• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.43.1997.tde-15052012-141043
Documento
Autor
Nombre completo
Marcelo Trindade dos Santos
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 1997
Director
Tribunal
Nemes, Maria Carolina (Presidente)
Aguiar, Marcus Aloizio Martinez de
Almeida, Alfredo Miguel Ozorio de
Lewenkopf, Caio Henrique
Lima, Celso Luiz
Título en portugués
Correções Quânticas 1/N ao Limite Clássico: Aplicação ao Modelo de Lipkin SU(2)
Palabras clave en portugués
Aproximação de campo médio
Caos
Limite semiclássico
Modelo de Lipkin
Tunelamento.
Resumen en portugués
Neste trabalho mostramos de que maneira o princípio variacional dependente do tempo pode ser usado para se estudar correções quânticas ao limite clássico, particularmente, no contexto do modelo de Lipkin SU(2). Mostramos que tais correções podem ser colocadas na forma Hamiltoniana, acoplando-se a dinâmica clássica um conjunto de variáveis associadas às flutuações quânticas, nos levando à uma dinâmica efetiva com o número de graus de liberdade dobrado em relação ao sistema clássico. Como conseqüência o comportamento caótico emerge. Mostramos que este caos semiquântico é o mecanismo através do qual o tunelamento se manifesta no espaço de fase. Mostramos que tais correções melhoram sistematicamente o resultado c1ássico, propondo um critério para quantificar esta melhora.
Título en inglés
Quantum corrections 1 / N the classical limit: Application to the Lipkin model SU(2)
Palabras clave en inglés
Chaos
Classical dynamics
Lipkin model
Resumen en inglés
We show how the time dependent variational principle can be used to study quantum corrections to the classical limit, in particular of the SU(2) Lipkin Model. We show how much corrections can be cast in Hamiltonian form, coupling to the classical dynamics a set of variables associated to the quantum fluctuations. This leads to an effective dynamics which has the number of degrees of freedom doubled with respect to the classical system. As a consequence chaotic behavior emerges. We show that this semiquantal chaos is the mechanism through which tunneling is effected, and also, that these corrections systematically improve the classical results and propose some quantitative measure of this improvement.  
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2012-06-14
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.