• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.43.1997.tde-15052012-141043
Document
Auteur
Nom complet
Marcelo Trindade dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1997
Directeur
Jury
Nemes, Maria Carolina (Président)
Aguiar, Marcus Aloizio Martinez de
Almeida, Alfredo Miguel Ozorio de
Lewenkopf, Caio Henrique
Lima, Celso Luiz
Titre en portugais
Correções Quânticas 1/N ao Limite Clássico: Aplicação ao Modelo de Lipkin SU(2)
Mots-clés en portugais
Aproximação de campo médio
Caos
Limite semiclássico
Modelo de Lipkin
Tunelamento.
Resumé en portugais
Neste trabalho mostramos de que maneira o princípio variacional dependente do tempo pode ser usado para se estudar correções quânticas ao limite clássico, particularmente, no contexto do modelo de Lipkin SU(2). Mostramos que tais correções podem ser colocadas na forma Hamiltoniana, acoplando-se a dinâmica clássica um conjunto de variáveis associadas às flutuações quânticas, nos levando à uma dinâmica efetiva com o número de graus de liberdade dobrado em relação ao sistema clássico. Como conseqüência o comportamento caótico emerge. Mostramos que este caos semiquântico é o mecanismo através do qual o tunelamento se manifesta no espaço de fase. Mostramos que tais correções melhoram sistematicamente o resultado c1ássico, propondo um critério para quantificar esta melhora.
Titre en anglais
Quantum corrections 1 / N the classical limit: Application to the Lipkin model SU(2)
Mots-clés en anglais
Chaos
Classical dynamics
Lipkin model
Resumé en anglais
We show how the time dependent variational principle can be used to study quantum corrections to the classical limit, in particular of the SU(2) Lipkin Model. We show how much corrections can be cast in Hamiltonian form, coupling to the classical dynamics a set of variables associated to the quantum fluctuations. This leads to an effective dynamics which has the number of degrees of freedom doubled with respect to the classical system. As a consequence chaotic behavior emerges. We show that this semiquantal chaos is the mechanism through which tunneling is effected, and also, that these corrections systematically improve the classical results and propose some quantitative measure of this improvement.  
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2012-06-14
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.