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Resumo 

As megacidades estão enfrentando o desafio de manter importantes serviços 
ecossistêmicos, incluindo o de regulação da qualidade do ar. Espaços verdes urbanos 

são potenciais fornecedores deste serviço e aparentam ser uma solução eficaz 
baseada na natureza. Porém, até o momento, a maior parte dos estudos tem focado 
principalmente em aspetos da composição das áreas verdes, deixando de lado como 

a configuração espacial — particularmente a fragmentação — poderia afetar a 
regulação da qualidade do ar. Também é escasso o conhecimento sobre como a 
provisão desse serviço varia com potenciais diminuições nas emissões de poluentes, 

como a que ocorreu com a quarentena estabelecida pela pandemia do COVID-19. 
Neste trabalho, tentamos preencher essas lacunas de conhecimento, investigando 
qual a contribuição das áreas verdes urbanas na redução da poluição do ar, e em qual 

configuração esse serviço é otimizado, nos períodos antes, durante e após a 
quarentena estabelecida pela pandemia em uma das maiores cidades do hemisfério 
Sul (São Paulo, Brasil). Consideramos explicitamente a oferta, demanda e os fluxos 

relacionados à prestação de serviços ecossistêmicos. Fizemos uma seleção de 
modelos usando as concentrações horárias de poluentes (CO, NO2, PM2.5 e PM10) 
como variável resposta, enquanto foram usadas como variáveis preditoras a 

quantidade, densidade e velocidade de deposição seca de áreas verdes (relacionadas 
à oferta); a quantidade de emissões de veículos (como indicador de demanda); 
diferentes escalas espaciais (associadas ao fluxo); configuração de áreas verdes; e 

variáveis meteorológicas. Nossos resultados mostraram que áreas com maior 
cobertura arbórea e menos emissões veiculares diminuíram as concentrações de CO, 
NO2 e PM. O efeito das áreas verdes na redução dos poluentes atmosféricos foi maior 

nos períodos de menor demanda (início da quarentena), chegando a ser duas vezes 
maior para NO2 e três vezes maior para PM10, em comparação com períodos de 
maior demanda (antes e após a quarentena). Além disso, a fragmentação dos 

espaços arborizados, que proporciona maior proximidade aos locais de emissão de 
poluentes (porém com manchas menores de áreas verdes), tende a diminuir as 
concentrações de PM10 e aumentar as concentrações de PM2.5, CO e NO2. Estas 

relações foram observadas em escalas entre 500 e 1000 m, mas os fluxos de 
poluentes podem ser ainda mais amplos, indicando que a interação entre as áreas de 
oferta e demanda em áreas urbanas pode ocorrer em grandes extensões espaciais. 

Nossos resultados demonstram que para aumentar o serviço de regulação do ar 
oferecido pela vegetação, seria importante maximizar a quantidade de cobertura 
arbórea (mesmo longe das áreas poluidoras) e minimizar sua fragmentação, além de 

reduzir as emissões veiculares. 

 

 

Palavras chave: áreas verdes, árvores urbanas, poluição do ar, regulação  

da qualidade do ar, serviços ecossistêmicos. 

  



 
 

Abstract 

Megacities are currently facing the challenge of maintaining important ecosystem 
services, such as air quality regulation. Urban greenspaces are potential suppliers of 

this ecosystem service, and thus appear to be an effective nature-based solution. 
However, the knowledge compiled so far has focused mainly on the composition 
aspects of these areas, while few studies assess how the spatial configuration of green 

areas, in particular fragmentation, affects air quality regulation. Even less is known 
about how this service varies with decreasing pollutant emissions resulting from the 
quarantine of the COVID pandemic. Here we fill these research gaps by testing the 

contribution and best configuration of green areas in reducing air pollution, before, 
during, and after a quarantine period, in one of the largest cities of the Global South 
(São Paulo, Brazil). We explicitly considered the supply, demand and flows related to 

this ecosystem service provision. We relied on a model selection approach using 
hourly concentrations of different pollutants (CO, NO2, PM2.5, and PM10,) as the 
response variable. The amount, density and dry deposition velocity of greenspaces 

(related to supply), amount of vehicle emissions (proxy of demand), different spatial 
scales (proxy of flow), greenspaces configuration, and meteorological variables were 
used as predictors. Our results showed that areas with higher tree cover, and less 

vehicular emissions decreased concentrations of CO, NO2 and PM. The effect of 
green areas in the reduction of air pollutants was higher in periods of lower demand 
(start of quarantine), almost doubling in the case of NO2 and even tripling, in the case 

of PM10, when compared to periods of higher demand (before and after quarantine). 
Furthermore, fragmented configuration that provided greater proximity of green areas 
to pollutant emission sites, but with smaller green areas, tended to decrease PM10 

concentrations, while increasing PM2.5, CO and NO2 concentrations. These 
relationships were observed for scales from 500 to 1000 m, but the pollutant flows 
could be even wider, indicating that the interaction between supply and demand in 

urban areas can occur over very large spatial extents. Our results demonstrate that to 
enhance the air regulation service offered by vegetation, it would be important to 
maximize the amount of tree cover, even if distant from pollution source areas, and 

minimize its fragmentation, beyond the reduction of vehicular emissions. 

 

 

Key words: green areas, urban trees, air pollution, air quality regulation, ecosystem 

services. 
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1 INTRODUCTION 

 

With the global increase in urbanization, a growing proportion of human 

population is subject to environmental problems related to urban areas, such as waste 

management, traffic flow, flood risk, urban heat island effect and air quality 

impoverishment (CHOURABI et al., 2012; LIVESLEY; MCPHERSON; CALFAPIETRA, 

2016). This situation makes urgent the adoption of sustainable measures to reduce 

and mitigate the negative impacts of urbanization, through the provision of urban 

landscape services. 

Among the main environmental issues, air pollution is of great concern because 

more than 80% of the people who live in urban areas are exposed to pollution levels 

above acceptable limits, causing approximately 7 million deaths annually (WHO 2020). 

Pollution is mainly produced through fossil combustion, which contribute to the release 

of nitrogen oxides (NO), sulphur oxides (SO), carbon monoxide (CO), ozone (O3), and 

of solid and liquid contaminant particles called “particle matter” (POPESCU; IONEL, 

2010). These air pollutants are related to human morbidity and mortality increase, 

depending on their dose and time of exposure. Increased levels of SO and NO can 

cause bronchoconstriction and dyspnea in asthmatic patients. Particulate matter and 

O3 penetrate in the alveolar epithelium and cause lung inflammation along with 

systemic inflammatory changes that affect blood coagulation (KAMPA; CASTANAS, 

2008). Finally, high concentrations of CO reduce oxygen availability, affecting the 

function of different organs (RIEDIKER et al., 2004).  

Vehicular emissions are one of the main contributors to global air pollution along 

with heat production, agriculture, and industry activities (IPCC, 2014; KUMAR et al., 

2021), accounting for 14% of global greenhouse gas emissions (IPCC, 2014) and for 

8% of PM2.5 (WEAGLE et al., 2018). Even though policies have been established to 

reduce vehicular emissions, the continuous growth in urbanization has led to an 

increase in the vehicle fleet, and consequently in pollutants emissions (KUMAR et al., 

2021). However, during 2020, with the social distance policy adopted around the world 

to face COVID-19, it was observed a global reduction in pollutants emissions (LOH et 

al., 2021). Despite the environmental gains during the isolation period due to industry  
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shutdowns, lockdowns and travel restrictions, there were also global losses in income 

and employment (LENZEN et al., 2020), which impede this kind of measure from being 

a pragmatic solution for the air pollution problem. 

Urban green spaces are known for contributing to the provision of several 

ecosystem services, including air quality regulation services (IRGA; BURCHETT; 

TORPY, 2015; ROY; BYRNE; PICKERING, 2012) and may be a key element to 

mitigate air pollution problems. The provision of air regulation service has three main 

components: supply (areas where pollutant deposition occurs); demand (amount of 

regulation needed to meet air quality standards), and flow (movement of pollutants 

from emission to deposition areas). However, frequently only one of these three 

components (most commonly, supply) is studied in the evaluation of ecosystem service 

provision (BARÓ et al., 2016), which may lead to overestimations, and therefore not 

offer an accurate assessment of the effect of greenspaces in the provision of this 

ecosystem service (METZGER et al., 2021). 

Trees are recognized to reduce the air pollution effects of road traffic and 

industries in residential areas (KRZYŻANOWSKI; KUNA-DIBBERT; SCHNEIDER, 

2005), with estimated economic benefits in human mortality reduction ranging from 

$1.1 to 60.1 million USD annually (NOWAK et al., 2013). Vegetation does this through 

the dry deposition process, which reduces the concentration of pollutants through two 

main ways: (i) the interception and accumulation of particles (PM10 and PM2.5) on 

external surfaces, like leaf pubescence’s and waxy surfaces (BECKETT; FREER‐

SMITH; TAYLOR, 2000); and (ii) through the capture of pollutant gases like O3, NO2, 

and CO, inside their stomata (CIESLIK; OMASA; PAOLETTI, 2009). Therefore, green 

areas can be considered a proxy, or an important part of the supply component.  

Generally, higher density and closed canopy covers are associated with a reduction in 

particulate matter concentrations (IRGA; BURCHETT; TORPY, 2015), because larger 

tree crowns have the potential to ameliorating air quality by maximizing pollutant 

deposition (PAOLETTI; KARNOSKY; PERCY, 2004). Thus, structural tree parameters, 

like density and crown continuity, and leaf area index have been suggested as 

indicators of this service’s supply (ROELAND et al., 2019). The quantity of these green 

areas is also important, with more extensive and continuous presenting better air 

quality outcomes (SHEN; LUNG, 2016). 
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However, the effect of green areas distribution, or the spatial configuration of 

these areas, on air quality regulation service has still no consensus. This configuration 

can affect air quality regulation services by altering the proximity between supply and 

demand areas, and thus affecting the extent of flows (METZGER et al., 2021). 

Moreover, vegetation edges, created through fragmentation process, can increase 

pollutants deposition rate by wind interception, or on the contrary, they can act as 

physical barriers that prevent pollutants deposition in vegetation beyond the edges 

(IRGA; BURCHETT; TORPY, 2015). There are thus conflicting results, including some 

cases where higher fragmentation of green areas was associated with better air quality 

(SHI et al., 2019; WU et al., 2015), while other studies found that less fragmented areas 

present better air quality outcomes, probably because these areas have higher 

biomass or more structured vegetation (SHEN; LUNG, 2016, 2017). 
 

Meteorological factors, as wind speed, can also affect air quality regulation 

flows, i.e., the connection between pollutants and greenspaces, because they 

determine pollutant’s dilution and dispersion (OLENIACZ et al., 2016) through their 

accumulation or ventilation (SEO et al., 2018). Besides, dry deposition velocity is 

increased by wind speed, while it is negatively correlated with air humidity and air 

temperature (CHEN et al., 2012; ODABASI; MUEZZINOGLU; BOZLAKER, 2002). 

Therefore, meteorological conditions also have an important effect on air quality 

regulation services (Figure 1). 

 

 

Figure 1. Simplified scheme showing the process of air quality regulation. Pollutants emitted by 

vehicles (here considered as demand) are dispersed in the air by wind (flow) and a fraction on this 
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is deposited on vegetation (supply areas). This process has an effect on air quality, diminishing 

pollutants concentrations. 

The city of São Paulo, one of the biggest megacities in the world, is an 

interesting system to study the air quality regulation process given its high population 

density, high levels of air pollution, but also because it has a very extensive tree cover. 

High pollutant levels in the city are mainly caused by the vehicle fleet, which accounts 

for the emission of 96% of CO, 65% of NOx and 40% of PM (COMPANHIA 

AMBIENTAL DO ESTADO DE SÃO PAULO, 2020). Due to the social distancing 

imposed by COVID-19’s quarantine from 22nd of March 2020, non-essential activities 

were restricted, and people were suggested to stay at home (decree Nº 64.881, March 

20th). As a result, vehicular emissions were reduced during quarantine time, and so did 

pollutants concentrations of CO, NO2 and PM (DEBONE; COSTA; MIRAGLIA, 2020; 

FREITAS et al., 2020). This offered a perfect scenario for us to also study the effect 

that an abrupt decay on demand (emissions) could have over the air regulation service.  

Here we integrate the three components of air quality regulation (supply, 

demand, and flows) with meteorological factors with the aims to (1) analyze the 

potential of urban green areas to improve the air quality in the city of Sao Paulo; and 

(2) evaluate how the reduction in the demand during the COVID-19 quarantine affected 

the provision of this ecosystem service. We used vegetation’s quantity, density, and 

spatial distribution (e.g., fragmentation) to estimate supply, vehicular emissions to 

estimate demand, and finally different spatial scales (spatial extent of analysis) to 

capture different scales or extents of pollutant flow, between emission and deposition areas.   

We hypothesized that there is a positive effect of green areas over air quality 

and that this effect is enhanced with (Figure 2): 

(i) Lower vehicular emissions (lower demand), since less emissions can 

avoid situations of overdemand (excessive demand); 

(ii) A greater amount of green areas in the landscape (supply), because 

having more quantity of green areas will result in more biomass and 

therefore in pollutants deposition intensification; 

(iii) A lower level of green areas fragmentation, because a lower 

fragmentation could lead to larger and more structured green areas, 

maximizing pollutant deposition.  
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Furthermore, we suppose that a reduction of demand in quarantine could 

enhance the air quality regulation service, since this alleviates problems of 

overdemand (Figure 2. ii) 

 

 

Figure 2. Schematic representation of the main hypotheses related to air quality regulation by green 

areas. This service should be affected by (i) the amount of demand (vehicular emissions; i), 

 the supply (green areas) amount (ii) and fragmentation (iii), in addition to a demand effect on supply 

effectiveness (ii). 

We expect our results to contribute to the discussion of air quality improvement 

in urban areas by providing guidance on how to better design urban greenspaces, both 

in amount and spatial configuration, being part of the solution for urban sustainability 

(Wu, 2010). 
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2 METHODOLOGY 

 

2.1 Study area   

The study area encompasses the city of São Paulo, the capital of São Paulo 

state, located in the southeast of Brazil (Figure 2). This megacity is the greatest of the 

southern hemisphere with an extension of 1.521 km2 and a population of more than 12 

million inhabitants (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, 

2022). It is also the industrial and economical center of the country (accounts for 17% 

of its GDP; Silva-Sánchez, S., & Jacobi, 2014) and of South America. São Paulo is at 

an altitude of about 824 m, and its climate is classified as sub-tropical. This climate is 

characterized by a cold and dry season (April to September) with low humidity and 

reduced wind, and a warm and humid season (October to March) marked by high 

atmospheric temperatures (ANDRADE et al., 2012, 2017). São Paulo is a relevant 

place to study air quality regulation service due to its central importance to Brazil´s 

economy, and given the large population affected by pollution problems. 

Built-up areas represent 40% of the municipality, while 48% is covered by 

vegetation (being 40% tree cover), 8% of exposed soil, and 4% of water masses and 

dams (SECRETARIA MUNICIPAL DO VERDE E DO MEIO AMBIENTE, 2020). 

However, there is an unbalance distribution of greenspaces in the city since vegetation 

cover is reduced to 33% within urban city center (SECRETARIA MUNICIPAL DO 

VERDE E DO MEIO AMBIENTE, 2020), while large expanses of green areas are found 

around the city. Inside the urban matrix, vegetation cover is composed by fragments 

of secondary Atlantic forest, lowland formations, and natural fields, usually distributed 

in small parks, squares, and public roads. This vegetation is unequally distributed 

among the city’s regions (AMATO-LOURENÇO et al., 2016), with a higher 

concentration in the South (54.53%) and the North (41.67%), while the West (26.69%), 

East (16.04%), and center (15.56%) regions have more restricted green cover  

(SECRETARIA MUNICIPAL DO VERDE E DO MEIO AMBIENTE, 2020).  
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Figure 3. Spatial distribution of tree cover (green pixels), and urban and other type of areas 

(aquatic, pastures; grey pixels) in the city of São Paulo. Black dots represent the 14 CETESB’s air 

quality monitoring stations included in the study. The small box on the right shows the location of São 

Paulo’s city (red dot) within São Paulo’s state (grey) and the country of Brazil (white). 

 

2.2 Air pollution and meteorological data 

For this study, we considered hourly air pollution data (CO, NO2, PM10, PM2.5) 

and meteorological data (e.g., wind velocity, air temperature, and relative humidity) 

from 14 automatic stations (study stations; see Figure 3 & Table S1) located within the 

city of Sao Paulo by using the QUALAR system of the CETESB (available at: 

https://qualar.cetesb.sp.gov.br/qualar/home.do). These data were obtained between 

01/03/2020 and 31/05/2020 (period before and during COVID-19’s quarantine) and 

were divided in three phases as follow: Pre-quarantine (01/03/2020 – 21/03/202), 

Quarantine A (22/03/20 -24/04/20), and Quarantine B (25/04/20 - 31/05/20). The first 

division was based on the quarantine start date (22nd of March 2020), and the division 

into the two quarantine periods was based on Google mobility trends (“COVID-19: 
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Relatórios de mobilidade da comunidade”, 2022), which showed that the percentage 

of people staying at home decreased to its lowest mean value in the weekend of 25-

04-20 to 26-04-20, since the beginning of quarantine (Table S2). Thus, Quarantine A 

was a more restrictive moment, when people were asked to stayed at home, 

agglomerations were prohibited, and only essential services were available to the 

public, while Quarantine B represents a more flexible moment of social distancing. 

We extracted precipitation data to identify the days in which dry deposition 

occurred, and thus estimate the quantity of supply offered by tree cover around 

monitoring stations. We considered days with precipitation <0.2 mm as days in which 

dry deposition occurred (NOWAK et al., 2013), and days with precipitation >0.2 mm as 

days with absence of the service. The precipitation data for each CETESB station 

coordinate was extracted from the Climate Hazards Group Infrared Precipitation with 

Station data (CHIRPS) of the University of California, with a spatial resolution of 0,05º 

(~5 km) and a daily temporal resolution.    

 

2.3 Spatial scale (flow) 

We used a multi-scalar approach to consider different flow capacities, i.e., the 

potential displacement of pollutants from their source. We thus defined different buffers 

around each monitoring station, creating different dimensions of interaction between 

supply and demand areas. We considered buffers of 250, 500, 750 and 1000 m of 

radii, since the influence of traffic-related air pollutants concentrations is considered to 

be of 100 m from a major urban road and of 500 m from a major freeway (HOEK et al., 

2008). We also created buffers of 750 and 1000 m once previous studies also found 

spatial effects at these scales on air regulation models (AGUILERA et al., 2008; 

EEFTENS et al., 2012; HOEK et al., 2008; SMITH et al., 2006). Even though particle 

dispersion can be even broader (more than 2069 m for PM10, and of 7726 m for 

PM2.5; Godoy, Mores, Cruz, & Scenna, 2009), 1000 m was the maximum scale 

possible for analysis, to avoid buffer overlapping among the stations included in our study.   

 

  



18 
 

2.4 Demand estimation 

Knowing that the vehicle fleet is the most important contributor to São Paulo’s air 

quality deterioration (COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO, 2020), 

we modeled vehicular emissions as proxy of service demand. Hourly vehicular emission 

estimations were calculated using the VEIN R package, available at https://CRAN.R-

project.org/package=vein, for the period between first March to 31 May 2020. VEIN  

uses traffic simulations obtained from the Traffic Engineering Company (CET 

http://www.cetsp.com.br/) and the Secretary of Transport and Mobility of São Paulo 

(SPtrans), available at http://www.sptrans.com.br/, to estimate vehicular emissions 

spatially. With this estimation, we extracted the mean hourly emissions of CO, NO2, and 

PM (10 and 2.5) around the 14 study areas, considering the different buffer sizes 

(scales) mentioned above. 

 

2.5  Supply estimation 

To estimate the amount of supply for the air regulation service, we first measured 

the amount of tree cover and the enhance vegetation index (EVI) for each buffer size. 

In order to do this, we used the 2020’s vegetation cover mapping made by the city  

hall (available at: http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx). 

The vegetation map was made in the years 2017/2018, covering the entire surface of 

the São Paulo municipality, including 1,168 km² in a scale of 1:1.000 and 359 km² in a 

scale 1:5.000 (SECRETARIA MUNICIPAL DO VERDE E DO MEIO AMBIENTE, 2020). 

The original map presents 15 different vegetation categories, which were grouped in 4 tree 

cover categories (low, medium, high, and very high; Figure 4 & Table S3). 
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             Figure 4. (a) Tree cover in the city of Sao Paulo:  low, medium, high, and very high cover (primary 

forest and natural reserves); urban and others (aquatic, non-trees, forestry). (a-c) Close-up to 

buffers of 1000 m around different air quality stations: (a) Cidade Universitária-USP station (West 

zone); (b) Ibirapuera (South zone); (c) Grajaú-Parelheiros (South zone). 

After obtaining the amount of tree cover by buffer around each station, we also 

measured the EVI, to include vegetation’s density into our estimation of supply (see 

equation 2 below). EVI is sensitive to canopy structural variations (just like the leaf area 

index; LAI), which is important for air quality service regulation (ROELAND et al., 

2019). For EVI estimation, we used the Satveg site (https://www.satveg.cnptia.  

embrapa.br/satveg/), which uses the product MOD13Q1 (derived from the Terra 

satellite, starting on 02/18/2000) available in maximum compositions of 16 days, with 

a spatial resolution of approximately 250 m. 
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To finally estimate the air regulation supply service, we adapted the pollutant 

absorption formula proposed by Powe and Willis (2004) to a new supply formula: 

Supply = A* EVI * DV * T * P (0 or 1) 

Where: A is the total area of tree cover (including all types: low, medium, high, 

and very high cover; m2), EVI is the vegetation index value for the 

specific spatial scale, deposition velocity is the pollutant deposition rate 

from the UFORE-D model (Table S4; D. Nowak et al., 1998),T is the time 

step (seconds), and P is the daily precipitation value (0 when >= 0.02 mm 

and 1 when <= 0.02 mm; days with and without precipitation, respectively). 

 

2.6 Configuration of supply  

In order to analyze how the configuration of green areas could affect air quality, 

we extracted the number of patches (NP) of green areas (indicator of fragmentation) 

for each spatial scale analyzed. Landscapes with higher NP values are characterized 

by small, highly isolated patches with high edge proportions and low structural 

connectivity, being an indicative of ecosystem degradation based of landscape ecology 

principles (YUSHANJIANG et al., 2018), and possibly of a reduction in ecosystem services. 

 

2.7  Air regulation modelling 

Before running a model selection approach, we performed a Mantel test to verify 

if there is a spatial correlation among pollution data within the 14 air quality stations. 

We made an independent test for each pollutant by creating a distance correlation 

matrix with the coordinates of each station and their corresponding mean concentration 

during the time of our study. We ran the test with 9999 permutations. The test revealed 

no spatial dependence (p>0.05 for all pollutants: PM10 = 0.54; PM2.5 = 0.85; NO2 = 

0.30; CO= 0.60), with low correlation values for PM10 (-0.043), PM2.5 (-0.243), NO2 

(0.068), CO (-0.107), validating the null hypothesis of spatial independence among air 

quality stations, for all pollutants. 
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In order to analyze the effect that an abrupt decay on emissions (demand) could 

have over the air regulation service’s supply, we performed an ANOVA test considering 

the three categorical levels of the variable “quarantine” (Pre-quarantine, Quarantine A, 

and Quarantine B). A Tukey’s test was used to identify which groups were different 

between each other. 

To assess the relationship between pollutant concentrations and greenspaces, 

we performed a model selection approach. Model fitting was done using generalized 

linear mixed models with a negative binomial distribution. PM10, PM2.5, NO2 and CO 

were the response variables and we included the time of the day within each monitoring 

station (station: time_of_day), and the day of the week (i.e. Monday, Sunday…) as 

random effects. The predictor variables used were service’s supply (hourly dry 

deposition by green areas), quarantine period (Pre-Quarantine, Quarantine A, and 

Quarantine B), demand (vehicular emissions), configuration of supply (number of 

green area patches), and meteorology data (relative humidity, wind velocity, and air 

temperature). Before running each subset of models, we conducted an exploratory 

data analysis to select only the explanatory variables with low correlation values 

(Pearson´s r < 0.60; Zuur, Ieno, Walker, Saveliev, & Smith, 2009).  

Analyses were performed separately for each pollutant and subgrouping the 

models by spatial scales (250, 500, 750 and 1000 m), to consider different flow 

capacities of the pollutants. Models followed the structure: (1) supply: quarantine + (2) 

demand + (3) meteorological data (wind velocity, relative humidity, or air temperature; 

or combinations of relative humidity or air temperature with wind velocity; See Table 

S7) + (4) configuration of supply (number of patches). Supply, demand and 

meteorological variables were present in every model (See Table S7). In total, we 

considered 8 models by spatial scale (250 m, 500 m, 750 m, 1000 m of radii), for a 

total of 32 models for each pollutant (See Table S8). 

Lastly, we conducted a maximum likelihood model selection procedure, 

considering the second order Akaike’s information criteria, corrected for small sample 

sizes (AICc) (ANDERSON; BURNHAM, 2002). In this approach the lower the AICc, the 

better the model fits the data. All analyses were made with RStudio 1.4.1717, Fragstats 

v4.2.1 and ArcGIS 10.5. 
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Table 2. Parameters and data sources used to evaluate each of the variables present in  

the models. 

Variable Parameters Data Source 

Supply  Green cover (m2) 
 

 Enhance vegetation index 
(EVI) 
 

 Deposition velocity for 
each pollutant (m/s) 

 
 Daily precipitation  

(0 or 1) 
 

 Geosampa 
 

 EVI index (MOD13Q1) 
 
 

 Deposition velocity 
(Nowak et al.,1998;2013). 
 

 CHIRPS 
 

Demand  Hourly vehicular 
emissions (g/km/h) 
 

 VEIN model 

Configuration of supply 
 
 
Meteorology 
 

 Number of vegetation 
patches (NP) 

 
 Air temperature 
 Relative humidity 
 Wind velocity 
 

 Geosampa 
 
 

 CETESB 
 
 

Air pollution   CO, NO2,  
 PM10, PM2.5 

 CETESB 
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3  RESULTS 

 

3.1  Temporal patterns of pollutants, demand and supply 

During the study period, the pollutants' concentrations varied widely, being 

generally highest in the pre-quarantine and Quarantine B periods; at the moment just 

after the start of the quarantine (A), all concentrations dropped considerably (Figure 

5B & TableS2). The low pollutant concentrations were maintained in the first week of 

quarantine (days 22nd – 28th) but started to increase gradually after this period (days 

29 - 35; Figure 5B), even exceeding pre-quarantine concentrations by the end of April 

- start of May (days 56 – 63; Figure 5B) and extending until the end of our study period.  
 

NO2 and PM10 presented the highest mean values of daily concentrations, 

followed closely by PM2.5, while CO presented the lowest concentrations. Particularly, 

NO2 concentrations exceeded the recommended concentrations by the World Health 

Organization (WHO, 2021) both in periods A and C (25 µg/m3; See Table 3), while 

PM2.5 only exceeded the acceptable concentrations during period C (15 µg/m3). 

PM10 and CO mean daily concentrations were below the acceptable limits in all 

periods (45 µg/m3 and 4 µg/m3, respectively). 

 

Vehicular emissions (demand) also showed a decline in the first week of 

lockdown, particularly in the case of PM10 and CO, and secondarily in the case of 

PM2.5. In contrast, NO2 emissions were low during all the study period. As observed 

with pollutants concentrations, emissions decreasing only lasted a few days (Figure 

5C; days 22-28), and from the beginning of April (Day 32; Figure 5C) all pollutant 

emissions raised to values very close to the pre-quarantine period.  

Finally, mean supply values given by the average hourly pollutant absorption of 

green areas, were higher and similar along the study period for PM2.5 and PM10, 

followed closely by NO2. Meanwhile, CO presented very low supply values (Figure 5D).  
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Table 3. Mean values by quarantine period for each pollutant, along with meteorological variables. 
Air quality guideline (AQG) values established by the OMS (values in bold are above daily air quality 
standards; World Health Organization, 2021). 

 

Period  PM10 
(µg/m3) 

PM2.5 
(µg/m3) 

NO2 
(µg/m) 

CO 
(ppm) 

Relative 
humidity 

(%) 

Wind 
velocity 

(m/h) 

Air 
temperature 

(°C) 

AQG 45.0 25.0 25.0 4.0    

A  22.6 12.0 30.1 0.5 76.5 1.8 21.8 

B  21.4 11.2 22.1 0.4 74.4 1.9 20.1 

C  33.9 18.4 36.1 0.8 70.2 1.6 17.9 
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Figure 5. Mean daily variation in the data for: meteorological variables (TEMP= air temperature, 

UR= relative humidity, VV= wind velocity; A), pollutant concentrations (B), vehicular emissions 
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(C), and potential dry deposition by vegetation (D). Before the dashed black line are the days 

classified as pre-quarantine, between the black and blue dashed line are the days of 

Quarantine A, and after the blue line the days classified as Quarantine B. Supply values of 0 

are from days with precipitation (days without dry deposition). Data in this figure is for the largest 

spatial scale (1000 m), which was the most commonly selected scale in the models. 

 

3.2  Air quality regulation service 

The best models selected (AICc < 2; Table 4) for all pollutants contained the 

interaction of supply with the quarantine period, demand, wind velocity, and relative 

humidity, and some of them additionally included the variable number of patches. The 

best scales of analysis ranged from 500 m to 1000 m, showing that interactions 

between supply and demand areas occur over wide territorial extents. 

In general, meteorological variables had the highest effect on pollutants 

concentrations, followed by demand and supply along the quarantine periods (Figure 

6). Demand (vehicular emissions) had a high positive effect on the observed NO2, CO, 

PM10, and PM2.5 concentrations, respectively. Supply only had a non-significant 

effect for PM2.5 during the Pre-quarantine period (Figure 6C-D). For all other pollutants 

it presented a significant effect, with larger effects for the quarantine A period (Figure 

6A-B & 6E-H). In general, fragmentation (NP) had a positive effect on pollutants 

concentrations, with the exception of PM10, which showed non-significant effects 

(p=0.05). Finally, pollutants scale of dispersion (flow) for all pollutants was of 1000 m, 

except for PM2.5 for which the 500 m was selected. 
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Table 4. Results of the best selected models (ΔAICc ≤2) for each one of the pollutants evaluated. 

 
Pollutant 

(Response 
variable) 

Predictor Variables Scale of 
effect 

AICc ΔAICc df weight 

PM10 (a) 
 
 
 

 
 

PM10 (b) 

Supply: quarantine + 
Vehicular emissions + 

Relative humidity +  
Wind velocity+  

Number of patches 
 

Supply: quarantine + 
Vehicular emissions + 

Relative humidity+ 
 Wind velocity 

 

1000 m 
 
 
 
 
 

1000 m 
 
 

157678.2 
 
 
 
 
 

157679.0 

0.0 
 
 
 
 
 

0.8 

12 
 
 
 
 
 

11 

0.582 
 
 
 
 
 

0.390 

PM2.5 (a) 
 
 
 
 

PM2.5(b) 

Supply: quarantine + 
Vehicular emissions + 

Relative humidity +  
Wind velocity 

 
Supply: quarantine + 
Vehicular emissions + 

Relative humidity +  
Wind velocity +  

Number of patches 
 

500 m 
 
 
 
 

500 m 
 
 

122553.1 
 
 
 
 

122554.1 

0.0 
 
 
 
 

1.0 

11 
 
 
 
 

12 

0.402 
 
 
 
 

0.245 

NO2 (a) 
 
 
 
 

NO2 (b) 

Supply: quarantine + 
Vehicular emissions + 

Relative humidity + 
 Wind velocity 

 
Supply: quarantine + 
Vehicular emissions + 

Relative humidity + 
 Wind velocity +  

Number of patches 
 

1000 m 
 
 
 
 

1000 m 

106328.8 
 
 
 
 

106330.5 
 

0.0 
 
 
 
 

1.6 
 
 

13 
 
 
 
 

14 

0.69 
 
 
 
 

0.31 
 
 

CO (a) 
 
 
 
 

CO (b) 

Supply: quarantine + 
Vehicular emissions + 

Relative humidity + 
 Wind velocity 

 
Supply: quarantine + 
Vehicular emissions +  

Relative humidity + 
 Wind velocity +  

Number of patches 

1000 m 
 
 
 
 

1000 m 

65979.2 
 
 
 
 

65980.7 
 

0.0 
 
 
 
 

1.5 

13 
 
 
 
 

14 

0.68 
 
 
 
 

0.32 
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Figure 6. Parameter estimates of the variables present in the two best selected models (ΔAICc ≤2) 

for PM10 (A-B), PM2.5 (C-D), NO2 (E-F) and CO (G-H). Positive effects are shown in blue, while 

negative effects are shown in red. Coefficients whose confidence interval (horizontal lines) crosses 

the zero line are not significant. Demand= vehicular emissions, NP= number of patches, Supply: 

Pre= Effect of supply before quarantine, Supply: QA= effect of supply during quarantine A, Supply: 

QB = effect of supply during Quarantine B, WV = Wind velocity, RU=relative humidity. 
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3.2.1 PM10 

Two models were equally plausible (ΔAICc ≤2) to explain the concentrations of 

PM10, both at the spatial scale of 1000 m. Both models contained the variables: supply 

by quarantine period, demand, wind velocity, and relative humidity; the best model 

additionally included the variable number of patches (Table 4). In general, number of 

patches (non-significant; p=0.05), supply by quarantine period, wind velocity, and 

relative humidity, had a negative effect on PM10 concentrations, while demand 

presented a positive effect over the response variable. According to our results, the 

variables with the highest effect to explain the observed patterns were wind velocity (-

0.284), relative humidity (-0.265), demand (0.101), number of patches (-0.065), and 

supply during quarantine A (-0.060; Table 5). 

Our results also showed that an increase in 1 m/h of wind velocity could result 

in a decrease of 6.3 µg/m3/h of PM10, while an increase of 20% in air humidity could 

result in a reduction of 6.0 µg/m3/h in the concentration of this pollutant. Concerning 

the demand, an increase in 29.0 g/km2/h in vehicle emissions could result in an 

increment of 2.5 µg/m3/h of PM10 concentrations. Having an extra 23 ha of tree cover 

(supply) could have an effect of decreasing 0.5 µg/m3/h of PM10 during the pre-

quarantine period, 1.5 µg/m3/h during the quarantine period A, and 0.46 µg/m3/h 

during the quarantine B period. Finally, an increase of 33% in fragmentation (number 

of patches) could result in a decrease of 1.5 µg/m3/h on the pollutant air concentrations. 

3.2.2  PM 2.5 

Two models at the spatial scale of 500 m were equally plausible (ΔAICc ≤2) to 

explain PM2.5 concentrations. Both models included the variables: supply by 

quarantine period, demand, wind velocity and relative humidity; the second model 

additionally included the variable number of patches (Table 4). In general, the variables 

supply during quarantine A, supply during quarantine B, wind velocity, and relative 

humidity had a negative effect on PM2.5 concentrations, while demand and number of 

patches (fragmentation) presented positive effects. For this pollutant, supply during 

pre-quarantine period also had a negative but non-significant effect (p >0.05).  

According to our results, the variables with the highest effect to explain the observed 

patterns were wind velocity (-0.370), relative humidity (-0.165), demand (0.079), supply 

during quarantine B (-0.033) and supply during quarantine A (-0.027; Table 5).  
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Our models indicated that by increasing in 1 m/h the wind velocity could result 

in a reduction of 4 µg/m3/h of PM.5, and by increasing in 17% the air humidity could 

reduce in 1.96 µg/m3/h in the concentrations of this pollutant. An increase in 11 

g/km2/h in the vehicle emissions also showed an increment of 1.1 µg/m3/h in the 

PM2.5 concentrations, while having an extra 15.7 ha of tree cover (supply) could 

decrease in 0.006 µg/m3/h of PM2.5 during the pre-quarantine period, 0.34 µg/m3/h 

during the quarantine period A, and 0.43 µg/m3/h during the quarantine B period. 

 

Table 5: Slope and Standard Error (±SE) of every predictor variable present in the best models 

(∆AICc ≤ 2) selected to explain pollutant concentrations of PM10 and PM2.5.  

 

 

  

 PM10 PM2.5 

Predictor variables Slope 
(±SE) Slope 

 
(±SE) 

WV 
-0.284 

 
0.005 -0.370 

 
0.006 

RH 
 

-0.265 
 

 
0.006 

 

 
-0.165 

 

 
0.007 

Demand(1000) 
 

0.101 
 

 
0.008 

 
 

 

Demand(500)  
 0.079 

 
0.010 

NP(1000) 
 

-0.065 
 

 
0.036 

 

 
 

 

Supply(1000):Pre 
 

-0.020 
 

 
0.009 

 
 

 

Supply(500):Pre  
  

-0.000 
 

 
0.012 

Supply(1000):QA 
 

-0.060 
 

 
0.008 

 
 

 

Supply(500):QA  
 -0.027 

 
0.011 

Supply(1000):QB 
 

-0.018 
 

 
0.009 

 
 

 

Supply(500):QB  
 -0.033 

 
0.012 
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3.2.3  NO2 

Two models were equally plausible (ΔAICc ≤2) to explain NO2 concentrations, 

both at the spatial scale of 1000 m. Both models contained the variables:  supply by 

quarantine period, demand, wind velocity, and relative humidity; the second model 

additionally included the variable number of patches (Table 4). In general, supply by 

quarantine period, wind velocity, and relative humidity had a negative effect on the 

response variable, while demand and number of patches had a positive effect. 

According to our results, the variables with the highest effect to explain the observed 

patterns were wind velocity (-0.353), demand (0.214), relative humidity (-0.128), and 

supply during quarantine A (-0.101; Table 6). 

Our models also indicated that by increasing in 1 m/h the wind velocity, NO2 

could present reductions of 7.52 µg/m3, while an increase of 17% in the relative 

humidity could reduce it by 3.0 µg/m3. For the demand, an increase in 0,7 g/km2/h in 

the emissions of the pollutant could result in an increase of 6.2 µg/m3 in its 

concentrations, while having an extra 32 ha of tree cover (supply) could decrease in 

2.43 µg/m3 its concentrations during the quarantine A period, and in 1.49 µg/m3 during 

the periods of higher demand (pre-quarantine and quarantine B). 

3.2.4  CO 

Two models were equally plausible (ΔAICc ≤2) to explain the concentrations of 

the pollutant, with the best spatial scale selected being the 1000 m. Both models 

included the variables: supply by quarantine period, demand, wind velocity and relative 

humidity; the second model additionally included the variable number of patches. In 

general, supply by quarantine period, wind velocity, and relative humidity had a 

negative effect on CO concentrations, while demand and number of patches presented 

positive effects. According to our results, the variables with the highest effect to explain 

the observed patterns were wind velocity (-0.402), demand (0.200), supply during pre-

quarantine (-0.140), and supply during quarantine B (-0.126; Table 6). 

Our models also suggest that an increase in 1.6 m/h in wind speed could 

decrease in 0.11 ppm of CO, while an increase in 18% of relative humidity could result 

in a reduction in 0.01 ppm in pollutant concentrations. By raising in 12 g/km2/h in the 

pollutant emissions could also increase its concentrations by 0.07 ppm, while an extra 
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45 ha of tree cover (supply) could result in a decrease of 0.045 ppm during the pre-

quarantine, 0.025 ppm during the quarantine A period and 0.041 ppm during the 

quarantine B period. 

 

 

 

3.3 Effects of quarantine on air regulation service 

We found differences in air pollutants concentrations among the three periods 

evaluated (p<0.05) through the ANOVA test, which were confirmed by the post-hoc 

test (Tukey test; p<0.05). 

Our results showed that the direction and strength of the effect of the supply on 

pollutants concentration were depended on variations in the demand (pollutant 

emissions) caused by the COVID-19’s quarantine. The increase in the strength of the 

negative effect of supply during the first days of the quarantine period (except for CO), 

Table 6: Slope and Standard Error (±SE) of every predictor variable present in the best models 

(∆AICc ≤ 2) selected to explain pollutant concentrations of NO2 and CO. 

 NO2 CO 

Predictor Variables Slope (±SE) Slope (±SE) 

WV 
 

-0.353 
 

 
0.004 

 
-0.402 0.005 

RH 
 

-0.128 0.005 
 

-0.048 
 

0.006 

Demand (1000) 
 

 
0.214 0.007 

 
0.200 

 
0.008 

 
NP(1000) 

 
0.093 

 
0.142 

 
0.081 

 
0.091 

 
Supply(1000):Pre 

 
-0.064 

 
0.008 

 
-0.140 

 

0.010 
 

Supply(1000):QA 
 

-0.101 
 

0.009 
 

-0.074 
 

0.010 

 
Supply(1000):QB 

 

 
-0.064 

 
0.008 

 
-0.126 

 

 
0.010 
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suggests that the supply service for PM10, PM2.5 and NO2 is enhance with a reduction 

in the demand (pollutants emissions).  

When comparing the effects of supply in the three periods analyzed, all 

pollutants concentrations tended to decrease with higher supply values (amount of 

green areas), and this effect was intensified during the period of lower demand 

(quarantine A; green line in Figure 7). This effect was stronger for PM10 and NO2.  For 

PM2.5, there was almost no effect of supply before the quarantine (red line; Figure 7 

B), while PM10, NO2, and CO presented similar negative effects of supply during pre-

quarantine and quarantine B periods (Figure 7 A-C-D). Finally, CO presented a slightly 

reduced effect of supply during quarantine A, probably because of its low deposition 

rate in vegetation along with the reduced concentrations of the pollutant during this period. 

 

 

 

Figure 7. Effects of supply on pollutants concentrations depending on quarantine time. Periods 

were defined as: A= Pre-quarantine; B=First part of quarantine (more restrictive); C= Last part 

of quarantine (more flexible). PM10, NO2 and CO values of supply are higher since their spatial 

scale is of 1000 m, while PM2.5’s is of 500 m.  
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4 DISCUSSION 

 

To our knowledge, this study is the first to quantify the potential effects of urban 

green areas configuration on the air quality regulation service in tropical areas, using 

an approach of supply, demand and flow and during an atypical time (COVID-19’s 

quarantine). Our results demonstrate that an increase in the amount of urban green 

areas and a reduction in vehicular emissions could contribute to air quality amelioration 

(especially of NO2 and PM10). In addition, our results point to the existence of a 

synergetic effect between the reductions in vehicular emissions and an increase in the 

provision of the service during the initial quarantine period, which may double the effect 

of supply reducing NO2 concentrations and triple the reduction on PM10 

concentrations, compared to pre-quarantine time. Configuration of green areas (e.g., 

fragmentation) was not a significant factor for air pollution regulation. However, higher 

number of vegetation patches was related to higher concentrations of PM2.5, NO2 and 

CO, and to lower PM10 concentrations. Considering the overall trend of fragmentation 

impairing air quality regulation, we suggest the maintenance or expansion of existing 

green areas in cities for the mitigation of air pollution, especially in areas with a distance 

up to 1000 meters of the pollution source, since spatial scales of 500 and 1000 m of 

radii explained better pollutants concentrations. Higher wind velocities and relative 

humidity were also related with lower pollutants concentrations. 

Vehicular emissions is one of the main contributors of air quality deterioration 

worldwide (ANENBERG et al., 2015; FARIDI et al., 2021; KUMAR et al., 2021), 

negatively impacting human health (KIM; KABIR; KABIR, 2015; LAUMBACH; KIPEN, 

2012; SONG et al., 2019; WORLD HEALTH ORGANIZATION, 2017; ZHANG; 

BATTERMAN, 2013). Traffic related emissions alone are responsible for 11.7% of 

global PM 2.5 and ozone mortality (ANENBERG et al., 2015), and in tropical growing 

cities constitute the main causes of premature mortality (ANDRADE et al., 2012, 2017; 

VOHRA et al., 2022).   

Our results showed that a reduction in vehicle emissions could be responsible 

for significant air quality improvement, corroborating other studies (DEBONE; COSTA; 

MIRAGLIA, 2020; FREITAS et al., 2020; FU; PURVIS-ROBERTS; WILLIAMS, 2020; 

KRECL et al., 2020; NAKADA; URBAN, 2020). According to our model, this effect was 
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stronger for NO2 and CO concentrations. A similar result was also found in São Paulo 

(Debone et al., 2020; Krecl, Targino, Oukawa, & Casino Junuior, 2020; Nakada & 

Urban, 2020), where vehicular emissions contributed to NOx and CO reductions during 

the COVID-19 quarantine period. 

The relationship between the presence and quantity of green areas and air 

quality improvement was established previously, even for tropical areas (ARROYAVE-

MAYA et al., 2019; BONILLA-BEDOYA et al., 2021; JIM; CHEN, 2008; REYNOLDS et 

al., 2017; RIBEIRO et al., 2021; VAILSHERY; JAGANMOHAN; NAGENDRA, 2013). 

In Asia, for example, areas with higher tree covers presented increased pollutant 

removal (JIM; CHEN, 2008), while in South America, the presence of urban trees could 

capture almost 5000 kg/m2/year of pollutants (RIBEIRO et al., 2021). However, a 

novelty of our study is that this effect can be exacerbated by reduction in demand 

(pollutant emissions), and may also be affected by the configuration of these green areas. 

 

Here we show in an unprecedented way the effects of quarantine on the 

provision of air quality regulation service. We observed an intensification of the service 

in the period of less demand (less vehicular emissions/quarantine) for almost all 

pollutants (except CO), which resulted in an increase in the provision of the service in 

comparison with periods with more demand (overdemand; periods before and after 

quarantine). These variations in service provision may be explained by a decreasing 

in ecological pressures (pollutant emissions), since it is documented that the natural 

capacity and delivery of a service can be affected when there is an excess of demand 

(SCHEFFER; CARPENTER, 2003; VILLAMAGNA; ANGERMEIER; BENNETT, 2013; 

XU et al., 2022).  

 

In addition, the observed increased in service provision varied among the 

different pollutants analyzed. PM10 presented the highest service effect during the first 

part of quarantine (getting to triple pollutant’s concentration reduction) . This is partially 

related to its high deposition rate in vegetation (NOWAK et al., 1998, 2013), which is 

higher than PM2.5’s because larger particles are deposited more quickly than smaller 

particles (MCPHERSON; NOWAK; ROWNTREE, 1994). The lack of reduction in 

PM2.5 concentrations during pre-quarantine, even in areas with high values of supply, 

which contrasts with its strong reduction during quarantine, shows how much 

overdemand affected the provision of regulation service for this pollutant. This might 
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indicate a potential limit/threshold for the deposition of pollutants in vegetation, due to 

increased ecological pressures (overdemand) that affect the service’s capacity by 

augmenting the requirement of ecological processes needed to meet this extra 

demand (VILLAMAGNA; ANGERMEIER; BENNETT, 2013). Furthermore, the 

enhancement of service for PM2.5 during the last part of quarantine could be due to 

temperature decline, because: (i) high temperatures affect the formation of PM2.5 by 

promoting photochemical reactions with precursors (CHEN et al., 2017; WANG; 

OGAWA, 2015), and the period B of quarantine presented lower temperatures, which 

could have led to a diminish in concentrations and therefore to less ecological pressure 

for the delivery of the service; (ii) dry deposition of particles was found to be more 

effective at lower temperatures (CHEN et al., 2017).  

 

In the case of gaseous pollutants, service regulation had a high effect on NO2, 

probably because NO2 is captured within leaf stomata and is converted in nitrate ions 

that participate in protein build up (CIESLIK; OMASA; PAOLETTI, 2009; 

MCPHERSON; NOWAK; ROWNTREE, 1994), and thus is not resuspended as PM10 

and PM2.5. In addition, the service effect on this pollutant was strongly enhanced 

(doubled) during the first part of quarantine, indicating that vehicular emissions in 

normal conditions (accountable for nearly 65% of NOx emissions; Companhia 

Ambiental do Estado de São Paulo, 2020) can lead to an overdemand situation. With 

the reduction in mobility caused by social distance, we saw experimentally how 

demand affects the potential service that could be offered by green areas 

(VILLAMAGNA; ANGERMEIER; BENNETT, 2013). Lastly, the slightly higher effect of 

supply for CO during periods of more demand, could be due to its low deposition rate 

(0.002 m s-1), which probably increased a little when there were more concentrations 

of the pollutant in the air. Other modelling studies also found relationships between the 

decline of PM, CO, NO2 and the increase of greenspaces (BONILLA-BEDOYA et al., 

2021; PUGH et al., 2012; ZOU et al., 2016). 

 

The configuration of green areas (fragmentation) appeared to be not as efficient 

as the amount of tree cover for air pollutant regulation, being not significant.  Our 

results indicated a potential negative effect on air quality service, with larger 

fragmentation being related with higher concentrations of PM2.5, NO2 and CO. This 

could indicate that air quality regulation services are maximized by urban green areas 

that have lower fragmentation. The negative effect of fragmentation on air quality was 
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found for all pollutants with the exception of PM10. A hypothesis for this result is that 

edge areas could enhance PM10 flow and the exchange between greenspaces and 

the neighboring patches, increasing dry deposition (Wu et al., 2015). Furthermore, 

PM10 is a pollutant of big size which allows it to stay in the superficies where it 

deposits. In that way a larger fragmentation of urban greenspaces could be serving as 

nearby sinks for PM10 sources (streets). 

Our results for NO2, CO and PM2.5, are consistent with previous findings that 

showed that minimizing fragmentation contributes to a reduction in air pollution  

(Jaafari, Shabani, Moeinaddini, Danehkar, & Sakieh, 2020; Mears, Brindley, 

Jorgensen, Ersoy, & Maheswaran, 2019; Shen & Lung, 2016, 2017). This may be 

because smaller patches are highly vulnerable to loss of species and functions 

(MILLENNIUM ECOSYSTEM ASSESSMENT, 2005), causing the weakened of 

provisioning, regulating, supporting, and cultural ecosystem services in rural and urban 

areas (JIANG et al., 2022; QI et al., 2013; YUSHANJIANG et al., 2018) 

However, other studies found lower PM2.5 concentrations associated with more 

even and scattered greenspaces patches (Shi et al., 2019; Wu et al., 2015). Therefore, 

the literature shows contrasting results about the effect of greenspace’s fragmentation 

over air quality. Here, despite fragmentation not having a significant effect, it was 

selected in our model selection, indicating that overall, less fragmented areas are able 

to maximize the provision of the air regulation service. In the future, efforts should  

be made to increase data collection in a wider range of urban conditions and study 

scales to obtain clearer evidence for the adverse effect of fragmentation on the air 

regulation service. 

Our results also indicate that air quality regulation service can occur in areas 

with a distance up to 1000 m from the pollution source. Our multiscale approach 

indicated that flow may be occurring in a scale of 500 m for PM2.5, and of 1000 m for 

NO2, CO and PM10, which may be related to meteorological variables. Wind velocity, 

which affects the transports air pollutants, presented positive effects in our models, 

suggesting that this variable can lead to a dispersion of the pollutants by kilometers 

(SEO et al., 2018), reducing locally pollutants concentrations (IRGA; BURCHETT; 

TORPY, 2015; YANG et al., 2020; ZHANG et al., 2015), and potentially also affecting 

the scale of effect of service provision (LIU; FAN; DING, 2016). 
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However, the efficiency of flow also depends on the presence of obstacles which 

can slowdown or prevent the upward movement of pollutants by wind (buildings, 

topography, street canyons; Liu et al., 2016; Pugh et al., 2012; Ulpiani, Anne, Di, & 

Maharaj, 2022) making difficult its arrival to vegetation and favoring their accumulation. 

Relative humidity also showed a negative effect on pollutants concentrations in our 

and in other studies (HART et al., 2021; KAYES et al., 2019; LI et al., 2014). This is 

explained by the fact that higher relative humidity favors dry deposition by increasing 

particle size and thus, rising its deposition rate (MOHAN, 2016; WU et al., 2018). 

 

It is worth mentioning that our estimations have limitations since we calculated 

pollutant absorption with average deposition rates found for studies made in the 

northern hemisphere, which count with a different plant composition. This estimates 

also assume an average wind velocity within their calculations of deposition, and 

although we include wind velocity, air humidity and air temperature as covariates, the 

average rates used might be underestimating the regulation service offered by urban 

green areas. 
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Concluding remarks and implications 

 

This study provides evidence that green areas contribute to the amelioration of 

air quality in the city of São Paulo. In particular, we provide new evidence that the 

provision of air regulation service is enhanced by a greater amount of green areas in 

a less fragmented condition and by decreases in demand (pollutants emissions). Since 

the flows of pollutants can be extensive, beyond 1000 m, the maintenance of green 

areas, even away from the sources of pollution, can be relevant to the control of 

pollution as a whole. 

Our results suggest that it is important to protect large green areas inside or 

nearby urban areas. In the case of São Paulo city, the protection of the already existing 

big green areas located at the extremes of the city can significantly contribute to the 

improvement of air quality in the city, and thus to the prevention of pollution-related 

diseases. Even though the more fragmented configuration is not ideal, the increase of 

green areas dispersed throughout the city acts as an increase in supply, which 

significantly affects the reduction of pollution. Finally, the provision of air quality 

regulation service can increase up to three times more in periods of reduced demand. 

So, in order to maintain pollutants concentrations within acceptable limits for human 

health, the ideal would be to both reduce vehicular emissions (demand) and increment 

the amount of green areas (supply) within the city.  

  

 

 

 

 

  



40 
 

References 

 

AGUILERA, I.; SUNYER, J.; FERNÁNDEZ-PATIER, R.; HOEK, G.; AGUIRRE-ALFARO, A.; 
MELIEFSTE, K.; BOMBOI-MINGARRO, M. T.; NIEUWENHUIJSEN, M. J.; HERCE-
GARRALETA, D.; BRUNEKREEF, B. Estimation of outdoor NO x, NO2, and BTEX exposure 
in a cohort of pregnant women using land use regression modeling. Environmental science 
& technology, v. 42, n. 3, p. 815–821, 2008.  

AMATO-LOURENÇO, L. F.; MOREIRA, T. C. L.; ARANTES, B. L. D.; SILVA FILHO, D. F. D.; 
MAUAD, T. Metrópoles, cobertura vegetal, áreas verdes e saúde. Estudos avançados, v. 30, 
n. 86, p. 113–130, 2016.  

ANDERSON, D. R.; BURNHAM, K. P. Avoiding pitfalls when using information-theoretic 
methods. The Journal of wildlife management, p. 912–918, 2002.  

ANDRADE, M. D. F.; DE MIRANDA, R. M.; FORNARO, A.; KERR, A.; OYAMA, B.; DE 
ANDRE, P. A.; SALDIVA, P. Vehicle emissions and PM 2.5 mass concentrations in six 
Brazilian cities. Air Quality, Atmosphere & Health, v. 5, n. 1, p. 79–88, 2012.  

ANDRADE, M. D. F.; KUMAR, P.; DIAS DE FREITAS, E.; YNOUE, R.; MARTINS, J.; 
MARTINS, L. D.; NOGUEIRA, T.; PEREZ-MARTINEZ, P.; DE MIRANDA, R. M.; 
ALBUQUERQUE, T.; TEIXEIRA, F. L.; OYAMA, B.; ZHANG, Y. Air quality in the megacity of 
São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric 
Environment, v. 159, p. 66–82, 2017.  

ANENBERG, S.; MILLER, J.; HENZE, D.; MINJARES, R. A global snapshot of the air pollution-
related health impacts of transportation sector emissions in 2010 and 2015. Washington, DC: 
International Council on Clean Transportation (ICCT), 2015.  

ARROYAVE-MAYA, M. del P.; POSADA-POSADA, M. I.; NOWAK, D. J.; HOEHN, R. E. 
Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá Air 
pollution removal by the urban forest in the Aburra Valley. Colombia Forestal, v. 22, n. 1,  
p. 5–16, 2019.  

BARÓ, F.; PALOMO, I.; ZULIAN, G.; VIZCAINO, P.; HAASE, D.; GÓMEZ-BAGGETHUN, E. 
Mapping ecosystem service capacity , flow and demand for landscape and urban planning : A 
case study in the Barcelona metropolitan region. Land Use Policy, v. 57, p. 405–417, 2016.  

BECKETT, K. P.; FREER‐SMITH, P. H.; TAYLOR, G. Particulate pollution capture by urban 
trees: effect of species and windspeed. Global change biology, v. 6, p. 995–1003, 2000.  

BONILLA-BEDOYA, S.; ZALAKEVICIUTE, R.; MEJÍA, D.; DURANGO-CORDERO, J.; 
MOLINA, J. R.; MACEDO-PEZZOPANE, J. E.; HERRERA, M. Á. Spatiotemporal variation of 
forest cover and its relation to air quality in urban Andean socio-ecological systems. Urban 
Forestry & Urban Greening, v. 59, n. February, 2021.  

CHEN, L.; LIU, C.; ZHANG, L.; ZOU, R.; ZHANG, Z. Variation in tree species ability to capture 
and retain airborne fine particulate matter (PM2.5). Scientific Reports, v. 7, n. April 2016,  
p. 1–11, 2017.  

CHEN, L.; PENG, S.; LIU, J.; HOU, Q. Dry deposition velocity of total suspended particles and 
meteorological influence in four locations in Guangzhou , China. Journal of Environmental 
Sciences, v. 24, n. 4, p. 632–639, 2012.  

CHOURABI, H.; GIL-GARCIA, J. R.; PARDO, T. A.; SCHOLL, H. J.; WALKER, S.; NAHON, K. 
Understanding Smart Cities : An Integrative Framework. In: 2012 45th Hawaii International 
Conference on System Sciences, 2012, [...]. IEEE, 2012. p. 2289–2297.  



41 
 

CIESLIK, S.; OMASA, K.; PAOLETTI, E. Why and how terrestrial plants exchange gases with 
air. Plant Biology, v. 11, n. 1948, p. 24–34, 2009.  

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO. Qualidade do ar no estado de 
São Paulo. [s.l: s.n.]. Disponível em: <https://cetesb.sp.gov.br/ar/publicacoes-relatorios/>. 

COVID-19: Relatórios de mobilidade da comunidade. Disponível em: <https://www.google. 
com/covid19/mobility/>. Acesso em: 14 set. 2022.  

DEBONE, D.; COSTA, M. V; MIRAGLIA, S. G. E. K. 90 days of COVID-19 social distancing 
and its impacts on air quality and health in São Paulo, Brazil. Sustainability, v. 12, n. 18,  
p. 1–16, 2020.  

EEFTENS, M.; BEELEN, R.; HOOGH, K. De; BELLANDER, T.; CESARONI, G.; CIRACH, M.; 
DECLERCQ, C.; DE, A.; DONS, E.; NAZELLE, A. De; DIMAKOPOULOU, K.; ERIKSEN, K.; 
FISCHER, P.; GALASSI, C.; GRAZ, R.; HEINRICH, J.; HO, B.; JERRETT, M.; KEIDEL, D.; 
KOREK, M.; LANKI, T.; LINDLEY, S.; MADSEN, C.; MO, A.; NA, G.; NIEUWENHUIJSEN, M.; 
NONNEMACHER, M.; PEDELI, X.; RAASCHOU-NIELSEN, O.; PATELAROU, E.; QUASS, U.; 
RANZI, Я. A.; SCHINDLER, Å. C.; STEMPFELET, M.; STEPHANOU, E.; SUGIRI, D.; TSAI, 
M.; YLI-TUOMI, T.; VARRO, J.; VIENNEAU, D.; KLOT, S. Von; WOLF, K.; BRUNEKREEF, B.; 
HOEK, G. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 
and PM coarse in 20 European study areas; results of the ESCAPE project. Environmental 
science & technology, v. 46, n. 20, p. 11195–11205, 2012.  

FARIDI, S.; YOUSEFIAN, F.; JANJANI, H.; NIAZI, S.; AZIMI, F.; NADDAFI, K.; SADEGH, M. 
The effect of COVID-19 pandemic on human mobility and ambient air quality around the world: 
a systematic review. Urban Climate, v. 38, n. May, p. 100888, 2021.  

FREITAS, E. D.; IBARRA-ESPINOSA, S. A.; GAVIDIA-CALDERÓN, M. E.; REHBEIN, A.; 
RAFEE, S. A. A.; MARTINS, J. A.; MARTINS, L. D.; SANTOS, U. P.; NING, M. F.; ANDRADE, 
M. F.; TRINDADE, R. I. F. Mobility restrictions and air quality under COVID-19 pandemic in 
São Paulo, Brazil. n. April, p. 1–14, 2020.  

FU, F.; PURVIS-ROBERTS, K. L.; WILLIAMS, B. Impact of the COVID-19 pandemic lockdown on 
air pollution in 20 major cities around the world. Atmosphere, v. 11, n. 2, 2020.  

GODOY, S. M.; MORES, P. L.; CRUZ, A. S. M. S.; SCENNA, N. J. Assessment of impact 
distances for particulate matter dispersion : A stochastic approach. Reliability Engineering & 
System Safety, v. 94, n. 10, p. 1658–1665, 2009.  

HART, M. A.; MAHARAJ, A. M.; DI VIRGILIO, G.; ULPIANI, G. Schools Weather and Air 
Quality (SWAQ) –Metadata – Urban Network, Sydney (NSW). 1 jul. 2021. Disponível em: 
<https://doi.org/10.5281/zenodo.5016296#.YyJyfozeKnE.mendeley>. Acesso em: 15 set. 
2022. 

HOEK, G.; BEELEN, R.; HOOGH, K. De; VIENNEAU, D.; GULLIVER, J.; FISCHER, P.; 
BRIGGS, D. A review of land-use regression models to assess spatial variation of outdoor air 
pollution. Atmospheric Environment, v. 42, p. 7561–7578, 2008.  

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. IBGE | Cidades@ | São Paulo 
| São Paulo | Panorama. Disponível em: <https://cidades.ibge.gov.br/brasil/sp/sao-
paulo/panorama>. Acesso em: 14 set. 2022.  

 

  



42 
 

IPCC. Climate change 2014 mitigation of climate change. Contribution of working group 
III to the fifth sssessment report of the intergovernmental panel on climate change.  
[s.l: s.n.].  

IRGA, P. J.; BURCHETT, M. D.; TORPY, F. R. Does urban forestry have a quantitative effect 
on ambient air quality in an urban environment ? Atmospheric Environment, v. 120, p. 173–
181, 2015.  

JAAFARI, S.; SHABANI, A. A.; MOEINADDINI, M.; DANEHKAR, A.; SAKIEH, Y. Applying 
landscape metrics and structural equation modeling to predict the effect of urban green space 
on air pollution and respiratory mortality in Tehran. Environmental Monitoring and 
Assessment, v. 192, n. 7, p. 1–15, 2020.  

JIANG, M.; JIANG, C.; HUANG, W.; CHEN, W.; GONG, Q.; YANG, J.; ZHAO, Y.; ZHUANG, 
C.; WANG, J.; YANG, Z. Quantifying the supply-demand balance of ecosystem services and 
identifying its spatial determinants : A case study of ecosystem restoration hotspot in 
Southwest China. Ecological Engineering, v. 174, n. April 2021, p. 106472, 2022.  

JIM, C. Y.; CHEN, W. Y. Assessing the ecosystem service of air pollutant removal by urban 
trees in Guangzhou (China). Journal of environmental management, v. 88, n. 4, p. 665–
676, 2008.  

KAMPA, M.; CASTANAS, E. Human health effects of air pollution. Environmental pollution, 
v. 151, n. 2, p. 362–367, 2008.  

KAYES, I.; SHAHRIAR, S. A.; HASAN, K.; AKHTER, M.; KABIR, M. M.; SALAM, M. A. The 
relationships between meteorological parameters and air pollutants in an urban environment. 
Global Journal of Environmental Science and Management, v. 5, n. 3, p. 265–278, 2019.  

KIM, K.; KABIR, E.; KABIR, S. A review on the human health impact of airborne particulate 
matter. Environment International, v. 74, p. 136–143, 2015.  

KRECL, P.; TARGINO, A. C.; OUKAWA, G. Y.; CASINO JUNUIOR, R. P. Drop in urban air 
pollution from COVID-19 pandemic: Policy implications for the megacity of São Paulo. 
Environmental Pollution, v. 265, n. January, p. 114883, 2020.  

KRZYŻANOWSKI, M.; KUNA-DIBBERT, B.; SCHNEIDER, J. (Eds). Health effects of 
transport-related air pollution. [s.l.] WHO Regional Office Europe, 2005. https://news.ge/ 
anakliis-porti-aris-qveynis-momava p. 

KUMAR, P. G.; LEKHANA, P.; TEJASWI, M.; CHANDRAKALA, S. Effects of vehicular 
emissions on the urban environment- a state of the art. Materials Today: Proceedings, v. 45, 
p. 6314–6320, 2021.  

LAUMBACH, R. J.; KIPEN, H. M. Respiratory health effects of air pollution: update on biomass 
smoke and traffic pollution. Journal of allergy and clinical immunology, v. 129, n. 1,  
p. 3–13, 2012.  

LENZEN, M.; LI, M.; ARUNIMA, M.; POMPONI, F.; SUN, Y.; WIEDMANN, T.; FATURAY, F.; 
FRY, J.; GALLEGO, B.; GESCHKE, A. Global socio-economic losses and environmental gains 
from the Coronavirus pandemic. PLoS ONE, v. 15, n. 7, p. 1–13, 2020.  

LI, L.; QIAN, J.; OU, C.-Q.; ZHOU, Y.-X.; GUO, C.; GUO, Y. Spatial and temporal analysis of 
air pollution index and its timescale-dependent relationship with meteorological factors in 
Guangzhou , China , 2001 - 2011. Environmental Pollution, v. 190, p. 75–81, 2014.  

LIU, H. M.; FAN, Y. L.; DING, S. Y. Research progress of ecosystem service flow. The Journal 
of Applied Ecology, v. 27, n. 7, p. 2161–2171, 2016.  

 



43 
 

LIVESLEY, S. J.; MCPHERSON, E. G.; CALFAPIETRA, C. The urban forest and ecosystem 
services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. 
Journal of environmental quality, v. 45, n. 1, p. 119–124, 2016.  

LOH, H. C.; LOOI, I.; CH’NG, A. S.; GOH, K. W.; MING, L. C.; ANG, K. H. Positive global 
environmental impacts of the COVID-19 pandemic lockdown : a review. GeoJournal, v. 6,  
p. 1–13, 2021.  

MCPHERSON, E. G.; NOWAK, D. J.; ROWNTREE, R. A. Chicago’s urban forest ecosystem: 
results of the Chicago Urban Forest Climate Project (Vol. 186). [s.l: s.n.].  

MEARS, M.; BRINDLEY, P.; JORGENSEN, A.; ERSOY, E.; MAHESWARAN, R. Greenspace 
spatial characteristics and human health in an urban environment : An epidemiological  
study using landscape metrics in Sheffield , UK. Ecological Indicators, v. 106, n. June,  
p. 105464, 2019.  

METZGER, J. P.; VILLARREAL-ROSAS, J.; SUÁREZ-CASTRO, A. F.; LÓPEZ-CUBILLOS, 
S.; GONZÁLEZ-CHAVES, A.; RUNTING, R. K.; HOHLENWERGER, C.; RHODES, J. R. 
Considering landscape-level processes in ecosystem service assessments. Science of The 
Total Environment, v. 796, 2021.  

MILLENNIUM ECOSYSTEM ASSESSMENT, M. E. A. Ecosystems and human well-being. 
Washington, DC: Island press, 2005. 1–96 p. 

MOHAN, S. M. An overview of particulate dry deposition : measuring methods , deposition 
velocity and controlling factors. International journal of environmental science and 
technology, v. 13, p. 387–402, 2016.  

NAKADA, L. Y. K.; URBAN, R. C. COVID-19 pandemic: Impacts on the air quality during the 
partial lockdown in São Paulo state, Brazil. Science of the Total Environment, v. 730,  
p. 139087, 2020.  

NOWAK, D. J.; HIRABAYASHI, S.; BODINE, A.; HOEHN, R. Modeled PM2.5 removal by trees 
in ten U.S. cities and associated health effects. Environmental Pollution, v. 178,  
p. 395–402, 2013.  

NOWAK, D. J.; MCHALE, P.; IBARRA, M.; CRANE, D.; STEVENS, J. C.; LULEY, C. Modeling 
the effects of urban vegetation on air pollution. In: Air pollution modeling and its application 
XII. Boston, MA: Springer, 1998. p. 399–407.  

ODABASI, M.; MUEZZINOGLU, A.; BOZLAKER, A. Ambient concentrations and dry 
deposition fluxes of trace elements in Izmir, Turkey. Atmospheric Environment, v. 36,  
p. 5841–5851, 2002.  

OLENIACZ, R.; BOGACKI, M.; SZULECKA, A.; RZESZUTEK, M.; MAZUR, M. Assessing the 
impact of wind speed and mixing-layer height on air quality in Krakow (Poland) in the years 
2014–2015. Journal of civil engineering, environment and architecture, v. 63, p. 315–342, 
2016.  

PAOLETTI, E.; KARNOSKY, D. F.; PERCY, K. E. Urban trees and air pollution. In: 
KONIJNENDIJK, C. C.; SCHIPPERIJN, J.; HOYER, K. K. Forestry serving urbanised 
societies. IUFRO world series, volume 14. Vienna, Austria: IUFRO Headquarters, 2004.  
p. 407.  

POPESCU, F.; IONEL, I. Anthropogenic air pollution sources. Air quality, p. 1–22, 2010.  

PUGH, T. A. M.; MACKENZIE, A. R.; WHYATT, J. D.; HEWITT, C. N. Effectiveness of green 
infrastructure for improvement of air quality in urban street canyons. Environmental science 
& technology, v. 46, 2012.  



44 
 

QI, Z.; XIN-YUE, Y.; ZHANG, H.; YU, Z.-L. Land fragmentation and variation of ecosystem 
services in the context of rapid urbanization: the case of Taizhou city, China. Stochastic 
environmental research and risk assessment, v. 28, n. 4, p. 843–855, 2013.  

REYNOLDS, C. C.; ESCOBEDO, F. J.; CLERICI, N.; ZEA-CAMAÑO, J. Does “greening” of 
neotropical cities considerably mitigate carbon dioxide emissions? The case of Medellin, 
Colombia. Sustainability, v. 9, n. 5, 2017.  

RIBEIRO, A.; BOLLMANN, H. A.; DE OLIVEIRA, A.; RAKAUSKAS, F.; CORTESE, T.; 
RODRIGUES, M.; QUARESMA, C.; FERREIRA, M. L. The role of tree landscape to reduce effects 
of urban heat islands : a study in two Brazilian cities. Trees, p. 1–14, 2021.  

RIEDIKER, M.; CASCIO, W. E.; GRIGGS, T. R.; HERBST, M. C.; BROMBERG, P. A.; NEAS, 
L.; WILLIAMS, R.; DEVLIN, R. B. Particulate matter exposure in cars is associated with 
cardiovascular effects in healthy young men. American journal of respiratory and critical 
care medicine, v. 169, n. 8, p. 934–940, 2004.  

ROELAND, S.; MORETTI, M.; AMORIM, J. H.; BRANQUINHO, C.; FARES, S.; MORELLI, F.; 
CALFAPIETRA, C. Towards an integrative approach to evaluate the environmental  
ecosystem services provided by urban forest. Journal of Forestry Research, v. 30, n. 6,  
p. 1981–1996, 2019.  

ROY, S.; BYRNE, J.; PICKERING, C. A systematic quantitative review of urban tree benefits , 
costs , and assessment methods across cities in different climatic zones. Urban Forestry & 
Urban Greening, v. 11, n. 4, p. 351–363, 2012.  

SCHEFFER, M.; CARPENTER, S. R. Catastrophic regime shifts in ecosystems : linking theory 
to observation. Trends in ecology & evolution, v. 18, n. 12, p. 648–656, 2003.  

SECRETARIA MUNICIPAL DO VERDE E DO MEIO AMBIENTE. Mapeamento digital da 
cobertura vegetal do município de São Paulo. [s.l: s.n.].  

SEO, J.; PARK, D. R.; KIM, J. Y.; YOUN, D.; LIM, Y. Bin; KIM, Y. Effects of meteorology and 
emissions on urban air quality : a quantitative statistical approach to long-term records ( 1999 
– 2016 ) in Seoul, South Korea. Atmospheric Chemistry and Physics, v. 18, p. 16121–
16137, 2018.  

SHEN, Y.; LUNG, S. C. Can green structure reduce the mortality of cardiovascular diseases ? 
Science of the Total Environment, v. 566, n. 128, p. 1159–1167, 2016.  

SHEN, Y.; LUNG, S. C. Mediation pathways and effects of green structures on respiratory 
mortality via reducing air pollution. Scientific Reports, v. 7, n. January, p. 1–9, 2017.  

SHI, Y.; REN, C.; LAU, K. K.; NG, E. Investigating the influence of urban land use and 
landscape pattern on PM2 .5 spatial variation using mobile monitoring and WUDAPT. 
Landscape and Urban Planning, v. 189, n. April, p. 15–26, 2019.  

SILVA-SÁNCHEZ, S., & JACOBI, P. R. Implementation of riverside parks in the city of São 
Paulo – progress and constraints. Local Environment: The International Journal of Justice 
and Sustainability, v. 21, n. October, p. 65–84, 2014.  

SMITH, L.; MUKERJEE, S.; GONZALES, M.; STALLINGS, C.; NEAS, L.; NORRIS, G.; 
ÖZKAYNAK, H. Use of GIS and ancillary variables to predict volatile organic compound and 
nitrogen dioxide levels at unmonitored locations. Atmospheric Environment, v. 40, n. 20, p. 
3773–3787, 2006.  

SONG, J.; ZHAO, C.; LIN, T.; LI, X.; PRISHCHEPOV, A. V. Spatio-temporal patterns of traffic-
related air pollutant emissions in different urban functional zones estimated by real-time video 
and deep learning technique. Journal of Cleaner Production, v. 238, p. 117881, 2019.  



45 
 

The Global Goals. Disponível em: <https://www.globalgoals.org/goals/11-sustainable-cities-and-
communities/>. Acesso em: 14 set. 2022.  

ULPIANI, G.; ANNE, M.; DI, G.; MAHARAJ, A. M. Urban meteorology and air quality in a rapidly 
growing city: inter-parameter associations and intra-urban heterogeneity. Sustainable Cities 
and Society, v. 77, n. November 2021, p. 103553, 2022.  

VAILSHERY, L. S.; JAGANMOHAN, M.; NAGENDRA, H. Effect of street trees on microclimate 
and air pollution in a tropical city. Urban Forestry & Urban Greening, v. 12, n. 3, p. 408–415, 
2013.  

VILLAMAGNA, A. M.; ANGERMEIER, P. L.; BENNETT, E. M. Capacity , pressure , demand , 
and flow : A conceptual framework for analyzing ecosystem service provision and delivery. 
Ecological Complexity, v. 15, p. 114–121, 2013.  

VOHRA, K.; MARAIS, E. A.; BLOSS, W. J.; SCHWARTZ, J.; MICKLEY, L. J.; DAMME, M. 
Van; CLARISSE, L.; COHEUR, P. Rapid rise in premature mortality due to anthropogenic air 
pollution in fast-growing tropical cities from 2005 to 2018. Science Advances, v. 8, n. April, 
2022.  

WANG, J.; OGAWA, S. Effects of meteorological conditions on PM2.5 concentrations in 
Nagasaki, Japan. International Journal of Environmental Research and Public Health, v. 
12, n. 8, p. 9089–9101, 2015.  

WEAGLE, C. L.; SNIDER, G.; LI, C.; DONKELAAR, A. Van; PHILIP, S.; BISSONNETTE, P.; 
BURKE, J.; JACKSON, J.; LATIMER, R.; STONE, E.; ABBOUD, I.; AKOSHILE, C.; ANH, N. X.; 
BROOK, R.; COHEN, A.; DONG, J.; GIBSON, M. D.; HE, K. B.; HOLBEN, B. N.; KAHN, R.; 
KELLER, C. A. Global sources of fine particulate matter: interpretation of PM2. 5 chemical 
composition observed by SPARTAN using a global chemical transport model. Environmental 
science & technology, v. 52, n. 20, p. 11670–11681, 2018.  

WORLD HEALTH ORGANIZATION. World health statistics 2017: monitoring health for 
the SDGs, Sustainable Development Goals. Geneva: World Health Organization, 2017.  

WORLD HEALTH ORGANIZATION. WHO global air quality guidelines: particulate matter 
(PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 
Executive summary. Geneva: World Health Organization, 2021.  

WU, J. Urban sustainability : an inevitable goal of landscape. Landscape ecology, v. 25, p. 
1–4, 2010.  

WU, J.; XIE, W.; LI, W.; LI, J. Effects of urban landscape pattern on PM2. 5 pollution—a Beijing 
case study. PloS one, v. 10, n. 11, p. 1–20, 2015.  

WU, Y.; LIU, J.; ZHAI, J.; CONG, L.; WANG, Y.; MA, W.; ZHANG, Z.; LI, C. Comparison of dry 
and wet deposition of particulate matter in near-surface waters during summer. PloS one, v. 
13, n. 6, p. 1–15, 2018.  

XU, Z.; PENG, J.; DONG, J.; LIU, Y.; LIU, Q.; LYU, D. Spatial correlation between the changes 
of ecosystem service supply and demand : An ecological zoning approach. Landscape and 
Urban Planning, v. 217, n. February 2021, 2022.  

YANG, J.; SHI, B.; SHI, Y.; MARVIN, S.; ZHENG, Y.; XIA, G. Air pollution dispersal in high 
density urban areas: Research on the triadic relation of wind, air pollution, and urban form. 
Sustainable Cities and Society, v. 54, p. 101941, 2020.  

YUSHANJIANG, A.; ZHANG, F.; YU, H.; KUNG, H. Quantifying the spatial correlations 
between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, 
Xinjiang, China. Ecological Engineering, v. 113, n. January, p. 94–104, 2018.  



46 
 

ZHANG, H.; XU, T.; ZONG, Y.; TANG, H.; LIU, X.; WANG, Y. Influence of meteorological 
conditions on pollutant dispersion in street canyon. Procedia Engineering, v. 121, p. 899–
905, 2015.  

ZHANG, K.; BATTERMAN, S. Air pollution and health risks due to vehicle traffic. Science of 
the Total Environment, v. 450, p. 307–316, 2013.  

ZOU, B.; XU, S.; STERNBERG, T.; FANG, X. Effect of land use and cover change on air quality 
in urban sprawl. Sustainability, v. 8, n. 7, p. 677, 2016.  

ZUUR, A. F.; IENO, E. N.; WALKER, N. J.; SAVELIEV, A. A.; SMITH, G. M. Mixed effects models 
and extensions in ecology with R (Vol. 574). New York: Springer, 2009.  

  



47 
 

Appendices 

 

Table S1. Pollutants measured by the CETESB in automatic stations included in the study. 

 

Station name CO MP10 MP2.5 NO2 

Cerqueira César 

 

x x  x 

Cidade  Universitária - USP 
- Ipen 

 

  x  

Congonhas 
 

x x x x 

Grajau - Parelheiros 
 

x x x  

Ibirapuera 
 

x  x x 

Interlagos 
 

 x   

Itaim Paulista 

 

 x x x 

Marginal Tietê - Ponte dos 
Remédios 

 

x x x x 

Moóca 
 

x  x  

Nossa Senhora do Ó 
 

 x   

Parque D. Pedro II 

 

x x x x 

Perus 
 

 x x  

Pinheiros 
 

x  x x 

Santo Amaro 

 

x x   

N total 9 10 10 7 

 

  

https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500694973443-4258d6cb-c728
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695549234-e1b49219-dab5
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695549234-e1b49219-dab5
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695393714-bbd55d20-72d8
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500696352403-0b437426-6b1b
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695495910-a623a393-636c
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695600654-20f583ca-44e1
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695807913-6952d78f-d385
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695917400-49d48053-0fec
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695917400-49d48053-0fec
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500695970929-d6a9f6de-3fe2
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500696304329-d7585015-46cc
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500697349816-fd3df127-a2f9
https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/#1500698827985-c1cfd6fb-9a46
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Table S2. Residential percentage (percentage of people who stayed at home) data from 

01/03/2020 to 31/05/2020. Residential percentage (RP; percentage of people who stayed at home) 

data from 01/03/2020 to 31/05/2020 and by quarantine period.  The higher the value, the higher 

the percentage of people who stayed at home. In bold are the values that correspond  

to the weekends. 

 

Date RP Period 

01/03/2020 4 A 

02/03/2020 1 A 

03/03/2020 1 A 

04/03/2020 2 A 

05/03/2020 2 A 

06/03/2020 3 A 

07/03/2020 1 A 

08/03/2020 1 A 

09/03/2020 2 A 

10/03/2020 2 A 

11/03/2020 2 A 

12/03/2020 2 A 

13/03/2020 2 A 

14/03/2020 1 A 

15/03/2020 2 A 

16/03/2020 3 A 

17/03/2020 7 A 

18/03/2020 9 A 

19/03/2020 12 A 

20/03/2020 17 A 

21/03/2020 18 A 

22/03/2020 17 B 

23/03/2020 23 B 

24/03/2020 27 B 
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Date RP Period 

25/03/2020 28 B 

26/03/2020 27 B 

27/03/2020 28 B 

28/03/2020 20 B 

29/03/2020 18 B 

30/03/2020 25 B 

31/03/2020 25 B 

01/04/2020 26 B 

02/04/2020 26 B 

03/04/2020 27 B 

04/04/2020 19 B 

05/04/2020 16 B 

06/04/2020 24 B 

07/04/2020 24 B 

08/04/2020 24 B 

09/04/2020 22 B 

10/04/2020 33 B 

11/04/2020 19 B 

12/04/2020 15 B 

13/04/2020 23 B 

14/04/2020 25 B 

15/04/2020 25 B 

16/04/2020 24 B 

17/04/2020 25 B 

18/04/2020 18 B 

19/04/2020 16 B 

20/04/2020 24 B 

21/04/2020 30 B 

22/04/2020 23 B 
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Date RP Period 

23/04/2020 23 B 

24/04/2020 24 B 

25/04/2020 17 C 

26/04/2020 15 C 

27/04/2020 22 C 

28/04/2020 23 C 

29/04/2020 23 C 

30/04/2020 20 C 

01/05/2020 31 C 

02/05/2020 18 C 

03/05/2020 15 C 

04/05/2020 21 C 

05/05/2020 22 C 

06/05/2020 23 C 

07/05/2020 23 C 

08/05/2020 23 C 

09/05/2020 16 C 

10/05/2020 13 C 

11/05/2020 23 C 

12/05/2020 23 C 

13/05/2020 24 C 

14/05/2020 24 C 

15/05/2020 25 C 

16/05/2020 18 C 

17/05/2020 16 C 

18/05/2020 22 C 

19/05/2020 22 C 

20/05/2020 26 C 

21/05/2020 26 C 
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Date RP Period 

22/05/2020 24 C 

23/05/2020 18 C 

24/05/2020 16 C 

25/05/2020 27 C 

26/05/2020 21 C 

27/05/2020 22 C 

28/05/2020 22 C 

29/05/2020 21 C 

30/05/2020 14 C 

31/05/2020 12 C 
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Table S3. Original classification from the digital vegetation cover mapping made by SP city hall and 

the classification made for the present study (bold: not included in the study, e.g., non-arboreal 

vegetation or commercial monocultures). 

 

 
Original classification 

 
Code 

Merged 
classification 

Grouped 
categories 

 

Arboreal 
category 

 
Advanced Dense Ombrophilous Forest 

and Primary Dense Ombrophilous 
Forest 

 

 
1 

 
Floating aquatic 

vegetation 

 
8 

 
1 

Middle-stage secondary dense 
ombrophilous forest 

 

2 Open vegetation 
(herbaceous-shrub) 

 

6, 7, 12, 14 2 

Secondary dense ombrophilous forest 
at an early stage 

 

3 Low arboreal 11 3 

High montane dense ombrophilous 
forest (nebular forest) 

 

4 Medium arboreal 13 4 

Swampy and/or lowland forest 
 

5 High arboreal 9 5 

High mountain fields 6 
 

Sylviculture 10 6 

Lowland or marsh herbaceous-shrub 
vegetation 

 

7 Forest 1, 2, 3, 4, 
5, 15 

7 

Floating aquatic vegetation 
 

8    

Heterogeneous forest massifs and 
urban forests 

 

9    

Homogeneous forest massifs 
 

10    

Low arboreal, arboreal-shrubby and/or 
arborescent cover 

 

11    

Sylviculture 
 

12    

Medium arboreal 
 

13    

Herbaceous-shruby vegetation 14 
 

   

Mixed vegetation 15    
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Table S4. UFORE-D estimates of total dry deposition to trees (Nowak et al.,1998; Nowak et al., 2013). 

 

Pollutant Average deposition 
velocity (m s-1) 

PM10 0.0064 

PM2.5 0.0043 

NO2 0.0037 

CO 0.00002 
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Table S5. Mean concentrations of PM10, PM2.5, CO and NO2 in the week before the start of quarantine 

period (Pre) and during the first week of the quarantine period (Quar) in each of the air quality monitoring 

stations of the municipality of São Paulo. There was a significant difference between the pollutant’s 

concentrations before and during the first week of the quarantine (p<0.05; PM10=0.046; PM2.5=0.003; 

NO2= 0.002; CO=0.000). 

 

Estação PM 10 PM 2.5 CO NO2 

Pre Quar Pre Quar Pre Quar Pre Quar 

Cerqueira César 20.5 14.3 NA NA 0.4 0.2 28 12.3 

Cid.Universitária 
USP-IPEN 

 

NA NA 11.7 8.3 NA NA NA NA 

Congonhas 24.9 20.9 13.3 10.1 0.6 0.3 54.9 34.1 

Grajaú-Parelheiros 26.0 19.5 11.6 8.17 0.4 0.2 NA NA 

Ibirapuera NA NA 9.4 6.6 0.3 0.1 19.7 15.7 

Interlagos 17.1 16.4 NA NA NA NA NA NA 

Itaim Paulista 22.0 16.8 14.8 7.9 NA NA 17.2 8.7 

Marg.Tietê-Pte 
dos Remédios 

 

27.5 19.2 17.9 9.9 0.6 0.2 55.8 26.9 

Moóca NA NA 12.5 8.1 0.4 0.2 NA NA 

Nossa senhora do Ó 
 

24.0 14.9 NA NA NA NA NA NA 

Parque D. Pedro II 
 

20.1 18.3 15.6 16.5 0.2 0.0 29 15.9 

Perus 24.1 31.7 12.5 10.9 NA NA NA NA 

Pinheiros 23.5 - - 11.7 0.4 0.2 28.6 13.5 

Santo Amaro 18.5 17.1 NA NA 0.4 0.3 NA NA 
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Table S6. Percentage of green cover around the 1000m buffer radii for each station. Total= total 

percentage of the buffer area with green cover; percentage of the total green cover that has low 

arboreal cover (Low), medium arboreal cover (Medium), high arboreal cover (High), and forest 

cover (Forest). 

 

Stationname Total Low Medium High Forest 

Cerqueira César 29.14 5.01 94.99 0.00 0.00 

Cid.Universitária USP-
IPEN 

44.89 13.30 60.89 25.81 0.00 

Congonhas 16.34 10.42 89.58 0.00 0.00 

Grajaú-Parelheiros 35.93 46.98 49.89 2.64 0.49 

Ibirapuera 47.29 4.32 95.68 0.00 0.00 

Interlagos 16.50 32.34 67.66 0.00 0.00 

Itaim Paulista 14.83 48.51 51.49 0.00 0.00 

Marg.Tietê-Pte dos 
Remédios 

21.60 23.35 67.72 8.93 0.00 

Moóca 11.82 8.78 91.22 0.00 0.00 

Nossa senhora do Ó 10.51 23.99 76.01 0.00 0.00 

Parque D. Pedro II 10.90 23.31 76.69 0.00 0.00 

Perus 33.91 59.03 39.03 0.86 1.08 

Pinheiros 31.82 7.32 92.68 0.00 0.00 

Santo Amaro 19.37 44.02 55.98 0.00 0.0 
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Table S7. List of all models analyzed in the multiple regression analysis by pollutant and spatial scale. S= supply, Q= quarantine, D = demand, 

T= temperature, WV= wind velocity, RH= relative humidity, NP= number of patches. 

Model Name Pollutant (Response variable) Predictor Variables Scale 

M1 PM10/ PM2.5/ NO2/ CO Supply (S) : Quarantine (Q) + Demand (D) + Temperature (T) 1000, 750, 500, 250 

M2 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + Wind velocity (WV) 1000, 750, 500, 250 

M3 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + Relative humidity (RU) 1000, 750, 500, 250 

M4 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + (RU) + (WV) 1000, 750, 500, 250 

M5 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + (T) +(WV) 1000, 750, 500, 250 

M6 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + (WV) + (NP) 1000, 750, 500, 250 

M7 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + (T) + (WV) + (NP) 1000, 750, 500, 250 

M8 PM10/ PM2.5/ NO2/ CO (S) : (Q) + (D) + (RU) + (WV) + (NP) 1000, 750, 500, 250 
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Model Name Pollutant Predictor variables Scale AICc ΔAICc df Weight 

M1 PM10 (S) : (Q) + (D) + (RU) + (WV) + (NP) 1000 157678.2 0.0 12 0.5823 

M2 PM10 (S) : (Q) + (D) + (RU) + (WV) 1000 157679.0 0.8 11 0.3902 

M3 PM10 (S) : (Q) + (D) + (RU) + (WV) 500 157685.1 6.9 11 0.0187 

M4 PM10 (S) : (Q) + (D) + (RU) + (WV) + (NP) 500 157686.6 8.4 12 0.0089 

M5 PM10 (S) : (Q) + (D) + (RU) + (WV) 750 157704.7 26.5 11 <0.001 

M6 PM10 (S) : (Q) + (D) + (RU) + (WV) + (NP) 750 157705.3 27.0 12 <0.001 

M7 PM10 (S) : (Q) + (D) + (RU) + (WV) 250 157713.7 35.5 11 <0.001 

M8 PM10 (S) : (Q) + (D) + (RU) + (WV) + (NP) 250 157715.6 37.3 12 <0.001 

M9 PM10 (S) : (Q) + (D) + (T) +(WV) 500 157715.6 37.3 12 <0.001 

M10 PM10 (S) : (Q) + (D) + (T) + (WV) + (NP) 500 159191.6 1513.4 12 <0.001 

M1 PM2.5 (S) : (Q) + (D) + (RU) + (WV) 500 122553.1 0.0 11 0.402 

M2 PM2.5 (S) : (Q) + (D) + (RU) + (WV) + (NP) 500 122554.1 1.0 12 0.245 

M3 PM2.5 (S) : (Q) + (D) + (RU) + (WV) 1000 122555.1 2.0 11 0.150 

Table S8. Results of models analyzed to explain concentrations of CO, NO2, PM10, and PM2.5. Only the best ten models selected for each 
pollutant are showed. S= supply, Q= quarantine, D = demand, T= temperature, WV= wind velocity, RH= relative humidity, NP= number of patches. 
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M4 PM2.5 (S) : (Q) + (D) + (RU) + (WV) 750 122555.8 2.7 11 0.102 

M5 PM2.5 (S) : (Q) + (D) + (RU) + (WV) + (NP) 1000 122556.8 3.7 12 0.063 

M6 PM2.5 (S) : (Q) + (D) + (RU) + (WV) + (NP) 750 122557.8 4.7 12 0.038 

M7 PM2.5 (S) : (Q) + (D) + (RU) + (WV) 250 122568.2 15.1 11 <0.001 

M8 PM2.5 (S) : (Q) + (D) + (RU) + (WV) + (NP) 250 122569.3 16.2 12 <0.001 

M9 PM2.5 (S) : (Q) + (D) + (T) +(WV) 500 122880.0 326.9 11 <0.001 

M10 PM2.5 (S) : (Q) + (D) + (T) + (WV) + (NP) 500 122880.6 327.5 12 <0.001 

M1 NO2 (S) : (Q) + (D) + (RU) + (WV) 1000 107811.8 0.0 11 0.69 

M2 NO2 (S) : (Q) + (D) + (RU) + (WV) + (NP) 1000 107813.4 1.6 12 0.31 

M3 NO2 (S) : (Q) + (D) + (RU) + (WV) 750 107863.2 51.5 11 <0.001 

M4 NO2 (S) : (Q) + (D) + (RU) + (WV) + (NP) 750 107864.8 53.0 12 <0.001 

M5 NO2 (S) : (Q) + (D) + (RU) + (WV) 500 107995.0 183.2 11 <0.001 

M6 NO2 (S) : (Q) + (D) + (RU) + (WV) + (NP) 500 107996.6 184.8 12 <0.001 

M7 NO2 (S) : (Q) + (D) + (RU) + (WV) 250 108142.1 330.3 11 <0.001 

M8 NO2 (S) : (Q) + (D) + (RU) + (WV) + (NP) 250 108144.1 332.3 12 <0.001 
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M9 NO2 (S) : (Q) + (D) + (T) +(WV) 1000 108274.7 462.9 11 <0.001 

M10 NO2 (S) : (Q) + (D) + (WV) 1000 108275.2 463.4 10 <0.001 

M1 CO (S) : (Q) + (D) + (RU) + (WV) 1000 66991.4 0.0 11 0.65 

M2 CO (S) : (Q) + (D) + (RU) + (WV) + (NP) 1000 66992.6 1.2 12 0.35 

M3 CO (S) : (Q) + (D) + (T) +(WV) 1000 67010.2 18.8 11 <0.001 

M4 CO (S) : (Q) + (D) + (T) +(WV) + (NP) 1000 67011.3 19.9 12 <0.001 

M5 CO (S) : (Q) + (D) + (WV) 1000 67038.8 47.4 10 <0.001 

M6 CO (S) : (Q) + (D) + (WV) + (NP) 1000 67039.9 48.5 11 <0.001 

M7 CO (S) : (Q) + (D) + (RU) + (WV) 750 67079.9 88.5 11 <0.001 

M8 CO (S) : (Q) + (D) + (RU) + (WV) + (NP) 750 67080.4 89.0 12 <0.001 

M9 CO (S) : (Q) + (D) + (T) +(WV) 750 67104.1 112.7 11 <0.001 

M10 CO (S) : (Q) + (D) + (T) +(WV) + (NP) 750 67104.2 112.9 12 <0.001 


