significantly the area measured
but since they are composed of orbits traveling in straight paths through the lattice, they
dominate the average ⟨R2(t)⟩, increasing its asymptotic behavior towards free regime
value (µ → 2). Therewith, to clearly display these small stable regions in phase-space, a
displacement color map was used, coloring each initial point with its displacement after a
given integration time t (here t = 1000). Figure 51 exemplifies this result for the transition
at E ≈ 24 and α = 0.5, where a peak from µ ≈ 1 to µ ≈ 1.3 is found.

The only noticeable modification is the emergence of three small islands around each of
the twin islands in the bottom region of the PSS, along with the bifurcation of these twin
islands. The emergent island triads present a displacement of one order of magnitude
higher than the surrounding chaotic sea. It is clear then that the ballistic transport
due to these small islands increases the global average diffusion rate, making it increase
quadratically but with smaller amplitude, thus taking longer times to increase µ but still
converging towards µ ≈ 2. Although not shown here, the same behavior was found for
other area-uncorrelated fluctuations.

Figure 51: Displacement range color map for different energies around the sudden peak for E ≈ 24. The
integration time is t = 103 for each point in a 850 × 850 grid.

To emphasize that the variations for the energy values mentioned above are not global
transitions, in the sense that they are not related to major changes in the chaotic domain,
figure 52 shows the manifold structure for the same PSS shown in figure 51. Even though
the island triads are not visible in the figure, one may notice that they appear between
the manifold lobes without disturbing them. It is unexpected that islands with long
displacement range appear amidst a chaotic sea with transport in a complete different
regime, without major changes around it.

Consequently, for the diffusion calculation method used here, the presence of even
small portions of phase-space with quadratic rate will imply a dominance over the total
regime rate. Therefore, the method used requires this to be taken into consideration.
Besides, this reiterates that fluctuations in diffusion will not necessarily correlate with
the chaotic area, thus requiring a deeper inspection of properties and changes taking
place in the system’s phase-space to understand these modifications in transport.
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Figure 52: PSS portraits with the stable manifold branch from UPO Uy (along the stable direction of the
saddle point at (xs, ys) = (0, cos−1(α))) for different energies along the diffusion variation. Integration
time is t = 6.9.

G Isochronous chains with higher multiplicity

Figure 53 shows a scenario where an isochronous island chain, of total period 12, is
formed not by two orbits of period 6, but instead by two orbits of period 3 (shown in red
and blue) and one of period 6 (shown in yellow). The orbits themselves are also presented,
showing that they are indeed the same curve rotated and mirrored in three different ways.
This particular case reveals that whenever an orbit’s translation or rotation intersects
the PSS with the same discrete period, isochronous chains with higher multiplicity may
appear. However, for the square lattice, no more than 4 isochronous orbits can be expected
to appear, since its symmetries are limited by rotations of π/2.
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Figure 53: Myriad chain formed by three isochronous orbits. The colored dots indicate the fixed points
of the trajectories relative to the PSS Σ (blue dotted line in trajectory frames).

H Phase-space near maximum potential energy

Figure 54 shows the island myriad emergence in phase-space for energy values close to
the potential global maximum Vg-max = 2U(1+α). The emergent structure is qualitatively
similar for any α considered, although the size of resonant islands increases with α. Along
with the islands, an upper and bottom stability region is found.
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Figure 54: PSS (y = π
2 ; py > 0) calculated for energy values at the global maxima, showing the emergence

of the island myriad for different couplings α. (Top left) E = 52, α = 0.3. (Top right) E = 60, α = 0.5.
(Bottom left) E = 72, α = 0.8. (Bottom right) E = 80, α = 1.0.
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