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Resumo 

Interações ecológicas positivas – mutualismos - são uma das principais forças que 

sustentam os ecossistemas mais ricos da Terra. No entanto, entender como 

mutualismos sustentam a biodiversidade da Terra é desafiador por três motivos 

principais. Primeiro, na natureza, dezenas a milhares de espécies interagem formando 

redes mutualísticas. Em segundo, essas interações mutualísticas podem dar origem a 

pressões seletivas recíprocas entre as espécies envolvidas, resultando em mudanças 

evolutivas recíprocas – i.e. coevolução. A coevolução é um processo chave que molda 

os atributos de espécies, os quais, por sua vez, mediam como mutualismos influenciam 

a principal medida biológica que determina a persistência das espécies: a aptidão média 

de seus indivíduos, i.e, a capacidade de sobrevivência e se reprodução dos indivíduos 

de uma espécie. Terceiro, os efeitos da coevolução na aptidão média e persistência das 

espécies podem se manifestar em diferentes escalas espaciais. Nesta tese, abordamos 

esses desafios para entendermos como a coevolução em redes mutualísticas molda a 

aptidão média e a persistência das espécies em diferentes escalas espaciais. Primeiro, 

mostramos que, em redes mutualísticas locais, os efeitos evolutivos diretos entre as 

espécies podem se propagar e influenciar indiretamente outras espécies na rede. Esses 

efeitos evolutivos indiretos dificultam a capacidade das espécies de se adaptar tanto 

aos seus parceiros mutualísticos quanto a outras fontes de pressões seletivas no 

ambiente, moldando a aptidão média das espécies. Em seguida, integramos a 

coevolução mutualística em escala local com a dinâmica de colonização e extinção de 

metacomunidades em uma escala regional. Nossos resultados mostram que a 

coevolução mutualística local pode homogeneizar os atributos das espécies através da 

paisagem, facilitando colonizações, expandindo a distribuição, e aumentando a 

persistência mesmo quando as espécies estão mal adaptadas ao ambiente abiótico 

local. Juntos, nossos resultados mostram que a coevolução em redes mutualísticas é 

uma grande força que molda o a aptidão média e a persistência das espécies através de 

diferentes escalas espaciais. 
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Abstract 

Mutualistic interactions - ecological interactions with a net positive effect to both 

interacting species - are one of the major forces that sustains many of Earth's richest 

ecosystems. Yet, understanding how does mutualistic interactions shape Earth's 

biodiversity is challenging for three main reasons. First, in mutualistic communities 

from dozen to thousands of species interact forming mutualistic networks. Second, 

these mutualistic interactions can give rise to reciprocal selective pressures between 

interacting species, resulting in reciprocal evolutionary changes - coevolution. 

Coevolution is a key process that drive species traits that, ultimately, mediate the net 

effect of mutualistic interactions on the main biological currency that determines the 

persistence of species: the fitness of its individuals, i.e. the ability of the individuals of 

a given species to survive and reproduce. Third, the effects of coevolution on the 

average fitness and persistence of species can manifest across different ecological 

scales, for instance, across different spatial scales. Here, we tackle these challenges to 

understand how coevolution in mutualistic networks shape the average fitness and 

persistence of species across different spatial scales. We first show that in local 

mutualistic networks the direct evolutionary effects between species can cascade and 

indirectly affect other species in the network. These indirect effects hinder the ability 

of species to adapt to both mutualistic partners and other sources of selective pressures 

in the environment, shaping species average fitness. Then, we proceeded to integrate 

mutualistic coevolution at a local scale, with the colonization and extinction dynamics 

of metacommunities at a regional scale. Our results show that local mutualistic 

coevolution can homogenize species traits across landscapes, facilitating colonization, 

range expansions and persistence even when species are maldapted to the local abiotic 

environment. Together, our results show that coevolution in mutualistic networks can 

be a major force that shape the average fitness and persistence of species across 

different spatial scales. 
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Introdução Geral 

Na natureza nenhum organismo vive isolado de outros organismos. De micro-

organismos, como bactérias que são parasitadas por vírus, até plantas cujos frutos são 

consumidos e sementes dispersadas por vertebrados como aves ou mamíferos, 

indivíduos de inúmeras espécies diferentes interagem. Essas interações ecológicas 

estão entre as principais forças que moldam a capacidade de sobrevivência e 

reprodução de indivíduos de uma dada espécie, i.e. a aptidão ou fitness desses 

indivíduos. A aptidão de um dado indivíduo pode reduzir ou aumentar como saldo 

final de interações ecológicas com indivíduos de outras espécies. Interações que 

aumentam a aptidão – definidas como mutualismos – são particularmente intrigantes 

porque sustentam diversos ecossistemas e moldam a biodiversidade da Terra 

(Bronstein 1994, 2015). Por exemplo, as fundações de recifes de corais, um dos 

ecossistemas mais diversos na natureza, são construídas pela simbiose entre corais e 

algas unicelulares, cuja fotossíntese provem até 95% do carbono e acelera a calcificação 

e o crescimento dos corais (Hay et al. 2004). Da mesma forma, ecossistemas terrestres 

são sustentados por como diversos animais polinizam as flores e dispersam as 

sementes de plantas; ou como fungos micorrízicos que estabelecem relações 

simbiontes com as raízes de plantas aumentam a absorção de nutrientes e a biomassa 

vegetal (Wilson et al. 2009). Entretanto, compreender os processos pelos quais 

mutualismos sustentam esses ecossistemas e moldam a biodiversidade da Terra é um 

grande desafio por três principais motivos.  

Em primeiro, interações mutualísticas raramente ocorrem apenas entre duas ou 

poucas espécies: em comunidades ecológicas, dezenas e até milhares de espécies 

podem interagir simultaneamente (Thompson 2006, 2009; Bascompte & Jordano 2007; 

Bascompte 2009). Mesmo em uma rápida caminhada em ambientes urbanos é comum 

observarmos diferentes espécies de aves que dispersam sementes consumindo os 

frutos de diferentes plantas. Ainda, borboletas, abelhas, moscas e outros insetos são 

facilmente avistados visitando as flores de múltiplas espécies de plantas. Essas 
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interações multiespecíficas formam redes que podem apresentar diferentes padrões de 

interação e topologias. Nas últimas décadas, um grande esforço tem sido dedicado a 

descrição dessas diferentes topologias de redes de interação mutualísticas (Bascompte 

& Jordano 2007). Entre os padrões detectados destacam-se o aninhamento,  em que as 

interações de espécies com um ou poucos parceiros (i.e., especialistas) consistem em 

um subconjunto das interações de espécies com múltiplos parceiros (i.e., generalistas); 

a modularidade, em que as interações estão concentradas em subgrupos ou módulos, 

contendo espécies com muitas interações entre si, mas com poucas interações com 

espécies pertencentes a outros módulos; ou ainda a topologia de centro e periferia, em 

que as redes contém dois subgrupos: um subgrupo coeso com espécies altamente 

interconectadas – o centro - e um outro subgrupo – a periferia –  contendo espécies que 

interagem apenas com o centro da rede (Bascompte et al. 2003; Guimarães et al. 2007; 

Olesen et al. 2007; Lee 2016). As diferentes topologias de interação que são observadas 

na natureza, por sua vez, podem influenciar o saldo final de interações mutualísticas 

para populações de uma dada espécie (Bascompte & Jordano 2007; Bastolla et al. 2009; 

Poisot et al. 2016). Nesse sentido, um primeiro grande desafio consiste em quantificar 

como redes de interação podem influenciar populações de mutualistas ao longo do 

tempo. 

Na teoria ecológica, esse desafio tem sido abordado de dois modos distintos.  

Por um lado, a variação do tamanho populacional de espécies ao longo do tempo – ou 

a dinâmica ecológica - pode ser favorecido diretamente por como as interações entre 

mutualistas beneficiam a aptidão de indivíduos. Nesse caso, a teoria vigente prediz que 

a dinâmica ecológica em redes mutualísticas que são predominantemente aninhadas 

favorece a viabilidade, estabilidade e biodiversidade em comunidades de mutualistas 

(Bastolla et al. 2009; Rohr et al. 2014; Bascompte & Scheffer 2022). Em última instância, 

porém, o efeito de interações mutualísticas na aptidão dos indivíduos depende de seus 

atributos, por exemplo, quando o comprimento da probóscide de uma borboleta ou 

mariposa se encaixa ao comprimento do tubo floral de uma planta e facilita tanto a 

aquisição de néctar pelo inseto quanto a polinização da planta (Garibaldi et al. 2015; 
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Peralta et al. 2020). Consequentemente, valores de atributos que permitem uma 

interação mais funcional e beneficiam os mutualistas envolvidos podem ser 

favorecidos pela seleção natural, o que causa mudanças evolutivas recíprocas nas 

populações desses mutualistas ao longo do tempo. Essas mudanças evolutivas 

reciprocas são definidas como coevolução (Janzen 1980; Thompson 2005).  

Em mutualismos, a coevolução é reconhecida como uma das principais forças 

que potencialmente moldam os atributos das espécies (Thompson 2005; Bronstein 

2015). Para mutualistas que interagem em pares isolados há um sólido corpo teórico 

sobre como a coevolução pode moldar os atributos de espécies. De modo geral, a teoria 

vigente prevê que a dinâmica coevolutiva favorece a complementaridade de atributos, 

resultando em um maior acoplamento nos atributos do par de mutualistas que 

coevoluem (Nuismer et al. 1999; Nuismer 2017). Em comunidades ecológicas, porém, 

múltiplas espécies interagem e historicamente essas interações têm sido consideradas 

“difusas” e com consequências imprevisíveis para a coevolução (Thompson 2005). 

Apenas recentemente passamos a compreender que a coevolução multiespecífica pode 

resultar em padrões que podem ser previstos a partir das diferentes topologias 

observadas em redes mutualísticas. Por exemplo, redes aninhadas ou com uma 

estrutura de centro e periferia são caracterizadas pela presença de espécies 

supergeneralistas, i.e. que interagem com uma grande proporção das demais espécies 

da rede.  A coevolução na presença desses supergeneralistas aumenta a 

complementaridade entre os atributos de múltiplas espécies, o que pode resultar na 

convergência fenotípica em comunidades mutualísticas (Guimarães et al. 2011; Birskis-

Barros et al. 2021). A convergência fenotípica emerge por como os efeitos coevolutivos 

entre espécies que interagem diretamente podem se propagar para outras espécies na 

rede (Guimarães et al. 2011). De fato, redes que são predominantemente aninhadas 

favorecem esses efeitos evolutivos entre espécies que não interagem diretamente – i.e. 

efeitos evolutivos indiretos – e moldam a dinâmica coevolutiva em redes mutualísticas 

(Guimarães et al. 2017). Isso desafia a visão de que em redes mutualísticas a coevolução 

ocorre de modo “difuso”. Pelo contrário, em redes mutualísticas uma combinação de 
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efeitos evolutivos diretos e cascatas de efeitos indiretos que se propagam através dos 

inúmeros caminhos que conectam espécies em redes determinam o resultado da 

dinâmica coevolutiva. 

Esses resultados da dinâmica coevolutiva nos atributos das espécies, por sua 

vez, podem retroalimentar os efeitos de interações mutualísticas na aptidão dos 

indivíduos de uma dada população e, portanto, na aptidão média de uma dada espécie 

(nesta tese referida como aptidão da espécie). Portanto, em redes mutualísticas a aptidão 

das espécies pode ser moldada por uma combinação de seleção recíproca entre 

espécies que interagem diretamente e pressões seletivas entre espécies que 

indiretamente estão conectadas.  Essencialmente, a aptidão de uma espécie é a medida 

fundamental que determina a direção e resultado da dinâmica evolutiva, a taxa de 

crescimento intrínseca de populações, e consequentemente a ecologia e evolução de 

espécies (Lande 1976, 1982; Rice 2005; Orr 2009; Hendry et al. 2018). Nesse sentido, 

quantificarmos e mapearmos como cascatas de efeitos evolutivos em redes 

mutualísticas retroalimentam a aptidão e a persistência de espécies constitui um 

segundo grande desafio para compreendermos como mutualismos sustentam a 

biodiversidade da Terra. 

Os efeitos da coevolução para a persistência de espécies, porém, podem se 

manifestar através de escalas ecológicas diferentes: na natureza, os padrões em uma 

dada escala podem emergir como resultado de mecanismos que atuam em uma escala 

diferente ou através de múltiplas escalas (Levin 1992; Schneider 2001; Chave 2013; 

Estes et al. 2018).  Entre as diferentes escalas, a escala espacial é reconhecida como uma 

das principais determinantes de inúmeros processos e padrões emergentes na ecologia 

e evolução (Wiens 1989; Levin 1992; Estes et al. 2018). De fato, na teoria coevolutiva 

vigente, a combinação entre processos que atuam em escalas espaciais mais refinadas 

(i.e. localmente) e mais amplas (i.e. regionalmente) é um fator chave para a explicação 

de padrões fenotípicos observados através de paisagens inteiras (Thompson 2005). Por 

exemplo, um dos resultados mais influentes na teoria coevolutiva, o mosaico geográfico 

da coevolução, prevê que os efeitos da coevolução em populações de espécies diferentes 
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que interagem em sítios locais podem se manifestar na escala da paisagem por meio 

do fluxo gênico entre populações (Thompson 2005). Nesse caso, o fluxo gênico conecta 

os regimes de seleção locais e acopla as dinâmicas coevolutivas das populações no 

espaço.   Como consequência padrões fenotípicos diferentes do que seria esperado 

apenas pelos regimes coevolutivos locais se manifestam no espaço (Nuismer et al. 1999, 

2000; Gomulkiewicz et al. 2000; Lemos-Costa et al. 2017; Medeiros et al. 2018; Fernandes 

et al. 2019). Assim, o terceiro grande desafio consiste em compreendermos como os 

efeitos da coevolução local se mapeiam na aptidão e persistência de espécies através de 

paisagens inteiras.  

Nesta tese, dividida em dois capítulos, abordamos esses desafios e estudamos 

como a coevolução em comunidades mutualísticas, em que múltiplas espécies 

interagem e formam redes de interação, pode moldar a aptidão e persistência de 

espécies através de diferentes escalas ecológicas. No primeiro capítulo, combinamos 

modelagem matemática, simulações numéricas e dados empíricos para 

compreendermos como a coevolução em redes mutualísticas locais molda a aptidão de 

espécies (Cosmo et al., 2023a, no prelo). Para o segundo capítulo, expandimos o escopo 

do nosso trabalho para uma escala regional. Nesse capítulo, combinamos modelagem 

matemática e simulações numéricas para compreendermos como a coevolução local 

pode moldar a persistência de espécies em uma escala regional (Cosmo et al. 2023b). 
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One of the main forces that sustain Earth's biodiversity are ecological interactions. Yet, 23 

a major challenge in ecology and evolution is to determine how these interactions affect 24 

fitness when we progress from isolated pairwise interactions to entire networks of 25 

interacting species1–4. In networks, chains of effects result in indirect effects among non-26 

interacting species, potentially affecting the fitness outcomes of ecological interactions 27 

(such as mutualisms)5–7.  Applying analytical techniques and numerical simulations to 28 

186 empirical mutualistic networks, we show how direct and indirect effects determine 29 

changes in the fitness of species coevolving in these networks. Although species fitness 30 

partially increases with the number of mutualistic partners, most of the fitness variation 31 

across species was driven by indirect effects.  We found that indirect effects prevent 32 

coevolving species from adapting to mutualistic partners and other sources of selective 33 

pressures in the environment, thereby decreasing fitness.  Such decreases are distributed 34 

in a predictable way within networks: peripheral species receive more indirect effects and 35 

experiment higher reductions in fitness than central species.  This topological effect was 36 

also evident when we analyzed an empirical study of invasion by honeybees. As honeybees 37 

become integrated as a central species within networks, they boost indirect effects and 38 

reduce the fitness of several other species. Overall, our study shows how and why indirect 39 

effects can govern the adaptive landscape of species-rich mutualistic assemblages. 40 

Fitness – the ability of organisms to survive and reproduce – is the fundamental biological 41 

currency that underlies the ecology and evolution of biodiversity8,9. Variation in fitness among 42 

organisms mediates processes and patterns at multiple scales, from the persistence and 43 

evolution of populations to the reorganization and functionality of ecological communities10,11. 44 

In nature, much of fitness variation is the outcome of ecological interactions, ranging from 45 

antagonisms to mutualisms12–14. Mutualisms are particularly intriguing because some of the 46 

most diverse ecosystems, such as coral reefs and tropical forests, are strongly supported by 47 
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interactions of mutual benefit13. Mutualistic interactions, by definition, increase the fitness of 48 

interacting individuals and thus can also raise the average fitness across the individuals of a 49 

given species15 (hereafter “species fitness”). Fitness increases may be fueled by reciprocal 50 

evolutionary changes in traits (i.e., coevolution), which in turn may cascade back and further 51 

change species fitness16. Such fitness-coevolution-trait feedbacks may be altered by 52 

interactions with other species within ecological communities3,17,18. Consequently, species 53 

fitness may evolve through a combination of direct reciprocal selection on each pair of 54 

interacting species and indirect effects mediated by selection acting on species that are not 55 

linked directly as interacting partners5,18. Indirect effects, in turn, may create or intensify 56 

conflicting selective pressures, thereby reshaping the adaptive landscape and the distribution 57 

of species fitness within an interaction network5,19. This combination of direct and indirect 58 

effects may pervade most interaction networks among free-living species, where interactions  59 

typically show very low specificity. 60 

Here, we use a combination of mathematical modeling and empirical mutualistic networks to 61 

understand how indirect effects shape species fitness. Our starting point is a classic discrete 62 

time quantitative genetics equation that describes how a continuous phenotypic trait evolves in 63 

response to a selection gradient (Methods)20. In evolutionary biology, the selection gradient 64 

describes the relationship between species fitness and a continuous phenotypic trait by dictating 65 

the strength and direction of natural selection on this trait20. For mutualistic species, natural 66 

selection can come from at least two distinct sources. First, selection from mutualistic partners 67 

favor complementarity of traits, for instance when the proboscis of a butterfly matches the 68 

length of the floral tube of plants, or in multi-species assemblages, when the plant trait fits 69 

within the range of potential animal partners21–23. The second selective force comes from all 70 

other sources in the environment unrelated to mutualisms, such as abiotic factors, that favor an 71 

optimal trait value for each species (hereafter “environmental optima”)24–27. Thus, in our 72 
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coevolutionary model we assumed that these two sources of selective pressures comprise the 73 

selection gradient and drive the evolution of a species trait (Methods): 74 

𝑧�̅�
(𝑡+1) = 𝑧�̅�

(𝑡) + 𝜎𝐺𝑧𝑖

2 𝜚𝑖 [𝑚𝑖 ∑ 𝑞𝑖𝑗
(𝑡)(𝑧�̅�

(𝑡) − 𝑧�̅�
(𝑡))

𝑁

𝑗,𝑗≠𝑖

+ (1 − 𝑚𝑖)(𝜃𝑖 − 𝑧�̅�
(𝑡))] (1) 75 

Equation (1) relates how the trait of a species (𝑧�̅�) evolves according to the available additive 76 

genetic variance on the trait (𝜎𝐺𝑧𝑖

2 ), as well as the selection gradient outlined earlier, represented 77 

by the other terms in the equation. The first term in the selection gradient, ∑ 𝑞𝑖𝑗
(𝑡)(𝑧�̅�

(𝑡) −𝑁
𝑗,𝑗≠𝑖78 

𝑧�̅�
(𝑡)), measures the selective pressures coming from each mutualistic partner j, with each 79 

partner j favoring trait complementarity with a relative strength 𝑞𝑖𝑗
(𝑡)

 (see Methods for details). 80 

In turn, the second term, (𝜃𝑖 − 𝑧�̅�
(𝑡)), describes the component of the selection gradient that 81 

drives the evolution of species traits towards the environmental optima. Other parameters in 82 

equation (1) include 𝑚𝑖, which measures the proportional contribution of mutualisms as 83 

selective pressures; and 𝜚𝑖, which measures the sensitivity of the selection gradient to the 84 

different values of trait 𝑧�̅�. 85 

The selection gradient corresponds to the slope of the relationship between the natural 86 

logarithm of species fitness and mean trait values, 
𝑑𝑙𝑛𝑊𝑖

𝑑�̅�𝑖
. Therefore, it is possible to integrate 87 

the selection gradient to derive the fitness of each species as a function of trait values. Using 88 

this approach, we derived the fitness function that underlies our coevolutionary model: 89 

𝑤𝑖 = 𝑒
1
2
𝜚𝑖[

𝑚𝑖
𝛼

ln(
𝑠𝑖
𝑘𝑖

) − (1−𝑚𝑖)(𝜃𝑖−�̅�𝑖)
2]

(2) 90 

Equation (2) represents the fitness of a given species i relative to its theoretical maximum 91 

fitness and describes the relationship between a species’ phenotypic trait (represented by 𝑧�̅�) 92 

and its fitness. Thus,  0 < 𝑤𝑖 ≤ 1, the upper bound corresponding to the case of species i 93 
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achieving the maximum possible fitness for a species with the same number of mutualistic 94 

partners (Methods). 95 

The function described in equation (2) shows that species fitness depends on two main 96 

components, each representing a different aspect of the fitness landscape. First, it depends on 97 

a mutualistic component in which fitness increases with the average trait matching of species 98 

across its mutualistic partners, 
𝑠𝑖

𝑘𝑖
. The term 𝑠𝑖 = ∑ 𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗−�̅�𝑖)
2

𝑁
𝑗=1,𝑗≠𝑖 represents the total trait 99 

matching with all j mutualistic partners, while 𝑘𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖  is the total number of 100 

mutualistic partners of species i (𝑎𝑖𝑗 = 1 if species i interacts with species j and 0 otherwise). 101 

The parameter 𝛼 controls the sensitivity of trait matching to differences in the trait values of 102 

mutualistic partners. The second component, represented by (𝜃𝑖 − 𝑧�̅�)
2, describes the squared 103 

distance between a species' trait value and the environmental optimum, 𝜃𝑖. The less distant 104 

species traits are from their environmental optima, the larger fitness is. Therefore, species 105 

achieve the maximum possible fitness (𝑤𝑖 = 1) when their traits perfectly match the traits of 106 

all mutualistic partners and the environmental optimum (Methods). 107 

Using the fitness function and our coevolutionary model, we first explored how coevolving in 108 

a mutualistic network affects species fitness. We performed numerical simulations of our 109 

model parameterized with the structure of 186 empirical networks encompassing a wide range 110 

of network topologies and types of mutualisms worldwide (Methods). The coevolutionary 111 

dynamics quickly reached a global stable equilibrium at which traits and, consequently, species 112 

fitness cease to change (Extended Data Fig. 1., Methods). Trait values and species fitness at 113 

equilibrium are analytically predictable even if not all species are guaranteed to survive 114 

throughout the coevolutionary dynamics (Extended Data Fig. 1, Supplementary methods). At 115 

the equilibrium, fitness of species that coevolved in networks varied 5 times more than the 116 

fitness of isolated pairs of coevolved species (SD = 0.025 in networks vs 0.005 in pairs, Fig. 117 
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1a). This increased variation in the fitness of species that coevolved within networks was due 118 

in part to the number of direct partners. Species fitness was higher for species with two or more 119 

direct partners than for species in the network interacting with only one direct partner, leading 120 

to a bimodal distribution of fitness values (Fig. 1a-1b). The larger variability in fitness for 121 

species that coevolve in mutualistic networks still holds under a wide range of scenarios in 122 

which other ecological processes may drive species with low fitness extinct and the extant 123 

species coevolve to a new equilibrium (Extended Data Fig. 2, Supplementary methods). 124 

Furthermore, the bimodality in the distribution of species fitness becomes less noticeable as 125 

extinctions increases, but only disappear under conditions of catastrophic extinctions exceeding 126 

40% of the species within the network (Extended Data Fig. 2, Supplementary methods). The 127 

increase in fitness for species with two or more partners was expected and occurs because a 128 

higher number of partners evens out differences in the contribution of individual mutualistic 129 

partner species to fitness, increasing fitness due to geometric mean effects28–31 (Supplementary 130 

methods). Even so, the effects of the number of partners quickly saturated and poorly explained 131 

the variability in species fitness (Fig. 1b), indicating a potential role of indirect effects in 132 

shaping fitness variation across species.  133 

After having quantified the overall effects of coevolution in networks for species fitness and 134 

identifying the potential importance of indirect effects, we next derived an analytical 135 

approximation that explicitly assesses how indirect evolutionary effects shape the fitness of 136 

species coevolving within networks (Supplementary methods). By combining the fitness 137 

function (equation 2) and the equation for species traits at coevolutionary equilibrium 138 

(Methods), we obtained the following approximation: 139 

𝑤𝑖
∗
≅ 𝑒−

1
2
𝜚𝑖{𝑚𝑖[(〈𝜃〉−𝜃𝑖)(𝑚𝑖+𝐹𝑖)−𝜃𝑖+〈𝑧〉]2+ (1−𝑚𝑖)(𝜃𝑖−〈𝜃〉)2(𝑚𝑖+𝐹𝑖)

2} (3) 140 
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where 𝑤𝑖
∗
is the fitness of species i at the coevolutionary equilibrium; 〈𝜃〉 represents the mean 141 

environmental optimum across all species other than i in the network; 〈𝑧〉 is the average trait 142 

value across mutualistic partners of i; and 𝐹𝑖 represents the proportional contribution of indirect 143 

evolutionary effects to the evolution of species i. 144 

Our analytical approximation showed that indirect evolutionary effects prevent coevolving 145 

species from simultaneously achieving high trait matching with mutualistic partners and trait 146 

values favored by environmental selection. Thus, the larger the contribution of indirect effects 147 

generated by other species to the evolution of a given species i, the smaller the fitness of i was 148 

(Fig. 2a).  Our analytical results also showed that indirect effects are strongly affected by 149 

network structure: indirect effects are minimized if a species is the central species of a network, 150 

whereas peripheral species receive more indirect effects. Consequently, the fitness of 151 

peripheral species is lower than the fitness of central species due to this increased contribution 152 

of indirect effects (Supplementary methods). 153 

The relationship between species fitness and indirect effects was strong and held for numerical 154 

simulations that relaxed the simplifying assumptions of our analytical approximation (Fig. 2a-155 

c) and incorporated the network structure of empirical mutualisms. Sensitivity analysis further 156 

indicated that the role of indirect effects in species fitness only substantially weakens when 157 

mutualistic selection is either very weak, very strong, or the environmental optima of species 158 

are very narrowly distributed in the network (𝑚𝑖 ≤ 0.1 or 𝑚𝑖  ≥ 0.9, Extended Data Fig. 3-5, 159 

Supplementary methods). Furthermore, how indirect evolutionary effects shape fitness still 160 

hold even when the species with the lowest fitness become extinct, for instance, because of the 161 

ecological dynamics in the system (Extended Data Fig. 6, Supplementary Methods). Except at 162 

these extremes of 𝑚𝑖 values then, indirect evolutionary effects may strongly shape species 163 

fitness within coevolving mutualistic networks. These extremes should not be commonly found 164 
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in nature, as we have evidence that (1) the selection imposed on species traits by mutualistic 165 

interactions and other sources in the environment are similar in strength to each other, even for 166 

highly intimate mutualisms (e.g., symbiosis)32-35; and (2) mutualistic networks are composed 167 

of different organisms, each one with its own life history and developmental constraints. In 168 

turn, species life history and developmental constraint can be radically distinct among species 169 

and shape how traits respond to selection12. Therefore, our results suggest that indirect 170 

evolutionary effects should have a pervasive role in shaping the fitness of mutualistic species 171 

in ecological communities. 172 

Human activities that homogenize ecological communities can lead to a reorganization of 173 

direct and indirect interactions, ultimately changing the outcome of coevolution and altering 174 

species fitness27,36–38. One important example would be the introduction of a new species into 175 

a network. As a case study, we explored the potential consequences of the reorganization of 176 

direct and indirect effects by the introduction of the European honeybee (Apis mellifera), which 177 

often becomes a central species within pollination networks worldwide39–42. We first performed 178 

numerical simulations on 73 empirical networks that include A. mellifera (Methods, Fig. 3a) 179 

by first removing it from the network and running the coevolutionary model until it reached 180 

equilibrium. Then, we connected A. mellifera back to the network to simulate an invasion and 181 

evaluated how the fitness of all other native species was affected after reaching a new 182 

equilibrium. This approach allowed us to use our controlled scenario as a theoretical 183 

benchmark. Nevertheless, this certainly represents a simplistic assumption as it neglects the 184 

reduction of number of species, mutualistic interactions, and the potential rewiring of native 185 

pollinators after the invasion. We will relax these assumptions later by considering a field 186 

experiment involving a pollination network before and after the introduction of A. mellifera by 187 

beekeeping practices39. 188 
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Our simulations show that invasive species such as A. mellifera can substantially affect the 189 

fitness of native species (Fig. 3b) and reshape their adaptive landscapes (Fig. 3c). Specifically, 190 

we found that the effects of the invasion differed between species that directly interact with 191 

honeybees and those that do only indirectly. The fitness of the honeybee’s direct partners on 192 

average increased after the invasion (n=10³ simulations, Fig. 4a, green histogram bars), 193 

whereas for species indirectly interacting with the honeybee, the overall effect of the invasion 194 

on fitness was negative (n=10³ simulations, Fig. 4a, red histogram bars). In our simulations, 195 

the average change in fitness was positive only if the increase in fitness of gaining a new 196 

mutualistic partner (the honeybee) compensated the decrease in fitness caused by changes in 197 

indirect evolutionary effects (Fig. 4b). In contrast, for species that interact only indirectly with 198 

the honeybee, fitness decreased because the invasion increased the contribution of indirect 199 

evolutionary effects to the fitness of these species (Fig. 4c). As our previous results showed, 200 

increasing the contribution of indirect evolutionary effects hinders species fitness because 201 

indirect effects difficult species to adapt at the same time to mutualistic partners and the 202 

environment. These results held for different values of mutualistic selection (Extended Data 203 

Figs. 7-9, Supplementary methods).  204 

However, when A. mellifera invades a network in nature, some native pollinators become 205 

disconnected from the network (i.e., functionally extinct), and those left in the system rewire 206 

interactions and lose mutualistic partners by resource competition39. We explored these 207 

additional consequences using the data from an experimental field study in which the 208 

mutualistic networks before and after the arrival of A. mellifera are available39. These 209 

simulations showed that the fitness of 68% of the native species decreased after the introduction 210 

of A. mellifera because the honeybee not only increased the contribution of indirect 211 

evolutionary effects, but also reduced drastically the number of mutualistic partners of nearly 212 

all native plant species in the network (Extended Data Fig. 10). Together with our theoretical 213 
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benchmark, these results indicate that mutualistic interactions with an invasive species can 214 

decrease the fitness of most native species in networks through a reorganization of indirect 215 

evolutionary effects. Yet, these negative effects in fitness can be buffered if species are able to 216 

obtain new mutualistic partners with similar effectiveness after the invasion, but the 217 

experimental evidence suggests this would be rarely the case, especially at very high densities 218 

of the invader species39. 219 

Our results highlight that mutualists coevolve in a dynamic “seascape” within which adaptive 220 

peaks can be transient and cause natural selection to push mutualists to lower or higher fitness 221 

points depending on the structure and reorganization of indirect evolutionary effects43. 222 

Specifically, indirect effects resulting from coevolution constrain species fitness. 223 

Consequently, we predict that selection may favor the evolution of lifestyles that reduce the 224 

negative impact of indirect evolutionary effects, especially in species-rich assemblages with 225 

low interaction specificity. Two examples would be specialists and supergeneralists. Regarding 226 

the former, their dependence on mutualistic interactions is so high that it minimizes the 227 

negative impact of indirect evolutionary effects on fitness. Regarding supergeneralists, fitness 228 

is less affected by indirect effects because they rely upon the resources directly provided by 229 

multiple partners, thus maximizing direct effects over indirect ones1,18. Furthermore, when such 230 

supergeneralist invade native communities, this may reduce fitness of mutualists through 231 

indirect evolutionary effects, an overlooked outcome of biological invasions. On the other 232 

hand, a generalized effect of environmental drivers (e.g., climate change effects on pollinators) 233 

may deeply influence the sign and magnitude of indirect effects, translating in larger fitness 234 

losses among species. More generally, our results highlight how and why the structure of 235 

ecological networks can govern the fitness, the adaptive landscape, and, consequently, the 236 

persistence of species across Earth’s ecosystems. 237 
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 328 

Figure legends 329 

Figure 1 | Coevolution in mutualistic networks increases the variability in species fitness. 330 

a, Histogram showing the distribution of species fitness (rescaled relative to the average) that 331 
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coevolved in a single mutualistic pair (green histogram bars), or within the 186 empirical 332 

networks used to parameterize the model (violet histogram bars). b, When coevolving within 333 

networks, species fitness increased up to a saturation point with the number of mutualistic 334 

partners, but largely varied among species with the same number of partners. Each fitness value 335 

corresponds to the mean value for 10³ numerical simulations of our model. In both panels, 336 

fitness values are rescaled relative to the average of each scenario (coevolution in pairs or in 337 

networks) in such a way that zero indicates the average of the distribution in each scenario. 338 

Note that on panel (b) only species coevolving within networks are shown. Parameter values 339 

are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled 340 

from a uniform distribution U [0, 10]. 341 

Figure 2 | Species position within networks and indirect evolutionary effects shape species 342 

fitness in coevolved mutualistic networks. a, Analytical approximation (solid line and shaded 343 

region) predicts that indirect evolutionary effects decrease the fitness of species coevolving in 344 

mutualistic networks. Points of lighter and darker colors represent species with one and more 345 

than one partner, respectively. This effect held for numerical simulations (n=10³ numerical 346 

simulations for each of the 186 empirical networks), as shown for species within an example 347 

plant-pollinator network (points and inset), and b, for species across all empirical networks 348 

after controlling for the effects of the number of mutualistic partners. c, Example for a seed-349 

dispersal network (inset) showing how species in peripheral positions receive more indirect 350 

effects and have a lower fitness than core species. The color of points represents species fitness 351 

such that the darker the color, the higher the fitness value. In panel a, the line represents the 352 

mean predicted fitness and shaded regions standard deviations when sampling species 353 

environmental optima (𝜃𝑖 and 〈𝜃〉) and 〈𝑧〉 from a normal distribution, 𝜃𝑖~N(0.0, 0.1), 354 

〈𝜃〉~N(2.5, 0.1) and 〈𝑧〉~N(2.5, 0.1). Points in all panels correspond to the mean value of 355 

species fitness (panels a and b) or contribution of indirect effects (panel c) across 10³ numerical 356 
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simulations. Other parameter values are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2. For 357 

numerical simulations, 𝜃𝑖 and initial trait values were sampled from a uniform distribution U 358 

[0, 10]. In panels a and b, the x-axis represents the proportional contribution of indirect 359 

evolutionary effects (equation 3). 360 

Figure 3 | Example of how the reorganization of indirect effects through a biological 361 

invasion can reshape species fitness within networks. a, Geographical location of the 362 

empirical networks used to parameterize the invasion simulations by honeybees. b, Examples 363 

of the rapid rate at which an invader can either increase or decrease the fitness of two native 364 

species within a network (insert). c, The reorganization of indirect effects following invasion 365 

reshapes the adaptive landscape of the native species, slightly favoring different trait values 366 

and changing fitness. Dashed and solid lines represent the adaptive landscape of species before 367 

and after coevolving with the invader, respectively. Parameter values are as follows: 𝑚𝑖 = 0.5, 368 

𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled from a uniform 369 

distribution U [0, 10]. 370 

Figure 4 | Indirect evolutionary effects shape the fitness consequences of simulated 371 

network invasions. a, Histograms showing the average change in species fitness (across all 372 

10³ simulations) after coevolving with the invasive species.  The frequency in the y-axis 373 

represents log(Counts). b-c, Relationship between the average change in species fitness after 374 

the invasion, and the change in the total contribution of indirect evolutionary effects coming 375 

from the network for b, direct partners and c, indirect partners of the invasive species. Points 376 

and histogram bars represent the average values across all simulations (n=10³ numerical 377 

simulations, 73 networks). The x-axis on panel a, and y-axis on panels b-c, are rescaled relative 378 

to the maximum absolute value of average change in fitness across all species. Parameter values 379 
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are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled 380 

from a uniform distribution U [0, 10]. 381 

 382 

Methods 383 

Modeling coevolution in mutualistic networks 384 

The starting point of our model is the classic quantitative genetics equation by Russell Lande20. 385 

This equation relates how the mean value of a continuous trait (𝑧�̅�)  of a species changes 386 

between successive generations in response to the selective pressures in the environment: 387 

∆𝑧�̅� = 𝜎𝐺𝑧𝑖

2 𝑑𝑙𝑛𝑊𝑖
(𝑡)

𝑑�̅�𝑖
(𝑡)

(4) 388 

where 𝜎𝐺𝑧𝑖

2  is the additive genetic variance of trait 𝑧𝑖. The term 
𝑑𝑙𝑛𝑊𝑖

(𝑡)

𝑑�̅�𝑖
(𝑡)  is the selection gradient 389 

and connects how changes in 𝑧�̅� affect the mean fitness of species i. In natural communities, 390 

the traits of species that mediates mutualistic interactions are subject to the selective pressures 391 

of its interacting partners and other sources in the environment. Thus, we assumed that the 392 

selection gradient, 
𝑑𝑙𝑛𝑊𝑖

𝑑�̅�𝑖
, is composed of two sources of selective pressures. First, we assumed 393 

that for a given species i, mutualisms contribute to a proportion 𝑚𝑖 of the evolution of trait 𝑧�̅�. 394 

Following empirical evidence and previous work5,26,27,44, we further assumed that (1) 395 

mutualistic interactions of species i with each partner j favor trait complementarity, e.g., the 396 

complementarity between insect mouthparts and the floral tubes of plants; and (2) each 397 

mutualistic partner j of species i contributes to a given amount (𝑞𝑖𝑗) to the selective pressures 398 

that act upon trait 𝑧�̅�. Second, we assumed that the selective pressures from other features of 399 

the environment, such as abiotic factors, contribute to the remaining proportion (1 − 𝑚𝑖) of 400 
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the evolution of trait 𝑧�̅� and favor an optimal trait value (hereafter called environmental optima, 401 

𝜃𝑖). Under these assumptions, the selection gradient, 
𝑑𝑙𝑛𝑊𝑖

𝑑�̅�𝑖
, can be described as: 402 

 403 

𝑑𝑙𝑛𝑊𝑖

(𝑡)

𝑑𝑧�̅�
(𝑡)

= 𝜚𝑖 [𝑚𝑖 ∑ 𝑞𝑖𝑗
(𝑡)(𝑧�̅�

(𝑡) − 𝑧�̅�
(𝑡))

𝑁

𝑗,𝑗≠𝑖

+ (1 − 𝑚𝑖)(𝜃𝑖 − 𝑧�̅�
(𝑡))] (5) 404 

where 𝜚𝑖 is a constant that measures the sensitivity of species fitness to changes in the values 405 

of 𝑧�̅�
(𝑡). The term 𝑞𝑖𝑗

(𝑡)
quantifies the evolutionary contribution of a given mutualistic partner j 406 

to the selection imposed on 𝑧�̅�
(𝑡). We assumed that 𝑞𝑖𝑗

(𝑡)
 depends on a trait matching rule such 407 

that 𝑞𝑖𝑗
(𝑡)

 increases with the trait matching between species i and a partner j, relative to all other 408 

k partners of i, 𝑞𝑖𝑗
(𝑡) =

𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗

(𝑡)−�̅�𝑖
(𝑡))

2

∑ 𝑎𝑖𝑘𝑒
−𝛼(�̅�𝑘

(𝑡)−�̅�𝑖
(𝑡))

2
𝑁
𝑘=1,𝑘≠𝑖

, in which 𝑎𝑖𝑗(𝑎𝑖𝑘) = 1 if species i interacts with 409 

species j(k) in the network or equals 0 otherwise; and 𝛼 is a parameter that controls the 410 

sensitivity of 𝑞𝑖𝑗
(𝑡)

 to the distance between species traits. Combining equations (4) and (5) results 411 

in our coevolutionary model: 412 

 413 

𝑧�̅�
(𝑡+1) = 𝑧�̅�

(𝑡) + 𝜎𝐺𝑧𝑖

2 𝜚𝑖 [𝑚𝑖 ∑ 𝑞𝑖𝑗
(𝑡)(𝑧�̅�

(𝑡) − 𝑧�̅�
(𝑡))

𝑁

𝑗,𝑗≠𝑖

+ (1 − 𝑚𝑖)(𝜃𝑖 − 𝑧�̅�
(𝑡))] (1) 414 

Linking coevolution and species fitness 415 

In our model, the selection gradient, 
𝑑𝑙𝑛𝑊𝑖

𝑑�̅�𝑖
 connects the evolution of species traits to how 416 

mutualisms and the environment affect their mean fitness5. To derive the expression that 417 

explicitly links coevolution to species mean fitness, 𝑤𝑖(𝑧�̅�), we solved equation (5) to obtain 418 

species absolute fitness (Supplementary methods). Assuming a selection gradient first and then 419 

integrating it to find fitness, results in an equation that describes an entire family of fitness 420 
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functions that could lead to the same selection gradient (see Supplementary methods for 421 

additional examples): 422 

𝑊𝑖 = e
𝜚𝑖[

𝑚𝑖
2𝛼

ln(∑ 𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗−�̅�𝑖)

2
𝑁
𝑗=1,𝑗≠𝑖 )+(1−𝑚𝑖)(𝜃𝑖�̅�𝑖−

�̅�𝑖
2

2
)]+𝑐𝑖

 (6)
 423 

where 𝑐𝑖 is a constant that emerges from the integration of the selection gradient. Thus, instead 424 

of a specific function, equation (6) is a general representation of an entire family of fitness 425 

functions depending on the choice of the constant 𝑐𝑖. In fact, it can be shown that equation (6) 426 

can lead to other fitness functions adopted in previous work by choosing different values for 𝑐𝑖 427 

(Supplementary methods). Since in equation (6) species fitness scales up with the number of 428 

mutualistic partners, with the value of the environmental optima (𝜃𝑖) and depends on this 429 

arbitrary constant (𝑐𝑖), we performed two additional steps. First, we found the conditions under 430 

which species achieve their maximum theoretical absolute fitness. The absolute fitness of 431 

species will be maximized whenever species are at their adaptive peaks, i.e., when 
𝑑𝑙𝑛𝑊𝑖

𝑑�̅�𝑖
= 0. 432 

From equation (4), since 0 < 𝑚𝑖 < 1, this condition is fulfilled when 𝑧�̅� = 𝑧�̅� for all mutualistic 433 

partners j, and, at the same time, 𝑧�̅� = 𝜃𝑖  (except for the trivial case in which 𝜚𝑖 = 0). That is, 434 

fitness is maximized when species are perfectly adapted to all mutualistic partners and the 435 

environmental optima (e.g., when all species share the same environmental optima). Plugging 436 

in this condition into equation (6) yields: 437 

𝑊𝑚𝑎𝑥,𝑖 = e
𝜚𝑖[

𝑚𝑖
2𝛼

ln(∑ 𝑎𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖 )+(1−𝑚𝑖)(

𝜃𝑖
2

2
)]+𝑐𝑖

(7) 438 

Next, we computed species relative fitness (𝑤𝑖) as the ratio 
𝑊𝑖

𝑊𝑚𝑎𝑥,𝑖
, resulting in equation (2), 439 

indicating how close the species is to the maximum fitness value for a species with the same 440 

number of partners:  441 

𝑤𝑖 = 𝑒
1
2
𝜚𝑖[

𝑚𝑖
𝛼

ln(
𝑠𝑖
𝑘𝑖

) − (1−𝑚𝑖)(𝜃𝑖−𝑧𝑖)
2]

(2) 442 

 443 
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Linking indirect evolutionary effects to species fitness 444 

Our coevolutionary model always leads to a stable equilibrium of species traits (and therefore 445 

species fitness). Using the simplifying assumption that 𝑞𝑖𝑗
(𝑡)

≈ 𝑞𝑖𝑗, from equation (1), species 446 

traits reach a coevolutionary equilibria when: 447 

𝑚𝑖 ∑ 𝑞𝑖𝑗(𝑧�̅�
∗ − 𝑧�̅�

∗)

𝑁

𝑗=1,𝑗≠𝑖

+ (1 − 𝑚𝑖)(𝜃𝑖 − 𝑧�̅�
∗) = 0 (8) 448 

Equation (8) leads to: 449 

𝑧�̅�
∗ − 𝑚𝑖 ∑ 𝑞𝑖𝑗𝑧�̅�

∗

𝑁

𝑗=1,𝑗≠𝑖

= (1 − 𝑚𝑖)𝜃𝑖 (9) 450 

which, in matrix form can be rewritten as: 451 

�⃗⃗� ∗ − 𝑸�⃗⃗� ∗ = 𝝍�⃗⃗� (10) 452 

�⃗⃗� ∗ = (𝑰 − 𝑸)−𝟏𝝍�⃗⃗� (11) 453 

In equations (10)-(11) �⃗⃗� ∗is a Nx1 vector of species traits at the coevolutionary equilibrium, 𝝍 454 

is a NxN diagonal matrix with (1 − 𝑚𝑖) as its diagonal elements; �⃗⃗�  is a Nx1 vector of species 455 

environmental optima (𝜃𝑖); and I is the identity matrix. The Q-matrix is a matrix whose entries, 456 

𝑚𝑖𝑞𝑖𝑗, contain the direct evolutionary effects between species i and j. 457 

The matrix T = (𝑰 − 𝑸)−𝟏 is a matrix that contains not only the direct, but also the indirect 458 

evolutionary effects that come from the multiple pathways connecting species in the network. 459 

This interpretation can be recovered by noticing that the T-matrix is the result of a matrix power 460 

series:  461 

(𝑰 − 𝑸)−𝟏 = 𝑸𝟎 + 𝑸𝟏 + 𝑸𝟐 + 𝑸𝟑 … = ∑𝑸𝓵

∞

𝓵=𝟎

(12) 462 

The powers of the Q-matrix correspond to matrices that represent the effects of species on each 463 

other through multiple pathways in the network. Thus, while the Q-matrix represents the direct 464 



 

20 

evolutionary effects that species exert on each other, each power ℓ of the Q-matrix contains the 465 

effects that species j exert on species i through a chain of effects of length ℓ. For instance, the 466 

elements 𝑞𝑖𝑗
(2) of the matrix 𝑸𝟐contains the effects of species j on species i through pathways 467 

of length 2, such as the indirect evolutionary effect of one plant species on another plant 468 

mediated by a shared animal mutualist. Consequently, the T-matrix contains the sum of the 469 

evolutionary effects among species flowing through all possible pathways in the network. 470 

Using the T-matrix, we first partitioned the contribution of indirect evolutionary effects from 471 

the direct ones. Then, combining equation (11) with the fitness function allowed us to express 472 

species fitness as a function of the total amount of incoming evolutionary effects for each 473 

species (Supplementary methods), and to partition the contribution of direct and indirect 474 

evolutionary effects to fitness. 475 

Numerical simulations 476 

We evaluated how mutualistic coevolution in ecological networks is connected to species 477 

average fitness by combining numerical simulations and an analytical approximation of our 478 

coevolutionary model. These simulations were parameterized with the structure of 186 479 

empirical networks (Supplementary Table 1). Our dataset comprised 186 empirical networks 480 

distributed among three types of mutualisms: plants with extrafloral nectaries that are protected 481 

by ants (n=4), animals that consume the fleshy fruits of plants and disperse their seeds (n=34), 482 

and plants whose flowers are pollinated by animals (n=148). These mutualistic interactions 483 

span a wide range of network structures of multiple-partner mutualisms. All these networks 484 

were obtained from the Web-of-Life dataset (www.web-of-life.es). Here we focus on 485 

mutualisms in which there are two distinct set of species, forming bipartite networks. But other 486 

types of mutualisms that do not form bipartite networks can also be used to parameterize our 487 

coevolutionary model45. Examples of such mutualisms include mimetic rings in which 488 

unpalatable species can display a similar warning signal (i.e., Müllerian mimetic rings) and 489 

http://www.web-of-life.es/
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indirectly benefit each other by a decreased per capita attack rate from predators45. In 490 

simulations with the same network, we parameterized 𝑎𝑖𝑗 as 1 if species i and j interacted and 491 

0 otherwise. Furthermore, initial trait values (𝑧�̅�), and environmental optimum values (𝜃𝑖) were 492 

sampled from a uniform distribution U [0, 10]. We sampled environmental optimum values 493 

from a uniform distribution because in mutualistic communities, species can widely differ in 494 

their life histories, physiological constrains, and therefore, on their environmental optima12. 495 

With this approach we did not assume any particular shape on the distribution of environmental 496 

optima of species, as in a uniform distribution all values occur with the same frequency (i.e., 497 

are equiprobable). However, our analytical approximation show that our results do not rely on 498 

a particular distribution of environmental optima of species, and we also present the results of 499 

numerical simulations for when the sampling range of the environmental optimum is narrower 500 

than the interval used in the main text (Extended Data Fig. 4b). 501 

All other parameters were held constant and were the same for all species (𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 502 

𝛼 = 0.2). We ran 1000 simulations for each combination of network and 𝑚𝑖 values (𝑚𝑖=0.1, 503 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), in which we first allowed species traits to achieve 504 

asymptotic values (defined as |𝑧𝑖
(𝑡+1)

− 𝑧𝑖
(𝑡)| < 10−4). Then, we used these asymptotic trait 505 

values in equation (2) to compute the fitness of each species. In the main text we present the 506 

results for the scenario in which 𝑚𝑖 = 0.5, since in empirical ecological communities the 507 

selective pressures from mutualistic interactions and other sources in the environment have 508 

been shown to be similar in strength to each other24,26,34,35. However, we also present the results 509 

of the numerical simulations for all other 𝑚𝑖 values in the Supplementary methods and as 510 

extended data figures (Extended Data Figs. 3-4). 511 

We used these numerical simulations to test the predictions of our analytical approximations 512 

(Supplementary methods). From the results of our numerical simulations, we built the matrix 513 
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of total evolutionary effects, T-matrix, 𝑻 = (𝑰 − 𝑸)−𝟏. In our model, the T-matrix is an NxN 514 

matrix containing the total evolutionary effects among all N species in a network that 515 

determines the trait values of species at the coevolutionary equilibrium (equation 11). The 516 

matrix of direct evolutionary effects, i.e., the Q-matrix, was built using species trait values at 517 

the coevolutionary equilibrium. Following previous work18, we used the entries of the T-518 

matrix, 𝑡𝑖𝑗, to compute the contribution of indirect evolutionary effects to trait evolution as: 519 

𝐹𝑖 =
∑ (1 − 𝑎𝑖𝑗)

𝑁
𝑗=1,𝑗≠𝑖 𝑡𝑖𝑗

∑ 𝑡𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖

(13) 520 

where 𝐹𝑖 is the contribution of indirect evolutionary effects to species i and 𝑎𝑖𝑗 = 1 if species 521 

i interacts with species j and 𝑎𝑖𝑗 = 0 otherwise. All numerical simulations were performed 522 

using the Julia programming language46, while figures were produced in R (see ref. 47). The 523 

code to perform numerical simulations and reproduce our results is publicly available48. 524 

Numerical simulations exploring the invasion of a supergeneralist species 525 

We evaluated how an introduced supergeneralist species shapes the fitness of the native species 526 

with numerical simulations parameterized with a subset of the networks we used (n=73 527 

empirical networks, Supplementary Table 2). These empirical networks were used because 528 

they were collected from ecological communities within which the European honeybee, Apis 529 

mellifera is not a native species. This honeybee species is a known supergeneralist species that 530 

interacts with many species within networks. To simulate how the fitness of species changes 531 

after coevolving with the invader, we proceeded as follows. First, we created a “pre-invasion” 532 

network by completely disconnecting A. mellifera from the network. We used this pre-invasion 533 

network to simulate the coevolutionary dynamics of species before the invasion, allowed 534 

species traits to reach asymptotic values (defined as |𝑧𝑖
(𝑡+1)

− 𝑧𝑖
(𝑡)| < 10−4 for all species), and 535 

used equation (2) to compute species fitness at these asymptotic values. Second, we 536 

“reintroduced” A. mellifera into the network, simulated the coevolutionary dynamics with the 537 
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resulting “post-invasion” network, allowed species traits to reach asymptotic values, and 538 

computed species fitness again. Then, using the values for species fitness resulting from 539 

coevolution in the pre- and post-invasion networks, we evaluated how species fitness changed 540 

as a result of the A. mellifera invasion. Indirect evolutionary effects for the pre- and post-541 

invasion networks were computed following equation (13). For all numerical simulations, 542 

initial trait values and environmental optimum values were sampled from a uniform 543 

distribution U [0, 10]. All other parameters were held constant and were the same for all species 544 

(𝜑𝑖 = 0.2, 𝜚𝑖=0.2, 𝛼 = 0.2). For each combination of network and values of 𝑚𝑖 (𝑚𝑖=0.1, 0.2, 545 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), we ran 1000 numerical simulations (see Extended Data Figs. 7-546 

9 and Supplementary methods for sensitivity analyses). 547 
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Extended Data figure legends 599 

Extended Data Figure 1 | Species traits and fitness quickly reach equilibrium values after 600 

coevolving in mutualistic networks. a-c, Example for an ant-plant mutualistic network (panel 601 

a) of how species traits (panel b) and fitness (panel c) quickly reach a coevolutionary 602 

equilibrium. d, The coevolutionary equilibrium is reached even if not all species survive 603 

throughout the dynamics, as illustrated by three species that were randomly extinct from the 604 

network (for illustrative purposes, species whose trait values reach zero). Each point and line 605 

correspond to the values for each species in the network (represented by different colors). The 606 

diamond-shaped points on the right of panel b represent the environmental optima of each 607 

species (𝜃𝑖). The dashed lines in panel d represent the trait values at equilibrium predicted by 608 

equation (11) using the matrix of the interactions among surviving species. Parameter values 609 

are as follows: 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖 = 0.2, 𝛼 = 0.2, 𝑚𝑖 = 0.5. Initial trait values and environmental 610 

optima were sampled from a uniform distribution U [0, 10]. 611 

http://www.nature.com/reprints
https://github.com/lgcosmo/Cosmo_et_el_indirect_effects_fitness
https://github.com/lgcosmo/Cosmo_et_el_indirect_effects_fitness
http://www.web-of-life.es/
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Extended Data Figure 2 | Coevolution in mutualistic networks increases the variability in 612 

species fitness when a certain percentage of the species with the lowest fitness become 613 

extinct, and the surviving species coevolve to a new equilibrium. Each set of panels 614 

represents a specific scenario where a certain percentage of the species in the network 615 

experience extinction after reaching the initial coevolutionary equilibrium. In all scenarios 616 

extinctions occurred in a specific order, starting with the species possessing the lowest fitness 617 

until a desired percentage of extinctions was reached. The corresponding extinction 618 

percentages for each scenario are as follows: a-b, 10%; c-d, 20%; e-f, 30%; g-h, 40%; and i-j, 619 

50%. In all panels the red histogram bars depict the distribution of fitness of the surviving 620 

species in the new coevolutionary equilibrium for 10³ numerical simulations parameterized 621 

with the initial structure of empirical networks (n=186 empirical networks). Green histogram 622 

bars correspond to the scenario in which species coevolve as isolated pairs and there are no 623 

extinctions. In the boxplots each point corresponds to the mean value for 10³ numerical 624 

simulations for a given species coevolving in the empirical mutualistic networks (n=186 625 

empirical networks). Fitness values are rescaled relative to the average of the scenario in which 626 

species coevolve in networks or as isolated pairs. Other parameter values are as follows: 𝜎𝐺𝑧𝑖

2 =627 

1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 = 0.5.   𝜃𝑖 and initial trait values were sampled from a uniform 628 

distribution U [0, 10]. 629 

Extended Data Figure 3 | Coevolution in mutualistic networks increases the variability in 630 

species fitness for different levels of strength of mutualistic selection. a, Histogram showing 631 

the distribution of mean equilibrium fitness of species for 10³ numerical simulations of a pair 632 

of coevolving species (green histogram bars), or of species within the 186 empirical networks 633 

used to parameterize the model (red histogram bars), for different values of 𝑚𝑖 (values above 634 

each panel). b, Boxplot showing how species fitness vary with the number of mutualistic 635 

partners for different values of 𝑚𝑖 (the intensity of mutualistic selection, values above each 636 
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panel). Each point corresponds to the mean value for 10³ numerical simulations for a given 637 

species. In all panels fitness values are rescaled relative to the average of each scenario and 𝑚𝑖 638 

(coevolution in pairs or in networks). Other parameter values are as follows: 𝜎𝐺𝑧𝑖

2 = 1.0, 639 

𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel.  𝜃𝑖 and initial trait values were 640 

sampled from a uniform distribution U [0, 10]. 641 

Extended Data Figure 4 | Indirect effects drive species fitness for different 642 

parameterizations of the model. a, Examples of how indirect evolutionary effects drive the 643 

fitness of species in numerical simulations across all empirical networks (n=186 empirical 644 

networks) for different values of 𝑚𝑖 (values above each panel), for species with five mutualistic 645 

partners. b, Examples of how indirect evolutionary effects drive the fitness of species in 646 

numerical simulations across all empirical networks (n=186 empirical networks) for different 647 

intervals of 𝜃𝑖 (values above each panel), and sensitivity of species adaptive landscapes (𝜚𝑖, 648 

diferente colors) for species with five mutualistic partners. Points in all panels represent 649 

average results for 10³ numerical simulations of each combination of empirical network and 650 

parameter values. Other parameter values are as follows: 𝜎𝐺𝑧𝑖

2 = 1.0 and 𝛼 = 0.2. Values of 651 

𝑚𝑖 and 𝜚𝑖 as indicated on each panel. In a, 𝜃𝑖 and initial trait values were sampled from a 652 

uniform distribution U [0, 10], while in b the upper bound of the uniform distribution is 653 

indicated in the values above each panel. 654 

Extended Data Figure 5 | Peripheral species are more affected by indirect effects drive 655 

for different networks and levels of mutualistic selection. Results from numerical 656 

simulations parameterized with the structure of empirical networks (n=186 empirical 657 

networks), showing how the contribution of indirect evolutionary effects is smaller for core 658 

than peripheral species within the same network. This result holds for all values of 𝑚𝑖, the 659 

intensity of mutualistic selection (values above each panel). Each point corresponds to the 660 

average for 10³ numerical simulations for each combination of species position (core or 661 
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peripheral), empirical network and 𝑚𝑖. Points of different colors correspond to species that 662 

were classified either as core species (red points) or peripheral species (blue points). Parameter 663 

values are as follows: 𝑚𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values 664 

were sampled from a uniform statistical distribution U [0, 10]. 665 

Extended Data Figure 6 | Indirect effects drive the fitness of surviving species when the 666 

least fit species become extinct, and the surviving ones coevolve to a new equilibrium. 667 

Each panel corresponds to scenarios in which a certain percentage of the species in the network 668 

underwent extinction after reaching a first coevolutionary equilibrium. For all scenarios 669 

extinctions occurred in a specific order, starting with the species possessing the lowest fitness, 670 

until a given percentage of extinctions was reached. The corresponding percentage of species 671 

extinct are as follows: a, scenario without extinctions; b, 10%; c, 20%; d, 30%; e, 40%; and f, 672 

50%. Points in each panel represent average results for species with three mutualistic partners 673 

across 10³ numerical simulations parameterized with the initial structure of 186 empirical 674 

networks. In panels b-f, indirect evolutionary effects were computed from the matrix of 675 

evolutionary effects (Q-matrix) among the surviving species (equation 13). Parameter values 676 

are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled 677 

from a uniform statistical distribution U [0, 10]. 678 

Extended Data Figure 7 | Invasion of a network by a supergeneralist changes the fitness 679 

of native species via coevolution for different levels of mutualistic selection. Histograms 680 

showing the average change in native species fitness (n=10³ numerical simulations for each of 681 

the 73 empirical networks) after coevolving with the invasive species for different values of  682 

𝑚𝑖 (the intensity of mutualistic selection, values above each panel). The frequency in the y-683 

axis represents log(Counts). Other parameter values are as follows: 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 =684 

0.2, and 𝑚𝑖 as indicated on top of each panel.  𝜃𝑖 and initial trait values were sampled from a 685 

uniform distribution U [0, 10]. 686 
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Extended Data Figure 8 | Direct and indirect evolutionary effects drive the change in 687 

fitness of native species directly interacting with a supergeneralist invader. Relationship 688 

between the average change in species fitness (n=10³ numerical simulations for each of the 73 689 

empirical networks) after the invasion and the change in the contribution of indirect 690 

evolutionary effects for direct partners of A. mellifera and for different values of  𝑚𝑖 (the 691 

intensity of mutualistic selection, values above each panel). Parameter values are as follows: 692 

𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel.  𝜃𝑖 and initial trait values 693 

were sampled from a uniform distribution U [0, 10]. 694 

Extended Data Figure 9 | Indirect evolutionary effects drive the change in fitness of native 695 

species only indirectly interacting with a supergeneralist invader. Relationship between the 696 

average change in species fitness (n=10³ numerical simulations for each of the 73 empirical 697 

networks) after the invasion and the change in the contribution of indirect evolutionary effects 698 

for indirect partners of A. mellifera and for different values of  𝑚𝑖 (the intensity of mutualistic 699 

selection, values above each panel). Other parameter values are as follows: 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 700 

𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel. 𝜃𝑖 and initial trait values were sampled from 701 

a uniform distribution U [0, 10]. 702 

Extended Data Figure 10 | Indirect evolutionary effects and rewiring of interactions shape 703 

the fitness consequences of the invasion of a network by the supergeneralist A. mellifera. 704 

a-b, Representations of the (a) pre- and (b) post-Apis network structures, showing how the 705 

invasion by A. mellifera reorganizes interactions. c-d, Histograms showing (c) the change in 706 

the number of partners and (d) the change in fitness that native species experienced after 707 

coevolving with A. mellifera. e, Relationship between the change in indirect evolutionary 708 

effects caused by A. mellifera and the change in the fitness of native species. The results in 709 

panels d and e correspond to the average results for the native species of 10³ numerical 710 

simulations of the coevolutionary dynamics in the pre- and post-Apis networks. Parameter 711 
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values are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖

2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were 712 

sampled from a uniform statistical distribution U [0, 10]. 713 



 

Figure 1 | Coevolution in mutualistic networks increases the variability in species fitness. a, 

Histogram showing the distribution of species fitness (rescaled relative to the average) that coevolved 

in a single mutualistic pair (green histogram bars), or within the 186 empirical networks used to 

parameterize the model (violet histogram bars). b, When coevolving within networks, species fitness 

increased up to a saturation point with the number of mutualistic partners, but largely varied among 

species with the same number of partners. Each fitness value corresponds to the mean value for 10³ 

numerical simulations of our model. In both panels, fitness values are rescaled relative to the average of 

each scenario (coevolution in pairs or in networks) in such a way that zero indicates the average of the 

distribution in each scenario. Note that on panel (b) only species coevolving within networks are shown. 

Parameter values are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were 

sampled from a uniform distribution U [0, 10]. 

  



 

Figure 2 | Species position within networks and indirect evolutionary effects shape species fitness 

in coevolved mutualistic networks. a, Analytical approximation (solid line and shaded region) predicts 

that indirect evolutionary effects decrease the fitness of species coevolving in mutualistic networks. 

Points of lighter and darker colors represent species with one and more than one partner, respectively. 

This effect held for numerical simulations (n=10³ numerical simulations for each of the 186 empirical 

networks), as shown for species within an example plant-pollinator network (points and inset), and b, 

for species across all empirical networks after controlling for the effects of the number of mutualistic 

partners. c, Example for a seed-dispersal network (inset) showing how species in peripheral positions 

receive more indirect effects and have a lower fitness than core species. The color of points represents 

species fitness such that the darker the color, the higher the fitness value. In panel a, the line represents 

the mean predicted fitness and shaded regions standard deviations when sampling species environmental 

optima (𝜃𝑖 and 〈𝜃〉) and 〈𝑧〉 from a normal distribution, 𝜃𝑖~N(0.0, 0.1), 〈𝜃〉~N(2.5, 0.1) and 〈𝑧〉~N(2.5, 

0.1). Points in all panels correspond to the mean value of species fitness (panels a and b) or contribution 

of indirect effects (panel c) across 10³ numerical simulations. Other parameter values are as follows: 

𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2. For numerical simulations, 𝜃𝑖 and initial trait values were 

sampled from a uniform distribution U [0, 10]. In panels a and b, the x-axis represents the proportional 

contribution of indirect evolutionary effects (equation 3). 

  



 

Figure 3 | Example of how the reorganization of indirect effects through a biological invasion can 

reshape species fitness within networks. a, Geographical location of the empirical networks used to 

parameterize the invasion simulations by honeybees. b, Examples of the rapid rate at which an invader 

can either increase or decrease the fitness of two native species within a network (insert). c, The 

reorganization of indirect effects following invasion reshapes the adaptive landscape of the native 

species, slightly favoring different trait values and changing fitness. Dashed and solid lines represent the 

adaptive landscape of species before and after coevolving with the invader, respectively. Parameter 

values are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled 

from a uniform distribution U [0, 10]. 

  



 

Figure 4 | Indirect evolutionary effects shape the fitness consequences of simulated network 

invasions. a, Histograms showing the average change in species fitness (across all 10³ simulations) after 

coevolving with the invasive species.  The frequency in the y-axis represents log(Counts). b-c, 

Relationship between the average change in species fitness after the invasion, and the change in the total 

contribution of indirect evolutionary effects coming from the network for b, direct partners and c, 

indirect partners of the invasive species. Points and histogram bars represent the average values across 

all simulations (n=10³ numerical simulations, 73 networks). The x-axis on panel a, and y-axis on panels 

b-c, are rescaled relative to the maximum absolute value of average change in fitness across all species. 

Parameter values are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were 

sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 1 | Species traits and fitness quickly reach equilibrium values after 

coevolving in mutualistic networks. a-c, Example for an ant-plant mutualistic network (panel a) of 

how species traits (panel b) and fitness (panel c) quickly reach a coevolutionary equilibrium. d, The 

coevolutionary equilibrium is reached even if not all species survive throughout the dynamics, as 

illustrated by three species that were randomly extinct from the network (for illustrative purposes, 

species whose trait values reach zero). Each point and line correspond to the values for each species in 

the network (represented by different colors). The diamond-shaped points on the right of panel b 

represent the environmental optima of each species (𝜃𝑖). The dashed lines in panel d represent the trait 

values at equilibrium predicted by equation (11) using the matrix of the interactions among surviving 

species. Parameter values are as follows: 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖 = 0.2, 𝛼 = 0.2, 𝑚𝑖 = 0.5. Initial trait values 

and environmental optima were sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 2 | Coevolution in mutualistic networks increases the variability in species 

fitness when a certain percentage of the species with the lowest fitness become extinct, and the 

surviving species coevolve to a new equilibrium. Each set of panels represents a specific scenario 

where a certain percentage of the species in the network experience extinction after reaching the initial 

coevolutionary equilibrium. In all scenarios extinctions occurred in a specific order, starting with the 

species possessing the lowest fitness until a desired percentage of extinctions was reached. The 

corresponding extinction percentages for each scenario are as follows: a-b, 10%; c-d, 20%; e-f, 30%; g-

h, 40%; and i-j, 50%. In all panels the red histogram bars depict the distribution of fitness of the surviving 

species in the new coevolutionary equilibrium for 10³ numerical simulations parameterized with the 

initial structure of empirical networks (n=186 empirical networks). Green histogram bars correspond to 

the scenario in which species coevolve as isolated pairs and there are no extinctions. In the boxplots each 

point corresponds to the mean value for 10³ numerical simulations for a given species coevolving in the 

empirical mutualistic networks (n=186 empirical networks). Fitness values are rescaled relative to the 

average of the scenario in which species coevolve in networks or as isolated pairs. Other parameter 

values are as follows: 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 = 0.5.   𝜃𝑖 and initial trait values were 

sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 3 | Coevolution in mutualistic networks increases the variability in species 

fitness for different levels of strength of mutualistic selection. a, Histogram showing the distribution 

of mean equilibrium fitness of species for 10³ numerical simulations of a pair of coevolving species 

(green histogram bars), or of species within the 186 empirical networks used to parameterize the model 

(red histogram bars), for different values of 𝑚𝑖 (values above each panel). b, Boxplot showing how 

species fitness vary with the number of mutualistic partners for different values of 𝑚𝑖 (the intensity of 

mutualistic selection, values above each panel). Each point corresponds to the mean value for 10³ 

numerical simulations for a given species. In all panels fitness values are rescaled relative to the average 

of each scenario and 𝑚𝑖 (coevolution in pairs or in networks). Other parameter values are as follows: 

𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel.  𝜃𝑖 and initial trait values were 

sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 4 | Indirect effects drive species fitness for different parameterizations of 

the model. a, Examples of how indirect evolutionary effects drive the fitness of species in numerical 

simulations across all empirical networks (n=186 empirical networks) for different values of 𝑚𝑖 (values 

above each panel), for species with five mutualistic partners. b, Examples of how indirect evolutionary 

effects drive the fitness of species in numerical simulations across all empirical networks (n=186 

empirical networks) for different intervals of 𝜃𝑖 (values above each panel), and sensitivity of species 

adaptive landscapes (𝜚𝑖, diferente colors) for species with five mutualistic partners. Points in all panels 

represent average results for 10³ numerical simulations of each combination of empirical network and 

parameter values. Other parameter values are as follows: 𝜎𝐺𝑧𝑖
2 = 1.0 and 𝛼 = 0.2. Values of 𝑚𝑖 and 𝜚𝑖 

as indicated on each panel. In a, 𝜃𝑖 and initial trait values were sampled from a uniform distribution U 

[0, 10], while in b the upper bound of the uniform distribution is indicated in the values above each 

panel. 

  



 

Extended Data Figure 5 | Peripheral species are more affected by indirect effects drive for different 

networks and levels of mutualistic selection. Results from numerical simulations parameterized with 

the structure of empirical networks (n=186 empirical networks), showing how the contribution of 

indirect evolutionary effects is smaller for core than peripheral species within the same network. This 

result holds for all values of 𝑚𝑖, the intensity of mutualistic selection (values above each panel). Each 

point corresponds to the average for 10³ numerical simulations for each combination of species position 

(core or peripheral), empirical network and 𝑚𝑖. Points of different colors correspond to species that were 

classified either as core species (red points) or peripheral species (blue points). Parameter values are as 

follows: 𝑚𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled from a 

uniform statistical distribution U [0, 10]. 

  



 

Extended Data Figure 6 | Indirect effects drive the fitness of surviving species when the least fit 

species become extinct, and the surviving ones coevolve to a new equilibrium. Each panel 

corresponds to scenarios in which a certain percentage of the species in the network underwent extinction 

after reaching a first coevolutionary equilibrium. For all scenarios extinctions occurred in a specific 

order, starting with the species possessing the lowest fitness, until a given percentage of extinctions was 

reached. The corresponding percentage of species extinct are as follows: a, scenario without extinctions; 

b, 10%; c, 20%; d, 30%; e, 40%; and f, 50%. Points in each panel represent average results for species 

with three mutualistic partners across 10³ numerical simulations parameterized with the initial structure 

of 186 empirical networks. In panels b-f, indirect evolutionary effects were computed from the matrix 

of evolutionary effects (Q-matrix) among the surviving species (equation 13). Parameter values are as 

follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait values were sampled from a uniform 

statistical distribution U [0, 10]. 

  



 

Extended Data Figure 7 | Invasion of a network by a supergeneralist changes the fitness of native 

species via coevolution for different levels of mutualistic selection. Histograms showing the average 

change in native species fitness (n=10³ numerical simulations for each of the 73 empirical networks) 

after coevolving with the invasive species for different values of  𝑚𝑖 (the intensity of mutualistic 

selection, values above each panel). The frequency in the y-axis represents log(Counts). Other parameter 

values are as follows: 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel.  𝜃𝑖 and 

initial trait values were sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 8 | Direct and indirect evolutionary effects drive the change in fitness of 

native species directly interacting with a supergeneralist invader. Relationship between the average 

change in species fitness (n=10³ numerical simulations for each of the 73 empirical networks) after the 

invasion and the change in the contribution of indirect evolutionary effects for direct partners of A. 

mellifera and for different values of  𝑚𝑖 (the intensity of mutualistic selection, values above each panel). 

Parameter values are as follows: 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel.  

𝜃𝑖 and initial trait values were sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 9 | Indirect evolutionary effects drive the change in fitness of native species 

only indirectly interacting with a supergeneralist invader. Relationship between the average change 

in species fitness (n=10³ numerical simulations for each of the 73 empirical networks) after the invasion 

and the change in the contribution of indirect evolutionary effects for indirect partners of A. mellifera 

and for different values of  𝑚𝑖 (the intensity of mutualistic selection, values above each panel). Other 

parameter values are as follows: 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2, and 𝑚𝑖 as indicated on top of each panel. 

𝜃𝑖 and initial trait values were sampled from a uniform distribution U [0, 10]. 

  



 

Extended Data Figure 10 | Indirect evolutionary effects and rewiring of interactions shape the 

fitness consequences of the invasion of a network by the supergeneralist A. mellifera. a-b, 

Representations of the (a) pre- and (b) post-Apis network structures, showing how the invasion by A. 

mellifera reorganizes interactions. c-d, Histograms showing (c) the change in the number of partners and 

(d) the change in fitness that native species experienced after coevolving with A. mellifera. e, 

Relationship between the change in indirect evolutionary effects caused by A. mellifera and the change 

in the fitness of native species. The results in panels d and e correspond to the average results for the 

native species of 10³ numerical simulations of the coevolutionary dynamics in the pre- and post-Apis 

networks. Parameter values are as follows: 𝑚𝑖 = 0.5, 𝜎𝐺𝑧𝑖
2 = 1.0, 𝜚𝑖=0.2, 𝛼 = 0.2.  𝜃𝑖 and initial trait 

values were sampled from a uniform statistical distribution U [0, 10]. 
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�⃗⃗� 𝒂 𝑎 <
1

𝜆𝐶
1 𝜆𝐶

167 

68 

69 

70 

𝑸 = 𝒂𝑪71 

72 

𝜳�⃗⃗� = �⃗⃗� 73 

74 

𝑚𝑖 = 1 𝑚𝑖 = 0. 𝑚𝑖 = 175 

𝜎𝐺𝑧𝑖

2 𝜚𝑖 < 176 

𝑚𝑖 = 077 

𝑧�̅� = 𝜃𝑖78 

79 

80 

81 

82 

83 

�⃗⃗� 84 

85 

86 



87 

88 

 89 

 90 

91 

𝑤𝑖(𝑧�̅�)92 

∫ 𝑑𝑙𝑛𝑊𝑖 =  ∫𝜚𝑖 [𝑚𝑖 ∑ 𝑞𝑖𝑗(𝑧�̅� − 𝑧�̅�)

𝑁

𝑗,𝑗≠𝑖

+ (1 − 𝑚𝑖)(𝜃𝑖 − 𝑧�̅�)] 𝑑𝑧�̅� (S6)93 

94 

𝑙𝑛𝑊𝑖 = 𝜚𝑖 [𝑚𝑖 ∫ ∑
𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗−�̅�𝑖)
2

∑ 𝑎𝑖𝑗𝑒−𝛼(�̅�𝑘−�̅�𝑖)
2𝑁

𝑘=1,𝑘≠𝑖

(𝑧�̅� − 𝑧�̅�)𝑑𝑧�̅�

𝑁

𝑗=1,𝑗≠𝑖

+ (1 − 𝑚𝑖)∫(𝜃𝑖 − 𝑧�̅�)𝑑𝑧�̅�] (S7) 95 

96 

𝑔′(𝑥)

𝑔(𝑥)
𝑢 = ∑ 𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗−�̅�𝑖)
2

𝑁
𝑗=1,𝑗≠𝑖97 

𝑑𝑢 = 2𝛼 ∑ 𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗−�̅�𝑖)

2

(𝑧�̅� − 𝑧�̅�)
𝑁
𝑗=1,𝑗≠𝑖 𝑑𝑧�̅�

𝑑𝑢

2𝛼
= ∑ 𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗−�̅�𝑖)
2

𝑁
𝑗=1,𝑗≠𝑖 𝑑𝑧�̅�98 

99 

∫
1

2𝛼

1

𝑢
𝑑𝑢 =  

1

2𝛼
ln(𝑢) =  

1

2𝛼
[ln( ∑ 𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗−�̅�𝑖)
2

𝑁

𝑗=1,𝑗≠𝑖

) + 𝑐1𝑖] (S8)100 

101 

∫(𝜃𝑖 − 𝑧�̅�)𝑑𝑧�̅� = 𝜃𝑖𝑧�̅� −
𝑧�̅�

2

2
+ 𝑐2𝑖 (S9)102 



103 

𝑙𝑛𝑊𝑖 = 𝜚𝑖 [
𝑚𝑖

2𝛼
ln ( ∑ 𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗−�̅�𝑖)
2

𝑁

𝑗=1,𝑗≠𝑖

) + (1 − 𝑚𝑖) (𝜃𝑖𝑧�̅� −
𝑧�̅�

2

2
)] + 𝑐𝑖 (𝑆10)104 

105 

𝑊𝑖 = e
𝜚𝑖[

𝑚𝑖
2𝛼

ln(∑ 𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗−�̅�𝑖)

2
𝑁
𝑗=1,𝑗≠𝑖 )+(1−𝑚𝑖)(𝜃𝑖�̅�𝑖−

�̅�𝑖
2

2
)]+𝑐𝑖

 (6)
106 

𝑐𝑖 = 𝜚𝑖 [
𝑚𝑖

2𝛼
𝑐1𝑖 + (1 − 𝑚𝑖)𝑐2𝑖]107 

108 

109 

𝑐𝑖110 

111 

𝑐𝑖112 

𝑊𝑖113 

0 < 𝑚𝑖 < 1114 

115 

𝑧�̅� = 𝜃𝑖 𝑧�̅� = 𝑧�̅�116 

117 

118 

𝑊𝑚𝑎𝑥,𝑖 = e
𝜚𝑖[

𝑚𝑖
2𝛼

ln(∑ 𝑎𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖 )+(1−𝑚𝑖)(

𝜃𝑖
2

2
)]+𝑐𝑖

 (7)119 

120 



𝑤𝑖 =
𝑊𝑖

𝑊𝑚𝑎𝑥,𝑖

= 𝑒
1
2
𝜚𝑖[

𝑚𝑖
𝛼

ln(
𝑠𝑖
𝑘𝑖

) − (1−𝑚𝑖)(𝜃𝑖−�̅�𝑖)
2]
 (2)121 

𝑠𝑖 = ∑ 𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗−�̅�𝑖)

2
𝑁
𝑗=1,𝑗≠𝑖 𝑘𝑖 = ∑ 𝑎𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖122 

123 

124 

𝑐1𝑖 = −𝑙𝑛(∑ 𝑎𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖 ) 𝑐2𝑖 = −

𝜃𝑖
2

2
125 

 126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

𝑑𝑖 = −𝑚𝑖 ∑𝑎𝑖𝑗𝜇𝑖𝑗

𝑁

𝑗=1

(𝑆11)137 



𝑑𝑖 𝜇𝑖𝑗138 

139 

140 

𝑊𝑖 = e
𝜚𝑖[

𝑚𝑖
2𝛼

ln(∑ 𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗−�̅�𝑖)

2
𝑁
𝑗=1,𝑗≠𝑖 )−𝑚𝑖 ∑ 𝑎𝑖𝑗𝜇𝑖𝑗

𝑁
𝑗=1 +(1−𝑚𝑖)(𝜃𝑖�̅�𝑖−

�̅�𝑖
2

2
)]

(𝑆12)
141 

𝑐1𝑖 = −2𝛼 ∑ 𝑎𝑖𝑗𝜇𝑖𝑗
𝑁
𝑗=1 𝑐2𝑖 = 0142 

143 

144 

145 

146 

𝑝𝑖 = 𝑚𝑖 ∑𝛾𝑖𝑗

𝑁

𝑗=1

∑ 𝑎𝑖𝑘𝑎𝑗𝑘
𝑁
𝑘=1

∑ 𝑎𝑖𝑘
𝑁
𝑘=1

(𝑆13)147 

𝑝𝑖 𝛾
𝑖𝑗

148 

149 

150 

𝑐1𝑖 = 2𝛼 ∑ 𝛾𝑖𝑗
𝑁
𝑗=1

∑ 𝑎𝑖𝑘𝑎𝑗𝑘
𝑁
𝑘=1

∑ 𝑎𝑖𝑗
𝑁
𝑗=1

151 

152 

𝑊𝑖 = e
𝜚𝑖[

𝑚𝑖
2𝛼

ln(∑ 𝑎𝑖𝑗𝑒
−𝛼(�̅�𝑗−�̅�𝑖)

2
𝑁
𝑗=1,𝑗≠𝑖 )+𝑚𝑖 ∑ 𝛾𝑖𝑗

𝑁
𝑗=1

∑ 𝑎𝑖𝑘𝑎𝑗𝑘
𝑁
𝑘=1

∑ 𝑎𝑖𝑘
𝑁
𝑘=1

+(1−𝑚𝑖)(𝜃𝑖�̅�𝑖−
�̅�𝑖

2

2
)]

(𝑆14)
153 

154 

155 

156 



𝑧𝑖157 

158 

159 

160 

161 

162 

163 

𝑒
−

𝜚𝑖
2

[𝑚𝑖 (�̅�𝑗−�̅�𝑖)
2
− 

𝑚𝑖
2𝛼

𝑐1𝑖 + (1−𝑚𝑖)(𝜃𝑖�̅�𝑖−
�̅�𝑖

2

2
+𝑐2𝑖)]

(𝑆15)
164 

165 

166 

𝑃𝑋(𝑥, 𝑦) = 𝑒−𝛽(𝑦−𝑥)2 𝑃𝑌(𝑦, 𝑥) = 𝑒−𝛽(𝑥−𝑦)2167 

168 

169 

𝑃𝑋(𝑥, 𝜃𝑋) =170 

𝑒−𝛾(𝜃𝑋−𝑥)2 𝑃𝑌(𝑦, 𝜃𝑌) = 𝑒−𝛾(𝜃𝑌−𝑦)2171 

172 

𝑊𝑋 = 𝑒−𝛽(𝑦−𝑥)2𝑒−𝛾(𝜃𝑋−𝑥)2 = 𝑒−[𝛽(𝑦−𝑥)2+𝛾(𝜃𝑋−𝑥)2] (𝑆16.1)173 

𝑊𝑌 = 𝑒−𝛽(𝑥−𝑦)2𝑒−𝛾(𝜃𝑌−𝑦)2 = 𝑒−[𝛽(𝑥−𝑦)2+𝛾(𝜃𝑌−𝑦)2] (𝑆16.2)174 

175 

176 

𝑊𝑋
̅̅ ̅̅ ≅ 𝑒−[𝛽(�̅�−�̅�)2+𝛾(𝜃𝑋−𝑥)2+2𝜎𝑥

2+𝜎𝑦
2] (𝑆17.1)177 



𝑊𝑌
̅̅ ̅̅ ≅ 𝑒−[𝛽(�̅�−�̅�)2+𝛾(𝜃𝑌−𝑦)2+2𝜎𝑦

2+𝜎𝑥
2] (𝑆17.2)178 

𝜎𝑥
2 𝜎𝑦

2179 

180 

𝑐1𝑖 =
2

𝜚𝑖

2𝛼

𝑚𝑖
(2𝜎𝑥

2 + 𝜎𝑦
2) 𝑐1𝑖 =181 

2

𝜚𝑖

2𝛼

𝑚𝑖
(2𝜎𝑦

2 + 𝜎𝑥
2) 𝑐2𝑖 = −

𝜃𝑥
2

2
𝑐2𝑖 = −

𝜃𝑦
2

2
𝛽 =182 

𝜚𝑖

2
𝑚𝑖 𝛾 =

𝜚𝑖

2
(1 − 𝑚𝑖)183 

184 

𝑊𝑖 = ∑𝑎𝑖𝑗

𝑁

𝑗=1

𝑒−𝛽(𝑧𝑗−𝑧𝑖)
2

𝑒−𝛾(𝜃𝑖−𝑧𝑖)
2
= e

[ln(∑ 𝑎𝑖𝑗𝑒
−𝛽(𝑧𝑗−𝑧𝑖)

2
𝑁
𝑗=1 )−γ(𝜃𝑖−𝑧𝑖)

2]

(𝑆18) 185 

186 

187 

188 

189 

𝑊𝑖
̅̅ ̅ ≅ e

[ln(∑ 𝑎𝑖𝑗𝑒
−𝛽(�̅�𝑗−�̅�𝑖)

2
𝑁
𝑗=1 )−γ(𝜃𝑖−�̅�𝑖)

2−∑ 𝑎𝑖𝑗
𝑁
𝑗=1 (2𝜎𝑧𝑖

2 +𝜎𝑧𝑗
2 )]

(𝑆19)
190 

𝜎𝑧
2191 

192 

𝜚𝑖 =
2𝛼

𝑚𝑖
𝛽 = 𝛼 𝛾 =

(1−𝑚𝑖)

𝜚𝑖
𝑐1𝑖 = −∑ 𝑎𝑖𝑗

𝑁
𝑗=1 (2𝜎𝑧𝑖

2 + 𝜎𝑧𝑗
2 )193 

𝑐2𝑖 = −
𝜃𝑖

2

2
194 

195 

196 



 197 

198 

199 

200 

𝑚𝑖 = 0.5201 

𝑚𝑖202 

𝑚𝑖 = 0.9)203 

204 

205 

206 

𝜎𝐺𝑧𝑖

2 𝜚𝑖 𝛼207 

208 

209 

210 

211 

𝜎𝐺𝑧𝑖

2 𝜚𝑖212 

213 

𝜚𝑖214 

𝜚𝑖 𝜚𝑖 = 0.2215 

𝛼 𝑙𝑛 (
𝑠𝑖

𝑘𝑖
)216 



𝛼 𝑙𝑛 (
𝑠𝑖

𝑘𝑖
)217 

𝑙𝑛 (
𝑠𝑖

𝑘𝑖
)

1

𝛼
𝑧�̅� ≈ 〈𝑧〉218 

 𝑙𝑛 (
𝑠𝑖

𝑘𝑖
)

1

𝛼
𝑙𝑛 (

𝑠𝑖

𝑘𝑖
)

1

𝛼
≈ 𝑙𝑛(𝑒−𝛼(〈𝑧〉−�̅�𝑖)

2
)

1

𝛼 ≈ −(〈𝑧〉 − 𝑧�̅�)
2 𝑧�̅�219 

220 

𝛼221 

222 

 223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 



236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 



257 

258 

 259 

260 

261 

262 

263 

�⃗⃗� ∗ = (𝑰 − 𝑸)−𝟏𝜳�⃗⃗� �⃗⃗� ∗264 

265 

266 

  1 − 𝑚𝑖267 

�⃗⃗� 268 

𝑻 = (𝑰 − 𝑸)−𝟏𝜳 𝑡𝑖𝑗269 

270 

271 

272 

𝒁∗ = 𝑻𝜣 (𝑆20) 273 

274 



𝑧�̅�
∗ = ∑𝑡𝑖𝑗𝜃𝑗

𝑁

𝑗=1

(𝑆21)275 

276 

277 

𝑤𝑖 = 𝑒

1
2
𝜚𝑖

[
 
 
 
𝑚𝑖
𝛼

ln(
∑ 𝑎𝑖𝑗𝑒

−𝛼(�̅�𝑗
∗−�̅�𝑖

∗)
2

𝑁
𝑗=1,𝑗≠𝑖

𝑘𝑖
) − (1−𝑚𝑖)(𝜃𝑖−�̅�𝑖

∗)2

]
 
 
 

(𝑆22)
278 

279 

𝑧�̅�
∗ ≅ 〈𝑧〉 280 

281 

𝑤𝑖
∗
≅ 𝑒−

1
2
𝜚𝑖[𝑚𝑖(〈𝑧〉−�̅�𝑖

∗)2 + (1−𝑚𝑖)(𝜃𝑖−�̅�𝑖
∗)2] (𝑆23) 282 

283 

284 

285 

𝑚𝑖(〈𝑧〉 − 𝑧�̅�
∗)2 and (1 − 𝑚𝑖)(𝜃𝑖 − 𝑧�̅�

∗)2286 

287 

𝑧�̅�
∗288 

𝑤𝑖
∗
≅ 𝑒

−
1
2
𝜚𝑖[𝑚𝑖(〈𝑧〉−∑ 𝑡𝑖𝑗𝜃𝑗

𝑁
𝑗=1 )

2
+ (1−𝑚𝑖)(𝜃𝑖−∑ 𝑡𝑖𝑗𝜃𝑗

𝑁
𝑗=1 )

2
]

(𝑆24)289 

∑ 𝑡𝑖𝑗𝜃𝑗
𝑁
𝑗=1290 

∑𝑡𝑖𝑗𝜃𝑗

𝑁

𝑗=1

= 𝑡𝑖𝑖𝜃𝑖 + ∑ 𝑡𝑖𝑗𝜃𝑗

𝑁

𝑗=1,𝑗≠𝑖

(𝑆25)291 



∑ 𝑡𝑖𝑗 = 1𝑁
𝑗=1 𝑡𝑖𝑖 = 1 − ∑ 𝑡𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖292 

 𝜃𝑗 ≅ 〈𝜃〉 293 

𝑤𝑖
∗
≅ 𝑒

−
1
2
𝜚𝑖{𝑚𝑖[(〈𝜃〉−𝜃𝑖)∑ 𝑡𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖 −𝜃𝑖+〈𝑧〉]

2
+ (1−𝑚𝑖)(𝜃𝑖−〈𝜃〉)2(∑ 𝑡𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖 )

2
}

(𝑆26) 294 

∑ 𝑡𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖295 

∑ 𝑡𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖296 

297 

∑ 𝑡𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

= ∑ 𝑞𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

+ ∑ 𝑓𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

= 𝑚𝑖 + 𝐹𝑖 (𝑆27)298 

𝑓𝑖𝑗299 

𝐹𝑖300 

301 

𝑤𝑖
∗
≅ 𝑒−

1

2
𝜚𝑖{𝑚𝑖[(〈𝜃〉−𝜃𝑖)(𝑚𝑖+𝐹𝑖)−𝜃𝑖+〈𝑧〉]2 + (1−𝑚𝑖)(𝜃𝑖−𝜃)2(𝑚𝑖+𝐹𝑖)

2} (3)302 

𝜚𝑖 ≠ 0303 

304 

𝑚𝑖[(〈𝜃〉 − 𝜃𝑖)(𝑚𝑖 + 𝐹𝑖) − 𝜃𝑖 + 𝑧]+ (1 − 𝑚𝑖)(𝜃𝑖 − 〈𝜃〉)2(𝑚𝑖 + 𝐹𝑖)
2 = 0 (𝑆28) 305 

306 

𝐹𝑖307 

308 

309 

310 

𝐹𝑖 〈𝜃〉 𝜃𝑖 〈𝑧〉311 



312 

𝑚𝑖 = 0.5313 

 314 

315 

316 

𝑚𝑖 = 0.5317 

318 

𝑚𝑖 = 0.1 𝑚𝑖 = 0.9319 

320 

𝑚𝑖 = 0.1 𝑚𝑖 = 0.9321 

𝑚𝑖 = 0.1322 

𝑚𝑖 = 0.9323 

324 

 325 

326 

327 

328 

329 

330 



331 

332 

333 

334 

335 

336 

337 

338 

339 

 340 

341 

342 

343 

344 

𝑡𝑖𝑖345 

1 − 𝑡𝑖𝑖 = ∑ 𝑡𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

(𝑆29)346 
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Linking local to regional ecological and evolutionary processes is key to
understand the response of Earth’s biodiversity to environmental changes.
Here we integrate evolution and mutualistic coevolution in a model of
metacommunity dynamics and use numerical simulations to understand
how coevolution can shape species distribution and persistence in landscapes
varying in space and time. Our simulations show that coevolution and species
richness can synergistically shape distribution patterns by increasing coloniza-
tion and reducing extinction of populations in metacommunities. Although
conflicting selective pressures emerging from mutualisms may increase
mismatcheswith the local environment and the rate of local extinctions, coevo-
lution increases trait matching among mutualists at the landscape scale,
counteracting local maladaptation and favouring colonization and range
expansions. Our results show that by facilitating colonization, coevolution
can also buffer the effects of environmental changes, preventing species
extinctions and the collapse of metacommunities. Our findings reveal the
mechanisms whereby coevolution can favour persistence under environ-
mental changes and highlight that these positive effects are greater in more
diverse systems that retain landscape connectivity.

1. Introduction
Species are subjected to natural spatio-temporal variation in environmental con-
ditions, but to persist in a changing environment a species may need to track
suitable environment by colonizing novel sites or quickly adapt to novel local
conditions [1–4]. Colonization success and adaptation are not fully determined
by the abiotic environment but modulated by the multiple ecological interactions
species establish in local ecological communities. Mutualisms, for instance, can
increase dispersal potential [5] as well as allow species to expand their realized
niches by increasing environmental suitability under unfavourable conditions
[6]. Ecological interactions may also give rise to coevolutionary dynamics when
species exert reciprocal selective pressures on each other [7–10]. Evolution in
response to the physical environment and coevolutionary outcomes emerging
from interactions may either converge, accelerating local adaptation, or diverge,
generating conflicting dynamics [11–13]. The interplay between evolution and
coevolution might, therefore, shape the response of biodiversity to changing
environments [14]. How evolution in response to environmental and biotic press-
ures shape biodiversity patterns is a pressing question in the context of the global
anthropogenic changes and the rise of novel biotas [15–20].

© 2023 The Author(s) Published by the Royal Society. All rights reserved.
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Empirical and theoretical studies have shed light on
the consequences of mutualistic coevolution for interacting
species [10,21,22]. Coevolution between mutualistic pairs
favours the complementarity of traits, for instance, when the
mouth parts of a pollinating insect matches the floral tube of
a plant [23]. In this context, trait complementaritymay increase
the overall survival and reproduction of mutualistic partners,
but it may also lead to highly specialized and intimate inter-
actions in which the loss of a mutualistic partner highly
increases the risk of co-extinctions [24–26]. Progressing to
species-rich communities, theory predicts that coevolution
can increase the similarity of traits among all mutualists
resulting in evolutionary convergence [27–30]. In a changing
environment, trait similarity may prevent co-extinctions
because convergence increases functional redundancy, allow-
ing mutualists to compensate for the extinction of partners
through rewiring [31,32]. Thus, pairwise and multispecies
coevolution may lead to different outcomes: from an increased

risk of coextinction to the coevolutionary rescue of ecological
functions from environmental changes.

Whenconsidering larger spatial scales, however, theoutcome
of coevolution may further depend on how populations of the
same species are distributed and connected through gene flow
across space [10]. Spatial heterogeneity may impose different
local evolutionary regimes, but colonization dynamics may
alter the distribution of genotypes and phenotypes of popu-
lations across space, which feeds back and affects local
evolutionary and coevolutionary dynamics [33–38] (figure 1).
For instance, variation in mutualistic selection across space can
create geographical mosaics of adaptation [39–44]. By contrast,
when two species-rich, local communities are linked by gene
flow, mutualistic coevolution increases the convergence and
matching of traits among all species of the two local communities
[45].While the effects of spatialprocesseson coevolutionare start-
ing to be unravelled [39,41,42,45,46], we still know little about
how coevolution can affect distribution patterns in a

evolution and coevolution
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Figure 1. Representation of coevolving mutualists in a metacommunity. Within local patches, populations of different species (here indicated as coloured silhou-
ettes) are subjected to different selective pressures imposed by local the environment (θ). In addition, species within local communities interact forming networks
with varying configurations (interactions are depicted as solid lines connecting silhouettes within patches). While species-species interactions promote coevolution,
traits also evolve in response to the selective pressures of the local environment (as represented in the upper panels). Trait evolution is depicted in the upper left
panels as the change in the mean value of traits from the current generation (solid lines) to the next generation (dashed lines). At the regional scale, local
populations can colonize other patches or become locally extinct, reshaping the distribution of genotypes and phenotypes in the metacommunity (from the
solid to the dashed lines in the upper right panel). Under this framework, the colonization dynamics connects the local effects of evolution and coevolution
to other patches in the metacommunity.
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heterogeneous environment or whether coevolution favours or
hinders persistence across space under environmental changes.

Here, we use numerical simulations to investigate how
patterns of adaptation and coadaptation in two-species and
multispecific scenarios affect patterns of population persistence
in heterogeneous and changing environments. To do so, we
developed a spatially explicit framework of a coevolving meta-
community by combining a mathematical model of evolution
(in response to environmental selection) and coevolution
(in response to mutualistic interactions) with colonization and
extinction dynamics. Specifically, we explored the following
questions: (1) howdoes coevolution in species-rich communities
affects patternsof colonization, extinctions and thepersistence of
populations at themetacommunityscale? (2)Howdoes coevolu-
tion in species-rich communities affect the persistence of local
populations and species under environmental changes? The
results of our numerical simulations show that mutualistic coe-
volution and species richness synergistically drive patterns of
occupancy, colonization, extinction and trait matching in meta-
communities. Furthermore, we show that coevolution can
buffer negative effects of environmental changes, preventing
the extinction of species and the collapse of metacommunities,
especially in species-rich systems.

2. Methods
(a) Model description
We developed a spatially explicit metacommunity modelling
framework that combines a coevolutionary model with coloniza-
tion and extinction dynamics in a cellular automaton representing
an ecological metacommunity where populations of S species can
occur within any of K patches. Our model builds upon previous
models of mutualisms in metacommunities [47–49]. However,
instead of assuming fixed colonization and rates, we explicitly
link these rates to the mean trait values of populations via a
patch suitability function. We motivate our model using plant–
insect mutualisms such as those between plants and insect
pollinators. However, our overall framework can also be applied
to other mutualistic interactions mediated by a trait matching
mechanism, for instance, birds that disperse seeds [50]. For simpli-
city, we assumed that of the total pool of S species there are S/2
plants and S/2 animals in the metacommunity. The populations
of plants and animals are assumed to be sufficiently large so that
each one can be described by the mean trait value, z, of its individ-
uals. Furthermore, we assumed that at each patch K there is a
different environmental optimum for each species i, which can be
summarized by a single value, θik. Biologically this value can be
interpreted as an average value of all the environmental factors in
a patch that significantly affect the fitness of species i, for instance,
linear combinations of variables related to temperature and precipi-
tation. We initially assumed that the local environmental optimum
of each species i at eachpatch k, θik, did not varyover time (figure 1).
By doing so, we simulated a heterogeneous but constant adaptive
landscape where each local population is subjected to selective
forces from the environment and from the local mutualistic part-
ners. Later, we evaluated the effect of environmental change on
emerging patterns of coevolution, colonization and extinction at
the metacommunity level by varying the local environmental
optima of species over time.

Each of these K patches can be occupied by one population of
each species. When populations of plants and animals co-occur,
they may interact and exert selective pressures on each other.
Because functional mutualistic interactions often depend on the
matching of the traits of the interacting individuals [26] (e.g.
when the mouth part of an insect pollinator matches the floral

tube of a plant), we modelled the probability of successful
interactions as a trait matching rule:

p(a(t)ijk ¼ 1) ¼ e�a(z(t)jk�z(t)ik )
2

, ð2:1Þ

in which p(a(t)ijk ¼ 1) is the probability of a successful interaction
between individuals of co-occurring populations of species i and j
in patch k, and α is a parameter that controls how sensitive p(t)ijk is to
differences between the trait values of species i, z(t)ik , and species j, z(t)jk .

At each time step of our model four events occur. First, at each
patch k a local interaction network is formed by the local pairwise
interactions according to equation (2.1). Second, the populations of
each species evolve (see below) in response to the selective press-
ures of the environment and, when they interact, coevolve in
response to their mutualistic partner’s traits. Third, following evol-
ution and coevolution, these populations can colonize adjacent
patches. Finally, after all populations had the opportunity to colo-
nize adjacent patches, local populations may become extinct
depending on the local species-specific patch suitability.

(b) Evolution and coevolution
In our model, mutualistic interactions are a function of the trait
matching between populations of different species and may
change as populations evolve. As a consequence, at each time
step of the model these interactions can give rise to distinct
local interaction networks. To model evolution and coevolution,
we adapted a model of coevolution in mutualistic networks [51]
to our framework. This coevolutionary model is grounded on
quantitative genetics [52] and connects the evolution of species’
traits to the mean fitness consequences of mutualistic interactions
and other selective pressures in the environment. For a given
population of species i, in patch k, the change in the mean trait
value zik from one generation to the next is given by:

z(tþ1)
ik ¼ z(t)ik þ s2

Gzik

@ ln(wik)

@ z(t)ik
, ð2:2Þ

where s2
Gzik is the additive genetic variance of traitzi at patch k

and the selection gradient, @ ln(wik)=@ z(t)ik describes how a
change in the mean value of zik affects the mean fitness, wik of
population i. We assumed that mutualistic interactions contrib-
ute with a proportion mik to the selection gradient, while other
selective pressures in the environment contributes with 1−mik.
Hence, the higher the value of mik, the stronger the effects of
mutualistic interactions on the mean fitness of populations and
therefore, on trait evolution when compared to other selective
pressures in the environment. Because of the dependence of
some mutualisms on trait complementarity [28,53], we assumed
that the selection gradient favours complementarity with the
traits of co-occurring mutualistic partners (zjk) and with other
selective pressures of the environment in patch k (θk):

z(tþ1)
ik ¼ z(t)ik þ s2

Gzik@ik mik
PS

j¼1,j=i
q(t)ijk(z

(t)
jk � z(t)ik )þ (1�mik)(uik � z(t)ik )

" #
:

ð2:3Þ

The parameter ϱik controls the sensitivity of species fitness to the
function that defines the selection gradient, i.e. the terms within the
brackets. These terms within brackets correspond to the fitness
effects of trait matching with mutualistic partners and the fitness
effects of trait matching with the environment, respectively. We
defined q(t)ijk as the importance of a given mutualistic partner j for
species i at time t and at patch k and assumed that q(t)ijk , depends
on a trait matching rule relative to all mutualistic partners:

q(t)ijk ¼ mik

a(t)ijk e
�a(z(t)jk�z(t)ik )

2

PS
j¼1,j=i a

(t)
ijk e

�a(z(t)jk�z(t)ik )
2 : ð2:4Þ
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Furthermore, we assume that if
PS

j¼1,j=i a
(t)
ijk ¼ 0, i.e. at a given time

step, species i does not interact with any mutualist at patch k, then
mik= 0 and all the evolution of trait z(t)ik occurs only in response to
the environment θik:

z(tþ1)
ik ¼ z(t)ik þ s2

Gzik@ik(uik � z(t)ik ): ð2:5Þ

Because some of the parameters used in the model such as
mik and ϱik, are hard to estimate, especially in a multispecific con-
text, we could not parameterize the model based on empirical
systems. Thus, we explore a wide range of variation in those par-
ameters in our analyses to understand whether our results are
robust to parameter choice (see below).

(c) Patch suitability, colonization and extinction
Following evolution and coevolution, at each time step, species
can colonize empty adjacent patches depending on how suitable
the patch is to the colonizing species. Thus, similar to what is
observed in empirical systems, the abiotic and biotic features
filter whether or not colonization of adjacent patches will be
successful [54–56]. To simplify species-environment relation-
ships, we assumed that the suitability of patch k for species i,
γik, depends exclusively on the mean trait complementarity
with mutualistic partners and the trait complementarity with
the environment, according to:

g(t)ik ¼ e
�@ik mikð

PS

j¼1,j=i
a(t)ijk (z

(t)
jk�z(t)ik )

2
=
PS

j¼1,j=i
a(t)ijkÞþð1�mikÞ(uik�z(t)ik )

2
h i

:
ð2:6Þ

Thus, 0 , g(t)ik � 1 and assumes its maximum value (g(t)ik ¼ 1) only
when traits perfectly match the traits of all mutualistic partners
and the environmental optimum. Furthermore, in equation (2.6)
suitability increases only if species traits match both mutualistic
partners traits and the local environmental optimum. Because
we only model facultative mutualisms, if a patch k does not hold
any mutualistic partner (i.e.

PS
j¼1,j=i a

(t)
ijk ¼ 0), we set mik = 0 and

assumed that the suitability of the patch k is solely determined
by the trait complementarity with the environment:

g(t)ik ¼ e�@ik(uik�z(t)ik )
2

: ð2:7Þ

In the colonization events, each species in each patch can
colonize empty patches among any of the other eight adjacent
patches with periodic boundary conditions (i.e. the Moore neigh-
bourhood in a cellular automata). We assume that the probability
of success of each colonization event is equal to the suitability of
each k adjacent patch, s(t)ik . When a colonization event is success-
ful, if the patch that receives dispersers is already occupied by
another population of the same species, then there is gene flow
among the dispersing and resident populations. For simplicity,
we assume that following dispersal the new mean trait value
of a population of a given species is comprised of a fraction of
0.95 of the resident population trait value and another 0.05 frac-
tion averaged over the trait values of all other successfully
dispersing populations of that species. If the patch is not already
occupied by a population of the same species, it is then occupied
with a trait value composed of the average trait values of all suc-
cessfully dispersing populations. We also explored situations in
which the contribution of gene flow is larger than 0.05 (from
0.1 to 0.5 in 0.1 steps), which yielded similar qualitative results
(electronic supplementary material, Information).

Besides affecting colonization, we assume suitability also deter-
mines population persistence. We assumed that the extinction of a
given population of species i that occurs in patch k depends on
the suitability of the occupied patch for that species and occurs
with probability 1� g(t)ik . Thus, we modelled both the colonization
of adjacent patches and extinction of populations as probabilistic
events that depend on the suitability of patches. A given population
will be more likely to colonize patches with greater suitability and
undergo extinction in those patches where suitability is low or has

become lower over time. Although we are specifically interested
in colonization/extinction dynamics, we implicitly model demo-
graphic effects because fitness vary across time and space and
environmental suitability affects local population density [57].

(d) Numerical simulations
We performed numerical simulations of our model using the Julia
programming language v. 1.5.3 [58]. In these simulations we
explored how different levels of strength of mutualistic interactions
(mik= 0.0− 0.9), species richness (2, 4, 8, 16 and 32 species) and
spatial and temporal variation in the environment affected patterns
of distribution of traits and populations in the metacommunity. For
simplicity, we initially fixed the relative importance of mutualisms,
mik, to be the same for all species in all patches in each simulation.

We ran 100 simulations per combination of value of mik,
species pool and environmental conditions (fixed versus chan-
ging environment). At the beginning of each simulation, we
sampled the values of the environmental optimum (θik) and
initial trait values from a uniform distribution U [0, 10]. To
avoid situations in which all populations of a given species
become extinct at the beginning of the simulation, the initial
number of populations for all species were fixed as

ffiffiffiffi
K

p
. For con-

venience we fixed the number of patches K to 100 (hence the
initial number of populations of each species to 10). All simu-
lations ran for 1200 time steps, which was enough for species
traits in all patches to achieve quasi-equilibrium values.

To test how coevolution canmodulate the response to environ-
mental changes, we performed simulations while assuming
directional changes on the environmental optima of each patch.
We simulate environmental change by incrementing the values
of the environmental optimum (θik) by 0.25 at the end of each
time step. In these simulations, all the remaining parameters of
the model were held fixed and were the same for all popu-
lations/species (s2

Gzik ¼ 1:0, ϱik = 0.1, α = 0.1). Since the strength
of mutualistic interactions can also vary across space [10], we
also performed an additional set of simulations in which we
allowed mik to vary among patches (electronic supplementary
material, Information). Varying mik across the space from neutral
(mik = 0) to strong (mik = 1.0) allowed us to test how a geographical
mosaic of coevolution can affect species response to environmental
changes. Furthermore, we also explored the sensitivity of our
model to different parameter values (increasing ϱik in 10% steps
up to a 50% increase, from 0.1 to 0.15) which yielded equivalent
results (electronic supplementary material, Information).

At the end of each simulation, we measured six state variables.
All variables were averaged across all time steps and species. We
measured: (1) the trait matching (calculated via equation (2.1)) of
species with mutualistic partners at local patches averaged over
all partners; (2) the average trait matching between all possible
pairs of species in the entire metacommunity (hereinafter called
regional trait matching); (3) patch occupancy, defined as the pro-
portion of patches occupied by populations of a given species;
(4) the fraction of successful colonization events, defined as the
proportion of successful colonization attempts in subsequent
time steps; (5) the fraction of populations’ extinctions, defined as
the proportion of all populations that went extinct in subsequent
time steps; and (6) the fraction of the total regional pool of
surviving species at the end of simulations.

3. Results
(a) Coevolution and species richness shapes colonization

and extinction dynamics
We first performed simulations of our model in a scenario in
which the environment is heterogeneous but static over time.
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Our simulations show that under this scenario, multispecific
coevolution has nonlinear effects on metacommunity dyna-
mics. Up to moderate levels of mutualism strength (mik = 0.1–
0.5), coevolution decreases patch occupancy (figure 2a).
However, as mik increases further, patch occupancy goes back
to the same levels as the scenario without coevolution (mik =
0, figure 2a). Such changes in patch occupancy occur because
at low levels of m, mutualistic coevolution simultaneously
increases the rate of successful colonization and the rate of
local extinctions (figure 2b). The rates of colonization and
extinction are further modulated by species richness such
that for the same levels of mik higher species richness in the
metacommunity increased the rate of colonization relative to
the rate of local extinction (figure 2b). The effects of coevolution
on colonization and extinction rates result from how coevolu-
tion shapes patterns of local and regional trait matching in
the metacommunity (figure 2c,d). Asmik increases, the conflict-
ing selective pressure frommutualisms decreases the local trait
matching of populations with the environment, increasing
local extinctions (figure 2c). However, at highm, trait matching

with mutualistic partners throughout the entire metacommu-
nity, compensates mismatches with the environment, by
increasing the likelihood that populations have suitablemutua-
listic partners at any patch, which increases the rate of
successful colonization (figure 2d ). Local and regional trait
matching also increase with species richness, which explains
why increasing richness has a positive effect on occupancy
(figure 2c,d).

(b) Coevolution and species richness buffer the effects
of environmental changes

We next performed simulations in which the environment
changes over time. Our simulations show that when coevolu-
tion strength is low, patch occupancy is much lower than
expected for static environmental settings (figure 3a). Increasing
coevolution strength and species richness raises occupancy
sharply by synergistically creating a more positive balance
between the rates of population colonization and extinction
(figure 3b). Indeed, as coevolution strength increases, mean
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species richness within patches also increases (figure 3c).
Thus, under environmental changes coevolution favours the
persistence of species across the entire landscape, not only on
a few patches.

This buffering effect occurs because, by favouring regional
trait matching, coevolution and gene flow make species
more likely to find suitable patches even when they are
maladapted to the environment. Sensitivity analyses showed
that these results hold for multiple combinations of parameter
values (electronic supplementary material, Information).
Furthermore, our sensitivity analysis showed that evenwithout
gene flow, mutualistic coevolution can buffer the negative
effects of environmental change, but gene flow amplifies the
buffering effect. Simulations under an alternativemodel assum-
ing species interact but do not coevolve cannot reproduce the
observed patterns of occupancy, resulting in very low occu-
pancy and complete extinction of the metacommunity
regardless of the value of mutualism strength (electronic sup-
plementary material, Information). Therefore, the observed

patterns in patch occupancy and richness for varying m,
cannot be interpreted only as the effect of decreasing the contri-
bution of the environment as a selective pressure (see the
electronic supplementary material, Information for a more
detailed discussion).

(c) Coevolution prevents the collapse of
metacommunities

Simultaneous extinctions of local populations can result in the
regional extinction of a species. According to our simulations,
species extinctions, and the eventual collapse of meta-
communities in a changing environment can be prevented by
mutualistic coevolution (figure 4a). Whenever the strength of
mutualisms was weak (mik = 0.0− 0.3) the metacommunity col-
lapsed. However, further increasing the strength of mutualistic
interactions prevented the collapse of the metacommunity and
increased the fraction of surviving species. Again, the extent of
this buffering effect over persistence was modulated by
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diversity, such that extinctions were only prevented in species-
poor metacommunities at higher levels of mutualism strength.
For instance, in an example of a simulated scenario with mik =
0.5, the metacommunity with 16 species collapsed, while in
the one with 32 species nearly 25% of both plant and animal
species persisted (figure 4b). However, without any coevolution
(mik = 0.0) all 32 species went extinct (figure 4c). This effect of
species richness occurred because in species-rich meta-
communities, species have potential partners in most patches,
which grants a certain baseline suitability even as the environ-
mental conditions deteriorate. Sensitivity analyses showed
that the buffering effects of coevolution and species richness
against environmental changes held for different parameter
values (electronic supplementary material, Information). We
also obtained similar results when allowing the strength of
coevolution to vary uniformly or in hotspots and coldspots
across the landscape, implying that even a few coevolutionary
hotspots can prevent the collapse of metacommunities under
environmental changes (electronic supplementary material,
figure S17).

4. Discussion
In the past decades, evolution has been recognized to occur at
timescales that are fast enough to influence contemporary trait
distribution patterns and, consequently, the persistence and
distribution of ecological populations, thus affecting their
response to environmental change [3,59–62]. However, we
are only starting to understand how the interplay between
local evolution and coevolution scale up and shape ecological
patterns across landscapes [10,63]. Here, we integrate coevolu-
tion, networks and metacommunity dynamics to show that
evolution and mutualistic coevolution acting within local

patches may scale up to an entire metacommunity and affect
the spatial distribution of populations, patterns of adaptation,
and the response of species to environmental changes [63].
Together, our results suggest three main mechanisms whereby
local mutualistic coevolution can affect the trait distribution
and persistence of species in metacommunities.

First, mutualistic coevolution can shape patterns of local
and regional trait matching of populations, increasing
connectivity across the landscape. Because colonization suc-
cess and persistence are highly determined by species traits,
varying patterns of trait matching can affect the rates of colo-
nization and extinction of populations in metacommunities.
In our model, the conflicting selective pressures of mutualis-
tic partners decreases the trait matching of local populations
with the environment and increases the rate of extinction of
populations. By contrast, at the regional scale, coevolution
increases the trait matching with mutualistic partners across
the entire metacommunity and increases the rate of coloniza-
tion. Previous theoretical work showed that trait convergence
in mutualisms can emerge from coevolution in species-
rich communities [7,11,27,28,39,42,45]. This trait convergence
is driven by how mutualistic interactions form complex
networks whose pathways propagate indirect evolutionary
effects [51]. Similarly, in our model, colonization of local
patches by coevolving populations forms its own spatial net-
work. This spatial network also creates paths through which
indirect effects propagate across the landscape. Taken
together with previous work [45], our results further indicate
that indirect effects that propagate through dispersal across
the landscape may contribute to shape not only patterns of
regional trait matching among mutualists, but also rates of
local extinctions and colonization. Thus, the disruption of
indirect pathways across space because of habitat fragmenta-
tion, for instance, besides its impacts on metacommunity
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dynamics through dispersal limitation may also affect coevo-
lutionary dynamics at the landscape level, an overlooked
question that deserves further attention [47,48,64,65].

Second, coevolutionwithmutualists facilitates colonization
of otherwise unsuitable patches and effectively expand the rea-
lized niche of species [6,66,67]. By facilitating colonization,
increased trait matching at the regional scale may allow species
to expand their spatial distributions, even when certain
local populations are maladapted to the local environment.
In natural populations, local adaptation may counteract
environmental gradients and even out ecological patterns in
space, reducing variation in mean fitness and in the local
abundance of populations across the landscape [63]. Our simu-
lations show that by favouring trait matching among multiple
mutualists across the landscape, coevolutionmayminimize the
negative effects of mismatches with the environment. This
mechanism is further amplified by increased metacommunity
diversity. Therefore, our results suggest that mutualistic
coevolution in species-rich metacommunities can be an impor-
tant force that allow species to expand and maintain their
distribution ranges in a heterogeneous landscape.

Third,metacommunitydiversityand coevolutioncan syner-
gistically counteract the effects of environmental changes.When
multiple interacting species exert evolutionary pressures in the
same direction, trait matching among mutualists increases
across the entire landscape. This increased trait matching sus-
tains higher rates of colonization and allow populations to
track environmental changes more efficiently. In species-rich
mutualisms, greater complexity overcompensates the strength
of mutualism so that populations can track environmental
changes and species tolerate greater levels of environmental
changes even if the strength of coevolution is relatively weak.
The less rich the community, the stronger mutualisms need to
be to prevent the extinction of species and the collapse of the
metacommunity. Thus, our results highlight that any factor
that decreases the strength of mutualistic interactions, hinders
coevolutionordecreases species richness inmutualistic systems,
may reduce the likelihood of biodiversity persistence in a chan-
ging environment [68,69]. As the environment rapidly
changes globally, understanding the mechanisms that allow
populations and species to track and colonize suitable environ-
ments is a major concern for biodiversity conservation
[17,18,70–73]. Locally, species-rich communities have been
shown to buffer the effects of environmental changes, because
increased trait convergence allows mutualists to rewire inter-
actions in a way that compensate for the extinctions of their
partners [31]. Here, we show that mutualistic coevolution can
counteract environmental changes at larger spatial scales by
maintaining the connectivity of spatial networks. Multispecific
coevolution favours trait convergence at larger scales so that
any species may have potential partners in several sites, allow-
ing species to persist and colonize novel sites even as the
environment changes. This increases the effective connectivity
among sites and may help explain how mutualisms facilitate
persistence and rangeexpansionsunderenvironmental changes
and maintain species richness across landscapes [2,74].

There is plenty of empirical evidence that mutualistic inter-
actions and partner diversity allows populations to persist in
a wide range of environments and is associated with range
expansion of populations [75]. However, we still do not fully
understand the mechanisms through which mutualistic inter-
actions drive these range expansions and how coevolution
affects spatial patterns. We present a testable mechanism for
howmutualistic interactions can allow species to colonize other-
wise unsuitable patches, and increase the distribution range of
populations, favouringpersistence.Althoughmeasuring coevo-
lution in natural systems is challenging, the predictions of our
model could be tested by assessing trait matching among inter-
acting species at multiple sites (e.g. [76]) and investigating how
variation in trait-matching affects colonization and persistence
over time or patterns of patch occupancy (e.g. [77]).

Natural systems are increasingly perturbed by human
activities, being subjected to high levels of diversity loss and
fragmentation [16,78]. Whereas diversity loss impoverishes
and simplifies the structure of communities, fragmentation
changes the spatial structure of metacommunities and
may reduce the potential of mutualistic coevolution to buffer
harmful effects of ongoing environmental changes [79–81].
Our results show that coevolution and high species richness
have a favourable impact on colonization success, thus imply-
ing that maintaining diversity and landscape connectivity
is necessary for species persistence under environmental
change. Disrupting connection pathways among natural popu-
lations can increase the biodiversity erosion driven by human
impacts, threatening essential ecosystem functions related to
mutualisms, such as pollination and seed dispersal.
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1 Alternative models – partitioning the evolutionary and ecological effects of 

mutualistic interactions 

 In our study we evaluated how mutualistic coevolution shapes the distribution and 

persistence of species in a metacommunity. Here, we simulate two additional scenarios 

to test how the results reported in the main text changes when: (1) species interact with 

mutualists, but do not evolve/coevolve and traits changes over time in local patches only 

as a result of the colonization and extinction dynamics; (2) species interact with 

mutualists, evolve/coevolve, but gene flow does not occur among patches. For scenario 

(1) we set the parameter 𝜎𝐺𝑧𝑖𝑘

2 =0.0, which cancelled all trait changes because of local 

evolution/coevolution. To simulate scenario (2) we set the fraction of gene flow to 0.0, 

allowed only empty patches to be colonized, and, when multiple colonization attempts to 

a given patch were successful at the same time, only the population with the largest 

suitability colonized the patch. For the two alternative scenarios we ran 50 simulations 

for each combination of strength of mutualistic interactions and initial species richness 

with and without environmental changes. 

1.1 Results for the metacommunity dynamics without evolutionary change 

1.1.1 Without environmental changes 

 

Our simulations show that without coevolution, mutualistic interactions alone do not 

reproduce the patterns reported in the main text (Figure S1-S2). Assuming no 

environmental changes, patch occupancy decreases for intermediate values of mutualistic 

strength, similarly to the patterns reported in the main text. This decrease, however, is 

sharper and the effects of species richness on the pattern are not consistent across all 

levels of mutualistic strength. The sharper decrease in occupancy occurs because at 

intermediate levels of mutualistic strength, the rate of extinction of populations increases 



and nearly surpasses the rate of colonization (Figure S1b). Extinction rises because with 

greater mutualism strength, suitability is more dependent on the interactions, but without 

coevolution species may not have “compatible” partners locally, which decreases site 

suitability. As a consequence of the increased rate of extinction, only populations whose 

traits perfectly matches the environment or the traits of mutualistic partners persist in the 

metacommunity, increasing both the local and regional trait matching of mutualistic 

populations due to species sorting (Figure S1c-d). At exceptionally high levels of 

mutualism strength the match with the environment is less important for suitability and 

the few persisting species can support their partners, thus explaining the rise in 

occupancy. 

 



 

Figure S1 – Results of a model of metacommunity dynamics without evolutionary 

dynamics for patterns of (a) occupancy, (b) colonization and extinction, and (c-d) trait 

matching. Points represents the mean value for 50 simulations and bars 95% confidence 

intervals. Parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 0.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

  

1.1.2 With environmental changes 

With environmental changes but no coevolution, patch occupancy remained very 

low regardless of the value of strength of mutualisms and whether we allowed or not gene 

flow among populations (Figure S2a-b). This same pattern held for the extinction of 

species in the metacommunity, whereas all species went extinct at the end of simulations 



regardless of 𝑚𝑖𝑘 (Figure S2c-d). Therefore, the occurrence of mutualistic interactions 

alone cannot reproduce the patterns generated by coevolutionary dynamics. Furthermore, 

these results show that the observed patterns in colonization/extinction dynamics as m 

increases cannot be interpreted only as the effect of decreasing the contribution of the 

environment as a selective pressure. 

 

 

Figure S2 – Results of a model of metacommunity dynamics without evolutionary 

change for patterns of (a) occupancy, when gene flow is not allowed, (b) occupancy when 

gene flow is allowed, (c) fraction of surviving species when gene flow is not allowed and 

(d) fraction of surviving species when gene flow is allowed. In (a-b) points represents the 

mean value for 50 simulations and bars 95% confidence intervals. Parameter 



values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 0.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1, fraction of gene flow when 

allowed: 0.05. 

1.2 Results for the metacommunity dynamics without gene flow 

Our simulations assuming no gene flow generate qualitatively similar patterns to 

those with gene flow presented in the main text, showing that the outcomes are not only 

a consequence of gene flow across the landscape, but from coevolution in the 

metacommunity context (Figure S3-S4). Assuming no gene flow and no changes in the 

environment over time, mutualistic coevolution had non-linear effects on patch 

occupancy (Figure S3a), increased the rate of colonization (Figure S3b) and the 

local/regional trait matching with partners (Figure S3c-d). Furthermore, increasing the 

species richness in the metacommunity amplified these effects of mutualistic coevolution. 

 



Figure S3 – Results of a model of metacommunity dynamics without gene flow among 

populations for patterns of (a) occupancy, (b) colonization and extinction, and (c-d) trait 

matching. Points represents the mean value for 50 simulations and bars 95% confidence 

intervals. Parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

 When the environment changes, mutualistic coevolution and species richness 

synergistically increased patch occupancy and buffered the negative effects of 

environmental change (Figure S4a), even in the absence of gene flow. However, allowing 

gene flow among populations improved occupancy, highlighting the positive effects of 

gene flow on the metacommunity under environmental changes (Figure S4b). 

Furthermore, mutualistic coevolution and species richness were also able to prevent the 

collapse of the metacommunity without gene flow (Figure S4c). Similar to occupancy 

patterns, allowing gene flow amplified the buffering effect of coevolution, further 

increase the fraction of surviving species (Figure S4d). 



 

Figure S4 –Results of a model of a coevolving metacommunity for patterns of (a) 

occupancy when there is no gene flow, (b) occupancy with gene flow, (c) fraction of 

surviving species without gene flow, and (d) fraction of surviving species with gene flow. 

In (a-b) points represents the mean value for 50 simulations and bars 95% confidence 

intervals. On panels (c-d) colors were interpolated to improve visualization. Parameter 

values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1, fraction of gene flow when 

allowed: 0.05. 



2 Sensitivity analyses – simulations with different parameter values 

On the main text we present results where we evaluated how coevolution in 

pairwise and multispecific scenarios affects local and regional patterns in 

metacommunities with and without environmental changes. Following previous work 

(Guimarães et al. 2017; Medeiros et al. 2018), in these simulations we kept most of the 

model parameters fixed and varied only the strength of mutualistic interactions (m). In 

our model, coevolution, colonization and extinctions can be affected by two other 

parameters: (1) 𝜚, which high values increase the sensitivity of the adaptive landscape of 

species and the speed of changes in trait values; and (2) the fraction of gene flow. To test 

the robustness of our results to different values of these two parameters, we performed a 

set of sensitivity analyses. In these sensitivity analyses we kept one the parameters fixed 

(𝜚 or the fraction of gene flow) and varied the other. We varied 𝜚  in 10% steps, up to a 

50% increase, from 0.1 to 0.15, and the fraction of gene flow from 0.05 to 0.5. From the 

results we evaluated how different values of 𝜚 and fraction of gene flow affected the 

results reported in the main text. 

2.1 Different values of sensitivity of species adaptive landscapes (𝝔) 

2.1.1 Without environmental changes 

Our simulations show that the patterns reported in the main text qualitatively held 

when increasing 𝜚 (Figures S5-S8), with small quantitative changes. Coevolution still had 

nonlinear effects on patterns of occupancy (Figure S5), increased the rate of colonization 

(Figure S6) and the local and regional trait matching of species with mutualistic partners 

(Figure S7-S8). 

 



 

 

Figure S5 - Effects of different values of the model parameter 𝜚 (values above each panel) 

on patterns of patch occupancy. Each point represents the average value of 50 simulations 

and vertical lines confidence intervals. Points and lines of different colors represents 

different scenarios of initial species richness in the metacommunity. Other parameter 

values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

 



 

 

Figure S6 - Effects of different values of the model parameter 𝜚 (values above each panel) 

on patterns of colonization (solid lines) and extinction (dashed lines). Each line represents 

the average value of 50 simulations. Lines of different colors represents different 

scenarios of initial species richness in the metacommunity. Other parameter values: 𝑚𝑖𝑘= 

0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

 



 

Figure S7 - Effects of different values of the model parameter 𝜚 (values above each panel) 

on patterns of local trait matching with the environment (dashed green lines) and 

mutualistic partners (solid red lines). Each point represents the average value of 50 

simulations and vertical lines confidence intervals. Points and lines of different color 

intensities represents different scenarios of initial species richness in the metacommunity. 

Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

 



 

Figure S8 - Effects of different values of the model parameter 𝜚 (values above each panel) 

on patterns of regional trait matching with mutualistic partners. Each point represents the 

average value of 50 simulations and vertical lines confidence intervals. Points and lines 

of different color intensities represents different scenarios of initial species richness in the 

metacommunity. Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

2.1.2 With environmental changes 

Under environmental changes, our simulations show that the patterns reported in 

the main text qualitatively still held for the different values of 𝜚 (Figures S9-S10). 

Increasing 𝜚 up to moderate levels still retained the same patterns reported in the main 

text of the buffering effect of coevolution and species richness against environmental 



changes. However, when 𝜚 increases, species evolve faster and can track environmental 

changes more efficiently, increasing patch occupancy (Figure S9). Further increasing 𝜚 

reverts patterns of occupancy to similar patterns as if there was no environmental change 

in the metacommunity. Conversely, increasing 𝜚 reduced extinctions and allowed more 

species to survive in the metacommunity, with most the species surviving at high levels 

of 𝜚. 

 

Figure S9 - Effects of different values of the model parameter 𝜚 (values above each panel) 

on patterns of occupancy under environmental changes. Each point represents the average 

value of 50 simulations and vertical lines confidence intervals. Points and lines of 

different color intensities represents different scenarios of initial species richness in the 

metacommunity. Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

 



 

 

Figure S10 - Effects of different values of the model parameter 𝜚 (values above each 

panel) on the fraction of surviving species in the metacommunity under environmental 

changes. Colors are interpolated to improve visualization. Other parameter values: 𝑚𝑖𝑘= 

0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

 

 

 

 

 

 



2.2 Different values of fraction of gene flow 

2.2.1 Without environmental changes 

Our sensitivity analysis shows that increasing the fraction of gene flow among 

populations in the metacommunity can change the effects of mutualistic coevolution on 

patterns of patch occupancy for low levels of m. When m < 0.5, increasing the fraction of 

gene flow decreases the occupancy of patches (Figure S11) because the rate of extinction 

of populations increases (Figure S12). The increased rate of extinction for low values of 

m occurs because gene flow decreases the local trait matching with the environment 

(Figure S13). However, gene flow also increases both the local and regional trait matching 

with mutualists across all levels of m (Figure S14). 

 

 

Figure S11 - Effects of different values of fraction of gene flow (values above each panel) 

on patterns of patch occupancy. Each point represents the average value of 50 simulations 

and vertical lines confidence intervals. Points and lines of different colors represents 



different scenarios of initial species richness in the metacommunity. Other parameter 

values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

 

 

 

 

Figure S12 - Effects of different values of fraction of gene flow (values above each panel) 

on patterns of colonization (solid lines) and extinction (dashed lines). Each line represents 

the average value of 50 simulations. Lines of different colors represents different 

scenarios of initial species richness in the metacommunity. Other parameter values: 𝑚𝑖𝑘= 

0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

 



 

 

Figure S13 - Effects of different values of fraction of gene flow (values above each panel) 

on patterns of local trait matching with the environment (dashed green lines) and 

mutualistic partners (solid red lines). Each point represents the average value of 50 

simulations and vertical lines confidence intervals. Points and lines of different color 

intensities represents different scenarios of initial species richness in the metacommunity. 

Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

 

 

 

 

 

 



 

 

Figure S14 - Effects of different values of fraction of gene flow (values above each panel) 

on patterns of regional trait matching with mutualistic partners. Each point represents the 

average value of 50 simulations and vertical lines confidence intervals. Points and lines 

of different color intensities represents different scenarios of initial species richness in the 

metacommunity. Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

2.2.2 With environmental changes 

In the scenario with environmental changes, our sensitivity analysis shows 

increasing the fraction of gene flow does not qualitatively affect the results reported in 

the main text. Even for high levels of gene flow (0.5), mutualistic coevolution and species 

richness increased patch occupancy (Figure S15) and prevented the collapse of the 

metacommunity (Figure S16). 



 

 

 

Figure S15 - Effects of different values of fraction of gene flow (values above each panel) 

on patterns of occupancy under environmental changes. Each point represents the average 

value of 50 simulations and vertical lines confidence intervals. Points and lines of 

different color intensities represents different scenarios of initial species richness in the 

metacommunity. Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝜚𝑖𝑘 = 0.1, 𝛼 = 0.1. 

 

 

 

 



 

Figure S16 - Effects of different values of fraction of gene flow (values above each panel) 

on the fraction of surviving species in the metacommunity under environmental changes. 

Colors are interpolated to improve visualization. Other parameter values: 𝑚𝑖𝑘= 0.0-0.9, 

𝜎𝐺𝑧𝑖𝑘

2 = 1.0, 𝛼 = 0.1. 

 

2.3 Spatial variation in the strength of mutualisms 

The results reported in the main text correspond to a scenario in which the strength 

of mutualisms (𝑚) does not vary in space. Yet, in natural communities there is spatial 

variation in the strength of mutualistic interactions  and species coevolve in a geographic 

mosaic of coevolution (Thompson 2005). Thus, we performed an additional set of 

simulations to understand to what extent our conclusions about the buffering effect of 

mutualistic coevolution are robust to spatial variation in the strength of mutualisms. We 



implemented this additional set of simulations with two complementary approaches. In 

the first approach we randomly sampled values of m for each patch in the metacommunity 

from a uniform distribution U[0.0, 1.0] and performed 100 simulations for each scenario 

of initial regional species richness (2 to 16 species) in the metacommunity. For the second 

one we divided the patches of the metacommunities into hotspots and coldspots 

(Thompson 2005). We assumed that in the hotspots mutualistic coevolution is strong and 

for each hotspots we sampled m from a uniform distribution U[0.7, 1.0]. In contrast, we 

assumed that in the coldspots mutualistic coevolution is weak and sampled m uniformly 

U[0.0, 0.3]. For this second approach we performed a set of simulations varying the 

proportion of hotspots in the metacommunity from 0 to 1 in 0.1 steps (100 simulations 

per proportion of hotspots and initial regional species richness). In both approaches we 

simulated environmental change by increasing the value of species 𝜃𝑖𝑘 each generation 

(𝜃𝑖𝑘 + 0.25 per generation). 

Our results show that the buffering effect of coevolution in the response of 

metacommunities to environmental changes is robust to spatial variation in the strength 

of mutualisms. When m varies uniformly across the space, coevolution prevented the 

collapse of the metacommunities, and the fraction of surviving species increased with the 

diversity of the metacommunity (Figure S17a). If m is distributed into coldspots and 

hotspots among patches, our results show that for more diverse metacommunities even a 

small fraction of hotspots prevents the collapse of the metacommunities (S17b). 

However, as the initial species richness decreases, we need a larger proportion of hotspots 

in the metacommunity to prevent its collapse. These results are similar to the reported in 

the main text, in which the more diverse the metacommunity, the weaker m needs to be 

to prevent the complete extinction of species.  



 

Figure S17 - Mutualistic coevolution prevents the collapse of metacommunities under 

environmental changes (𝜃𝑖𝑘 + 0.25 per generation) when (a) the strength of mutualisms 

uniformly varies in space, m~U[0.0,1.0]; and (b) the metacommunity is divided into 

hotspots (m~U[0.7,1.0])  and coldspots (m~U[0.0,0.3]). On (b) colors are interpolated to 

improve visualization. 
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Considerações Finais 

Um dos grandes desafios na ecologia e biologia evolutiva consiste em 

compreendermos como interações ecológicas sustentam a biodiversidade da Terra. 

Interações que beneficiam os indivíduos envolvidos – mutualismos – são consideradas 

uma grande forca que molda a ecologia e evolução de espécies (Thompson 2006; 

Bascompte & Jordano 2007; Bascompte 2009; Thompson 2009; Bronstein 2015; 

Bascompte & Scheffer 2022). Porém, apenas estamos começando a compreender os 

mecanismos pelos quais mutualismos podem influenciar medidas fundamentais da 

biologia que, em última instancia, determinam a diversidade e funcionamento de 

ecossistemas naturais. Nesta tese, mostramos que a coevolução em comunidades 

mutualísticas que formam redes de interação pode ser uma grande força que molda a 

aptidão média e a persistência de espécies por meio de diferentes escalas ecológicas.  

Nossos resultados indicam que em uma escala local, a coevolução em redes 

mutualísticas gera variação na aptidão média das espécies. Embora essa variação seja 

explicada parcialmente pelo número de parceiros, mostramos que o principal 

determinante da aptidão média de espécies que coevoluem em redes mutualísticas são 

efeitos evolutivos indiretos. Efeitos indiretos dificultam o acoplamento fenotípico 

entre parceiros diretos, e a adaptação a outras pressões seletivas ambientais. 

Consequentemente, espécies que são mais influenciadas por efeitos evolutivos 

indiretos são mais deslocadas de seus picos adaptativos e tem uma menor aptidão média 

após coevoluírem em uma rede mutualística. 

Em uma escala regional, essas pressões conflitantes resultantes da coevolução 

em redes aumentam a extinção local de populações. Os efeitos da dinâmica 

coevolutiva local, porém, também se manifesta na escala regional: a coevolução 

aumenta a similaridade entre os atributos de populações de diferentes espécies ao 

longo do espaço. O aumento de similaridade entre atributos na escala regional, por 

sua vez, facilita colonizações e expande a distribuição de populações. Com isso, essas 

populações conseguem colonizar áreas quando não estão adaptadas ao ambiente 
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abiótico local, o que permite com que espécies persistam regionalmente mesmo diante 

de mudanças ambientais ao longo do tempo (Cosmo et al. 2023). 

De modo geral, juntos, nossos resultados mostram que coevolução em redes 

mutualísticas pode ser um grande determinante da aptidão média, persistência e, 

consequentemente, da biodiversidade e o funcionamento de ecossistemas na natureza. 
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