UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS BIOMÉDICAS

DANIEL ENRIQUE SÁNCHEZ LIMACHE

Estudo da função de SPI-22 T6SS de *Salmonella bongori* em competições bacterianas e interações com células fagocíticas

São Paulo

2022

Daniel Enrique Sánchez Limache

Estudo da função de SPI-22 T6SS de *Salmonella bongori* em competições bacterianas e interações com células fagocíticas

Versão corrigida

Dissertação apresentada ao Instituto de Ciências Biomédicas da Universidade de São Paulo para obtenção do título de Mestre em Microbiologia.

Orientadora: Dra. Ethel Bayer Santos

São Paulo

2022

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo

Ficha Catalográfica elaborada pelo(a) autor(a)

Sánchez Limache, Daniel Enrique Estudo da função de SPI-22 T6SS de Salmonella bongori em competições bacterianas e interações com células fagocíticas / Daniel Enrique Sánchez Limache; orientadora Ethel Bayer Santos. -- São Paulo, 2022. 47 p.

Dissertação (Mestrado)) -- Universidade de São Paulo, Instituto de Ciências Biomédicas.

1. Salmonella bongori. 2. T6SS. 3. SPI-22. 4. VRR-Nuc. 5. Efetores. I. Bayer Santos, Ethel , orientador. II. Título.

SANCHEZ-LIMACHE, D. E. Estudo da função de SPI-22 T6SS de Salmonella bongori em competições bacterianas e interações com células fagocíticas. 2022. Dissertação (Mestrado em Microbiologia), Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2022,

Aprovado em: Banca Examinadora Prof. Dr. Instituição: Julgamento: Profa. Dra. Instituição: Julgamento: Prof. Dr. Instituição: _____ Julgamento

Dedico este trabalho a Gustavo Arantes Lorga, um amigo que sempre me motivou a dedicar-me ao máximo possível de modo a demonstrar o meu verdadeiro potencial.

AGRADECIMENTOS

Gostaria de agradecer à minha família que tem me ajudado e apoiado as minhas escolhas de vida e professionais.

Aos meus amigos que tem me motivado a continuar com a minha escolha de carreira acadêmica.

Aos meus colegas de laboratório do Instituto de Ciências Biomédicas que tem me ajudado no desenvolvimento do mestrado e pela ótima convivência nas horas de café.

À minha orientadora, Ethel Bayer Santos, por ter mantido um ambiente de trabalho amigável, e por ter me capacitado durante o desenvolvimento deste trabalho, o qual tornou-me um pesquisador melhor.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo financiamento deste projeto de pesquisa (processo nº 2019/22715-8).

Resumo

Bactérias desenvolveram mecanismos de antagonismo para atacar espécies competidoras e garantir vantagem adaptativa. O T6SS (type 6 secretion system) é um sistema de secreção de proteínas que se assemelha funcionalmente a um arpão contrátil, no qual uma lança composta por proteínas Hcp (hemolysin-coregulated protein), VgrG (valine-glycine repeat protein G) e PAAR (proline-alanine-alaninearginine) é lançada em direção a célula alvo liberando efetores tóxicos. Em Salmonella spp., os genes responsáveis pela montagem do T6SS ficam agrupados em ilhas de patogenicidade (Salmonella Pathogenicity Islands, SPI). Salmonella bongori possui a SPI-22 que codifica um T6SS exclusivo desta espécie; no entanto, sua função ainda não havia sido caracterizada. O objetivo deste trabalho foi analisar a função de SPI-22 T6SS de S. bongori quanto a sua atividade antibacteriana e anti-eucariótica. Os resultados demonstram que SPI-22 T6SS tem função antibacteriana. Análises in silico identificaram diversos possíveis efetores secretados pelo SPI-22 T6SS. Dentre esses efetores, escolhemos quatro genes que possuem domínio VRR-Nuc (virus-type replication-repair nuclease) para caracterização funcional (SBG_1828, SBG_1841, SBG_2718 e SBG_2723). SBG_2723 e SBG_1841, renomeados TseV2 e TseV3 (type VI effector with VRR-Nuc), apresentaram toxicidade quando expressos em Escherichia coli; enquanto SBG_2718 e SBG_1828, renomeados TseV1 e TseV4, não afetaram o crescimento dessa bactéria. Ensaios de competição bacteriana confirmaram que TseV2 e TseV3 são secretados via SPI-22 T6SS. Além disso, ensaios de competição bacteriana revelaram que as proteínas VgrG2 (SBG_2715) e VgrG3 (SBG_3770) são importantes para secreção de TseV2 e TseV3, respectivamente. Para testar a atividade anti-eucariótica de SPI-22 T6SS, realizamos ensaios de resistência a predação por Dictyostelium discoideum, avaliando a capacidade dessa ameba em formar placas de fagocitose ao se alimentar das cepas selvagem e mutante T6SS. Resultados preliminares sugerem que o mutante T6SS possa ser mais susceptível a predação; no entanto, mais estudos serão necessários para esclarecer essa função. Nesse trabalho caracterizamos a função de SPI-22 T6SS e identificamos novos efetores secretados por esse sistema, demonstrando a participação de diferentes VgrG na seleção e secreção desses efetores. Palavras-chave: Salmonella bongori; T6SS; SPI-22; VRR-Nuc; Efetores.

Abstract

Bacteria have evolved antagonistic mechanisms to attack competing species and secure adaptive advantages. The T6SS (type 6 secretion system) is a protein secretion system that functionally resembles a contractile harpoon in which a spear composed of Hcp (hemolysin-coregulated protein), VgrG (valine-glycine repeat protein) G) and PAAR (proline-alanine-arginine) proteins is launched toward the target cell to release toxic effectors. In Salmonella spp., the genes responsible for assembling the T6SS are clustered in Salmonella Pathogenicity Islands (SPI). Salmonella bongori carries a SPI-22 that encodes a T6SS unique to this species; however, its function was not yet characterized. The objective of this work was to analyze the function of SPI-22 T6SS from *S. bongori* regarding its antibacterial and anti-eukaryotic activity. Results demonstrate that SPI-22 T6SS displays antibacterial function. In silico analyses identified several possible effectors secreted by SPI-22 T6SS. Among these effectors, we chose four genes that have VRR-Nuc (virus-type replication-repair nuclease) domain for functional characterization (SBG_1828, SBG_1841, SBG_2718 and SBG 2723). SBG 2723 and SBG 1841, renamed TseV2 and TseV3 (type VI effector with VRR-Nuc), showed toxicity when expressed in Escherichia coli; while SBG_2718 and SBG_1828, renamed TseV1 and TseV4, did not affect the growth of this bacterium. Bacterial competition assays confirmed that TseV2 and TseV3 are secreted via SPI-22 T6SS. Furthermore, bacterial competition assays revealed that VgrG2 (SBG_2715) and VgrG3 (SBG_3770) are important for secretion of TseV2 and TseV3, respectively. To test the anti-eukaryotic activity of SPI-22 T6SS, we performed predation assays using Dictyostelium discoideum to evaluate the ability of this amoeba to form phagocytic plagues once feeding on the wild-type and T6SS mutant strains. Preliminary results suggest that the T6SS mutant may be more susceptible to predation; however, further studies will be needed to clarify this function. In this work we characterized the function of SPI-22 T6SS and identified new effectors secreted by this system, demonstrating the participation of different VgrG proteins in the selection and secretion of these effectors.

Key words: Salmonella bongori; T6SS; SPI-22; VRR-Nuc; Effectors.

1. Introdução	10
1.1. Mecanismos de antagonismo bacteriano	10
1.2. Sistema de secreção do tipo VI (T6SS)	11
1.2.1. Componentes estruturais e mecanismo de secreção	11
1.2.2. Atividades de efetores antibacterianos	13
1.3. Salmonella spp	14
2. Justificativa	18
3. Objetivos	19
3.1. Objetivos específicos	19
4. Materiais e métodos	20
4.1. Cepas e cultivo	20
4.2. Mutagênese	22
4.3. Clonagem de plasmídeo para complementação	23
4.4. Análises in silico para identificação de efetores do T6SS	23
4.5. Ensaio de toxicidade em <i>Escherichia coli</i>	24
4.6. Western blot	24
4.7. Ensaio de competição bacteriana	25
4.8. Ensaio de formação de placa de fagocitose	25
4.9. Análises bioinformáticas	26
5. Resultados	27
5.1. Identificação de componentes do T6SS no genoma de <i>S. bongori</i>	27
5.2. O sistema SPI-22 T6SS está ativo em meio LB	28
5.3. SPI-22 T6SS possui atividade antibacteriana	28
5.4. Identificação de efetores secretados pelo SPI-22 T6SS	29
5.5. TseV2/TsiV2.1 e TseV3/TsiV3 constituem pares efetor e proteína de imunidad	de
	34
5.6. TseV2 e TseV3 são efetores secretados pelo SPI-22 T6SS	35
5.7. Predições das estruturas 3D dos efetores TseV1-4	37
5.8. TseV2 e TseV3 dependem de VgrGs distintos para secreção	38
5.9. Ensaio de formação de placa de fagocitose	41
6. Discussão	43
7. Conclusão	45
8. Referências	46
9. Anexos	53

SUMÁRIO

1. Introdução

1.1. Mecanismos de antagonismo bacteriano

Em um ambiente onde há uma grande população e uma quantidade limitada de recursos é natural que ocorra competição entre os indivíduos da população (BIRCH, 1957). O resultado da competição entre enteropatógenos e membros da microbiota intestinal é um evento determinante para permitir a entrada e/ou permanência do patógeno nesse ambiente (HIBBING *et al.*, 2010; SOMMER *et al.*, 2017). A microbiota intestinal de um indivíduo adulto é formada ao longo do seu desenvolvimento, e é composta por mais de mil espécies que convivem em homeostasia (LOZUPONE *et al.*, 2012).

A microbiota pode ser considerada parte do sistema de defesa do hospedeiro, inibindo o crescimento de espécies invasoras por um fenômeno chamado de *colonization resistance* (LAWLEY; WALKER, 2013). Bactérias oportunistas necessitam de um evento que desestabilize a composição da microbiota intestinal para poder se estabelecer nesse ambiente. Os eventos que perturbam o equilíbrio da microbiota podem ser exógenos, como tratamentos com antibióticos (FUKAMI, 2015), e/ou endógenos, como o desenvolvimento de imunodeficiências (PIGGOTT *et al.*, 2016) e doenças inflamatórias crônicas (SOMMER *et al.*, 2017).

Durante a evolução, diferentes mecanismos de competição bacteriana foram selecionados e/ou adquiridos por transferência horizontal de genes (BLONDEL et al., 2009; BAO et al., 2019). Esses mecanismos podem ser independentes ou dependentes de contato entre as células (PETERSON et al., 2020). Como exemplo de estratégia contato-independente pode ser citado as bacteriocinas, que compreendem um grupo de peptídeos e/ou proteínas sintetizados por ribossomos que exibem atividade antimicrobiana (RILEY; WERTZ et al., 2002). As bacteriocinas são moléculas de vários tamanhos, estruturas e mecanismos de ação, e são produzidas tanto por bactérias Gram-negativas como Gram-positivas (SIMONS & DUVAL et al., 2020). Em Gram-negativas, as colicinas de E. coli foram as primeiras a serem descobertas (CASCALES et al., 2007). A sua liberação no meio extracelular ocorre normalmente quando a bactéria sofre autólise resultante de um estresse ambiental (RILEY, 2009; SIBINELLI-SOUSA et al., 2021). Em Gram-positivas, as bacteriocinas são peptídeos ou proteínas, e são classificadas em três classes: classe I, composta por lantibioticos ou lantipeptideos; classe II, composta por pequenos peptídeos termoestáveis (<10 kDa); classe III, composta por proteínas maiores e lábeis (ALVAREZ-SIEIRO et al., 2016). As bacteriocinas são secretadas no meio extracelular e interagem com receptores na membrana das células alvo (ex. receptores de captação de ferro), e são internalizadas através da membrana interna pelas maquinarias Tol e Ton (LAZDUNSKI et al., 1998; PILSL; BRAUN 1998; CASCALES et al., 2007). As estratégias contato-dependentes envolvem complexos proteicos chamados de sistemas de secreção de proteínas, que podem ser do tipo I, III, IV, V, VI e VII (T1SS, T4SS, T5SS, T6SS e T7SS). O T1SS é mais conhecido pelo sistema de secreção da hemolisina A em Escherichia coli e é composto pelas proteínas HlyA, HlyB, HlyC, HylD e TolC (ANDERSEN et al., 2003), e secreta proteínas para o meio extracelular. Contudo, existe um tipo especial de T1SS que é capaz de liberar agregados proteicos que permanecem conectados à membrana da célula produtora e provocam morte de células alvo. Esse sistema é chamado de Cdz (contact-dependent inhibition by glycine zipper proteins) (GARCIA-BAYONA et al., 2017). No T4SS, a proteína acopladora VirD4 seleciona efetores antibacterianos que possuem um domínio XVIPCD (Xanthomonas VirD4-interacting protein conserved domain) para serem translocados para dentro da célula alvo (SOUZA et al., 2015; SGRO et al., 2019). O T5SS - também denominado CDI (contact dependent inhibition) -, compreende proteínas translocadas para o lado externo da célula que permanecem ancoradas a membrana externa até o contato com o receptor da célula alvo, o qual ativa a translocação da porção tóxica para dentro da célula alvo (AOKI, 2005). Já o T6SS (PUKATZKI et al. 2006) é um sistema contrátil evolutivamente relacionado a bacteriófagos que injeta toxinas dentro de células alvo (HOOD et al., 2010). O T7SS - também chamado de sistema de secreção ESX ou ESAT-6 (6 kDa early secreted antigenic target) (BRODIN et al., 2004) - é um sistema presente em bactérias Grampositivas que transcola proteínas por meio de um poro transmembrana liberando-as para o meio extracelular (CAO et al., 2017).

1.2. Sistema de secreção do tipo VI (T6SS)

1.2.1. Componentes estruturais e mecanismo de secreção

O T6SS é composto por proteínas estruturais que formam o complexo de membrana (TssL, TssM e TssJ), o complexo da base (TssA, TssE, TssF, TssG e TssH) e o complexo da cauda (TssB, TssC, TssD/Hcp, TssI/VgrG e PAAR) (ALIKHAN *et al.*, 2018) (Figura 1). Essa estrutura é filogeneticamente relacionada ao aparato contrátil de um bacteriófago T4 (PUKATZKI *et al.*, 2007; FILLOUX, 2013).

Figura 1. Modelo dos complexos proteicos do T6SS: Representação gráfica dos três complexos que compõem o T6SS. A membrana externa e a membrana interna estão representadas pelas siglas ME e MI, respectivamente.

Os efetores são translocados através das membranas interna e externa associados as proteínas Hcp (*hemolysin-coregulated protein*), que forma o tubo ejetado em direção a célula-alvo; VgrG (*valine-glycine repeat protein G*), que está localizada na extremidade do tubo formado por Hcp; e PAAR (*proline-alanine-alanine-arginine*), localizada na extremidade da ponta formada por VgrG (DURAND *et al.*, 2014; CIANFANELLI *et al.*, 2016). A diversidade de isoformas dessas proteínas está associada a secreção de diferentes efetores, sendo que cada proteína estrutural é responsável pela ligação e secreção de um grupo de efetores (HACHANI *et al.*, 2014; BONDAGE *et al.*, 2016).

Os efetores do T6SS são secretados com o auxílio dos componentes que formam a agulha (VgrG, PAAR e Hcp) de duas maneiras: interações diretas não covalentes, denominados efetores cargo *(cargo effectors)* (DURAN *et al.*, 2014); e fusionados a porção C-terminal de um dos três componentes da agulha, denominados efetores evoluídos (*evolved effectors*) (CUI *et al.*, 2009; PISSARIDOU *et al.*, 2018). Proteínas adaptadoras contendo domínios DUF1795 (WHITNEY *et al.*, 2015), DUF2169 (BONDAGE *et al.*, 2016), e DUF4123 (UNTERWEGER *et al.*, 2017) auxiliam na ligação de efetores com as proteínas Hcp, VgrG e PAAR (FILLOUX *et al.*, 2013) (Figura 2). Tap-1 (*T6SS adaptor protein 1*) é um exemplo de adaptador contendo o domínio DUF4123 (LIANG *et al.*, 2015), que interage diretamente com o efetor Tde e a porção C-terminal de VgrG de *Agrobacterium tumefaciens* (BONDAGE *et al.*, 2016). Proteínas contendo o domínio DUF2169 são codificadas a montante de

genes de efetores evoluídos contendo domínio PAAR, e podem também facilitar a ancoragem em VgrG (BONDAGE *et al.,* 2016). Proteínas contendo o domínio DUF1795, ex. Eag (*Effector associated gene*), são requeridas para estabilizar efetores evoluídos contendo PAAR (WHITNEY *et al.,* 2015).

Figura 2. Modelo de vias de secreção de efetores do T6SS. Representação esquemática do transporte de efetores do T6SS (Hcp, VgrG e PAAR). Do lado esquerdo está representado efetores cargo interagindo com Hcp ou VgrG-PAAR. Do lado direito estão representados efetores evoluídos fusionados a proteína PAAR. Proteínas adaptadoras, como Tap-1 e EagR, auxiliam na ancoragem dos efetores a proteínas estruturais da ponta do dardo. Imagem adaptada de Hernandez *et al.* (2020).

1.2.2. Atividade de efetores antibacterianos

Os efetores secretados pelo T6SS podem afetar diferentes componentes da célula alvo, podendo ser a membrana celular pela ação de fosfolipases (RUSSELL *et al.*, 2013; FLAUGNATTI *et al.*, 2016; RINGEL *et al.* 2016; MA *et al.*, 2017), a parede celular por meio da degradação ou inibição da síntese do peptideoglicano (RUSSELL *et al.* 2012; BROOKS *et al.*, 2013; ALTINDIS *et al.*, 2015; MA *et al.*, 2017; FITZSIMONS *et al.* 2018; MA *et al.*, 2018; SIBINELLI-SOUSA *et al.*, 2020), o DNA ou RNAs por meio da ação de nucleases (KOSKINIEMI *et al.*, 2013; MA *et al.*, 2014; BONDAGE *et al.*, 2016; FITZSIMONS *et al.* 2018; PISSARIDOU *et al.*, 2018; JANA *et al.*, 2019; HESPANHOL *et al.*, 2021), a degradação de metabolitos celulares como NAD+ (WHITNEY *et al.*, 2015; HOOD *et al.*, 2010; TANG *et al.*, 2018), e até componentes do citoesqueleto afetando a divisão celular (TING *et al.*, 2018). A grande variedade de efetores secretados pelos T6SSs promovem uma vantagem competitiva

para a bactéria que os produz durante a colonização de novos ambientes (ALCOFORADO-DINIZ *et al.*, 2015).

De modo que a bactéria produtora dos efetores não se intoxique com as suas próprias toxinas, ou por ataque de células irmãs, na vizinhança dos genes de efetores há um ou mais genes de imunidade que inibem a atividade toxica. Este sistema é relacionado ao sistema toxina-antitoxina (TA) do tipo II encontrado em genomas bacterianos e plasmídeos (OGURA; HIRAGA, 1983; JURENAS et al., 2022). O sistema TA foi primeiramente observado em plasmídeos de *E. coli* que exibiam um mecanismo de manutenção através de morte pós-segregacional (PSK - postsegregational killing), no qual o plasmídeo expressava tanto genes tóxicos para a célula assim como genes que inibiam a toxicidade, deste modo bactérias que não possuíam os genes de resistência a toxina, morriam após a divisão celular (LOBATO et al., 2016). Atualmente o sistema TA é dividido em VIII tipos, dependendo do mecanismo de ação da proteína de imunidade (SINGH et al., 2021). No TA tipo I, a inibição ocorre por meio da produção de um RNA antisenso que inibe a tradução do mRNA da toxina (GERDES et al., 1986). No TA tipo II, tanto a toxina e antitoxina são proteínas que foram um complexo (GOEDERS; VAN, 2014). No TA tipo III, a antitoxina é um RNA que se liga diretamente a proteína toxica (FINERAN et al., 2009). No TA tipo IV, tanto a toxina como a antitoxina são proteínas, mas neste caso a antitoxina compete pelo substrato com a toxina (MASUDA et al., 2012). No TA do tipo V, a antitoxina é uma endonuclease que degrada especificamente o mRNA da toxina correspondente (WANG et al., 2012). No TA do tipo VI, a antitoxina apresenta uma atividade de protease, degradando a toxina (AAKRE et al., 2013). No TA tipo VII, a antitoxina modifica a toxina por meio e uma ação enzimática (WANG et al., 2021). No TA tipo VIII, a antitoxina mascara a atividade da toxina que por sua vez, é uma sRNA (CHOI et al., 2018).

1.3. Salmonella spp.

Salmonella spp. são bactérias bacilares Gram-negativas da família Enterobacteriaceae. O gênero Salmonella compreende duas espécies: *S. bongori* e *S. enterica* (Figura 3). Sendo que *S. enterica*, é ainda subdividida em 10 subespécies (*enterica, salamae, arizonae, diarizonae, houtenae, indica,* subsp. *VII,* subsp. *A,* subsp. *B* e subsp. *C*) (ALIKHAN *et al.* 2018). Todas as subespécies de *S. enterica* são capazes de provocar gastroenterites, e alguns dos mais de 2000 sorotipos de *S. enterica enterica* podem ocasionar infecções sistêmica como a febre tifoide (ASHTON *et al.* 2016). Essas infecções podem levar a morte se não tratadas adequadamente, principalmente em pacientes jovens e idosos (SU; CHIU, 2007). *S. bongori* normalmente está associada a infecções de animais de sangue frio (ex. répteis, anfíbios) (LE MINOR *et al.*, 1969; POPOFF; LE MINOR, 2007), mas existem relatos de infecção em crianças (GIAMMANCO *et al.*, 2002). Segundo uma comparação do conteúdo G+C do genoma de *E. coli e Salmonella* sp, acredita-se que *S. bongori* seja uma espécie intermediaria entre as duas espécies (FOOKES *et al.*, 2011). Outro motivo que ressalta esta ideia é devido a *S. bongori* não ter um estilo de vida intracelular como ocorre com *S. enterica* (FOOKES *et al.*, 2011), além de não possuir vários genes e ilhas de patogenicidade que são exclusivas de *S. enterica*, como a ausência da SPI-2 (*Salmonella pathogenicity island 2*) (HENSEL *et al.*, 1995).

Figura 3. Classificação de espécies e subespécies de Salmonella. (Imagem adaptada de Hurley et al., 2014).

A SPI-2 codifica um T3SS que é importante para promover a sobrevivência e replicação intracelular, e proporciona a capacidade de proliferação em tecidos extraintestinais, provocando infecções sistêmicas (HENSEL *et al.*, 1997; HENSEL *et al.*, 1998). Após a entrada na célula eucariótica, ocorre a maturação do vacúolo contendo a *Salmonella* (SCV – *Salmonella-containing vacuole*) no qual o SPI-2 T3SS, por meio da secreção de efetores através da membrana do vacúolo, controla as funções celulares. Aproximadamente 30 efetores são secretados de dentro do SCV (MILLS *et al.*, 2008), e possuem atividades diversas como manter a proximidade do vacúolo ao complexo de Golgi da célula hospedeira, modular o citoesqueleto e interferir com a sinalização do sistema imune (FIGUEIRA; HOLDEN, *et al.*, 2012).

Embora *S. bongori* não possua um SPI-2 T3SS, essa bactéria codifica um SPI-1 T3SS, presente também em *S. enterica.* Contudo, existem diferenças entre os efetores secretados por esse sistema entre as duas espécies. Foram encontrados 12 possíveis efetores secretados pelo SPI-1 T3SS de *S. bongori* (FOOKES *et al.,* 2011).

A virulência de Salmonella spp. está relacionada a expressão de genes localizados nas ilhas de patogenicidade (SPI) (MARCUS *et al.*, 2000). A maioria dos sorotipos de *S. enterica* codificam um T6SS a partir de SPI-6 (BLONDEL *et al.*, 2009). No entanto, alguns sorotipos codificam T6SSs evolutivamente distintos a partir de diferentes ilhas de patogenicidade, como SPI-19, SPI-20 e SPI-21 (BAO *et al.*, 2019) (Figura 4). Análises filogenéticas sugerem que esses sistemas foram adquiridos em diferentes eventos de transferência horizontal e poderiam desempenhar funções distintas (BLONDEL *et al.*, 2009; FOOKES *et al.*, 2011; BAO *et al.*, 2019). *S. bongori* codifica um cluster estrutural de T6SS a partir de SPI-22 (FOOKES *et al.*, 2011); contudo, ainda não se conhece a função desse sistema.

Figura 4. Relação evolutiva entre os diferentes loci de T6SS do gênero Salmonella. Nesta árvore filogenética pode-se observar a distância entre os diferentes T6SSs codificados nas ilhas de patogenicidade. Para a construção da árvore foi utilizada a sequência de aminoácidos da proteína TssC (Imagem retirada de BAO *et al.*, 2019).

2. Justificativa

Os estudos sobre efetores bacterianos são de grande importância devido ao seu potencial biotecnológico. Algumas de suas aplicações podem ser utilizadas para combater infecções bacterianas, auxiliar no desenvolvimento de novas drogas. Com a descoberta da nova ilha de patogenicidade SPI-22 de *S. bongori,* que codifica um T6SS, é possível que encontremos efetores únicos dessa espécie. O estudo desta bactéria ainda pode ajudar a entender o processo evolutivo do gênero Salmonella.

Considerando os pontos levantados acima, decidimos estudar a função do SPI-22 T6SS de *S. bongori* e analisar se ele possui atividade antibacteriana ou antieucariótica. Além disso, decidimos identificar novos efetores secretado por esse sistema, e analisar a relação desses efetores com as diferentes proteínas VgrG codificadas no genoma de *S. bongori* NCTC 12419.

3. Objetivos

Estudar a função do SPI-22 T6SS de *S. bongori*, identificar um novo efetor secretado por esse sistema, e analisar a contribuição das proteínas VgrG para a função do sistema.

3.1. Objetivos específicos

- Determinar se SPI-22 T6SS possui atividade antibacteriana;
- Identificar um efetor novo efetor secretado pelo SPI-22 T6SS de S. bongori;
- Determinar qual proteína VgrG é responsável pela secreção do efetor identificado anteriormente;
- Determinar se SPI-22 T6SS possui atividade anti-eucariótica.

4. Materiais e métodos

4.1. Cepas e cultivo

Bactérias utilizadas neste trabalho (Tabela 1), foram cultivadas em meio LB (*Lysogeny Broth*): NaCl 10 g/L; Triptona 10 g/L e extrato de levedura 5 g/L (para meio sólido, é adicionado ágar bacteriológico 15 g/L). Todas as cepas utilizadas neste trabalho foram cultivadas em meio líquido a 37 °C (exceto quando indicado) sob agitação (200 rpm). Antibióticos foram utilizados nas seguintes concentrações: ampicilina 100 μg/mL, canamicina 50 μg/mL, e estreptomicina 50 μg/mL.

Dictyostelium discoideum Ax2(Ka) (BLOOMFIELD *et al.*, 2008), foi crescido em meio HL5: peptona 14,3 g/L; extrato de levedura 7,15 g/L; maltose 18 g/L; Na₂HPO₄ x 2H₂O 0,641 g/L; KH₂PO₄ 0,49 g/L. Culturas de *D. discoideum* foram cultivadas a 22 °C sem agitação. Experimentos de formação de placa de fagocitose foram realizados em placas de 24 poços com 1,5 cm de diâmetro (Costar® # 3524) em meio SM-ágar (*Standard Medium*) (FROQUET *et a*l., 2009): peptona 10 g/L; extrato de levedura 1 g/L; KH₂PO₄ 2,2 g/L; K₂HPO₄ 1 g/L; MgSO₄ x 7H₂O 1 g/L; glicose 1%; ágar 20 g/L

Tabela 1. Cepas, plasmídeos e iniciadores.			
Сера	Descrição	Fonte	
Salmonella Typhimurium	S. enterica enterica Typhimurium ATCC 14028s	ATCC	
Salmonella bongori	S. bongori NCTC 12419	NCTC	
∆tssB	S. bongori ∆tssB (SBG_1238)	Este estudo	
∆tseV2/tsiV2.1/2.2	S. bongori ΔtseV2/tsiV2.1/2.2::Km (SBG_2723/SBG_2724/SBG_2725)	Este estudo	
∆tseV3/tsiV3	S. bongori Δ tseV3/tsiV3::Km (SBG_1841/SBG_1842)	Este estudo	
∆vgrG1	S. bongori ∆vgrG1 (SBG_1246)	Este estudo	
∆vgrG2	S. bongori ∆vgrG2 (SBG_2715)	Este estudo	
∆ <i>vgr</i> G3	S. bongori ∆vgrG3 (SBG_3770)	Este estudo	
∆tssB tssB	S. bongori ΔtssB (SBG_1238) pFPV25.1 tssB	Este estudo	
Klebsiella pneumoniae	K. pneumoniae NCTC 13439 para teste de competição bacteriana	NCTC	
<i>E. coli</i> K12 W3110	Teste de competição bacteriana	Eric Cascales	
<i>E. coli</i> K12 W3110 pEXT22 Ø	Teste de competição bacteriana	Este estudo	
<i>E coli</i> DH5α	Clonagem e teste de toxicidade	Estoque do laboratório	
Dictyostelium discoideum	<i>D. discoideum</i> Ax2(Ka) para ensaios de formação de placas de fagocitose	Thierry Soldati	
Plasmídeo	Descrição	Referência	
pKD46	P _{BAD} promotor, pSC101 oriTS, Amp ^R	Datsenko & Wanner, 2000	
pKD4	FRT ahp FRT PS1 PS2 oriR6K, Km ^R	Datsenko & Wanner, 2000	
pCP20	P_{BAD} promotor, cl857 λ PR FLP pSC101 oriTS, Amp ^R	Datsenko & Wanner, 2000	
pBRA	Derivado de pBAD24, P _{BAD} promotor, mob, pBBR1 ori, Sp ^R	Souza <i>et al.</i> , 2015	
pSUB11	Derivado de pKD4, 3xFLAG FRT aph FRT, oriR6K, Km ^R	Uzzau <i>et al.</i> , 2001	

BRA TseV1	pBRA expressando TseV1 (SBG_2718) para teste de toxicidade em <i>E. coli</i>	Este estudo
BRA TseV2	pBRA expressando TseV2 (SBG_2723) para teste de toxicidade em <i>E. coli</i>	Este estudo
BRA TseV3	pBRA expressando TseV3 (SBG_1841) para teste de toxicidade em <i>E. coli</i>	Este estudo
BRA TseV4	pBRA expressando TseV4 (SBG_1828) para teste de toxicidade em <i>E. coli</i>	Este estudo
DEXT22	P _{TAC} promotor, R100 ori, Km ^R	Dykxhoorn <i>et al.</i> , 1996
DEXT22 TsiV1.1	pEXT22 expressando TsiV1.1 (SBG_2719) para teste	Este estudo
DEXT22 TsiV1.2	pEXT22 expressando TsiV1.2 (SBG_2720) para teste	Este estudo
DEXT22 TsiV2.1	pEXT22 expressando TsiV2.1 (SBG_2724) para teste	Este estudo
EXT22 Tei//2 2	de toxicidade em <i>E. coli</i> pEXT22 expressando TsiV2.2 (SBG_2725) para teste	Este estudo
	de toxicidade em <i>E. coli</i> pEXT22 expressando TsiV3 (SBG_1842) para teste	Este estudo
	de toxicidade em <i>E. coli</i> pEXT22 expressando TsiV4 (SBG 1829) para teste	
DEXT22 TsiV4	de toxicidade em <i>E. coli</i>	Este estudo
DEXT20	P _{TAC} promotor, pBR322 ori, Amp ^R	Dykxhoorn <i>et al.</i> , 1996
oFPV25.1	P _{rpsM} promotor, GFP mut3, pBR322 ori, Amp ^R	Valdivia & Falkow, 1996
0FPV25.1 TsiV2.1	pFPV25.1 expressando TsiV2.1 para competição bacteriana	Este estudo
oFPV25.1 TsiV3	pFPV25.1 expressando TsiV3 para competição bacteriana	Este estudo
DFPV25.1 TssB	pFPV25.1 expressando TssB para competição bacteriana	Este estudo
oWSK29	P _{TAC} promotor, pSC101 ori, Amp ^R	Wang & Kushner, 1991
niciadores	Seguência	Propósito
	•	
EBS 199-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC	Deleção de tssB (SBG_1238)
EBS 199-F EBS 200-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG	Deleção de <i>tssB (SBG_1238)</i> Deleção de <i>tssB (SBG_1238)</i>
EBS 199-F EBS 200-R EBS 201-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC	Deleção de <i>tssB (SBG_1238)</i> Deleção de <i>tssB (SBG_1238)</i> Confirmar deleção de <i>tssB (SBG_1238)</i>
EBS 199-F EBS 200-R EBS 201-F EBS 202-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG	Deleção de <i>tssB (SBG_1238)</i> Deleção de <i>tssB (SBG_1238)</i> Confirmar deleção de <i>tssB (SBG_1238)</i> Confirmar deleção de <i>tssB (SBG_1238)</i>
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT	Deleção de <i>tssB</i> (<i>SBG_1238</i>) Deleção de <i>tssB</i> (<i>SBG_1238</i>) Confirmar deleção de <i>tssB</i> (<i>SBG_1238</i>) Confirmar deleção de <i>tssB</i> (<i>SBG_1238</i>) Deleção de <i>vgrG1</i> (<i>SBG_1246</i>)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCAGTAATTTATGC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCATTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCCTGGCATCAGTTGAAAT CCATATGAATATCCTC	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 328-F EBS 329-R EBS 329-R EBS 330-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCATC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 332-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATGCATGATATCCTC GTATGAGTTGTACCTCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATGAGTGTAACCTC GTATGAGGTGTGAGCT CTGTAGGCTGGAGCT CTGTAAGGTTTTACTGCTCCGGCGCGCGCGCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 331-R EBS 332-F EBS 333-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTGTCC GTGTAGGCTGGAGCT AACATGGTGTACCTCCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGCTTGAAGCAGCACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTACTGCTCCGGCGCGCCCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCCATGCAATAC	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 332-F EBS 333-R EBS 333-R EBS 334-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTGTAGGCTGGAGCT AACATGGTGTTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTGTACCTCCGGCGCGCGCCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCCATGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATACC	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 331-R EBS 332-F EBS 333-R EBS 333-R EBS 333-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTACCTCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGCTGGAGCT CTGTAAGGTTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTACTGCTCCGGCGCGCCCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCCATGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAGC AAATCATGGTGATATGATGACAG	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 332-F EBS 332-F EBS 333-R EBS 334-F EBS 335-R EBS 336-F	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTGTAACCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTGTACCTCC ATACAGAACTGCCGGATAG CCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCATGCAATAC GATTCTGCGTGCAATAGC AAATCATGGTGATATGATGACAG AGTCAGCAGGTTGATATCT	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 331-R EBS 332-F EBS 333-R EBS 333-R EBS 333-R EBS 335-R EBS 336-F EBS 337-R	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTACCTCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGCTTGCACCAGTCCGCGCGCGCG GCATATGAATATCCTC ATACAGAACTGCCGGATCA GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATGCCATGCAGTAAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATCAGCAGGTTGATATGATGACAG AGTCAGCAGGTTGATATCT GGTGAGCATAAACGGTAAC	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 331-R EBS 332-F EBS 333-R EBS 333-R EBS 335-R EBS 335-R EBS 335-R EBS 337-R EBS 345-F Ncol	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCAATTCGC CTTCGAGCATATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTACTCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTTACTGCTCCGGCGCGCGCGCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCATGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAGC AAATCATGGTGATATGATGACAG AGTCAGCAGGTTGATATCT GGTGAGCATAAACGGTAAC TTTTCcatgGCGAAATTCAGGCTCCAATTGAAG	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770)
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 332-F EBS 332-F EBS 333-R EBS 334-F EBS 335-R EBS 335-R EBS 337-R EBS 345-F Ncol EBS 346-R Sall	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAATCCTCAGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCGAGCTGGAGCT AACATGGTGTTACCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTTACTGCTCCGGCGCGCGCCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCATGCAATAC GATTCTGCGTGCAATAGC AAATCATGGTGATATGATGACAG AGTCAGCAGGTTGATATCT GGTGAGCATAAACGGTAAC TTTTCcatggGCGAAATTCAGGCTCCAATTGAAG CTTTgtcgacTCAGTCCATAATCCTGATTTG	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar dele
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 331-R EBS 331-R EBS 332-F EBS 333-R EBS 334-F EBS 335-R EBS 336-F EBS 336-F EBS 337-R EBS 345-F Ncol EBS 346-R Sall EBS 347-F EcoRI	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGCTGGAGCT CTGTAAGGCTGGAGCT CTGTAAGGCTGGAGCT CTGTAAGGCTGGAGCT CTGTAAGGCTGGAGCT CTGTAAGGTTTTACTCCCCGGCGCGCGCCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATCGCTGCAGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAGC AAATCATGGTGATATGATGACAG AGTCAGCAGGTTGATATCT GGTGAGCATAAACGGTAAC TTTTccatggGCGAAATTCAGGCTCCAATTGAAG CTTTgtcgacTCAGTCCATAATCCTGATTG TTTgaattCAGGAGGAATTCACCATGATGAAAAT AAAATCACGAC	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG3 (SBG_3770) Clonagem de tseV1 (SBG_2718 C-term) em pBRA Clonagem de tsiV1.1 (SBG_2719) em pEXT22
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 330-F EBS 331-R EBS 332-F EBS 333-R EBS 333-R EBS 334-F EBS 335-R EBS 35	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTCTTATCCATTGTTCTTCTCCCTGTATGCGGTTACGCGTTTTCCATATGAATATCCTCCTTAGTTGCTTGATGTAAATCAATTCGCCTTCGAGCATATCGCGTGGCAACAAAGTATAAAAGGAATTTCTTATGCCCGACGTGTAGGCTGGAGCTACTCATCAGTTAATCCTCACCAGTCCGCCTTTGATCATATGAATATCCTCCGTTTCACACAGTAATCATGCTTATTATTTGTCCGTGTAGGCTGGAGCTAACATGGTGTACCTCTCTGGCATCAGTTGAAATGCATATGAATATCCTCGTATTCCGTTTCACACAGTAACCATGCTTATTATTGTGTAGGCTGGAGCTCTGTAAGGCTTGGAGCTCTGTAAGGTTTTACTGCTCCGGCGCGCGCCGCGGCGGCATATGAATATCCTCATACAGAACTGCCGGATAGCCATATCGCCATGCAATACGATTCTGCGTGCAATAGCAAATCATGGTGATATGATGACAGAGTCAGCAGGTTGATATCTGGTGAGCATAAACGGTAACTTTTccatggGCGAAATTCAGGCTCCAATTGAAGCTTTgtcgacTCAGTCCATAATCCATGATTGATTTgaattcAGGAGGAATTCACCATGAATGATAAAATAAAATCACTACTTGggatccTTAGTCCATCCTGTTTCG	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgr
EBS 199-F EBS 200-R EBS 201-F EBS 202-R EBS 326-F EBS 327-R EBS 328-F EBS 329-R EBS 330-F EBS 330-F EBS 331-R EBS 332-F EBS 332-F EBS 333-R EBS 333-R EBS 334-F EBS 335-R EBS 335-R EBS 335-R EBS 335-R EBS 335-R EBS 336-F EBS 337-R EBS 348-R Sall EBS 347-F EcoRI EBS 348-R BamHI EBS 349-F EcoRI	GAGATGTTCTTAAATAGAGGTGCAGTAATTTATGC ACCAGGTGTAGGCTGGAGCTGCTTC TTATCCATTGTTCTTCTCCTGTATGCGGTTACGCG TTTTCCATATGAATATCCTCCTTAG TTGCTTGATGTAAATCGCGTG GCAACAAAGTATAAAAGGAATTTCTTATGCCCGA CGTGTAGGCTGGAGCT ACTCATCAGTTAATCCTCACCAGTCCGCCTTTGAT CATATGAATATCCTC CGTTTCACACAGTAATCATGCTTATTATTTGTCC GTGTAGGCTGGAGCT AACATGGTGTTACCTCTCTGGCATCAGTTGAAAT GCATATGAATATCCTC GTATTCCGTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTCACACAGTAACCATGCTTATTATT GTGTAGGCTGGAGCT CTGTAAGGTTTTTACTGCTCCGGCGCGCCCGGCG GCATATGAATATCCTC ATACAGAACTGCCGGATAG CCATATGACTGCCGGATAG CCATATGCTGCATGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATTCTGCGTGCAATAC GATCAGGAGGTTGATATCT GGTGAGCATAAACGGTAAC TTTTCCatggGCGAAATTCAGGCTCCAATTGAAG CTTTgtcgacTCAGTCCATAATCCTGATTG TTTgaattcAGGAGGAATTCACCATGCATAGATAAAAT AAAATCACTAC TTGgatcCTTAGTCCATCCTGTTTCG TTTgaattcAGGAGGAATTCACCATGCAGGACGTGA ATACAGGAGGAGAATTCACCATGCAGGACGTGA ATACAAGGAGGAGATTCACCATGCAGGACGTGA	Deleção de tssB (SBG_1238) Deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Confirmar deleção de tssB (SBG_1238) Deleção de vgrG1 (SBG_1246) Deleção de vgrG1 (SBG_1246) Deleção de vgrG2 (SBG_2715) Deleção de vgrG2 (SBG_2715) Deleção de vgrG3 (SBG_3770) Deleção de vgrG3 (SBG_3770) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG1 (SBG_1246) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG2 (SBG_2715) Confirmar deleção de vgrG3 (SBG_3770) Confirmar deleção de vgr

EBS 351-F Ncol	TTTTccatggGCTTATGCCAAAACCCATTAAAAG	Clonagem de <i>tseV2</i> (<i>SBG_2723</i> C-term) em pBRA
EBS 352-R Sall	CTTTgtcgaccTAGAATAATGATGGTATTGGAAAAG	Clonagem de <i>tseV2</i> (<i>SBG_2723</i> C-term) em pBRA
EBS 353-F EcoRI	TTTgaattcAGGAGGAATTCACCGTGTTATATATGAT TAATTTAAATG	Clonagem de <i>tsiV2.1</i> (SBG_2724) em pEXT22
EBS 354-R BamHI	AAGggatccTTAAATAAAAAAACGATTAAACC	Clonagem de <i>tsiV2.1</i> (<i>SBG_2724</i>) em pEXT22
EBS 357-F Ncol	TTTTccatggGCTTATGCCAGGAAAGCCTG	Clonagem de <i>tseV3</i> (<i>SBG_1841</i> C-term) em pBRA
EBS 358-R Sall	CTTTgtcgacTTAAAATGCCATGCTGCC	Clonagem de <i>tseV3</i> (<i>SBG_1841</i> C-term) em pBRA
EBS 362-R	CGTAAGAGCAACAACCG	Confirmar deleção de <i>tseV3/tsiV3</i> (SBG_1841/SBG_1842) usado com EBS 377-F
EBS 369-F	GAATGGCAATAACGATTAATATCAACGGACTGAC AGTGTAGGCTGGAGCT	Deleção de <i>tseV2/tsiV2.1/2.2</i> (SBG_2723/SBG_2724/SBG_2725)
EBS 370-R	CACTATAAATCAATTTCATTCCATCTGTTACTCCA CATATGAATATCCTC	Deleção de tseV2/tsiV2.1/2.2 (SBG_2723/SBG_2724/SBG_2725)
EBS 371-F	TGCAAAACACCGCCTTTCGGTGTGCCAGTGGCA GTGTAGGCTGGAGCT	Deleção de tseV3/tsiV3 (SBG_1841/SBG_1842)
EBS 372-R	AAACTAAAGGGATTAGCGTAAGAGCAACAACCTT ACATATGAATATCCTC	Deleção de tseV3/tsiV3 (SBG_1841/SBG_1842)
EBS 375-F	AATTATCAGAGAGAGACACCG	Confirmar deleção de <i>tseV2/tsiV2.1/2.2</i> (SBG_2723/SBG_2724/SBG_2725)
EBS 376-R	GCCTCTTGCAATGATACAAG	Confirmar deleção de <i>tseV2/tsiV2.1/2.2</i> (SBG_2723/SBG_2724/SBG_2725)
EBS 377-F	GCAGTAAGAATGACTCACATC	(SBG_1841/SBG_1842) usado com EBS 362-R
EBS 462-F Xbal	CTAGtctaga <u>TTTAAGAAGGAGATATACAT</u> ATGCACC AGGAATACTATTG	Clonagem de TssB-FLAG (SBG_1238) em pFPV25.1
EBS 463-R HindIII	ACATaagcttTTACTTGTCGTCATCGTCCTTGTAGTC CGCGTTTTCGGCC	Clonagem de TssB-FLAG (<i>SBG_1238</i>) em pFPV25.1
EBS 482-F Xbal	CTAGtctagaTTTAAGAAGGAGATATACATATGAGTG ATAACAAGACATT	Clonagem de <i>tsiV3</i> (<i>SBG_1842</i>) em pFPV25.1
EBS 483-R HindIII	CCCaagcttTTAATCAAAGCGCCTTATC	Clonagem de <i>tsiV3</i> (<i>SBG_1842</i>) em pFPV25.1
EBS 484-F Ncol	CATTccatggGTATGTGTGCGGAAGGG	Clonagem de <i>tseV4</i> (<i>SBG_1828</i>) em pBRA usado com EBS 358-F
EBS 485-F BamHI	AAACggatccAGGAGGAATTCACCATGAGTGATAAC AAGACATTACC	Clonagem de <i>tsiV4</i> (SBG_1829) em pEXT22
EBS 486-R HindIII	TTTaagcttTTAATCAAAGCGCCTTATCC	Clonagem de <i>tsiV4</i> (<i>SBG_1829</i>) em pEXT22
EBS 503-F Bcll	AAAAtgatcaGTGTTATATATGATTAATTTAAATG	Clonagem de <i>tsiV2.1</i> (SBG_2724) em pFPV25.1
EBS 504-R HindIII	CCCaagcttTTAAATAAAAAAACGATTAAAC	Clonagem de <i>tsiV</i> 2.1 (<i>SBG_2724</i>) em pFPV25.1
EBS 506-F BamHI	TTTggatccAGGAGGAATTCACCATGAGTGATAACA AGACATTAC	Clonagem de <i>tsiV3</i> (SBG_1842) em pEXT22
EBS 507-R HindIII	TTAATCAAAGCGCCTTATCaagcttAAAA	Clonagem de <i>tsiV3</i> (<i>SBG_1842</i>) em pEXT22
EBS 508-F Kpnl	TTTTggtaccAGGAGGAATTCACCATGCAGGTTAAC AATACATTATG	Clonagem de <i>tsiV2</i> .2 (<i>SBG_2725</i>) em pEXT22
EBS 509-R BamHI	CTATAAATCAATTTCATTCCATCTGggatccAAAA	Clonagem de <i>tsiV</i> 2.2 (<i>SBG_2725</i>) em pEXT22

^aAs enzimas de restrição estão em minúsculas e o epítopo FLAG está sublinhado.

4.2. Mutagênese

Para construir as cepas mutantes de *S. bongori* (Tabela 1), foi utilizado o protocolo descrito por Datsenko e Warnner (2000). Brevemente, cepas selvagens são transformadas com o plasmídeo pKD46 (termosensível) que codifica genes de λ -Red (γ , β e exo) e crescidas a 30 °C. Plasmídeos contendo genes de resistência aos antibióticos cloranfenicol ou canamicina (pKD3 e pKD4, respectivamente) são utilizados como molde para uma reação em cadeia da polimerase (PCR). Foram

desenhados iniciadores que possuem 15 nucleotídeos (nt) de homologia com o plasmídeo e 35 nt de homologia com as regiões flanqueadoras do gene alvo a ser deletado. Para a transformação com o produto de PCR, bactérias contendo pKD46 foram crescidas até OD_{600nm} 0.6 em 15 mL de meio LB contendo 1,5% L-arabinose, e eletroporadas (2500 V, aproximadamente 5,8 ms). A seleção de clones contendo o gene de resistência integrado no genoma foi realizada em placas contendo antibiótico. Para remover o gene de resistência das cepas mutantes, essas foram transformadas com o plasmídeo pCP20 que expressa um gene de recombinase (FLP) que reconhece as regiões FRT (FLP *recognition target*) que flanqueiam o gene de resistência a antibiótico. Ambos pKD46 e pCP20 foram eliminados posteriormente cultivando as bactérias a 37 °C por 16 h e confirmando por repique das colônias em meio com e sem antibióticos.

A inserção do epítopo 3xFLAG no C-terminal do gene Hcp (SBG_1240) foi realizada por recombinação homóloga utilizando o sistema λ-Red e uma sequência molde amplificada a partir do plasmídeo pSUB11 (UZZAU *et al.*, 2001).

4.3. Clonagem de plasmídeo para complementação

A complementação dos mutantes $\Delta tssB$ (SBG_1238), $\Delta tsiV2.1$ (SBG_2724), $\Delta tsiV3$ (SBG_1842) foram realizadas utilizando o plasmídeo pFPV25.1 (VALDIVIA; FALKOW, 1996). Este plasmídeo possui o promotor do gene *rpsM* (STM14_4121) que controla a expressão da proteína ribossomal S13 e confere expressão constitutiva (VALDIVIA; FALKOW, 1996). Para as clonagens, foram utilizadas as enzimas de restrição (*tssB*: Xbal/Pael; *tsiV2.1*: Bcll/HindIII; *tsiV3*: Xbal/HindIII) e os iniciadores descritos na Tabela 1 de modo a retirar o gene que promove a expressão da proteína GFP (*mut1*) e inserir os genes de interesse.

4.4. Análises in silico para identificação de efetores do SPI-22 T6SS

Foi realizado uma busca por BLAST no genoma de *S. bongori* NCTC 12419 para procurar possíveis efetores codificados na vizinhança gênica de VgrG, Hcp, PAAR, PAAR-like (DUF4150), DUF2169, DUF1795 e DUF4123. Após a identificação da posição dos genes de T6SS descritos acima, foram analisados 10 genes a montante e a jusante destes utilizando o programa Bastion6 (WANG *et al.*, 2018). O programa prediz a probabilidade de uma proteína ser um efetor do T6SS, utilizando modelos conhecidos e por um processo de aprendizado de máquina. Os resultados

são atribuídos um valor numérico entre 0 – 1. Valores maiores ou iguais a 0,5 foram considerados como candidatos a efetores. Para as análises foram utilizadas as configurações padrões para a análise.

4.5. Ensaio de toxicidade em Escherichia coli

As clonagens e os ensaios de toxicidade em *E. coli* foram realizados pelos estudantes de iniciação científica Julia Takuno Hespanhol (FAPESP nº 18/25316-4) e Gustavo Chagas Santos (FAPESP nº 20/15389-4) de acordo com o protocolo descrito por Bayer-Santos *et al.* (2019). Em resumo, *E. coli* contendo os genes efetores clonados no plasmídeo pBRA (SOUZA *et al.*, 2015) e os genes de proteínas de imunidade no plasmídeo pEXT22 (DYKXHOORN *et al.*, 1996) foram crescidas em meio LB, OD_{600ηm} ajustadas para 1.0 e diluídas em série. Em seguida, 5 µL de cada diluição foram plaqueados em placas LB-ágar contendo 0,2% D-glicose para repressão dos genes, ou em 0,2% L-arabinose e 200 mM IPTG (isopropil β-D-1-tiogalactopiranosida) para indução da expressão dos genes.

4.6. Western blot

S. bongori WT e S. bongori::Hcp3xFLAG foram crescidos até OD_{600nm} 2.5, e 1 mL das culturas foi coletado por centrifugação (13500 g por 2 min), o sobrenadante da cultura foi descartado e adicionado tampão de amostra (50 mM Tris-HCl pH 6.8, 2% SDS (dodecil sulfato de sódio), 10% glicerol ,1% β-mercaptoetanol, 12,5 mM EDTA (ácido etilenodiamino tetra-acético), 0,02 % azul de bromofenol) com inibidores de protease (Pierce[™] Protease Inhibitor Tablets, EDTA-Free # A32965) às células, na proporção de 100 µL para cada pellet de células obtido a partir de 1 mL de cultura em OD_{600nm} 1.0. As amostras foram desnaturadas a 100 °C por 15 min e separadas em SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Após a transferência das amostras para a membrana de nitrocelulose (0,2 µm), essas foram bloqueadas com uma solução contendo 5% de leite desnatado, Tween 20 0.05% em tampão fosfato salina (PBS) por 2 h. Em seguida, foi realizada incubação com o anticorpo primário anti-FLAG (Sigma-Aldrich® #F7425) (diluição 1:4000) por 1 h. As membranas foram lavadas 3 vezes com PBS/Tween 20 0.05% por 5 min cada, sob agitação. E em seguida, incubadas com o anticorpo secundário conjugado a peroxidase (Thermo Fisher Scientific[™] #31460) (diluição 1:8000) por 1 h, seguido pelo mesmo ciclo de lavagens. Como o anticorpo secundário é conjugado à HRP

(*horseradish peroxidase*), as membranas foram reveladas utilizando o substrato luminol e H₂O₂ (Pierce[™] ECL *Western blotting* [#]32106).

4.7. Ensaios de competição bacteriana

Para este ensaio, as bactérias foram classificadas como predadoras (bactérias com T6SS ativo) e presas (bactérias susceptíveis ao ataque das predadoras). Para a contagem das UFCs (unidades formadoras de colônia) das presas, K. pneumoniae foi selecionada ampicilina, mutantes ΔtseV2/tsiV2.1/2.2::km usando OS е $\Delta tseV3/tsiV3::km$, ainda possuem as resistências a canamicina provenientes do processo de deleção descrito a cima, e E. coli foi transformada com pEXT22 (DYKXHOORN et al., 1996), que promove resistência canamicina. Todos os predadores, tanto selvagem quanto mutantes não possuem resistência a antibióticos. A partir de um pré-inóculo de 3 mL de LB contendo antibióticos crescido por 16 h, foi realizado um sub-inóculo (1:50) no mesmo meio sem antibióticos e crescido a 37 °C até OD_{600nm} igual a 1,0. Em seguida, a OD_{600nm} foi ajustada para 0.4, e as cepas misturadas na proporção 4:1 (predadora:presa) ou 10:1 para os ensaios com mutantes de $\Delta v qr G$. Em membranas de nitrocelulose (0,2 µm) cortadas nas dimensões 1x1 cm e em tubos de 1,5 mL contendo 995 µL de meio LB, foram depositados 5 µL da mistura predador:presa. Os tubos foram diluídos e plaqueados para contagem do tempo zero (input), e as membranas foram incubadas em uma placa de LB-ágar a 37 °C por 24 horas. Em seguida, as membranas foram coletadas com pinça, transferidas para tubos de 1.5 mL contendo 1 mL de LB, vortexadas, e feitas diluições seriadas para contagem das UFCs (output). Para realizar o cálculo da taxa de presas recuperadas após cada tempo de co-incubação, as UFCs do output foram divididas pelo valor obtido no input de sua respectiva condição. Para a visualização do resultado da competição, os valores de cada condição foram normalizados pelo valor da condição controle, considerando WT=1.

 $\frac{UFC \ Output(wt)}{UFC \ Input(wt)} = X(=1) \quad \frac{UFC \ Output}{UFC \ Input} = Y \qquad \frac{Y}{x} = Taxa \ de \ recuperação \ de \ presas$

4.8. Ensaio de formação de placa de fagocitose

Ensaios foram realizados conforme protocolo de Froquet *et al.* (2009). Em resumo, placas de 24 poços (Costar® # 3524) foram preparadas com 2 mL de meio SM-ágar. Bactérias foram crescidas em 3 mL de LB por 16 h e normalizadas para

 $OD_{600\eta m}$ 2,0. Foram depositados 50 µL de cada cultura bacteriana em cada poço contendo aproximadamente 2,8 x 10⁴ UFCs, e deixado secar em fluxo laminar por 1 h - fazendo movimentos circulares periodicamente para distribuir as bactérias de forma homogênea até secar. As células de *D. discoideum* foram lavadas duas vezes em meio DB (*development buffer*) (5 mM KH₂PO₄, 5 mM Na₂HPO₄, 1 mM CaCl₂ and 2 mM MgCl₂, pH 6.5). A quantidade de células foi determinada com o auxílio de uma câmara de Neubauer e ajustada a um volume de 5 µL. Diluições seriadas para atingir a concentração de 10000, 15000, 20000 e 40000 células foram realizadas, e em seguida foi depositado 5 µL no centro de cada poço. Após secagem das gotas no fluxo laminar, as placas foram cultivas por um período de 4-7 dias a 22 °C e foto documentadas.

4.9. Análises bioinformáticas

Alinhamento de sequencias foram produzidas pelo algoritmo de pareamentolocal MAFFT (KATOH; STANDLEY, 2013) e analisadas com AliView (LARSSON, 2014) para separar as áreas de interesse. Os logos das sequências foram produzidos utilizando Jalview (WATERHOUSE *et al.*, 2009). As predições de estrutura foram realizadas com ColabFold (MIRDITA *et al.*, 2021) e AlphaFold (JUMPER *et al.*, 2021), e a visualização por meio de Pymol (DELANO, 2002).

Os genomas de *S. bongori* NCTC 12419 (número de acesso ASM25299v1) e *S.* Typhimurium ATCC 14028s (número de acesso ASM2216v1) foram retirados da base de dados do NCBI e alinhados utilizando BLASTn (CAMACHO *et al.,* 2009). Os alinhamentos foram analisados usando Artemis Comparison Tool (ATC) (CARVER *et al.,* 2005). O mapa genômico foi construído usando ATC plug-in DNAPlotter (CARVER *et al.,* 2009).

5. Resultados

5.1. Identificação de componentes do T6SS no genoma de Salmonella bongori NCTC 12419

O cluster de genes do SPI-22 T6SS é codificado pelos genes presentes na região entre SBG_1232 e SBG_1247 no genoma de *S. bongori* NCTC 12419 (Figura 5A) (FOOKES *et al.*, 2011). Para identificação de genes órfãos codificados fora desta região, realizamos uma busca por BLAST utilizando os homólogos codificados dentro do cluster estrutural como *query*. Encontramos três genes codificando VgrG (SBG_1246, SBG_2715 e SBG_3770), um gene com domínio PAAR (SBG_1232), cinco genes contendo o domínio PAAR-like/DUF4150 (SBG_1841, SBG_1846, SBG_2718, SBG_2723 e SBG_2955), e cinco genes contendo o domínio Hcp (SBG_0599, SBG_1240, SBG_3120, SBG_3143 e SBG_3925) (Tabela 2, Figura 5B). Esses genes foram renomeados arbitrariamente em ordem numérica como descrito na figura 5B.

Figura 5. Cluster do SPI-22 T6SS e genes órfãos codificados no genoma de *S. bongori* NCTC 12419. (A) Representação esquemática dos genes do cluster estrutural do T6SS. (B) Mapa circular do genoma de *S. bongori* mostrando as posições dos genes órfãos (azul: Hcp; verde: VgrG; vermelho: PAAR; amarelo: adaptadores).

5.2. O SPI-22 T6SS é expresso constitutivamente em meio LB

O SPI-6 T6SS de Salmonella enterica Typhimurium está reprimido em meio LB pela proteína H-NS (*histone-like nucleoid structuring protein*) (BRUNET *et al.*, 2015). Para analisarmos se a expressão de SPI-22 T6SS de *S. bongori* está ativa em meio LB, realizamos uma fusão do epítopo FLAG (3xFLAG) na porção C-terminal do gene Hcp (SBG_1240) no seu locus genômico (Figura 6A), sendo regulado pelo promotor endógeno. Análises por *Western blot* do extrato total de proteínas da cepa contendo Hcp-3xFLAG (17 kDa) revelaram uma banda do tamanho esperado, sugerindo que o SPI-22 T6SS esteja ativo nessas condições (Figura 6B).

Figura 6. Expressão de Hcp-3xFLAG é constitutiva em meio LB. (A) Genes estruturais do SPI-22 T6SS (azul) e epítopo 3xFLAG (vermelho) fusionado a região C-terminal da proteína Hcp (SBG_1240). **(B)** Cepas WT e Hcp-3xFLAG foram crescidas em meio LB líquido até OD_{600ηm} igual a 2. As bactérias foram coletadas e o extrato total de proteínas separado em SDS-PAGE 15%, seguido de *Western blot* com anticorpos anti-FLAG.

5.3. O SPI-22 T6SS possui atividade antibacteriana

Uma vez que as evidências sugerem que o SPI-22 T6SS é expresso de forma constitutiva quando cultivada em meio LB, decidimos analisar se o SPI-22 T6SS de *S. bongori* possui atividade antibacteriana. Iniciamos ensaios de competição entre *S. bongori, E. coli* (K12 W3110) e *Klebsiella pneumoniae* (NCTC 13439) (Figura 7). Para verificar se o SPI-22 T6SS é de fato utilizado por *S. bongori* para a competição, utilizamos duas cepas para as competições: WT (*wild-type*) e $\Delta tssB$ (mutante nulo

T6SS). O motivo de utilizarmos um mutante $\Delta tssB$ é devido a ser uma proteína importante para a contração da bainha do sistema T6SS (BÖNEMANN *et al.*, 2009). Observamos que quando *S. bongori* WT e $\Delta tssB$ (predadora) eram co-incubadas com *E. coli* (presa), era possível recuperar mais presas quando essas eram co-incubada com $\Delta tssB$ (Figura 7A). O mesmo perfil foi obtido para uma segunda espécie de presa, *Klebsiella pneumoniae* (Figura 7B). A complementação de $\Delta tssB$, restaurou os níveis observados para a cepa WT, confirmando a atividade antibacteriana do SPI-22 T6SS (Figura 7A). Esses resultados demonstram que o SPI-22 T6SS tem atividade antibacteriana.

Figura 7. O SPI-22 T6SS fornece vantagem competitiva para *S. bongori* contra outras espécies bacterianas. (A) Competição bacteriana entre *S. bongori* e *E. coli* K12 W3110 em meio LB. (B) Competição bacteriana entre *S. bongori* WT, $\Delta tssB$ e $\Delta tssB$ complementado com pFPV25.1 expressando tssB contra *E. coli* K12 W3110 e *K. pneumoniae* em meio LB-ágar incubando por 24 horas. O resultado representa a média e desvio padrão de três experimentos independentes realizados em duplicata e analisados por meio de comparação com WT que foi normalizado para 1. *One-way* ANOVA seguido de teste de comparação múltipla de Dunnett's. (* p <0,5; **p < 0,05 e ns, não significativo).

5.4. Identificação de efetores secretados pelo SPI-22 T6SS

Sabendo que o SPI-22 T6SS possui atividade antibacteriana, decidimos analisar o genoma de *S. bongori* em busca de possíveis efetores que pudessem promover esse fenótipo. Utilizamos o programa Bastion6 (WANG *et al.*, 2018) para identificar prováveis efetores codificados na vizinhança de genes estruturais/órfãos e adaptadores do T6SS. Analisamos 10 genes a montante ou jusante dos genes de interesse (Figura 8), e encontramos um total de 23 candidatos (Tabela 2).

Figura 8. Esquema da região genômica contendo os genes estruturais T6SS (azul), os prováveis efetores identificados (verde) e proteínas adaptadoras DUF2169 (amarelo). **(A)** Cluster de genes vizinhos a Hcp1. **(B)** Cluster estrutural de T6SS contendo PAAR (SBG_1232), Hcp2 (SBG_1240) e VgrG1 (SBG_1246). **(C)** Cluster de genes vizinhos a DUF4150-1 (SBG_1841), DUF4150-2 (SBG_1846) e DUF2169-1 (SBG_1847). **(D)** Cluster de genes vizinhos a VgrG2 (SBG_2715), DUF4150-3 (SBG_2718), DUF2169-2 (SBG_2721) e DUF4150-4 (SBG_2723). **(E)** Cluster de genes vizinhos a DUF4150-5 (SBG_2955). **(F)** Cluster de genes vizinhos a Hcp3 (SBG_3120). **(G)** Cluster de genes vizinhos a Hcp4 (SBG_3143). **(H)** Cluster de genes vizinhos a VgrG3 (SBG_3770). **(I)** Cluster de genes vizinhos a Hcp5 (SBG_3925). Foram analisados 10genes a montante e a jusante de cada gene estrutural utilizando software Bastion6 (WANG *et al.*, 2018).

Dentre os efetores preditos, os genes SBG_2718 e SBG_2723 chamaram nossa atenção (Figura 8D), pois contém um domínio N-terminal PAAR-like/DUF4150 e um domínio C-terminal anotado como VRR-Nuc (*virus-type replication-repair nuclease*) (Pfam PF08774) (KINCH et al, 2005; IYER *et al.*, 2006).

Figura 8	KEGG ^a	Nome ^b	Domínio (Pfam)	e-value	Predição Bastion6 ^c
ter)	SBG_0599	Hcp1	T6SS_HCP	2.1e-13	0.814
Clus (A	SBG_0606		CT_C_D	1.7e-93	0.539
	SBG_1232		PAAR_motif	0.0043	0.312
	SBG_1234		ImcF-related_N	7.1 e-26	0.507
ŝ	SBG_1240	Hcp2	T6SS_HCP	3.6 e-37	0.682
er (E	SBG_1246	VrgG1	VgrG	1.5 e-78	0.945
luste	SBG_1247		MORN_2	0.0093	0.658
Ö	SBG_1255		Sod_Fe_	4.2 e-39	0.626
	SBG_1256		NLPC_P	6.3 e-3	0.569
	SBG_1260		Oxidored_FMN	1.4 e-88	0.536
	SBG_1828		DUF4366	0.089	0.606
$\widehat{\mathbf{a}}$	SBG_1830		Peptidase_C69	2.1 e-123	0.803
er (C	SBG_1834		Autotransporter	7.2 e-41	0.669
luste	SBG_1841	TseV3	DUF4150+VRR-Nuc	3.3 e-30	0.821
ū	SBG_1846		DUF4150+EndoU	1.1 e-33	0.934
	SBG_1847		DUF2169	1 e-71	0.590
	SBG_2715	VrgG2	VgrG	2.1 e-71	0.926
â	SBG_2711		MItc_	1.8 e-66	0.663
er (D	SBG_2718	TseV1	DUF4150+VRR-Nuc	2.6 e-34	0.495
luste	SBG_2719		DUF3396	8.2 e-26	0.756
U U	SBG_2721		DUF2169	3 e-63	0.630
	SBG_2723	TseV2	DUF4150+VRR-Nuc	1.4 e-31/0.021	0.549
	SBG_2945		LptD_N	7.9 e-32	0.575
(E)	SBG_2952		unknow	-	0.906
ster	SBG_2953		unknow	-	0.886
Clu:	SBG_2954		unknow	-	0.851
	SBG_2955		DUF4150+DUF3274	3.7 e-31	0.949
۶r					
Cluste (F)	SBG_3120	Нср3	T6SS_HCP	1.6 e-20	0.644
-					
(C)	SBG_3137		Pirin	1.8 e-37	0.707
ster	SBG_3143	Нср4	16SS_HCP	0.003	0.831
Clust	SBG_3144		G_glu_transpept	2.5 e-187	0.524
Ŭ	SBG_3149		SBP_bac_8	2.5 e-42	0.631

Tabela 2. Prováveis efetores do SPI-22 T6SS de acordo com predição do programa Bastion6.

Cluster (H)	SBG_3770	VgrG3	VgrG	5.1 e-72	0.872
	SBG_3753		DUF1996	1.2 e-38	0.945
	SBG_3755		Big_13	9.8 e-23	0.567
	SBG_3756		unknow	-	0.629
	SBG_3768		unknow	-	0.938
	SBG_3782		DUF4156	1.2 e-30	0.619
Cluster (I)	SBG_3925	Нср5	T6SS_HCP	6.50 e-26	0.526

Genes estruturais (azul) utilizados para análise da vizinhança. Efetores preditos (verde) e adaptadores (amarelo).

anúmero de acesso KEGG (Kyoto Encyclopedia of Genes and Genomes).

^bnomes arbitrários utilizados neste trabalho.

°score Bastion6.

O domínio de VRR-Nuc de TseV4 (SBG_1828) não foi identificado durante a análise por Bastion6

A jusante dos genes SBG_2718 e SBG_ 2723 pode-se encontrar dois pares de genes que possuem o domínio DUF3396 (SBG_2719 e SBG_2720; SBG_2724 e SBG_2725) (Pfam PF11876) (Figura 8D). Esta configuração de genes sugere que as proteínas contendo o domínio VRR-Nuc (SBG_2718 e SBG_2723) poderiam ser efetores fusionados ao domínio PAAR-like/DUF4150, e os genes com domínio DUF3396 poderiam ser proteínas de imunidade.

Após as análises iniciais pelo software Bastion6, utilizamos a ferramenta BLASTP (KANEHISA *et al.* 2022) para localizar outros genes que possuíam o domínio VRR-Nuc no genoma de *S. bongori*. Identificamos os genes SBG_1828 e SBG_1841, ambos apresentando uma proteína contendo DUF3396 codificada a jusante (Figura 8C). SBG_1828 parece estar truncada, pois não possui domínio N-terminal PAAR-like/DUF4150 - o que provavelmente inviabilizaria sua secreção via SPI-22 T6SS (Figura 9).

Embora tenhamos encontrado genes que aparentam ser efetores evoluídos e possuem um valor de predição do Bastion6 mais alto (SBG_1846, com 0.934; SBG_2955, com 0.949) que as dos genes com domínio predito para os VRR-Nuc (SBG_2718, com 0.495; SBG_2723, com 0.549; SBG_1841, com 0.821; SBG_1828, com 0.606), decidimos estudá-los devido a existirem quatro copias de possíveis efetores no genoma, e por ser um domínio associado com atividade de nucelase, podendo ser um efetor que interaja com células eucarióticas. Desta maneira, consideramos as proteínas com domínio VRR-Nuc como possíveis efetores do SPI-22 T6SS, e renomeamos os genes SBG_2718, SBG_2723, SBG_1841 e SBG_1828

para TseV1, TseV2, TseV3 e TseV4 (*Type VI effector with VRR-Nuc*), respectivamente, seguindo a nomenclatura previamente proposta por Wang *et al.* (2021). As possíveis proteínas de imunidade também foram renomeadas: SBG_2719 e SBG_2720 como TsiV1.1 e TsiV1.2; SBG_2724 e SBG_2725 como TsiV2.1 e TsiV2.2; SBG_1842 como TsiV3 e SBG_1829 como TsiV4.

SBG_2718 SBG_2723 SBG_1841 SBG_1828	1 1 1	- MITININGLTLCHKGSGGISHNTLPDVCKTPPFGVPVPENEAYSADLIKGTTSVFADGGNMIAHVGSQFARS MAITININGLTLCHKGSGGISHNTLPDVCKTPPFGTPVPENEAYSADLVKGTTSVSADSGNMIAIVGSQFARS - MLTININGLTLCHKGSNGISHNTLPDVCKTPPFGVPVAYENEACSADLVKGTVSVFADGGNMIANMGSQFARS - MCAE	73 74 73 4
Consensus		MITININGLICHKGSGGISHNTLPDVCKTPPFGVPVPYENEAYSADLVKGTTSVFADGGNMIA+VGSQFARS	
SBG_2718 SBG_2723 SBG_1841 SBG_1828	74 75 74	VFDE AGSMGG I LSGTNMAE TEWI SHSFD VFFEKKP ACRL TDKL FMNHRNT VNMAGE I QAP I E AMPE VK YLCQ V I VFDE PGAMGGM I SGTNMAE TDWI SHSFD VFFEKKP ACRL TDKL FMNHRNT VNMAGL CQNP LKEN VLESK I CDA I VFNE PGSMGG VLSGTNK AE TDWI SHSFD VFFEKKP ASRL TDKL FMNHRNT VNMAGL CQESLSDDE LDD I I CKHA	147 148 147
Consensus		VFpErgsMGG_LSGTNMAETeWISHSFDVFFEKKPAcRLTDKLFMNHRNTVNMAGLCQ+PL++++L+++IC++I	
SBG_2718 SBG_2723 SBG_1841 SBG_1828	148 149 148	CTCDASPTTSASG	160 222 165
Consensus		C+C+++++++++++++++++EAPAIGLAQELLGRFLGVNSELPKTGDKVKTGPRQKCFAQQFNQSGQSDTWAGAT	
SBG_2718 SBG_2723 SBG_1841	161 223 166		192 274 203
SBG_1828			
SBG_1828 Consensus		PQDPCYLTEVPYI I DKSKL I QNRADGRSTFPGGPQ+++++++CVED+LR+E+YN+RYPS-++++I++E+++D++	
SBG_1828 Consensus SBG_2718 SBG_2723 SBG_1841 SBG_1828	193 275 204 5	PQDPCYLTE VPY I IDKSKL IQNRADGRSTFPGGPQ++++++CVED+LR+E+YN+RYPS-++++I++E+++D++ KTPPRPLLNREALKDG I IRPSE YLPKRMK IEKLKPAK ANGG I YQVRVPDAV IMRNPA IPDL TAPNLKAVVE IKF 	266 306 248 39
SBG_1828 Consensus SBG_2718 SBG_2723 SBG_1841 SBG_1828 Consensus	193 275 204 5	PQDPCYLTEVPYI I DKSKL I QNRADGRSTFPGGPQ++++++CVED+LR+E+YN+RYPS-++++I ++E+++D++ KTPPRPLLNREALKDGI I RPSE YLPKRMK I EK LKPAK ANGG I YQVR VPDAV I MRNPA I PDL TAPNLK AVVE I KF 	266 306 248 39
SBG_1828 Consensus SBG_2718 SBG_1841 SBG_1828 Consensus SBG_2718 SBG_2718 SBG_2723 SBG_1841 SBG_1828	193 275 204 5 267 307 249 40	PQDPCYLTEVPYI I DKSKL I QNRADGRSTFPGGPQ++++++CVED+LR+E+YN+RYPS-++++I++E+++D++ KTPPRPLLNRE ALKDG I I RPSE YLPKRMK I EK LKP AK ANGG I YQVR VPDAV I MRNP A I PDL TAPNLK AV VE I KF PRK I V I WDL VVLKNS ALS - ARWKN I EQ I I E I KF LELI YSGTQEGAPSARYYTPKGGRRMD I I QLNRDGKPRLI DVKF GAPSARYYTPKGGRRMD I QLNRDGKPRLI DVKF GAPSARYY	266 306 248 39 279 374 320 111
SBG_1828 Consensus SBG_2718 SBG_1841 SBG_1828 Consensus SBG_2718 SBG_2718 SBG_2723 SBG_1841 SBG_1828 Consensus	193 275 204 5 267 307 249 40	PQDPCYLTEVPYI I DKSKL I QNRADGRSTFPGGPQ++++++CVED+LR+E+YN+RYPS-++++I++E+++D++ KTPPRPLLNRE ALKDGI I RPSE YLPKRMK I EK LKP AK ANGGI YQVR VPDAV I MRNPA I PDL TAPNLK AV VE I KF PRK I V I WDL VVLKNSALS - ARWKN I EQ I I E I KF LELI YSGTQEGAPSARYY	266 306 248 39 279 374 320 111
SBG_1828 Consensus SBG_2718 SBG_1841 SBG_1828 Consensus SBG_2718 SBG_2718 SBG_1841 SBG_1828 Consensus SBG_2718 SBG_2718 SBG_2718 SBG_2718 SBG_2723 SBG_1841 SBG_1828	193 275 204 5 267 307 249 40 375 321 112	PQDPCYLTEVPYI I DKSKL I QNRADGRSTFPGGPQ++++++CVED+LR+E+YN+RYPS-++++I++E+++D++ KTPPRPLLNRE ALKDG I IRPSEYLPKRMK I EKLKP AK ANGG I YQVRVPDAV I MRNPA I PDL TAPNLKAVVE I KF PRK I V I WDL VVLKNSALS - ARWKN I EQI I E I KF LEL I YSGTQE - GAPSARYY	2666 248 39 279 374 320 111 384 354 145

Figura 9. Alinhamento comparativo de genes contendo o domínio VRR-Nuc. SBG_1841, SBG_2723 e SBG_2718 possuem domínios DUF4150 em sua porção N-terminal e VRR-Nuc em seu C-terminal. SBG_1828 apresenta somente um domínio VRR-Nuc. Estrela vermelha indica o início do alinhamento do domínio VRR-Nuc. Alinhamentos feitos por Aliview (LARSSON *et al.,* 2014) e logo adicionado com Jalview (WATERHOUSE *et al.,* 2009).

5.5. TseV2/TsiV2.1 e TseV3/TsiV3 constituem pares efetor e proteína de imunidade

Para testar a atividade antibacteriana dos genes TseV1, TseV2, TseV3, e TseV4 foram realizados ensaios de toxicidade em *E. coli* (Figura 10). Para esses ensaios, cada efetor e sua respectiva proteína de imunidade foram clonados em plasmídeos compatíveis e com expressão controlada. A porção C-terminal dos efetores TseV1, TseV2 e TseV3, e a seguência completa de TseV4 foram clonados no plasmídeo pBRA, que possui um promotor PBAD (induzido por L-arabinose e reprimido por D-glicose) (SOUZA et al., 2015). As proteínas de imunidade foram clonadas no plasmídeo pEXT22, que possui um promotor PTAC que é induzido por IPTG (DYKXHOORN et al., 1996). Em seguida, cada par de efetor e proteína de imunidade foram co-transformados em E. coli. As cepas foram crescidas, diluídas, e 5 µL de cada cepa foi adicionado sobre placas de LB-ágar contendo 0,2% de D-glicose ou 0,2% de L-arabinose mais 200 µM de IPTG. Os resultados demonstraram que TseV1 e TseV4 não apresentam atividade toxica, e apenas TseV2 e TseV3 foram capazes de inibir o crescimento de E. coli (Figura 10). Além disso, verificamos que somente a proteína de imunidade TsiV2.1 foi capaz de proporcionar imunidade contra TseV2. Da mesma forma, apenas TsiV3 foi capaz de neutralizar o efeito tóxico de TseV3 (Figura 10).

Figura 10. Ensaio de toxicidade em *E. coli.* Os genes com domínio VRR-Nuc (TseV1-4) foram clonados no plasmídeo pBRA, e os genes de proteínas de imunidade (TsiV1-4) foram clonados no plasmídeo pEXT22, com expressão regulada pelos promotores P_{BAD} e P_{TAC}, respectivamente. Imagens cedidas por Julia Takuno Hespanhol e Gustavo Chagas Santos.

5.6. TseV2 e TseV3 são efetores secretados pelo SPI-22 T6SS

Sabendo que TseV2 e TseV3 possuem atividade tóxica quando expressas no citoplasma de *E. coli*, ainda era necessário verificar se esses efetores são dependentes do T6SS para a sua secreção. Para testar essa hipótese, utilizamos uma cepa triplo mutante $\Delta tseV2/tsiV2.1/tsiV2.2$ e uma duplo mutante $\Delta tseV3/tsiV3$ como presas para competir contra WT e $\Delta tssB$ em ensaios de competição bacteriana (Figura 11A e 11B). Se os efetores forem secretados via SPI-22 T6SS, a ausência de suas respectivas imunidades na célula presa deixaria essa susceptível a intoxicação.

Realizando esses ensaios, recuperamos um maior número de presas quando as cepas susceptíveis foram co-incubadas com $\Delta tssB$, indicando que TseV2 e TseV3 são secretados via SPI-22 T6SS (Figura 11A e 11B). Além disso, quando $\Delta tseV2/tsiV2.1/tsiV2.2$ foi complementada com o plasmídeo pFVP25.1 expressando TsiV2.1, essa cepa deixou se ser susceptível a WT (Figura 11A). O mesmo padrão foi observado para $\Delta tseV3/tsiV3$ (Figura 11B). As curvas de crescimento demostram que mesmo com a deleções dos genes, o crescimento das cepas não foi afetado (Figura 11C)

Figura 11. TseV2 e TseV3 são secretados via SPI-22 T6SS. (A) Competição bacteriana de *S. bongori* WT e $\Delta tssB$ contra cepa triplo mutantes $\Delta tseV2/tsiV2.1/tsiV2.2$ complementada ou não com pFPV25.1 tsiV2.1. O resultado representa a média e desvio padrão de seis experimentos realizados independentemente em duplicata. **(B)** Competição bacteriana de *S. bongori* WT e $\Delta tssB$ contra cepa duplo mutante de $\Delta tseV3/tsiV3$ complementada ou não com pFPV25.1 tsiV3. O resultado representa a média e desvio padrão de seis experimentos realizados independentemente em duplicata. **(B)** Competição bacteriana de *S. bongori* WT e $\Delta tssB$ contra cepa duplo mutante de $\Delta tseV3/tsiV3$ complementada ou não com pFPV25.1 tsiV3. O resultado representa a média e desvio padrão de seis experimentos realizados independentemente em duplicata. **(C)** Curva de crescimento das cepas mutantes e WT de *S. bongori* utilizados nos ensaios de competição. A curva representa a média de dois experimentos independentes. (*** p=0,005; *ns*, não significativo).

5.7. Predições das estruturas 3D dos efetores TseV1-4

Proteínas contendo o domínio VRR-Nuc constituem uma família (PF08774) que pertence a superfamília PD-(D/E)xK (STECZKIEWICZ *et al.*, 2012). A superfamília PD-(D/E)xK é composta por um grupo funcionalmente diverso que possui representantes que estão envolvidos em replicação de DNA (*Holliday junction resolvases*), processos de restrição-modificação, reparo de DNA e *splicing* (STECZKIEWICZ *et al.*, 2012). Inicialmente foi sugerido que proteínas contendo o domínio VRR-Nuc estariam envolvidas com metabolismo de DNA (IYER *et al.*, 2006). O domínio de VRR-Nuc é caracterizado por ter uma arquitetura singular no seu core catalítico, formada por duas alfa-hélices e quatro folhas beta na sequência: $\alpha_1\beta_1\beta_2\beta_3\alpha_2\beta_4$ (STECZKIEWICZ *et al.*, 2012). Os resíduos catalíticos conservados característicos da superfamília PD-(D/E)xK (Asp, Glu e Lys) estão localizados entre $\beta_2\beta_3$ (STECZKIEWICZ *et al.*, 2012).

Para entender melhor o motivo pelo qual somente TseV2 e TseV3 possuem atividade tóxica em *E. coli*, analisamos as sequencias primárias e as predições das estruturas terciárias dos homólogos TseV1, TseV2, TseV3 e TseV4 de *S. bongori*, e ainda incluímos TseV^{PA} de *Pseudomonas aeruginosa* (PA0822) (WANG *et al.*, 2021).

Através de uma análise cuidadosa das sequencias, é possível observar que partes essenciais do core catalítico ($\alpha_1\beta_1\beta_2\beta_3\alpha_2\beta_4$) estão ausentes nos efetores TseV1, TseV2 e TseV4 (Figura 12A e 12B). TseV1 não possui α_2 e β_4 ; TseV2, não contém β_1 ; e TseV4 não contém α_1 e β_1 (Figura 12A e 12B). Como TseV2 é a proteína tem menos componentes estruturais ausentes e ainda tem efeito toxico, isso indica que β_1 talvez não seja essencial para a atividade enzimática.

Figura 12. Alinhamento e predição estrutural de TseV1, TseV2, TseV3 e TseV4. (A) Alinhamento estrutural dos domínios de VRR-Nuc de TseV1, TseV2, TseV3, TseV4 e TseV^{PA}. **(B)** Predições estruturais do core catalítico dos efetores TseV1-4 de *S. bongori*. Abaixo está assinalado em vermelho os elementos estruturais ausentes em cada homólogo.

5.8. TseV2 e TseV3 dependem de VgrGs distintos para secreção

As proteínas PAAR ficam localizadas na extremidade do dardo formado por VgrGs, havendo interação específica entre essas proteínas (SHNEIDER *et al.*, 2013). Deste modo, para que um efetor contendo o domínio PAAR seja secretado, esse precisa interagir com um VgrG. Como os efetores TseV2 e TseV3 possuem um domínio PAAR-like/DUF4150 na porção N-terminal, gostaríamos de identificar a qual dos três VgrGs codificados no genoma de *S. bongori*, esses dois efetores poderiam associar-se para secreção (HACHANI *et al.*, 2014; BONDAGE *et al.*, 2016). Para tanto, construímos cepas mutantes para os três VgrGs e realizamos ensaios de competição bacteriana. Para este ensaio, utilizamos a cepa triplo mutante $\Delta tseV2/tsiV2.1/tsiV2.2$ e a duplo mutante $\Delta tseV3/tsiV3$ como presas para competir contra WT, $\Delta tssB$ e os mutantes de cada VgrG encontrado no genoma de *S. bongori*: $\Delta vgrG1$ (SBG_1246), $\Delta vgrG2$ (SBG_2715) e $\Delta vgrG3$ (SBG_3770) (Figura 13).

Quando competimos Δ*tseV2/tsiV2.1/tsiV2.2* contra as cinco cepas predadoras, somente obtivemos um número maior de recuperação de presas quando essas foram

co-incubadas com $\Delta tssB$ e $\Delta vgrG2$, indicando que VgrG2 é importante para secreção de TseV2 (Figura 13A). Além disso, quando competimos $\Delta tseV3/tsiV3$ contra as cinco cepas predadoras, observamos uma maior recuperação de presas quando co-incubadas com $\Delta tssB$ e $\Delta vgrG3$, sugerindo que a secreção de TseV3 é dependente de VgrG3 (Figura 13B).

Figura 13. TseV2 e TseV3 são secretados por VgrGs distintos. (A) Competição bacteriana de *S. bongori* Δ tseV2/tsiV2.1/tsiV2.2 contra mutantes de três proteínas VgrG. (B) Competição bacteriana de *S. bongori* Δ tseV3tsiV3 contra mutantes de três proteínas VgrG. O resultado representa a média e o desvio padrão de seis experimentos independentes realizados em duplicata. (** p > 0.05; *** p > 0.005; *ns* não significativo).

Um trabalho recente revelou que a porção C-terminal das proteínas VgrG determina a interação e seleção de efetores (LIANG *et al.*, 2021) (Figura 14).

Figura 14. Modelo de interação entre as proteínas PAAR e VgrG: A extremidade C-terminal do trímero de VgrG possui sequencias de amino ácidos distintos, o que promove a especificidade da interação com as proteínas de secreção como o PAAR, efetores e proteínas adaptadoras. Por meio destas sequencias distintas é possível que ocorra a secreção de múltiplos efetores ligados ao VgrG no caso de ser formado por um heterotrímero.

As proteínas VgrG2 e VgrG3 (órfãs) são bastante diferentes quando comparadas a VgrG1, que é codificada dentro do cluster SPI-22 T6SS (25,2% e 24,2% de identidade, respectivamente) (Figura 15). No entanto, as proteínas VgrG2 e VgrG3 apresentam 80,4% de identidade, considerando a sequência completa dessas duas proteínas. Além disso, a porção N-terminal de VgrG2 e VgrG3 possui uma identidade de 96,9% (VgrG2₁₋₅₆₅ e VgrG3₁₋₅₄₅), e somente 26% de identidade entre as regiões C-terminais (VgrG2₅₆₆₋₇₀₉ e VgrG3₅₄₆₋₇₂₈) (Figura 16). Esses resultados corroboram os achados que indicam que a região C-terminal de VgrG seja responsável pela seleção dos efetores (LIANG *et al.*, 2021).

VgrG1 VgrG2 VgrG3	1 ······MPDTTIIKLTAPNLTGLTVATAYTDSQLNTLTTATIAATTSA·····PLTLDSALATHLTVT···INDANYDALIAEAH···QLPATGNAD· 1 MSKESIPFHTVIMLIILSGIVSLGLFYPPPQCRFPQDTFSSALVEVFVSSKGLRFTLEVDGLMQTATAVTAFSLYQSHSTPFVLEADIASGLPDLVAADF 1 ······MLIILSGIVSLGLFYPPPQCRFPQDTFSSALVEVFVSSKGLRFTLEVDGLMQTATAVTAFSLYQSHSTPFVLEADIASSLPDLVAADF	80 100 88
Consensus	ML I SGIVSLU FYPPPOCRFPOD FSSALVEVEVSSKGLRFT EV GLWQ ATAV AFSLYOSHSTPFVL DIAS VOLVAUF	-
VgrG1 VgrG2 VgrG3	81) 144) 200) 188
Consensus	LEKNAILTLWQGTEALRHVSGIISEVSLGENNHWQWK HLTIV PLIKCG RQN FKIF VQODIRT SSTLLSEN V TANTPVFYDPHPAKEFVU GET LEKNAILTLWQGTEALRHVSGIISEVSLGENNHWQMRYHLTIVPPLWRCGLRQNFRIFQQQDIRTISSTLLSEN V TAWTPVFYDPHPAREFCVQYGETD	Ĵ
VgrG1 VgrG2 VgrG3	145 FNF ISRLLEGEG ICWF - FTHAEGK - HTLVLADDNSAFPP I PGEKKVKYQAAQSGARE TGM I RSAQLHLQATAQGFQGSDYNYEQPK - AALFSQAGEKKGG 201 LAFLTRLWAEEG I FYFDWHAPEGPAQKLVLCDDAAGVSSL - GE I PFNPDTATEVSTAC I SGFRYRARTGPSSVE I ODYTFRTPAWPGYYSHAAENLNG 189 LAFLTRLWAEEG I FYFDWHAPEGPAQKLVLCDDAAGVSSL - GE I PFNPDTATEVSTAC I SGFRYRARTGPSSVE I ODYTFRTPAWPGYYSHAAENLNG	; 241 ; 297 ; 285
Consensus	LAFLTKLWAELUIFYTDHAPLUPAGKLVLCDDAAGVSSL-UL. IPPNPDTATEVSIACISGFRYRARTGPSSVEIOUITFRTYAWPGYVDHALDUV LAFLTRLWAEEGIFYFDWHAPEGPAGKLVLCDDAAGVSSLPGEKKIPFNPDTATEVSTACISGFRYRARTGPSSVEIODYTFRTPAWPGYVSHAAENLNG	5
VgrG1 VgrG2 VgrG3	242 MQYQHPGRFSVKAEGDALAAWKVNALKAQAKQLVGESDCAALMAGHWFTLTDHDDKSLNIDWLVTAV	317 397 377
Consensus	OFTRYEIFDY UN KOESHUR FARYR EGWRHDTETAACTOHSPALCPUKR ILIGIPSGTLINE OVSCVLT GOODALGSOPOAL GSOPOAL GSOPO	<u>i</u>
VgrG1 VgrG2 VgrG3 Consensus	318 RNRFTA I PKATP YRP LAVTPOPFMHTQTATVVGKSGEE I WTDKLGRVKVQFPWDREGKSDE TSSCWLRVATAWSGNGFGAQF I PRIGQEVVVSFIDGSPD 398 ENHFDV I PADRTWRAPP LPKPAVDOPOSA I VTOPAGEE I FCDEHGRVRVRFHWDRYCPGNEDSSCWI RVSQAWAGTGFGHLA I PRVGQEVI VDFLNGOPD 378 ENHFDV I PADRTWRAPP LPKPSVDOPOSA I VTOPVGEI I FCDEHGRVRVRFHWDRYCPGNEDSSCWI RVSQAWAGTGFGNLA I PRVGQEVI VDFLNGOPD ENHFDV I PADRTWRAPP LPKPSVDOPOSA I VTOPVGEI I FCDEHGRVRVRFHWDRYCPGNEDSSCWI RVSQAWAGTGFGNLA I PRVGQEVI VDFLNGOPD	417 497 477
VarQ4	ENHED VIP ADRIVRAPPLEKE VODEVAS I VTOP+GEETFODEHGRVRVRFHWDRYCPGNEDSSCWIRVSQAWAGTGFG+LATPRVGQEVTVDFLNGDPD	j . = 1 =
VgrG2 VgrG3 Consensus	418 OP II MORTYHODNESPOSLEPOTKTOMT I RSKTYKODOFNELEFEDATDNE OVY I HAOKNMDTEVLHDKTTVDHDHTETVKN	588
	K'L'T'CV'NGA'AL'YA'ANQ''SG'KT'SE' D'KKOB'LLANQ''D'DFOLT'HNBK'D'EVNETOSIGA''DFOLT'HNBK'D'EVNETOSIGA'''DFOLT'KO QPIIMGRTYHQDNRSPGSLPGTKTQMTIRSKTYKGDGFNELRFEDATD+EQVYIHAQKNMDTEVLND+TTTV+HDHTETVKNDRTRIVEEGNQTVTVK+G	2
VgrG1 VgrG2 VgrG3	516 NRTVKIEKOSDTLEVKOKRSVTVKODQEHAVDONETHKVKONYTLNVDONLTIKVSGTLTLESSKTLNLKSGADLSASATSGLKLDATN	604 671 666
Consensus	ҰġŦĔ <u>ĬĔġġġġġġġŢŢĬĬġĬŇĨġĔġĬŎġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ</u>	ī
VgrG1 VgrG2 VgrG3	605 IASEAKASLTOKAATISHEAKATLTSKASATQTVDGGGMLIIKGGLVRIN 672 GECVLKMNKDGTIMLNGVKIQF KADDSIKG VASTVHFN 667 YSAGEHLELVCGQARLVLTQDGGIFLNGTAIHL QGAQAISGDGPVINMNCGAAKNPPDAPEQ	654 709 728
Consensus	SAGEHIELI+SEGEHILI-TODELI-LING+KILI+TSKA+A+0+L+GGGMILI+G++V++NCGAAKNPPDAPEO	

Figura 15. Alinhamento das proteínas VgrG1, VgrG2 e VgrG3 de *S. bongori*. Alinhamento da sequência de aminoácidos de VgrG1 (SBG_1246), VgrG2 (SBG_2715) e VgrG3 (SBG_3770). Alinhamento feito com AliView (LARSSON, 2014) e logo das sequências adicionados em Jalview (WATERHOUSE *et al.*, 2009).

Figura 16. Alinhamento das proteínas VgrG2 e VgrG3 de *S. bongori*. Alinhamento de sequência de aminoácidos de VgrG2 e VgrG3. Alinhamento feito com AliView (LARSSON, 2014) e logo das sequências adicionados em Jalview (WATERHOUSE *et al.*, 2009).

5.9. Ensaio de formação de placa de fagocitose

Para testar se o SPI-22 T6SS de *S. bongori* é capaz de atacar células eucariotas, decidimos realizar ensaios de formação de placa de fagocitose utilizando como modelo a ameba de vida livre *Dictyostelium discoideum*. Neste ensaio, foram utilizados *S. bongori* WT, $\Delta tssB$, $\Delta vgrG1$, $\Delta vgrG2$ e $\Delta vgrG3$ como fonte de alimento para *D. discoideum* (Figura 17). Os resultados revelam a formação de um halo maior na cepa $\Delta tssB$ em comparação a WT (Figura 17), sugerindo que o T6SS de *S. bongori* promova alguma resistência ao ataque de *D. discoideum*. Porém, esses resultados ainda são muito preliminares para permitir que possamos chegar a uma conclusão sobre a atividade anti-eucariótica de SPI-22 T6SS.

Figura 17. Ensaio de fagocitose com *Dictyostelium discoideum.* Representação média de três experimentos de fagocitose utilizando *S. bongori* WT, $\Delta tssB$, $\Delta vgrG1$, $\Delta vgrG2$ e $\Delta vgrG3$. Cada poço apresenta aproximadamente 2,8 x 10⁴ UFCs. As fotos foram tiradas no quarto dia de incubação. A direita está representada a quantidade de *D. discoideum* inoculada em cada poço da placa.

6. Discussão

Quando as bactérias estão inseridas em um ambiente em que há necessidade de disputar recursos, cada pequena vantagem que uma bactéria possa apresentar para se sobressair em relação às competidoras é de grande importância para a sua sobrevivência. Durante o processo evolutivo, *S. bongori* adquiriu o SPI-22 T6SS, o qual foi inserido no mesmo locus gênico que o SPI-2 T3SS de *S. enterica* (Figura 18). O SPI-2 T3SS de *S. enterica* é ativado após a entrada da bactéria no vacúolo fagocítico de células hospedeiras por meio da sinalização da mudança do pH (LÖBER *et al.,* 2006). Aproximadamente 30 efetores distintos são liberados através da membrana do vacúolo via SPI-2 T3SS (MILLS *et al.,* 2008), e podem ter funções variadas (FIGUEIRA; HOLDEN, 2012). O SPI-2 T3SS é importante para a infecção e sobrevivência de *S. enterica* em macrófagos (HENSEL *et al.,* 1998). Uma das nossas hipóteses é que SPI-22 T6SS poderia também fornecer alguma vantagem no confronto contra células eucarióticas.

Figura 18. Sintenia da região genômica contendo SPI-22 T6SS de S. bongori e SPI-2 T3SS de S. enterica Typhimurium 14028s. Alinhamento genômico das regiões que codificam o SPI-22 T6SS de S. bongori NCTC 12419 (ASM25299v1) e o SPI-2 T3SS de S. Typhimurium 14028s (ASM2216v1). Análises realizadas utilizando o software ACT (CARVER et al., 2012).

De acordo com Fookes *et al.* (2011), o SPI-22 T6SS de *S. bongori* possui similaridade com o locus CTS2 T6SS de *Citrobacter rodentium*, indicando uma possível transferência horizontal de genes. Embora possua um TssM truncado devido a uma mutação de mudança de fase de leitura do gene que o codifica, o locus CTS2 de *C. rodentium* é importante para que ocorra a colonização do intestino dos murinos

e também é um importante fator de virulência para este patógeno (SERAPIO-PALACIOS et al.,2022).

De acordo com os resultados dos ensaios de expressão Hcp e competição bacteriana (Figura 6 e 7), podemos concluir que a expressão do SPI-22 T6SS é constitutiva em meio LB e proporciona atividade antibacteriana. Esses resultados contrastam com o que é observado para SPI-6 T6SS de *S*. Typhimurium, que está reprimido nas mesmas condições pela proteína H-NS (Brunet *et al.*, 2015). A proteína H-NS é conhecida por se ligar e reprimir regiões do genoma que são ricas em A/T, frequentemente resultantes de transferências horizontais (NAVARRE *et al.*, 2007). Foi demonstrado que ambos locus que codificam T6SS em *C. rodentium* (CTS1 e CTS2) são ativados pela deleção de H-NS, contudo é possível detectar uma expressão basal dos genes de CTS2 em bactérias com H-NS WT (SERAPIO-PALACIOS *et al.*,2022). O motivo pelo qual H-NS não silencia o cluster de SPI-22 T6SS é desconhecido, mas é possível que diferenças nas regiões promotoras dos dois clusters possam explicar esse fenótipo.

S. bongori demonstrou possuir um grande arsenal de efetores que podem ser utilizados para competir com as distintas espécies de bactérias que possa encontrar no ambiente (DURAND *et al.*, 2014). A expressão de vários efetores com a mesma arquitetura (TseV1-4) demonstra que esse grupo deve ser importante para a competição bacteriana (Figura 9).

As alterações estruturais do core catalítico ($\alpha_1\beta_1\beta_2\beta_3\alpha_2\beta_4$) dos efetores TseV pode explicar o motivo pelo qual somente TseV2 e TseV3 são tóxicos quando expressas em *E. coli* (Figura 12). Segundo Steczkiewicz *et al.* (2012), o domínio VRR-Nuc, que pertence a superfamília PD-(D/E)xK, pode possuir variações em sua estrutura. TseV2 e TseV3 apresentam mais estruturas importantes conservadas em relação aos outros efetores. Segundo as nossas predições, TseV1 não possui os dois últimos elementos $\alpha_2\beta_4$ do core catalítico. Já os dois primeiros elementos $\alpha_1\beta_1$ estão ausentes em TseV4. TseV2 não possui a β_1 mas ainda consegue ter um efeito tóxico. Esse resultado pode indicar que β_1 não seja essencial para a atividade enzimática de VRR-Nuc, ou que alguma outra alteração estrutural compensou a ausência de β_1 . O mesmo pode ser observado no trabalho de Wang *et al.* (2021), onde TseV^{PA} possui um domínio VRR-Nuc com as mesmas características de TseV2 (ausência de β_1), e ainda assim apresenta atividade tóxica. Para que possa ocorrer a secreção de efetores evoluídos contendo PAAR, é necessário que ocorra a interação com uma proteína VrgG (WOOD *et al.,* 2019). O motivo pelo qual somente um VgrG é responsável pela secreção de cada efetor está relacionado a proteína PAAR possuir especificidade por VgrG (Figura 13 e 14) (BONDAGE *et al.,* 2016; LIANG *et al.* 2021). A proteína PAAR é importante para estabilizar o enovelamento das porções C-terminais do trímero de VgrG, onde essas proteínas de encontram e interagem. Esse tipo de interação ocorre por meio de pontes de hidrogênio entre as fitas β do C-terminal do trímero de VgrG e a base cônica de PAAR (SHNEIDER *et al.,* 2013). Essa especificidade pode ser evidenciada nos nossos resultados com VgrG2 e VgrG3 (Figura 16), nos quais apenas a sequência Cterminal é divergente. Essas mudanças ocasionaram que apenas um VgrG seja capaz de interagir com um TseV (Figura 13). Desta maneira, diferentes combinações de efetores podem ser injetados em uma bactéria alvo pela seleção de VgrGs distintos (HACHANI *et al.,* 2014), possibilitando uma maior vantagem competitiva à bactéria predadora.

7. Conclusão

Neste trabalho caracterizamos a atividade antibacteriana de SPI-22 T6SS. Demonstramos a utilização de dois efetores antibacterianos evoluídos de proteínas PAAR-like com o domínio VRR-Nuc. Além disso, confirmamos que os efetores TseV2 e TseV3 são secretados via SPI-22 T6SS por meio de interação com VgrG2 e VgrG3, respectivamente. Esses resultados revelam que *S. bongori* é capaz de montar um T6SS carregando diferentes proteínas tóxicas, o que confere vantagem adaptativa para esta espécie.

9. Referências

AAKRE, CHRISTOPHER D.; PHUNG, TUYEN N.; HUANG, D.; LAUB, MICHAEL T. A Bacterial Toxin Inhibits DNA Replication Elongation through a Direct Interaction with the β Sliding Clamp. *Molecular Cell*, v. 52, n. 5, p. 617-628, 2013.

ALCOFORADO-DINIZ, J.; LIU, Y. C.; COULTHURST, S. J. Molecular weaponry: diverse effectors delivered by the Type VI secretion system. *Cellular microbiology*, v. 17 n. 12, p. 1742–1751, 2015.

ALIKHAN N-F, ZHOU Z.; SERGEANT M. J.; ACHTMAN M. A genomic overview of the population structure of Salmonella. *PLOS Genetics*, v. 14, n. 4, e1007261, 2018.

ALTINDIS, E.; DONG, T.; CATALANO, C.; MEKALANOS, J. Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. MBio, v. 6, e00075-15, 2015.

ALVAREZ-SIEIRO, P.; MONTALBÁN-LÓPEZ, M.; MU, D.; KUIPERS, O. P. Bacteriocins of lactic acid bacteria: extending the family. *Appl Microbiol Biotechnol*, v. 100, n. 7, p. 2939-2951, Apr 2016.

ANDERSEN, C. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. Em *Reviews of Physiology, Biochemistry and Pharmacology* p. 122-165. Springer Berlin Heidelberg. 2003.

AOKI, S. K. Contact-Dependent Inhibition of Growth in Escherichia coli. *Science*, v. 309, n. 5738, p. 1245-1248, 2005.

ARAVIND, L.; MAKAROVA, K. S.; KOONIN, E. V. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. *Nucleic Acids Res*, v. 28, n. 18, p. 3417-3432, 2000.

ASHTON, P. M.; NAIR, S.; PETERS, T. M.; BALE, J. A.; POWELL, D. G.; PAINSET, A.; TEWOLDE, R.; SCHAEFER, U.; JENKINS, C.; DALLMAN, T. J.; DE PINNA, E. M.; GRANT, K. A. Identification of Salmonella for public health surveillance using whole genome sequencing. *PeerJ*, v. 4, e1752, 2016.

BAO, H.; ZHAO, J. H.; ZHU, S.; WANG, S.; ZHANG, J.; WANG, X. Y.; *et al.* Genetic diversity and evolutionary features of type VI secretion systems in Salmonella. *Future Microbiol.* v. 14, p. 139-154, 2019.

BAYER-SANTOS E.; LIMA L.P.; CESETI L.M.; RATAGAMI C.Y.; SANTANA E.S.; SILVA A.M.; FARAH C.S.; ALVAREZ-MARTINEZ C.E. Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF sigma factor and cognate Ser/Thr kinase. Environ Microbiol, v. 20, p. 1562–1575, 2018.

BAYER-SANTOS, E.; CENENS, W.; MATSUYAMA, B. Y.; OKA, G. U.; DI SESSA, G.; MININEL, I. D. V.; ALVES, T. L.; FARAH, C. S. The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. *PLOS Pathogens*, v. 15, n. 9, e1007651, 2019.

BIRCH, L. C. The Meanings of Competition. The American Naturalist, v. 856, n. 91, p. 5–18, 1957.

BLONDEL, C.J.; JIMENEZ, J.C.; CONTRERAS, I. SANTIVIAGO, C.A. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. *BMC Genomics.* v. 10, p.354, 2009.

BLOOMFIELD, G.; TANAKA, Y.; SKELTON, J.; IVENS, A. *et al.* Widespread duplications in the genomes of laboratory stocks of Dictyostelium discoideum. *Genome Biology*, v. 9, n. 4, p. R75, 2008.

BRODIN, P.; ROSENKRANDS, I.; ANDERSEN, P.; COLE, S. T.; BROSCH, R. ESAT-6 proteins: protective antigens and virulence factors? *Trends Microbiol*, v. 12, n. 11, p. 500-508, 2004.

BROOKS, T. M.; UNTERWEGER, D.; BACHMANN, V.; KOSTIUK, B.; PUKATZKI, S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. *The Journal of biological chemistry*, v. 288 n. 11, p. 7618-7625, 2013.

BRUNET, Y. R.; KHODR, A.; LOGGER, L.; AUSSEL, L.; MIGNOT, T.; RIMSKY, S.; CASCALES, E.; BÄUMLER, A. J. H-NS Silencing of the Salmonella Pathogenicity Island 6-Encoded

Type VI Secretion System Limits Salmonella enterica Serovar Typhimurium Interbacterial Killing. *Infection and Immunity*, v. 83, n. 7, p. 2738-2750, 2015.

BLONDEL, C. J.; JIMÉNEZ, J. C.; LEIVA, L. E.; ÁLVAREZ, S. A. *et al.* The Type VI Secretion System Encoded in Salmonella Pathogenicity Island 19 Is Required for Salmonella enterica Serotype Gallinarum Survival within Infected Macrophages. *Infection and Immunity*, v. 81, n. 4, p. 1207-1220, 2013.

BONDAGE, D. D.; LIN, J.; MA, L.; KUO, C.; LAI, R. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. *PNAS*, v. 113, n. 27, p. 3931-3940, 2016.

BÖNEMANN, G.; PIETROSIUK, A.; DIEMAND, A.; ZENTGRAF, H.; MOGK, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. *The EMBO Journal*, v. 28, n. 4, p. 315-325, 2009.

CAMACHO, C.; COULOURIS, G.; AVAGYAN, V.; MA, N. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics*, v. 10, p. 421, 2009.

CARVER, T. J.; RUTHERFORD, K. M.; BERRIMAN, M.; RAJANDREAM, M. A. *et al.* ACT: the Artemis Comparison Tool. *Bioinformatics*, v. 21, n. 16, p. 3422-3423, 2005.

CARVER, T.; THOMSON, N.; BLEASBY, A.; BERRIMAN, M. *et al.* DNAPlotter: circular and linear interactive genome visualization. *Bioinformatics*, v. 25, n. 1, p. 119-120, 2009.

CARVER, T.; HARRIS, S. R.; BERRIMAN, M.; PARKHILL, J.; MCQUILLAN, J. A. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. *Bioinformatics (Oxford, England)*, v. 28, n. 4, p. 464-469, 2012.

CASCALES, E.; BUCHANAN, S. K.; DUCHE, D.; KLEANTHOUS, C.; LLOUBES, R.; POSTLE, K.; RILEY, M.; SLATIN, S.; CAVARD, D. Colicin biology. Microbiol. Mol. Biol. Rev. v. 71, p.158–229, 2007.

CAO, Z.; CASABONA, M. G.; KNEUPER, H.; CHALMERS, J. D.; PALMER, T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. *Nature Microbiology*, v. 2, n. 16183, 2017.

CEPAS, V.; SOTO, S. M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. *Antibiotics.* v.9, n. 10, 2020.

CHEN, S.; LARSSON, M.; ROBINSON, R. C.; CHEN, S. L. Direct and convenient measurement of plasmid stability in lab and clinical isolates of E. coli. *Scientific Reports*, v. 7, n. 1, 2017.

CHOI, J. S.; KIM, W.; SUK, S.; PARK, H. *et al.* The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. *RNA Biology*, v. 15, n. 10, p. 1319-1335, 2018/10/03 2018.

CIANCIOTTO, N. P.; WHITE, R. C. Expanding Role of Type II Secretion in Bacterial Pathogenesis and Beyond. Infect Immun, v. 85, n. 5, May 2017.

CIANFANELLI, F. R.; MONLEZUN, L. COULTHURST, S. J. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. *Trends Microbiol.* v. 24, p. 51-62, 2016.

CUI, H.; XIANG, T.; ZHOU, JI. Plant Immunity: a Lesson from Pathogenic Efector Proteins. *Cellular Microbiology*, v. 11, n. 10, p. 1453-1461, 2009.

DATSENKO, K. A.; WANNER, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proceedings of the National Academy of Sciences*, v. 97, n.12, p. 6640-6645, 2000.

DELANO, W. L. Pymol: An open-source molecular graphics tool. *CCP4 Newsletter on protein* crystallography, v. 40, n. 1, p. 82-92, 2002.

DURAND, E.; CAMBILLAU, C.; CASCALES, E. JOURNET, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. *Trends Microbiol*, v. 22, p. 498-507, 2014.

DYKXHOORN, D. M.; ST PIERRE, R.; LINN, T. A set of compatible tac promoter expression vectors. *Gene*, v. 177, n. 1-2, p. 133-136, 1996.

FIGUEIRA, R.; HOLDEN, D. W. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. *Microbiology (Reading)*, v. 158, n. Pt 5, p. 1147-1161, 2012.

FINERAN, P. C.; BLOWER, T. R.; FOULDS, I. J.; HUMPHREYS, D. P. *et al.* The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. *Proceedings of the National Academy of Sciences*, v. 106, n. 3, p. 894-899, 2009.

FILLOUX, A. Microbiology: a weapon for bacterial warfare. Nature. v. 500, p, 284-285, 2013.

FITZSIMONS, T. C.; LEWIS, J. M.; WRIGHT, A.; KLEIFELD, O.; SCHITTENHELM, R. B.; POWELL, D.; *et al.* Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. *Infection and Immunity*, v. 86, n. 8, e00297-18, 2018.

FLAUGNATTI, N.; LE, T. T.; CANAAN, S.; ASCHTGEN, M. S.; NGUYEN, V. S.; BLANGY, S.; *et al.* A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. *Mol. Microbiol.* v. 99, p. 1099–1118, 2016.

FOOKES, M.; SCHROEDER, G.N.; LANGRIDGE, G.C.; BLONDEL, C.J.; MAMMINA, C.; CONNOR, T.R.; *et al.* Salmonella bongori provides insights into the evolution of the Salmonellae. *PLoS pathogens*, v. 7, e1002191, 2011.

FROQUET, R.; LELONG, E.; MARCHETTI, A.; COSSON, P. Dictyostelium discoideum: A model host to measure bacterial virulence. *Nature protocols*, v. 4, p. 25-30, 2009.

FUKAMI, T. Historical Contigency in Community Assembly; Integrating, Niches Species Pools, and Priority Effects. *Annual Review of Ecology, Evolution, and Systematics*, v. 46, n. 1, p. 1-23, 2015.

GARCÍA-BAYONA, L.; GUO, M. S.; LAUB, M. T. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. *Elife*, v. 6, e24869, 2017.

GARMORY, H. S.; TITBALL, R. W.; BROWN, K. A.; BENNETT, A. M. Construction and evaluation of a eukaryotic expression plasmid for stable delivery using attenuated Salmonella. *Microb Pathog*, v. 34, n. 3, p. 115-119, 2003.

GERDES, K.; BECH, F. W.; JØRGENSEN, S. T.; LØBNER-OLESEN, A. *et al.* Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. *The EMBO Journal*, v. 5, n. 8, p. 2023-2029, 1986.

GIAMMANCO, G. M.; PIGNATO, S.; MAMMINA, C.; GRIMONT, F.; GRIMONT, P. A.; NASTASI, A.; GIAMMANCO, G. Persistent endemicity of Salmonella bongori 48:z(35):--in Southern Italy: molecular characterization of human, animal, and environmental isolates. *J Clin Microbiol*, v. 40, n. 9, p. 3502-3505, 2002.

GOEDERS, N.; VAN MELDEREN, L. Toxin-Antitoxin Systems as Multilevel Interaction Systems. *Toxins*, v. 6, n. 1, p. 304-324, 2014.

HACHANI, A.; ALLSOPP, L.P.; ODUKO, Y. FILLOUX, A. The VgrG proteins are "a la carte" delivery systems for bacterial type VI effectors. *The Journal of biological chemistry*, v. 289, p. 17872-17884, 2014.

HAGA, T.; KUMABE, S.; IKEJIRI, A.; SHIMIZU, Y.; LI, H.; GOTO, Y.; MATSUI, H.; MIYATA, H.; MIURA, T. In Vitro and in Vivo Stability of Plasmids in Attenuated Salmonella enterica serovar typhimurium Used as a Carrier of DNA Vaccine is Associated with its Replication Origin. *Experimental Animals*, v. 55, n. 4, p. 405-409, 2006.

HERNANDEZ, R. E.; GALLEGOS-MONTERROSA, R.; COULTHURST, S. J. Type VI secretion system effector proteins: Effective weapons for bacterial competitiveness. *Cellular Microbiology*, v. 22, n. 9, p. e13241, 2020.

HESPANHOL, J. T.; SANCHEZ LIMACHE, D. E.; GONÇALVES NICASTRO, G.; MEAD, L.; LLONTOP, E. E.; SANTOS, G. C.; FARAH, C. S.; DE SOUZA, R. F.; GALHARDO, R. D. S.; LOVERING, A.; SANTOS, E. B. Antibacterial T6SS effectors with a VRR-Nuc domain induce target cell death via DNA Double-Strand Breaks, Cold Spring Harbor Laboratory, Ahead of print, 2021. https://dx.doi.org/10.1101/2021.12.26.474169

HENSEL, M.; SHEA, J.; GLEESON, C.; JONES, M.; DALTON, E.; HOLDEN, D. Simultaneous identification of bacterial virulence genes by negative selection. *Science*, v. 269, n. 5222, p. 400-403, 1995.

HENSEL, M.; SHEA, J. E.; BÄUMLER, A. J.; GLEESON, C.; BLATTNER, F.; HOLDEN, D. W. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. *Journal of bacteriology*, v. 179, n. 4, p. 1105-1111, 1997.

HENSEL, M.; SHEA, J. E.; WATERMAN, S. R.; MUNDY, R.; NIKOLAUS, T.; BANKS, G.; VAZQUEZ-TORRES, A.; GLEESON, C.; FANG, F. C.; HOLDEN, D. W. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. *Mol Microbiol*, v. 30, n. 1, p. 163-174, 1998.

HIBBING, M.; FUQUA, C.; PARSEK, M.; PETERSON, B. Bacterial competition: surviving and thriving in the microbial jungle. *Nat Rev Microbiol*, v. 8, p. 15-25, 2010.

HICKS, S. W.; GALÁN, J. E. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. *Nat Rev Microbiol*, v. 11, n. 5, p. 316-326, 2013.

HOOD, R. D.; SINGH, P.; HSU, F.; GÜVENER, T.; CARL, M. A.; TRINIDAD, R. R.; SILVERMAN, J. M.; OHLSON, B. B.; HICKS, K. G.; PLEMEL, R. L.; LI, M.; SCHWARZ, S.; WANG, W. Y.; MERZ, A. J.; GOODLETT, D. R.; MOUGOUS, J. D. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. *Cell host microbe*, v. 7, n. 1, p. 25–37, 2010.

HURLEY, D.; MCCUSKER, M. P.; FANNING, S.; MARTINS, M. Salmonella-host interactions - modulation of the host innate immune system. *Front Immunol*, v. 5, p. 481, 2014.

IYER, L. M.; BABU, M. M.; ARAVIND, L. The HIRAN Domain and Recruitment of Chromatin Remodeling and Activities to Damaged DNA. *Cell Cycle*. v. 5, n. 7, p. 775-782, 2006.

JANA, B.; FRIDMAN, C. M.; BOSIS, E.; SALOMON, D. A modular effector with a DNase domain and a marker for T6SS substrates. *Nature Communications*, v. 10, n. 1, p. 3595, 2019.

JURĖNAS, D.; FRAIKIN, N.; GOORMAGHTIGH, F.; VAN MELDEREN, L. Biology and evolution of bacterial toxin–antitoxin systems. *Nature Reviews Microbiology*, 2022.

JUMPER, J.; EVANS, R.; PRITZEL, A.; GREEN, T. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*, v. 596, n. 7873, p. 583-589, 2021.

KINCH, L. N.; GINALSKI K, RYCHLEWSKI, L.; GRISHIN, N. V. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. *Nucleic Acids Res*, v. 33, n. 11, p. 3598-605, 2005.

KANEHISA, M.; SATO, Y.; KAWASHIMA, M. KEGG mapping tools for uncovering hidden features in biological data. *Protein Science*, v. 31, n. 1, p. 47-53, 2022.

KATOH, K.; STANDLEY, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol*, v. 30, n. 4, p. 772-780, 2013.

KOSKINIEMI, S.; LAMOUREUX, J. G.; NIKOLAKAKIS, K. C.; T'KINT DE ROODENBEKE, C.; KAPLAN, M. D.; LOW, D. A.; HAYES, C. H. Rhs proteins from diverse bacteria mediate intercellular competition. *Proc. Natl. Acad. Sci. U.S.A.*; v. 110, n. 17, p. 7032–7037, 2013.

LARSSON, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. *Bioinformatics*, v. 30, n. 22, p. 3276-3278, 2014.

LAWLEY, T. D.; WALKER, A. W. Intestinal Colonization Resistance. *Immunology*, v. 138, n.1 p. 1-11, 2013.

LAZDUNSKI, C. J.; BOUVERET, E.; RIGAL, A.; JOURNET, L.; LLOUBÈS, R.; BÉNÉDETTI, H. Colicin import into Escherichia coli cells. *Journal of bacteriology*, v. 180, n.19, p. 4993-5002, 1998.

LE MINOR, L.; CHAMOISEAU, G.; BARBE, E.; CHARIE-MARSAINES, C. et al. [10 new Salmonella serotypes isolated in Chad]. Ann Inst Pasteur (Paris), v. 116, n. 6, p. 775-780, 1969.

LIANG, X.; MOORE, R.; WILTON, M.; WONG, M. J. *et al.* Identification of divergent type VI secretion effectors using a conserved chaperone domain. *Proc Natl Acad Sci U S A*, v. 112, n. 29, p. 9106-9111, 2015.

LIANG, X.; PEI, T.-T.; LI, H.; ZHENG, H.-Y.; LUO, H.; CUI, Y.; TANG, M.-X.; ZHAO, Y.-J., XU, P.; DONG, T. VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. *PLOS Pathogens*, v. 17, n. 12, e1010116, 2021.

LOBATO-MÁRQUEZ, D.; DÍAZ-OREJAS, R.; GARCÍA-DEL PORTILLO, F. Toxin-antitoxins and bacterial virulence. *FEMS Microbiology Reviews*, v. 40, n. 5, p. 592-609, 2016.

LÖBER, S.; JÄCKEL, D.; KAISER, N.; HENSEL, M. Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. *Int J Med Microbiol*, v. 296, n. 7, p. 435-447, 2006.

LOZUPONE, C. A.; STOMBAUGH, J. I.; GORDON, J. I.; JANSSON, J. K.; KNIGHT, R. Diversity, stability and resilience of the human gut microbiota. *Nature*, v. 489, n. 7415, p. 220-230, 2012.

MA, J.; PAN, Z.; HUANG, J.; SUN, M.; LU, C.; YAO, H. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. *Virulence*, v. 8, n. 7, p. 1189-1202, 2017.

MA, J.; SUN, M.; PAN, Z.; LU, C.; YAO, H. Diverse toxic effectors are harbored by vgrG islands for interbacterial antagonism in type VI secretion system. *Biochimica et Biophysica Acta (BBA) - General Subjects*, V. 1862, n. 7, p. 1635-1643, 2018.

MA, L.-S.; HACHANI, A.; LIN, J.-S.; FILLOUX, A.; LAI, E.-M. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. *Cell host microbe*, v. 16, n. 1, p. 94-104, 2014.

MACNAB, R. M. Type III flagellar protein export and flagellar assembly. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*, v. 1694, n. 1, p. 207-217, 2004.

MARCUS, S. L.; BRUMELL, J. H.; PFEIFER, C. G.; FINLAY, B. B. Salmonella pathogenicity islands: big virulence in small packages. *Microbes and infection*, v. 2, n. 2, p. 145–156, 2000.

MASUDA, H.; TAN, Q.; AWANO, N.; WU, K.-P. *et al.* YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. *Molecular Microbiology*, v. 84, n. 5, p. 979-989, 2012.

MILLS, E.; BARUCH, K.; CHARPENTIER, X.; KOBI, S. *et al.* Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. *Cell Host Microbe*, v. 3, n. 2, p. 104-113, 2008.

MIRDITA, M.; SCHÜTZE, K.; MORIWAKI, Y.; HEO, L. *et al.* ColabFold-Making protein folding accessible to all. 2021.

MONJARÁS FERIA, J.; VALVANO, M. A. An Overview of Anti-Eukaryotic T6SS Effectors. *Frontiers in Cellular and Infection Microbiology*, v. 10, 2020-October-19 2020.

NASKAR, S.; HOHL, M.; TASSINARI, M.; LOW, H. H. The structure and mechanism of the bacterial type II secretion system. *Molecular Microbiology*, v. 115, n. 3, p. 412-424, 2021.

NAVARRE, W. W.; MCCLELLAND, M.; LIBBY, S. J.; FANG, F. C. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. *Genes Dev*, v. 21, n. 12, p. 1456-1471, 2007.

OGURA, T.; HIRAGA, S. Mini-F plasmid genes that couple host cell division to plasmid proliferation. *Proceedings of the National Academy of Sciences*, v. 80, n. 15, p. 4784-4788, 1983.

PETERSON, S. B.; BERTOLLI, S. K.; MOUGOUS, J. D. The Central Role of Interbacterial Antagonism in Bacterial Life, *Current Biology*, v. 30, n. 19, p. 1203-1214, 2020.

PETTY, N. K.; BULGIN, R.; CREPIN, V. F.; CERDEÑO-TÁRRAGA, A. M. *et al.* The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli. *Journal of Bacteriology*, v. 192, n. 2, p. 525-538, 2010.

PIGGOTT, D. A.; ERLRANDSON, K. M. YARASHESKI K. E. Frailty in HIV: Epidemiology, Biology, Mesurement, Interventions, and Research Needs. *Curr HIV/AIDS Rep,* v. 13, p. 340-348, 2016

PISSARIDOU, P.; ALLSOPP, L.; WETTSTADT, S.; HOWARD, S.; MAVRIDOU, D.; FILLOUX, A. The *Pseudomonas aeruginosa* T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitor. *PNAS.* v. 115, n. 49, p. 12519-12524, 2018.

POPOFF M. Y.; LE MINOR L. E. Genus XXXIII. Salmonella. *In*: GARRITY, G. Bergey's Manual® of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria. Springer Science & Business Media, 2007. p. 799.

PROFT, T. **Microbial toxins : current research and future trends**. Norfolk: Caister Academic Press, 2009.

PUKATZKI, S.; MA, A. T.; STURTEVANT, D.; KRASTINS, B.; SARRACINO, D.; NELSON, W. C.; HEIDELBERG, J. F.; MEKALANOS, J. J. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. *Proceedings of the National Academy of Sciences*, v. 103, n. 5, p. 1528-1533, 2006.

PUKATZKI, S.; MA, A. T.; REVEL, A. T.; STURTEVANT, D.; MEKALANOS, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. *Proceedings of the National Academy of Sciences of the United States of America*, v. 104, n. 39, p. 15508–15513, 2007.

RILEY, M. A.; WERTZ, J. E. Bacteriocins: evolution, ecology, and application. *Annu Rev Microbiol*, v. 56, p. 117-137, 2002.

RUSSELL, A. B.; SINGH, P.; BRITTNACHER, M.; BUI, N. K.; HOOD, R. D.; CARL, M. A.; AGNELLO, D. M.; SCHWARZ, S.; GOODLETT, D. R.; VOLLMER, W.; MOUGOUS, J. D. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. *Cell host microbe*, v. 11, n. 5, p. 538–549, 2012.

RUSSELL, A. B.; LEROUX, M.; HATHAZI, K. *et al.* Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. *Nature*, v. 496, p. 508–512, 2013.

RUSSELL, A. B.; PETERSON, S. B.; MOUGOUS, J. D. Type VI secretion system effectors: poisons with a purpose. *Nature reviews. Microbiology*, v. 12, n. 2, p. 137–148, 2014.

SERAPIO-PALACIOS, A.; WOODWARD, S. E.; VOGT, S. L.; DENG, W. *et al.* Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. *Cell Reports*, v. 39, n. 4, p. 110731, 2022.

SGRO, G. G.; OKA, G. U.; SOUZA, D. P.; CENENS, W.; BAYER-SANTOS, E.; MATSUYAMA, B. Y.; BUENO, N. F.; DOS SANTOS, T. R.; ALVAREZ-MARTINEZ, C. E.; SALINAS, R. K.; FARAH, C. S. Bacteria-Killing Type IV Secretion Systems. *Frontiers in Microbiology*, v. 10, n. 1078, 2019.

SHNEIDER, M. M.; BUTH, S. A.; HO, B. T.; BASLER, M.; MEKALANOS, J. J.; LEIMAN, P. G. *PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature*, v. 500, p. 350-353, 2013.

SIBINELLI-SOUSA, S.; HESPANHOL, J. T.; NICASTRO, G. G.; MATSUYAMA, B. Y.; MESNAGE, S.; PATEL, A.; DE SOUZA, R. F.; GUZZO, C. R.; BAYER-SANTOS, E. A Family of T6SS Antibacterial Effectors Related to I,d-Transpeptidases Targets the Peptidoglycan. *Cell reports*, v. 31, n. 12, 107813, 2020.

SIBINELLI-SOUSA, S.; HESPANHOL, J. T.; BAYER-SANTOS, E.; MARGOLIN, W. Targeting the Achilles' Heel of Bacteria: Different Mechanisms To Break Down the Peptidoglycan Cell Wall during Bacterial Warfare. *Journal of Bacteriology*, v. 203, n. 7, p. e00478-00420, 2021.

SINGH, G.; YADAV, M.; GHOSH, C.; RATHORE, J. S. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. *Current Research in Microbial Sciences*, v. 2, p. 100047, 2021.

SOMMER, F.; ANDERSON, J.; BHARTI, R.; RAES J.; ROSENSTIEL P. The resilience of the intestinal microbiota influences health and disease. *Nat Rev Microbiol.* v. 15, p. 630-638, 2017.

SOUZA, D. P.; OKA, G. U.; ALVAREZ-MARTINEZ, C. E.; BISSON-FILHO, A. W.; DUNGER, G.; HOBEIKA, L.; CAVALCANTE, N. S.; ALEGRIA, M. C.; BARBOSA, L. R. S.; SALINAS, R. K.; GUZZO, C. R.; FARAH, C. S. Bacterial killing via a type IV secretion system. *Nature Communications*, v. 6, n. 6453, 2015.

SU, L. H.; CHIU, C. H. Salmonella: clinical importance and evolution of nomenclature. *Chang Gung medical journal*, v. 30, n. 3, 210–219, 2007.

STECZKIEWICZ, K.; MUSZEWSKA, A.; KNIZEWSKI, L.; RYCHLEWSKI, L.; GINALSKI, K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. *Nucleic Acids Res*, v. 40, n. 15, p. 7016-7045, 2012.

TANG, J. Y.; BULLEN, N. P.; AHMAD, S.; WHITNEY, J. C. Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. *Journal of Biological Chemistry*, v. 293, n. 5, p. 1504–1514, 2018.

TING, S.-Y.; BOSCH, D. E.; MANGIAMELI, S. M.; RADEY, M. C.; HUANG, S.; PARK, Y.-J.; KELLY, K. A.; FILIP, S. K.; GOO, Y. A.; ENG, J. K.; ALLAIRE, M.; VEESLER, D.; WIGGINS, P. A.; PETERSON, S. B.; MOUGOUS, J. D. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. *Cell*, v. 175, n. 5, 1380–1392.e14, 2018.

UNTERWEGER, D.; KOSTIUK, B.; PUKATZKI, S. Adaptor Proteins of Type VI Secretion System Effectors. *Trends in Microbiology*, v. 25, n. 1, p. 8-10, 2017.

UZZAU, S.; FIGUEROA-BOSSI, N.; RUBINO, S.; BOSSI, L. Epitope tagging of chromosomal genes in Salmonella. *Proceedings of the National Academy of Sciences*, v. 98, n.26, p. 15264-15269, 2001.

VALDIVIA, R. H.; FALKOW, S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. *Mol Microbiol*, v. 22, n. 2, p. 367-378, 1996.

WANG, J.; YANG, B.; LEIER, A.; MARQUEZ-LAGO, T. T.; HAYASHIDA, M.; ROCKER, A.; ZHANG, Y.; AKUTSU, T.; CHOU, K.-C.; STRUGNELL, R. A.; SONG, J.; LITHGOW, T. Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. *Bioinformatics*, v. 34, n. 15, p. 2546-2555, 2018.

WANG, S.; GENG, Z.; ZHANG, H.; SHE, Z.; DONG, Y. The Pseudomonas aeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector. *The FEBS journal*, v. *288*, n. 19, p. 5755–5767, 2021.

WANG, R. F.; KUSHNER, S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. *Gene*, v. 100, p. 195-199, 1991.

WANG, X.; LORD, D. M.; CHENG, H.-Y.; OSBOURNE, D. O. *et al.* A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. *Nature Chemical Biology*, v. 8, n. 10, p. 855-861, 2012/10/01 2012.

WANG, X.; YAO, J.; SUN, Y.-C.; WOOD, T. K. Type VII Toxin/Antitoxin Classification System for Antitoxins that Enzymatically Neutralize Toxins. *Trends in Microbiology*, v. 29, n. 5, p. 388-393, 2021.

WATERHOUSE, A. M.; PROCTER, J. B.; MARTIN, D. M.; CLAMP, M. *et al.* Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*, v. 25, n. 9, p. 1189-1191, 2009.

WHITNEY, J. C.; QUENTIN D.; SAWAI, S.; LEROUX, M.; HARDING, B. N.; LEDVINA, H. L.; TRAN, B. Q.; ROBINSON, H.; GOO Y. A.; GOODLETT, D. R.; RAUNSER, S.; MOUGOUS, J. D. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. *Cell*, v. 163 p. 607-619, 2015.

WOOD, T. E.; HOWARD, S. A.; WETTSTADT, S.; FILLOUX, A. PAAR proteins act as the 'sorting hat' of the type VI secretion system. *Microbiology (Reading)*, v. 165, n. 11, p. 1203-1218, Nov 2019.

ZHENG, J.; HO, B.; MEKALANOS, J. J. Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae. *PLoS ONE*, v. 6, n. 8, p. e23876, 2011

9. Anexos

Cidade Universitária "Armando de Salles Oliveira", Butantã, São Paulo, SP - Av. Professor Lineu Prestes, 2415 - ICB III - 05508 000 Comissão de Ética em Pesquisa - Telefone (11) 3091-7733 - e-mail: cep@icb.usp.br

CERTIFICADO DE ISENÇÃO

Certificamos que o Protocolo CEP-ICB nº **1067/2019** referente ao projeto intitulado: **"Estudo da função de SPI-22 T6SS de Salmonella bongori em competições bacterianas e interações com células fagocíticas"** sob a responsabilidade de **Daniel Enrique Sánchez Limache** e orientação do(a) Dr.(a) **Ethel Bayer Santos**, do Departamento de Microbiologia, foi analisado pela **CEUA** - Comissão de Ética no Uso de Animais e pelo **CEPSH** – Comitê de Ética em Pesquisa com Seres Humanos, tendo sido deliberado que o referido projeto não utilizará animais que estejam sob a égide da Lei nº 11.794, de 8 de outubro de 2008, nem envolverá procedimentos regulados pela Resolução CONEP nº 466/2012.

São Paulo, 18 de novembro de 2019.

Luciane Valeria Sita

Profa. Dra. Luciane Valéria Sita Coordenadora CEUA ICB/USP

Profa. Dra. **Camila Squarzoni Dale** Coordenadora CEPSH ICB/USP

Declaro, para os devidos fins, que

Daniel Enrique Sánchez Limache

concluiu o Curso "Armazenamento, Manuseio e Descarte de Produtos Químicos", realizado no Instituto de Ciências Biomédicas da Universidade de São Paulo.

São Paulo, 1 de junho de 2021 (Declaração válida por 5 anos)

Profa. Dra. Katiucia Batista da Silva Paiva Presidente da Comissão de Segurança Química

Prof. Dr. Luis Carlos de Souza Ferreira Diretor do ICB

Av. Prof. Lineu Prestes, 2415 • Cidade Universitária "Armando Salles Oliveira" • Butantã - São Paulo - SP • CEP 05508-900 Instituto de Ciências Biomédicas | USP

Capacitação no Uso e Manejo de Animais de Laboratório

Declaração de conclusão de curso

Declaramos para os devidos fins que

Daniel Enrique Sánchez Limache

de Medicina Veterinária e Zootecnia da Universidade de São Paulo e realizado Bioterismo do Instituto de Ciências Biomédicas em parceria com a Faculdade Laboratório" em formato de ensino a distância, coordenado pela Central de participou do curso de "Capacitação no Uso e Manejo de Animais de pela REBIOTERIO - CNPq.

São Paulo, 25 setembro 2019

Central de Bioterismo ICB USP

Av. Prof. Lineu Prestes, 2415 • Cidade Universitária "Armando Salles Oliveira" • Butantã - São Paulo - SP • CEP 05508-900 Instituto de Ciências Biomédicas | USP

Certificado

do Treinamento em Biossegurança realizado no Departamento de Certificamos que Daniel Enrique Sánchez Limache participou Microbiologia/ICB-USP, no dia 04 de dezembro de 2019, com carga horária total de 6 horas.

Mabriel Radilla

Prof. Dr. Gabriel Padilla Responsável pelo Treinamento

Veridiana Munford Técnica Responsável pelo Treinamento