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Resumo 

Os corais escleractíneos, também conhecidos como corais duros, são os principais 

engenheiros de recifes de águas rasas e profundas, os quais figuram dentre os 

ecossistemas marinhos mais complexos, produtivos e biodiversos. Apesar da 

importância ecológica e econômica, a história evolutiva da ordem Scleractinia 

permanece não resolvida em diferentes níveis, sendo que a aquisição/perda de 

características como fotossimbiose e colonialidade, em termos evolutivos, permanece 

em debate. Mais especificadamente, análises moleculares visando desvendar a história 

evolutiva da ordem têm sido historicamente prejudicadas pela omissão de espécies 

azooxanteladas e, consequentemente, desbalanço entre famílias. Neste contexto, e 

dentro do atual cenário de mudanças climáticas globais e seus impactos no futuro deste 

grupo animal, um melhor entendimento de suas relações filogenéticas é relevante e 

necessário. Para a presente tese, mais de 200 espécies de corais escleractíneos, 

principalmente azooxantelados, foram sequenciadas através de técnicas de 

enriquecimento ou de skimming do genoma, e as análises integradas com dados 

disponíveis de espécies de águas rasas/zooxanteladas. Para as espécies sequenciadas, 

elementos nucleares ultraconservados e genomas mitocondriais completos foram 

recuperados e usados para reconstruções filogenômicas da ordem ou de linhagens 

específicas. Novos clados que correspondem a novas famílias foram descobertos, e 

Turbinoliidae – uma das famílias mais diversas e composta apenas por espécies 

azooxanteladas – foi recuperada como polifilética pela primeira vez. As características 

macro e micromorfológicas dos novos clados foram analisadas visando uma (re) 

avaliação de características taxonomicamente informativas. Desta forma, integrando 

resultados moleculares e morfológicos, três novas famílias e um novo gênero são 

descritos nesta tese. Em adição, uma análise de relógio molecular foi aplicada à 

filogenia da ordem, sendo que taxas de diversificação entre diferentes linhagens e 

estados ancestrais de colonialidade, simbiose, relação com o substrato e faixas de 

profundidade foram calculadas. Os resultados foram utilizados para abordar como (i) 

mudanças globais na temperatura e concentração atmosférica de CO2, (ii) eventos 

anóxicos e (iii) eventos de extinção em massa conduziram a evolução e diversificação 

das linhagens de corais. Resultados sugerem que a origem da ordem Scleractinia 

ocorreu no Ordoviciano ca. 460 Ma, corroborando a ordem com os fósseis 

“escleractineomorfos”. Em adição, famílias coloniais e zooxanteladas surgiram em um 
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período de temperatura global e concentração de CO2 estáveis, enquanto a maioria das 

linhagens azooxanteladas surgiram após eventos anóxicos e de acidificação do oceano 

durante o Mesozóico, os quais impactaram catastroficamente seus contrapartes de 

águas rasas. Assim, táxons solitários e de águas profundas provavelmente serviram 

como repositórios para a recolonização subsequente de águas rasas e reaparecimento 

de linhagens coloniais zooxanteladas. Em conclusão, esses resultados desvendam as 

relações de algumas linhagens de corais escleractíneos e melhoram nossa compreensão 

da história evolutiva da ordem, especificamente como diferentes linhagens resistiram a 

eventos ambientais adversos de magnitude global no passado. 
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Abstract 

Scleractinian corals, also known as stony corals, engineer entire shallow and deep-water 

reefs, which are among the most complex, productive, and biologically diverse marine 

ecosystems. Despite their ecological and economic importance, the evolutionary 

history of the order and the phylogeny of many scleractinian taxa remain unresolved at 

different levels and the maintenance of traits, such as photosymbiosis and coloniality, 

across evolutionary time scales remains in debate. Specifically, molecular analyses 

aiming at untangling the phylogeny of Scleractinia have been historically hampered by 

the omission of azooxanthellate species and, consequently, by an uneven species 

sampling between families. In this context, and within the current scenario of global 

climate change and its impacts on the future of this important animal group, a better 

understanding of their phylogenetic relationships is relevant and necessary. For the 

present thesis, more than 200 scleractinian species, mainly azooxanthellate, were 

sequenced through target enrichment or genome skimming methods, and results were 

integrated with available data of shallow-water species. Both nuclear-ultraconserved 

elements and complete mitochondrial genomes were retrieved and used for 

phylogenomic reconstructions of the entire order or specific lineages. Novel clades that 

do not correspond with any of the extant families were uncovered, and Turbinoliidae – 

one of the most speciose families composed exclusively of azooxanthellate species – 

was recovered as polyphyletic for the first time. Both macro and micromorphological 

characteristics of the aforementioned family and clades were analyzed to reassess the 

taxonomically informative features. Integrating molecular and morphological results, 

three new families and one new genus are described in this thesis. Moreover, molecular 

clock analyses, diversification rates among different lineages, and ancestral states 

regarding coloniality, symbiosis, relationship to the substrate, and depth ranges were 

calculated in the light of the phylogeny of the entire order. The results were used to 

address how past global (i) changes in temperature and atmospheric CO2 concentration, 

(ii) anoxic events, and (iii) mass extinction events drove the evolution and 

diversification of scleractinian lineages. Molecular clock estimation pushed the 

Scleractinia origin to the Ordovician ca. 460 Ma, corroborating the linkage of the order 

with the “scleractiniamorph” fossils. Some colonial and zooxanthellate families arose 

firstly in a period of stable global temperature and CO2 concentration, while the 

majority of azooxanthellate lineages arose after Mesozoic anoxic and acidification 
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events that impacted catastrophically shallow-water counterparts. Thus, solitary and 

deep-water taxa possibly represented a repository for following the re-colonization of 

shallow waters, as well as the reappearance of colonial lineages. In conclusion, these 

results untangle the relationships of several scleractinian lineages and improve our 

understanding of the evolutionary history of the order in terms of how different coral 

lineages endured past global adverse events. 
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General Introduction 

The phylum Cnidaria, which is distributed worldwide, comprises remarkably diverse 

and ecologically significant taxa that early diverged within metazoan evolution (Park 

et al., 2011). Its members are united by the ability to synthesize the cnidae: organelle-

like capsules with eversible tubules (Daly et al., 2007). The taxon, which include corals, 

hydroids, jellyfishes, sea anemones and sea fans, is composed of about 11,000 species, 

subdivided into six classes (Worms, 2023). Within Cnidaria, the class Anthozoa is 

composed of ~7,500 extant species that play crucial roles in a variety of marine regions 

and habitats (Daly et al., 2007). Members of this class live worldwide, and engineer or 

are part of shallow and deep-water reefs, which are among the most productive and 

biodiverse ecosystems (e.g., Reaka-Kudla, 1997; Rogers, 1999). 

 Within the class Anthozoa, members of the order Scleractinia are referred as 

stony corals once all members are able to secret a solid and continuous calcareous – 

aragonitic (but see Stolarski et al., 1996; 2021) – skeleton (secreted by epidermal cells) 

that is external to the soft tissues, such a skeleton is unique inside the phylum (Daly et 

al., 2007). Within anthozoans, scleractinian corals are phylogenetically more closely 

related – i.e., sister group – to the order Corallimorpharia, and together they are sister 

to the black corals (order Antipatharia) (Figure 1). The order Scleractinia includes 

almost 1,700 extant species (Hoeksema & Cairns, 2023) that can be divided into three 

ecological groups (Figure 2). Members of one group – zooxanthellate corals – are 

mostly colonial, live in symbiosis with photosynthetic dinoflagellates – microalgae of 

the family Symbiodiniaceae which provide fixed carbon compounds to the coral host 

(e.g., Pearse & Muscatine, 1971) – and are, therefore, restricted to the photic zone (less 

than 200 m). Members of the second group – azooxanthellate corals – are mostly 

solitary, nonphotosymbiotic, and widely distributed bathymetrically (Cairns, 2007), 

with the deepest record being at 6,300 m for the genus Fungiacyathus (Keller, 1976). 

Members of the third group – facultative corals – present both zooxanthellate and 

azooxanthellate individuals and have the capacity to switch between states when 

environmental conditions become disadvantageous without negative impacts for the 

coral host (Dimon & Carrington, 2008). While the number of species belonging to the 

first two groups is currently almost even, facultative corals are rare and comprehends 

only 11 species known to date (Cairns et al., 1999). 
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Figure 1. Schematic view of the phylogenetic relationships of the main lineages within 

the class Anthozoa (with Medusozoa as outgroup). 

 In the past century, based on morphological observations, the order Scleractinia 

has been divided into up to thirteen suborders (Wells, 1956; Veron, 1995). Lately, 

however, molecular data pointed to only three main clades at suborder level (see Figure 

3): (i) the early-divergent “Basal”, comprising only the families Gardineriidae and 

Micrabaciidae; (ii) “Complex”/Refertina; and (iii) “Robust”/Vacatina, these latter two 

embracing the vast majority of scleractinian families (Romano & Palumbi, 1996; 

Kitahara et al., 2010; Stolarski et al., 2011; Kitahara et al., 2014; Seiblitz et al., 2020; 

McFadden et al., 2021). But an exception to this division has been found by Quattrini 

et al. (2020) and Quek et al. (2023), in which the family Micrabaciidae was recovered 

as a sister group only of the “Robust”/Vacatina clade. 

 

Figure 2. The three ecological groups of scleractinian corals. From left to right: 

zooxanthellate, facultative, and azooxanthellate corals. 

 The very first genetic data for scleractinian corals were obtained in the early 

1980s in studies conducted by Stoddart (1983, 1984) and Willis & Ayre (1985) using 

enzyme loci to examine the genetic diversity within Pocillopora damicornis and 

Pavona cactus. Over the following decades, different techniques and multiple 
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molecular markers were tested to untangle relationships within and between 

scleractinian taxa. Nevertheless, several recent works based on up to 12 DNA markers 

– both mitochondrial and nuclear –, showed that the phylogeny of many Scleractinia 

taxa remains unresolved at family, genus, and/or species levels (e.g., Fukami et al., 

2008; Arrigoni et al., 2014; Huang et al., 2014; Kitahara et al., 2016). Moreover, in one 

of the newest and most comprehensive phylogenetic reconstruction, many families very 

recovered as para- or polyphyletic, with some examples of polyphyletic families that 

are still showing considerable uncertainties in their evolutionary history being 

Anthemiphylliidae, Caryophylliidae, Oculinidae, and Siderastreidae (e.g., Benzoni et 

al., 2007; Fukami et al., 2008; Kitahara et al., 2010, 2012). Even more surprising, some 

genera (comprising mainly azooxanthellate and deep-water species) unexpectedly 

grouped in novel clades that do not correspond with any of the extant families (Figure 

3) (Kitahara et al., 2016), thus highlighting a necessity for a taxonomic and 

phylogenetic revision of many taxa and a re-definition of the synapomorphies applied 

to discern genera and families. 

 Such discrepancies between morphological and molecular results are most 

probably due to recognized challenges in stony corals morphological observations such 

as: (i) intraspecific phenotypic plasticity (see Todd, 2008), which can confound and 

overestimate the number of extant species; (ii) pervasive morphological convergence 

across various phylogenetically distant lineages (see an example in Chapter 1): i.e., 

species not closely related to each other that, for experiencing similar environmental 

conditions, developed resembling or identical morphological traits; and (iii) the low 

number of macromorphological characters used to describe and characterize taxa at 

various taxonomic levels. 

 Recently, the recognition that the deposition of the scleractinian skeleton is 

biologically controlled and not easily perturbed by environmental factors at the 

microstructural level (see Cuif et al., 2003; Janiszewska et al., 2011, 2013) has led to 

more detailed subcorallite observations (Budd et al., 2012; Kitahara et al., 2012, 2013; 

Huang et al., 2014; Janiszewska et al., 2015), and greater attention has been given to 

previously overlooked micromorphological and microstructural characters that helped 

to shed light on the taxonomy and evolutionary history of several scleractinian taxa 

(e.g., Stolarski et al., 2021; Seiblitz et al., 2022). In the light of this recognition, 
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micromorphological observations have been lately frequently used combined with 

molecular results to describe new families through an integrative approach or to help 

untangle the systematic of several scleractinian lineages (e.g., Benzoni et al., 2012; 

Kitahara et al., 2012). 

Figure 3. Scleractinia genus-level phylogeny based on 12 DNA markers. Clades 

without names (i.e., clades B, C, D, and E) are still in the process of 

morphological/molecular characterization. Branch colors indicate different families, 

and the dotted line indicates the outgroup (from Kitahara & Cairns 2021). 

 Besides problems with morphological observations, the goal of achieving 

reliable phylogenetic reconstructions of the order has long been hampered by a 

substantial underrepresentation of azooxanthellate and deep-water species, and a 

paucity of available molecular markers with a strong bias towards the use of 

mitochondrial and ribosomal loci (Stolarski et al., 2011; Kitahara et al., 2016). Shallow-

water zooxanthellate corals have always received greater attention, due to the relative 
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ease with which they can be sampled and the concern about climate change threats that 

shallow-water coral reefs are facing (e.g., Pandolfi et al. 2011). On the other hand, 

studies on azooxanthellate and deep-water corals in many regions remain scarce and 

the species number underestimated (Cairns, 2007; Kitahara & Cairns, 2021). 

Nevertheless, it is well known that the acidification and deoxygenation of the oceans 

due to ongoing climate change are predicted to heavily impact deep-water environments 

with negative consequences for most calcifying species (Levin & Le Bris, 2015). 

Azooxanthellate and deep-water corals account nowadays for about half of the known 

scleractinian species (Hoeksema & Cairns, 2023), and include the engineers of complex 

deep-water reef-based ecosystems circumglobally (Roberts et al., 2009). Furthermore, 

several new azooxanthellate taxa have been recently described, and some of them, that 

are lacking molecular information, have been only tentatively placed inside a specific 

clade or family (Kitahara & Cairns, 2021). 

 Parallel to the aforementioned, in the last decade, high-throughput sequencing 

methods have been developed, enabling the access and handling of vast amounts of data 

in large-scale phylogenetic studies at relatively low cost (Goodwin et al., 2016; 

Kulkarni & Frommolt, 2017). These methods include amplicon sequencing, whole-

genome sequencing, restriction site-associated DNA (RADseq), transcriptome 

sequencing, and target enrichment of genomic DNA (McCormack et al. 2013a). 

Specifically, the target enrichment of ultraconserved elements (UCEs) (Faircloth et al., 

2012) has been proven robust in inferring phylogenies of a variety of different 

organisms (e.g., Crawford et al. 2012; Starrett et al. 2016) across both shallow and deep 

timescales (McCormack et al., 2013b; Smith et al., 2014; Manthey et al., 2016). UCEs 

are highly conserved regions that occur in high numbers throughout genomes across all 

taxa, including Cnidaria, but the flanking regions surrounding UCEs are more variable 

and phylogenetically informative (see Figure 4), making them easy to identify and align 

among divergent species (Faircloth et al., 2012; Ryu et al., 2012). Furthermore, other 

advantages include that they can be generated at a relatively low cost even from 100-

year-old, formalin or ethanol preserved museum specimens and specimens with 

degraded DNA (McCormack et al., 2016; Ruane & Austin, 2017; Derkarabetian et al., 

2019). 
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 Target enrichment of UCEs has been already successfully used in several 

studies in the past few years to untangle the relationship between and within different 

cnidarians lineages (e.g., sub-phylum Anthozoa [Quattrini et al., 2018, 2020]; order 

Scleractinia [Quek et al., 2020; 2023]; family Acroporidae [Cowman et al., 2020]; class 

Octocorallia [McFadden et al., 2022]). Nevertheless, whole-genome shotgun 

sequencing method (also knowns as genome skimming or low-coverage sequencing) 

has also become lately more affordable and widely used to produce a vast amount of 

data that can be used for bioinformatically extract a wide range of molecular markers 

such as UCEs and exons loci, microbiome, as well as complete mitochondrial genomes 

(e.g., Golightly et al., 2022; Quattrini et al., 2023). 

Figure 4 Left image: Graphical representation of the workflow for using UCEs and 

target enrichment in phylogenomic studies. Right image: representation of genetic 

variability in the core and flanking regions of UCEs (modified from Faircloth et al. 

2012). 

 Although mitochondrial sequences can be problematic for hexacorals 

phylogenetic reconstructions (Kayal et al., 2013; Kitahara et al., 2014) due to their slow 

rates of evolution (Shearer et al., 2002; Huang et al., 2008) and high level of substitution 

saturation (Pratlong et al., 2017), complete mitochondrial genome of anthozoan taxa 

has attracted recently particular attention (e.g., Seiblitz et al., 2020, 2022; Quattrini et 

al., 2023). Nonetheless, it has been proved that some genes rearrangements (which 

include transpositions, inversions, and duplications) could be used as an additional 

taxonomic character/synapomorphy of specific lineages (Seiblitz et al., 2022; Capel et 
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al., submitted) and, therefore, could help to resolve the evolutionary history of some 

non-monophyletic taxa. 

 Both shallow and deep coral reefs are facing increasing threats at local and 

global scales. Globally, increase in sea surface temperatures, ocean acidification, and 

the decrease in depth of the aragonite saturation horizon are leading to mass coral 

bleaching (and mortality) and reducing the ability of corals to build skeletons, due to a 

rapid buildup of CO2 and other greenhouse gases in the atmosphere (e.g., Caldeira & 

Wickett., 2003; Marlon et al., 2008). Locally, threats like coastal development, sewage 

discharges, trawling fishing, and coral mining are reducing the resilience of corals to 

withstand global threats (Hoegh-Guldberg et al., 2007; Carpenter et al., 2008). Studies 

regarding direct effects of ocean acidification with qualification and quantification data 

are still scarce and, mainly, regarding zooxanthellate corals (e.g., Moya et al., 2012). 

Consequently, we still do not completely understand how lineages of this order are 

being impacted by the current climate changes, being a better understanding of their 

phylogenetic and adaptive relationships topical and necessary (Quattrini et al., 2020). 

In the Brazilian context, this knowledge is of direct importance, since the diversity of 

zooxanthellate endemics, as well as deep-water scleractinian corals reported to its coast 

is large (Kitahara, 2007; Pires, 2007; Nunes et al., 2008; Kitahara et al., 2020), and they 

are already facing pressures of anthropic origin (Kitahara, 2009). 

 Moreover, despite the ecological and economic importance of scleractinian 

corals, we understand remarkably little about the evolutionary origins of this group 

(Fukami et al., 2004, 2008; Huang et al., 2009; Kitahara et al., 2010; Huang et al., 

2011). Likewise, the maintenance of morphological and ecological traits, such as 

photosymbiosis, coloniality, and depth range, across evolutionary time scales remains 

in debate (Barbeitos et al., 2010; Campoy et al., 2020; Gault et al., 2021). Fossils of 

scleractinian corals appeared abruptly in the Middle Triassic (ca. 240 Ma), but the 

already vast range of morphological diversity observed among these fossils (Roniewicz 

& Morycowa, 1993; Veron, 1995), in addition to molecular clock estimates (Stolarski 

et al., 2011; Arrigoni et al., 2017; Campoy et al., 2020), suggests an extensive 

Palaeozoic evolutionary history for Scleractinia. Based on the estimated origin of the 

order, Stolarski et al. (2011) linked the Ordovician “scleractinomorph” fossil – 

Kilbuchophyllia ca. 450 Ma – to the very early scleractinian lineages. 
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 In this scenario, solving the existing phylogenetic uncertainties of specific 

scleractinian lineages through an integrative approach that combine morphological and 

molecular data is of paramount importance. Reliable phylogenetic reconstructions are 

the basis for better understanding of diversification processes and lineages endurance 

through geological times for every group of organisms. To fill the gaps in Scleractinia 

systematics and phylogeny, during the development of the present thesis, target 

enrichment, genome skimming, as well as morphological observation were used to (i) 

build the most comprehensive phylogeny (i.e., with an equal representation of 

azooxanthellate and zooxanthellate species from all the known families [with the 

exception of Guyniidae]) of scleractinian corals to date; (ii) identifying the new clades 

that needed to be described as new families; (iii) investigate the diversity of the 

complete mitochondrial genome across various lineages; and (iv) address how past 

global (1) changes in temperature and CO2 concentration, (2) anoxic events, and (3) 

mass extinction events drove the evolution and diversification of scleractinian coral 

lineages. Specifically, we investigated potential traits and depth ranges that enabled 

these lineages to endure past adverse events to reduce uncertainties about stony corals' 

future in the light of ongoing climate changes. 

More specifically I aim to: 

 Chapter 1. Use an integrative approach to shed light on a case of 

morphological convergence between a species of Deltocyathidae and the family 

Turbinoliidae. 

The family Deltocyathidae was recently erected to accommodate all the species from 

the genus Deltocyathus, previously belonging to the family Caryophylliidae. However, 

one species, Deltocyathus magnificus, consistently clustered with species of the family 

Turbinoliidae. To solve the enigmatic position of this species, I used an integrative 

approach – which coupled nuclear and mitochondrial data, as well as 

micromorphological observations – to formally transfer D. magnificus to a new genus 

inside Turbinoliidae. 

 Chapter 2. Describing of a new family of solitary azooxanthellate corals – 

Stephanocyathidae – using a genomic approach. 

The family Caryophylliidae has long been known to be polyphyletic. As part of the 

process of resolving the systematic and phylogeny of caryophylliid lineages, I used a 



 16 

genomic approach – whole mitochondrial genome analysis coupled with a 

phylogenomic (including UCEs and exon data) reconstruction of part of the 

scleractinian species – to describe a new family, Stephanocyathidae, that comprehends 

solitary and azooxanthellate species. 

 Chapter 3. Characterize the mitochondrial genome of two understudied 

deep-water solitary species to investigate their phylogenetic position. 

Species belonging to the “true” Caryophylliidae lineage – clade that comprehend the 

type genus of the family, Caryophyllia – have been found to show a specific 

rearrangement of the genes order in their mitochondrial genome from that of the 

“canonical” gene order present in the vast majority of scleractinian species. 

Nevertheless, to date only few caryophylliid genera have had their whole mitochondrial 

genome sequenced and annotated. In the attempt to fill in the gaps I have produced the 

complete mitochondrial genome of two species of the genus Crispatotrochus. I found 

that they present the same mitochondrial rearrangement of the “true” Caryophylliidae 

clade and, therefore, confirmed their phylogenetic position. 

 Chapter 4. Use morphological analysis to re-synonymize the two solitary 

genera Deltocyathoides with Peponocyathus (Scleractinia, Turbinoliidae). 

The taxonomy of Turbinoliidae has always been challenging due to their small 

dimensions and the difficulty of their sampling – mostly deep-water infauna species. 

Based on newly acquired data on the type of reproduction of two species, i.e., 

Deltocyathoides orientalis – type species of the genus – and Deltocyathoides 

stimpsonii, we synonymize the genus Deltocyathoides with Peponocyathus. This work 

is a step forward in our understanding of the taxonomy of the family. 

 

Chapter 5. Use an integrative approach to revise the family Turbinoliidae. 

The monophyly of the family has been historically based on the morphological feature 

of having the entire corallum invested with tissue, but until recently only four 

turbinoliid genera, which composed a monophyletic clade, had published sequences. 

Genomic data that I have generated increased the number of turbinoliid genera 

sequenced to nine and recovered them in a polyphyletic assemblage, specifically in 

three phylogenetically distant clades. Therefore, I performed morphological analysis to 

evaluate which clade corresponds to the characteristics of the type taxon of the family 
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– Turbinolia [fossil - no molecular data available] – and, therefore, retain the family 

name, and which clades represent new families. 

 Chapter 6. Correlate how past climate change, extinction events, and 

anoxic events shaped the evolution and diversification of scleractinian coral 

lineages. 

To fill in the knowledge gaps in the scleractinian evolutionary history and phylogeny, 

I have generated genomic data for an extensive number of azooxanthellate species – 

either through target enrichment or genome skimming sequencing methods – and joined 

them with already available genomic data from zooxanthellate counterparts. With the 

resulting data I generated the most comprehensive phylogenetic reconstruction of the 

order Scleractinia to date. In addition, the phylogenetic reconstruction was also used to 

address how past global (i) changes in temperature and CO2 concentration, (ii) anoxic 

events, and (iii) mass extinction events drove the evolution and diversification of 

scleractinian coral lineages. Specifically, we investigated potential traits and depth 

ranges that enabled these lineages to endure past adverse events to reduce uncertainties 

about stony corals' future in the light of ongoing climate changes. 
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General Discussion and Future Directions 

General Discussion 

The thesis presents the first phylogenomic reconstruction of the order Scleractinia with 

a comprehensive and even representation of zooxanthellate and azooxanthellate 

species. Together with the work of Quek et al. (2023) the here presented results prove 

that hexacoral/scleractinian specific UCEs and exon loci sets – recovered through either 

target enrichment or genome skimming technologies – are valuable and reliable tools 

to infer relationships with high support at deep nodes of the order. In parallel, other 

work (Cowman et al., 2020; Bridge et al., 2023) showed that the same tool can also be 

used to investigate relationships at the species and genus level (also corroborated 

herein). The final phylogenomic reconstruction (Chapter 6), while confirming the 

division of the order in only two main clades “Robust”/Vacatina and 

“Complex”/Refertina (as in Quattrini et al., 2020 and Quek et al., 2023), uncovered 

several incongruences between the taxonomically recognized scleractinian families and 

the lineages recovered (see Chapters 1, 2, and 5). Specifically, other than the family 

Caryophylliidae already known to be polyphyletic (e.g., Kitahara et al., 2010; Stolarski 

et al., 2011; Campoy et al., 2020; Seiblitz et al., 2022), some mainly azooxanthellate 

families and genera, previously thought to be monophyletic, were recovered divided in 

phylogenetically distant lineages (e.g., genus Trochocyathus, genus Oculina, family 

Turbinoliidae, family Anthemiphylliidae [but also see Stolarski et al., 2011]). 

Moreover, some of these taxa were not recovered inside extant known families. Instead, 

they grouped in novel clades (e.g., Clade A and Clade B – Chapter 6) that do not 

correspond with any of the known scleractinian families, with some of these clades 

already shown in Kitahara et al. (2016). This result contrasts the previous hypothesis 

that most of the polyphyletic families were zooxanthellate while azooxanthellate 

families were mostly monophyletic (Kitahara et al., 2016; Quek et al., 2023). Results 

from the present work stress that the systematic of several scleractinian lineages is far 

from being understood. The problem being exacerbated by the fact that many species 

are still lacking any molecular information, therefore, their phylogenetic position is 

obscure and their assignment to a specific family only tentative (see Kitahara & Cairns, 

2021). Therefore, results from this thesis, while solving some longstanding 

uncertainties about several scleractinian lineages, also uncovered many others that still 

need to be further addressed. 
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 Systematic classification based on morphological characters proved to be 

reliable for some groups of corals (e.g., Fungiacyathiidae and Micrabaciidae – families 

for which molecular data were available for very few species prior to this work and 

were still recovered as monophyletic even adding several new species into the 

phylogeny), while failed for many others as aforementioned. In the latter case, a 

different approach already known as “reverse taxonomy” used for different groups of 

animals (e.g., Kanzaki et al., 2012; Michaloudi et al., 2018) was applied in the present 

thesis: morphological characters of taxa formally belonging to different families but 

phylogenetically recovered in the same clade were reassessed in order to find common 

features that could be used as synapomorphy for describing the newly retrieved 

lineages. Indeed, in the majority of cases (but see Lawley et al., 2021) integrative 

approaches that couple morphological, ecological, and molecular data provide new 

taxa/lineages more robust description/diagnosis (e.g., Arrigoni et al., 2021; Juszkiewicz 

et al., 2022), and are especially important for provide tools for their identification both 

in the field (or in museum collections) and through the use of molecular markers. At 

the same time, for species for which molecular data are not available or cannot be 

retrieved (e.g., lack of specimens properly preserved), particular attention needs to be 

given to morphological and/or ecological characteristics that could have been 

overlooked in the past (see Chapter 4). In general, the present phylogenomic 

reconstruction shows a pervasive recurrence of morphological convergence of many 

macromorphological characteristics previously used as synapomorphies to describe 

specific scleractinian lineages. Indeed, microstructural features of the scleractinian 

skeleton has been proved to be often more informative at higher taxonomic levels (e.g., 

Stolarski, 2000; Benzoni et al., 2012; Arrigoni et al., 2023), once again stressing the 

current need for integrative approaches for a better understanding of coral systematics. 

At the same time, some scleractinian taxa, especially those in early-diverging lineages, 

have been proved to show identical microstructural features to phylogenetically distant 

taxa (see Chapter 1), therefore, obscuring the taxonomic distinctiveness across lineages. 

 The complete mitochondrial genome (mitogenome) is an additional feature that 

has been lately explored for Scleractinia and Anthozoa systematics in general (see 

Quattrini et al., 2023). Phylogenetic reconstruction based solely on the mitogenome can 

be discordant from phylogenies based on a wide range of nuclear markers (Quattrini et 

al., 2023), leading to interpretations of the evolutionary history of Scleractinia that were 
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later refuted (Medina et al., 2006). However, mitochondrial-based phylogenies can be 

also informative, especially when used to prove the belonging of a species to a specific 

family/lineage (see Chapter 3). In the light of this, in previous works (e.g., Seiblitz et 

al., 2022) and two chapter of this thesis (Chapters 1 and 2) separated phylogenomic 

reconstructions based on both ultraconserved nuclear sequences and complete 

mitogenome sequences were built and mirrored. This approach allows to confer 

robustness to the results presented and further investigate possible discrepancies and/or 

congruencies between nuclear and mitochondrial based phylogenies. 

 The previous recognition that rearrangements and transpositions of the 

mitochondrial genes order from the “canonical” one (most commonly found in 

Scleractinia species) can have taxonomic relevance (see Seiblitz et al., 2022) 

incentivized its analyses for all the lineages examined in the present thesis. A novel 

rearrangement specific for the family Deltocyathidae was described (Chapter 1) and a 

transposition already known for the species Paraconotrochus antarcticus (Stolarski et 

al., 2021) was uncovered both for the newly proposed family Stephanocyathidae and 

one “turbinoliid” clade, herein named Pleotrochidae (Chapters 2 and 5). Moreover, the 

transposition described to be specific for the family Caryophylliidae (Seiblitz et al., 

2022) was used to confirm the phylogenetic position of an understudied genus – 

Crispatotrochus (Chapter 3). Results presented in this thesis further confirmed that 

features of the mitogenome can be taxonomically informative and that mitogenome 

gene rearrangements/transpositions seem to occur more often in the “Robust”/Vacatina 

group rather than in the “Complex”/Refertina. Previous studies (e.g., Kitahara et al., 

2014) had suggested a pattern of higher GC content for the mitogenome of 

“Complex”/Refertina taxa and the so called “Basal” group, lately – and in this thesis – 

recovered as sister group only of the “Robust”/Vacatina clade. Nevertheless, other 

lineages analyzed that are early-diverging inside the “Robust”/Vacatina clade showed 

similar higher GC content in contrast with the remaining vacatinian more derived 

lineages. Since Corallimorpharia, sister group of Scleractinia, also shows high GC 

content (see Lin et al., 2014) it is possible that this trait is ancestral in stony corals 

evolutionary history. 

 Stony corals are under threat as a result of the ongoing climate change (e.g., 

Pandolfi et al., 2011). Endeavoring to better understand the evolutionary history of the 

order Scleractinia and its correlation with past global adverse events, the time-
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calibrated phylogeny, ancestral state reconstructions, and diversification rates were 

analyzed in the light of past marine acidification, anoxic, and extinction events in 

parallel to global changes in temperature and CO2 concentration. The comprehensive 

time-calibrated phylogenomic reconstruction (~280 scleractinian species) pushed back 

the origin of the order in ~80 Ma from the only previous molecular clock performed 

using ultraconserved and exon loci (Quattrini et al., 2020), placing the most recent 

scleractinian common ancestor in the Middle Ordovician (460 Ma). The here presented 

divergence time also precede the one obtained by Campoy et al. (2020) – 415.8 Ma –, 

which performed a molecular clock analysis using a comprehensive phylogeny of the 

order based on two mitochondrial and two nuclear markers. The molecular clock 

analysis coupled with ancestral state reconstructions of several stony corals characters 

and depth ranges allowed to hypothesize that both some colonial/zooxanthellate and 

solitary/azooxanthellate lineages survived all past adverse global events that occurred 

after the rise of the order (see Chapter 6). At the same time, results also showed that the 

same adverse events drove the appearance and higher diversification of deep-water, 

solitary, and azooxanthellate taxa, probably responsible for a later re-colonization of 

shallow water habitats. How present rates of environmental changes compare to ancient 

one has been debated for decades, however, it has been showed that climate changes in 

the geological past could have happened as fast as the present ones and even with 

possible greater magnitude (Kemp et al., 2015), in contrast with common and previous 

hypothesis that the paces of geological climate changes have been slower (see Hardy, 

2003). We are probably still far from reaching a deep understanding of past global 

climate changes but, if the former scenario holds true, while shallow-water 

communities will surely change if global and fast actions are not taken to diminish the 

release of anthropogenic CO2 in the atmosphere, scleractinian corals as a lineage should 

survive as it did in the past 400 Ma. 

Future Directions 

The present thesis described new stony corals families and untangled the systematic 

relationships of several scleractinian lineages, but many more discrepancies between 

the “traditional” systematic classification and the phylogenetic reconstruction were 

uncovered but could not to be addressed in the present thesis. While zooxanthellate and 

shallow-water lineages have been extensively studied and their systematic evaluated – 

although many taxa still need more attention especially at the species level (e.g., 
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Pocillopora – Oury et al. 2023; Acropora – Bridge et al. 2023) – this thesis show that 

many azooxanthellate taxa are yet in need of a systematic revision, a problem 

exacerbated by the lack of any molecular data for many solitary and deep-water species. 

In parallel to the forthcoming systematic revision (Chapters of these thesis that will be 

submitted soon) of the lineages included in the herein presented phylogeny, the future 

sequencing of additional deep-water taxa coupled with the re-evaluation of the 

morphological characteristics (as seen in Chapters 1 and 5) will be of paramount 

importance for a better understanding of the evolutionary history of the order. 

 This work, together with previous ones (Quattrini et al. 2018, 2020; Cowman et 

al. 2020; Erickson et al. 2020; Quek et al. 2023), showed how high-throughput 

sequencing methods – e.g., target enrichment, genome skimming – improved greatly 

the resolution and robustness of phylogenetic analyses, thus, solving the longstanding 

problem of the paucity of molecular markers available for inferring scleractinian 

relationships. At the same time, whole genome assemblies with reliable annotation are 

currently available for very few scleractinian and only one deep-water species (i.e., 

Desmophyllum pertusum [Herrera & Cordes, 2023]), hampering analyses that relies on 

an unequivocal knowledge of the coding and non-coding region of the DNA. The recent 

long read sequencing technologies (e.g., Nanopore, PacBio) – often coupled with short 

reads one (e.g., Illumina), so called “hybrid sequencing” – will aid in filling this 

knowledge gap and provide data for reliable reference genomes. Moreover, the genome 

skimming method has been proved valuable for retrieving the complete mitochondrial 

genome for a wide range of anthozoan taxa (e.g., Quattrini et al., 2023). Several 

transpositions and rearrangement of the mitochondrial gene order have been uncovered 

in scleractinian taxa and some of these have been suggested to be taxonomically 

informative (e.g., Seiblitz et al. 2022; Capel et al. submitted; Chapter 1 and Chapter 2). 

However, this information is still lacking for many stony corals’ lineages; thus, 

advantage should be taken of high-throughput methods to provide this additional and 

potentially important information. 
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Figure 1. Cumulative curves of described species of Scleractinia across time from the 

work of Carl Linnaeus to (A) the end of the 20th century (from Cairns, 2007) and to (B) 

the present decade. 

 In parallel to the above, it is important to highlight that many (or the majority) 

of deep-water regions have not been explored yet. At this moment, the number of extant 

scleractinian species is somewhat evenly split between zooxanthellate and 

azooxanthellate species. However, the number of azooxanthellates is probably an 

underestimate due to their difficult sampling, as also suggested by the rapid increase in 

the number of recently described deep-water species (Fig. 1). It is of paramount 

importance that future research expeditions in deep-sea regions also focus attention on 

these group of animals to continuously improved our knowledge about their diversity 

and roles they play in the order evolutionary history. 

 These efforts as a whole will hopefully be fundamentals to fill in gaps in the 

knowledge of these charismatic animals, especially aiding in understanding their 

diversity, lineages relationships, and evolutionary history (as seen in Chapter 6) for the 

final goal of subsidizing future decisions and actions for their conservation in the light 

of ongoing global climate changes.  
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