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Resumo 

O Eixo Imune-Pineal (EIP) é a comunicação entre a pineal e o sistema 

imunológico durante as respostas imunes. Citocinas inflamatórias e padrões 

moleculares associados a patógenos/perigos bloqueiam a síntese de 

melatonina da pineal, permitindo a migração de células imunes para o local da 

lesão enquanto induz sua produção por células imunocompetentes. Uma 

melhor compreensão dos mecanismos responsáveis de ajustar a síntese de 

melatonina pineal e extra-pineal melhoraria nossa capacidade de modular esse 

sistema em condições fisiopatológicas. Na presente Tese, determinamos o 

perfil cíclico do sistema melatonérgico em células imunes, como as células do 

sistema imune e pineal respondem aos sinais imunológicos e como a ativação 

desequilibrada do EIP pode induzir uma doença inflamatória crônica. Primeiro, 

demonstramos que fagócitos e linfócitos T da medula óssea (MO) e baço 

apresentam ritmos diários de enzimas melatonérgicas e produzem melatonina 

após estimulação com LPS e IL10. A IL10 é uma citocina anti-inflamatória que 

exerce seus efeitos ativando a via STAT3, um fator de transcrição capaz de 

interagir e regular a via NFκB. A IL10 leva à ativação de (P)STAT3/NFKB na 

pineal, células da MO e esplenócitos, aumentando a síntese de melatonina. A 

IL10 também reduziu a síntese de melatonina nas células peritoneais. 

Consequentemente, variações nos níveis de IL10 durante as respostas imunes 

podem ser um fator regulador da síntese de melatonina pineal e extra-pineal. 

Finalmente, usando um modelo animal de inflamação crônica (artrite 

reumatóide, AR), comparamos a ativação do EIP em animais resistentes (RES) 

e que desenvolveram AR. A conversa cruzada adrenal-pineal foi alterada em 

animais com AR, levando a uma diminuição da relação 6-

sulfatoximelatonina/corticosterona. Essa razão foi inversamente 

correlacionada com o escore inflamatório (composto pelas citocinas IL-1β, 

MCP-1, IL-2 e IL-4) e o tamanho da lesão inflamatória, fornecendo fortes 

evidências de que a interação positiva adrenal/pineal é um mecanismo precoce 

evitando a cronificação inflamatória. Em conclusão, a presente Tese aumenta 

nossa compreensão dos mecanismos que ajustam a síntese de melatonina 

pineal e extra-pineal ao local e tempo corretos durante as respostas imunes. 
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Abstract 

The immune-pineal axis (IPA) is the communication between the pineal 

and the immune system during immune responses. Inflammatory cytokines and 

pathogen/danger-associated molecular patterns block pineal's melatonin 

synthesis, allowing the migration of immune cells to the injury site while 

inducing its production by immunocompetent cells. A better understanding of 

the mechanisms responsible for adjusting pineal and extra-pineal melatonin 

synthesis would improve our ability to modulate this system in 

pathophysiological conditions. In the present Thesis, we determined the cyclic 

profile of the melatonergic system in immune cells, how pineal and immune 

system cells respond to immunological signals and how the unbalanced 

activation of IPA might induce a chronic inflammatory disease. First, we 

demonstrated that phagocytes and T-lymphocytes of the bone marrow (BM) 

and spleen show daily rhythms of melatonergic enzymes and produce 

melatonin following LPS and IL10 stimulation. IL10 is an anti-inflammatory 

cytokine that exerts its effects by activating the STAT3 pathway, a transcription 

factor capable of interacting with and regulating the NFκB pathway. IL10 leads 

to (P)STAT3/NFKB activation in the pineal, BM cells, and splenocytes, 

increasing melatonin synthesis. IL10 also reduced melatonin synthesis in 

peritoneal cells. Consequently, variations in IL10 levels during immune 

responses may be a regulatory factor of the pineal and extra-pineal melatonin 

synthesis. Finally, using an animal model of chronic inflammation (rheumatoid 

arthritis, RA), we compared IPA activation in resistant (RES) and animals that 

developed RA. The adrenal-pineal crosstalk was altered in RA animals leading 

to a decreased 6-sulfatoxymelatonin/corticosterone ratio. This ratio was 

inversely correlated with an inflammatory score (composed of the cytokines IL-

1β, MCP-1, IL-2, and IL-4) and the inflammatory lesion's size, providing strong 

evidence that adrenal/pineal positive interaction is an early mechanism 

avoiding inflammatory chronification. In conclusion, the present Thesis 

increases our understanding of mechanisms adjusting pineal and extra-pineal 

melatonin synthesis to the right place and time during immune responses.  

 

Keywords: Immune-Pineal Axis, Melatonin, Glucocorticoids, Cytokines, 

Chronic Inflammation, STAT3, NFκB, Immune System Cells. 

  



 

Initial Considerations 

In vertebrates, melatonin is produced rhythmically by pinealocytes in the 

pineal gland (Simonneaux & Ribelayga, 2003; Carrillo-Vico et al., 2013; Da 

Silveira Cruz-Machado et al., 2017; Markus et al., 2018). Melatonin production 

is carried out from the hydroxylation and decarboxylation of the amino acid 

tryptophan in serotonin, which is acetylated by arylalkylamine-N-

acetyltransferase (AANAT) to form N-acetylserotonin (NAS). In the final step of 

the biosynthetic pathway, the acetylserotonin-O-methyltransferase enzyme 

(ASMT) converts NAS into melatonin. The synthesis is triggered by the 

sympathetic noradrenaline (NA) released exclusively at night and the 

consequent activation of β1-adrenergic receptors (β1-AR) located in the 

membrane of pinealocytes. Once synthesized, melatonin is released into the 

bloodstream reaching central and peripheral tissues. Although ASMT is the 

enzyme with the lower catalytic activity of the pathway, AANAT is considered 

the key enzyme of melatonin synthesis because its rhythmical expression 

profile reflects the coordination imposed by the biological clock located in the 

suprachiasmatic nuclei.  

The nocturnal β1-AR activation increases AANAT activity by the cAMP-

PKA-CREB pathway, inducing the transcription (e.g., rodents) and protecting 

the enzyme from proteasome degradation (e.g., humans). Other transcription 

factors might also adjust the transcription of the Aanat gene (Cecon et al., 2010; 

Fernandes et al., 2016; Markus et al., 2018; Barbosa Lima et al., 2019). In this 

sense, the expression and nuclear translocation of p50/p50 homodimer of the 

nuclear factor κB (NFκB) block noradrenaline-induced Aanat transcription 

(Ferreira et al., 2005; Cecon et al., 2010). Interestingly, NFκB p50/p50 



 

homodimer is constitutively translocated to the nucleus of pinealocytes during 

the light phase and is abruptly reduced at the beginning of the dark phase in 

the pineal gland (Cecon et al., 2010). While in an inactivated state, NFκB 

localizes in the cytosol complexed with the inhibitory protein IκBα but, once 

activated by a variety of signals that lead to IκBα phosphorylation and 

subsequent dissociation, NFκB translocate into the nucleus and binds to 

specific DNA sequences (Ghosh et al., 1998; Hayden & Ghosh, 2008). NFκB 

family has five members: RelA (or p65), RelB, cRel, p50, and p52. Of these 

members, p65, RelB, and cRel possess a transactivation domain (TAD) and 

induce gene transcription, while the TAD- p50 subunits typically work as gene 

repressors (Zhong et al., 2002; Guan et al., 2005; Yu et al., 2009; Elsharkawy 

et al., 2010). NFκB TAD+ dimers increase melatonin synthesis in the pineal 

(mainly p50/p65 and p65/p65 NFκB dimers) and phagocytes (p50/p65 and 

cRel/p65 NFκB dimers) by increasing Aanat transcription (Muxel et al., 2012, 

2016; Markus et al., 2013, 2018; Barbosa Lima et al., 2019). In contrast, NFκB 

TAD- dimers are associated with melatonin inhibition (mainly p50/p50 NFκB 

dimers) by blocking Aanat transcription (Ferreira et al., 2005; Markus et al., 

2013; Muxel et al., 2016; Barbosa Lima et al., 2019). 

The pleiotropic effects of melatonin are exerted through four principal 

mechanisms: binding to membrane receptors, binding to nuclear receptors; 

interacting with intracellular proteins; and receptor-independent radical 

scavenging (Hardeland, 2008; Mahmood, 2019). Receptor-mediated effects 

are triggered by three subtypes of known melatonin receptors (MT). Subtypes 

MT1 (pM binding affinity) and MT2 (nM binding affinity) are G-protein-coupled 

receptors (GPCRs), while MT3 (μM binding affinity) is a quinone reductase that 



 

has not yet been characterized in mammals. Melatonin has amphiphilic 

properties that allow it to permeate the cellular membrane by passive diffusion. 

Intracellularly, melatonin might also function through the nuclear retinoic acid 

receptor-related orphan receptors (ROR) family. Although whether or not 

melatonin is an actual ligand of these receptors is still controversial, it is clear 

that melatonin or its metabolites can indirectly modulate ROR expression and 

function (Slominski et al., 2016; Ma et al., 2021). Regarding non-receptor-

mediated effects, melatonin binds to intracellular calcium-binding proteins such 

as calmodulin and calreticulin (nM binding affinity) (Hardeland, 2008; Argueta 

et al., 2022). It also acts as a free radical scavenger interacting with hydroxyl 

radicals and neutralizing hydrogen peroxide, singlet oxygen, peroxynitrite 

anion, nitric oxide, and hypochlorous acid (Reiter et al., 2000). Nevertheless, 

melatonin protects the cell from oxidative damage by activating membrane and 

intracellular MT that stimulates the transcription of antioxidative enzymes such 

as superoxide dismutase, glutathione peroxidase, and glutathione reductase, 

increases the efficacy of the mitochondrial electron transport chain and reduces 

electron leakage (Reiter et al., 2000; Hardeland, 2008). 

Melatonin receptors have been found in the brain, retina, cardiovascular 

system, liver, colon, skin, kidney, and immune system cells (Pandi-Perumal et 

al., 2008; Emet et al., 2016). In addition to the pineal, measurable levels of 

melatonin and its synthetic enzymes (AANAT, PAANAT, and ASMT) are also 

found in extra-pineal tissues, including the brain, retina, gastrointestinal tract, 

airway epithelium, spleen, bone marrow (BM) and different cells of the immune 

system (Acuña-Castroviejo et al., 2014; Córdoba-Moreno et al., 2020). 

Coordinated but independent pathways regulate pineal and extra-pineal 



 

melatonin production in healthy conditions. However, when the immune system 

is activated, immunomodulatory signals such as pathogen-associated 

molecular patterns (PAMPs) and danger-associated molecular patterns 

(DAMPs) trigger a more intrinsic communication among melatonin sources. In 

this sense, in the early phase of the immune activation, transcriptional factors 

as NFκB blocks pineal melatonin synthesis and redirects it towards immune 

cells at the site of injury (Markus et al., 2013). Increased sympathetic tone 

together with high levels of glucocorticoids (GC) also contribute to the blockade 

of pineal melatonin synthesis in this phase. On the other hand, once the 

inflammatory focus is resolved, the sympathetic tone decreases and high GC 

levels modulate the return of pineal melatonin (Lopes et al., 2001; Couto-

Moraes et al., 2009; Markus et al., 2018). The bidirectional communication 

between the immune system and the pineal gland is known as the immune-

pineal axis (IPA) (Markus et al., 2018) (Figure1).  

The immune system is a complex network of different types of cells, 

tissues, and organs that help maintain/restore the body's homeostasis. In this 

Doctoral Thesis, the melatonin pathway of different cells and organs of the 

immune system was studied to evaluate the mechanisms that adjust melatonin 

synthesis in different tissues and scenarios. We also seek to demonstrate how 

an unbalanced IPA activation might lead to the chronification of an inflammatory 

process. The results found in this work increased our understanding that 

melatonin is differentially synthesized before, during, and after IPA activation 

depending on the cellular environment to fulfill and coordinate specific functions 

related to the locations (Figure1).  



 

 

Figure 1. Immune-Pineal Axis (IPA). Communication between the pineal and the immune 

system occurs in the different phases of the immune surveillance/response: homeostasis, 

immunomodulation, acute inflammation, and chronic inflammation. During these phases, 

circulating levels of pineal melatonin regulate the nocturnal migration of leukocytes



 

Conclusions 

The activation of the immune response is a necessary process that 

allows the body to defend itself against malignant agents, where the correct 

assembly of the response is going to be crucial to determine the success of the 

recovery of homeostasis. An exacerbated response can lead to an 

immunological lack of control, triggering chronic inflammation (e.g., rheumatoid 

arthritis) or immunosuppression. On the other hand, a diminished response 

would not cover all the requirements, leaving the organism unprotected and 

free to be controlled by the pathogen. The Immune-Pineal Axis is the 

communication between the pineal and the immune system that is established 

when the immune response is activated and shows that directing melatonin 

synthesis from the pineal to the injury site is a critical step that will allow a 

balanced immune response. 

Under basal conditions, β1-AR stimulation, GC release from the adrenal 

gland, and the daily variation of NFκB control pineal melatonin synthesis. This 

melatonin regulates various circadian functions, including maintaining 

endothelial cells in a non-reactive phenotype that inhibits the expression of 

adhesion molecules and controls cellular migration. When the immune system 

is activated, pineal melatonin synthesis is blocked by the increase in GC levels 

with the α1 + β1-AR simultaneous adrenergic stimulation or by PAMPs and 

DAMPs, allowing leukocyte migration. At the injury site, PAMPs, DAMPs, and 

proinflammatory cytokines (such as TNF) induce melatonin synthesis by 

activating the NFκB pathway TAD+ in active immune cells. This melatonin, 

added to that already produced locally, reaches intracellular concentrations 

where it mainly performs anti-inflammatory functions and helps to prevent 



 

oxidative damage. Once the inflammatory focus is resolved (during the 

recovery phase), or when the sympathetic tone is reduced (only β1-ARs are 

activated - during the recovery phase or in a chronic inflammation process), 

pineal melatonin levels return thanks to GC-induced GR activation and NFκB 

inhibition. During chronic inflammation, high levels of TNF continue to induce 

melatonin synthesis at the site of injury, and the relationship established 

between pineal melatonin and GC levels is decisive for controlling 

inflammation. Finally, in the recovery phase, TNF-induced melatonin synthesis 

might be blocked by IL10 by activating the TAD-/ NFκB and STATs pathways, 

and the body returns to a homeostatic phase. 

Another important aspect of this Thesis is the more profound 

understanding of the intracellular mechanisms that regulate melatonin 

synthesis in the pineal and extra-pineal sources. In addition to the GR and 

NFκB interactions described above, the role of the STAT family (mainly STAT1 

and STAT3) appears to be crucial in differentially regulating melatonin 

synthesis. According to cell type and the phase of the immune response, 

STAT3 activation can interact and activate the inductive or inhibitory pathways 

of NFκB, adjusting DNA binding and thus regulating AANAT and ASMT 

transcriptions and melatonin synthesis.   

 Thus, future works should focus on finding strategies to redirect 

melatonin synthesis to the right place and time. In this sense, it is first necessary 

to understand the integrative mechanisms in each organismic context and 

develop strategies and parameters for measuring immunological factors in the 

blood and pineal/urinary melatonin levels.
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