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Epígrafe

Stonehenge

One of my goals in these closing sections has been to illustrate - and enjoy! - what I

take to be the real adventure in the scientific enterprise, which is, among other

things, a search for pattern and meaning in what one observes. It is the necessarily

conjectural nature of that search, at least at the outset, which entails hazard and

makes the enterprise adventurous, not only for the observer himself, but for his

observations and ideas. “Escape from light” is just such an adventure, which one

enjoys for its own sake, and possibly will prove useful, perhaps even correct.

Stonehenge

Um de meus objetivos nestas seções finais tem sido ilustrar - e aproveitar! - o que

considero ser a verdadeira aventura no empreendimento científico, que é, entre

outras coisas, uma busca por padrão e significado no que se observa. É a natureza

necessariamente conjectural dessa busca, pelo menos no início, que acarreta

perigos e torna o empreendimento aventureiro, não apenas para o próprio

observador, mas para suas observações e idéias. "Fugir da luz" é exatamente uma

tal aventura, que se desfruta por si mesma, e que possivelmente se revelará útil,

talvez até correta.

Colin S. Pittendrigh,
TEMPORAL ORGANIZATION: Reflections of a Darwinian Clock-Watcher

(tradução nossa)
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Resumo Geral

Ritmos biológicos têm um papel importante nos aspectos fisiológicos e

comportamentais dos organismos. A compreensão do ritmo diário de insetos

sociais nos permite realizar análises desde o indivíduo até o nível da colônia.

O estudo dos ritmos diários das formigas, especialmente formigas

cortadeiras, tem sido um desafio devido ao tamanho das colônias e ao

polimorfismo. O presente trabalho teve como objetivo entender como as

colônias de formigas cortadeiras se comportam coletivamente considerando o

corte de folhas e o forrageamento, desenvolvendo uma ferramenta de

vídeo-tracking para monitorar o fluxo de formigas. Foram utilizadas câmeras

para registrar o forrageamento (vídeo) e como a área foliar diminuiu

(fotografias). Uma colônia de Atta sexdens foi exposta a um ciclo LD 12:12

(500 lux durante a fase de claridade e luzes vermelhas acesas durante todo o

experimento; temperatura = 23ºC, umidade = 60%). O reabastecimento de

folhas (Acalypha sp.) aconteceu uma vez por dia usando um protocolo

aleatório. Registramos a atividade da colônia durante 30 dias, realizando 2

deslocamentos de fase de 6 horas (atraso e avanço). Observamos que

embora a colônia esteja ativa durante as fases de claro e escuro, sua

atividade é maior durante a fase de escuro, tanto em relação ao

forrageamento quanto ao corte de folhas. O software de rastreamento de

vídeo desenvolvido neste projeto nos permitiu contar 143904 formigas após

analisar 2133 vídeos. Também analisamos a relação entre o número de

forrageadoras e as taxas de corte de folha sob condições sincronizadas e

dessincronizadas. Concluímos que esta relação pode ser um parâmetro

interessante para discutir estratégias de eficiência a nível individual e coletivo

após distúrbios na ordem temporal interna da colônia. Também acreditamos

que usando os protocolos e software desenvolvidos neste projeto muitos

outros aspectos da organização temporal em formigas cortadeiras podem ser

identificados, revelando uma compreensão mais profunda de como a

ressincronização ocorre após rupturas da ordem temporal interna.
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Abstract

Biological rhythms play an essential role in organisms’ physiological

and behavioral aspects. Understanding daily rhythmicity on social insects

allows us to analyze the individual to the colony level. Studying ants’ daily

rhythms, especially leaf-cutter ants, has been challenging due to the colony

sizes and polymorphism. The present work aimed to understand how colonies

of leaf-cutter ants rhythmically behaved collectively considering their

leaf-cutting and foraging activity, developing a machine learning video tracking

tool to analyze the ant’s flow. Cameras were used to register the foraging

activity (video) and how the leaf area decreased (photographs). An Atta

sexdens colony was exposed to an LD cycle 12:12 (500 lux during the light

phase and red lights on during all the experiments; temperature = 23ºC,

humidity = 60%). Leaves replenishments (Acalypha sp.) happened using a

random protocol once a day. We recorded the colony activity during 30 days,

performing two 6 hours phase shifts (delay and advance). We have observed

that even though the colony is active during both light and dark phases, the

colony activity is higher during the dark phase, regarding both the foraging

and the leaf-cutting activities. The video-tracking software developed in this

project allowed us to count 143904 ants after analyzing 2133 videos. We have

also analyzed the relationship between the number of ants foraging and the

leaf-cutting taxes under synchronized and desynchronized conditions. We

concluded that this relationship might be a sensitive parameter for discussing

efficiency strategies at the individual and collective levels after disturbances

on the colony’s internal temporal order. We also believe that using the

protocols and software developed in this project, many other aspects of

temporal organization in leaf-cutter ants may be identified, building a deeper

understanding of how resynchronization occurs after disruptions in the internal

temporal order.
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Chapter 1: General Introduction

BIOLOGICAL RHYTHMS

Throughout evolution, organisms have developed the ability to anticipate

cyclic environmental changes in physiology and behavior (Pittendrigh, 1993). The

development of endogenous rhythmicity generated by biological oscillators and their

ability to synchronize with environmental cycles are significant aspects of this

adaptive feature, which increases organisms’ fitness (Jabbur et al., 2021). In

association with the regularity of environmental events, which occurs in the most

diverse time scales, several biological rhythms also occur with short duration up to

annual scales. In this context, circadian rhythms stand out (with periods near 24h),

subject to synchronization by 24h environmental cycles such as light-dark, which

synchronize them to daily, 24h rhythms (Aschoff, 1979; Pittendrigh, 1993 and Bloch

et al., 2013). Such rhythms are observed in all groups of living things, from

single-celled to multicellular organisms (Dunlap, 2004). Considering even a longer

time scale, it is worth noting the aspects involved with seasonality. Several polar

animals, such as Arctic squirrels and birds, exhibit behaviors related to annual

synchronization, such as hibernation and migratory behaviors, respectively (Bloch et

al., 2013). Some rhythms are synchronized by the tidal cycle, lunar cycles, and

several others (Refinetti et al., 2007; Wagner et al., 2007). Given all this, we can

verify the extent of these mechanisms of temporal regulation in nature so that the

biological temporal organization occurs through different forms, ranging from cellular

mechanisms to behavioral ones (Bloch et al., 2013).

The organism’s daily rhythmicity rhythm observed may result from several

synchronizers. Among the most common daily synchronizers, the light-dark (LD)

cycle, feeding cycles, and temperature cycles are worth mentioning. There is also,

for social animals, the presence of a daily social cycle as a significant synchronizer,

which is observed in social insects (Bloch, 2013; Lone and Sharma, 2011), bats
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(Marimuthu, 1981; Marimuthu, 1983), and even humans (Roenneberg et al., 2019) -

Figure 1.

Figure 1) Schematic representation of the synchronization principles of endogenous

rhythms by environmental cycles. Environmental cycles are sensed by afferent systems,

which transmit timing information to central oscillators that transmit this information to the

other peripheral oscillators in the organism, leading to synchronization (adapted from

Buttgereit et al., 2015).

The observed daily rhythm can be synchronized through two mechanisms:

entrainment and masking. These two have great adaptive value since they provide

the temporal organization system with precision and flexibility, respectively

(Pittendrigh and Daan, 1976; Page, 1989). Entrainment occurs when the oscillator

that generates the observed rhythm starts to exhibit the same period as the

environmental cycle (which we call Zeitgeber). On the other hand, masking is an

acute modulation of the amplitude of the rhythm, either by stimulation or by inhibition,

without changing the properties (period and phase) of the oscillator that generates

the rhythm. Thus, the activity of an organism can have effects of more than one

synchronizer and has both anticipatory and direct response aspects to environmental

phenomena (Pittendrigh and Daan, 1976; Page, 1989; Tachinardi, 2012). Another
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relevant piece of information is that after perturbations on its internal temporal order,

such as those due to phase shifts of the LD cycle, an organism takes several days to

resynchronize with the new environmental cyclic conditions. This temporary

oscillatory state between two synchronized and steady states is called “transients”

and reflects the dynamics of the oscillators during the resynchronization processes

(Pittendrigh, 1960).

Biological rhythms on social insects

Social insects are groups of insects that organize themselves in colonies,

such as termites, bees, wasps, and ants. In these groups, characterized by

eusociality (Wilson, 1971), we find a division of reproductive labor so that a caste is

capable of reproducing and another infertile. Those systems also show a complex

division of labor corresponding to the other tasks of the colony. Thus, the infertile

class (workers) is divided into sub-castes with specific functions within the colony,

such as foraging, care of the offspring, defense of the colony, garbage removal, and

maintenance of the fungus (Wilson, 1980).

A colony of social insects can have hundreds to millions of individuals. It is

worth noting that individual survival depends on belonging to the colony, as the

colony’s survival relies on the organized functioning of the individuals. Because there

are individual and collective aspects, these systems can be considered complex

(Boccara, 2003). In multicellular organisms, not all cells are exposed to light-dark

cycle cues; however, a group of cells sensitive to photic information can be

synchronized and transmit this information to the whole organism, which can then

present a fully synchronized rhythm (Figure 1). Social insect colonies often present

groups of individuals exposed to photic environmental cues and can inform them to

the rest of the colony that lives in constant conditions (Figure 2). That social

interaction within the colony also allows its synchronization, similar to what we

observe in many multicellular organisms. Social insect colonies allow us to

investigate daily synchronization due to environmental cycles (light/dark) and the

internal synchronization due to social interactions (Southwick and Moritz, 1987;
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Moritz and Sakofski, 1991). In addition, the worker class of a leafcutter ant colony

has a high level of genetic similarity, around 75% (Hamilton, 1964). All these features

reinforce the idea of ant colonies as “superorganisms,” making them, therefore,

excellent objects for studying the processes involved in the emergence of biological

rhythms in colonies and possibly even in other organisms. However, the knowledge

built about this topic is mainly resulting only from chronobiological studies conducted

in bees (Frisch and Koeniger, 1994; Moore, 2001, Bloch et al., 2001; Toma et al.,

2000; Bloch and Robinson, 2001), and few studies have been conducted with ant

colonies, and there are still many questions to be explored about their

synchronization mechanisms (Figure 2).

Figure 2) Possible relationships involved in the light-dark cycle synchronization of a

leafcutter ant colony. Individual rhythms emerge into rhythms of the subcastes, and these

emerge as the colony rhythm. Furthermore, the role of elements such as the fungus and

queen in synchronizing the rest of the colony is unknown.

.
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Although leafcutter ant societies, such as Atta, offer an excellent opportunity

to extend comparative studies (McCluskey 1958; 1965; Roces and Nunez 1996), two

main aspects make the task of measuring collective behavior potentially with the

support of video recordings difficult. The first is a large number of individuals since

Atta colonies can have up to 8 million individuals. The second is the variety of sizes

among ants, since several species show polymorphism (Figure 3), with individuals

ranging in size from millimeters to a few centimeters.

Given these challenges, the rare studies of rhythmicity in ants have been

carried out exclusively in isolated individuals (Sharma et al., 2004) or small groups

(McCluskey 1965, 1967), often deprived of the collective context offered by the

colony. Such an approach, although practical, ignores one of the fundamental

aspects of colony regulation: the existence of the collective and individual

organization, inseparable in regulatory processes.

Recent work has explored ant rhythmicity at the molecular level, from clock

genes present in individual circadian oscillators located in the brain (Ingram et al.,

2009, Kay et al., 2018). Some studies look at rhythmicity in nurses, showing that the

presence/absence of eggs modulates their activity (Fuchikawa et al., 2017). This

aspect is fascinating since this sub-caste (and the queen) is not directly exposed to

light-dark effects as their activities are restricted to the nest, where there is no light

input in a natural environment. In this sense, despite the significant advances made

in the study of the spatial organization of ant societies (Clark, 2006), less is known

about the temporal organization of their activity and its distinct individual and

collective aspects, especially important in these eusocial organisms.

An interesting additional factor in these collective systems is the presence of a

symbiont fungus present in some ant groups. The Neoattini ants (belonging to the

tribe Attini), with the genera Atta (“saúvas”) and Acromyrmex (“quenquéns”), are

known as leafcutters and have a high distribution in Neotropical areas. They are

characterized by growing a fungus garden, cutting leaves, foraging on a large scale,

and colonies that can number in the millions. Particularly, species of the genus Atta

also exhibit a gradual polymorphism among their subcastes (Weber, 1972 and

Wilson, 1980). Thus, larger ants are generally associated with colony defense tasks
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and are called soldiers. On the other hand, smaller ants tend to be responsible for

tasks internal to the nest, such as bringing water to the colony. Foraging is usually

related to the intermediary ants (Wilson, 1980) (Figure 3). It is also worth noting the

dynamics of this division of labor among the subcastes, which is not deterministic,

and the function of an individual may vary according to the colony’s requirements.

Our laboratory also observed that larger and intermediate ants tend to suffer

more significant influence from daily environmental cycles (Toledo, 2014) since they

perform tasks outside the nest, being more exposed to environmental variations

(Bloch et al., 2013). Recent work from our laboratory also shows that leafcutter

foragers organize themselves in work shifts, with two distinct states of the colony

organization considering the light and darkness phases (Constantino et al., 2021).

https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Atta.cephalotes.gamut.selection.jpg/220px-Atta.cephalotes.gamut.selection.jpg

Figure 3) Polymorphism in Atta. The figure shows the gradual variation in size between the

castes. The two most prominent individuals comprise the reproductive caste, representing a

queen and a virgin queen. The others correspond to the distinct sub-castes within the

workers.
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As mentioned, one of the main challenges in dealing with the individuals of a

vast colony with a great morphometric variety are methodological aspects. In order

to observe the ants in these conditions, computational techniques need to be

created, especially considering the number of ants that had to be evaluated (15.000).

As discussed later, a method based on machine learning techniques to evaluate

large numbers of ants was developed.

A LOOK INTO PRODUCTIVITY, ENERGETIC EFFICIENCY, AND BEHAVIOR

Social insects’ literature comprehends a significant number of uses of the

terms “productivity” and “efficiency.” Sometimes they are used almost as equivalents,

but through a more profound look across the decades, we can observe some

changes in the guiding ideas that drove the discussion of productivity or efficiency in

social insects. In this sense, discussing “productivity” within a social context is not

trivial since it can take into account individual aspects (productivity per capita) as

well as global aspects of the colony (colony productivity). The productivity of a social

insect colony should be thought of within an evolutionary context (Montagna et al.,

2010 and Naug and Wenzel, 2006). Keeping in mind the idea of inclusive fitness (or

kin selection) within social insects (Hamilton, 1964), the ability to obtain food for the

colony should be a key component in determining its productivity (Naug and Wenzel,

2006). Given this, foraging becomes an essential process, as larger foraging areas

should imply a greater number of food sources available to the colony (Mailleux et

al., 2003, Montagna et al., 2010 and Naug and Wenzel, 2006). The number of

individuals recruited to forage is directly related to the colony’s foraging area, so the

greater the number of foragers, the greater the total area foraged by the colony

(Mailleux et al., 2003) Naug, and Wenzel, 2006).

In this way, we have an increased probability of success in finding new food

sources while also increasing the number of ants that cannot find new food sources

(Mailleux et al., 2003 and Naug, and Wenzel, 2006). Thus, we get two essential

concepts for thinking about aspects of colony productivity. Firstly, we have an idea of
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“Colony Productivity,” which can be inferred through parameters such as the total

food obtained by the colony, the total number of individuals recruited for foraging

activity, in addition to aspects related to colony size, and consequently reproductive

parameters associated with the queen, with their particularities within social insect

species (Michener, 1964, Mattila et al., 2012, Montagna et al., 2010 and Naug and

Wenzel, 2006).

Secondly, we have the concept of “Productivity per capita,” which aims to

understand how individual components act within the overall colony context

(Modlmeier, 2013). Productivity per capita can be assessed through the efficiency of

individual transportation or even the time an individual uses to perform the task

(Naug and Wenzel, 2006). The big question associated with these two concepts,

brought about by Michener’s paradox, consists in the fact that increasing the number

of foragers is able to increase the overall productivity of the colony, even if the per

capita productivity suffers a reduction (Michener, 1964 and Naug and Wenzel, 2006).

Similar to what we observe with the term “productivity,” “efficiency” can also

refer to many different aspects of social insects’ literature. Efficiency can refer to

reproductive efficiency, considering how many individuals can be generated per

reproductive female and comparing colony sizes (Connell, 1961; Michener, 1964).

Meanwhile, more recent studies focus the “efficiency” discussion in social insects on

aspects related to task efficiency (Dussutour et al., 2007; Bernadou et al., 2016;

Bouchebti et al., 2015; Yerushalmi et al., 2006; de Toledo et al., 2016). While the first

relied on the idea that colonies with higher numbers of individuals were more

efficient, task efficiency refers to workers’ individual performance, similar to what we

observe in the idea of productivity per capita. For example, if a forager cuts and

carries more leaves than others, it could be considered more efficient, assuming an

isolated parameter (leaves cut per ant). However, it is possible to add more variables

considering task performance: ant sizes, speed, distance to the food source, type of

source, and time are some of the aspects that can increase the complexity of

discussing foraging efficiency. All of those are deeply related to the energetic aspects

involving foraging activity. Despite the intrinsic difficulty of defining efficiency,

considering that behavior change over time can alter the strategy for obtaining

resources in a way that can be observed and described (based on measurable
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inputs and outputs), it is possible to assume that efficiency has changed being

increased or decreased.

Although this idea considering social insects contains several particular

features, as discussed above, the main discussion about energetic efficiency is

similar to many other species. An organism homeostatic balanced spends less

energy to maintain all its activities than their energetic supplies available and, thanks

to this optimal relationship, increases its adaptiveness and its fitness (Stewart,

2007). Nevertheless, we are aware that this optimal relationship is constantly being

threatened as natural environments offer a variety of challenges to the organism’s

survival. Thus, all these aspects also increase the complexity of discussing energetic

efficiency since physiological mechanisms and distinct behaviors might offer different

advantages in different contexts.

Behavioral plasticity

It is possible to argue that organisms’ behavior can be resulted from different

strategies to predict and respond to environmental stimuli. In this sense, the ability to

anticipate cyclic environmental changes relates to an endogenous component and

rhythmic behaviors, while responding to specific cues can be related to an

exogenous component, which can involve an acute or even an anticipatory response

based on previous experiences, mediated by the cognitive system.

A great yet curious example of these ideas is the octopus Abdopus aculeatus.

Its habitat involves rhythmic challenges, as it faces diurnal changes of tides.

Predators are more present during the high tidal level. During the low tide, they

search for food sources (primarily crustaceans) in the intertidal reef, which usually

requires several types of locomotion, as these marine animals move from pool to

pool walking on land (Huffard, 2005, 2006, 2007). The behavioral set of these

animals is vast, as they can quickly adapt from aquatic to aerial environments,

besides the constant state of alertness to promote escape from predators.

Considering all these challenges, they chose different locomotion strategies that vary

from aerobic to anaerobic and have different energetic costs, according to their

necessities (Huffard, 2005). Escaping from a predator or attacking a prey usually
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involves locomotion strategies that require much energy; however, success in these

tasks is mandatory for the survival of these octopuses (Huffard, 2005).

Considering this example, we observe the high level of importance to combine

rhythmic anticipatory behaviors (endogenous component) and fine-tuning behaviors

resulting from the cognitive system (exogenous component). The optimal

combination of these physiological components is crucial to an organism’s survival,

increases its fitness and adaptiveness, and is deeply related to the dynamic

variations of behaviors and their specific energetic requirements. The present work

aims to discuss the combination of these physiological components and the dynamic

strategies involved in the efficiency of a leafcutter ant colony when facing temporal

disruption on its internal temporal order and random feeding events.

MACHINE LEARNING TECHNIQUES APPLIED TO BEHAVIORAL RESEARCH

Machine learning is defined as the study of algorithms that allow computers to

perform tasks automatically and improve their performance thanks to previous data.

Machine learning uses neural networks and is the basis of artificial intelligence

(Naqa and Murphy, 2015; Zhang, 2017). The modern and globalized world uses

machine learning techniques and artificial intelligence (AI) to perform several

activities, from social media on our cellphones to defining public policies based on

big data. Whether we understand it or are aware of this presence, it is everywhere.

Machine learning uses input data to extract features that can “learn” and

perform a task based on this learning. Machine learning can be divided into two main

groups: shallow and deep learning (Figure 4). The main difference between shallow

and deep learning refers to feature extraction. While deep learning involves a more

complex architecture and an automatic selection of features, in shallow learning,

humans select the features that will be used for training the models. In this sense,

deep learning offers an important tool to solve and deal with many biological

questions since variability is an intrinsic component of biological data. Selecting the
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best features for model training may be challenging when researchers do not have

enough knowledge about their system of study.

Figure 4) Schematic representation showing machine learning structure. Venn diagram

of the relationship between different components of Artificial Intelligence. Flow chart of

different AI parts used in machine learning. Small network symbols indicate components that

can learn from data (adapted from Goodfellow et al., 2016).

21



OBJECTIVES

1. Developing a video-tracking software able to analyze the foraging behavior of

a leaf-cutter ant colony inside the laboratory.

2. Applying this video-tracking tool to a synchronization experiment using a

leaf-cutter ant colony. We also aim to monitor the daily leaf consumption and

leaf-cutting rhythm in the same experiment.

Objective 1 is treated briefly below (for more detailed information, please

check the Tutorial present in the Annexes section). Objective 2 is the central theme

discussed in Chapter 2 of this manuscript.

DEVELOPMENT OF AN OBJECT DETECTION AND COUNTING TOOL FOR

ANALYZING ANT’S FORAGING ACTIVITY

Our group has been developing tools for analyzing ant foraging trails through

video-tracking, allowing size discrimination, and monitoring a population of about

10-15 thousand individuals. This software uses machine learning and deep learning

techniques to automate the counting of high flows of ants on foraging trails, being an

essential tool for studies with this type of system, enabling deeper investigation of

temporal aspects at the colony level (Toledo, 2014 and 2018). For developing our

final video-tracking tool, many steps were involved in the machine learning process

(Figure 5).
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Figure 5) Flowchart of all the steps involved in our video-tracking software development. Blue

box involves data acquisition (experiments). Red boxes show all steps involved in the software

validation stage. Green and yellow boxes show the deep learning train model stage and run our

model results for all our data.

The main challenges regarding using this type of tool involve object detection.

In this case, it is necessary to make the computer recognize the object (ant) and

follow it throughout the video, accounting for it in the flow counts. However, the

foraging trail is a complex environment that involves different elements, albeit in the

laboratory context. We have, for example, ants of various sizes and functions, such
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as those seeking or carrying leaves, as well as those removing obstacles ("waste")

from the trail itself. In addition, the flow of ants can be very high at certain times,

especially when the colony is feeding and during the night. Thus, this software needs

to be trained to recognize the ants in different frame contexts in the video image. It is

precisely in developing this kind of tool that part of the present work took place,

making use of powerful object detection techniques such as YOLOv2 (You Only Look

Once - versão 2, Redmon et al., 2016) and YOLOv5 (You Only Look Once - version

5, Zhu et al., 2021). When detecting objects in a video, this technique observes each

frame once and calculates the probability that each object found in the frame

belongs to a previously trained class (Figure 6). This way allows the analysis of a

large amount of video data, being an important tool used, for example, for monitoring

public security cameras.

https://towardsdatascience.com/implementing-yolo-on-a-custom-dataset-20101473ce53

Figure 6: Frame-by-frame object detection mechanism realized by YOLO.

During this project, we developed two versions of this software, and they

required several complex steps which are detailed and organized in our

supplementary material. The first version used YOLOv2 and counted ants in our pilot

experiment with Acromyrmex ants (Figure 7). However, in our main experiment using

Atta ants, the number of ants in the trail became extraordinarily high, reaching

hundreds of ants per 2 minutes video. Since our first version was powerful enough to

detect and count until 50 ants per video, and the software error increased the higher

the number of ants per video, we decided to develop a second version of the
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software using one of the most powerful and recent object detection techniques ever

developed, which was YOLOv5 (Zhu et al., 2021; Fang et al., 2021).

Figure 7: Daily rhythm of foraging. Recordings of 8 days of activity of a colony of Acromyrmex sp.

exposed to a 12:12 LD cycle (lights on at 06:00h). Humidity was kept at 60% and room temperature at

23ºC. Leaf replenishments occurred randomly once a day.

YOLOv5 provided us with great results, as we were able to count over

143.000 ants during the main experiment. Nevertheless, it is essential to

acknowledge that developing a second version of the software in such a shorter time

( we developed version 1 during a year and version 2 in 4 months) and obtaining

these results was only possible due to a recently open-source project for data

annotation, called Computer Vision Annotation Tool (CVAT - Intel corporation). CVAT

enables video annotation using a tracking mode function and online annotation that

can be accessed from different devices simultaneously. Our software was developed

using data from our video experiments. A precise object annotation in each image

plays a vital role in software performance. Poor data annotation makes machine

learning models decrease their accuracy, and it may be computationally hard to

boost their performance with optimization tools.

We emphasize the importance of data selection for the annotation step, as it

is important for biologists to select data that represents our object of study

satisfactorily. In our first version of the software, we faced two issues. First, we

transformed all our data in binary and ran algorithms that extracted 10.000 frames

(the minimum required to train an object detection model) according to the probability

of containing objects that could be identified as ants. Our pilot experiment did not
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contain a high number of ants per video (only 16% of the videos contained more

than 20 ants), but also many video frames did not contain any objects (27% of the

videos had 0 ants). Thus, a significant number of frames extracted by the algorithm

had no ants. That was a second issue because a lot of the images used to train the

YOLOv2 model could not provide a higher pool of ant annotations, making the model

accuracy smaller. When we developed the second version of the software using

YOLOv5 and CVAT, we selected a pool of videos with a high number of ants from

both light and dark phases. Since we knew how computationally powerful YOLOv5

was, we trusted it would solve videos with smaller numbers of ants and trained our

model on the worst-case scenario: hundreds of ants per video. We chose to share

this information here because we believe that many ethological researchers using

video-tracking software may not understand the importance of clear image data (with

high contrast between image background and objects and no unnecessary objects in

the video), as machines are not able to solve issues that are easily detected by the

expert human eye. Also, we believe sharing this experience may help programmers

who collaborate with biologists to develop tools to solve challenging experimental

questions such as ours. In our experience, YOLOv2 allowed us to count 5052

Acromyrmex ants in our pilot experiment (1152 minutes of video), while YOLOv5

allowed us to count 143.904 Atta ants in our final experiment (4320 minutes of video

recordings).
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CHAPTER 2 - Unpublished Manuscript
Effects of disturbances on the internal temporal order of a leafcutter ant

colony: daily rhythms of foraging and leaf-cutting activities

ABSTRACT

Biological rhythms are an essential component of organisms' physiological and

behavioral aspects. On social insects, biological rhythms can be studied considering

the individual and the collective level. Studying ants' daily rhythms, especially on

leafcutter ants, has been challenging due to the colony sizes and polymorphism. The

present work aimed to understand how colonies of leafcutter ants rhythmically

behaved collectively considering their leaf-cutting and foraging activity, developing a

machine learning video tracking tool to analyze the ant's flow. We also aimed to

understand how disturbances on the internal temporal order of the colony affected

foraging, leaf-cutting activities, and daily leaf intake. We recorded the colony activity

during 30 days, performing two 6 hours phase shifts (delay and advance). Although

the colony is active throughout the day, the colony activity is higher during the dark

phase. Our video tracking software allowed us to count 143904 ants (4320 minutes

of recording). Feeding events (leaf replenishments) show an acute effect on both

leaf-cutting and foraging rhythms. Daily leaf intake was higher after the phase shifts.

We have also analyzed the relationship between the number of ants foraging and the

leaf-cutting taxes under synchronized and desynchronized conditions. This

relationship might be a sensible parameter to discuss efficiency strategies at the

individual and collective levels after disturbances on the colony's internal temporal

order. Many questions remain unanswered about how synchronization arises from

the individual to the colony level; however, we believe that the techniques developed

in our work could be used to further studies regarding biological rhythms on ant

colonies.

INTRODUCTION

Colonies of social insects are interesting for circadian rhythm studies

due to the opportunity of investigating the roles played by external
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environmental cycles and internal social interactions (Southwick and Moritz,

1987; Moritz and Sakofski, 1991) in their daily synchronization. Circadian

rhythmicity can be identified at multiple levels, from individual behavior and

physiology (North, 1987; Moore 2001), through caste-related group activities

(Crailsheim et al., 1996; Bloch et al., 2001; Moore et al., 1989; Oda et al.,

2007) and up to the emergent rhythm of the whole colony (Moritz and

Sakofski, 1991; Frisch and Koeniger, 1994). Despite the variety of eusocial

insect species, such as ants, wasps, termites, and bees, most investigations

have been developed in social bee colonies (Toma et al., 2000; Bloch and

Robinson, 2001).

Ant societies offer an excellent counterpart for comparative studies

(McCluskey, 1958; 1965; North, 1993; Roces and Nunez, 1996; Sharma et al.,

2004), but the much larger number and smaller size of individuals make it

difficult to follow individual activities within a colony throughout the day

continuously. Rhythmicity in ants has in most cases been measured either in

individuals (North 1987; 1993; Sharma et al., 2004a;2004b) or small groups

(McCluskey 1965, 1967) isolated from the colony context. Recent works have

explored ant rhythmicity at the molecular level, focusing on clock genes in

individual circadian oscillators located in the brain, in Camponotus floridanus

(Kay et al., 2018; Das and de Bekker, 2021) and Pogonomyrmex ants (Ingram

et al., 2009 and 2016). Regarding the temporal organization within ant castes,

some studies show that the presence/absence of eggs can modify the

rhythmicity of Diacamma nurses (Fuchikawa et al., 2017), and Atta sexdens

foragers seem to organize themselves in work-shifts (Constantino et al.,

2021).

To investigate rhythmicity at the colony level, we developed an

automated video-tracking software based on machine learning techniques

that enabled monitoring the ant trail activity in laboratory conditions. We used

this system to track rhythmicity within a forager trail displayed by a colony of

South American ant Atta sexdens. The colony context was thus maintained in

the laboratory under artificial light/dark cycles and constant temperature. As a

first step, we characterized the daily activity rhythm of the forager group along

34



a trail that emerged between the colony and a food source. We

simultaneously monitored the daily rhythm of leaf-cutting activity of the same

colony. Forager ants responded to leaf replenishments with increases in acute

activity, and we verified that these acute responses varied throughout day and

night. Then we proceeded to analyze the hypothesis that a temporal shift of

the light/dark cycle would perturb the internal temporal order of the whole

colony by verifying its effects on the rhythms under synchronization and

during transient states (temporary oscillatory states between two steady

states, usually the first days after phase shifts) after perturbation. Our results

indicate the potential of this procedure for future studies aiming at uncovering

the fine networks of internal synchronization within the colony.

METHODS AND MATERIALS

Colony, food intake, and room conditions

An Atta sexdens colony (10.000-15.000 individuals) older than 3 years,

raised in the bioterium of the Institute of Biosciences USP (São Paulo, Brazil),

was used in this work. The colony was maintained in the center box of a maze

with three arms respectively connected to a food, a waste, and an empty box

(Figure 1A) under an LD 12:12 cycle (lights on at 06:00 hours; L= 500 lux) and

controlled temperature (23°C) and humidity (60%) maintained by two

humidifiers and one air conditioner (monitored with the use of a

thermigometer). Red lights were on during the whole experiment.

The colony was fed with Acalypha sp. leaves once a day

(approximately 750 cm²), according to a semi-random protocol that distributed

feeding times along light and darkness hours, as shown in Figure 1B. Each

replacement schedule results from a time selection conducted in two stages

and occurs both during the acclimatization and the experiment days. In the

first stage, we randomly select whether feeding would take place during the

morning (06:00-11:00 h), afternoon (12:00-17:00 h), evening (18:00-23:00 h),
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or early morning (00:00-05:00 h). In the second stage, we randomly select

which of the 6 hours of each interval the replenishment may occur. The leaves

were arranged side by side inside the food box without overlapping (Figure

2A). Before each feeding event, the remaining leaves from the last

replenishment were removed. During the experiment, the colony never

completely consumed the whole amount of the Acalypha sp. leaves available.

The fungus size was steady during the whole procedure.

Experimental Protocol

The colony was maintained in the maze for 15 days under the initial LD

cycle for acclimatization before recording. The colony activity was recorded

under the initial LD cycle for 10 days (Stage I - lights on at 06:00h). The LD

cycle 6h phase delay was applied in Stage II by a 6h lengthening of the light

phase on day 11 (lights on at 12:00h). This new stage was recorded for 10

days. Finally, the LD cycle 6h phase advance was applied in Stage III by

shortening the light phase of the LD cycle on day 21 (Figure 1C).
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Figure 1: Experimental setup. A) Schematic arrangement of the experimental maze

setup with three trails leaving the central colony box. Camera 1 records videos of the

foraging ant flow, while Camera 2, positioned above the food box, takes pictures of

the leaf area. B) Leaf offering events distributed over 24h. C) Schematic

representation of the Experimental Protocol. Light-dark cycle conditions throughout

the experiment are shown. White and black bars represent, respectively, light and

dark hours. Acclimatization and Stage I had the same LD cycle conditions (Lights on

at 06:00h). Stage II is initiated by a 6h phase delay of the LD cycle on day 11, and

Stage III begins with a phase advance of the LD cycle on day 21.

Daily Rhythm of Activity
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We monitored two activity rhythms: leaf-cutting and foraging activity. All

data were obtained by images recorded using two Logitech C920 HD Pro

webcams. Camera 1 was located in the middle of the trail connecting the nest

to the food source, and Camera 2 was positioned above the food box (Figure

1A). All videos and pictures were taken using the software iSpy (copyright

iSpyConnect.com).

Leaf-cutting

A picture of the leaves was automatically taken every 20 minutes for 30

days. Using FIJI (ImageJ2 distribution) (Schindelin et al. 2012), we measured

the leaf area on each photograph and calculated the leaf-cutting taxes for

each hour (Figure 2A).

Two measures were made from the data. We considered the

leaf-cutting tax as the difference between the leaf area in a photo and the

remaining leaf area after 60 minutes every 20 minutes (resulting in 72 tax

values for each day). We considered the hourly difference between the leaf

area and the remaining leaf area for the leaf intake measures after 60 minutes

(24 points for each day). Daily leaf intake is calculated by the total sum of

these 24 area values.

Foraging activity

Foraging activity was recorded based on a 2 minutes video within a

sequence of 20 minutes intervals (72 videos per day). We developed a video

tracking software using machine learning techniques (Figure 2B). For the

software validation, we randomly selected 50 videos from 2160 recorded. We

manually counted the number of ants in these 50 videos and further

compared these values with those obtained by the automatic counts

generated by the software (Figure 2C). Developing a video tracking and

counting tool based on machine learning techniques requires data annotation,
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which involves identifying the object of interest as a class in an image dataset

extracted from our video data. Video annotations were realized using the

tracking mode function in the open-source CVAT (Computer Vision Annotation

Tool - Intel Corporation). We selected the 4 videos (2 from the dark phase and

2 from the light phase) with the highest number of ants from the 50 videos

mentioned above. We used the minimum bounding box method for every

video frame annotated to identify each ant present on each image, which

conferred an identification number for every ant (both bounding boxes and

identification numbers were further used to train the object detection model

and the video tracking tool). Video annotations were exported in the YOLO

format and subsequently used to train an object detection model using

YOLOv5 (You Only Look Once version 5) (Zhu et al., 2021). Software codes,

hardware requirements, and all steps performed in the counting procedure are

described in the Supplementary Material.
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Figure 2) Software analysis of Daily Rhythms. A) Representative sequence of two

pictures showing how leaf area decreased through time (analyzed in FIJI). B) Frame

extracted from a light phase video exhibiting how our video tracking software

detected ants using YOLOv5. Each box identifies an ant, and each number shows

the probability (varying from 0 to 1) of that object belonging to the class previously

trained as “ant.” C) Software validation with the number of ants in 50 videos with 2

min duration. For each video, manual counts are presented in red and automatic

counts in blue. Linear regressions show the relationship between the values of each

category.

Data analysis
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We have recorded for 30 days both daily rhythms of foraging and

leaf-cutting activities. Lomb-Scargle periodogram analyses were performed to

verify if data from Stage I were rhythmic. However, those rhythms are masked

by the acute responses of ants to leaf replenishment. Therefore, we chose to

analyze the temporal variation of the response to leaf replenishments

observed in both foraging and leaf-cutting activities. Since leaf replenishment

events occurred randomly once a day, we observed the response effects by

monitoring each activity during the 120 minutes before the leaf offering and

the 120 minutes after it, considering Stage I (synchronized) and events within

the days of Stages II and III. The first 5 days of these stages, which

presumably display more pronounced transients, were analyzed separately to

verify how the LD shift affected the two activity responses to leaf

replenishments. We calculated the Area Under the Curve (AUC) considering

the 120 minutes interval after the leaf offering for the foraging activity and the

100 minutes interval for the Leaf-cutting taxes (we exclude the first data point

after leaf replenishments as leaf-cutting tax is negative in this particular

moment, due to the increase of leaf area available for cutting). In order to

identify the differences between stages and local time, we fitted a general

linear mixed model (GLMM) for the AUC measures of foraging activity (using

a Poisson distribution). The number of ants was a function of the categorical

variables: Stage (in this particular case, synchronized days from Stage I, the

last 5 days of Stage II, and the last 4 days of Stage III; and also the first 5

days from Stage II and the last 6 from Stage III), hour (divided in 00:00h,

03:00h, 06:00h, 09:00h, 12:00h, 15:00h, 18:00h, and 21:00h) and the

interaction between these two factors. Days were included in the model as

random effects affecting the intercept, as they contain different random

intervals between leaf replenishment events. As the AUC measures of

Leaf-cutting taxes were normally distributed, we performed a linear regression

model with the same categorical variables (Stage and hour) and the

interaction between them. Minimum adequate models were selected using

parsimony criteria and analysis of variance for model comparison.
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We examined daily leaf intake considering each Stage of the

experiment, including daily changes after the phase shifts and differences

between light and dark phases. An analysis of variance (ANOVA) was

performed to check if the differences between stages were statistically clear.

We performed linear regression analyses to estimate the relationship

between leaf-cutting taxes and the number of ants foraging during both light

and dark phases. We have also calculated the leaf-cutting taxes and the

number of ants ratio, which was analyzed considering light and dark phases

by performing an analysis of variance. All graphs and analyses were

performed in R version 4.1.2. Areas Under Curves were obtained through the

function ‘trapz’ from the ‘pracma’ package. We used the function ‘glmer’ from

the package ‘lme4’ for GLMM analyses and the function ‘lm’ from the package

‘R stats’ to create the linear regression models. The periodogram analyses

were built using the function ‘lsp’ from the package ‘lomb .’ Graphs were built

using ‘ggplot2’.

RESULTS

Daily rhythms of leaf-cutting and foraging activities

We have successfully measured the colony activity for 30 days, based

on both the leaf-cutting and foraging activity (Figure3). The Lomb-Scargle

periodogram analyses confirmed rhythmicity for both leaf-cutting (p<0.01) and

foraging activity (p<0.01). Our video-tracking system allowed us to count a

total of 143.904 ants crossing the trail, even though our software validation

process shows that our software tends to underestimate the total number of

ants at each video (Figure 2C). The colony activity was typically nocturnal.
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Figure 3: Daily rhythms of foraging and leaf-cutting activities. Time series of

foraging (red line) and leaf-cutting rate (black line) across the three stages of the

experiment. Gray areas represent the dark phase, while white areas correspond to

the light phase of the LD cycle. Blue arrows indicate the hours when leaf replacement

occurred, generating masking effects. The first ten days of the experiment (Stage I)

had the light phase lasting between 06:00h and 18:00h. Blue boxes indicate the 6h

phase delay of the LD cycle (on the 11th day, initiating Stage II) and the 6h phase

advance of the LD cycle (on the 21st day, starting Stage III).

Analysis of acute responses to leaf replenishments

Although we randomly fed the colony to avoid synchronization by leaf

replenishment time, both leaf-cutting and foraging daily rhythms displayed

acute increases as responses to leaf offering. As these exogenously
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generated amplitude increases deeply influenced our rhythms, we chose to

focus our rhythm analysis on these responses themselves, verifying whether

they were higher or lower across the 24h. To this end, we first quantified the

acute responses to leaf replenishments in each experiment stage, separately

for synchronized and assumed to be “transient” days. Transients were

estimated by visual analysis and comparison with Stage I, which contains only

synchronized days (Figure 4). Because the time interval between leaf

offerings was not regular, we further analyzed if any observed response

variations could be alternatively influenced by longer intervals between

feeding events (Table I). There was no clear association among longer

intervals between feeding events and higher response effects to leaf offering

on both leaf-cutting and foraging activities.

Figure 4: Acute effects of leaf replenishment on foraging and leaf-cutting

activities across the day during Stage I. Acute responses at different times of the

day are represented by the 120 minutes before and 120 minutes after each leaf

offering. In each graph, leaf replenishment events occurred at minute 120 (black

arrows). Day numbers represent when leaf replenishment occurred and are

organized according to the local time subdivided into eight 3h intervals for better

visualization. When no feeding events occurred in that interval during that stage, we

represented it as blank. Only one is represented when more than one feeding event

occurred in the same interval (even when they referred to different hours). The exact

leaf replenishment time is indicated in all graphs. A) Acute effect on leaf-cutting taxes
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due to leaf replenishment events across the day. B) Acute effect on the foraging

activity caused by leaf replenishment events across the day.

Day 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Interval
Between

Feeding (h)
44 11 38.3 12.6 27.6 28.3 15.6 12.3 38 28.3 10.3 26 26.3 15.3

Day 18 19 20 21 22 23 24 25 26 27 28 29 30

Interval
Between

Feeding (h)
28.3 39.3 18.6 20.3 32 21.6 29.6 6.6 34.6 29.6 12.3 37.3 11.3

Table I: Time interval between feeding events. We calculated each interval by the

difference between the time when the new leaf offering occurred on that day and the

time when the last event occurred (preceding day).

We calculated the Area Under the Curve for each day after the leaf

offering and used this to quantify the response effect to each leaf

replenishment event. If the response to leaf replenishment events were

uniform across the day, we would expect that there would not be significant

differences between the calculated AUCs. We visually inspected the AUCs

calculated for both leaf-cutting taxes and the foraging activity, and as we

found distinct response effects alongside daily hours for each stage, we

proceeded to inspect these differences statistically. Shapiro-tests were

calculated for AUCs measures obtained by leaf-cutting taxes (p=0.10) and the

number of ants per video (p<0.05, Poisson distribution).

Foraging response

Our minimum adequate model for the foraging response's AUC

measures included the interaction between stages and hour (² =46.536,

df=11, p<0.001). Foraging response to leaf offering was clearly higher in the

last days of Stages II (z=2.819, p<0.01) and III (z=3.097, p<0.01) when

compared to Stage I. Foraging response during the first 5 days of Stage II,

when transients are expected to be more pronounced, was also clearly higher
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(z=2.153, p<0.05) than during Stage I. However, the first 6 days of Stage III

showed a slightly positive increase in the forage response, and this difference

was not statistically significant. Considering the effects of the variable hour,

when compared to the 00:00h response from Stage I, there was a clear

negative difference for the light phase hours such as 06:00h (z=-2.707,

p<0.01), 09:00h (z=-4.101, p<0.001) and 12:00h (z=-3.879, p<0.001),

showing that foraging response was smaller in this phase. An increase of

foraging response was observed for hours 15:00h, 18:00h, and 21:00h;

however, the only statistically significant response was around 18:00h

(z=3.258, p<0.001) regarding the response observed for 00:00h.

Table II shows the results for the interaction between stages and hours.

We found an increase in the foraging response in the hour 06:00h of the first 5

days from Stage II and 09:00h in the first 6 days from Stage III. This increase

in the foraging response was also found in the last 5 days of Stage II.

Nevertheless, a decrease in the foraging response was observed in the hour

18:00h of the first 5 days from Stage II and in the hour 15:00 for the first 6

days of Stage III. The only clear decrease of foraging response for the last

days (assumed to be synchronized) was observed in the hour 18:00h from

Stage II.

HOUR
STAGE II STAGE III

First 5 days Last 5 days First 6 days

06:00 z=1.787
p=0.07

09:00 z=3.075
p<0.01

z=2.015
p<0.05

15:00 z=-2.530
p<0.05

18:00 z=-6.245
p<0.001

z=-3.090
p<0.01

Table II: GLMM results for the interaction between Hours and Stages. Z-values

and p-values are shown according to each interaction. We have only shown values

that are statistically or marginally significant.
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Leaf-cutting response

Our minimum adequate linear regression model for the AUCs obtained

by the leaf-cutting taxes response to feeding events contained only the factor

stages as a predictor variable. Although we found increases and decreases in

the leaf-cutting response between hours in relation to 00:00h, those were not

clearly significant. Comparing the model with both stages and hours and the

one with only stages, the more complex model did not offer a better prediction

for our data (F=0.71, p=0.66). When compared with Stage I (t=3.283, p<0.01),

we see that all stages (assumed transients and synchronized days) show an

increase in the leaf-cutting response, although this increase is only marginally

significant for the first five days from Stage II (t=1.894, p=0.07). Comparing

only the differences between hours in the leaf-cutting responses, we see that

00:00h shows the highest values (t=2.205, p<0.05).

Daily leaf Intake

As we observe in Figure 5A, daily leaf intake varied between Stages I,

II, and III. Stages II and III showed a higher daily intake when compared to

Stage I (F=3.9738, p=0.05). There were no clear differences between Stages

II and III (F=0.307, p=0.58). Regarding the differences between light and dark

phases, leaf intake was higher during the dark phase (F=6.585, p<0.05).

We have also measured the proportional leaf intake during light and

dark phases for each day, as shown in Figure 5B. In the synchronized state

(Stage 1), leaf intake was higher during the dark phase. After the 6h

lengthening of the light phase of the LD cycle on day 11, we observe that

most of the proportional daily leaf intake occurs in the dark phase on the first

days, and this pattern seems to be reversed after day 5. On day 21, after the

6h shortening of the light phase, we observe higher values during the dark

phase in the first days, reverting in the last 5 days. The pattern present in

Stage I did not seem to reappear in Stages II and III.
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Figure 5: Temporal profile of daily leaf intake. Red points indicate values

consumed in the light phase, while blue points refer to dark phase values. A)

Boxplots showing daily leaf intake during Stages I, II, and III. B) Daily variation of leaf

intake during light and darkness phases over the 30 days of the experiment. Boxes

indicate the stages on which phase shifts of the LD cycle occurred.

Relationship between leaf-cutting taxes and the number of ants per

video

We analyzed the relationship between leaf-cutting taxes and the

number of ants foraging, considering both light and dark phases (Figure 6A).

We observed that in Stage I, a higher number of ants were measured

crossing the trail in the dark phase. However, these higher ant numbers were

not related to higher leaf-cutting taxes. On the other hand, in the light phase,

an increase in the ant flow appears to be proportionally related to an increase

in leaf-cutting taxes.

After the first phase shift, we observed that during days 11 to 15, the

higher ant frequencies found in the dark phase of Stage I disappeared. We

also observed changes in the light phase pattern with milder increases in the
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relationship between higher ant counts and higher leaf-cutting taxes, which

seemed similar to the one found during the dark phase. As of the 6th day of

Stage II (days 16 to 20), we recover the pattern described for Stage I in both

light and dark phases.

After the 6h shortening of the light phase performed on Stage III

(transients are assumed from days 21 to 26), the most noticeable changes

occurred in the light phase, which appeared to involve a decrease in the

number of ants counted. Nonetheless, this small number of ants was

associated with high leaf-cutting taxes. During days 27 to 30 (presumably

synchronized), we did not observe notable changes when compared to days

21 to 26 considering the light phase; however, the proportional increase in

leaf-cutting taxes associated with the number of ants foraging in the dark

phase appeared to reduce its slope.

Daily differences between the ratio between leaf-cutting taxes and the

number of ants are shown in Figure 6B. Regarding the light and dark phases,

this ratio is higher for the light phase during the whole experiment (F=143.99,

p<0.001), and no clear differences were observed between the three stages

(F=0.6229, p=0.43).
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Figure 6: Relationship between leaf-cutting taxes and the number of ants. A)

Relationship between ant flow and leaf cut taxes for stages I, II, and III. Stages II and

III are divided into possible transients and synchronized days. For Stage II, we

considered the first five days after the phase shift (days 11 to 15) as transients. For

Stage III, days 21 to 26 were considered transient days. B) Ratio between leaf cut

taxes and number of ants during both light (red) and dark (blue) phases. Boxes

indicate the stages in which phase shifts of the LD cycles occurred.

DISCUSSION
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Our experiment showed clearly that daily and synchronized activity

rhythms at the colony level could be reproduced in a colony maintained under

artificial LD cycles and constant temperatures under laboratory conditions.

The colony presents foraging and leaf-cutting activities throughout the day.

Nevertheless, most of them occur in the dark phase (Figure 3). For that

reason, the colony was considered “nocturnal.” Analysis of the acute

responses to leaf replenishments shows that the colony is particularly

sensitive to leaf replenishment events near 18h when the transition between

light and dark phases occurs and near 0h when colony foraging rhythm

reaches its peak (Figure 4).

A shift in the LD cycle was then applied to verify its effects on the daily

rhythms. Our results indicated that daily rhythmicity at the colony level could

respond to its internal temporal order perturbations. Phase shifts of the LD

cycle cause phase shifts of daily rhythms, but resynchronization usually

occurs after several transient days, in a process similar to “jet-lag” in humans

(Waterhouse et al., 2007). It has also been observed that the rate of

resynchronization is different between phase delays and phase advances

(Wever, 1966). We applied a 6h phase delay of the LD cycle and then a 6h

phase advance, assuming that a 10 day interval between these perturbations

was sufficient for resynchronization.

Effect of LD perturbation on daily leaf intake

After the phase shifts, both during Stages II and III, we observe an

increase in daily food intake (Figure 5). It is possible that as a system, the

colony is trying to optimize the consumption of the food source (Dussutour et

al., 2007; Wirth et al., 2003). Nonetheless, another possible option is that

during this stressful condition, the colony basal foraging activity is higher, as

more ants could be engaged in the task of searching for new food sources

throughout the day. Considering an individual scale, the resynchronization

process may increase food intake, as we see in many species (Kalsbeek et

al., 2011, 2014; McHill and Wright, 2017). An essential component in the
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foragers’ diet is the chemical compounds (especially carbohydrates) present

in the plant sap (Littledyke and Cherrett, 1976); therefore, foraging may also

increase due to energetic individual needs.

Our experimental protocol could not monitor ants individually, so we

were unable to identify precisely the processes involving the inversion

between the proportional daily leaf intake in light and dark phases (Figure 5B).

Previous research from our laboratory indicates that leaf-cutter ant foragers

divide their work into temporal shifts (Constantino et al., 2021). It is possible

that during the assumed transient days, ants use the strategy of recruiting

other ants to communicate the environmental temporal cues to the whole

colony, allowing synchronization at the colony level. However, ants may be

individually “jet-lagged,” requiring energetic resources and social interaction to

attain full synchronization since social cycles constitute a significant zeitgeber

for the social insects (Bloch et al., 2013). We remind that most of the research

regarding daily rhythms in ants is performed in individuals or small groups.

Ants’ survival is compromised when isolated from the colony context, even

when an adequate environment and food sources are provided (Sharma et

al., 2004). Considering the inversion between the proportional leaf intake

between dark and light phases in the last days from Stage II and III, it is

conceivable that the 10 days of our protocol allocated for these stages have

not been long enough for a full resynchronization to the new LD phases. Task

allocation is a major process in the colony organization (Ingram et al., 2016;

Gordon, 2021), which dynamically confers the colony’s ability to distribute

activities between ants according to the system requirements. Also, it

provides a remarkable energetic supply to the ant colony, as a high amount of

the ants are not engaging in any evident activity most of the time (Hasegawa

et al., 2016). The possibility of quickly recruiting a high number of ants when

facing challenging conditions is an astonishing evolutionary advantage to ant

colonies (Gordon, 2019). Considering all these aspects, we hypothesize that

the inversion between the preferential phase on which most of the leaf intake

occurs may be due to these fine recruitment adjustments in the colony that

could make available high numbers of ants from distinct work shifts. This
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internal reorganization might also be an example of the alternative stable

states described in other ecological systems (Fukami and Nakajima, 2011).

Under natural conditions, a significant group of Atta ants lives under

constant darkness, as their fungus chambers can be located up to 7m

underground (Moreira et al., 2004). Even though 6h phase shifts in the LD

cycle are entirely artificial and do not represent natural challenges in the

evolutionary history of leaf-cutter ants, these experiments allow us to explore

how resynchronization arises in the colony and also hypothesize how these

processes occur in other systems.

Since the formal study of biological rhythms recently emerged, we have

observed that phase shift experiments induce a less active state in most

animal models (Wever, 1966) usually associated with hyperphagia behavior

(Chavan et al., 2017). Phase shifted rodents present higher chances to

develop diseases such as obesity and diabetes (Escobar et al., 2011). For

human societies, a vast amount of research trying to understand the effects of

work shifts identified risks of developing metabolic syndrome, cardiovascular

disease, gastrointestinal disorders, breast cancer, and psychological disorders

(McHill and Wright, 2017, Azmi et al., 2020). Considering all these pieces of

evidence, it seems undeniable the evolutionary importance of preserving the

internal temporal order and living under synchronized conditions since they

appear to provide an optimal energetical state for the organism’s physiology.

In other words, it is possible to investigate the effects of phase shifts,

considering them as disturbances in the system’s homeostasis.

Effect of LD perturbation on the relationship between the number of ants

and leaf-cutting tax

Here, for further discussions, we define the optimal energetical

organization state and its changes according to temporal synchronization as

the system efficiency. We propose that the relationship between leaf-cutting

taxes and the number of ants foraging may be an exciting measure of system

efficiency for the leaf-cutting ant colony. The colony’s survival relies on finding
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and acquiring food sources, such as leaves, on feeding its symbiont fungus

(Ronque et al., 2019), which can grow according to it. Also, maintaining high

numbers of ants foraging throughout the day, as described in Atta ants,

involves a high energy expenditure (Wilson, 1980). Therefore, in our particular

experiment, since the fungus size remained constant, we proposed that the

leaf cut taxes represent the energetic input to the colony system and that the

number of foragers active in the trail represents the energetic output. Thus,

the fewer ant numbers required to obtain the minimal energetic needs are

considered more efficient.

Results in Figure 6 show distinguished patterns of efficiency for light

and dark phases over Stages I, II, and III. Similar to the results found by

Constantino et al., 2021, although colony foraging and leaf-cutting are much

higher in the dark phase, the relative increase in the number of ants resulting

in higher leaf-cutting taxes is associated with the light phase. Foragers whose

activity is located in the dark phase represent a higher absolute amount of leaf

cut, but individually a great part of them is not necessarily engaging in

leaf-cutting or leaf-carrying (Constantino et al., 2021). In this manner,

light-phase foragers tend to be more efficient (Figure 6B). Nonetheless, when

we consider the colony scale, it is undeniable that most of its energetic input

is provided by dark phase foragers.

In Figure 6, we divided Stage II into the first and last 5 days, assuming

that the first 5 days are transients and that the ants may or not be

resynchronized in the last 5 days. For Stage III, we assumed 6 and 4 days,

respectively. Transients from Stage II (Figure 6A) present a distinct efficiency

pattern for light and dark phases. This result agrees with the expectations

after a perturbation in the internal temporal order of the colony. Here we

observe that foragers from the dark phase are proportionally cutting more

leaves than in Stage I. That pattern probably results in most daily leaf intake

occurring in the dark phase (Figure 5B).

After the phase advance, foragers from the dark phase are again less

efficient than those in the light phase, yet leaf-cutting taxes on both light and

dark phases seem to reach higher measures. In the last 4 days of Stage III,
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we see that high ant frequencies from the light are again not related to high

leaf-cutting taxes, similar to the pattern described in Stage I.

Given all of this, it is vital to acknowledge that discussing efficiency

aspects in ant colonies involves distinct strategies when considering individual

and collective scales. Foragers may be more efficient when they cut smaller

leaf fragments, and the relationship between distance to the nest and ant

speed is energetically balanced (Wilson, 1980; Burd, 1996). By all means,

when considering a colony as a superorganism, many individual efficient

foraging strategies may be involved, as they confer to the colony the ability to

cope with various environmental challenges. Individual strategies considered

less efficient may even have a high adaptive value when efficient at the colony

level, where natural selection can act (Korb and Heinze, 2004).

Considering biological rhythms in this context, it is conceivable that

multicellular organisms facing disruption on their internal temporal order might

have similar adaptive strategies to reestablish their homeostasis, with distinct

processes and patterns occurring at the cellular (individual) and organismal

(colony) levels. In this way, we may observe synchronization at a higher level

before it appears completely at all smaller scales such as cells and tissues,

according to their oscillations’ particular aspects. The maintenance of

long-term strategies plays a relevant role in dynamic complex systems such

as ant colonies (Hasegawa et al., 2016). Therefore, synchronization at higher

levels might be a priority as it quickly allows living systems to face temporal

disturbances. Nonetheless, synchronization at smaller levels is energetically

more efficient at a long-term strategy as it saves energy, which can be

allocated to different tasks performed and challenges faced by organisms.

Leaf-cutter ant colonies complex organization is present in spatial and

temporal aspects since several records show how their temporal organization

strategies vary according to distinct environments and seasonality (Gamboa,

1976; Nickele et al., 2016; Wirth et al., 1997; Caldato, 2014). Therefore, we

believe they are an extraordinary model to answer further questions of the

dynamics involved in the adaptive strategies regarding temporal challenges

and biological rhythms.
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Final Conclusions

Considering all the results and ideas discussed previously, we would

like to emphasize that an ant colony can be considered a "superorganism"

(Wilson and Sober, 1989). Results in this project show that ant colonies can

provide an interesting analogy for how synchronization processes occur in

multicellular organisms, as ants' individual rhythmicity may be compared to

cellular rhythmicity. Through social synchronization, we can observe the

coupling process between multiple oscillators. Many are the physiological

processes that allow communication and integration between different cells

and tissues, and this high degree of cohesion and interdependence are some

of the main aspects of multicellular organisms. Although ants individually are

also multicellular organisms, social insects' colony context also involves many

physiological and behavioral processes that allow its existence in such a high

level of eusociality complexity.

Considering the more intimately related aspects to the photic

synchronization of multicellular organisms, not all their cells are sensitive to

temporal cues obtained from light-dark cycles. In humans, for example,

photoentrainment is only possible due to photosensitive cells located in the

retina. After perceiving these environmental time cues, this information is

processed in the mammalian s4uprachiasmatic nucleus (SCN). Only then,

SCN transmits its information to other organism cells, starting cell

synchronization processes, coupling mechanisms, and, finally, the organism's

full synchronization (Floessner and Hut., 2017).

Similarly, we believe temporal information from light/dark cycles flows

in an ant colony and other social insects colonies. Only a group of ants is

exposed to light and darkness in natural conditions, and through social

interactions and other physiological processes, this information flows

throughout the colony. However, many are the questions that can still be

asked to understand synchronization in this social system, and those studies
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might be able to expand our knowledge about the complexity and the

evolutionary importance of living under synchronized conditions. For example,

we know the role played by SCN in humans, but ant colonies organize

themselves without central control. Is it possible that the colony possesses

some component that plays a similar role to SCN? Individually, ants' brains

contain a group of neurons responsible for their control of rhythmicity (Kay et

al., 2018). May the queen play a part in this process? Even under constant

darkness, the ant queen could receive temporal information and somehow

regulate the ants' individual clocks at a molecular level while it similarly lays

eggs that regulate many aspects of the colony reproduction (Dolezal, 2019).

Does the fungus play any role in the colony's temporal synchronization?

Could it be a combination of both the fungus and the queen? Many fungi

species present daily rhythms of growth and spore release (Bell-Pedersen et

al., 1996). Also, the interdependence between a leafcutter ant colony and its

fungus is very high (Schultz and Brady, 2008).

Atta ant's communication occurs mainly through chemical components.

Is there a chemical component that plays a similar role to melatonin, allowing

this superorganism synchronization? Several studies show that each cell has

its own period of oscillation in mammals, and those periods are similar for

cells in the same tissue. Ants seem to have a similar relationship when we

think about the temporal division of labor between subcastes.

Considering all the remaining questions about colony rhythmicity, we

would like to emphasize the complexity of discussing efficiency in these

systems, not only regarding rhythmic aspects. As environmental challenges

change, colonies' behavioral response changes, and the efficiency measures

and the concept of efficiency also require flexibility. An instantly efficient

strategy may not be efficient in the long term. This is valid not only for ant

colonies and other social insect systems but also for other organisms in their

own particular aspects and natural history. Meanwhile, as biological rhythms

are present in all groups of living organisms and play an essential role in the

organisms' survival by modulating their behavior and physiology, they are

likely a major component of efficient strategies over different species.
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The present work has made some progress regarding the questions

involving biological rhythms in ant colonies, especially as it proposes a new

tool to proceed with these studies. We are aware that not all researchers will

be able to use the video-tracking software we developed, as it involves its

particular challenges. However, we believe that as technology's advances

happen more quickly every day, soon better and more accessible versions of

this software will be able to promote many breakthroughs and new insights in

behavioral biology.
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Annexes

SUPPLEMENTARY MATERIAL

Automatic Counts Tutorial

SYSTEM REQUIREMENTS:

This tutorial was elaborated for Ubuntu 20.04 LTS.

HARDWARE REQUIREMENTS:
GPU (NVIDIA GTX 1060 in our case)
16GB RAM (we used 32GB)

SOFTWARE REQUIREMENTS:

All codes and Readme.md files are available on GitHub
labcog/Contador repository.

### BASIC USAGE (= local copy)###
git tutorial: http://rogerdudler.github.io/git-guide/

1. Download the current version:
* if you are downloading it for the first time, you must
clone the repository:

#!git
$ git clone
https://bitbucket.org/toddy757/labcog/branch/contador
PS: PRECISA AJUSTAR COMO VAMOS DISPONIBILIZAR O REPOSITÓRIO
(Não me recordo se ele fica fechado para edição para todo
mundo que não faz parte do repo do labcog. E que eu me lembre
precisavamos mover ele pra master ao invés de branch, certo?

#!git
$ git pull origin master
All the alterations that you do will only be saved locally.

2. If you want to delete your modifications and download the
current version again:
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#!git
$ git fetch --all
$ git reset --hard origin/master

# yolo
v5: requirements.txt from repositor ultralytics/yolov5
v3: opencv (gpu e módulo dnn linkado
pandas

## dataRRANSAC
opencv-python
matplotlib
pyaml
numpy

# dataCountline
numpy
pyaml

# optimization (we do not talk about the optimizers in this
tutorial, but some information is available on the repository
contador)
bayesian-optimization
motmetrics
scipy

67



Figure 1: Flowchart of all the steps involved in our
video-tracking software development. Blue box involves data
acquisition (experiments). Red boxes show all steps involved
in the software validation stage. Green and yellow boxes show
respectively the deep learning train model stage and running
our model.

1. Data acquisition
2. Software validation
3. Data annotation
4. Training model
5. Testing the object detection model
6. Tracking Tool
7. Counting Tool
8. Analyzing your data:

a. Organizing the data
2. Running Object Detection Model for all videos
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3. Running Tracking tool for all videos
4. Running Counting tool for all videos
5. Some tips and reading suggestions

1. Data Acquisition:

If you plan on using video-tracking tools to analyze your
behavioral data, you must record your data in a way that
maximizes the probability of the software's success. That
means that video quality, recording angle, recording distance,
and focus are all essential features. They should not change
across your video data. We strongly recommend recording your
video data from an angle that does not include unnecessary
objects in the images (for example, shadows, reflections, and
other objects that will not be analyzed).

Video tracking tools usually contrast the background and
the object of interest to identify the object and track it.
For behavioral research, that means: if your animal model has
light colors, you should use darker backgrounds; if it has
dark colors, you should use lighter backgrounds. Also, it
would help if you thought about recording time: the longer
your videos are, the longer is the time required to analyze
them. Also, longer videos usually occupy a lot of memory
storage. If you need to compress the video data to save it,
you will lose image quality, which can be a problem. We also
recommend checking the video formats available to your
recordings (we prefer .mp4 or .mkv). Also, the more objects
you need to track, the harder it is to obtain a high accuracy
from most video-tracking tools. All this information and tips
are important because video-tracking programs perform poorly
when analyzing video recordings containing noisy images.

Using iSpy for scheduling recordings:
● Download iSpy: https://www.ispyconnect.com/download.aspx

(it runs only on Windows. Agent DVR is another tool from
the same group that runs on other operating systems, but
we have not tested it. CHECK IF YOUR VERSION SHOULD BE
32bits or 64bits)

● Install it.
● Run iSpy and add all your recording devices. By

right-clicking, you should set all the recording features
to that camera and schedule your recordings. Pay
attention to which directory your data is being saved.
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● iSpy user guide:
https://www.ispyconnect.com/userguide.aspx

2. Software Validation:

● From all your video data, randomly select a group of
videos for software validation (20-50) videos. If you
have different recording conditions (in our case, we had
videos recorded under light and darkness conditions),
make sure that your selected recordings represent all
your possible conditions.

● In our case, we manually counted the number of ants in
each of these selected videos using the software
contadorManual.py

contadorManual.py

This program opens the video with a blue line drawn in the
middle of the screen and allows manual counting as follows:
The count takes place when the ant crosses the line.
If it crosses the line in the top direction of the video: UP
If it crosses the line in the bottom direction of the videos:
DOWN
or
If it crosses the line in the right direction of the video:
RIGHT
If it crosses the line in the left direction of the videos:
LEFT

To run it (at the directory that contains it): python
contadorManual.py
Parameters:
-video (required)
[- h]: optional (help)
- line [LINE LINE LINE]: allows you to set 4 parameters to
adjust the position of the line (x,y, and x,y coordinates)

COMMANDS:
SHIFT: Play/pause
W: Count Up
S: Count Down
+: accelerate video
-: Decreases the video speed
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(you can also set different keys for each command in the
software code).

It will save a .txt file with the results.

EXAMPLE:
$ python contadorManual.py -video
/PATH_TO_VIDEO/VIDEONAME.mp4

● Run contadorManual.py for all your select videos for
validation (we recommend saving them in a single
directory).

● Organize all .txt result files into a single file (.csv)
● Here we stop the validation process and proceed with the

Data Annotation. We will return to it after training and
testing the model.

3. Data Annotation:

● Select the videos manually counted with the highest
number of ants (10.000 video frames are the minimum
required. It is crucial to select videos from all your
experiment conditions. In our case, we selected four
videos, two from the dark phase and two from the light
phase).

● We ran all our data annotations in https://cvat.org/.
● After creating our profile, we created a project, defined

the object class for annotation (ants and ants+leaf), and
created a task for each video. You can organize the data
in other ways.

NOTE: Data annotation is probably the most exhaustive part of
this tutorial, but it is also one of the most important. We
recommend CVAT because it allows you to have help during
annotations and stop and continue your annotations. We took
almost a month annotating the data working about 8-10 hours
per day, so plan your time accordingly.

CVAT TUTORIAL
CVAT (Computer Vision Annotation Tool) is a tool developed by
Intel co. and is open source. In it, you can upload images for
annotation and do the annotation directly on video, using one
or more classes and with various annotation features. It
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allows you to download these image annotations in different
formats, depending on which one you will use to train your
network. CVAT also allows you to start and stop a video
annotation at any time.

CVAT can be run in two ways: via the website (cvat.org), and
the other is installation via GitHub repository, running
through docker with port forwarding. The difference is that
the one via the website has an upload limit of 500mb per user.

Note: CVAT via GitHub has access to openVino, an automatic
annotation tool, and its docker images occupy a lot of
storage(you will need at least 15GB of free disk space).

Figure 2: CVAT online.

How to annotate images on CVAT:
- Click Open the task and then click Job #NUMBER
- The annotation tool should open with the images

associated with that task.
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- There are many ways to annotate the images, and the
options are in the left corner of the screen. In the
right-hand corner, you will see the objects you have
annotated in the "Objects" section as you do so. Here we
have the automatic annotation recommendation.

- Using annotation with the tracker function.
This function is intended to annotate objects every n frames
automatically. To use it, you will annotate the object using
the cross-like manual annotation and wait while the system
cycles through the following frames and annotates the position
of that object as it changes in the video. This process may
take a while.
To use this function, click on the "magic wand" button and
select the “tracker function":
Select the class you want to annotate, change 10 to 4 frames
(it will be faster to process and probably contain fewer
errors), and click “track”.
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To make an annotation, using a cross on the tip of the mouse,
you will click on the image and select the area around the
ant.
IMPORTANT: SELECT THE WHOLE ANT WITHOUT LEAVING TOO MUCH SPACE
OUTSIDE.

You will see that it has automatically annotated that ant in
the subsequent four frames when you finish. Annotate all the
ants in that frame.

Go through the following image frames correcting the
annotation if there are any errors (probably depending on the
ant's position, the rectangle may be of inadequate size, so it
is worth adjusting or moving it if the ant has moved). Each
ant gets an id number (right side of the screen).
To make a new annotation, press the "n" key on your keyboard,
and you will see the marking cross on the tip of your mouse
again.
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These little arrows allow you to navigate between the frames
of the video.

In the first frame that an ant enters, you should start the
annotation, even if it is just partially in the image.
As soon as the ant disappears from the image, you should click
on the box (see the object's id), go to the Objects section to
find the object with that id, and click on the square with a
small arrow ("Switch Outside Property"). This function
indicates to the image that that object has left the video. If
you delete the box, it will understand that that object NEVER
EXISTED and delete all annotations for that object.

Note: Remember that the id number says that the object is
unique (same ant). If the same ant is not accurately
identified (more than one id number for the same object or the
same id number corresponding to a different object), the
tracking will not work.
Note: Ants interact a lot. Use the zoom mode to make sure
where your annotations are accurate.
Note: Save often. I usually save after using the tracker for
each new ant and every ten frames by correcting/adjusting the
boxes (there is also an option on CVAT that saves your
annotations automatically, but I also recommend manually
saving it to be safe).

4. Training Model:
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● We used YOLOv5 (a state-of-the-art real-time object
detector system) to train the object detection model.

● Download all the annotations from CVAT in the format YOLO
to train the YOLOv5 network.

● You will also need to download all the annotations in the
CVAT video (.xml) format for adjustments in the tracking
mode (RRANSAC - will be treated later).

● All the following steps will require GPU to run. Our
graphic card model was NVIDIA GTX 1060

● Install the NVIDIA driver (some of these steps might
change according to your NVIDIA model)

$ wget -c
https://us.download.nvidia.com/XFree86/Linux-x86_64/450.80.02
/NVIDIA-Linux-x86_64-450.80.02.run

$ wget -c
https://developer.nvidia.com/compute/cuda/10.0/Prod/local_ins
tallers/cuda_10.0.130_410.48_linux

1) $ chmod +x for the first file
2) $ ls Downloads
3) Run: sudo ./NVIDIA..(name) --dkms
4) Follow the instructions on the screen

a) If an error occurs:
i) $ more /etc/X11/default-display-manager (it

returned -gdm3, but it could other display
manager)
$ sudo systemctl stop gdm3
$ sudo ./NVIDIA-Linux-x86_64-450.80.02.run
--uninstall

b) Reboot
c) Repeat the installation process

5) Check GPU status
$ nvidia-smi
It should return something like this if everything is
working.

mila@mila-System-Product-Name:~$ nvidia-smi
Wed Jan 15 11:55:05 2020
+-------------------------------------------------------------
----------------+
| NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA
Version: 10.1 |
|-------------------------------+----------------------+------
----------------+
| GPU  Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |
|===============================+======================+======
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================|
|   0  GeForce GTX 106...  Off  | 00000000:01:00.0 Off |

N/A |
|  0%   47CP5 7W / 120W |169MiB /  3019MiB | 2%
Default |
+-------------------------------+----------------------+------
----------------+

+-------------------------------------------------------------
----------------+
| Processes:

GPU Memory |
|  GPU PID   Type   Process name
Usage |
|=============================================================
================|
| 0 2223 G   /usr/lib/xorg/Xorg

96MiB |
| 0 2411 G   /usr/bin/gnome-shell

70MiB |
+-------------------------------------------------------------
----------------+

● You might also need to install the Cuda toolkit:

Installation (item 3.8 Ubuntu):
https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.htm
l#ubuntu-x86_64
$ sudo sh cuda_<version>_linux.run

1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf
with the following contents:

blacklist-nouveau
options nouveau modset=0

2. Regenarate the kernel initramfs:

$ sudo update-initramfs -u
3. Reboot

● YOLOv5 Repository (please check the Readme.md file for
instructions): https://github.com/ultralytics/yolov5

● 10000 training cycles are sufficient for small data sets,
but the ideal, especially for larger data sets, is 100000
cycles.
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● You can find all the scripts described here in:
https://drive.google.com/drive/folders/1PBiS48w303iVhtvE3
M0aBI7ZgWXO6c9s?usp=sharing

● Run the exp.sh
○ It is a bash script that generates all the other

files
In this case, it takes images in 4 folders (each one
corresponds to an annotated video), mixes the images, and
separates them between training and validation so that
all videos are represented in both the training and the
validation set. In the end, it generates a list of images
and labels with this training set and another one with
the test set.
Output of exp.sh: shows for each folder (video) how many
images are used in training and in validation

##exp.sh##

#!/bin/bash
DATAPATH="/home/marcelo.arruda/Projetos/M/datasets/vide
osComplicados/"
#DATAPATH=""
V1="1_2019-03-27_04-40-01"
V2="1_2019-04-04_23-00-00"
V3="1_2019-04-05_06-40-00"
V4="1_2019-04-08_12-00-01"

echo "
# ReTreinar Yolo em VideosComplicados
"

echo "
## Dados

1_2019-03-27_04-40-01 (treino)
1_2019-04-04_23-00-00 (validação e teste)
1_2019-04-05_06-40-00 (validação e teste)
1_2019-04-08_12-00-01 (treino)

"

printVideoDSInfo () {
video=$1
datapath=$2
echo "- ${video}:
- images: $(ls "${datapath}${video}"/*.png | wc -l)

$(ls "${datapath}${video}"/*.png | head -1)
- txts:   $(ls

"${datapath}${video}"/[0-9]*[0-9].txt | wc -l)
$(ls "${datapath}${video}"/[0-9]*[0-9].txt |

head -1)
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- list:   $(cat
"${datapath}${video}/list_${video}.txt" | wc -l) lines

$(cat "${datapath}${video}/list_${video}.txt" |
head -1)

$(cat "${datapath}${video}/list_${video}.txt" |
tail -1)

"
}

printVideoDSInfo $V1 $DATAPATH
printVideoDSInfo $V2 $DATAPATH
printVideoDSInfo $V3 $DATAPATH
printVideoDSInfo $V4 $DATAPATH

echo "
## Treino:

${V1}: $(cat "${DATAPATH}${V1}/list_${V1}.txt" | wc
-l) +

${V4}: $(cat "${DATAPATH}${V4}/list_${V4}.txt" | wc
-l) "
cat "${DATAPATH}${V1}/list_${V1}.txt"
"${DATAPATH}${V4}/list_${V4}.txt" > list_train.txt
echo "    -> list_train.txt $(cat list_train.txt | wc
-l)"

echo "
## Validação e teste:

${V2}: $(cat "$DATAPATH""${V2}/list_${V2}.txt" | wc
-l) +

${V3}: $(cat "$DATAPATH""${V3}/list_${V3}.txt" | wc
-l) "

cat "${DATAPATH}${V2}/list_${V2}.txt"
"${DATAPATH}${V3}/list_${V3}.txt" > list_testval.txt
shuf list_testval.txt -o list_testval.txt
head -n 1000 list_testval.txt > list_validation.txt
tail -n +1001 list_testval.txt > list_test.txt
echo "    -> list_validation.txt $(cat list_validation

● Run the fullTrainingVComplicados.sh
○ YOLO training script on the lists listTrain.txt and

listVal.txt. The execution of this script will
actually produce a trained model.

#fullTrainingVComplicados.sh#
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rush=/usr/local/bin/rush

find "$1" -name "*[0-9].txt" | $rush "python
multilabelsYoloAnnotation.py {} {}"

● fullTrainingVComplicados.yaml: contains all
especifications from the YOLO model

5. Testing the object detection model
● Install docker:

https://docs.docker.com/v17.09/engine/installation/l
inux/docker-ce/ubuntu/

● Building the dockerfile and open a new image:
(tutorial https://www.youtube.com/watch?v=LQjaJINkQ)

$ make cudnn_tensorflow_opencv-10.2_2.2.0_4.3.0
$docker images

output example:

REPOSITORY                             TAG                             IMAGE ID            CREATED           SIZE
datamachines/cudnn_tensorflow_opencv   10.2_2.2.0_4.3.0-20200615       d58af4a715a4        14 hours ago    5.86GB
nvidia/cuda                            10.2-cudnn7-devel-ubuntu18.04   2b8bb5f68029        6 days ago      3.82GB
$ xhost +local:docker
$ docker run -ti --rm --gpus all -e DISPLAY=$DISPLAY -v
/tmp/.X11-unix/:/tmp/.X11-unix --ipc host --device /dev/nvidia0:/dev/nvidia0
--device /dev/nvidiactl:/dev/nvidiactl --device /dev/nvidia-uvm:/dev/nvidia-uvm
-v /home/:/home/ d58af4a715a4 /bin/bash (the image id varies according to your
computer)

if an error occurs:
“docker: Error response from daemon: could not select device driver ""

with capabilities: [[gpu]].”
$ sudo apt install nvidia-container-runtime

PS: you might need to install some packages inside the docker container:

$ apt-get update
$ apt-get upgrade
$ apt install python3
$ apt install python3-pip`
$ python3 -m pip install --upgrade pip
$ python3 -m pip install numpy`
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$ python3 -m pip install opencv-python
$ python3 -m pip install opencv-python==3.2.0.8 (this version may change)
$ python3 -m pip install pyaml

PS: --GPU is the option that makes the computer run using the GPU instead of
the CPU. You can check the GPU and CPU usage while yolov5Detect.py is running to
verify "how much it is taking from the computer." If you do not use the --GPU
parameter, yolov5Detect.py will run using only the CPU, which will be slower and
require a lot of computer power.

to check CPU usage on Ubuntu:
$ htop (shows CPU usage, if the CPU memory usage increases a lot while you

run yolov5Detect.py, you are probably using only the CPU.
$ nvidia-smi (if the GPU memory usage does not change while you run

yolov5Detect.py, you are probably using only the CPU)

● Inside the container:

Choose some videos to test the YOLO network
Run a test:

$ python3 yolov5Detect.py --source
../../yolov5/1_2019-04-04_23-00-00.mp4 --weights
../../yolov5/weights/yolov5l_best_50.pt --conf-thres
0.1 --view-img --nosave --yml teste.yml --yolov5_path
../../yolov5

ps: check all the filenames. The command above is an
example.

$ xhost -local:docker

6. Tracking tool

● For tracking the ants, we run our implementation of the
RRANSAC, which reads the .yml files generated by the
yoloVideoDetect.py and creates a new .yml file with the
tracks. For more information see the Readme.md file on
/labcog/contador/dataRRANSAC/.
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Options:
- data: .yml input file
- out: .yml output file with the generated tracks
- outfw: .yml output file with the generated tracks
separated by vectors (frames, ids, position)
- display: shows the video while it runs (optional - it takes
more time to run)
- RRANSAC params: (must have)
-M         (int) Number of stored models
-U,        (float) Merge threshold
-tau_rho   (float) Good model quality threshold
-tau_T,    (int) Minimum number of time steps needed for a

good model
-Nw,       (int) Measurement window size
-ell,      (int) Number of RANSAC iterations
-tauR,     (int) Inlier threshold (multiplier)
-Qm,       (float) Q multiplier
-Rmx,      (float) Rx multiplier
-Rmy       (float) Ry multiplier

$ ./dataRRANSAC -data exemploInput.yml -M 50 -U 5 -tau_rho
0.1 -tau_T 3 -Nw 100 -ell 200 -tauR 2 -Qm 2 -Rmx 5 -Rmy 17
-display PATH_TO_VIDEO -out exemploInput_RRANSAC.yml

All these parameters were manually adjusted. They change
according to the YOLO model quality.

7. Counting tool
● For counting the ants, we run the COUNTLINE, which reads

the .yml files generated by the dataRRANSAC and creates a
.txt file containing all the counts. For more information
see the Readme.md file on
/labcog/contador/dataCOUNTLINE/.

$ python3 dataCountline.py -yml {}  -cline 0 239 640 241 >
{^_RRANSAC.yml}_count.txt'

PS: -cline defines where the line is positioned on the video
frame. The counts occur when the object crosses that line.
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8. Analyzing your data:
a. Organizing the data

● If everything is working well, you should proceed to
analyze all your data. However, it is crucial to organize
all the data and programs well. We organized all the
output files for each step (video data, detection,
tracking, and counting) on different directories. Also,
as we had more than 2000 videos to analyze, we divided
them into "days," allowing us to run all the steps for
every day recorded. That is a good option because all the
steps will run faster, and it makes it easier to find
errors (basically, if the number of output files is
different between the directories, an error occurred, and
you should run that step for the missing file again).

● Do not move the programs from their original paths! Many
programs used here access other program files to run, and
if you change the directories, they will not find them,
returning errors.

● Example of organization:
○ Directory Day_1:

■ DATA: 72 video files (.mp4)
■ YOLO: 72 .yml files
■ RRANSAC: 72 _RRANSAC.yml files
■ COUNTS: 72 .txt files + Day1allcounts.txt file

(will be discussed later)

9. Running Object Detection Model for all videos:

● You will use a cross-platform command-line tool for
executing jobs in parallel to run the detection for all
the videos (as well as for the tracking and counting
steps) called RUSH.

● Install RUSH: https://github.com/shenwei356/rush
● You must run this command for every directory containing

the video data. That step will take much time according
to the number of files that will be analyzed and the
computer settings.

# 1. run the YOLO detector
find /PATH_TO_DIRECTORY_CONTAINING_THE_VIDEOS_FROM_THAT_DAY
-name "*.mp4" | rush "python3 yolov5Detect.py --source
../../yolov5/1_2019-04-04_23-00-00.mp4 --weights
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../../yolov5/weights/yolov5l_best_50.pt --conf-thres 0.1
--view-img --nosave --yolov5_path ../../yolov5 -out
{^.mp4}.yml"

10. Running Tracking tool for all videos:
● You must run this command for every directory containing

the YOLO detections.

# 2. run dataRRANSAC
find
/PATH_TO_DIRECTORY_CONTAINING_THE_DETECTIONS_FROM_THAT_DAY
-name "*.yml" | rush "./dataRRANSAC -data {} -M 50 -U 5
-tau_rho 0.1 -tau_T 3 -Nw 100 -ell 200 -tauR 2 -Qm 2 -Rmx 5
-Rmy 17 -out {^.yml}_RRANSAC.yml"

11. Running Counting tool for all videos:
● You must run this command for every directory containing

the YOLO detections.

# 3. run Countline
find
/PATH_TO_DIRECTORY_CONTAINING_THE_TRACKINGS_FROM_THAT_DAY
-name '*_RRANSAC.yml' | rush 'python3 dataCountline.py -yml
{}  -cline 0 239 640 241 > {^_RRANSAC.yml}_count.txt'

cd  /PATH_TO_DIRECTORY_CONTAINING_THE_COUNTS_FROM_THAT_DAY
# 4. join all counts
tail $(find
/PATH_TO_DIRECTORY_CONTAINING_THE_COUNTS_FROM_THAT_DAY -name
"*_count.txt")  | grep -Po "^==>\s+(\S+)|(\d+)$" | tr '\n'
';' | tr -d '=' | tr '>' '\n' >> Day1allcounts.txt

● PS: PAY ATTENTION TO FILE NAMES AND PATHS. You might need
to change something from our command lines. Remember that
if you do not change the name of the output files, they
will be overwritten.

● After running these steps for all data, we recommend
organizing all the .txt files containing the counts for
each day on a single file (.csv, .xml, or .txt)
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12. Some tips and reading suggestions

YOLO:
https://pjreddie.com/darknet/yolo/
https://towardsdatascience.com/yolo-v5-is-here-b668ce2a4908
https://medium.com/deelvin-machine-learning/yolov4-vs-yolov5-d
b1e0ac7962b
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
DOCKER:
https://www.youtube.com/watch?v=sYr4frA_1d8
https://djangostars.com/blog/what-is-docker-and-how-to-use-it-
with-python/
NVIDIA-DRIVER:
https://medium.com/@rosdyanakusuma/how-to-install-nvidia-drive
r-in-ubuntu-18-04-307c25f73259

If something returns an error, do not hesitate to google the
error. StackOverflow and other online forums contain many
different solutions for almost every error.
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