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RESUMO 

  

GIRARD, RMBM. Papel da Alanine e da Alanine Racemase no metabolismo do 

Trypanosoma cruzi. 2017. 167 f. Tese (Doutorado em Parasitologia) - Instituto de Ciências 

Biomédicas, Universidade de São Paulo, São Paulo, 2018.  

Os aminoácidos participam de vários processos importantes na biologia dos tripanossomatídeos, 

como osmorregulação, diferenciação celular e invasão de células hospedeiras. Alguns deles 

fornecem poder redutor para a síntese de ATP mitocondrial. Foi anteriormente demonstrado que 

a alanina, que é formada principalmente pela aminação do piruvato, é um produto final 

metabólico quando os parasitas estão proliferando em um meio rico em glicose e aminoácidos. 

Mostrou-se também que este aminoácido também pode ser usado para a regulação do volume 

celular e resistência ao estresse osmótico. Curiosamente, o Trypanosoma cruzi, agente etiológico 

da doença de Chagas, possui genes putativos para uma Alanina racemase (AR) que catalisam a 

interconversão entre L e D-alanina. Aqui mostramos, pela primeira vez, que os genes putativos 

TcAR_A em T. cruzi codificam a enzima recombinante funcional (rTcAR_A) bioquímicamente 

caracterizada e localizada no citoplasma. A atividade da AR foi detectada através do ciclo de 

vida dos parasitas. Demonstramos também que a TcAR_A racemiza a serina com parâmetros 

cinéticos semelhantes aos da Ala. Também demonstramos que ambos isómeros da Ala podem ser 

transportadas e através de um sistema ativo não estereosseletivo de baixa especificidade. Ambas, 

L-Ala, e D-Ala, podem ser completamente oxidadas em CO2, fornecendo elétrons para a cadeia 

de transporte de elétrons, sustentando OXPHOS em epimastigotas de T. cruzi. Como não tem 

sido descrita em hospedeiros mamíferos uma AR, investigamos a atividade antiparasitária das 

tiadiazolidinonas, uma nova classe de inibidores de AR. Todos os inibidores testados exibiram 

uma inibição da replicação dos epimastigotas dependente da dose. Esses compostos também 

inibiram a atividade da rTcAR_A. Como o inibidor C3 mostrou uma menor concentração 

inibitória de 50% (IC50) contra o crescimento de epimastigotas, o mecanismo de ação deste 

fármaco foi estudado em maior detalhe. C3 induz marcas típicas de morte celular programada em 

T. cruzi. De facto, os parasitas tratados exibiram uma exposição de fosfatidilserina na fase 

externa da membrana celular, diminuição do potencial de membrana mitocondrial, , um aumento 

da concentração intracelular de ROS, e fragmentação de DNA. C3 apresentou um efeito 

inibitorio sobre o ciclo de infecção celular a concentrações na faixa submicromolar , com um alto 

índice de seletividade. Estes compostos também mostraram um interessante efeito anti-T. brucei, 

com similares características de ação. Em conjunto, nossos dados demonstram o papel versátil de 

Ala na bioenergética do parasita podendo ser secretado, ou transportado para o méio intracelular 

para ser oxidado pelos parasitas. Além disso, o catabolismo da D-Ala, através da AR, chama a 

atenção sobre a flexibilidade metabólica de T. cruzi, bem como sobre a relevância do 

metabolismo dos D-aminoácidos nesses organismos. Nossos resultados também mostraram que o 

AR pode ser um alvo promissor para a quimioterapia. 

Palavaras-chave: Transporte. L-Alanina. Metabolismo. Bioenergética. Trypanosoma cruzi. 

Alanina racemase. D-Alanina.   



  

ABSTRACT 

GIRARD, RMBM. Role of Alanine and Alanine Racemase in the metabolism of the 

Trypanosoma cruzi. 2018. 167 p. Ph.D. Thesis (Parasitology) – Instituto de Ciências 

Biomédicas, Universidade de São Paulo, São Paulo 2018. 

Amino acids participate in several critical processes in the biology of trypanosomatids, such as 

osmoregulation, cell differentiation and host cell invasion. Some of them provide reducing power 

for mitochondrial ATP synthesis. It was previously shown that alanine, which is formed mainly 

by the amination of pyruvate, is a metabolic end-product when parasites are replicating in a 

medium rich in glucose and amino acids. It was shown as well that this amino acid can also be 

used for the regulation of the cell volume and the resistance to osmotic stress. Interestingly, 

Trypanosoma cruzi, the etiological agent of Chagas’s disease, possess putative Alanine racemase 

(AR) genes that catalyze the interconversion between L- and D-alanine. Here we describe, for 

the first time, that the putative TcAR_A genes in T. cruzi encode a functional recombinant 

enzyme (rTcAR_A) that was biochemically characterized and localized in the cytoplasm. AR 

activity was detected through parasites life cycle. We demonstrated that TcAR_A, also racemize 

serine with similar kinetic parameters. In this work, we also show that both isomers can be taken 

up and through a low specificity non-stereoselective active transport system. We show that L-Ala 

and as well D-Ala, through it conversion to the L-isomer by TcAR_A, can be completely 

oxidized to CO2, supplying electrons for OXPHOS in T. cruzi epimastigotes. As AR had not 

been described in mammalian host, we investigated the anti-T. cruzi activity of the 

thiadiazolidinones, new class of potential AR inhibitors. All, the compounds exhibited dose-

dependent inhibition of epimastigote replication and also inhibited the rTcAR_A activity. As C3 

had shown a lower 50% inhibitory concentration (IC50) against epimastigote growth, the 

mechanism of action of this drug was studied in more detail. C3 induces typical programed cell 

death (PCD) hallmarks in T. cruzi. Indeed, treated parasites exhibited a phosphatidylserine 

exposure in the external leaflet of the plasma membrane, a decrease of the mitochondrial 

membrane potential, an intracellular ROS concentration deregulation, and nuclear DNA 

fragmentation. C3 exhibits a submicromolar range in the intracellular cell cycle infection with a 

high selectivity index. These compounds also induced an interesting anti-T. brucei with a similar 

mechanism of action. Taken together, our data demonstrate the versatile role for Ala in the 

parasite’s bioenergetics being secreted as well taken up and oxidized by the parasites. Moreover, 

the catabolism of D-Ala, through AR, underlines the parasites outstanding parasites metabolic 

flexibility as well the relevance of the D-amino acids metabolism in these organisms. Our results 

also showed that AR could be a promising target for chemotherapy.  

Keywords: Transport. L-Alanine. Metabolism. Bioenergetics. Trypanosoma cruzi. Alanine 

racemase. D-Alanine.  

 

 



  

  

 

1. Introduction 

1.1 Chagas´ disease 

The American Trypanosomiasis was also named Chagas Disease in honor of its 

discoverer Carlos Ribeiro Justiniano Chagas. Remarkably, in the article published in a medical 

journal in 1909 (2), Carlos Chagas described the etiological agent as well the vector and wild 

reservoirs of this disease. This parasite was named Trypanosoma cruzi in honor of Oswaldo 

Cruz. Over 100 years after its discovery, the disease is estimated to affect approximately 6 

million to 7 million in all american countries and has been recognized by the World Health 

Organization as one of the world’s neglected tropical diseases (3). Chagas disease is endemic of 

the Americas, from the South regions of USA to the south of Argentina and Chile. Its 

transmission parallel largely that of the vector insect geographical distribution (Figure 1) (3). 

Human population movements also spread the disease in non-endemic regions such as Europa, 

Asia or Oceania turning Chagas disease into a global health problem (4).  



  

 

Figure 1 Global distribution of Chagas Disease. Data from World Health Organization (3). 

Classically, Chagas disease is transmitted to humans through the contact of contaminated 

faeces from the vector insect (bugs from the Reduviidae family) with the mucosa or injuried skin, 

(5). In addition to insect transmission, Chagas disease can be transmited by ingestion of food or 

drinks contaminated with the vector feces containing T. cruzi oral or by the ingestion of raw 

meat from infected sylvatic reservoir (5). Alternatively, the transmission can occur by 

transfusions, transplants, laboratory accident and congenital mechanisms (5).  

Chagas disease presents an acute and a chronic phase. In the acute phase most patients 

are asymptomatic. However, when symptoms are present, usually they are unspecific such as 

fever, headache, muscle or abdominal pain, difficulty in breathing, inflammation at the 

inoculation site (inoculation chancre) or unilateral palpebral oedema   oma a sign . The acute 

phase lasts about lasts about 2 months after infection. In the chronic phase, two main forms of 



  

the disease are distinguished: indeterminate (about 60–70% of the patient) and determinate or 

symptomatic (about 30–40% of the patient). The symptomatic form of the disease is in turn 

subdivided into three main forms: cardiac, digestive or cardiodigestive forms. During the 

indeterminate form, the patients are positive to serological tests with undetectable parasitemia; 

No signs and symptoms of the disease can be detected. The determinate phase is generally 

suspected from clinical findings, mainly in the cardiac and digestive systems, and diagnosis 

should be confirmed by the results of laboratory tests (3-7). The chronic phase persists for the 

entire host’s lifes and the determinate form of chronic disease usually appears 10–30 years after 

the initial infection (6). 

Benznidazole and nifurtimox are the only drugs with proven efficacy against Chagas 

disease (5, 7). Both drugs, despite various side effects, are effective during the acute phase, 

however their efficiencies during the chronic phase, when most cases are diagnosed, remain 

controversial (6, 7). These facts underline the urgent need to intensify the search of therapeutics 

targets against T. cruzi. In this sense, it is relevant to study in detail the unique features of the T. 

cruzi biology. Studies on metabolism, drugs resistance, action of new class of compounds and 

other general biological functions of T. cruzi helped to understand and to identify potential 

compounds against T. cruzi-specific targets (8-14). These finding allowed proposing new 

therapeutic strategies such as drug repositioning or new compounds which could result in an 

adequate treatment for the acute and chronic forms of Chagas disease.  

 

 

 



  

1.2 Biology of T. cruzi: a brief revision 

1.2.1 T. cruzi organelles linked to the energy metabolism 

T. cruzi possess unique structures/organelles, characteristic of the Trypanosomatidae 

family (Figure 2). Herein, we briefly described some of them that are relevant to understand its 

metabolism. 

T. cruzi possess a unique and branched mitochondrion which has the classical 

compartments: the outer and inner membrane and between them the inter membrane space and 

the mitochondrial matrix. The mitochondrial inner membrane forms the typical invaginations 

known as mitochondrial cristae (Figure 2). Studies on mitochondrial functions in T. cruzi, 

indicate that this organelle shares similar bioenergetics properties with its mammalian 

counterpart. Indeed, several biochemical parameters were analyzed such as respiration rates at 

different energy states oxidizing different metabolites, mitochondrial membrane potential, as 

well ions fluxes and the redox state (12, 15)(12, 15)(12, 15)(12, 15)(12, 15)(12, 15). Regarding 

the electron transfer system (ETS), the presence of complex II to V, in the inner membrane of the 

mitochondrion, has been demonstrated (Figure 3). (15, 16). In spite of the presence of a variable 

quantity of subunits of complex I in the ETS, there is a controversy on the contribution of 

complex I to energy metabolism in T. cruzi (Figure 2). Indeed, T. cruzi complex I appears to be 

insensitive to rotenone and T. cruzi naturally mutant strains for some complex I subunits did not 

present OxPhos alterations (12, 16-20). This facts suggest that NAD
+
 regeneration occurs 

through a fumarate reductase (21). 

Inside the mitochondrial matrix, the kinetoplast is a structure containing the 

mitochondrial genome, and situated in the region proximal to the nucleus. The kinetoplast is 



  

made of kinetoplastid DNA (kDNA) composed by two type of interlocked and concatenated 

circular DNA: the minicircles and the maxicircles. There are several thousand minicircles (0.5 to 

2.5 kb), and a few dozen maxicircles (20 to 40 kb) (22). The kDNA is a remarkable complex 

feature of the Trypanosomatidae family, which needs to be replicated and then equally 

segregated between daughter cells along the parasites life cycle. The kDNA replication is 

independent from the nucleus and possess a complex machinery to perform this process (22). 

Another special characteristic is that it presents approximately 60 % of AT-rich regions (23). 

These unique characteristics of kDNA has been a widely studied for potential chemotherapeutic 

target.  

Glycosomes are an unusual type of peroxisomes which contain most of the glycolytic 

enzymes. This compartmentalization is a hallmark of the kinetoplastids since in most organisms 

this metabolic pathway is essentially cytosolic. The first six enzymes involved in the glycolytic 

pathway are compartmentalized within the glycosome (24). Another peculiarity is the lack the 

typical allosteric regulation presents in hexokinase (HK) and phosphofructokinase (PFK), which, 

classically tightly regulate the glycolytic pathway in many organisms (25-28). Furthermore, 

glycolysis only function properly with an individual pool of cofactors (NAD(H), ADP and ATP) 

separated from the cytosolic pool. Interestingly, the number and/or the compositions of 

glycosomes vary from species to species and even among developmental stages of the same 

species. In addition, other metabolic pathways occur within this organelle such as: purine salvage 

and de novo pyrimidine biosynthesis, fatty acid elongation, isoprenoid biosynthesis, and sterol 

biosynthesis (29, 30). 



  

 

Figure 2 Schematic representation of longitudinal section of an epimastigote showing the main 

structures and organelles found in T. cruzi. 

 



  

 

Figure 3 Schematic representation of the electron transport chain in T. cruzi. The major complexes of 

the electron transport system are present in the inner mitochondrial membrane, and some 

enzymes/intermediates are generated in the inter membrane space (IMS) or mitochondrial matrix. Q: 

ubiquinone; C: cytochrome c. The F0-F1 ATP synthase is responsible for ADP phosphorylation resulting 

from the proton-motive force generated through an electrochemical gradient.  

1.2.2 T. cruzi life cycle 

This protist affront a myriad of environmental conditions during its complex life cycle, 

which occurs inside the entire digestive tube of triatomine insect vectors, the blood of more than 

100 species of mammals, and the cytoplasm of (potentially) every mammalian nucleated cell in 

every tissue and organ (31). Inside the insects, parasites proliferate in the gut as non-infective 

forms, named epimastigotes, and later develop into infective non-replicating metacyclic 

trypomastigotes (32). During the insect bloodmeal, the metacyclic forms are expelled together 

with the insect feces and potentially being in contact with the skin of the mammalian host. The 

metacyclic forms eventually enter into the host through mucous or the abrasion caused by the 

host when scratching after being bitted (33). Once inside the host, the metacyclic 

trypomastigotes must invade the host-cells, differentiate into intracellular amastigotes and reach 

the cytoplasm to initiate the cell proliferation (34). After several rounds of binary divisions, 

amastigotes, differentiate to trypomastigotes forms passing through a transient replicative form 



  

called intracellular epimastigotes (35, 36). Trypomastigotes lyse the infected cells and burst into 

the extracellular environment. Trypomastigote forms can infect neighboring cells or eventually 

reach the bloodstream, from where they can infect cells in remote tissues or infect an uninfected 

Triatomine bug during its bloodmeal (Figure 4) (37-39). As a consequence of its complex life 

cycle, T. cruzi faces different environments with markedly different biochemical characteristics 

and availability of nutrients. 

 

Figure 4 Schematic representation of the Trypanosoma cruzi life cycle. Replicative, non-infective 

epimastigotes forms, differentiate to the non-replicative, infective metacyclic trypomastigotes inside the 

insect gut. Metacyclic forms invade the mammalian host cells and differentiate into replicative amastigote 

forms to establish the infection. These forms give rise to a transient stage called intracellular 

epimastigotes, which differentiate into trypomastigotes. After cells lysis, trypomastigotes can disseminate 

in the mammalian host through the bloodstream. The ingested trypomastigotes, by uninfected insect 

vector during its bloodmeal, differentiate again into epimastigotes, which can colonize the insect digestive 

tract. 



  

1.2.3 The journey of T. cruzi inside the insect vector  

T. cruzi infection occurs essentially in the intestinal tract of the vector insect. The insect 

digestive system is composed by the anterior midgut (stomach, AM), the posterior midgut (PM) 

and the rectum. Classically, the blood is hemolysed in the AM, then the nutrients are digested in 

the PM, finally the rectum stores the remains of the digestion process. Bloodstream 

trypomastigotes enter first in the AM where they face to inhospitable environment where parasite 

population decreases dramatically (40). The remaining trypomastigotes quickly reach the PM to 

differentiate in epimastigote and sustain the infection. T. cruzi preferentially growth in the insect 

rectum (41, 42), however it also can be found in the other intestinal region depending of the 

infection process. Nevertheless, parasites, through the digestive system, have to rapidly adapt to 

tremendous stress in theses environments such as temperature and pH variation, osmotic 

pressure, nutritional deprivation, and sudden interaction with insect immune defence and 

microbiota system. Temperature variation has been shown to affect the parasites infection in 

vitro as well in vivo (43, 44) because the temperature modifies several biochemical processes 

such as molecular transport, enzyme activity but also the vector feeding pattern (33). During the 

triatominae feeding process the excreta pH exhibits change of almost 3 fold from an acidic to an 

alkaline pH, associated with an increase in osmolality in the same proportion (45). T. cruzi has to 

endure striking period of starvation as its vector, the triatominae, can affront fasting periods up to 

one years (45). Throughout the insect vector starvation process, the parasites show an 

astonishing resilience to the insect nutritional deprivation condition (42, 45, 46). Indeed, the T. 

cruzi colonization pattern remains unaltered up to four month and living parasites can be find 

200days after the last blood meal in triatonimae rectum (41). Furthermore, T. cruzi must confront 

to the insect immune system which produces several molecules such as lysozymes (47), 



  

defensins or nitric oxide (32). Additionally, an increase number of studies indicate an intimate 

interplay between T. cruzi and the triatomine microbiota (48). The gut microbiota can have an 

impact in the parasite development and growth (32, 40, 44). For example, Serratia marcescens 

can impair the T. cruzi infection (49). On the other hand, T. cruzi successful infection also affects 

microbiota composition, with an increase of it diversity (48) while other failed to show a clear 

correlation between triatomine, T. cruzi and microbiota (44, 50). The complex interactions and 

fitness mechanisms among the parasites, the insect and it microbiota remains largely unsolved as 

this interplay appears to be specific to parasites strains and invertebrates species and/or 

population (50, 51). Taken together, T. cruzi have to exhibit outstanding adaptation mechanisms 

to establish a successful infection along it journey inside the insect.  

 

1.3 T. cruzi metabolism 

1.3.1 Carbohydrate metabolism in T. cruzi 

The ATP synthesis in T. cruzi can occur at substrate level phosphorylation through the 

glycolytic pathway and through oxidative phosphorylation. Trypanomosatids have a high rate of 

glucose incorporation and consumption which is associated with the production and excretion of 

reduced compounds from glucose catabolism instead of its complete oxidation. This metabolic 

particularity occurs even under aerobic conditions and is called “aerobic fermentation of 

glucose” (52). In the case of T. cruzi, the major products of aerobic glucose catabolism by 

epimastigotes are the alanine (Ala) and to a lesser extent succinate (53-55). Ala production might 

be linked to reoxidation of glycolytically produced NADH, even under aerobic conditions (55-

57). Furthermore, trypanosomatids did not present Pasteur effect (a considerable decrease in 



  

glucose consumption in aerobiosis) which is related to the lack of major controls on the 

glycolysis as described above.  

1.3.2 Amino acids (AA) metabolism 

Beyond the carbohydrates consumption, early works showed that several AA are 

metabolized by T. cruzi (58). Classically AA should be oxidized through their conversion to 

glutamate or aspartate, and then be processed via the Krebs cycle into the mitochondrion. Since, 

various studies appoint that AA transport and metabolism are relevant processes to supply the 

derived metabolites to many biological processes in T. cruzi (11, 12, 14, 59). These AA could be 

produced by proteolysis of proteins, biosynthesized from metabolic precursors or to be taken up 

from the extracellular medium (14).  

1.3.2.1 AA Uptake 

The metabolite incorporation is the first essential step for various metabolic routes, as it 

allows the entry of essential nutrients into the cell and regulate it intracellular concentrations. In 

the case of the AA, their availability and metabolism results from an equilibrium among protein 

degradation, their uptake and their biosynthesis. Since AA participate in broad variety of 

metabolic pathways, they are important for T. cruzi survival (14). As AA are available in most of 

environments that T. cruzi encounters throughout its life cycle, the uptake of various AA has 

been biochemically characterized. Briefly, two systems for Arg and for Pro (59-62), one for Glu 

(63), one for Lys (64, 65), one for Cys (66), one for Asp (67), one for the branched-chain AAs 

(BCAA) Val Ile and Leu (68), one for His (69), one for Gln (70) and one for GABA (71) has 

been already biochemically characterized (Table 6). Most of these processes has been associated 

to members of the AAAP (AA/Auxin Permease), a family of transporters grouping H
+
/AAs and 



  

auxin permeases (72-75). Some transport system has been associated to specific transport 

functions in T. cruzi (76-79). The gene TcAAP7 was identified, through heterologous expression 

and overexpression in epimastigotes, to encode for the Lys transport in T. cruzi (64, 65). 

Furthermore, the Arg high-affinity as well as the non stereopecific Pro transport system has also 

been associated to the genes encoding for TcAAAP411/TcAAP3 and TcAAP24 respectively (76-

79).  

1.3.2.2 AA as energy source  

First evidence of AA consumption was reported by Chang et al who observed an increase 

of pH at the end of epimastigotes exponential growth. The alkalization of the culture medium 

was due to the excretion of significant amounts of NH4
+
, a hallmark of AA degradation. This fact 

was confirmed by other authors, whose studies showed that asparagine, glutamine, aspartate, 

glutamate, leucine, isoleucine, and proline can be metabolized by T. cruzi (11, 12, 25, 58, 69, 80-

84) . More recently, Pro degradative pathway has been characterized in detail and it was shown 

that it is able to sustain energetically the T. cruzi growth and host cells infection process (82, 83). 

His can be completely oxidized by T. cruzi powering ATP production through the oxidative 

phosphorylation (69). It has been shown that His is relevant in the epimastigote bioenergetics 

and persistence within the invertebrate host (69). Arg has been proposed to be involved in the 

management of the energetic metabolism through an arginine kinase (ArgK) (EC 2.7.3.3). The 

phosphorylation of Arg to phospho-Arg (P-Arg) using ATP would act as an “energetic 

reservoir”, similar to phosphocreatine in mammalian, restoring ATP levels when it is needed 

(61).  

1.3.2.3 Alanine metabolism in T. cruzi 



  

As described above, Ala (together with succinate), is one of the main end-products from 

glucose degradation by epimastigote (55). It has been proposed that Ala production could be 

necessary to reoxidate the NADH glycolytically produced, even under aerobic conditions (55-

57). Ala is at the same time the main intracellular and secreted AA which appears be produced 

separately and kept compartmentalized (54). Ala possess a central role in the AA catabolism, 

through its participation in the Glu conversion into α-KG. This reaction can be considered a the 

main gates to entry the TCA cycle for several AA that are converted into Glu to be fully 

oxidized, such as His, Gln, Pro, degradation via the Krebs cycle (Figure5). Indeed, the Glu 

dehydrogenase can convert Glu into α-KG producing NH4
+
 or alternatively, the -NH2 group from 

Glu can be transferred to pyruvate by aminotransferase, such as Ala (ALAT) or a Tyr 

aminotransferase (TAT), producing Ala (Figure 5). The significant amounts of NH4
+
 produced 

(25, 53, 80), from the AA catabolism (11, 12, 25, 58, 69, 80-84) needs to be detoxified. A main 

detoxifying pathway fr this excretion product is the urea cycle. However, T. cruzi lacks it (85, 

86). In thise sense, the parasite requires a specific metabolic network to address NH4
+
 

accumulation. Recent works showed that NH4
+
 storage in acidic compartments (reservosome and 

lysosomes) by intracellular NH4
+
 transporter (87) as well as its condensation with Glu by the 

glutamine synthetase (88) are essential for NH4
+
 detoxification and participate of various T. cruzi 

biological functions. The deficiency of the intracellular NH4
+
 transporter leads to alterations in 

the replication, differentiation and respond to starvation and osmotic stress (87). The glutamine 

synthetase inhibition impairs the epimastigote replication under excess of ammonium and the 

establishment of the host-cell infection (88). In this context, it is important to underline that as α-

KG-Glu interconversion is reversible, the concerted action of a NAD-linked Glu dehydrogenase, 

and aminotransferases should contribute as well with the detoxification of the excess of NH4
+
 



  

produced by the AA consumption. Taken together, the robust transamination system, yielding to 

accumulation of Ala instead of NH4
+
 (55), indicates the central role of Ala in the nitrogen 

detoxification. Furthermore, early studies suggested that, despite of being an end-product of the 

metabolism, Ala could be metabolized by T. cruzi since it was able to trigger O2 consumption 

(58). Indeed, depending on the relative quantity of substrates and products, Ala could be re-

converted into pyruvate by the same aminotransferases or Ala dehydrogenases that produce it 

(57, 89). In addition, the influx and efflux of Ala has been shown to participate in the response to 

osmotic stress (90-92). The osmoregulation process is present in all T. cruzi stages and is 

complete about 5 min (92). The AA efflux, where Ala is the principal AA, responsible for 

approximately 50% of the regulatory volume response.  

 



  

Figure 5 Schematic representation of the Alanine metabolism.. ECs numbers correspond to: 3.7.1.3: 

kynureninase, 5.1.1.1: alanine racemase, 2.6.1.15: glutamine-pyruvate transaminase, 2.6.1.37: 2-

aminoethylphosphonate-pyruvate transaminase, 2.6.1.2: alanine transaminase and tyrosine 

transaminase (TAT), 2.6.1.42/2.6.1.66: TAT. 

 

1.3.2.4 D-AA metabolism 

D-AAs (D-AA) functions remains little studied. The AA α-carbon which is connected to 

an amine group (-NH2), a carboxyl group (-COOH), a hydrogen (75) and a side chain (-R) is a 

stereocenter. Effectively, depending on the spatial arrangement of these four different groups, it 

exist two stereoisomers: the levorotatory (L) and the dextrorotatory (D) which are not 

superimposable mirror images. Living organisms principally employ L-AA as proteins building 

block. Several hypotheses have addressed the asymmetry origin of the biomolecules. The abiotic 

hypothesis suggests that the molecular symmetry may have been broken, through physical 

induction, before the appearance of life. On the other hand, biotic origin hypothesis suggest 

biomolecules symmetric selection based on some biological advantage (93). Ultimately, the 

asymmetric origin of life remains open. Nevertheless, D-AAs are key constituents of the 

bacterial peptidoglycan (PG) (94). Indeed, D-AAs presence within PG confer resistance to 

proteolysis, additionally it presence has been associated to resistance to antimicrobial agents (95, 

96). D-AA also possess critical roles in various other bacterial physiological processes, such as 

biofilm formation, peptidoglycan remodeling, energy catabolism, small peptides production and 

sporulation (97-101). D-AA has been considered biologically irrelevant in higher eukaryote for a 

long time. However, recent studies elucidated the presence of various D-AAs, such as D-Ser, D-

Asp or D-Ala and appoint a tightly regulated D-AA metabolism in the nervous system but also in 

the mammalian endocrine system (102, 103). For example, D-Ser and D-Asp and it respective 



  

racemases were shown to have a central role in mammalian brain neurotransmitters system (104, 

105).  

It is believed that D-AAs are principally originated in nature from L-AA racemization by 

AA racemases (106). A large broad of racemases and epimerases has been cataloged and 

characterized in the bacteria and fungi kingdom. Briefly, some racemases classically use, with 

some exceptions, the pyridoxal phosphate (PLP) as cofactor such as the serine racemase (107), 

alanine racemase (AR), and aspartate racemase (AsR), while glutamate racemase (GR) and 

proline racemase (PR) are generally PLP-independent. Regardless of the type of racemase, the 

AA α-proton is removed then reprotonated on the same or the opposite side of the Cα (108). This 

reaction is reversible and works in both directions: L to D and D to L. PR is, until now, the first 

and only biochemically characterized racemase in T. cruzi (109, 110). Two PR isoforms are 

present in all life cycle stages, and are involved in parasites differentiation and infections as well 

as acting as a B-cell mitogen (110, 111). The Ala racemase (AR) (EC 5.1.1.1) catalyzes the 

interconversion of L-Ala and D-Ala, the bacterial AR is classically a PLP dependent enzymes 

(Figure 5) (108). AR is a key enzyme in bacteria to generate D-Ala for the biosynthesis of PG. 

Indeed, the AR absence could be lethal in absence of exogenous D-Ala in bacteria (97, 112, 

113). Other studies appoint that prokaryotic ARs are also implicated in regulating spore 

germination regulation (101, 114) and D-Ala catabolism (115, 116). AR has been also found in 

some eukaryotic microorganisms associated with the formation nonribosomal peptide such as 

cyclosporin A (117) or HC-toxin (118) or as well D-Ala catabolism (119). Furthermore, AR was 

also found in aquatic animals (120-124). Various eukaryotic ARs from aquatic invertebrate were 

characterized (120, 124-126) and it has been hypothesized that AR is involved in the osmotic 

regulation (127). Regarding kinetoplastids, AR activity was only reported in Leishmania 



  

amazonensis associated with D-Ala release and a possible role in response to hypotonic stress 

(128). Interestingly, significant amount of free D-AA and as well D-AA-bearing peptides were 

found in the T. cruzi insect forms (129). These evidences stress the existence and the relevance 

of D-AA metabolism in T. cruzi. Putative AR have been found in T. cruzi genome, appointing 

the relevance of the D-AAs metabolism (11, 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

5. Conclusions 

- Beyond being a main end-product of the metabolism of glucose and AAs, L-Ala can: 

 Be taken up by the cells through a low specificity non-stereoselective active transport 

system with a main driving force being a transmembrane H
+
 gradient, most likely created 

by a plasma membrane located proton-pumping ATPase 

 Be oxidized with production of CO2, triggering O2 consumption, contributing to the 

maintenance of the inner mitochondrial membrane potential and powering ATP 

production through the oxidative phosphorylation. 

- Here we describe, for the first time, that the putative TcAR_A genes in T. cruzi encode at least 

a functional recombinant enzyme (rTcAR_A): 

 rTcAR_A biochemical parameters were determined, being the enzyme able to perform 

its activity across in a large spectrum of pH and temperature. Furthermore, TcAR_A also 

racemize Ser with similar kinetic parameters when compared to Ala racemization. 

  AR activity was detected through all the parasites life cycle stages and TcAR_A is 

localized in the cytoplasm.  

-D-Ala : 

 Is likely transported by the same transport system of L-Ala. 

 Can be catabolized, through its conversion to L-Ala by TcAR_A, producing CO2 and 

used for ATP production by OxPhos to feed the energy metabolism  

- Thiadiazolidinones compounds a new class of AR inhibitors: 

 Inhibited TcAR_A activity. 



  

  Presented promising anti-parasitic activity, inducing the PCD features in T. cruzi and T. 

brucei. 

 

 

Figure 38 Schematic proposal for the uptake and catabolism of L-Ala and D-Ala in T. cruzi. The 

glycosomal and mitochondrial compartments and the TCA cycle are indicated. The metabolic flux at each 

enzymatic step is represented by arrows of different thicknesses. Dashed arrows indicate the intracellular 

shuttle of the molecules between different compartments. ETC: Electron Transport Chain; TAT: tyrosine 

aminotransferase; ALAT: Ala aminotransferase; ADH: Ala dehydrogenase; ME: malic enzyme; PDH: 

pyruvate dehydrogenase; TcAR_A Alanine racecemase. 
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