UM CÁLCULO DE HFB COM EMPARELHAMENTO GENERALIZADO A $T=1$ E $T=0$ PARA O T^4.

ARLINDO KAMIMURA

Dissertação de Mestrado apresentada ao Instituto de Física da U. S. P.

SÃO PAULO
1973
Ao Mansuke
è à Kikuno
ERRATA

Página 8 - 8ª linha

Onde se lê: \(\frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle s \mid v \mid \gamma \delta \rangle \langle C_{\alpha}^{+} C_{\gamma}^{+} C_{\beta}^{+} C_{\delta}^{+} \rangle = \frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle \alpha \gamma \mid v \mid \beta \delta \rangle \langle C_{\alpha}^{+} C_{\gamma}^{+} C_{\beta}^{+} C_{\delta}^{+} \rangle \)

Leia-se: \(\frac{1}{2} \sum_{\alpha \beta \gamma \delta} (\alpha \beta | v | \gamma \delta \rangle \langle C_{\alpha}^{+} C_{\gamma}^{+} C_{\beta}^{+} C_{\delta}^{+} \rangle = \frac{1}{2} \sum_{\alpha \beta \gamma \delta} (\alpha \beta | v | \gamma \delta \rangle \langle C_{\alpha}^{+} C_{\gamma}^{+} C_{\beta}^{+} C_{\delta}^{+} \rangle \)

Página 8 - 9ª linha

Onde se lê: \(\langle \alpha \beta | v | \gamma \delta \rangle \)

Leia-se: \((\alpha \beta | v | \gamma \delta) \)

Página 8 - fórmula (II-9)

Onde se lê: \(\sum_{\gamma \delta} \langle \gamma \delta | v | \beta \delta \rangle \langle \delta | \rho | \gamma \rangle \)

Leia-se: \(\sum_{\gamma \delta} (\alpha \gamma | v | \beta \delta \rangle \langle \delta | \rho | \gamma \rangle \)

Página 9 - fórmula (II-12)

Onde se lê: \(\frac{1}{4} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | v | \gamma \delta \rangle \kappa_{\beta}^{\alpha} \kappa_{\delta}^{\gamma} \)

Leia-se: \(\frac{1}{4} \sum_{\alpha \beta \gamma \delta} (\alpha \beta | v | \gamma \delta \rangle \kappa_{\beta}^{\alpha} \kappa_{\delta}^{\gamma} \)

Página 9 - fórmula (II-13)

Onde se lê: \(\Delta_{\alpha \beta} = \frac{1}{2} \sum_{\gamma \delta} \langle \alpha \beta | v | \gamma \delta \rangle \kappa_{\delta}^{\gamma} \)

Leia-se: \(\Delta_{\alpha \beta} = \frac{1}{2} \sum_{\gamma \delta} (\alpha \beta | v | \gamma \delta \rangle \kappa_{\delta}^{\gamma} \)

Página 10 - fórmula (II-17)

Onde se lê: \(H_{4} = \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | v | \gamma \delta \rangle : C_{\alpha}^{+} C_{\beta}^{+} C_{\delta}^{+} C_{\gamma}^{+} \)

Leia-se: \(H_{4} = \frac{1}{4} \sum_{\alpha \beta \gamma \delta} (\alpha \beta | v | \gamma \delta \rangle : C_{\alpha}^{+} C_{\beta}^{+} C_{\delta}^{+} C_{\gamma}^{+} \)

Página 12 - fórmula (II-21)

Onde se lê: \([C_{\alpha}^{+} C_{\beta}^{+} C_{\mu}] C_{\alpha \beta \mu}^{+} \)

Leia-se: \([C_{\alpha}^{+} C_{\beta}^{+} C_{\mu}] C_{\alpha \beta \mu}^{+} \)
ERRATA

Página 13 - 16a. linha

Onde se lê: \(C_\alpha^+ C_\beta^+ C_\gamma = \langle C_\beta^+ C_\gamma^+ \rangle \langle C_\gamma^+ \rangle C_\alpha^+ - \ldots \)

Leia-se: \(C_\alpha^+ C_\beta^+ C_\gamma = \langle C_\beta C_\gamma^+ \rangle + \langle C_\gamma^+ \rangle C_\alpha^+ - \ldots \)

Página 14 - fórmula (II-25b)

Onde se lê: \(\Sigma \alpha T-\lambda+\nu |\mu>^* C_\alpha^+ + \ldots \)

Leia-se: \(\Sigma \alpha T-\lambda+\nu |\mu>^* C_\alpha^+ + \ldots \)

Página 14 - última linha

Onde se lê: \((T-\lambda+\nu) \)

Leia-se: \((T-\lambda+\nu) \)

Página 16 - 14a. linha

Onde se lê:
\[
M = \begin{pmatrix}
\Gamma^* & \bar{\Delta}^*
\end{pmatrix} = \begin{pmatrix}
\Gamma & -\bar{\Delta}^*
\end{pmatrix}
\]

Leia-se:
\[
M = \begin{pmatrix}
\Gamma^* & \bar{\Delta}^*
\end{pmatrix} = \begin{pmatrix}
\Gamma & -\bar{\Delta}^*
\end{pmatrix}
\]

Página 17 - la. linha

Onde se lê:
\[
M^+ = \begin{pmatrix}
\Gamma & \Delta
\end{pmatrix} = \begin{pmatrix}
\Gamma & -\Delta^*
\end{pmatrix}
\]

Leia-se:
\[
M^+ = \begin{pmatrix}
\Gamma & \Delta
\end{pmatrix} = \begin{pmatrix}
\Gamma & -\Delta^*
\end{pmatrix}
\]

Página 22 - última linha

Onde se lê: \(x(\frac{1}{2} \tau_a \frac{1}{2} \tau_b T_{M_T}) (\frac{1}{2} \tau_c \tau_d T_{M_T}) \)

Leia-se: \(x(\frac{1}{2} \tau_a \frac{1}{2} \tau_b T_{M_T}) (\frac{1}{2} \tau_c \frac{1}{2} \tau_d |T_{M_T}|) \)
AGRADECIMENTOS

- Ao prof. W. Wajntal.
- À F.A.P.E.S.P. e ao Instituto de Física da U.S.P.
- Ao S.E.M.A.
- Aos colegas.
- Ao Aluizio, à Ivone e ao Sr. Bruno.
RESUMO

Aplicamos a teoria de Hartree-Fock-Bogoliubov ao núcleo do Ti^{46}, considerando seis nucleons, além do Ca^{40}, tomado como caroço inerte, descritos pelos estados da camada 1f_{7/2}; os elementos de matriz de interação de dois corpos foram obtidos a partir do espectro experimental do Sc^{42} e os coeficientes da transformação de quasi-partículas de Bogoliubov foram assumidos como sendo complexos, possibilitando a inclusão simultânea dos dois modos de emparelhamento, T=0 e T=1. Dessa forma, obtivemos alguns resultados acerca do estado fundamental do núcleo em questão e comparamos com cálculos teóricos - análogos, realizados na camada (f-p) considerando, porém, emparelhamento a T=0 e T=1, separadamente.
ÍNDICE

I- INTRODUÇÃO ... 1

II- A TEORIA DE HFB ... 5
 II-A) O conceito de quasi-partícula 5
 II-B) Transformação da Hamiltoniana 7
 II-C) As equações de HFB ... 12

III- PROCEDIMENTO PARA SOLUÇÃO DAS EQUAÇÕES DE HFB 22
 III-A) Introdução ... 22
 III-B) Diagonalização da matriz de HFB 24
 III-C) Ajuste dos potenciais químicos 30

IV- RESULTADOS E CONCLUSÕES .. 34

APÊNDICE .. 38

REFERências ... 41
I. INTRODUÇÃO

A teoria de Hartree-Fock-Bogoliubov (HFB) aplicada ao estudo da estrutura nuclear é a unificação de duas mais importantes teorias microscópicas existentes: a teoria de Hartree Fock (HF) e a teoria de Bardeen-Cooper-Schrieffer (BCS).

A primeira, descreve de forma auto-consistente, características macroscópicas do núcleo, presumindo os nucleons num potencial médio, eventualmente deformado, expresso em termos da interação entre dois corpos. A aproximação de Hartree Fock teve bastante sucesso quando aplicada a núcleos leves, como indicam cálculos das propriedades estáticas e dinâmicas de núcleos da camada \(2s-1d\)\(\{7,8,9,10,11\}\). Infelizmente, o método de HF fornece resultados pouco desejáveis quando aplicado a núcleos par-par, com N=Z, além do Ne\(^{20}\)\(^{4,12}\). Por exemplo: existem fortes indícios experimentais que a forma intrínseca do Mg\(^{24}\) seja prolatada e axial (esferoidal), enquanto que cálculos de HF predizem a forma triaxial (elipsoidal). Para o Si\(^{28}\), a aproximação de HF prevê dois estados mais baixos de mesma ordem de energia de ligação, um prolato e outro oblato, enquanto que experimentalmente temos somente um estado oblato. Para o S\(^{32}\), obtemos uma forma triaxial\(^{13}\), com deformação quadrupolar nula, seguido a teoria de HF, também em contradição com o espectro experimental, que pode ser explicado assumindo uma forma intrínseca axialmente simétrica. O espectro do Ar\(^{36}\) tem características vibracionais, não obtidas por cálculos de HF, que, aliás, fornece um estado intrínseco oblato deformado, dando origem a níveis rotacionais.

O fato desses núcleos apresentarem algumas soluções
de HF com hiatos de energia muito pequenos (<1 MeV), sugere que essas soluções são pouco estáveis com respeito a correlações de curto alcance ou emparelhamento entre nucleons, cujos efeitos são tratados em primeira aproximação pela teoria de BCS. O conceito de emparelhamento surgiu primeiramente na física atômica, com o número quântico de senioridade, em 1942\(^6\). Posteriormente, foi desenvolvida e aplicada na teoria de supercondutividade, por Bardeen, Cooper e Schrieffer\(^{14}\) (BCS) em 1957. Em 1959, Belyaev\(^{17}\), seguindo sugestões de Bohr, Mottelson e Pines\(^{15}\) e de Mottelson\(^{16}\), estudou qualitativamente as consequências da força de emparelhamento em vários aspectos da estrutura nuclear.

Uma maneira natural de generalizar tanto o método do campo auto-consistente de HF, quanto a teoria de BCS, ambas de forma auto-consistente é através da teoria de Hartree-Fock-Bogoliubov (HFB)\(^{18}\). Uma forma de simplificar essa teoria é considerar somente correlações de pares, próton-próton ou neutron-neutron no estado de T=1,\(^{19,20}\) embora se saiba que para núcleos leves, onde prótons e neutrons coexistem nos mesmos estados espaciais esse tipo de correlação não é tão importante quanto a correlação de emparelhamento em isospin\(^{12,21,22,23}\).

O elemento de matriz de emparelhamento entre estado de próton e estado de neutron, separados em T=0 e T=1, pode ser escrito\(^2\):\n
\[
\Delta k_P, k_N = \frac{1}{4} \sum_{m} \langle k_P | V | mn \rangle T=0 (k_N, m_P - k_N, m_N) + \langle k_P | V | mn \rangle T=1 \times \sum_{n} \langle k_N, m_P + k_N, m_N \rangle \}
\]

(I-1)
onde \(\kappa_{KL} = \langle \psi_0 | C_K C_L | \psi_0 \rangle = \sum_{\alpha \lambda} A_{\alpha}^* B_{\lambda} \) \hspace{1cm} (I-2)

é o tensor de emparelhamento, \(|\psi_0\rangle \) é o vácuo de HFB e \(A_{\alpha} \) e \(B_{\lambda} \) são coeficientes da transf. canônica generalizada de Bogoliubov.

Para analisarmos a expressão acima, vamos supor que a conjugação de carga seja uma simetria do sistema, isto é, \(N=Z \) e não exista força de Coulomb. Portanto:

\[
\langle \psi_0 | C_{nN} C_{mP} | \psi_0 \rangle = \hat{C} \left(\langle \psi_0 | C_{nN} C_{mP} | \psi_0 \rangle \right)
\]

\[
= \langle \psi_0 | C_{nP} C_{mN} | \psi_0 \rangle^*
\]

\[
\kappa_{nN,mP} = \kappa_{nP,mN}^*
\] \hspace{1cm} (I-3)

Se por exemplo, os coeficientes \(A \) e \(B \) da expressão (I-2) são reais, \(\kappa \) é real, permitindo somente emparelhamento próton-neutron a \(T=1 \). Se \(A \) for real e \(B \) imaginário puro, só teremos emparelhamento próton-neutron a \(T=0 \). Cálculos usuais de HFB tanto na camada s-d, quanto na camada \((f,p)\) \(1,2,3,4,5\) consideram correlações próton-neutron ou a \(T=0 \) ou a \(T=1 \) separadamente. Somente quando \(\kappa \) não for trivialmente complexo, caso do presente trabalho, teremos simultaneamente os dois modos de emparelhamento. Além disso, não assumimos quaisquer das simetrias usuais empregadas em cálculos de HFB \(4,40,42\) para as quasi-partículas, tais como: reversão temporal, paridade, simetria rotacional e azimuthal no espaço tridimensional e no espaço de isospin, que facilitam grandemente o trabalho de diagonalização da matriz de HFB. O objetivo desse trabalho é mostrar a possibilidade de resolver as equações de HFB.
para núcleos com \(N \neq Z \), considerando emparelhamento simultâneo a \(T=1 \) e \(T=0 \), sem assumir as citadas simetrias. O núcleo escolhido foi o \(\text{Ti}^{46} \) descrito pelos estados da subcamada \(1f_{7/2} \).

Foi suposta a ausência de misturas de configuração com outras camadas e assumido o \(\text{Ca}^{40} \) como caroço inerte. Essas aproximações são razoáveis desde que os níveis de partícula independente da camada \(1f_{7/2} \) estão separados dos demais níveis, segundo o modelo de camadas \((26,35) \). As duas maiores dificuldades na execução do trabalho foram a diagonalização da matriz complexa de HFB, descrita na seção (III-B) e o ajuste dos potenciais químicos, descrito na seção (III-C), onde \(\lambda_p \) e \(\lambda_n \) fixam, em média, o número de prótons e neutrons, desde que a aproximação de Hartree-Fock - Bogoliubov não conserva o número de partículas. No capítulo II, é desenvolvida a teoria de HFB, no capítulo seguinte apresentamos o procedimento para sua aplicação. No capítulo IV são definidas e apresentadas as quantidades calculadas, tais como: energia de ligação, raio quadrático médio, momento de quadrupolo intrínseco, hiato de energia de HFB, energia de emparelhamento e flutuação do número de partículas, essa última relacionada diretamente com a validade da teoria de HFB, sendo obviamente nula no caso de HF; no final do capítulo apresentamos os resultados e conclusões.
II. A TEORIA DE HARTREE-FOCK-BOGOLIUBOV

II.A) O conceito de quasi-partícula

A Hamiltoniana nuclear de muitos corpos expressa na linguagem de segunda quantização em termos de interações de 2 corpos é:

\[H = \sum_{\alpha \beta} <\alpha | T | \beta > C_{\alpha}^{+} C_{\beta} + \frac{1}{2} \sum_{\alpha \beta \gamma \delta} <\alpha \beta | V | \gamma \delta > C_{\alpha}^{+} C_{\beta}^{+} C_{\gamma} C_{\delta} \] \hspace{1cm} (II-1)

onde os \(C^{+} \), \(C \) são operadores de criação e aniquilação de fermions, que operam sobre um conjunto de estados de base de partícula independente. Vamos definir o estado \(|0> \) como sendo o vácuo de partículas, de forma que é impossível destruir qualquer nucleon nesse estado:

\[C_{\beta} |0> = 0 \text{ para } \psi_{\beta} \] \hspace{1cm} (II-2)

Vamos generalizar o conceito de vácuo, usando o fato que o estado de Hartree-Fock \(^{27}\) \(|\psi_{0} > \) contém um conjunto ocupado de estados de partícula independente \(h, h', \ldots \), tal que é impossível criar uma partícula num estado ocupado \(h \), sem violar o princípio de Pauli:

\[C_{h}^{+} |\psi_{0} > = 0 \text{ para } \psi h \text{ ocupado em } |\psi_{0} > \] \hspace{1cm} (II-3a)

Podemos afirmar também que o estado \(|\psi_{0} > \) não contém nenhum conjunto desocupado de estados de partícula independente \(p, p', \ldots \), de forma que é impossível destruir qualquer desses estados em \(|\psi_{0} > \).

\[C_{p} |\psi_{0} > = 0 \text{ para } \psi p \text{ desocupado em } |\psi_{0} > \] \hspace{1cm} (II-3b)
Podemos agora, definir um novo conjunto de operadores de criação e destruição \(b^+_i \) e \(b_i \) para um conjunto auto-consistente de estados de partícula independente:

\[
b_i = C_i^+ \quad \text{quando } i = h, \text{ i.e., } \bar{\Psi} \text{ dos estados ocupados}
\]

\[
b_i = C_i \quad \text{quando } i = p, \text{ i.e., } \Psi \text{ dos estados desocupados}
\]

portanto

\[
b_i^+ |\bar{\Psi}_0\rangle = 0 \quad \text{para } \Psi_i
\]

Interpretamos o estado de HF \(|\bar{\Psi}_0\rangle \), como o estado de vácuo para novos objetos, cujos operadores de aniquilação são definidos pelas equações (II-4) e os correspondentes operadores de criação por:

\[
b_i^+ = C_i \quad \text{quando } i \text{ é qualquer dos estados ocupados}
\]

\[
b_i^+ = C_i^+ \quad \text{quando } i \text{ é qualquer dos estados desocupados}
\]

A esses novos objetos daremos o nome de "quasi-partículas" assim, o estado \(|\bar{\Psi}_0\rangle \) de HF representa o vácuo das quasi-partículas, embora seja construído a partir de estados de partícula independente. A primeira definição (II-6) diz que a destruição de um estado de partícula no mar de Fermi e portanto a criação de um "buraco" neste estado, se torna equivalente à criação de uma quasi-partícula. Por outro lado, podemos obter também uma quasi-partícula criando uma partícula acima do mar de Fermi.

As situações de nosso interesse não comportam uma
descrição tão simples representada pelas equações (II-4) e (II-6), onde podemos falar num "buraco" puro ou uma "partícula" pura abaixo ou acima do nível bem definido de Fermi. Evidentemente, quando isso não ocorre temos que redefinir nossos operadores \(b_i^+ \) e \(b_i \), de forma que nos casos mais gerais, quando temos uma superfície de Fermi difusa, o estado fundamental se comparte ainda, como o vácuo das quasi-partículas.

II.B) **Transformação da Hamiltoniana**

Vamos deduzir uma forma geral da Hamiltoniana a partir da definição (II-1), assumindo a existência do estado fundamental \(|\psi_0\rangle \), o vácuo das novas quasi-partículas, bem como a transformação dos operadores de criação e aniquilação de partículas aos correspondentes operadores de quasi-partículas.

De acordo com o teorema de Wick (28), podemos escrever:

\[
C^+_{\alpha \beta} = C^+_{\alpha \beta} + <C^+_{\alpha \beta}>
\]

\[
C^{+ \alpha}_{\alpha \beta} C^{\dagger \gamma}_{\gamma \delta} C_{\gamma \delta} = C^{+ \alpha}_{\alpha \beta} C^{\dagger \gamma}_{\gamma \delta} C_{\gamma \delta} +
\]

\[
\vdots
\]

\[
< C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} > + < C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} > +
\]

\[
< C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} > - < C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} > +
\]

\[
< C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} > + < C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} > - < C^+_{\alpha \beta} < C^{+ \gamma}_{\gamma \delta} C_{\gamma \delta} >
\]

Nessas expressões, o símbolo \(< > \) indica o valor esperado do operador em relação ao estado fundamental \(|\psi_0\rangle \). O símbolo \(: \) indica os correspondentes operadores de quasi-partícula, na forma normal. Substituindo essas expressões na Hamiltoniana (II-1), teremos um termo livre de operadores que chamaremos \(H_0 \), um termo com pares de operadores \(H_2 \) e um termo proveniente da primeira linha da equação (II-7), contendo quatro operadores, \(H_4 \).
\[H = H_0 + H_2 + H_4 \]

\[
H_0 = \sum_{\alpha \beta} \langle \alpha | T | \beta \rangle <c_\alpha^+ c_\beta^-> + \frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | v | \gamma \delta \rangle \left(<c_\alpha^+ c_\beta^-> <c_\delta c_\gamma^-> + <c_\alpha^- c_\beta^+> <c_\delta^- c_\gamma^+> - <c_\alpha^- c_\beta^-> <c_\delta^- c_\gamma^+> \right) \quad (II-8)
\]

Desde que \(\gamma \) e \(\delta \) são índices mudos de soma, podemos trocá-los no último termo:

\[
- \frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | v | \delta \gamma \rangle <c_\alpha^- c_\gamma^+> <c_\beta^- c_\delta^+>
\]

que, combinado com o termo anterior, resulta:

\[
\frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | v | \gamma \delta \rangle <c_\alpha^+ c_\gamma^-> <c_\beta^+ c_\delta^-> = \frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle \alpha \gamma | v | \beta \delta \rangle <c_\alpha^+ c_\beta^-> <c_\gamma^+ c_\delta^->
\]

onde o termo \(\langle \alpha \beta | v | \gamma \delta \rangle \) é o elemento de matriz antissimétrizado.

Definindo a densidade de estados \(\rho_{\alpha \beta} \) e o potencial - auto-consistente \(V \), por:

\[
\rho_{\alpha \beta} = <\beta | \rho | \alpha> = <\psi_0 | c_\alpha^+ c_\beta^- | \psi_0> = <c_\alpha^+ c_\beta^->
\]

\[
<\alpha | V | \beta> = V_{\alpha \beta} = \sum_{\gamma \delta} \langle \alpha \gamma | v | \beta \delta \rangle <\delta | \rho | \gamma>
\]

\[
(II-9)
\]

Podemos então, escrever para \(H_0 \):

\[
H_0 = \sum_{\alpha \beta} \langle \alpha | T + \frac{1}{2} V | \beta \rangle <\beta | \rho | \alpha> + \frac{1}{2} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | v | \gamma \delta \rangle <c_\alpha^+ c_\beta^-> <c_\delta c_\gamma^->
\]

\[
(II-10)
\]

Definindo a densidade de emparelhamento \(\kappa \), por:

\[
\kappa_{\delta \gamma} = <c_\delta^- c_\gamma^+> = - \kappa_{\gamma \delta}
\]

\[
(II-11)
\]
Portanto \(\kappa^{*}_{\beta\alpha} = \langle C^{+}\alpha^{+}\rangle = \langle C_{\beta}^{+}C_{\alpha}\rangle^{*} \)

Podemos escrever o segundo termo da equação (II-10) da seguinte forma:

\[
\frac{1}{2} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta><C^{+}\alpha^{+}><C_{\beta}^{+}C_{\delta}^{+}> = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta><\kappa^{*}_{\beta\alpha} \times \\
\times \frac{1}{2} (\kappa_{\delta\gamma} - \kappa_{\gamma\delta}) = \frac{1}{4} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta><\kappa^{*}_{\beta\alpha} \kappa_{\gamma\delta} - \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\delta\gamma> \times \\
\times \kappa^{*}_{\beta\alpha} \kappa_{\gamma\delta} > \kappa^{*}_{\beta\alpha} \kappa_{\delta\gamma} \tag{II-12} \]

Introduzindo o potencial de emparelhamento \(\Delta_{\alpha\beta} \), por:

\[
\Delta_{\alpha\beta} = \frac{1}{2} \sum_{\gamma\delta} <\alpha\beta|v|\gamma\delta><\kappa_{\gamma\delta} \times \\
\times \frac{1}{4} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta><\kappa^{*}_{\beta\alpha} \kappa_{\gamma\delta} \tag{II-13} \]

A expressão (II-12) se torna:

\[
\frac{1}{2} \sum_{\alpha\beta} \langle \Delta_{\alpha\beta} \kappa^{*}_{\beta\alpha} \tag{II-14} \]

Finalmente, podemos a expressão (II-10) e escrever para \(H_0 \):

\[
H_0 = \sum_{\alpha\beta} \langle a|T + \frac{1}{2}V|\beta\rangle <\beta|\rho|\alpha> + \frac{1}{2} \langle \Delta_{\alpha\beta} \kappa^{*}_{\beta\alpha} > \tag{II-15} \]

\(H_0 \) é a energia do estado fundamental \(|\psi_0> \), pois os valores esperados dos termos \(H_2 \) e \(H_4 \) da Hamiltoniana, quando calculados no vácuo se anulam.

Vemos que, \(H_0 \) é essencialmente dado pela energia de Hartree-Fock, mais o termo (II-14), cujo valor esperado é nulo
no estado correspondente a um nível de Fermi bem definido e no qual o número de partículas é estritamente conservado.

O termo do Hamiltoniano que contém os produtos normais de pares de operadores, H_2, é:

$$H_2 = \sum_{\alpha\beta} <\alpha|T|\beta>: C_\alpha^+ C_\beta^- + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta>: (C_\alpha^+ C_\beta^- C_\delta^- C_\gamma^- + C_\delta^+ C_\gamma^+ C_\beta^- + C_\beta^+ C_\gamma^- C_\delta^- \gamma^- + C_\gamma^+ C_\delta^- C_\beta^- C_\gamma^-) + C_\delta^+ C_\gamma^- C_\beta^- - C_\alpha^+ C_\beta^- C_\gamma^- - C_\delta^+ C_\gamma^- C_\beta^-)$$

(II-16)

A expressão para H_4, que provém do termo: $C_\alpha^+ C_\beta^+ C_\delta^+ C_\gamma^-$, é:

$$H_4 = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta>: C_\alpha^+ C_\beta^+ C_\delta^- C_\gamma^- = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} <\alpha\beta|v|\gamma\delta>: \frac{1}{2} C_\alpha^+ C_\beta^- (C_\delta^- C_\gamma^- - C_\gamma^+ C_\delta^-)$$

(II-17)

Vamos agora introduzir os operadores de criação e aniquilação de quasi-partículas b_1^+ e b_1^-, que podem ser definidos tanto pela transformação canônica de Bogoliubov-Valatin(29) quanto pela transformação mais geral de Bogoliubov(18), usada no presente trabalho:

$$b_1^+ = \sum_\alpha (A_\alpha^+ + B_\alpha^+ C_\alpha^-)$$

$$b_1^- = \sum_\alpha (A_\alpha^- + B_\alpha^- C_\alpha^+)$$

(II-18a)
com as relações inversas:

\[C^+_\alpha = \Sigma \ (A^+_\alpha b^+_i + B^+_\alpha b^+_i) \] \hspace{1cm} \text{(II-18b)}

\[C_\alpha = \Sigma \ (B^i b^+_i + A^i b^+_i) \]

onde os \(b^+_i \) e \(b^+_i \) obedecem as regras usuais de anticomutação. Vemos que a quasi-partícula \(i \) é formada por uma combinação linear de funções de onda de partículas e buraco. Quando substituimos as relações (II-18b) na expressão de \(H_2 \) obteremos um termo de criação e aniquilação de quasi-partícula \(b^+_i b^+_i \), mais dois termos, um contendo dois operadores de criação \(b^+_i b^+_i \), outro com dois operadores de destruição \(b^+_i b^+_i \), de quasi-partículas:

\[H_2 = H_{11} + H_{20} + H_{02} \] \hspace{1cm} \text{(II-19)}

onde

\[H_{11} = \Sigma E_i b^+_i b^+_i \] \hspace{1cm} \text{(II-20)}

Os coeficientes \(A^i \alpha \), \(B^i \alpha \), são obtidos auto-consistentemente de modo a anular os termos \(H_{20} + H_{02} \), chamados "termos perigosos" por Bogoliubov (29), restando somente o termo \(H_{11} \), onde \(E_i \) é a energia da quasi-partícula.

Finalmente, o tratamento do termo \(H_4 \), que contém interações residuais entre quasi-partículas, nos leva a outros modos de excitação do núcleo, que não os de simples excitação de quasi-partícula independente, como no caso do termo \(H_2 \), e que não serão levados em conta neste trabalho.
II.C) **As equações de HFB**

As equações de HFB são as equações por meio das quais são obtidos os coeficientes A^i_α e B^i_α da transformação de Bogo-
liubov (II-18).

Uma forma de obte-las é minimizar a expressão (II-15) de H_0, ou seja, obter o estado fundamental ψ_0. Se quisermos levar em consideração correlações de emparelhamento, vemos através da expressão (II-13) para $\Lambda_{\alpha\beta}'$, que é necessário considerar o estado variacional ψ_0, como uma superposição de funções de onda, contendo diferentes números de partículas, caso contrário, teríamos valor nulo para a densidade de emparelhamento χ (II-11). Para que ψ_0 tenha um sentido físico, temos que exigir que o valor esperado do operador número de partículas com relação a ψ_0, seja igual ao número de núcleons do núcleo considerado. Esse vínculo num problema variacional é introduzido através do multiplicador de Lagrange λ na Hamiltoniana ao minimizarmos H_0. Outra maneira de obter as equações de HFB é exigir para nossa Hamiltoniana (II-1) um modo de excitação do tipo (II-18a), que é uma superposição linear de operadores de criação e aniquilação C^+_α e C_α. De acordo com o Apêndice, a existência de tal modo requer que os comutadores de todos os C^+_α e C_α com a Hamiltoniana possam ser representados por uma soma linear desses operadores. Quando isso ocorre, os operadores de quasi-partícula b^+_1, b_1, podem ser construídos a partir dos C^+_α e C_α, de acordo com a relação (A-7).

Temos então:

$$\begin{align*}
(c^+c_\beta,c_\mu) &= c^+_{\alpha\delta}\delta_{\beta\mu} \\
([c^+c^+_\alpha c^+_\beta c_\gamma c_\mu] &= -[c^+_\mu,c^+_\alpha c^+_\beta] - c^+c^+_\alpha (c^+_\mu,c^+_\delta c_\gamma)
\end{align*}$$

\hspace*{1cm} (II-21)
Usando a propriedade:

\[[bc,a] = [b,a]c + b[c,a] \]

Usando (II-21) e (II-22), podemos calcular o comutador de \(H \) com \(C_\mu^+ \):

\[
[H, C_\mu^+] = \Sigma <\alpha|T|\mu>C_\alpha^+ + \frac{1}{4} \Sigma_{\alpha\beta\gamma\delta} (\alpha\beta|v|\gamma\delta)C_{\alpha\beta}^+(\delta_{\gamma\mu}C_\delta^+-\delta_{\delta\mu}C_\gamma) \]

Trocando os índices de soma \(\gamma \) e \(\delta \) no termo \(\delta_{\gamma\mu}C_\delta^+ \) vem:

\[
\frac{1}{4} \left(\Sigma_{\alpha\beta\gamma\delta} (\alpha\beta|v|\gamma\delta)C_{\alpha\beta}^+C_\gamma^+\delta_{\mu\delta} - \Sigma (\alpha\beta|v|\gamma\delta)C_{\alpha\beta}^+C_\gamma^+\delta_{\delta\mu} \right) =
\]

\[
\frac{1}{4} \Sigma_{\alpha\beta\gamma} \left((\alpha\beta|v|\mu\gamma)C_{\alpha\beta}^+C_\gamma^+ + (\alpha\beta|v|\mu\gamma)C_{\alpha\beta}^+C_\gamma^+ \right)
\]

\[
[H, C_\mu^+] = \Sigma <\alpha|T|\mu>C_\alpha^+ + \frac{1}{2} \Sigma_{\alpha\beta\gamma} (\alpha\beta|v|\mu\gamma)C_{\alpha\beta}^+C_\gamma^+ \quad (II-23)
\]

O comutador exato (II-23) de \(H \) com \(C_\mu^+ \) não resulta somente uma soma linear de operadores de criação e aniquilação de partículas, pré-requisito importante para termos excitação de quasi-partículas do tipo (II-18). Entretanto, isso pode ser conseguido linearizando a equação (II-23):

\[
C_{\alpha\beta}^+C_\gamma^+ = C_{\alpha\beta}^+C_\gamma^+ : + <C_{\alpha\beta}^+C_\gamma^+>C_\gamma^+ - <C_{\alpha\gamma}^+C_\beta^+>C_\gamma^+ + <C_{\beta\gamma}^+C_\alpha^+>C_\gamma^+
\]

A linearização consiste em desprezarmos o termo contendo dos três operadores da equação acima, e que descrevem excitações que não são de quasi-partícula independente:
\[
\begin{align*}
[H, C^+_{\mu}] &= \sum_{\alpha} \langle \alpha | T | \mu \rangle \, C^+_{\alpha} + \frac{1}{2} \sum_{\alpha \beta \gamma} (\alpha \beta | \nu | \mu \gamma) \, \langle C^+_{\beta} C_{\gamma} \rangle \, C^+_{\alpha} - \\
&- \langle C^+_{\beta} C_{\gamma} \rangle \, C^+_{\alpha} \right] + \frac{1}{2} \sum_{\alpha \beta \gamma} (\alpha \beta | \nu | \mu \gamma) \, \langle C^+_{\beta} C_{\gamma} \rangle \, C^+_{\alpha} \\
&\quad + \frac{1}{2} \sum_{\alpha \beta \gamma} (\alpha \beta | \nu | \mu \gamma) \, \langle C^+_{\beta} C_{\gamma} \rangle \, C^+_{\alpha} (II-24)
\end{align*}
\]

Utilizando a definição (II-9) para o potencial auto-consistente \(V \) e (II-13) para o potencial de emparelhamento, vem:

\[
\begin{align*}
[H, C^+_{\mu}] &= \sum_{\alpha} \langle \alpha | T + V | \mu \rangle \, C^+_{\alpha} + \frac{1}{2} \sum_{\alpha \beta \gamma} (\alpha \beta | \nu | \gamma \beta) \, \langle C^+_{\gamma} C^+_{\beta} \rangle \, C^+_{\alpha} \\
&\quad + \frac{1}{2} \sum_{\alpha \beta \gamma} (\alpha \beta | \nu | \mu \gamma) \, \langle C^+_{\beta} C_{\gamma} \rangle \, C^+_{\alpha} (II-25a)
\end{align*}
\]

Desde que o estado \(\psi_0 \) não é auto-função do operador não conserva número de partículas, necessitamos introduzir um multiplicador de Lagrange na Hamiltoniana, de forma que, o número médio de partículas tenha o valor requerido. Então:

\[
H \rightarrow H(\lambda)
\]

\[
H(\lambda) = H - \lambda \sum_{\alpha} C^+_{\alpha} C_{\alpha} (II-26)
\]

O termo introduzido, \(-\lambda \sum_{\alpha} C^+_{\alpha} C_{\alpha}\), contribui com \(-\lambda C^+_{\alpha} \delta_{\alpha \mu}\) no comutador (II-25), de acordo com (II-21):

\[
[H(\lambda), C^+_{\mu}] = \sum_{\alpha} \langle \alpha | T - \lambda + V | \mu \rangle \, C^+_{\alpha} + \sum_{\alpha} \Delta^*_{\mu \alpha} C_{\alpha} (II-25b)
\]

onde usamos o fato que a matriz \((T - \lambda + V)\) é hermiteana.
Para obtermos um sistema de equações lineares fechado semelhante a equação (A-5), necessitamos do comutador de H(λ) com C_μ, obtido tomando o conjugado hermiteano de (II-25b) e trocando o sinal:

\[
[H(\lambda), C_\mu] = H(\lambda) C_\mu - C_\mu H(\lambda) = (C_\mu^+ H(\lambda) - H(\lambda) C_\mu^+) =
\]

\[
= -[H(\lambda), C_\mu^+]^+
\]

Portanto:

\[
[H(\lambda), C_\mu] = -\sum_\alpha \Delta_{\mu\alpha} C_\alpha^+ - \sum_\alpha \langle \mu | T - \lambda + V | \alpha \rangle C_\alpha
\]

(II-27)

Vamos comparar as equações (II-26) e (II-27) com a equação (A-5). Os 2N operadores de criação e aniquilação C_α^+ e C_α, se comportam como os N operadores \(A_i^+\) (i = 1, 2, ..., N) da equação (A-5). Portanto, a matriz \(\tilde{M}\) pode ser escrita com a ajuda das equações (II-26) e (II-27):

\[
\tilde{M} = \begin{pmatrix}
(T - \lambda + V)^* & \Delta^* \\
-(\Delta) & -(T - \lambda + V)
\end{pmatrix}
\]

(II-28)

ou

\[
\tilde{M} = \begin{pmatrix}
\Gamma^* & \Delta^* \\
-(\Delta) & -\Gamma
\end{pmatrix}
\]

com

\[
\Gamma = T - \lambda + V
\]

(II-29)

onde \(\tilde{M}\) é uma matriz 2Nx2N e as submatrizes \(\Delta, \Delta^*, \Gamma e \Gamma^*\) tem dimensão NxN.
Vemos que $\tilde{\Delta} = -\Delta$, e $\Gamma = \Gamma^*$, pois

$$\tilde{\Delta}_{\mu\alpha} = \frac{1}{2} \sum_{\beta\gamma} (\alpha\mu|\nu|\beta\gamma) \langle c_{\gamma} c_{\beta} \rangle = \frac{1}{2} \sum_{\beta\gamma} (\alpha\mu|\nu|\beta\gamma) \langle c_{\gamma} c_{\beta} \rangle =$$

$$= -\Delta_{\mu\alpha}$$

$\tilde{\Delta}_{\mu\alpha} = -\Delta_{\mu\alpha}$

e

$$\tilde{\Gamma} = (T - \lambda + \nu)$$

$$\Gamma^+ = \Gamma$$

(pois Γ é hermitiano)

$$(\tilde{\Gamma})^* = \Gamma$$

conjugando ambos, vem:

$$((\tilde{\Gamma})^*)^* = \Gamma^*$$

$$\tilde{\Gamma} = \Gamma^*$$

(II-30b)

Usando (II-30a) e (II-30b), podemos escrever a matriz de Hartree-Bogoliubov M, na forma:

$$M = \begin{pmatrix} (\Gamma^*) & \tilde{\Delta}^* \\ -\Delta & -(\tilde{\Gamma}) \end{pmatrix} = \begin{pmatrix} \Gamma & -\Delta^* \\ \Delta & -\Gamma^* \end{pmatrix}$$

$$M = \begin{pmatrix} \Gamma & \Delta \\ -\Delta^* & -\Gamma^* \end{pmatrix}$$

$$M = M^+$$

pois

(II-31)
\[
M^+ = \begin{pmatrix} \Gamma & \Delta \\ -\Delta^* & -\Gamma^* \end{pmatrix} = \begin{pmatrix} \Gamma^+ & (-\Delta^*)^* \\ \Delta^+ & (-\Gamma^*)^* \end{pmatrix} = \begin{pmatrix} \Gamma & (-\Delta^*)^* \\ (\Delta^*)^* & -\Gamma^* \end{pmatrix} = \begin{pmatrix} \Gamma & -\Delta \\ -\Delta^* & -\Gamma^* \end{pmatrix} = M
\]

Portanto \(M \) é hermitiana e tem auto-valores reais. Vamos considerar o auto-vetor \(A_i \) correspondente ao auto-valor \(E_i \), onde \(i = 1, \ldots, N \) e escrever a equação de auto-valor explicitamente:

\[
M \begin{pmatrix} A_i \\ B_i \end{pmatrix} = E_i \begin{pmatrix} A_i \\ B_i \end{pmatrix} \quad (II-32a)
\]

ou

\[
\Gamma A_i + \Delta B_i = E_i A_i \\
-\Delta^* A_i - \Gamma^* B_i = E_i B_i
\]

(ii-32b)

Tomando o complexo conjugado dessas duas equações e trocando os sinais, vem, lembrando que \(E_i = E_i^* \):

\[
\Gamma B_i^* + \Delta A_i^* = -E_i B_i^* \\
-\Delta B_i^* - \Gamma A_i^* = -E_i A_i^*
\]

que é equivalente a:

\[
\begin{pmatrix} \Gamma & \Delta \\ -\Delta^* & -\Gamma^* \end{pmatrix} \begin{pmatrix} B_i^* \\ A_i^* \end{pmatrix} = -E_i \begin{pmatrix} B_i^* \\ A_i^* \end{pmatrix} \quad (II-33)
\]
Portanto os auto-valores da matriz M ocorrem aos pares, um positivo e outro negativo. Dado um vetor com um auto valor positivo, o vetor correspondente ao auto-valor negativo é obtido através das relações (II-32a) e (II-33). Consideramos um auto-valor positivo E_i e o auto-vetor correspondente, como na equação (II-32a). De acordo com (A-7) e (A-9) podemos construir os operadores:

$$b_i^+ = \sum_a (A_i^a C_a^+ + B_i^a C_a)$$

$$b_i = \sum_a (B_i^a C_a^+ + A_i^a C_a)$$

que são exatamente os operadores da equação (II-18a) e têm as seguintes propriedades:

$$H b_i^+ |\psi_0> = (E_0 + E_i) b_i |\psi_0> \quad (II-34)$$

$$b_i |\psi_0> = 0 \quad (II-35)$$

onde $|\psi_0> \equiv$ o estado fundamental de H com energia E_0. O estado $b_i^+ |\psi_0> \equiv$ o de uma quasi-partícula, com energia E_i acima do estado fundamental. O operador b_i é o operador de aniquilação para a quasi-partícula e a equação (II-35) garante que o estado fundamental $|\psi_0>$ não contém nenhuma quasi-partícula. Vemos que o auto-vetor correspondente ao auto-valor $-E_i$ leva, de acordo com a equação (A-7), à segunda das combinações (II-18a), que operando em qualquer auto-estado de H, resulta num outro auto-estado com energia abaixo de $-E_i$. Isso confirma a interpretação do operador b_i como operador de aniquilação de uma quasi-partícula de energia E_i. Em geral a matriz M, de dimen-
são \(2N\times2N\) tem \(2N\) auto valores, dos quais \(N\) são positivos e \(N\) negativos. Escrevendo em detalhe as equações (II-32b), vem:

\[
\sum_{\beta} \langle \alpha|\Gamma|\beta \rangle A^i_\beta + \Delta_{\alpha\beta} B^i_\beta = E_i A^i_\alpha \\
\sum_{\beta} \Lambda^*_{\alpha\beta} A^i_\beta + \langle \alpha|\Gamma^*|\beta \rangle B^i_\beta = -E_i B^i_\alpha
\]

(II-36)

Essas são as equações de Hartree-Fock-Bogoliubov, não lineares, pois as matrizes \(\Gamma\) (II-29) e \(\Delta\) (II-13), contém respectivamente as matrizes densidade de estado e emparelhamento, exigindo, portanto, um tratamento iterativo para obter uma solução auto-consistente.

Vamos em seguida deduzir as expressões dos elementos de matriz das densidades de estado e de emparelhamento \(\rho\) e \(\kappa\) em termos dos coeficientes de transformação \(A^i_\alpha\) e \(B^i_\alpha\), escrevendo primeiramente as propriedades de ortogonalidade dos auto-vetores da matriz \(M\). A ortogonalidade de um auto-vetor de auto-valor positivo \(E_i\) e outro de auto-valor negativo \(-E_j\) é expressa de acordo com as equações (II-32a) e (II-33), por:

\[
(B^j A^i_j) (A^i_\alpha) = 0
\]

ou

\[
\sum_{\alpha} (B^j_\alpha A^i_\alpha + A^i_\alpha B^j_\alpha) = 0
\]

(II-37)

Analogamente, o produto escalar de dois auto-vetores pertencentes a dois diferentes auto-valores positivos \(E_i\) e \(E_j\), é também nulo, salvo quando \(E_i = E_j\) caso em que o subconjunto degenerado deve ser ortonormalizado, de forma a satisfazer as condições:
Usando as definições (II-18a) e as relações de anticomutação de C^+ e C, verificamos que a soma nas equações (II-37) e (II-38) são respectivamente iguais a $[b_j, b_i]^+ + [b_j^+, b_i]$. Dessa forma, os auto-vetores de M, automaticamente, garantem que as relações de anticomutação de fermions continuam sendo obedecidas:

$$[b_j, b_i]^+ = \left[\Sigma (B^j_{\alpha} C^+_{\alpha} A^i_{\alpha} C_{\alpha}) ; \Sigma (B^j_{\alpha} C^+_{\alpha} A^i_{\alpha} C_{\alpha}) \right]^+ =$$

$$[b_j, b_i]^+ = \Sigma (B^j_{\alpha} A^i_{\alpha} C^+_{\alpha}) = (II-37)^* = 0$$

$$[b_j^+, b_i^+] = \Sigma [(A^j_{\alpha} C^+_{\alpha} + B^j_{\alpha}) ; (B^i_{\alpha} C^+_{\alpha} A^i_{\alpha} C_{\alpha})]_+ =$$

$$[b_j^+, b_i^+] = \Sigma (A^j_{\alpha} A^i_{\alpha} + B^j_{\alpha} B^i_{\alpha}) = (II-39) = \delta_{ij}$$

Podemos agora calcular as expressões para a densidade de estados e de emparelhamento ρ e κ; usando as relações inversas (II-18b):

$$\langle \alpha | \rho | \beta \rangle = \langle \psi_0 | C^+_{\beta} C_{\alpha} | \psi_0 \rangle = \langle \psi_0 | \Sigma (A^i_{\alpha} B^j_{\beta} + B^i_{\beta} b_j) (B^j_{\alpha} b_i^+ + A^i_{\alpha} b_i) | \psi_0 \rangle =$$

$$\rho_{\beta \alpha} = \langle \alpha | \rho | \beta \rangle = \Sigma_{i} B^i_{\beta} b_i^+ \tag{II-39}$$

e

$$\kappa_{\delta \gamma} = \langle \psi_0 | C^+_{\delta} C_{\gamma} | \psi_0 \rangle = \langle \psi_0 | \Sigma_{i} (B^i_{\delta} b_i^+ + A^i_{\delta} b_i) (B^j_{\gamma} b^+_j + A^j_{\gamma} b^+_j) | \psi_0 \rangle =$$
\[\kappa_{\delta \gamma} = \sum_{i} A_{\delta}^{i} B^{i*}_{\gamma} \] \hspace{1cm} (II-40)

Para resolvermos as equações de HFB por iterações múltiplas, utilizamos as expressões (II-9) para \(V \); (II-13) para e as equações (II-39) e (II-40) acima:

\[\langle \alpha | V | \beta \rangle = \nu_{\alpha \beta} = \sum_{\gamma \delta} (\alpha \gamma | V | \beta \delta) \langle \delta | \rho | \gamma \rangle \] \hspace{1cm} (II-9)

\[\Delta_{\alpha \beta} = \frac{1}{2} \sum_{\gamma \delta} (\alpha \beta | V | \gamma \delta) \kappa_{\delta \gamma} \] \hspace{1cm} (II-13)

\[\rho_{\alpha \beta} = \sum_{i} B^{i*}_{\alpha} A^{i}_{\beta} \] \hspace{1cm} (II-39)

\[\kappa_{\delta \gamma} = \sum_{i} A_{\delta}^{i} B^{i*}_{\gamma} \] \hspace{1cm} (II-40)
III. PROCEDIMENTO PARA SOLUÇÃO DAS EQUAÇÕES DE HF

III.A) Introdução (31)

Para solucionarmos as equações de HF (II-36) para o núcleo do $^{46}T_i$ de forma auto-consistente, resolvemos primeiramente o problema de Hartree-Fock correspondente, usando uma interação quadrupolo-quadrupolo. Para tanto construímos a função de onda inicial a partir dos auto-vetores provenientes da diagonalização da matriz de quadrupolo (30), calculada na base dos estados do oscilador harmônico da camada $1f_{7/2}$. O parâmetro de "comprimento" do oscilador, b^2, foi escolhido como sendo proporcional a $A^{-1/3}$, conforme a referência (30) e o parâmetro de acoplamento quadrupolar x, proporcional a $A^{-2.2}$, conforme a referência (34). Usando as energias de partícula independente E_i obtidas da solução de Hartree-Fock, pudemos resolver as equações do "hiato" de energia de BCS (32), que por sua vez nos forneceram as funções de onda A_i^j e B_i^j e os potenciais químicos iniciais para quatro e duas partículas. Na primeira iteração as funções de onda da parte de partícula A_i^j e da parte de buraco B_i^j da transformação canônica (II-18a) ainda são reais. Para determinarmos as quantidades A_{ab}^j (II-13) e V_{ab}^j (II-9) resta construir os elementos de matriz de dois corpos V_{ab}^j, cujas propriedades de invariância rotacional e independência de carga nos permite escrever (38):

$$v_{ab}^{j} = \sum_{JM} G(abcdJT) (j_a^m a_j^b b_j^m |JM)(j_c^m c_j^d d_j^m |JM) \times \frac{1}{2} \tau_a \frac{1}{2} \tau_b \frac{1}{2} \tau_c \frac{1}{2} \tau_d (1)$$

(III-1)
Os elementos de matriz reduzido $G(\text{abcd JT})$ dependentes de J e T totais da Tabela (III-1), foram obtidos pelas diferenças de energia de interação entre os oito estados $(1f_{7/2})^2$, $J=0, 1, ..., 7$, presumindo que estes descrevam os estados observados no espectro do ^{42}Sc.

<table>
<thead>
<tr>
<th>J</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(\text{abcdJ})$</td>
<td>-3.20</td>
<td>-2.59</td>
<td>-1.61</td>
<td>-1.70</td>
<td>-0.35</td>
<td>-1.68</td>
<td>0.05</td>
<td>-2.78</td>
</tr>
</tbody>
</table>

Essa forma de determinar os elementos de matriz de interação efetiva é devida principalmente a Talmi e colaboradores (44,45) e é usualmente empregada em cálculos do tipo modelo de camadas (26,35). A energia de partícula independente na camada $1f_{7/2}$ é tomada como -8.3 MeV (35), em relação ao núcleo do ^{40}Ca.

Podemos, então, construir as matrizes ρ_{pp}, ρ_{pn}, ρ_{np}, ρ_{nn}, κ_{pp}, κ_{nn}, κ_{pn}, κ_{np}, onde os símbolos p e n se referem a prótons e neutrons, de forma que as matrizes ρ e κ de dimensões 16×16, podem ser escritas (5):

$$
\rho = \begin{pmatrix}
\rho_{pp} & \rho_{pn} \\
\rho_{np} & \rho_{nn}
\end{pmatrix} \quad \text{(III-2a)}
$$

$$
\kappa = \begin{pmatrix}
\kappa_{pp} & \kappa_{pn} \\
\kappa_{np} & \kappa_{nn}
\end{pmatrix} \quad \text{(III-2b)}
$$

Para as matrizes Λ e Δ iniciais, temos, respectivamente:
\[V_{\alpha\beta} = \begin{bmatrix}
T=1 & \rho_{P}^{Pp} & v_{T=0} + v_{T=1} \rho_{p}^{Pn} \\
[\alpha \gamma \delta + v_{\alpha \gamma \delta}] \rho_{\gamma \delta} & T=1 & nn \\
T=1 & \rho_{\gamma \delta} & v_{\alpha \gamma \delta}
\end{bmatrix} \]

(III-3)

\[\Delta_{\alpha\beta} = \frac{1}{2} \begin{bmatrix}
T=1 & \rho_{P}^{Pp} & v_{T=0} + iv_{T=1} \rho_{p}^{Pn} \\
[\alpha \beta \gamma \delta + iv_{\alpha \beta \gamma \delta}] \delta_{\gamma} & T=1 & nn \\
T=1 & \delta_{\gamma} & v_{\alpha \beta \gamma \delta}
\end{bmatrix} \]

(III-4)

Vemos que o potencial de emparelhamento \(\Delta_{p}^{pn} \) é comple xo, e a parte real e imaginária correspondem respectivamente, às componentes \(T=1 \) e \(T=0 \), considerando dessa forma os dois mo dos de emparelhamento, simultâneamente, a partir da primeira iteração. Podemos, então, obter a matriz \(M \) de HFB (II-31) de dimensão 32x32, correspondendo ao dobro do número de estados, oito de prótons e oito de neutrons, da camada \(1f_{7/2} \).

III.B) Diagonalização da matriz de HFB

Um dos pontos críticos na execução de cada iteração do processo auto-consistente é a diagonalização da matriz com plexa de HFB. Para tanto, desenvolvemos o procedimento numé rico, baseado no trabalho proposto recentemente por M.Vujicič e F.Herbut (24), relatado a seguir.

A matriz de HFB (II-31) é dada por:

\[
M = \begin{pmatrix}
\Gamma & \Delta \\
-\Delta^* & -\Gamma^*
\end{pmatrix}
\]

(II-31)
onde \(\Gamma_{\alpha \beta} = T_{\alpha \beta} - \lambda_{\alpha \kappa} + \nu_{\alpha \beta} \) \hspace{1cm} (II-29)

e \(\Delta_{\alpha \beta} = \frac{1}{2} \sum_{\gamma \delta} \nu_{\alpha \gamma \delta} \kappa_{\beta \gamma} \) \hspace{1cm} (II-13)

Vamos definir a matriz \(f \) (matriz fator) da seguinte forma:

\[
f = \begin{pmatrix} (0) & (1) \\ (1) & (0) \end{pmatrix}
\] \hspace{1cm} (III-5)

onde as sub-matrizes zero (0) e unidade (1) são matrizes 16x16.

Consideremos o operador unitário (antilinear e unitário) \(k \) de conjugação complexa. Se uma matriz numa determina da base comuta com \(k \), então, essa matriz é real nessa base (39). O método consiste em procurarmos uma base em que a matriz \(M^2 \) de HFB seja real e se baseia no fato de \(M \) anticomutar com a matriz \(f \):

\[
Mf^k + f^kM = 0 \hspace{1cm} (III-6a)
\]

\[
(Mf + fM^*) k = 0
\]

\[
(Mf + fM^*) = 0 \hspace{1cm} (III-6b)
\]

\(M^2 \) também anticomuta com \(f \), pois:

\[
Mf^k + f^kM = 0
\]

\[
M^2f^k + Mf^kM = 0
\]

\[
M^2f^k - f^kM^2 = 0 \hspace{1cm} (III-7a)
\]

ou

\[
M^2f^k - f^kM^2 = 0
\]

\[
M^2f^k - f(M^2)^2 = 0 \hspace{1cm} (III-7b)
\]

Até o momento estávamos usando a seguinte representação definida pela base de operadores de criação e aniquilação
de fermions no espaço das quasi-partículas de dimensão N:

$$C_1^+, C_2^+, \ldots, C_N^+, C_1, \ldots, C_N \quad N = 16 \quad (III-8)$$

Vamos introduzir outra notação para essa mesma base, no espaço das quasi-partículas de dimensão $2N$:

$$d_\alpha = C_\alpha^+, \, \alpha = 1, \ldots, N \quad (III-9a)$$

$$d_\alpha = C_{\alpha-N}, \, \alpha = N+1, \ldots, 2N \quad (III-9b)$$

e os adjuntos desses operadores são:

$$c_\alpha^+ = (fk) \, d_\alpha \quad (III-10)$$

Vamos definir uma outra base por meio de combinações lineares de C_α^+ e C_α:

$$h_\alpha = \frac{1}{2} (C_\alpha^+ + C_\alpha), \, \alpha = 1, \ldots, N \quad (III-11)$$

$$h_\alpha = \frac{1}{2} (C_{\alpha-N}^+ - C_{\alpha-N}), \, \alpha = N+1, \ldots, 2N$$

A matriz S de dimensão $2N \times 2N$, de transformação da base (III-9) para a base (III-11), é:

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix} \quad (III-12)$$

portanto:

$$d_\alpha = \sum_{\beta}^{2N} S_{\alpha \beta} h_\beta \quad (III-13)$$
A matriz antilinear f_k, escrita na base (III-11) é,
então:

$$Sf_k S^+ = Sf(S^+)k = (SfS)k = k \quad (\text{III-14})$$

pois $SfS = 1$.

Da relação (III-7) e (III-12) temos:

$$SM^2 f_k S^+ - Sf k M^2 S^+ = 0$$

$$SM^2 S^+ f_k S^+ - Sf k S^+ SM^2 S^+ = 0 \quad \text{pois} \quad S^+ S = 1$$

ou usando (III-14)

$$SM^2 S^+ k - k SM^2 S^+ = 0$$

ou

$$M^2_h k - k M^2_h = 0 \quad (\text{III-15a})$$

onde

$$M^2_h = SM^2 S^+$$

Da relação (III-15a) concluímos que a matriz M^2 na base (III-11) é real, pois comuta com k. Para provarmos que M^2 é também simétrica, vamos calcular a matriz transposta de M^2_h:

$$\sim M^2_h = (SM^2 S^+) = (S^+) (SM^2) = (S^+) (\tilde{M}^2) (\tilde{S}) = S^* \tilde{M}^2 S$$

como M^2_h é real, $(\sim M^2_h) = (M^2_h)^+$

$$(M^2_h)^+ = S^* \sim M^2$$

conjugando ambos os lados da equação, vem:

$$(M^2_h) = S (M^2) S^+ = S (M^2)^+ S^+ = SM^2 S^+ = M^2_h$$

$$(M^2_h) = M^2_h \quad (\text{III-15b})$$
onde usamos o fato de M^2 ser hermiteano e a seguinte propriedade de de matrizes:

$$(\tilde{AB}) = (\tilde{B}) (\tilde{A})$$

Sendo M^2_h uma matriz real e simétrica, pode ser diagonalizada por subroutine usuais de diagonalização. O subespaço contendo os auto-vetores de M^2_h são necessariamente duplamente degenerados em virtude da relação (III-6) e da correspondente relação de anticomutação entre M_h e k:

$$Mf_k + fkM = 0$$
$$S_{f}S^+ + S_{f}S^+ S_{f}S^+ = 0$$
$$M_h \frac{S_{f}S^+}{k} + \frac{S_{f}S^+}{k} M_h = 0$$
$$M_h k + k M_h = 0 \quad (III-16a)$$

Então, se x_i é um auto-vetor de M_h com auto-valor E_i, $k x_i = x_i^*$ é também um auto-vetor de M_h com auto-valor $-E_i$ ambos sendo auto-vetores de M^2_h com auto-valor E_i^2:

$$M_h k x_i = -k M_h x_i = -E_i k x_i = -E_i x_i^* \quad (III-16b)$$

Portanto, para cada auto-valor E_i^2 de M_h^2, correspondem dois auto-vetores reais ortogonais γ_{2i-1}, γ_{2i}. Obviamente, estamos interessados em obter os auto vetores de M_h na base (III-9) ou seja, os auto-vetores de M. Para tanto, vamos construir o vetor x_1 a partir do auto vetor y_1 obtido da diagonalização de M^2_h:

$$x_1 = C_1 (E_1 y_1 + M_h y_1) \quad (III-17)$$

x_1 é um auto-vetor de M_h, pois:
\[M_h x_1 = C_1 M_h (E_1 y_1^* + M_h y_1) = C_1 (E_1 M_h y_1 + M_h^2 y_1) = E_1 C_1 (E_1 y_1^* + M_h y_1) \]

... \[M_h x_1 = E_1 x_1 \]

onde \(E_1 \) é a raiz positiva do auto-valor \(E_1^2 \) e \(C_1 \) é a constante de normalização \(C_1 = (\sum_{a} x_1^{(a)})^{-1/2} \) e \(x_1^{(a)} \) são as componentes do vetor coluna \(x_1 \). Para obtermos o auto-vetor \(x_2 \) de \(M_h \) correspondente ao auto-valor negativo \(-E_1\), (eq. III-16b), fazemos:

\[x_2 = k x_1 = x_1^* \] \hspace{1cm} (III-18)

Analogamente, obtemos os auto-vetores \(x_3 \) e \(x_4 \) a partir de \(y_3 \) e \(y_4 \) e terminamos com 2N auto-vetores de \(M_h \): \(x_1, x_2, ... , x_{2N} \). Pode acontecer que a degenerescência de um auto-valor de \(M_h^2 \) ocorra mais de uma vez, por exemplo, se \(y_1, y_2, y_3, y_4 \) são auto-vetores de \(M_h^2 \) com auto-valores \(E_1^2 \) e \(E_2^2 \), sendo \(E_1^2 = E_2^2 \). Obtém-se \(x_1 \) e \(x_2 \) de \(y_1 \) da forma descrita e, pelo processo de ortogonalização de Gramm-Schmidt, toma-se o primeiro vetor de \(y_2, y_3, y_4 \) ortogonal a \(x_1 \) e \(x_2 \), não nulo, para se construir \(x_3 \) e \(x_4 \).

Transportando os 2N auto-vetores \(x_i \) de \(M_h \) para a base (III-9), obtemos finalmente os auto-vetores da matriz \(M \) de HFB:

\[M S^+ x_i = S^+ S M S^+ x_i = S^+ M_h x_i = E_i S^+ x_i \]

\[M S^+ x_i = E_i S^+ x_i \] \hspace{1cm} (III-19a)

e

\[M S^+ x_i^* = S^+ S M S^+ x_i^* = S^+ M_h x_i^* = -E_i S^+ x_i^* \]

\[M S^+ x_i^* = -E_i S^+ x_i^* \] \hspace{1cm} (III-19b)
Portanto \(S^+ x_i \) e \(s^+ x_i \) são auto-vetores de \(M \) com auto-valores \(E_i \) e \(-E_i\), respectivamente.

As quasi-partículas descrevem excitações, isto é, \(b_k^+ |\psi_0\rangle \) deve ser interpretado como um estado excitado com energia \((E_0 + E_k)\), equação (II-34), pois:

\[
(H_0 + \sum_{i} E_i b_i^+ b_i) b_k^+ |\psi_0\rangle = E_0 b_k^+ |\psi_0\rangle + \sum_{i} E_i b_i^+ b_i b_k^+ |\psi_0\rangle = E_0 b_k^+ |\psi_0\rangle + \sum_{i} E_i b_i^+ b_i |\psi_0\rangle - b_i^+ b_k |\psi_0\rangle
\]

\[
(H_0 + \sum_{i} E_i b_i^+ b_i) b_k^+ |\psi_0\rangle = (E_0 + E_k) b_k^+ |\psi_0\rangle \tag{III-20}
\]

Somente os auto-valores positivos \(E_k \) têm sentido físico e cada auto-vetor complexo \(S^+ x_i \) com \(2N \) componentes pode ser escrito como:

\[
x_i^\alpha = A_i^\alpha \quad \text{para} \quad \alpha = 1, \ldots, N
\]

\[
x_i^\alpha = B_i^{\alpha - N} \quad \text{para} \quad \alpha = N+1, \ldots, 2N \tag{III-21}
\]

Obtido os coeficientes complexos \(A_i^\alpha \) e \(B_i^{\alpha - N} \) da transformação de Bogoliubov, podemos construir as matrizes \(\rho, \kappa, \Lambda \) e \(\Gamma \) para a iteração seguinte.

III.C) Ajuste dos potenciais químicos

A transformação generalizada de Bogoliubov (II-18a), não conserva na presente aproximação o número de partículas, sendo necessário adicionarmos as seguintes condições subsidiárias:
\[\langle N_p \rangle = \sum_{i,p} \langle C_i^+ C_i \rangle = \sum_k \rho^p_{kk} = Z \] (III-22a)

\[\langle N_n \rangle = \sum_{i,n} \langle C_i^+ C_i \rangle = \sum_k \rho^n_{kk} = N \] (III-22b)

Impondo assim, os valores médios requeridos para o número de prótons e neutrons através dos multiplicadores de Lagrange \(\lambda_p \) e \(\lambda_n \) na Hamiltoniana (II-1) e introduzidos na secção (II-C), equações (II-26) e (II-29). Na prática, isso significa que ao final de cada iteração do processo auto-consistente, as relações (III-22) devem ser satisfeitas antes da iteração seguinte. Caso contrário, a iteração não pode ser considerada completa e os parâmetros \(\lambda_p \) e \(\lambda_n \) devem ser variados de forma conveniente até obtermos os números corretos de prótons e neutrons.

A fim de mostrar como é feito este ajuste dos potenciais químicos examinamos a figura tridimensional abaixo, onde os eixos x e y representam respectivamente os parâmetros \(\lambda_p \) e \(\lambda_n \) e o eixo z representa o número de prótons e neutrons. Em cada iteração, podemos obter infinitos pares de valores \((\lambda'_p, \lambda'_n) \), cada um dos quais fornece um valor para o número de prótons e um para o número de neutrons. Isso define duas superfícies \(N_p (\lambda'_p, \lambda'_n) \) e \(N_n (\lambda'_p, \lambda'_n) \), que expressam a variação do número de prótons e neutrons com os potenciais químicos e não têm uma expressão analítica. Para encontrarmos o par de valores \((\lambda'_p, \lambda'_n) \) que corresponde ao número correto de prótons e neutrons, projetamos a intersecção a da superfície \(N_p \) com o plano \(z=2 \) e a intersecção b, da superfície \(N_n \) com o plano \(z=4 \) no plano \((x,y) \). A intersecção das projeções a' e b' corresponde ao par \((\lambda'_p, \lambda'_n) \) procurado para essa iteração.
\[\alpha \times = \text{plano } z = 4\]
\[\beta = \text{plano } z = 2\]
\[\delta = \text{superficie } \lambda p (\lambda p, \lambda n)\]
\[\delta = \text{superficie } \lambda n (\lambda p, \lambda n)\]
\[a = \beta \cap \delta\]
\[b = \alpha \times \cap \delta\]
\[a' = \text{proj. a plano } (\lambda p, \lambda n)\]
\[b' = \text{proj. b plano } (\lambda p, \lambda n)\]
Os parâmetros λ_p e λ_n assim obtidos são os potenciais químicos que melhor reproduzem o número correto de prótons e neutrons nessa iteração. Os gráficos apresentados a seguir, mostram secções dos planos $\lambda_p = \text{cte}$ com as superfícies $N_p(\lambda_p, \lambda_n)$ e $N_n(\lambda_p, \lambda_n)$, onde as linhas cheias e pontilhadas representam respectivamente, a variação do número de neutrons e prótons com λ_n nas várias iterações exceção feita a figura 2, que mostra a variação do número de nucleons com λ_p para a primeira iteração. Foram necessárias oito iterações para obtermos a auto-consistência, sendo que cada ponto desses gráficos foi obtido em cerca de sete minutos, utilizando o computador IBM/360 do SEMA. O diagrama abaixo ilustra o procedimento computacional a partir dos A_i^a, B_i^a, λ_p, λ_n iniciais até a obtenção das densidades de estados e de emprego lhamento, finais, bem como das energias de quasi-partículas E_i, cujo programa consumiu 117.408 posições de memória em simples precisão.
$T = 0,1$
$v_{\alpha\beta\gamma\delta}$

$\lambda^i_{\alpha}, B^i_{\alpha}$
$\lambda_p \lambda_n$

Construção de ρ e \mathbf{K}

Ajuste de $\lambda_p \lambda_n$

$\Delta T = 1,0 \quad \Gamma T = 1,0$

Construção de M

Diagonalização de M

Construção de ρ', \mathbf{K}'

Construção ρ'_p, \mathbf{K}'_p

Cálculos
FIG. 5

NUCLEONS

4 θ ITERAÇÃO

λρ

1 -12.5
2 -13.
3 -13.5
4 -14.
FIG. 7

NUCLEONS

6a ITERAÇÃO

λ_p

1

-13.5

2

-14.

λ_n
IV. RESULTADOS E CONCLUSÕES

Em virtude da morosidade computacional, dificuldade em ajustar os potenciais químicos em cada iteração e pelo fato de trabalharmos em simples precisão, consideramos a auto-consistência alcançada quando a diferença entre os auto-valores de sucessivas iterações oscilaram entre 8% e 10%, instante em que as relações de simetria da matriz de HFB começaram a ser destruídas, em face do grande número de operações numadas iteração. Obtidas as matrizes ρ e λ finais, passamos à definição das quantidades calculadas da tabela I(40):

1) Energia do estado fundamental E_0:

$$E_0 = \sum_{kl} \left(T + \frac{1}{2} r_{kl} \right) \rho_{kl} + E_{\text{emp.}} + E_{\text{Ca}40}$$

onde

$$E_{\text{emp.}} = \frac{1}{2} \sum_{kl} \Delta_{kl} \kappa^*_{kl}$$

e

$$E_{\text{teor}}^{\text{Ca}40} = -289,82 \text{ MeV}, \text{ calculado com HFB}^{(3)}$$

$$E_{\text{exp}}^{\text{Ca}40} = -342,1 \text{ MeV}^{(3)}$$

2) Raio quadrático médio:

$$<r^2>^{1/2} = \frac{1}{A} \sum_{kl} <k|r^2|\lambda> \rho_{\lambda k}^{1/2}$$

3) Momento de quadrupolo intrínseco Q_0:

$$Q_0 = \sum_{kl} <k|Q_{20}|\lambda> \rho_{\lambda k}$$
4) Flutuação do número de partículas $(\Delta N)^2$:

$$(\Delta N)^2 = 2 \sum_{k\ell} |\kappa_{k\ell}|^2$$

(IV-5)

O "hiato" de energia de HFBA Δ é definido usualmente como sendo a metade da soma das energias mais baixas de quasipartícula, uma das quais predominantemente de partícula e o outro de buraco. Nossos resultados para o T_1^{46} com os elementos de matriz da Tabela (III-1), ref.(37) estão na primeira linha da Tabela I, juntamente com cálculos de HF e HFBA (separados em $T=0$ e $T=1$) obtidos por Faessler et al.(5) na camada (2p-1f), usando potencial realístico de Yale-Shakin. Na última linha estão os resultados de HFBA obtidos por H.Chandra(46) na camada (f-p); a iteração residual de dois corpos é assumida central com dependência radial de Yukawa mais misturas de troca, ajustadas para reproduzir os estados mais baixos de 0^{18} e F^{18}, do modelo de camadas.

O objetivo principal do trabalho, como já foi dito na introdução, foi mostrar a possibilidade de resolver as equações de HFBA com coeficientes de transformação complexas, isto é, com inclusão simultânea dos dois modos de emparelhamento $T=1$ e $T=0$, sem assumir nenhuma simetria para as quasipartículas. Por simplicidade computacional restringimos nossos cálculos à subcamada $1f_{7/2}$, considerando o Ca40 como caroço inerte, aproximação essa motivada por cálculos de modelo de camadas de McCullem et.al.(26) e A.Dieperink(35) que utilizaram o mesmo número de configurações e também extrairam os elementos de matriz de interação, diretamente do espectro do Sc42. Um cálculo semelhante ao realizado nesse trabalho, na camada completa (2p-1f) envolveria entre outras dificuldades,
a diagonalização de matrizes complexas de dimensão 80x80.

Vemos na tabela I que os nossos resultados mais se aproximam de cálculos de HFB com simetria axial oblata, mais suscetível às correlações de emparelhamento que a solução prolata, em virtude de maior instabilidade na solução de Hartree Fock. O emparelhamento só se torna efetivo quando o "hiato" de energia de HF é pequeno, ou seja, quando as órbitas de partícula independente de HF estão parcialmente ocupadas, enquanto que um "hiato" de HF grande, inibe essas correlações de emparelhamento. Isso é ilustrado na figura abaixo (ref. 5) onde temos "hiatos" de HFB (com $T=1$) versus "hiatos" de HF correspondentes. Vemos que o emparelhamento é importante para hiatos de HF abaixo de 1 MeV, o que ocorreu também em nossos cálculos, pois enquanto que o hiato de HF da ordem de 0.1 MeV o hiato de HFB era da ordem de 0.3 MeV.
<table>
<thead>
<tr>
<th>MODO</th>
<th>E_0 (MeV)</th>
<th>$E_0-E_{\text{Ca}^{40}}$ (MeV)</th>
<th>E_{emp} (MeV)</th>
<th>$<r^2>^{1/2}$ (fm)</th>
<th>Q_0 (fm2)</th>
<th>Δ_p (MeV)</th>
<th>Δ_n (MeV)</th>
<th>((\Delta N))^2</th>
<th>λ_p (MeV)</th>
<th>λ_n (MeV)</th>
<th>Δ (MeV)</th>
<th>Δ(HF) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLT</td>
<td>HFB T=0,T=1</td>
<td>-400.0</td>
<td>-110.2</td>
<td>-5.35</td>
<td>4.01</td>
<td>-15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF</td>
<td>-318.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFB T=1</td>
<td>-318.0</td>
<td></td>
<td>-1.2</td>
<td>3.66</td>
<td>146.1</td>
<td>1.99</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBLT</td>
<td>HF</td>
<td>-312.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFB T=1</td>
<td>-313.9</td>
<td></td>
<td>-4.9</td>
<td>3.67</td>
<td>-85.1</td>
<td>1.23</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFB T=0</td>
<td>-313.8</td>
<td></td>
<td>-7.0</td>
<td>3.67</td>
<td>-74.6</td>
<td>0.78</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPRT</td>
<td></td>
<td>-398.2</td>
<td>-56.1</td>
<td></td>
<td>3.48</td>
<td>$</td>
<td>90 \pm 100</td>
<td>_6$</td>
<td>2.2</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRLT</td>
<td>HFB</td>
<td>-51.14</td>
<td>-1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROLTA

$Q_P=40.53$

$Q_n=49.6$
Uma explicação do fato de termos emparelhamento mais acentuado nas formas oblatas do que nas prolatas, pode ser dada pelo modelo SU3, segundo o qual temos maior densidade de níveis na superfície de Fermi no caso oblato que no prolato\(^{(3)}\).

A energia do estado fundamental, calculada adicionando, o valor teórico \(-289.82\ \text{MeV}\)\(^{(3)}\) do \(\text{Ca}^{40}\) é boa comparada com a experiência, enquanto que o valor de \(E_0 - E_{\text{Ca}^{40}}\) é duas vezes maior que o obtido experimentalmente. O momento de quadrupolo intrínseco encontrado é pequeno em relação ao valor experimental e ao obtido nos cálculos de outros autores, embora se saiba que a força de emparelhamento, sendo uma força de curto alcance, provoque uma espécie de tensão superficial, que tende a restaurar formas mais simétricas. O fato de restrinjaos nosso espaço de configuração parece não ter prejudicado substancialmente nossos resultados, qualitativamente comparáveis com cálculos realizados num espaço mais amplo, (isto é, na camada (f-p) completa. A objeção maior no cálculo apresentado é quanto ao teste de convergência adotado, dando as limitações do computador utilizado, pois em cálculos auto-consistentes usuais, a precisão exigida é muito maior.
APÊNDICE

TRATAMENTO DA HAMILTONIANA PELO MÉTODO DO COMUTADOR (41)

Esse método consiste basicamente em procurar um operador \(Q^+ \), cujo comutador com a Hamiltoniana \(H \) seja um múltiplo numérico de si mesmo, isto é:

\[
\left[H, Q^+ \right] = \hbar w Q^+ \quad (A-1)
\]

ou \((HQ^+ - Q^+H)^+ = QH^+ - H^+Q = QH - HQ = -[H,Q] = \hbar w Q \)

\[
\left[H, Q \right] = -\hbar w Q \quad (A-2)
\]

Sem perda de generalidade, vamos assumir \(\hbar w \) positivo.
Se \(\psi \) é uma auto função de \(H \) pertencendo ao auto valor \(E \), então a equação (A-1) garante que \(Q^+\psi \) é também uma auto-função de \(H \), com auto-valor \(E + \hbar w \):

\[
H \psi = E \psi
\]

\[
HQ^+\psi - Q^+H\psi = \hbar w Q^+\psi
\]

\[
H(Q^+\psi) - E(Q^+\psi) = \hbar w (Q^+\psi)
\]

\[
H(Q^+\psi) = (E + \hbar w)(Q^+\psi)
\]

Analogamente, \(H(Q\psi) = (E - \hbar w)(Q\psi) \).

Portanto, \(Q^+ \) funciona como um "levantador" de energia e \(Q \) como um "abaixador". Em particular, se \(\psi_0 \) é o estado fundamental de \(H \), temos:

\[
Q\psi_0 = 0 \quad (A-3)
\]
pois o estado \(Q_0 \) teria uma energia mais baixa que a do estado fundamental.

Portanto, se existir um operador \(Q^+ \) obedecendo a relação (A-1), teremos para uma Hamiltoniana geral \(H \), o seguinte espectro:

\[
E_n = E_0 + nhw, \quad n = 0, 1, 2, \ldots \quad (A-4)
\]

onde para sabermos \(E_0 \) é necessário especificarmos melhor a Hamiltoniana.

Vamos generalizar esse método, supondo que temos um conjunto de operadores \(A_i^+ \) \((i = 1, 2, \ldots, N) \) que satisfazem:

\[
[H, A_i^+] = \sum_{j=1}^{N} M_{ji} A_j^+ = (\bar{M} A_i^+) \quad (A-5)
\]

onde \(\bar{M} \) é a transporte da matriz numérica \(M \). Diagonalizando a matriz \(M \) encontramos os auto-valores \(E_\alpha \) \((\alpha = 1, 2, \ldots, N) \) e os correspondentes auto-vetores \(x^\alpha \), cujas componentes são \(x_1^\alpha \), \(x_2^\alpha \), \ldots, \(x_N^\alpha \). Portanto:

\[
\sum_{j=1}^{N} M_{ij} x_j^\alpha = E_\alpha x_i^\alpha \quad ; \quad i = 1, 2, \ldots, N \quad (A-6)
\]

Vamos construir os seguintes operadores com esses auto-vetores:

\[
Q_\alpha^+ = \sum_{i=1}^{N} x_i^\alpha A_i^+ \quad (A-7)
\]

e calcular o comutador de \(H \) com \(Q_\alpha^+ \), usando as relações (A-5), (A-6) e (A-7).
$$[H, Q^+_\alpha] = [H, \sum_{i=1}^{N} x_i^{(\alpha)} A^+_i] = \sum_{i=1}^{N} [H, x_i^{(\alpha)} A^+_i] = \sum_{i=1}^{N} x_i^{(\alpha)} [H, A^+_i] =$$

$$= \sum_{i=1}^{N} x_i^{(\alpha)} \sum_{j=1}^{N} M_{ij} A^+_j = \sum_{j=1}^{N} \{ \sum_{i=1}^{N} M_{ij} x_i^{(\alpha)} \} A^+_j =$$

$$= \sum_{j=1}^{N} x_j^{(\alpha)} \sum_{i=1}^{N} M_{ij} A^+_j = \sum_{j=1}^{N} x_j^{(\alpha)} A^+_j = E^\alpha Q^+_\alpha$$

$$[H, Q^+_\alpha] = E^\alpha Q^+_\alpha \quad (A-8)$$

Comparando essa expressão com o resultado proveniente de (A-1) concluímos que existem agora um conjunto de operadores "levantadores" Q^+_α ($\alpha = 1, 2, ..., N$) que elevam a energia por E^α. Os correspondentes operadores hermitianos conjugados Q_α abaixam a energia de E^α e agindo no estado fundamental ψ_0 dão resultado nulo:

$$Q^+_\alpha \psi_0 = 0; \quad \alpha = 1, 2, ..., N \quad (A-9)$$
REFERÊNCIAS

(2) H.H. Wolter - Trieste Lectures 1969 - IAEA - SMR 6/42

(8) I. Kelson, C. A. Levinson - Phys. Rev. 134, nº 2 (1964)

(14) Bardeen, Cooper, Schrieffer - Phys. Rev. 108, 1175 (1957)

(15) Bohr, Mottelson, Pines - Phys. Rev. 110, 936 (1958)

(16) B. Mottelson - Lectures at Les Houches - DUNOD PARIS 1959, 259

(21) A. Faessler, P.U. Saver, M.M. Stingl - Z. Phys. 212 (1968) 1
(27) G. Ripka - Lectures in Theoretical Physics - Colorado (1955)
(28) V. Gillet - XXXVI Corso Scuola Internazionale di Fisica "Enrico Fermi" (1966)
(29) N.N. Bogoliubov - Nuovo Cimento 7, 794 (1958)
(32) G.L. I. Kamimura - Tese de Mestrado - USP (1973)
(33) M. Baranger - 1962 Cargèse Lectures in theoretical Physics - Vol. 20
(38) D.R.Oliveira – Tese de Doutorado – USP (1972)
(39) A.Messiah – Quantum Mechanics – Vol. II – Cap. XV
(40) A.Faessler – Lectures on Nuclear Many Body Probl. Herceg Novi (1967)
(41) M.K.Pal – Trieste Lectures 1969 – pg. 547
(44) I.Talmi – Rev. Mod. Phys. 34, 704 (1962)