• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.41.2013.tde-31032014-095131
Document
Author
Full name
Livia Clemente Motta Teixeira
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Xavier, Gilberto Fernando (President)
Andrade, Michele Schultz Ramos de
Santos, Andréa Maria Garrido dos
Title in Portuguese
Exercício físico, neurogênese e memória
Keywords in Portuguese
Aprendizado espacial
Atividade física
Memória espacial
Neurogênese
Abstract in Portuguese
A neurogênese hipocampal é modulada por muitos fatores que incluem envelhecimento, estresse, enriquecimento ambiental, atividade física e aprendizado. Atividade física voluntária (espontânea) estimula a proliferação celular no giro denteado e facilita a aquisição e/ou retenção de tarefas dependentes do hipocampo, incluindo o Labirinto Aquático de Morris. Embora seja bem estabelecido que o exercício físico regular melhore o desempenho em tarefas de memória e aprendizado, não está claro qual a duração desses benefícios após o final da atividade física. Neste estudo investigamos a relação temporal entre os efeitos benéficos da atividade física associado ao aprendizado de tarefa dependente da função hipocampal, e sua relação com a neurogênese, levando em consideração também o tempo decorrido desde o término da atividade física. Grupos independentes de ratos tiveram acesso a roda de atividade ao longo de 7 dias (Grupo EXE) ou roda bloqueada (Grupo Ñ-EXE) e receberam injeções de BrdU nos últimos 3 dias de exposição roda. Após um INTERVALO de 1, 3 ou 6 semanas após o final da exposição a roda de atividade após o final da exposição a roda de atividade, os animais foram testados no labirinto aquático de Morris, sendo uma parte deles expostos a tarefa de memória operacional espacial, dependente da função hipocampal (H), e outra parte a uma tarefa de busca por uma plataforma visível, independente da função hipocampal (ÑH). Em ambos os casos, o intervalo entre as tentativas (ITI) foi de 10 minutos durante as sessões 1-6 e (virtualmente) zero minutos durante as sessões 7-10. Concluída a tarefa os cérebros foram processados para imuno-histoquímica. Foram feitas imunoistoquímicas para a detecção de Ki-67 (proliferação celular), BrdU, NeuN (para identificar neurónios maduros), e DCX (para identificar imaturo neurônios). Nossos dados suportam a ideia que atividade física voluntária induz um aumento na proliferação celular e na diferenciação neuronal (neurogênese) no giro denteado. A introdução de um período de intervalo entre o final do exercício e a execução da tarefa comportamental causa uma redução significativa na sobrevivência dos novos neurônios, como observado com 1 semana de intervalo em comparação com os animais testados com 6 semanas de intervalo. Em contraste, entretanto, o presente resultado não confirma que esse aumento da neurogênese é acompanhado por melhora na memória espacial, como avaliado por meio da versão que envolve memória operacional no labirinto aquático de Morris. O aprendizado da tarefa do labirinto aquático de Morris, na versão de memória operacional que é dependente do hipocampo, leva a um aumento da sobrevivência dos novos neurônios que foram produzidos no período de exercício, ao passo que o aprendizado da versão independente da tarefa leva a uma redução do número absoluto de novos neurônios
Title in English
Exercise, neurogenesis and memory
Keywords in English
Neurogenesis
Physical activity
Spatial learning
Spatial memory
Abstract in English
Hippocampal adult neurogenesis is modulated by many factors including age, stress, environmental enrichment, physical exercise and learning. Spontaneous exercise in a running wheel stimulates cell proliferation in the adult dentate gyrus and facilitates acquisition and/or retention of hippocampal-dependent tasks including the Morris water maze. While it is well established that regular physical exercise improves cognitive performance, it is unclear for how long these benefits last after its interruption. In this study, we investigate the temporal relation between exercise-induced benefits associated with learning of a hippocampal-dependent task, this relationship with neurogenesis, considering the time after exercise has ended. Independent groups of rats were given free access to either unlocked (EXE Group) or locked (No-EXE Group) running wheels for 7 days, having received daily injections of BrdU for the last 3 days. The animals were then transferred to standard home cages. After a time period of either 1, 3 or 6 weeks, the animals were tested in the Morris water maze, one of them being exposed to the spatial working memory task dependent on hippocampal function (H) and partly to a task search for a visible platform, independent of hippocampal function (NH). In both cases, the interval between trials (ITI) was 10 minutes during sessions and 1-6 and (virtually) zero minute during the sessions 7-10. After the task brains were processed for immunohistochemistry. Cell proliferation and net neurogenesis were assessed in hippocampal sections using antibodies against BrdU, NeuN (to identify mature neurons), and DCX (to identify immature neurons). Data of the present study confirm that exposure of rats to 7 days of spontaneous wheel running increases cell proliferation and neurogenesis. In contrast, however, the present results did not confirm that this neurogenesis is accompanied by a significant improvement in spatial learning, as evaluated using the working memory version of the Morris’ water maze task. The introduction of a delay period between the end of exercise and cognitive training on the Morris water maze reduces cell survival; the number of new neurons was higher in the EXE1 week delay group as compared to the EXE6 week delay. We showed that learning the Morris water maze in the working memory task dependent on hippocampal function (H) increases the new neurons survival, in contrast, learning hippocampal-independent version of the task decreases number of new neurons
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2014-04-07
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.