Master's Dissertation
DOI
https://doi.org/10.11606/D.43.1992.tde-13052015-152807
Document
Author
Full name
Eduardo Fontes Henriques
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1992
Supervisor
Committee
Salinas, Silvio Roberto de Azevedo (President)
Bernardes, Newton
Plascak, Joao Antonio
Title in Portuguese
Um Estudo do Método de Monte Carlo de Campo Médio
Keywords in Portuguese
Campo médio
Método de Monte-Carlo
Modelo de Blume-Capel
Modelo de Ising ferromagnético
Transições de fase
Abstract in Portuguese
Utilizamos o método de Monte-Carlo de campo médio, proposto por Netz e Berker, para estudar o comportamento termodinâmico dos modelos de Ising e de Blume-Capel numa rede quadrada. Esse método mistura conceitos de amostragem aleatória (Monte Carlo) com equações de campo médio usual. Seus autores afirmam que o método pode permitir representações de diagramas de fase com amostragens muito menores do que as usadas nas simulações de Monte Carlo convencionais e com a eliminação de certas consequências indesejáveis da aplicação das equações de consistência de campo médio. Entretanto, não observamos, pelo menos nos modelos que foram estudados, uma tendência clara de redução de amostragens (número de passos de Monte Carlo) em relação a simulações computacionais pelos métodos conhecidos. Além disso, os nossos cálculos apontam na direção de uma grande semelhança com os resultados usuais de uma aproximação de Bethe-Peierls. Esses problemas devem ser somados ao fato de não haver uma boa explicação para o mecanismo do método de Netz e Berker, dada a dificuldade de estudar a dinâmica em que ele se baseia.
Title in English
A study of the method of Monte-Carlo mean field
Keywords in English
Blume-Capel model
Ferromagnetic Ising model
Mean field
Monte-Carlo method
Phase transitions
Abstract in English
We have used the method of Monte Carlo Mean Field, recently proposed by Netz and Berker, to study the thermodynamic behavior of the Ising and Blume-Capel models on square lattices. This method merges concepts of stochastic sampling (Monte Carlo) with the usual mean-field equations. Their authors claim that the method permits representations of phase diagrams with much less samplings than those used in conventional Monte Carlo simulations, eliminating also certain undesirable consequences of the application of the mean - field consistency equations. However, we haven't observed, at least in the models we have studied, a clear tendency of a reduction of the samplings (number of Monte Carlo steps) compared with computational simulations by other known methods. Also, our calculations point to great resemblances with usual results given by Bethe-Peierls approximations. To these problems, we must add the fact that there is no good explanation for the machinery of Netz and Berker's method, given the difficulty of studying the stochastic dynamics on wich is based.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-05-25