• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.43.2017.tde-01082017-155641
Documento
Autor
Nome completo
Hudson Kazuo Teramoto Mendonça
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Orientador
Banca examinadora
Teotonio Sobrinho, Paulo (Presidente)
Barata, Joao Carlos Alves
Batista, Eliezer
Mendes, Carlos Molina
Piccione, Paolo
Título em português
Teorias de 2-gauge e o invariante de Yetter na construção de modelos com ordem topológica em 3-dimensões
Palavras-chave em português
Invariante de Yetter
Mecânica Quântica
Ordem Topológica
Teoria das Categorias
Teoria de Gauge
Topologia Combinatória
Resumo em português
Ordem topológica descreve fases da matéria que não são caracterizadas apenas pelo esquema de quebra de simetria de Landau. Em 2-dimensões ordem topológica é caracterizada, entre outras propriedades, pela existência de uma degenerescência do estado fundamental que é robusta sobre perturbações locais arbitrarias. Com o proposito de entender o que caracteriza e classifica ordem topológica 3-dimensional o presente trabalho apresenta um modelo quântico exatamente solúvel em 3-dimensões que generaliza os modelos em 2-dimensões baseados em teorias de gauge. No modelo proposto o grupo de gauge é substituído por um 2-grupo. A Hamiltonia, que é dada por uma soma de operadores locais, é livre de frustrações. Provamos que a degenerescência do estado fundamental nesse modelo é dado pelo invariante de Yetter da variedade 4-dimensional Sigma × S¹, onde Sigma é a variedade 3-dimensional onde o modelo está definido.
Título em inglês
2-gauge theories and the Yetter's invariant on the construction of models with topological order in 3-dimensions
Palavras-chave em inglês
Category Theory
Combinatorial Topology
Gauge Theory
Quantum Mechanics
Topological Order
Yetter\'s Invariant
Resumo em inglês
Topological order describes phases of matter that cannot be described only by the symmetry breaking theory of Landau. In 2-dimensions topological order is characterized, among other properties, by the presence of a ground state degeneracy that is robust to arbitrary local perturbations. With the purpose of understanding what characterizes and classify 3-dimensional topological order this works presents an exactly soluble quantum model in 3-dimensions that generalize 2-dimensional models constructed using gauge theories. In the model we propose the gauge group is replaced by a 2-group. The Hamiltonian, that is given by a sum of local commuting operators, is frustration free. We prove that the ground state degeneracy of this model is given by the Yetters invariant of the 4-dimensional manifold Sigma × S¹, where Sigma is the 3-dimensional manifold the model is defined.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
TeramotoKazuoTese.pdf (3.06 Mbytes)
Data de Publicação
2017-08-01
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.