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RESUMO 

Magalhães CG. Sinalização BMP e modulação da matriz extracelular 

durante a embriogênese óptica [tese]. São Paulo: Universidade de São Paulo, 

Instituto de Ciências Biomédicas; 2023. 

O desenvolvimento da lente é um modelo experimental clássico de morfogênese. 

A primeira evidência morfogênica da formação da lente é o placóide que surge 

pelo crescimento apical-basal da ectoderme cefálica em contato com a vesícula 

óptica. O processo de espessamento converte o epitélioo cuboidal em 

pseudoestratificado e ocorre apenas na região óptica, enquanto o ectoderma não 

placoidal circundante permanece cuboidal. A matriz extracelular (MEC) 

desempenha um papel importante na regulação dos processos morfogenéticos. 

No desenvolvimento inicial dos olhos, a Fibronectina é essencial para a formação 

do placóide da lente em camundongos. Nossos resultados anteriores mostram 

que a MEC entre a vesícula óptica e o placóide da lente evolui durante o 

espessamento do placóide. O padrão de marcação de Fibronectina e Laminina 

α1 muda na transição do epitélio cuboidal para o espesso. Antes do 

espessamento placoidal, a Fibronectina e a Laminina α1 exibem um padrão 

fibrilar homogêneo em todo o ectoderma cefálico, incluindo a região óptica. 

Durante o espessamento placoidal, a MEC torna-se difusa apenas na região 

óptica. Na região extra-placoidal, os componentes da MEC exibem um padrão 

fibrilar. Hipotetizamos que a MEC evolui junto com as mudanças da forma celular 

no placóide e sofre rearranjos restritos à região óptica. Como as células e a MEC 

mantêm uma relação dinâmica de interdependência e modulação, hipotetizamos 

que a MEC evolui juntamente com as mudanças de formato celular durante a 

diferenciação do placóide da lente e sofre rearranjos restritos à região óptica. 

Assim, nosso primeiro objetivo foi investigar se a evolução da MEC óptica 

depende da sinalização de BMP. A sinalização de BMP é necessária para a 

formação do placóide. Sem sinalização BMP na região óptica, a formação do 

placóide não ocorre e o desenvolvimento óptico é interrompido. Inibimos 

separadamente a sinalização BMP no ectoderma placodal e na vesícula óptica 

por meio da superexpressão de uma forma dominante negativa do receptor de 

BMP. Nossos resultados mostraram que a formação do placóide da lente e a 

evolução da MEC dependem da sinalização BMP no ectoderma placoidal, mas 

não na vesícula óptica. Nossos resultados mostraram que a formação do 

placóide do cristalino e a evolução da MEC dependem da sinalização de BMP 

no ectoderma placoidal, mas não da sinalização de BMP na vesícula óptica. 

Nosso segundo objetivo foi investigar quais fatores da MEC poderiam estar 

envolvidos à remodelação da MEC óptica. Para isso, analisamos genes 

associados à MEC expressos especificamente pelo placóide da lente e a 

investigamos a atividade proteolítica no tecido óptico. Esses dois processos 

envolvem importantes mecanismos de remodelação da MEC: deposição 

diferencial da MEC e a sua degradação. Para isso, realizamos análises in silico 



de dados publicados de scRNAseq e Microarray. Nós identificamos diversos 

genes da MEC transcritos por células do placóide da lente, mas não por células 

da vesícula óptica. Este resultado sugere que o placóide é responsável pela 

regulação da MEC óptica. Em seguida, examinamos a atividade da 

metaloproteinases (MMPs) por meio de zimografia in situ e analisamos a 

expressão de Timp2, um inibidor de MMP. O ensaio de zimografia in situ sugeriu 

que a atividade de MMPs é inibida na região óptica durante o espessamento do 

placóide da lente, no memso estágio em que ocorre um aumento na expressão 

de Timp2 especificamente nas células do placóide da lente. Além disso, 

observamos a presença significativa de Adamts18 (uma desintegrina e 

metaloproteinase com motivos de trombospondina) especificamente na porção 

basal do placóide durante seu espessamento. Esses resultados sugerem que a 

atividade de protease é modulada de maneira específica na região do placóide 

da lente durante sua formação. Além disso, a inibição da sinalização BMP 

manteve a atividade da protease e diminuiu a expressão de Timp2 na região 

óptica. Esses resultados mostram que a expressão de Timp2 e a inibição das 

proteases dependem da sinalização BMP e da diferenciação do placóide da 

lente. Com isso, propomos que o placóide da lente desempenha um papel ativo 

na remodelação da matriz extracelular óptica. 

Palavras-chave: Desenvolvimento embrionário. Placóide da lente. Matriz 

exrtacelular. BMP. Single-cell RNAseq  

 

 

 

 



ABSTRACT 

Magalhães CG. BMP signaling and modulation of the extracellular matrix 

during optical embryogenesis [thesis]. São Paulo: Universidade de São Paulo, 

Instituto de Ciências Biomédicas; 2023. 

Lens development is a classic morphogenesis experimental model. The 

first morphogenic evidence of the lens formation is the placode. It appears 

through apical-basal growth of the single cuboidal epithelial layer (ectoderm) 

when it contacts the underlying optic vesicle. The thickening process converts the 

epithelium from cuboidal to pseudostratified and it happens only in the optic 

region, while the surrounding non-placodal ectoderm remains cuboidal. 

Extracellular matrix (ECM) plays a major role in regulating morphogenetic 

processes. In eye development, Fibronectin is essential for lens placode 

formation in mice. Our previous results show that the ECM between the optic 

vesicle and lens placode evolves during placode formation. Fibronectin and 

Lamininα1 labeling pattern changed in the transition from cuboidal to thick 

epithelium. Prior to placodal thickening, Fibronectin and Lamininα1 display a 

homogeneous fibrillar pattern throughout the cephalic ectoderm and optic region. 

During placodal thickening, ECM becomes diffuse only in the placodal region. In 

the extra-placodal region, ECM components display a fibrillar pattern. Since cells 

and ECM have a dynamic relationship of interdependence and modulation, we 

hypothesized that more components of the ECM evolve together with the cell 

shape changes during lens placode differentiation and undergo rearrangements 

restricted to the optic region. Thus, our first aim was to investigate if the optic 

ECM evolution depends on BMP signaling. BMP signaling is another necessary 

factor for lens formation. Without BMP signaling in the optic region, placode 

formation does not occur and eye development is interrupted. We inhibited BMP 

signaling separately in the placode ectoderm and in the optic vesicle through the 

overexpression of a dominant negative form of BMP receptor. Our results showed 

that lens placode formation and ECM evolution depends on BMP signaling in the 

placodal ectoderm but not on BMP signaling in the optic vesicle. Together, our 

results suggest that evolution of optic ECM architecture and composition 

depends on the lens placode ectodermal cells. Our second goal was to 

investigate which ECM factors could be involved in optic ECM remodelling. For 

this, we analyzed ECM associated genes specifically expressed by the lens 

placode and protease activity in the optic tissue. These two process drive 

important mechanisms of ECM remodelling: differential ECM deposition and 

ECM degradation. Thus, we performed in silico analyses of publicly available 

scRNAseq and microarray data. We identified several ECM genes transcribed by 

lens placodal cells but not by optic vesicle cells. This result suggests that the 

placode is modulates the optic ECM actively. Next, we examined extracellular 

protease activity through in situ zymography and analyzed the expression of 

Timp2, a metalloprotease (MMP) inhibitor. The in situ zymography assay 



suggested that protease activity is downregulated in the optic region during lens 

placode thickening, concurrently with Timp2 expression increase specifically in 

the lens placode. In addition, we observed a significant presence of Adamts18 (a 

desintegrin and metalloproteinase with thrombospondin motifs) specifically in the 

basal portion of the placode during its thickening. These results suggest that 

protease activity is specifically modulated in the lens placode region during its 

formation. Furthermore, inhibition of BMP signaling maintained protease activity 

in the optic ECM and decreased Timp2 expression decreased in the optic region. 

These results suggest that Timp2 expression and protease inhibition depend on 

BMP signaling and lens placode differentiation. With that, we propose that the 

lens placode plays an active role in remodeling the optic ECM. 

Key words: Embryo development. Lens placode. Extracellular matrix. BMP. 

Single-cell RNAseq. 
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1 INTRODUCTION 

1.1 EARLY EYE DEVELOPMENT IN VERTEBRATES 

Morphogenetic processes are responsible for organs and tissues shapes 

and position. During embryonic development, morphogenetic movements highly 

occur repeatedly in different events of organogenesis and are driven by 

conserved cellular mechanisms. For example, invagination consists in 

coordinated deformation of a epithelial sheet. It occurs and has been studied in 

several process (ETTENSOHN, 1985). It is involved in neural tube formation of 

vertebrates, in sea urchins and Drosophila gastrulation, cranial placodes 

development and trachea formation (ETTENSOHN, 1985; SCHOENWOLF, 

1988; KIMBERLY; HARDIN, 1998; JIDIGAM; GUNHAGA, 2013; JIDIGAM et al., 

2015; DAVIDSON et al., 2018). 

 Eye development is a classical study model for tissues morphogenesis. 

The shape and anatomy of the eye is crucial for its function. For light rays to 

transverse properly through the distal optical tissues to reach the retina, all the 

eye structures must be perfectly aligned and shaped. Optic shape is formed 

through a series of complex tissue changes. The molecular factors and 

morphogenesis processes involved in early eye development are highly 

conserved among vertebrates.  

These same morphogenetic events are also observed during formation of 

other embryonic tissues that are less accessible to experimental procedures and 

observation. Thus, the eye has the advantage of being an external tissue, easily 

accessible and visible. For this reason, it is a popular classical model to 

investigate tissue-shape changes and induction events during embryogenesis.  

There are three main tissues that compose the adult eye: retina, cornea, 

and lens (Fig. 1). These three tissues are derived from two primary embryonic 

tissues:  the cephalic ectoderm forms the non-neural portion of the eye (cornea 

and lens) and the optic vesicle forms the neural portion (retina).  We will now 

briefly describe the morphogenesis of these elements during early eye 

development in chick embryo. For this, we will use the stages of chick 

development defined by Viktor Hamburger and Howard Hamilton in 1992 and, 

therefore, the stages are given the letters "HH" (HAMBURGUER, VIKTOR. 



24 
 

HAMILTON, 1992). Specifically, we will describe events that happen during 

neurulation (between stages HH8 and HH9) and move on to placode formation 

at stage HH14. 

 

1.2 MORPHOLOGICAL EVENTS OF EARLY EYE 

DEVELOPMENT 

The first morphogenetic event of eye development is the formation of the 

optic vesicle. At stage HH9 (corresponding to ~30h of incubation) of chick embryo 

development, a specific portion of the diencephalon extends outwards bilaterally 

and forms the early optic vesicle. After complete evagination of the optic vesicle, 

this neural tissue approaches the superficial epithelia at stage HH11 (~43h 

incubation; Fig. 2). For clarity, we will classify the early stages of eye formation 

based on changes in lens placode histology (MAGALHÃES; DE OLIVEIRA-

MELO; IRENE YAN, 2021). At stage HH11, the region of the cephalic ectoderm 

in contact with the optic vesicle is defined as pre-placodal ectoderm. We will call 

this phase of lens development as phase 0 (Fig. 2). At phase 0, the pre-placodal 

ectoderm is composed by cuboidal cells, where the actin filaments are 

homogeneously distributed the cytoplasm (Fig. 3A, E, I and L).  

Figure 1. Simplified schematics of an adult human eye. Three main cellular tissues are in 
the light path of the adult vertebrate eye: the cornea (pink), the most distal transparent and 
convex layer that covers its outer surface; the lens (blue), also a transparent tissue that is 
avascular, non- innervated and biconvex; and the retina (green), the third and most proximal 
structure that is the neural sensitive component of the eye. The cornea and lens derive from 
the non-neural ectoderm and the retina derive from the optic vesicle, a neural ectodermal 
tissue. The cornea allows the light to enter in the eye chamber and is the first refractive 
element that light encounters. It is composed by a simple layer of epithelium cells, stroma and 
an innermost endothelium layer (LWIGALE, 2015). The lens refracts the light rays and directs 
them onto the retina. The retina is a cup -shaped tissue composed by the neural retina. It 
contains the photoreceptors (rods and cones), who transduce the luminous stimulus into 
neural signals that are further processed by additional neural layers of the retina (CHOLKAR 
et al., 2013). 
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The second crucial morphogenetic event for eye development is the 

formation of the placode. The pre-placodal ectoderm undergoes an apical-basis 

axis elongation between stages HH13 and 14 (Fig. 2, phase 1 and 2a). This 

thickening defines the lens placode morphologically and is divided by two phases, 

phase 1 and 2a (Fig. 2). At phase 1, the lens placode in converted from a simple 

cuboidal epithelium into a pseudostratified epithelium that reaches a thickness of 

about 20 μm in chick embryos (Fig. 2 and Fig. 3B and F) (SCHOOK, 1980; 

MAGALHÃES; DE OLIVEIRA-MELO; IRENE YAN, 2021). In contrast, the non-

placodal ectoderm remains at the height of 7 μm (SCHOOOK, 1980; reviewed in 

MAGALHÃES, OLIVEIRA-MELLO, YAN, 2021). At phase 2a, cell height and 

density increase further, and the lens placode reaches 36 μm (Fig. 2 and Fig. 3C 

and G) (SCHOOOK, 1980; reviewed in MAGALHÃES, OLIVEIRA-MELLO, YAN, 

2021). This transition from a cuboidal monolayer tissue into a thickened 

pseudostratified placode is characterized by extensive cytoskeletal 

reorganization (Fig. 3 C and J). Electron microscopy images demonstrate a 

Figure 2. Early eye development phases in chick embryo. The morphogenetic events 
involved in lens placode formation and invagination are represented here in 4 steps. At the top 
of the image, there are simplified representations of the optic vesicle and lens placode shape 
at each phase. At the bottom of the image, there are pictures of the chicken embryo at stages 
corresponding to the drawings (HAMBURGER and HAMILTON, 1951). (Phase 0) Pre-
placodal ectoderm is composed of cuboidal cells. The optic vesicle is evaginated and interacts 
with the surface ectoderm. (Phase 1) Early thickening of lens placode. The placodal cells 
increase in height forming a pseudostratified tissue. (Phase 2a) Late thickening of lens 
placode. The height and cell density of lens placode increases. (Phase 2b) Lens placode 
begins to invaginate. Placodal height does not increase and the apical constriction begins, 
forming the early lens pit.  
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rearrangement of the cytoskeleton during lens placode thickening where the 

microtubules become organized parallel to the apico-basal axis of the cells, 

following cell elongation (reviewed in MAGALHÃES, OLIVEIRA-MELLO, YAN, 

2021). 
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Figure 3. Actin labeling in histological section and 3D reconstruction in the early stages 
of eye development. (A-H) Cross section of the chick embryo at the eye region in different 
stages (HH11-HH15) and stained for actin with phalloidin (green), the white bracket indicates 
the optical region. (A-D) Lower magnification of the right side of the head with the neural tube 
on the left and the optic vesicle, ectoderm and lens placode on the right side. (E-H) Higher 
magnification of eye from the same section. (A and E) Stage HH11/12: the pre-placodal cells 
(cephalic ectoderm) adjacent to the optic vesicle are cuboidal and actin labeling is diffuse. (B 
and F) Stage HH13: thickening of placodal cells begins and the transition from pre-placode to 
placode starts to become visible. Also, actin labeling in the placodal cells is apical. (C and G) 
Stage HH14: the placode is now morphologically defined and the cells have grown in the 
apical-basal axis. Actin remains apical. (D and H) Stage HH15 lens placode undergoes apical 
constriction and starts to invaginate while the optic vesicle bends inwards following its 
movement. Scale bar in D: 100 µm. NT: neural tube; OV: optic vesicle; OC: optic cup; Ppe: 
pre placode ectoderm; LP: lens placode. (I-L) 3D projection of images obtained in confocal 
microscopy of chick embryo stained with phalloidin in different eye development stages. The 
optical slices were taken apically and the 3D projection was turned. (I and L) Stage HH11, the 
placode is not formed and the surface has a dome shape. (J and M) Stage between HH14 and 
HH15 where placode is formed and the surface starts to deform in the centre of the placode 
where the lens pit appears (with arrowhead). (K and N)The lens placode invaginates and the 
lens pit deepens (white arrow points to the invagination centre). Images were taken on 
confocal microscope. Scale bar (bottom right corner of images I-K): 100 μm. Data published 
in the Master's dissertation: Magalhães, 2019   
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After cell height increase (phase 2b), actomyosin filaments accumulate in 

the apical domain (Fig. 3C and G) (BORGES et al., 2011). Together with 

accumulation of actin in the apical domain, Rho GTPses also are concentrated in 

the apical surface and their activity is necessary for the accumulation of myosin 

that activates apical constriction (Fig. 2 phase 2b, Fig. 3 D, H, J and M) (BORGES 

et al., 2011; PLAGEMAN et al., 2011). Apical constriction triggers the invagination 

of the lens placode at stage HH15 (Fig. 2 and Fig. 3D, H, J-N). Consistent with 

the requirement for an activation step, the accumulation of actin in the apical 

domain is not sufficient for the onset of apical constriction and the ensuing 

placode invagination (JIDIGAM et al., 2015; MELO; MORAES BORGES; YAN, 

2017). Inhibition of actin-myosin contraction prevents apical constriction and 

interferes with epithelial invagination (BORGES et al., 2011).  

1.3 MOLECULAR EVENTS OF EARLY EYE DEVELOPMENT  

The lens placode field is defined molecularly in the ectoderm through a 

series of molecular signaling events. First, the presumptive lens placode region 

is defined before the contact between the optic vesicle and the pre-placodal 

ectoderm (phase 0).  

  In chick embryos (stages HH8-9), the pre-placodal region is restricted to 

a specific portion of the cephalic ectoderm. Although it is morphologically like the 

surrounding non-placodal ectoderm, the pre-placodal region can be identified 

molecularly by the expression field of Pax6 after HH9. Pax6 is a transcription 

factor important for eye and neural development. Pax6 expression is sufficient 

and necessary for lens placode development. Ectopic expression of Pax6 

induces ectopic lens in amphibians (ALTMANN et al., 1997), and lack of Pax6 

expression in the pre-placodal ectoderm at phase 0 inhibits lens development 

(ASHERY-PADAN et al., 2000; PLAGEMAN et al., 2010; ANTOSOVA et al., 

2016a). 

Before optic vesicle formation, at stage HH8, Pax6 is already expressed in 

the pre-placodal region (Fig. 4) (BAILEY et al., 2006). But Pax6 is also expressed 

at the anterior portion of neural folds and the non-placodal ectoderm (LLERAS-

FORERO et al., 2013; MAGALHÃES; DE OLIVEIRA-MELO; IRENE YAN, 2021). 

After optic vesical evagination, at stage HH9, the expression of Pax6 becomes 
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restricted to the optic vesicle and future lens placode (Fig. 4) (ASHERY-PADAN 

et al., 2000; PLAGEMAN et al., 2010; ANTOSOVA et al., 2016a; MAGALHÃES; 

DE OLIVEIRA-MELO; IRENE YAN, 2021).  

 

The restriction of Pax6 expression domain after HH8 depends on the levels 

of bone morphogenic protein (BMP) and fibroblast growth factor proteins (FGF) 

(Fig. 4), which are crucial for the pre-placodal region specification (STREIT, 2008; 

MAGALHÃES; DE OLIVEIRA-MELO; IRENE YAN, 2021). BMP is a ligand from 

the TGF-β family and FGF is a large family of polypeptide growth factors. Both 

are important morphogens involved in various developmental processes. At 

Figure 4. BMP and FGF regulate Pax6 expression  at the lens placode region. At neurula 
stages, the pre-placodal region (PPR) is defined at the surface ectoderm. The anterior portion 
of non-neural ectoderm express Pax6 and BMP. Later, the balance between FGF (red) and 
BMP signal defines the specific placodes fields in the PPR. The maintenance of FGF inhibits 
lens placode fate, while BMP signal maintains lens placode fate. At late neurula stages, the 
optic vesicle contacts the overlying PPR and reinforces lens formation. Thus, lens fate is 
suppressed everywhere except at ectoderm overlying the optic vesicle (blue). FGF is secreted 
by the anterior neural ridge at the anterior portion of the PPR and the head mesoderm (gray 
circle), thus restricting the lens placode fate by repressing lens characteristics. At late neurula 
stages, BMP and Pax6 is also required for definition of lens placode fate. The optic vesicle 
approaches the pre-placodal ectoderm, and induces lens placode-specific gene expression. 
After the approximation of optic vesicle to the ectoderm, the restriction of lens character 
continues with the migration of neural crest cells (NCC, purple circle and purple arrows). 
Neural crest cells secrete TGFb, which inhibit Pax6 activity in the ectoderme around the optic 
region. 
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neurula stages, HH8 and 9, intermediate levels of BMP signaling are required to 

maintain Pax6 expression in the optic region (LITSIOU; HANSON; STREIT, 2005; 

HINTZE et al., 2017). In contrast, FGF plays an important role in delimiting the 

lens placode region by repressing lens fate in the surrounding ectoderm (Fig. 4) 

(BAILEY et al., 2006; SJÖDAL; EDLUND; GUNHAGA, 2007).  

After the optic vesicle approaches the overlying epithelia (HH10), the 

restriction of lens character continues with the migration of neural crest cells (Fig. 

4) (BAILEY et al., 2006; STREIT, 2008). Neural crest cells derive from the neural 

plate and migrate after neural tube invagination. They restrict development of 

lens fate outside pre-placodal region, and their absence results in ectopic lens 

formation (LITSIOU; HANSON; STREIT, 2005; BAILEY et al., 2006; GROCOTT 

et al., 2011). With this, at phase 0, Pax6 expression is restricted to the optic region 

and is only expressed at the lens pre-placodal ectoderm and optic vesicle (Fig. 

4). This pattern remains constant during the next phases of optic development 

(phase 1 to 2b) (HUANG et al., 2011; ANTOSOVA et al., 2016a).    

BMP signals are also crucial for lens formation from phase 0 to phase 2b 

(FURUTA; HOGAN, 1998; SJÖDAL; EDLUND; GUNHAGA, 2007; PANDIT; 

JIDIGAM; GUNHAGA, 2011; HUANG et al., 2015a; JIDIGAM et al., 2015). At 

phase 0 in chick embryos, BMP4 is expressed only in the pre-placodal ectoderm, 

but not in the optic vesicle (Fig. 5) (TROUSSE; ESTEVE; BOVOLENTA, 2001; 

MÜLLER; ROHRER; VOGEL-HÖPKER, 2007; PANDIT; JIDIGAM; GUNHAGA, 

2011). Despite the absence of BMP4 expression labeling in the optic vesicle in 

phase 0, both pre-placodal ectoderm and optic vesicle harbour phosphorylated 

Smad1/5/8- positive cells (GUNHAGA, 2011; PANDIT; JIDIGAM; GUNHAGA, 

2011; JIDIGAM et al., 2015). Contrarily, in mouse embryos, BMP4 is expressed 

in both tissues (Fig. 5) (BEHESTI; HOLT; SOWDEN, 2006; HUANG et al., 2011, 

2015a).  

At placodal phases 1 and 2a, BMP4 is expressed in both tissues in mouse 

and chick embryos (Fig. 5). However, in chick, BMP4 expression is detected only 

in the dorsal domain of optic vesicle (TROUSSE; ESTEVE; BOVOLENTA, 2001; 

MÜLLER; ROHRER; VOGEL-HÖPKER, 2007; PANDIT; JIDIGAM; GUNHAGA, 

2011). The presence of phosphorylated Smad1/5/8 remains in both tissues 

during phases 2a and 2b (PANDIT; JIDIGAM; GUNHAGA, 2011). This data 
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suggests that the canonical BMP pathway is active in the entire optic region even 

during early placodal stages. 

 

Our previous results show that lack of BMP signaling in the optic region at 

phase 0, inhibits lens placode thickening (Fig. 6). We inhibited BMP by Noggin 

overexpression, a secreted protein that interacts with extracellular BMP, 

preventing its binding to the BMP receptor (WALSH et al., 2010). After Noggin 

overexpression at the pre-placodal ectoderm, the placode failed to thicken and 

eye development was arrested at phase 0 (Fig. 6). This confirms previous studies 

have also demonstrated that BMP signaling is required for lens placode 

thickening. In mice with lens-specific knockout of BMP4, pre-placodal ectoderm 

does not undergo cell height increase (FURUTA and HOGAN, 1998). In addition, 

when BMP receptors are conditionally deleted in the pre-placodal ectoderm of 

mouse embryos, lens placode fail to undergo morphogenesis (RAJAGOPAL et 

al., 2009). In summary, inhibition of BMP in either chick or mouse embryos, 

arrests lens development in the pre-placodal stage. 

Figure 5. BMP expression during early phases of eye development in chick and mouse 
embryos. Simplified schematics showing BMP4 expression pattern (pink) in chicken embryo 
(top row) and mouse embryo (bottom row) at different stages of lens placode development. At 
phase 0 in chick embryos, BMP4 is expressed only in the pre-placodal ectoderm. In mouse 
embryos, BMP4 is expressed in both tissues. At placodal phases 1 and 2a, BMP4 is expressed 
in both tissues in mouse embryos and chick embryos. In chick, it is detected only in the dorsal 
domain of optic vesicle. In mouse embryos BMP4 expression decreases in the placode at 
phase 2a and is absent at phase 2b. In chick embryos, BMP4 expression remains at both 
tissues at phase 2b. In the lens placode, BMP4 expression continues throughout the tissue 
and, in the optic vesicle, the expression is concentrated in the dorsal domain of the optic cup. 

high 
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The canonical BMP pathway acts through phosphorylation of Smads1/5/8, 

which interact with Smad4 and are translocated to the nucleus (WANG et al., 

2014). Despite of the presence of phosphorylated Smads in both lens placode 

and optic vesicle, they do not seem to be necessary for placode formation. 

Knockout mice for Smad1, 5 and 4 show no change in lens placode thickening or 

invagination (HUANG et al., 2011; JIDIGAM et al., 2015; RAJAGOPAL et al., 

Figure 6. Noggin overexpression suppresses lens placode thickening. (A-C) Frontal view 
of HH15 stage chicken embryo electroporated with Noggin in the right eye. (A) Bright field 
image showing the morphological difference between control eye (left) and Noggin+ eye 
(right). (B) Fluorescence channel showing Noggin+ cells detected by the presence of the 
LifeAct-RFP electroporated along with Noggin (see Methods). (C) In the control eye, the lens 
vesicle (LV) is formed (phase 2b) and in the Noggin+ eye, the eye is arrested at phase 0). in 
the lower left corner of the image, there is a schematic showing active BMP signalling and 
inactivated BMP signalling by the presence of Noggin in the extracellular space. (D-G) Coronal 
cross section of chick embryo head at stage HH16 electroporated with Noggin in the right eye. 
(D) Nucleus stained with DAPI. On the left side the lens vesicle in formed and in the right side 
the optic vesicle (OV) is present but there is no lens placode formation. NT: neural tube; OC: 
optic cup. (E) Actin stained with phalloidin. (F) Noggin+ cells in magenta showing the 
eletroctroporation of the pre-placodal ectoderm in the optic region (Ect. Noggin+). (G) Merge 
of all channels showing the absence of the lens placode in the Noggin+ ectoderm. 
Data published in the Master's dissertation: Magalhães, 2019   
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2009). This suggests that BMP signaling acts through a non-canonical pathway 

during eye development. 

BMP signaling and Pax6 act independently through parallel pathways in 

lens placode thickening. The knockout of BMP or its receptors in mice do not 

inhibit Pax6 expression (FURUTA; HOGAN, 1998; WAWERSIK; EVOLA; 

WHITMAN, 2005; RAJAGOPAL et al., 2009; HUANG et al., 2015a). However, 

lens development in these situations does not progress to phase 1 (FURUTA; 

HOGAN, 1998; WAWERSIK; EVOLA; WHITMAN, 2005; RAJAGOPAL et al., 

2009; HUANG et al., 2015a). 

1.4 INTERACTION BETWEEN OPTIC VESICLE AND LENS 

PLACODE 

Following optic vesicle evagination, a region of contact with the overlying 

epithelia is established where the lens placode will appear. The extracellular 

space between these two tissues is filled with extracellular matrix. Histological 

assays show accumulation of glycoproteins and dense fibrous matrix (HENDRIX; 

ZWAAN, 1975; HILFER; RANDOLPH, 1993). Immunoassays for Fibronectin 

show intense labeling between the lens placode and optic vesicle at phase 2a 

(HILFER and RANDOLPH, 1993). At phase 2b, the intensity decreases (HILFER 

and RANDOLPH, 1993). Collagen IV is also present; however, at phase 2b, it 

becomes asymmetrically distributed. It is more intense near the lens placode 

basal membrane than near the optic vesicle side of the ECM (HILFER and 

RANDOLPH, 1993).  

Pre-placode ectoderm is necessary for initial optic vesicle morphogenesis, 

but not at later stages. Between phase 0 and phase 1, the optic vesicle depends 

on lens placodal development to form the optic cup (HYER et al., 2003; OLTEAN 

et al., 2016). When pre-placodal ectoderm is removed at this stage, the optic 

vesicle does not evolve into the optic cup (HYER et al., 2003). When the 

ectoderm is removed after lens placode thickening, the optic cup develops 

normally in the chick embryo (HYER et al., 2003) removal of phase 2a lens 

placode did not affect optic vesicle morphogenesis and it maintained a concave 

shape (OLTEAN et al., 2016). Thus, the ectoderm is not important for the 

maintenance of optic vesicle development. Importantly, the ECM is essential for 



34 
 

the maintenance optic cup formation at this stage (OLTEAN et al., 2016).  

Placode removal at phase 2b followed by collagenase treatment interrupted optic 

vesicle morphogenesis and reversed concavity of the nascent optic cup 

(OLTEAN et al., 2016). 

Together these data suggest that the relationship between the optic 

vesicle and the lens placode, as well as the regulation of the extracellular 

environment between these two tissues, is crucial for early eye development. 

1.5 EXTRACELLULAR MATRIX ROLE IN DEVELOPMENT  

The extracellular matrix (ECM) is one of the major drivers of 

morphogenesis. The ECM plays an important role in tissue shape and cell 

differentiation. The composition and physical characteristics of the ECM can 

influence cell differentiation, behavior and polarity. Differences in the ECM 

architecture, density and porosity regulate tissue shape and organization 

(KLEINMAN; PHILP; HOFFMAN, 2003; ROZARIO; DESIMONE, 2010; MOUW 

et al., 2015). Likewise, the cells in the overlying tissues are constantly changing 

and can affect ECM composition through secretion of extracellular molecules, 

remodeling the ECM and its physical characteristics. Thus, cells regulate the 

ECM and vice-versa, in an interrelated dynamic relationship. 

Here, we will focus our analysis to two major ECM components, 

Fibronectin and Laminin. The presence of Fibronectin and Laminin has already 

been described in several embryonic tissues during their formation. These 

glycoproteins are one of the main components of the ECM and have been 

extensively studied. Fibronectin is a large glycoprotein with binding motifs 

recognized by cell surface receptors, Collagen, Proteoglycans and other 

Fibronectin molecules (SCHWARZBAUER; DESIMONE, 2011; MOUW; OU; 

WEAVER, 2014). It plays an important role in cell adhesion, migration, and 

differentiation (SCHWARZBAUER; DESIMONE, 2011). It can regulate cellular 

cytoskeleton organization through interactions with cell receptors and transmits 

mechanical signals from the ECM to the cell and vice-versa (MAO; 

SCHWARZBAUER, 2005). Thus, Fibronectin acts as an extracellular 

mechanoregulator of cell behavior. Consistent with the relevance of 

mechanoregulation in morphogenesis, Fibronectin plays important role in 
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embryonic development. For instance, during heart development, pre-cardiac 

cells migrate along gradients of Fibronectin, which act as a guide for specific 

migration (LINASK; LASH, 1988). Also, during neural crest cell migration, 

Fibronectin stablishes migration routes.  

Another important component of the ECM is Laminin. Laminin is the main 

component of basement membrane, and it is a heterodimer composed of three 

long polypeptide chains. In early embryos, basement membrane support the 

entire epithelium in the organism and has a critical role in body architecture 

(ALBERTS et al., 2008). Disruption of Laminin interactions with other ECM 

components disturbs the basement membrane and affects early morphogenesis 

processes (KADOYA et al., 1997). For instance, mouse embryos with knockout 

for Laminin ϒ1 chain fail to develop and die after stage E5.5 (SMYTH et al., 

1999). Laminin, similar to Fibronectin, interacts with Integrin and Collagen. 

Mechanoregulation is important for embryonic morphogenesis. Modulation 

of the extracellular environment triggers cell and tissue changes. Thus, the ECM 

actively controls cell differentiation and rearrangements during morphogenesis. 

An example of this is the branching morphogenesis events that occur in the 

formation of glands and lungs (ROZARIO; DESIMONE, 2010). Briefly, in 

branching morphogenesis, the epithelia grows linearly when bud flanks extend 

and radially when bud tip branch. After branching, tissue growth converts a bud 

tip into a bud branch. The equilibrium between branching and growth of buds 

requires a specific control of the physical properties of the ECM. A thick ECM is 

formed around the bud flanks, whereas a thinner ECM is formed at the end bud 

tips (reviewed in ROZARIO and DESIMONE, 2010). In other words, the ECM 

changes in specific domains, allowing the formation of branches. These 

differences in ECM composition are transferred to the cells through ECM 

receptors, such as Integrins. The differentiated expression of Integrins regulates 

branching in this scenario by maintaining pro-migratory signals in growing buds 

and anti-migratory and anti-proliferative signals in flanks and ducts (reviewed in 

ROZARIO and DESIMONE, 2010). This study shows the importance of ECM 

dynamics during development.  
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1.6 EXTRACELLULAR MATRIX DURING VERTEBRATE EYE 

DEVELOPMENT 

The presence of Fibronectin, Laminin and Collagen IV throughout late eye 

development is described in detail (reviewed in KWAN, 2014). However, little is 

known about the ECM during early eye morphogenesis. PAS-staining (Periodic 

acid-Schiff staining detects polysaccharides such as glycogen, and 

mucosubstances such as glycoproteins) of the ECM. The staining between the 

placodal ectoderm and the optic vesicle in chick embryo becomes more intense 

during placode formation (HENDRIX and ZWAAN, 1975). Immunostaining with 

Laminin and Fibronectin antibodies followed the presence of these proteins in 

cross sections during chick lens development. At phase 1, both Laminin and 

Fibronectin are labelled between the optic vesicle and pre-placode ectoderm 

(HILFER and RANDOLPH, 1993). At phase 2b, Fibronectin staining is punctate 

between the optic cup and lens placode (HILFER and RANDOLPH, 1993). Also, 

after lens placode invagination, both Laminin and Fibronectin staining are less 

intense between lens vesicle and optic cup when compared to phase 0 (HILFER 

and RANDOLPH, 1993).  

One of our long-term goals is to understand if ECM changes during early 

lens development. Our previous data followed the dynamics of Lamininα1 and 

Fibronectin expression pattern at different stages of the lens placode formation 

(Fig. 7) (MAGALHÃES, 2019. At phase 0, Fibronectin and Lamininα1 have a 

fibrillar pattern in the ECM between the optic vesicle and the pre-placodal 

ectoderm (Fig. 7A-F). At phase 1 and 2a, both proteins show a diffuse and 

punctate pattern between the thick placode and the optic vesicle (Fig. 7G-P). At 

this stage, the fibrillar pattern is restricted to non-placodal regions, corresponding 

to cells that do not undergo thickening (Fig. 7G-P). This organization is 

maintained during placode invagination (Fig. 7Q-V). The ECM evolution is BMP 

dependent. After Noggin overexpression, lens placode formation is inhibited and 

Fibronectin and Lamininα1 show an intense and fibrillar pattern, similar to the 

non-placodal regions (Fig. 8).  
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In addition, mice with lens-speficic Fibronectin (Fnlens-/-) knockout fail to 

develop lens placodes (HUANG et al., 2011). In these mutant mice, the lack of 

Fibronectin interrupted placodal growth. Placode thickening only occurred until 

phase 1, and did not evolve to phase 2a (HUANG et al., 2011). The pre-placodal 

ectoderm remained cuboidal but, interestingly, there was actin accumulation in 

the apical membrane (HUANG et al., 2011). This suggests that while Fibronectin 

in the basement membrane is necessary for the increase in cell height it may not 

be required for apical actin accumulation.  
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Figure 7. The ECM evolves during lens placode formation. (A-V) 3D reconstructed 
images taken by confocal microscopy of the apical surface of the eye of HH11 to HH15 stage 
chicken embryos. The dotted pink line shows the level of the YZ orthogonal slice in the two 
last columns. (A, G, M and Q) Nucleus stained with DAPI (cyan). (B, H, N and R) Actin staining 
with phalloidin (grey column). (C, I, O and S) Immunostaining for Lamininα1 (green). (D, J and 
T) Immunostaining for Fibronectin (magenta). (E, F, K, L, P, U and V) Orthogonal slice from 
YZ axis showing Fibronectin (magenta) or Lamininα1 (green) co-labelled with Phalloidin (grey) 
staining. (A-F) At phase 0, the ECM between the pre placode ectoderm and the optic vesicle 
displays a fibrillar immunostaining pattern for both Fibronectin and Lamininα1 in the optic 
region and also in the surrounding non-placodal ectoderm (orange asterisk). (E and F) The 
YZ optical slice shows an intense labeling of Fibronectin and Lamininα1 between the optic 
vesicle (right side tissue) and the pre-placodal ectoderm (left side tissue). (G-L) At stage HH13, 
(phase 1) the lens placode starts to thicken and actin accumulates in the apical surface (yellow 
arrowhead). The immunostaining pattern of Fibronectin and Lamininα1 under the centre of the 
placode (identified by apical accumulation of actin) becomes more diffuse and punctate. The 
ECM of regions outside of the optic vesicle present a fibrillar organization (orange asterisk). 
(K and L) The YZ optical slice shows a weak staining for both proteins between the lens 
placode (LP) and the optic vesicle (yellow dotted line region). In contrast, the staining is 
stronger outside the lens placode region. (M-P) At HH14 stage, (phase 2a) the placode is 
formed and the difference of Lamininα1 immunostaining pattern is more evident. There is a 
diffuse and punctate Lamininα1 immunostaining pattern at the ECM immediately overlying the 
optic vesicle and under  the region of the placode with apical accumulation of actin (yellow 
arrowhead). The periplacodal regions (orange asterisk) present a fibrillar organization. (P) The 
YZ optical slice shows a strong Lamininα1 staining outside the lens placode region and a weak 
staining between the thick lens placode and the optic vesicle (yellow dotted line).  (Q-V) At 
stage HH15 (phase 2b), during lens placode invagination, the diffuse and punctate pattern of 
Fibronectin in the placodal region is maintained around the lens pit (yellow asterisk, LPit). The 
ECM in the periplacodal region has a fibrillar and intense Fibronectin and Lamininα1 pattern 
(orange asterisk). (U and V) The YZ optical slice shows a weak staining of both proteins 
between the lens placode and the optic cup. Fibronectin and Lamininα1 staining is stronger in 
ECM underlying the base of the cuboidal periplacodal epithelium. (X) Scheme of the ECM 
evolution during lens placode development.  
Data published in the Master's dissertation: Magalhães, 2019   
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1.7 EXTRACELLULAR MATRIX REMODELING 

ECM is one of the main drivers of morphogenesis. Specifically, in the optic 

region, the composition of the ECM plays a significant role in its development 

(HUANG et al., 2011). Our previous results also suggest that the optic ECM is 

Figure 8. Noggin overexpression inhibits optic ECM evolution. (A-F) 3D reconstructed 
confocal images taken by confocal microscopy of the apical surface of the eye at stage HH15 after 
Noggin overexpression in the re-placodal ectoderm. The dotted pink line delimits the YZ orthogonal 
slice in the last row. The orange dotted line delimits the optic region, where the ectoderm (Ect) is in 
contact with the optic vesicle (OV). (A) Nucleus staining with DAPI (cyan). (B) Actin staining with 
Phalloidin (greys) shows the absence of actin accumulation in the optical surface that is observed 
in a normal eye development. (C-D) ECM staining after BMP inhibition. Immunostaining for Laminin 
and Fibronectin show a fibrillar pattern in the optic region, similar to the fibrillar pattern in the 
periplacodal region. (E-F) The YZ orthogonal slice shows the inhibition of lens placode formation, 
where the ectodermal cells remain cuboidal. The Phalloidin staining shows a homogenous 
distribution of actin in the cell. Both Laminin (Lm) and Fibronectin (Fn) have a intense labeling 
between the Noggin+ ectoderm and the optic vesicle.  

Figure 8. Noggin overexpression inhibits optic ECM evolution. (A-F) 3D reconstructed 
confocal images of the apical surface of the eye at stage HH15 after Noggin overexpression in the 
pre-placodal ectoderm. The dotted pink line delimits the YZ orthogonal slice in the bottom row. The 
orange dotted line delimits the optic region, where the ectoderm (Ect) is in contact with the optic 
vesicle (OV). (A) Nucleus staining with DAPI (cyan). (B) Actin staining with Phalloidin (grey). (C-D) 
ECM staining after BMP inhibition. Immunostaining for Lamininα1 and Fibronectin show a fibrillar 
pattern in the optic region, similar to the fibrillar pattern in the periplacodal region. (E-F) The YZ 
orthogonal slice shows the inhibition of lens placode formation, where the ectodermal cells remain 
cuboidal. Phalloidin staining shows a homogenous distribution of actin in the cells. Both Lamininα1 
(Lm) and Fibronectin (Fn) are intensely labelled between the Noggin+ ectoderm and the optic 
vesicle.  
Data published in the Master's dissertation: Magalhães, 2019   
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dynamic and remodels during placode thickening. In this session, we will point 

the main mechanisms responsible for the ECM remodeling that may be 

associated to the evolution of optic ECM. The three ECM remodeling 

mechanisms discussed here are: changes in ECM proteins deposition (which 

depends on the cell expression and secretion), ECM degradation (which involves 

proteases), and force-mediated ECM modification (which depends on the 

cellular-ECM interactions) (LU et al., 2011; BONNANS; CHOU; WERB, 2014; 

WINKLER et al., 2020). 

1.7.1 ECM protein deposition  

Each tissue has a specific ECM composition that is crucial for tissue 

morphology, function and homeostasis. The dysregulated change in ECM 

composition or architecture is associated with pathological conditions or 

accelerated disease progression (LU et al., 2011; BONNANS; CHOU; WERB, 

2014; WINKLER et al., 2020). For example, in fibrosis and cancer, there is an 

abnormal ECM deposition and stiffness (WINKLER et al., 2020). This abnormal 

deposition involves a disturbed balance between ECM synthesis and secretion 

and changed expression of matrix-remodeling enzymes. In this context, the 

alteration in ECM deposition is associated with intracellular signaling. In the 

context of fibrosis, TGFβ activates the transcriptional factors Smad2/3 that induce 

the expression of ECM-related genes, such as Col1a1, Col3a1 and Timp1, that 

results in over-accumulation of ECM proteins (VERRECCHIA; CHU; MAUVIEL, 

2001).  

During development, the unique ECM composition for each tissue and 

organ is defined (reviewed in BONNANS et al., 2014). Cells are constantly 

rebuilding the ECM through synthesis and chemical modification. During lung 

development in mice, branching morphogenesis and alveoli formation depends 

on elastin production and other specific ECM proteins. The inhibition of elastin 

expression results in softening of neonatal mouse lung tissue and decreases the 

expression of important genes for lungs development. 

We previously mentioned that the presence of Fibronectin in mouse optical 

ECM is essential for lens formation and eye development (HUANG et al., 2011). 

Lack of Fibronectin arrested lens placode development in phase 1 (HUANG et 

al., 2011). This shows that early eye morphogenesis depends on a specific ECM 
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composition. Furthermore, Pax6lens-/- mouse embryos do not develop the optic 

placode and the expression of several ECM genes decreases (HUANG et al., 

2011). This data suggests that the composition of optic ECM is regulated by the 

differentiation of lens placode cells at early eye development. 

1.7.2 ECM degradation 

Protease degradation is one of the mechanisms involved in ECM 

remodeling (STERNLICHT et al., 2006; CLAUSE; BARKER, 2013; DIAZ-DE-LA-

LOZA et al., 2018). The main enzymes involved in this process are the matrix 

metalloproteinases (MMPs).  

MMPs are a group of proteolytic enzymes that cleave most of ECM 

components. Metalloproteinase proteolytic activity not only regulate ECM 

assembly and remodeling, but can also release growth factors retained in the 

ECM (SIMIAN et al., 2001; reviewed in DRAKE; FRANZ-ODENDAAL, 2018). 

Several morphogenic events depend on the action of metalloproteases 

(MMPs) for modulation of the ECM. In the development of breast cells, for 

example, branching morphogenesis depends on MMP-mediated degradation of 

the matrix degradation (SIMIAN et al., 2001). In this context, MMPs control the 

amount of ECM proteins and, also, regulate morphogenic signals during 

branching morphogenesis in mouse mammary gland (reviewed in FATA; WERB; 

BISSELL, 2004).  

MMPs are involved in several epithelial morphogenesis process. In 

Drosophila, ECM degradation is crucial for columnar-to-cuboidal cell shape 

changes involved in wing and legs elongation (DIAZ-DE-LA-LOZA et al., 2018).  

The change in cell shape from columnar to cuboidal during facilitate the the 

accommodation of proliferating cells within the epithelium. In this context, cell 

height reduction depends on MMP1/2 activity, as ECM degradation allows cells 

to spread and change their shape (DIAZ-DE-LA-LOZA et al., 2018). The inhibition 

of ECM degradation maintains the columnar cell shape (DIAZ-DE-LA-LOZA et 

al., 2018).  

Other proteins involved in ECM degradation are the ADAMs (a disintegrin 

and metalloproteinases) and ADAMTs (ADAMs with a thrombospondin motif). 

There are several types of ADAMs and ADAMTs described, but not all their 
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targets have been elucidated. These proteins can cleave transmembrane protein 

ectodomains that are adjacent to the cell membrane and releases cytokines, 

adhesion molecules and growth factors (reviewed in KELWICK et al., 2015; 

MURPHY, 2008). In addition, several proteins in this family cleave gelatin, 

fibronectin, laminins, collagens, versican and proteoglycans and laminins 

(reviewed in KELWICK et al., 2015; MURPHY, 2008). In development, several 

ADAMTS controls the amount of versican in the ECM. Versican provides 

structural support during dynamic remodeling during morphogenesis. Several 

types of ADAMTS are associated with the regulation of versican during heart and 

limb development (reviewed in KELWICK et al., 2015). 

ECM degradation has an important role in regulating the availability TGFβ 

family ligands (reviewed in MIGLIORINI et al., 2020). The relationship between 

BMP signaling and ECM could be a positive feedback loop in that BMP-triggered 

ECM changes could further enhance BMP signaling in the placode. In other 

words, the ECM architecture alteration could contribute for towards sustained 

BMP signaling in the placode. As mentioned previously, lens placode 

specification in vitro requires long-term exposure to BMP (SJODAL et al., 2007). 

Indeed, there are examples where ECM modifications can modulate BMP 

signaling. ECM components can bind to BMP and modulate the steepness of the 

BMP gradient (reviewed in PLOUHINEC et al., 2011). For instance, Dpp, a 

BMP2/4 homologue, binds to Collagen IV and this interaction facilitates the Dpp 

flow necessary for dorsal-ventral patterning in Drosophila (WANG et al. 2008). In 

this context, changes ECM degradation would increase the availability of BMP in 

the optic region. 

1.7.3 Force-mediated ECM modification  

The ECM communicates with cells through membrane receptors, such as 

Integrins. Integrins are heterodimers composed of two transmembrane 

glycoprotein subunits (α and β). They play important roles in mechanobiological 

and morphogenetic processes. On the extracellular domain, those receptors 

recognize ECM components and, on the intra-cellular domain, they interact with 

the cytoskeleton and can activate several signaling pathways. Interaction 

between Integrins and the ECM can regulate the changes in cell shape during 
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morphogenesis. In summary, Integrins transmit mechanical signals from the ECM 

to the cell and vice-versa (ALBERTS et al., 2008).  

When Integrins transmit the characteristics of the extracellular medium to 

the cell, the ECM act as a stress sensor (KECHAGIA; IVASKA; ROCA-

CUSACHS, 2019). In this context, Integrin activation can be triggered by force 

application in an outside-in mechanism. Mechanical tension originated from 

experimental application of forces on cell and tissue activates Integrins and leads 

to integrin clustering. Integrin clustering activates intracellular pathways, such as 

FAK, and regulates GTPases activation (KECHAGIA et al., 2019). This process 

results in a rearrangement of the cytoskeleton and change in cell shape 

(KECHAGIA et al., 2019). After blocking specific Integrin-binding sites of ECM 

ligands, the signals induced by shear stress to intracellular pathways are 

abolished (JALALI, 2001). 

Integrin activation can also trigger ECM changes in an inside-out 

mechanism. In this context, Integrin activity changes the conformation of 

extracellular matrix components and modulate the physical properties of the 

extracellular environment. For instance, activation of Integrins induces 

Fibronectin fibrillogenesis (MAO; SCHWARZBAUER, 2005). The activated 

integrin binds to Fibronectin in the extracellular environment, changing its 

conformation and exposing the binding site with other Fibronectins, causing a 

progressive assembly of large fibrils. In many developmental processes, tissue 

tension increased by contractility leads to the activation of Integrins and promotes 

Fibronectin fibril assembly. During Xenopus gastrula, tissue tension promotes 

Fibronectin fibrillogenesis that is crucial for early morphogenesis process 

(DZAMBA et al., 2009). In this context, blocking Integrin-binding sites that interact 

with Fibronectin results in reduction of Fibronectin deposition at the blastocoel 

roof and abnormal cell organization (MARSDEN; DESIMONE, 2001). Increased 

cell contractility induces Fibronectin matrix assembly in zebrafish paraxial 

mesoderm (JÜLICH et al., 2015). Lastly, micro-tissues in 3D cultures that are 

submitted to high mechanical stress increase extracellular Fibronectin fibril 

formation and accumulate F-actin intracellularly (LEGANT et al., 2009). 

Fibronectin remodeling plays an important role during zebrafish 

neurulation (ARAYA; CARMONA-FONTAINE; CLARKE, 2016; GUILLON et al., 
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2020). The Fibronectin in the ECM between the presomitic mesoderm 

(presumptive tissue of the somites) and the neural tube show two different 

conformations: a more diffuse that is classified as ‘small fibrils’ and a fibrillar 

organization that forms a large assembled network (GUILLON et al., 2020). 

Fibronectin matrix continually remodels during the neural tube convergence 

extension and creates a medial-lateral gradient of tension. In the medial portion, 

closer to the neural tube centre and notochord, there are small fibrils, while in the 

lateral portion, there are large fibrils and the ECM tension is highest (GUILLON 

et al., 2020). This remodeling depends on Integrinα5 activation and regulate the 

shape and extension of the neural tube. Knockout embryos exhibit several neural 

tube defects (GUILLON et al., 2020).  

1.8 HYPOTHESIS  

ECM is one of the main drivers of morphogenesis. Our previous data 

showed that the ECM between the optic vesicle and the lens placode ectoderm 

evolves during placode formation. ECM is dynamic and its characteristics can 

both depend on and induce cell differentiation. Thus, we hypothesize that the lens 

placode cellular changes are followed by modifications in the optic ECM. 

I. Changes in optic ECM architecture depends on BMP signaling in the lens 

placode but not the optic vesicle. 

II. The lens placode transcribes ECM modulators prior to and during its 

invagination. 

1.9 OBJECTIVES  

1. Investigate optic ECM evolution after interference with BMP signaling in 

lens and optic vesicle, separately. 

2. scRNAseq transcriptome analysis of optic tissues at early stages of 

development. 

3. Investigate modulation of protease activity in the optic tissue during lens 

placode development. 

4. Detect the distribution of Integrinβ1 activity in the different phases of lens 

placode development. 
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5 CONCLUSIONS 

 

In this study, we conclude that the lens placode ectoderm modulates the 

optical ECM during early eye development. We propose that lens placode 

differentiation is necessary for regulating the characteristics of the optical ECM 

and its remodeling. At early lens development, a series of molecular factors and 

signaling events induce the specification of the lens placode in the ectoderm. 

Once defined, the placodal cells acquire a unique transcriptomic profile that 

induces changes in cellular shape and alterations in the ECM. Here, we observed 

expression of several lens placode-specific ECM genes, such as Timp2, Col13a, 

Tnc, and Adamts18. Analysis of the TFBS proximal to the Timp2 and Adamts18 

genes strengthens our proposal, as they contain binding sites for several 

transcription factors involved in placode differentiation. Downregulation of Timp2 

in the absence of BMP signaling and downregulation of Col13a1 and Tnc in the 

Figure 40. Diagram summarizing the results obtained in this study 
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absence of Pax6 further support that modulation of the optical ECM depends on 

placode formation.  

The optical ECM factors described here are associated with various 

mechanisms responsible for ECM remodeling. Production of Tnc, Nid1, Col13a1, 

P3h2, and other identified genes modify the extracellular matrix composition and 

alters its physicochemical properties. Thus, the interaction of these proteins with 

others can result in ECM remodeling.  

The expression of Timp2 by the placode occurs concomitantly with 

inhibition of MMP activity. This result suggests that Timp2 inhibits MMP2 in the 

optical ECM. Inhibition of MMP2 activity in addition to the presence of Adamts18 

in the basal region of the placode may also regulate protease-target protein 

cleavage, altering ECM properties. For instance, Adamts18 can lead to the 

release of important cytokines and the inhibition of MMP2 can arrest the 

breakdown of the matrix. 

Finally, we propose here that optic ECM remodeling not only depends on 

the differentiation of the lens placode, but is also important for its morphogenesis. 

Further experiments will be necessary to test our proposal in the future. 
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5.1 FUTURE DIRECTIONS 

We observed high expression of Timp2 in the placode cells, and the in situ 

zymography showed MMP activity inhibition in the optic region during lens 

placode formation. Therefore, we hypothesize that inhibition of MMPs is 

necessary for regulating early eye formation. In this case, ectopic inhibition of 

MMPs over a larger region would form a more extensive or even ectopic lens 

placode. In contrast, the overexpression of MMP2 would inhibit the correct 

formation of the lens placode.  

Thus, to test whether Timp2 overexpression is sufficient for ectopic 

placode formation, we cloned the complete Timp2 sequence from the chicken 

embryo into an expression vector (Appendix D). Also, we are interested in 

investigating whether MMP2 overexpression inhibits placode formation. Thus, we 

cloned the complete MMP2 coding sequence from the chicken embryo into an 

expression vector (Appendix D).  

Here we propose as future direction electroporated the chick embryo with 

the constructed plasmids and evaluate the effects. 

In addition, we observed a difference in active-Integrinβ1 distribution in the 

lens placode compared to non-placodal ectoderm, which might cause the 

changes in Fibronectin and Lamininα1 pattern. However, we only observed the 

active-Integrinβ1 distribution in phase 1 in the mouse embryo. Therefore, we 

propose to analyze active-Integrinβ1 distribution evolves comparing phase 1 with 

phase 0 and 2a. In addition, we also propose to verify the activity of Integrinβ1 in 

chicken embryo to understand if this ECM modulation mechanism is conserved. 
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