• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.3.2021.tde-30062021-134847
Documento
Autor
Nome completo
Alembert Eistein Lino Alvarado
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2021
Orientador
Banca examinadora
Moriya, Henrique Takachi (Presidente)
Bonassa, Jorge
Cruz, Andrea Fonseca da
Título em inglês
Continuous mandatory ventilation with pressure-control: a comparison of airway-pressure waveform patterns.
Palavras-chave em inglês
Airway-pressure waveform
Lung ventilator
Mechanical ventilation
Ventilation-modes
Resumo em inglês
Continuous mandatory ventilation with pressure control (CMV-PC) was one of the first ventilation-modes to be introduced, and continues to be one of the most widespread ventilation-modes to manage patients with acute respiratory failure. In attempt to provide information regarding ventilation-modes performance to help clinicians, researchers have been evaluating ventilation-modes parameters over the years. Previous literature reported an operational variability across different models. These studies, however, have not had the same test scenarios, and they have mostly used top-line lung ventilators. Even more,the criteria used to measure the evaluated parameters were not fully detailed, and its calculation was based on commercial instruments. Thus, this research aims to compare different airway-pressure waveform patterns from different lung ventilators in CMV-PC, detailing the criteria used to measure the parameters and using lung ventilator models that are available on the Brazilian market. In this study, 12 lung ventilators were evaluated. For the experiments, flow and pressure signals were acquired at 100Hz. An experimental setup was chosen from ABNT NBR ISO IEC 80601-2-12: 2014. It comprises four test scenarios with different combinations of compliance and resistance: 1 (50 mL/cmH2O5 cmH2O/L/s), 2 (50 mL/cmH2O-20 cmH2O/L/s), 3 (20 mL/cmH2O-5 cmH2O/L/s), and 4 (20 mL/cmH2O-20 cmH2O/L/s). Evaluated parameters were inspiratory pressure, positive end-expiratory pressure (P EEP), inspiratory time (TI ), time interval to reach 90% of the set pressure (T90), peak inspiratory pressure, peak inspiratory flow, inspiratory area (AI), expiratory area (AE), percentage of inspiratory area (I%) and percentage of expiratory area (E%). To address statistical differences, we conducted the KruskalWallis test, and the Dunn's test for multiple comparisons. In addition, a standard-based assessment was performed for inspiratory pressure, P EEP and TI . Even though the lung ventilators had the same configurations for all the test scenarios and obeyed the same standard, statistical differences were found for all the evaluated parameters, and between some lung ventilators (P < 0.05). Surprisingly, there were 5 lung ventilators that could not reach 90% of the set pressure. Further, an overshooting of 2.95 cmH2O in test scenario 3 was measured. Relating to the standard-based assessment, inspiratory pressure test's results showed that 4, 8, 2 and 3 lung ventilators failed in test scenarios 1, 2, 3, and 4, respectively. For PEEP test's results, we had 3 lung ventilators that were reproved in test scenarios 1, 2, and 4; and 2 lung ventilators reproved in test scenario 3. With respect of TI , all the lung ventilators passed the test. This study evidenced that airway-pressure waveforms in CMV-PC varied among lung ventilators, mainly in T90 (or understandably in rise time), and inspiratory pressure. Disparities were more noticeable in test scenario 3 that has higher values of compliance and resistance. An intriguing fact is that ISO IEC 80601-2-12: 2014 (and its 2020 version) does not have parameters to evaluate rise time or overshooting.
Título em português
Ventilação mandatória contínua com controle de pressão: uma comparação dos padrões das curvas de pressão das vias aéreas.
Palavras-chave em português
Biomedicina
Modo ventilatório
Pressão das vias aéreas
Pulmão
Ventilação
Ventilação mecânica
Ventilador pulmonar
Ventiladores
Resumo em português
A ventilação mandatória contínua com pressão controlada (CMV-PC) foi um dos primeiros modos ventilatórios utilizados e continua sendo um dos mais difundidos no manejo de pacientes com insuficiência respiratória aguda. Para fornecer informações sobre o desempenho dos modos ventilatórios, os pesquisadores têm avaliado os parâmetros dos modos ventilatórios. Existem relatos de variabilidade operacional em diferentes modelos de ventiladores pulmonares. Entretanto, geralmente foram empregados diferentes cenários de avaliação nos estudos e as comparações na maioria dos casos foram feitas com modelos de alto custo. Além disso, os critérios empregados na obtenção dos parâmetros não são totalmente detalhados e são baseados em instrumentos de aquisição comerciais. Assim, esta pesquisa visa comparar diferentes padrões de onda de pressão nas vias aéreas de diferentes ventiladores pulmonares em CMV-PC, detalhando os critérios utilizados para as medições dos parâmetros avaliados, como também utilizar modelos normalmente encontrados no mercado brasileiro. Neste estudo foram avaliados 12 ventiladores pulmonares. Nos experimentos, os sinais de fluxo e pressão foram adquiridos a 100Hz. Uma configuração experimental baseada na norma ABNT NBR 80601-2-12: 2014 foi utilizada. Os cenários de teste tiveram 4 diferentes combinações de complacência e resistência: 1 (50 mL/cmH2O-5 cmH2O/L/s), 2 (50 mL/cmH2O-20 cmH2O/L/s), 3 (20 mL/cmH2O5 cmH2O/L/s) e 4 (20 mL/cmH2O-20 cmH2O/L/s. Os parâmetros avaliados foram: pressão inspiratória, pressão positiva de final de expiração (P EEP), tempo inspiratório (TI ), tempo para atingir 90% da pressão inspiratória (T90), pico de pressão inspiratória, pico de fluxo inspiratório, área inspiratória (AI), área expiratória (AE), porcentagem da área inspiratória (I%) e porcentagem da área expiratória (E%). Para analisar os dados, utilizamos o teste de Kruskal-Wallis e o teste de Dunn's para comparações múltiplas. Além disso, uma avaliação baseada na norma foi realizada para pressão inspiratória, PEEP e TI . Embora os ventiladores pulmonares tivessem as mesmas configurações para todos os cenários de teste e obedecessem a mesma norma, diferenças estatísticas foram encontradas para os parâmetros avaliados e entre alguns ventiladores pulmonares (P < 0, 05). Surpreendentemente, 5 ventiladores pulmonares não conseguiram atingir 90% da pressão ajustada. Além disso, um sobressinal de 2, 95 cmH2O no cenário de teste 3 foi medido. Em relação à avaliação baseada na norma, os resultados do teste para pressão inspiratória mostraram que 4, 8, 2 e 3 ventiladores pulmonares falharam nos cenários de teste 1, 2, 3 e 4, respectivamente. No teste de PEEP, tivemos 3 ventiladores pulmonares que foram reprovados nos cenários de teste 1, 2 e 4; e 2 ventiladores pulmonares reprovados no cenário de teste 3. Com relação ao TI , todos os ventiladores pulmonares estavam conformes. Este estudo evidenciou que as formas de onda da pressão nas vias aéreas no CMV-PC variaram entre os ventiladores pulmonares, principalmente no T90 (ou no tempo de subida) e na pressão inspiratória. As disparidades foram mais perceptíveis no cenário de teste 3, que possui valores mais altos de complacência e resistência. Um fato intrigante ´e que a ISO IEC 80601-2-12: 2014 (e sua versão 2020) não possui parâmetros para avaliar o tempo de subida ou sobressinal.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-06-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.