• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.43.1995.tde-04122013-185633
Documento
Autor
Nome completo
Francisco Braga Guimaraes
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1995
Orientador
Banca examinadora
Carlson, Brett Vern (Presidente)
Galeao, Alfredo Pio Noronha Rodrigues
Galetti, Diógenes
Hama, Yogiro
Piza, Antonio Fernando Ribeiro de Toledo
Título em português
Extensão da Teoria Hadrodinâmica Quântica para o Estudo Relativístico do Emparelhamento na Matéria Nuclear
Palavras-chave em português
Estrutura nuclear
Resumo em português
Neste trabalho nós propomos uma extensão da teoria Hadrodinâmica Quântica (QHD) para o estudo do emparelhamento nucleônico na matéria nuclear. O trabalho segue a formulação usual da QHD, descrevendo a interação-NN em termos de campos médios, tanto para a auto-energia usual, E, como para a energia de emparelhamento, A. As equações dos campos são obtidas em termos dos propagadores nucleônicos exatos, os quais são expandidos até a primeira ordem na interação-NN, definindo a aproxirnação auto-consistente Hartree-Fock-Bogoliubov (HFB) para E e A. Esta abordagem representa um avanço sobre as tradicionais formulações não-relativísticas, no sentido de que ela permite uma descrição simultânea de muitas propriedades da matéria nuclear como o ponto de saturação, a massa efetiva do nucleon, o gap de energia no espectro de partícula única, etc., de uma maneira consistente considerando apenas os graus de liberdade hadrônicos, ou seja, os nucleons interagindo na matéria nuclear através da troca de mésons. Os campos médios resultantes E e A, tem grandes componentes no espaço de Lorentz, que adequadamente se cancelam nas expressões tanto da energia de ligação por nucleon como no parâmetro de gap", de forma que os valores resultantes dessas quantidades concordam com os resultados experimentais. Embora o parâmetro de gap possa ser adequadamente estimado com modelos não-relativísticos, em termos de interações de dois nucleons, o ponto de saturação da matéria nuclear não pode. O aspecto atraente do presente modelo é sua formulação fundamental bastante simples em termos de graus de liberdade hadrônicos e da aproximação HFB usual à teoria de muitos corpos, o que aponta para avanços futuros como poderiam ser obtidos com a aproximação Brueckner-HF auto-consistente.
Título em inglês
Hadrodynamic quantum theory extension to study relativistic pairing in nuclear matter
Palavras-chave em inglês
Nuclear structure
Resumo em inglês
In this work we propose an extension of the relativistic Quantum Hadrodynamic theory (QHD) to the study of nucleonic pairing in nuclear matter. The work follows the usual formulation of QHD by describing the NN-interaction in terms of mean fields either for the usual self-energy, E, or the pairing energy, A. The equations of the fields are obtained in terms of the exact nucleon propagators which are expanded up to the first order in the NN-interaction, defining the self-consistent Hartree-Fock-Bogoliubov (HPB) approximation E for A and .This approach represents an improvement over the old non-relativistic formulations in the sense that it allows for a simultaneous description of many nuclear matter properties as the saturation point, the effective mass or the nucleon, the energy gap in the sp-spectrum, etc., in a consistent fashion, by considering only the hadronic degrees of freedom, that is, the nucleons interacting in nuclear matter through the exchange of mesons. The resulting mean field energies, E and A, have large components in the Lorentz space, which adequately cancel each other in the expressions of either the energy per nucleon or the gap parameter", so that the resulting values of these quantities agree with the experimental data. Although the gap parameter can be adequately estimated with non-relativistic models, in terms of two nucleon interactions, the saturation point of nuclear matter cannot be. The appealing feature of the present model is its rather simple fundamental formulation in terms of hadronic degrees of freedom and the usual HFB approximation to the many-body field theory, which points toward future improvements as would be obtained with a self-consistent Brueckner-HF approximation.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-02-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.