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ABSTRACT 

Systems designed to prevent or aid in the diagnosis of cardiovascular diseases can greatly 

reduce mortality rates associated with these diseases, which are the leading global causes 

of death. The precise measurement of cardiac parameters provides essential data for 

diagnosing cardiomyopathies and evaluating the effectiveness of treatments. 

Cardiomyopathies can be assessed using cardiac magnetic resonance images (CMR), 

considered the gold standard imaging technique for evaluating cardiac function and 

deformation (strain). Myocardial strain measurement offers additional insights for 

predicting a patient's prognosis. Nevertheless, quantifying strain in CMR images is a 

challenging task, and numerous inter- and intra-modality discrepancies hinder its 

adoption in clinical practice. The most popular methods for determining myocardial 

strain typically involve manual or semi-automated segmentation, followed by motion 

tracking. Even when performed by a qualified expert, myocardium segmentation is 

time-consuming and costly. Furthermore, in CMR images, the highly uniform brightness 

intensity within the myocardium makes it difficult to accurately segment the cardiac 

walls, which limits currently available motion-tracking methods. A subcategory of 

machine learning, known as deep learning (DL) has shown substantial promise in 

various medical applications. As it does not depend on human interaction and subjectivity, 

the application of DL approaches has the potential to improve the accuracy of myocardial 

parameter quantification, including myocardium deformation, with potentially reduced 

variability. Since the trained DL model is deterministic, the findings from successive 

analyses of the same image are consistent. In this study, we introduced and evaluated a 

novel DL-method for quantifying myocardial strain in CMR images with 2D-SSFP pulse 

sequence. We developed a hybrid pipeline that combines supervised and unsupervised 

DL approaches to automate tasks related to cardiac muscle segmentation and motion 

estimation. We explored the generalizability of a supervised DL segmentation method 

for delineating the cardiac muscle and employed an unsupervised DL model to track 

motion in the left ventricle in both real and synthetic 3D cine magnetic resonance 

images. Finally, we investigated the relationship between the segmented myocardium 

and the estimated motion to quantify myocardial strain. The results of this study 

highlight the potential of DL-based approaches to automate and improve the accuracy 

of myocardial strain quantification. Ou r  proposed hybrid pipeline exhibited promising 



 

 

 

results in accurately segmenting the cardiac muscle and tracking its motion, which 

can aid in the diagnosis and monitoring of cardiac diseases, reduce the need for manual 

intervention, and save time. In summary, this work underscores the potential of DL in 

enhancing the precision and efficiency of cardiac imaging analysis. 

Keywords: Myocardium deformation; Cardiac motion; Deep learning.    



 

 

 

 

RESUMO 

Sistemas que possibilitam a prevenção ou auxílio no diagnóstico de doenças 

cardiovasculares podem contribuir para a redução da mortalidade por essas condições, 

que são as principais causas de morte no mundo. A quantificação precisa dos parâmetros 

cardíacos permite o acesso a dados fundamentais para o diagnóstico de cardiomiopatias 

e também possibilita a avaliação da eficácia dos tratamentos. As cardiomiopatias podem 

ser avaliadas utilizando imagens de ressonância magnética cardíaca (RMC), que é 

considerada a técnica de imagem padrão-ouro para acessar a função cardíaca e a 

deformação (strain) cardíaca. A deformação do miocárdio fornece informações 

adicionais para prever prognóstico de um paciente. No entanto, quantificar a deformação 

em imagens de RMC é uma tarefa desafiadora, e inúmeras discrepâncias inter e intra-

modalidade dificultam sua adoção na prática clínica. Os métodos mais populares para 

determinar a deformação do miocárdio geralmente envolvem a segmentação manual ou 

semi-automatizada, seguida pelo rastreamento de movimento. Mesmo quando realizada 

por um especialista qualificado, a segmentação do miocárdio é um processo demorado e 

custoso para ser concluído. Além disso, nas imagens de RMC cardíaca, a intensidade 

uniforme de brilho altamente no interior do miocárdio dificulta a segmentação correta das 

paredes cardíacas, o que limita os métodos de rastreamento de movimento disponíveis 

atualmente. Um subconjunto das técnicas de aprendizado de máquina, conhecido como 

aprendizado profundo (AP), demonstrou um potencial considerável em uma variedade de 

aplicações médicas. Como não depende da interação e subjetividade humana, a aplicação 

de abordagens AP pode melhorar o desempenho da quantificação de parâmetros do 

miocárdio, como a deformação, com possivelmente redução da variabilidade. Como o 

modelo de AP treinado é determinístico, os resultados de análises sucessivas da mesma 

imagem são consistentes. Neste trabalho, propusemos e avaliamos um novo método 

baseado em AP para quantificar a deformação miocárdica em RMC com sequência de 

pulso do tipo 2D-SSFP. Desenvolvemos uma sequência híbrida que utiliza AP 

supervisionado e não-supervisionado para automatizar as tarefas envolvidas na 

segmentação do músculo cardíaco e na estimativa do seu movimento. Investigamos a 

generalizabilidade de um método de segmentação de AP supervisionado para delinear o 

músculo cardíaco e usamos um modelo de AP não supervisionado para rastrear o 



 

 

 

movimento no ventrículo esquerdo em imagens de ressonância magnética cinética 3D 

reais e sintéticas. Por fim, investigamos a relação entre o miocárdio segmentado e o 

movimento estimado no músculo para quantificar a deformação do miocárdio. Os 

resultados deste estudo demonstram o potencial das abordagens baseadas em AP para 

automatizar e melhorar a precisão da quantificação da deformação miocárdica. A 

sequência proposta mostrou resultados promissores na segmentação precisa do músculo 

cardíaco e no rastreamento do seu movimento, o que pode auxiliar no diagnóstico e 

monitoramento de doenças cardíacas, reduzir a necessidade de intervenção manual e 

economizar tempo. Em geral, este trabalho destaca o potencial do AP em melhorar a 

precisão e eficiência da análise de imagens cardíacas.  

Palavras-chave: Deformação do miocárdio; movimento cardíaco; aprendizado profundo. 
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1. INTRODUCTION  

 

Cardiovascular diseases stand as the leading cause of global mortality, as reported 

by the World Health Organization. In 2019, approximately 17.9 million people died of 

complications related to cardiovascular diseases, with 85% of these deaths attributed 

to heart attacks or strokes (WORLD HEALTH ORGANIZATION, 2021).  

Among the various medical imaging techniques available for assessing cardiac 

function, cardiac magnetic resonance (CMR) is considered the gold standard for 

diagnosing cardiomyopathies (EPSTEIN, 2007), as it presents a better signal-to-noise 

ratio and does not use ionizing radiation as in Nuclear Medicine and Tomography 

(KRAMER, 2015, PATEL, KRAMER, 2017). The CMR allows the quantification of 

cardiac structures, such as the left ventricle (LV) and right ventricle (RV) over the 

cardiac cycle. Accurate quantification of these structures is important to estimate 

physiological parameters, such as chamber size and ejection fraction. To assess 

physiological parameters associated with the LV, the commonly employed 

acquisition sequence is the 2D cine steady-state free precession (2D-SSFP Cine MR), 

with acquisition performed in the cardiac long axis and a stack of the short axis along 

the cardiac cycle. Figure 1a shows the cardiac orientation during the long and short-

axis acquisition, with an example of a long-axis image (1b) and a short-axis image 

(1c).   
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Figure 1: Positioning of the long-axis and short-axis acquisition in the heart (a), an example of a 

long-axis image (b), and a short-axis image (c).  

 

Normally a CMR exam is composed of a sequence of images acquired over the 

cardiac cycle. Figure 2 shows two images in different phases, diastole (when the 

myocardium is relaxed) and systole (when the myocardium contracts). 

 

        

Figure 2: CMR images in different phases, highlighting the myocardium inside the green hollow 

circle: (a) diastole, when the myocardium is relaxed; and (b) systole when the myocardium is 

contracted.  

 

Accurate quantification of global and local parameters allows to access vital 

information to diagnose cardiomyopathies, combined with valuable data to evaluate 

treatment effectiveness. Global parameters, such as ejection fraction (EF), systolic 

a b 

a b c 
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volume, and myocardial thickness, play a crucial role in the comprehensive evaluation 

of cardiac function. On the other hand, local parameters, such as motion, deformation, 

or strain provide localized information within the cardiac muscle, allowing the 

characterization of local lesions and their extent. Consequently, the precise 

determination of these parameters is essential to cardiovascular disease diagnosis and 

progression monitoring (HUI WANG, AMINI, 2012).  

The most common methods to quantify global and local parameters typically begin 

with manual or semi-automated segmentation, and in some cases followed by a 

motion tracking techniques, such as feature tracking or image registration 

(AMZULESCU, DE CRAENE, et al., 2019). However, segmentation is not trivial, 

and a time-consuming task, even if performed by a skilled professional. CMR can 

present challenges due to low contrast between the myocardium and surrounding 

tissues, variation of intensity among acquisitions, and, complex structures variation 

among patients, moreover, there is a lack of consensus about including or not the 

papillary muscles (BERNARD, LALANDE, et al., 2018, COLLETTI, 2019, 

SUINESIAPUTRA, COWAN, et al., 2014). These sources of image disparity impact 

the delineation of the myocardium boundaries, the epicardium, and the endocardium.  

A study (BHUVA, BAI, et al., 2019) showed that there is an inter- and intra-observer 

variation of the myocardium segmentation, which can significantly impact the 

quantification of the cardiac parameters. Figure 3 shows a short axis CMR image 

without the segmentation (a) and with the segmentation of the epicardium, 

endocardium, and papillary muscles (b). It can be observed in Figure 3  the regions in 

the myocardium boundaries with low contrast difference between the surrounding 

tissues.  
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Figure 3: CMR short-axis image without segmentation (a) indicating the right ventricle (RV) 

and the left ventricle (LV); and with segmentation (b) of the epicardium, endocardium, and 

papillary muscles.  

 

Some parameters, especially the most used global parameters (such as ejection 

fraction, myocardium mass, and cavity volume) can be directly derived after the 

segmentation of the cardiac structure of interest. However, the quantification of most 

local parameters needs the use of additional methods after the segmentation of the LV 

to quantify the muscle movement. Delineation of the LV boundaries can significantly 

affect the estimation of the global and local parameters. Figure 4 shows an example 

of the different segmentation impacts on the resulting global longitudinal strain (GLS) 

over the cardiac cycle (AMZULESCU, DE CRAENE, et al., 2019).  

 

Figure 4: Different myocardium inner boundary (endocardium) segmentation (right) affecting 

the estimated global longitudinal strain (GLS) (left) (AMZULESCU, DE CRAENE, et al., 

2019).  
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Beyond the time-consuming challenges posed by currently used global and local 

parameter quantification techniques, feature tracking methods performance is 

subjected to additional sources of errors in CMR images. The interior of the 

myocardium presents highly homogenous brightness intensity in MRI, which reduces 

the chances of patterns of features to be tracked (AMZULESCU, DE CRAENE, et 

al., 2019). Frequently, the boundaries of the myocardium, are used as features to be 

tracked along the cardiac cycle, which reduces the tracking accuracy because of the 

difficulties to determine the endocardium and epicardium contours (HUI WANG, 

AMINI, 2012).   

Myocardium deformation (strain) can be evaluated as a global and local parameter 

and offers more information to accurately determine a patient’s prognostic, besides 

ejection fraction, especially in chronic systolic heart failure (ZHANG, FRENCH, et 

al., 2014). However, many inter- and intra-modality inconsistencies limit the wide use 

of strain in clinical routine. In the work published by Amzulescu et al. 

(AMZULESCU, DE CRAENE, et al., 2019), the authors pointed out that strain 

quantification’s main limitations involve the variation of strain value among methods, 

image acquisition modalities, vendors, and software versions.  

To overcome the limitation posed by the variability in quantifying strain of the left 

ventricle, an alternative approach involves the utilization of an automated tool. In this 

regard, deep learning (DL), a subfield of machine learning, has emerged as a highly 

promising method for automating various tasks within the medical field. DL exhibits 

significant potential, avoiding the requirement for human interaction, and has found 

successful applications in diverse areas, including segmentation (AVENDI, 

KHERADVAR, et al., 2016, MORENO, DE SÁ REBELO, et al., 2019, TRAN, 2016) 

and motion estimation (DOSOVITSKIY, FISCHER, et al., 2015, ILG, MAYER, et 
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al., 2017, SUN, YANG, et al., 2018). The adoption of DL methods can improve the 

performance of global and local myocardium parameter quantification, with 

potentially less variation, since it does not rely on human interaction and subjectivity. 

The inference generated from a trained DL model is deterministic, which means the 

same image analyzed multiple times generates the same results, ensuring consistency. 

Moreover, full automation of the process with DL can generate results much faster 

than the current techniques.  

 

1.1.  Objectives  

 

In this study, we proposed and evaluated a new method based on DL to quantify 

myocardial strain in CMR with pulse sequence 2D-SSFP. We developed a hybrid 

pipeline (Figure 5) which combines both supervised and unsupervised DL techniques 

to automate the tasks involved in cardiac muscle segmentation and its motion 

estimation. We investigated the generalizability of a supervised DL segmentation 

method to delineate the cardiac muscle and used an unsupervised DL model to track 

motion in the left ventricle in real and synthetic 3D cine magnetic resonance images. 

Finally, we investigated the relationship between the segmented myocardium and the 

estimated motion to quantify myocardial strain. 

 

 
Figure 5: Proposed hybrid pipeline encompasses both supervised (myocardium segmentation) 

and unsupervised DL modules (motion estimation), along with an analytical module for Strain 

quantification. 
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2. BACKGROUND 

 

2.1. Magnetic resonance image 

 

Subatomic particles exhibit an intrinsic rotational motion around their axis, called 

spin. Protons are electrically charged particles, so they have a magnetic dipole 

moment oriented in the direction of the normal plane of spin motion. Due to the 

magnetic dipole in the charged particles, they tend to align themselves under the effect 

of an external magnetic field in the same direction as the field (WEBSTER, 2010). 

Depending on the atom, the protons and neutrons of the nucleus cancel the magnetic 

moments between them. However, nuclei with an odd number of protons and neutrons 

have a resultant magnetic moment and spin different from zero, as is the case of 

hydrogen atoms, which consists of a single proton. Hydrogen nuclei are used for 

magnetic resonance imaging because of their magnetic susceptibility and their vast 

amount in the human body (DARTON, IONESCU, et al., 2019, WEBSTER, 2010). 

Particles have two normal states called parallel and antiparallel. The number of 

particles in the parallel state is higher than in the antiparallel state as it is the lowest 

energy state. Thus, a radiofrequency (RF) pulse with photons causes changing in the 

state of some particles to the antiparallel. The energy difference between the two 

states is relative to the precession frequency, or Larmor frequency, 𝜔 =  𝛾𝐵, where 

𝛾 is the intrinsic gyromagnetic constant of each atom, and B is the magnetic field. By 

applying an RF pulse, the particles resonate with the radiofrequency field and absorb 

energy. Figure 6a shows a schematic of this process (DARTON, IONESCU, et al., 

2019, WEBSTER, 2010). 
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Figure 6: Protons have parallel (low energy) or antiparallel (high energy) states related to the 

external magnetic field (B). The population of protons in a high-energy state increases 

(longitudinal magnetization decreases) when a RF pulse is irradiated and the protons begin to 

precess in phase (increase in transverse magnetization). The protons return to their original 

condition when the RF pulse is turned off. Longitudinal magnetization recovers (adapted from 

DARTON, IONESCU, et al., 2019). 

 

When the radiofrequency pulse ends, the particles return to their original energy state, 

releasing the energy that was absorbed. The released signal is called Free Induction 

Decay (FID) and is detected by receiver coils. The time taken for the particle to return 

to its original state is the measure used to compose the image. The return can be 

divided into two temporal components, a longitudinal, T1, called spin-lattice, and a 

transversal, T2, called spin-spin, both vary according to the type of particles in the 

material (DARTON, IONESCU, et al., 2019, WEBSTER, 2010). 

Gradient coils are responsible for creating small variations in the magnetic field along 

the orthogonal axes gradually, as the resonance of the particles occurs very precisely, 

the gradient variation allows the excitation of particles in an organized way, in such 

a way that cuts in the volume can be performed, according to the gradient variation 

on the axis (WEBSTER, 2010). 

Different image acquisition protocols can be generated by varying the application of 

the radiofrequency pulse, both in the direction of the pulse and in the frequency of 
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application, and specific results can be obtained for each type of pathological analysis 

application. 

 

2.2. Cardiac anatomy 

 

The heart is primarily responsible for pumping oxygenated blood to the body's various 

organs and tissues. The heart, as illustrated in Figure 7, is essentially comprised of 

two separate pumps: the right side of the heart, responsible for sending blood to the 

lungs, and the left side, which pumps blood to the body's peripheral organs. Both of 

these heart sides are pump systems with two chambers, including an atrium and a 

ventricle. The atrium serves as an initial pump to transfer blood into the ventricle, 

assisting in its movement. In contrast, the ventricles are the primary force behind 

propelling blood either through the pulmonary circulation, originating from the right 

ventricle, or through the peripheral circulation, starting from the left ventricle (HALL, 

GUYTON, 2011). 

 

Figure 7: scheme of the heart structure (WAPCAPLET, 2003). 
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The left ventricle receives oxygenated blood from the left atrium and contracts 

forcefully to eject this oxygen-rich blood into the aorta, the largest artery in the body. 

From the aorta, the freshly oxygenated blood is distributed to every cell and tissue, 

nourishing them and providing them with the oxygen needed for their metabolic 

activities. The left ventricle's ability to generate this high-pressure force is vital for 

maintaining the body's overall health and functionality. 

The left ventricle's importance is accentuated by its endurance and consistency in 

maintaining this high-pressure pumping throughout a person's entire life. However, it 

can be susceptible to various cardiac conditions, such as hypertrophic 

cardiomyopathy or heart failure, which can impair its ability to function effectively. 

The study and understanding of the left ventricle's anatomy and function are crucial 

for clinicians and researchers in their efforts to diagnose, treat, and prevent heart-

related diseases, ensuring the continued well-being of individuals. In essence, the left 

ventricle serves as a testament to the heart's remarkable adaptability and unwavering 

commitment to sustaining human life. 

 

2.3. Deep learning 

 

In general, Artificial Intelligence (AI) is a study field that aims to understand and 

develop an intelligent system that can automate the decision-making process 

(RUSSELL, NORVIG, 1995). According to Goodfellow, Bengio, and Courville, the 

AI field can be subdivided into other fields and methods (Figure 8), such as machine 

learning, a technique that can learn and improve with experience and data. An 
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artificial neural network is a type of machine learning algorithm, inspired by the basic 

principle of biological neural processing. Deep learning is a deep artificial neural 

network that learns from a vast amount of data, representing the learning problem as 

a hierarchy of concepts, extracting features from less complex representations to more 

abstract ones  (GOODFELLOW, BENGIO, et al., 2016). 

 

 

Figure 8: Relationship between different AI techniques and an example of each technique.  

 

The basic unit of neural networks is called a neuron, which is activated or deactivated 

depending on the activation function and the weights learned by the network for each 

input. A basic network, called a multilayer perceptron (MLP) network, Figure 9, is 

essentially composed of neurons (nodes) with respective synaptic weights. The 

activation of each neuron is based on a non-linear activation function, the network has 

a high degree of connectivity between neurons, presenting one or more hidden layers 

at both the input and the output (HAYKIN, 2008). 
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Figure 9: MLP architecture example, with two hiding layers (adapted from HAYKIN, 2008). 

 

Mathematically a neuron can be modeled using the equation 1. The output yk of each 

neuron (k) is a composition of the sum of all synaptic weights (𝑤𝑘) multiplied by the 

input x and added to a bias term (bk), and then limited by an activation function (φ(•)) 

(HAYKIN, 2008). 

𝑦𝑘 =  𝜑(∑𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘 

𝑗=1

) 
1 

A particular class of neural network, the convolutional neural networks (CNN), which 

apply convolution operations on images, have been widely used in various medical 

imaging applications, such as segmentation, classification, image registration, and 

object detection, among others (LITJENS, KOOI, et al., 2017). The main advantage 

of using CNNs over classical methods is the ability of networks to learn features 

extracted from a large volume of information, that is, learning directed from data. 

A convolution is an operation between two functions, usually the input and the kernel, 

where the elements of the input are multiplied (element-wise) by the kernel and 

summed up, as exemplified in Figure 10. In the neural network field, the use of 

convolution often refers to the cross-correlation operation, the difference between the 
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two operations is the kernel orientation; however, it is not relevant to the neural 

network implementation. Equation 2 shows a two dimension convolution operation 

as used in the neural network field (GOODFELLOW, BENGIO, et al., 2016).   

(𝐾 ∗ 𝐼)(𝑖, 𝑗) =  ∑∑𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 
2 

Where K is the kernel, I is the input image, i and j are indexes of the input image, and 

m and n are the indexes of the kernel. 

 

Figure 10: Example of 2D convolution operation as used in neural network. The operation 

performed in this example reduces the input size (GOODFELLOW, BENGIO, et al., 2016). 

 

In a 2D CNN to process images, the input of Figure 10 can be the input image or the 

feature map extracted from the previous layer; the kernel is the learned filter, where 



35 

 

each element of the kernel is a neuron; the output in Figure 9 is the feature map 

extracted by the learned filter.    

Convolutional neural networks are usually composed of several layers, each 

containing a varied number of convolutional filters, which will be learned by the 

network. Followed by dimensionality reduction layers, called pooling, which reduce 

the feature maps by applying a summary statistic in the nearby elements, such as 

selecting the maximum value within the pooling window (max-pooling), or averaging 

the elements in the pooling window (average-pooling). An example of a max-pooling 

operation is presented in Figure 11. 

 

 

Figure 11: Example of max-pooling operation with a 2x2 window. 

 

In the case of classification, there are layers called fully connected, which are 

composed of fully connected neurons, going to the dimension of the prediction vector, 

Figure 12 shows the general scheme of a convolutional neural network (CHEN, QIN, 

et al., 2020). 
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Figure 12: Simple scheme of a CNN composed of convolutions, pooling, and fully 

connected layers (CHEN, QIN, et al., 2020). 

 

2.4. Myocardium segmentation 

 

In recent decades, several semi- and automatic solutions have been proposed to the 

problem of myocardium segmentation in CMR images, usually involving models 

based on previous knowledge of the problem, such as anatomy, location of the left 

ventricle, threshold values, and in several cases requiring interaction with an 

experienced user (BERNARD, LALANDE, et al., 2018, COLLETTI, 2019, 

SUINESIAPUTRA, COWAN, et al., 2014).  

There are many sources of variation in CMR imaging, some examples can be seen in 

Figure 13, such as anatomical variation among patients and different pathologies; 

image quality relating to acquisition machines and manufacturers; and others 

(BERNARD, LALANDE, et al., 2018).  
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Figure 13: Variation among CMR images.  

 

In a review of cardiac imaging segmentation methods, Petitjean and Dacher (2011) 

point out that the results of the available segmentation methods still need 

improvement. There is also an indication that the automated myocardial delineation 

techniques incorporated in commercial software are very sensitive to image quality 

and acquisition protocol (MARINO, VERONESI, et al., 2014).  

 

2.5. Cardiac movement in CMR images 

 

In computer vision, the pattern of the apparent movement of objects, surfaces, and 

edges in a visual scene caused by the relative movement between the viewer and the 

scene is defined as optical flow (OF), which is applied to all pixels. The use of optical 

flow in CMR is limited due to the characteristic homogeneity of pixel intensities inside 

the myocardium, reducing the accuracy of the method. Thus, the most used technique 

to determine cardiac movement in cine-CMR images is called feature tracking, which 
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is based on following gray patterns in small windows in images acquired sequentially 

in time, as shown in Figure 14. The edges of the endocardium and epicardium are the 

easiest patterns to follow compared to the rest of the cardiac muscle. This reduces the 

ability to estimate regional movement in the myocardium, as the measured 

displacement is concentrated on the muscle walls and not inside. 

 

Figure 14: Basic concept of feature tracking in CMR images. This technique consists of 

determining small squares in the first image (left) and then looking for the possible 

displacement of the gray pattern in the next image (right) (PEDRIZZETTI, CLAUS, et al., 

2016). 

 

Moreover, this technique generates inconsistencies between manufacturers due to 

problems of consensus in defining the myocardial edges, as discussed above, reducing 

reproducibility (PEDRIZZETTI, CLAUS, et al., 2016, VOIGT, CVIJIC, 2019) 

 

2.6. Cardiac strain 

 

Cardiac deformation (ε), also called strain, is a measure derived from myocardial 

movement. In one-dimensional (1D) objects strain is defined as the difference between 

the maximum length (L) and initial length (L0) over the initial length, as shown in 

equation 3 (SCATTEIA, BARITUSSIO, et al., 2017).  
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𝜀 =
𝐿 − 𝐿0
𝐿0

 
3 

There are two ways to calculate the strain: (1) displacements are calculated by fixing 

a point in the myocardium and computing the deformation from it, called a Lagrangian 

or instantaneous strain, and (2) called Eulerian or natural strain, displacements are 

calculated by varying the reference point, and at the end, all variations are added 

(D’HOOGE, 2000, SCATTEIA, BARITUSSIO, et al., 2017). Equation 4 shows the 

Lagrangian strain. The Eulerian strain (equation 6) is the sum of the total strain 

variation (equation 5) between the initial instant and the t instant. 

 

𝜀(𝑡) =
𝐿(𝑡) − 𝐿(𝑡0)

𝐿(𝑡0)
 4 

𝑑𝜀(𝑡) =
𝐿(𝑡) − 𝐿(𝑡 − 𝑑𝑡)

𝐿(𝑡)
 5 

𝜀(𝑡) =  ∫ 𝑑𝜀(𝑡)
𝑡

𝑡0

 6 

 

With 𝐿(𝑡) the length at the time instant t, 𝐿(𝑡0) the length at the initial time instant, 

and 𝑑𝑡 and 𝑑𝜀 the infinitesimal interval of time and strain, respectively.  

Figure 15 illustrates the two ways to compute the strain, Lagrangian (left) and Eulerian 

(center), along with a global longitudinal strain graph comparing both along the 

cardiac cycle (right), as can be seen in the graph, the choice of strain calculation is also 

a source of variation in the final result (AMZULESCU, DE CRAENE, et al., 2019). 
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Figure 15: Different ways to calculate strain: Lagrangian (left) and Eulerian (center); And the 

difference in the strain curve along the cardiac cycle depending on the calculation used (right) 

(AMZULESCU, DE CRAENE, et al., 2019). 

 

In cardiac applications, the amount of movement between systole and diastole is 

significantly large, so it is more suitable to use the Eulerian strain, so the calculation 

is done between consecutive time instants, reducing possible calculation errors with 

large displacements. The use of the Eulerian strain also reduces possible variations in 

the definition of the initial length (D’HOOGE, 2000). 

In two-dimensional (2D) or three-dimensional (3D) objects, the complete description 

of the deformation involves knowledge of all strain components. In the three-

dimensional case, there are three normal components, one in each direction (x, y, and 

z), and six shear components. The deformation gradient tensor (F) is determined using 

the partial derivatives of the displacement vector field (𝜙) in each direction, x, y, and 

z (CURIALE, BERNARDO, et al., 2021, D’HOOGE, 2000, SIMPSON, KEEGAN, 

et al., 2013, SUEVER, WEHNER, et al., 2017), as shown in equation 7. 
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 7 

The strain tensor (EC) in Cartesian space is determined according to equation 8, using 

the deformation gradient F (CURIALE, BERNARDO, et al., 2021, SUEVER, 

WEHNER, et al., 2017). 

𝐸𝐶 =
1

2
(𝐹𝑇𝐹 − 𝐼) 8 

Cardiac strain is a three-dimensional tensor characterized by the change in length and 

direction of defined segments at each point of the myocardium. For each point, an 

orthogonal coordinate system is defined concerning the geometry of the left ventricle 

(LV), describing the Radial, Longitudinal, and Circumferential components 

(SIMPSON, KEEGAN, et al., 2013). The circumferential component (�̂�) is tangent 

to the epicardium surface in the LV short-axis plane and counterclockwise direction 

(base view). The longitudinal component (�̂�) is tangent to the epicardium surface in 

the longitudinal plane and grows from the Apex to the base. The Radial component 

(�̂�) is perpendicular to the endocardium surface and points outward (MOORE, 

LUGO-OLIVIERI, et al., 2000), Figure 16 shows a diagram with the components at 

an arbitrary point in the myocardium. 
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Figure 16: Illustration of longitudinal (�̂�), radial (�̂�), and circumferential (�̂�) components in a 

point in the left ventricle surface. 

 

At each point, the combination of the local coordinate system forms the rotation 

matrix Θ (equation 9). To convert the strain tensor EC to the local coordinates (EL) of 

the myocardium, equation 10 (CURIALE, BERNARDO, et al., 2021, SUEVER, 

WEHNER, et al., 2017) is applied. 

𝛩 = (

𝑟𝑥 𝑐𝑥 𝑙𝑥
𝑟𝑦 𝑐𝑦 𝑙𝑦
𝑟𝑧 𝑐𝑧 𝑙𝑧

) 

9 

𝐸𝐿 = 𝛩
𝑇𝐸𝑐𝛩 10 

 

2.7. Parameters visualization 

 

The easy visualization of cardiac parameters, such as strain, is very important 

clinically, allowing for a faster and more accurate diagnosis. In addition, 

communication between different modalities is simplified by displaying standardized 

information. To standardize the visualization of cardiac parameters, the American 

Heart Association (AHA) developed a guideline that allows the construction of a polar 

map that shows important segments of the LV.  Figure 17 shows a diagram of the 
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location of the segments and their respective nomenclature used by AHA 

(CERQUEIRA, WEISSMAN, et al., 2002).  

 

 

Figure 17: Diagram of standardized LV segments definition proposed by AHA and its 

respective nomenclature, indicating the anatomical position of the segment (CERQUEIRA, 

WEISSMAN, et al., 2002).  
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The segments can be combined in a polar map form of visualization. Figure 18 shows a 

polar map proposed by the AHA with the respective segment’s nomenclatures.  

 

 

Figure 18: Polar plot used to standardize the displaying of cardiac information by AHA, 

showing the position of the 17 myocardial segments and its nomenclature (CERQUEIRA, 

WEISSMAN, et al., 2002).  

 

3. LITERATURE REVIEW  

 

3.1. CNN generalization in myocardium segmentation 

 

Short-axis CMR automatic LV segmentation has substantially improved with CNNs 

in recent years (AVENDI, KHERADVAR, et al., 2016, BERNARD, LALANDE, et 

al., 2018, MORENO, DE SÁ REBELO, et al., 2019, TRAN, 2016). Although 

different network architectures and methods proposed in the recent articles achieved 

great results in the same dataset, the generalization of the methods to other datasets is 
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insufficiently explored. To use automatic methods in the clinical routine it must be 

reliable with data from multiple sources, and not overfitted in only one dataset.  

In general, the segmentation learning process with CNN is performed with labels 

previously annotated by an expert professional, that is, supervised learning. Ideally, 

to achieve good generalization, the training data should contain as much heterogeneity 

as real-world data. Recently some works have attempted to create public 

heterogeneous datasets to segment the LV in CMR short-axis images (BERNARD, 

LALANDE, et al., 2018, CAMPELLO, GKONTRA, et al., 2021, PETERSEN, 

MATTHEWS, et al., 2015). Due to the many sources of variation in CMR, including 

all possible different images in a dataset is virtually impossible.   

The use of a large dataset was explored by Bai et al. (2018) in an attempt to improve 

the generalization of LV segmentation. The dataset used by the author contains 4,875 

exams (PETERSEN, MATTHEWS, et al., 2015). The Dice score obtained in the test 

set from the same dataset used in the training phase was very good, with 0.88 in the 

myocardium. However, the proposed method tested in two unseen datasets achieved 

a Dice score in the myocardium of 0.56 and 0.65. The authors proposed to perform 

fine-tuning, that is, a new training with each dataset using pre-trained weights, which 

is not feasible in real life since it requires the creation of a new dataset in each clinical 

site.    

According to the authors of (KHENED, KOLLERATHU, et al., 2019), a network 

with fewer parameters is less prone to overfitting the train data. To improve 

generalization, they employed a small network containing residual connections. They 

also used Spatio-temporal analysis as a pre-process to select the region of interest 

(ROI). In the same dataset as the one they trained on, their algorithm was able to get 

a myocardium Dice score of 0.84, and 0.82 in an unseen dataset.  
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Chen et al. (CHEN, BAI, et al., 2020) proposed a planning data normalization and 

augmentation procedures to account for typical scenarios in multi-site, multi-scanner 

clinical imaging data sets, they used a U-net based architecture and a large dataset 

containing 3,975 in the training set and tested in two other datasets. They were able 

to achieve an average myocardium Dice of 0.82 on the external datasets.  

In (GRAVES, MORENO, et al., 2020) we investigate the capability of a pre-process 

of histogram equalization to improve the generalization in segmenting the 

myocardium using a CNN. We use a U-net architecture (RONNEBERGER, 

FISCHER, et al., 2015) to perform cross-dataset training and test in 5 different 

datasets. Using Contrast limited adaptive histogram equalization (CLAHE) resulted 

in an average Dice score of 0.86 in the epicardium and 0.82 in the endocardium.   

The authors of (ABDELTAWAB, KHALIFA, et al., 2020) developed an approach to 

segment the LV that includes ROI extraction using CNNs, a novel CNN architecture 

for cardiac segmentation, and the incorporation of a radial loss function. They 

evaluated the generalizability of their method by testing it on a separate dataset, 

achieving a myocardium Dice score of 0.85 on a private dataset different from the 

public dataset used during the training phase.  

To improve generalizability, the authors of (PENSO, MOCCIA, et al., 2021) 

developed a novel CNN skip connection that includes dense blocks. They trained and 

tested on different databases, both private, with different acquisition equipment. The 

training set was composed of 210 cine sequences, and the different database used to 

test the model with 12 healthy volunteers. The myocardium Dice score obtained 

reported by the authors in the test database was 0.85. 

Ribeiro and Nunes (RIBEIRO, NUNES, 2023) created a fully automatic hybrid 

strategy that combines DL and level set techniques to increase the generalizability of 
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their method for LV segmentation. They proposed new level set energy concepts by 

incorporating anatomical constraints and exam-specific statistical information 

obtained from DL segmentation. The generalizability of the method was evaluated on 

different configurations, using two public available datasets and one private.  The 

model was trained on each data base and test on the remaining two. The average Dice 

score obtained for the endocardium contour vary from 0.77 to 0.90 and for the 

epicardium the Dice obtained was from 0.81 to 0.94, depending on the training and 

test combination.   

Although the previously described papers address the problem of generalizability, 

further testing on larger and more diverse datasets would be necessary to fully assess 

generalizability and potential for clinical application of automatic LV segmentation 

methods based on DL. 

The U-net architecture proposed by Ronneberger (2015) allows high-performance 

segmentation results, especially because of its concatenation paths, also called skip 

connections, between the downsampling and up-sampling paths.  These skip 

connections reduce the amount of information to be learned by the network in each 

up-sampling level, which allows a quick convergence. Because of the U-net quickly 

convergence and good results, most of the works cited before used a similar U-net 

architecture. Although widely used in medical image segmentation, the U-net 

architecture has a considerable number of trainable parameters, which can result in 

overfitting the model in the training set. 
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3.2. CNN to quantify cardiac movement in CMR images 

 

Although there are several tools to estimate movement in CMR images, the accurate 

quantification of cardiac movement and deformation remains a challenging task 

(DUCHATEAU, KING, et al., 2020, MORALES, IZQUIERDO-GARCIA, et al., 

2019, PEDRIZZETTI, CLAUS, et al., 2016, VOIGT, CVIJIC, 2019). In recent years, 

numerous works have been published describing how to improve the optical flow 

technique using CNN (DOSOVITSKIY, FISCHER, et al., 2015, HUANG, SHI, et al., 

2022, ILG, MAYER, et al., 2017, SUN, YANG, et al., 2018).  

Dosovitskiy et al. (DOSOVITSKIY, FISCHER, et al., 2015) proposed the first end-

to-end CNN  optical flow learning. Neural networks need a large amount of data to 

train, which, at the time, was unavailable for motion tracking. So, the authors also 

developed a large dataset consisting of flying chairs. They performed supervised 

learning in the proposed FlowNet, outperforming state-of-the-art methods. In 

sequence, many works have contributed to improving the prediction of optical flow in 

computer vision with deep learning, applying supervised (HUANG, SHI, et al., 2022, 

ILG, MAYER, et al., 2017, RANJAN, BLACK, 2017, SUN, YANG, et al., 2018), 

unsupervised (AHMADI, PATRAS, 2016, GRAVES, MORENO, et al., 2021, 

MORALES, IZQUIERDO-GARCIA, et al., 2019, REN, YAN, et al., 2017, YU, 

HARLEY, et al., 2016) and semi-supervised learning (TU, XIE, et al., 2019). Sun et 

al. (SUN, YANG, et al., 2018) developed a small neural network called PWC 

(Pyramid, Warping, and Cost Volume) which, after supervised training, was able to 

determine the optical flow between two images better than traditional methods and 

even better than other neural networks. 
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The application of CNN for motion prediction in cardiac magnetic resonance images 

is increasing in the past years. Some works have attempted to use the CNN-predicted 

motion as extra information to help in another task. Xu et al. (XU, XU, et al., 2018) 

proposed a method based on deep CMR 2D images.  The portion of the muscle affected 

by the infarction moves in a different pattern compared to the healthy tissue, so the 

authors’ method learned the motion field as a helper to the classification.  

Qin et al. (QIN, BAI, et al., 2018) proposed a method to combine the motion flow field 

prediction with myocardium segmentation. They developed a network composed of 

two branches, one to learn the motion flow, and another to learn the myocardium mask. 

The features of both branches are learned together. According to the authors, using the 

learned motion field improved myocardium segmentation.  

Zheng et al. (ZHENG, DELINGETTE, et al., 2019) developed a pathology classifier 

using different characteristics extracted from CMR images. Myocardial abnormal 

motion is presented in many cardiac dysfunctions, so the authors adapted a U-net to 

generate apparent flow between two CMR image frames. The flow information was 

then used as input in a logistic regression classifier with other extracted characteristics 

from the myocardium segmentation, such as chamber volume, ejection fraction, and 

others. The exams were then classified according to their pathology.  

Recently, Morales et al. (MORALES, IZQUIERDO-GARCIA, et al., 2019) developed 

a work focused on the estimation of cardiac motion using CNN. They applied a 

modified 3D U-net to learn the motion field between two frames of a CMR image 

series, in unsupervised training. The images used during training are from the public 

dataset called the Automated Cardiac Diagnosis challenge (ACDC) (BERNARD, 

LALANDE, et al., 2018). In real images, it is not feasible to perform a direct 

evaluation of the learning motion field because of the lack of ground-truth data, so the 
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authors also evaluated synthetic images. Their results outperform state-of-the-art 

methods, they were able to achieve a Dice index of 0.73 between the myocardium 

mask in the diastole and the warped mask in the systole using the learned field in the 

ACDC dataset. In the synthetic dataset, the method achieved Dice of 0.85 and an 

average end-point error of 1.7 pixel between the synthetically generated motion field 

and the learned by the network.  

 

3.3. Automatic pipeline to estimate strain with CNN-based motion quantification 

 

Recently, some works have applied CNN motion tracking in replacement to traditional 

methods before estimating strain in different imaging techniques, such as ultrasound 

(ØSTVIK, SMISTAD, et al., 2018) and tagged CMR (FERDIAN, SUINESIAPUTRA, 

et al., 2020). As an extension of the work developed by Morales et al. in CMR image 

movement estimation, the authors of (MORALES, VAN DEN BOOMEN, et al., 2021) 

applied the dense motion quantification network in strain estimation workflow in real 

and synthetic CMR images. 

Verifying the accuracy of a strain estimation approach in real CMR images is difficult 

since it is hard to establish a true ground truth against which to compare the resultant 

strain. Morales et al. used the motion and strain computed in tagging-MR images as a 

source of more reliable comparison. They also compared normal ranges values of 

strain reported in the literature with the obtained by the proposed method (MORALES, 

VAN DEN BOOMEN, et al., 2021).  

However, there is no consensus on the range of normal myocardium strain values. In 

a meta-analysis performed by Vo et al. (VO, MARWICK, et al., 2018) mean values 
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for global radial, longitudinal, and circumferential strain were estimated based on 659 

health subjects reported in 18 papers for feature tracking method in CMR images. The 

mean value for global radial strain (GRS) reported is 34.1% (95% CI: 28.5% to 

39.7%), for global circumferential strain (GCS) -23% (95% CI: -24.3% to -21.7%) and 

global longitudinal strain (GLS) around -20.1% (95% CI: -20.9% to -19.3%).  

Besides the normal range compared with the literature, in our work we propose to 

evaluate the estimated strain with a semi-quantitative visual index called Wall Motion 

Score (WMS) performed by an experienced radiologist, comparing the obtained strain 

range with normal motion indicated by the radiologist. We also compared our results 

with two commercial software. Moreover, we investigate the variation of values 

generated by the commercial software in intra and inter-observer analyses.  

 

4. METHODOLOGY  

 

A hybrid pipeline that uses both supervised and unsupervised DL to automate the tasks 

involved in cardiac muscle segmentation and its motion estimation is presented in 

Figure 19 and includes three  major steps: (Section 4.1) Myocardium segmentation, 

(Section 3.2) Motion quantification, and (Section 4.3) Strain calculation. In the 

following, each step will be detailed.   
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Figure 19: Strain quantification process using two input volumes of stacked CMR images at 

time 0 (t0) and time n (tn). With (A) the LiteResnet used to segment the myocardium and (B) the 

PWC Siamese network to compute the motion field from t0 to tn (�̂�0)  and from tn to t0 (�̂�𝑛), 

creating the average motion field (�̂� ) used to determine the strain in the myocardium (C). 

 

4.1. Myocardium segmentation 

 

4.1.1. Network 

The network used to segment the myocardium is a LiteResnet architecture (Figure 20), 

composed of three residual blocks in the down-sampling path. Initially, the first 

convolution block consists of 32 feature channels, and then it is doubled at each block. 

An up-sampling path follows the down-sampling path. The feature maps of the last 

layers of each down-sampling block are concatenated with the corresponding up-

sampling block with the same dimensionality.  
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Figure 20: LiteResnet architecture used to segment the myocardium in CMR images. 

 

Each residual block (ResConv), as shown in Figure 21 is composed of a separable 

convolution with a dilation rate of 1, then another dilated convolution with dilated rate 

of 2, and then a third separable convolution with dilation 4, the feature maps from the 

input of the block and the last convolution layer of the block are summed up, forming 

the residual connection. The activation function following all the convolution layers is 

the sigmoid, with exception of the last layer which is a softmax function.  

 

Figure 21: Scheme of the residual block used in the backbone of the LiteResnet.  
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Residual Network is a type of deep neural network that uses residual connections to 

address the degradation problem that occurs when training deep neural networks (HE, 

ZHANG, et al., 2016). The idea of residual learning involves learning residual 

functions with reference to the layer inputs, instead of learning the desired underlying 

mapping directly, as shown in Figure 21. By using residual connections, the network 

can learn to preserve the information from earlier layers and combine it with the 

information from deeper layers. This can lead to better generalization and improved 

performance on various tasks. 

A separable convolution layer performs the convolution in each channel individually, 

reducing the kernel size, and consequently reducing also the learnable parameters.  

Compared to the U-net model, which consists of approximately 31 million trainable 

parameters, the proposed network contains around 580,000 trainable parameters. The 

smaller size of the proposed model is more appropriate to prevent overfitting on the 

training data. 

The dilation convolution allows the model to extract features with a large receptive 

field, giving information from different locations in each layer, then summing up the 

features from the beginning of the block with the last block (with a large receptive 

field) reduces the amount of information to be learned by the model on each block. 

  

4.1.2. Data 

Six different datasets, described below, were used in the experiments, all composed of 

2D-SSFP short-axis CMR series. Table 1 summarizes the details of each dataset. 

• A public dataset launched in the MICCAI 2017 called Automated Cardiac 

Diagnosis Challenge (ACDC), composed of 100 exams in the training set of 
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images acquired during 6 years of clinical routine. Two scanners of two 

different magnetic intensity fields were used to acquire the images: 1.5 T Area 

and 3 T Trio Tim, both from Siemens (Siemens Medical Solutions, Germany). 

The dataset is divided into five categories related to cardiac pathologies: 

normal, systolic heart failure with infarction, dilated cardiomyopathy, 

hypertrophic cardiomyopathy, and abnormal right ventricle (BERNARD, 

LALANDE, et al., 2018). The exams resolutions are from 0.70 mm/pixel to 

1.92mm/pixel in the xy plane, and in the z plane from 5 to 10 mm/pixel. The 

images sizes vary from 154 to 512 pixels and the number of slices from 6 to 

18. The annotations are available for the ED and ES phases.  

• A set of 59 exams acquired as part of the clinical research protocol (approved 

by the Institutional Review Board under #4565/17/065) at the Heart Institute 

(Incor) University of Sao Paulo Medical School, Brazil. The exams were 

acquired on a 1.5 T MRI system (Canon Vantage Titan, Canon Medical System 

Corporation, Japan) and classified according to the LV ejection fraction of the 

subject: Normal, mild/moderate dysfunction, and severe dysfunction 

(MORENO, DE SÁ REBELO, et al., 2019). The exams dimensions vary from 

192 to 216 pixels, and the number of slices varies from 7 to 11. The pixel 

spacing in the exams is from 1.66 mm/pix to 2.08 mm/pix and the slice 

thickness for all the exams is 10 mm. The annotations were performed only on 

the ES and ED phases. 

• Dataset available as part of the MICCAI 2009 left ventricle segmentation 

challenge, containing 45 exams from individuals classified into four groups: 

healthy, LV hypertrophy (HYP), heart failure without infarction (HF), and 

heart failure with infarction (HF-I). The data were acquired at Sunnybrook 
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Health Sciences Centre, Toronto, Canada, on a 1.5T GE Signa MRI. Epi- and 

endocardium manual annotations are provided in different slices at ED and ES 

phases (RADAU P., LU Y., CONNELLY K., PAUL G., DICK A.J., 2009). 

The images sizes are 256 x 256 in all exams, the pixel spacing ranges from 

1.21 to 156 mm/pix, and the slice thickness varies from 8 to 10 mm. 

• Dataset available as part of the 2011 Left Ventricle Segmentation Challenge 

(LVSC) STACOM Workshop, containing 100 exams for training and 100 for 

validation. Exams were classified into two classes: coronary artery diseases 

and mild-to-moderate left ventricular dysfunction. The ground truth for each 

slice and phase is provided only for the training data, and it was obtained by a 

semi-automated segmentation technique (SUINESIAPUTRA, COWAN, et al., 

2014). The image size varies from 156 pixels to 512 pixels, the number of slices 

from 8 to 24, and the number of phases in each exam vary from 17 to 34. The 

pixel spacing ranges from 0.7 to 2.08 mm/pixel and the slice thickness from 6 

to m10 mm. 

• The Multi-Disease, Multi-View, and Multi-Center Right Ventricular 

Segmentation in Cardiac MRI (M&Ms-2) dataset (CAMPELLO, GKONTRA, 

et al., 2021). The M&Ms-2 dataset consists of 360 exams divided into seven 

pathological classes and a normal class. The exams were obtained in three 

separate clinical locations utilizing ten distinct scanner types from three 

different suppliers. This dataset contains segmentation masks for the left and 

right ventricles in short and long-axis CMR, as well as the disease class of each 

individual. The exams contain volumes ranging from 6 to 28 slices, dimensions 

in x and y planes from 192 to 512 pixels, in-plane pix spacing from 0.6 to 1.64 
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mm/pixel and in the longitudinal plane from 5 to 19 mm/pixel. The annotations 

were performed only on the ES and ED phases. 

 

Table 1: Datasets details 

Dataset Exams Classes  Scanners 

Automated Cardiac 

Diagnosis Challenge 

(ACDC) 

(BERNARD, 

LALANDE, et al., 

2018) 

100 Normal (30) 

Systolic heart failure with 

infarction (30) 

Dilated cardiomyopathy (30) 

Hypertrophic cardiomyopathy 

(30) 

Abnormal right ventricle (30) 

 

1.5 T Siemens Area 

3 T Siemens Trio Tim 

Instituto do Coração 

– HCFMUSP (INC) 

* (MORENO, DE SÁ 

REBELO, et al., 

2019) 

59  Normal (31)  

Mild dysfunction (16) 

Severe dysfunction (12) 

1.5 T Canon Vantage 

Titan MRI 

Sunnybrook Health 

Sciences Centre 

(SUN) (RADAU P., 

LU Y., CONNELLY 

K., PAUL G., DICK 

A.J., 2009) 

45 Healthy (9) 

LV hypertrophy (12) 

heart failure without 

infarction (12) 

Heart failure with infarction 

(12) 

1.5T GE Signa MRI 

Left Ventricle 

Segmentation 

Challenge (LVSC) 

(SUINESIAPUTRA, 

COWAN, et al., 

2014) 

100 Coronary artery diseases 

Mild-to-mod. Dysfunction 

1.5 T GE Signa  

1.5 T Philips Achieva 

3.0 T Philips Achieva 

1.5 T Philips Intera 

1.5 T Siemens (Avanto, 

Espree, and Symphony)  

The Multi-Disease, 

Multi-View, and 

Multi-Center Right 

Ventricular 

Segmentation in 

Cardiac MRI 

(M&Ms-2) dataset 

(CAMPELLO, 

GKONTRA, et al., 

2021) 

360 

 

Normal subjects (75) 

Dilated Left Ventricle (60) 

Hypertrophic 

Cardiomyopathy (60) 

Congenital Arrhythmogenesis 

(35) 

Tetralogy of Fallot (35) 

Interatrial Comunication (35) 

Dilated Right Ventricle (30) 

Tricuspid Regurgitation (30) 

1.5 T GE (Signa Excite, 

Signa HDxt, Signa 

Explorer) 

3 T GE Signa HDxt 

1.5 T Philips Achieva 

1.5 T Siemens (Avanto, 

Avanto Fit, Symphony, 

and SymphonyTim) 

3 T Siemens TrioTim 

 

 

 

 

* clinical research protocol approved by the Institutional Review Board (IRB) under #4565/17/065 
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4.1.3. Strategy for generalization 

Intensity homogenization: Since the exams were obtained from different sources, all 

the image intensities were normalized individually between 0 and 1 to constrain all 

intensities to the same range. To reduce the heterogeneity of brightness and contrast 

among the different images, and particularly different exams, we applied a pre-

processing step in each image. In the work developed previously (GRAVES, 

MORENO, et al., 2020) we compared some image equalization pre-process methods 

to improve myocardium segmentation. Taking into consideration the equalization 

performances obtained by the investigated methods, we selected the Contrast Limited 

Adaptative Histogram Equalization (CLAHE) (PIZER, AMBURN, et al., 1987), 

which applies the histogram equalization locally on small windows of 8x8 pixels and 

limits the contrast in each window to avoid the amplification of noises and enhance 

local details. 

Data augmentation: To increase the variety of shapes during training, we generated 

synthetic images by applying shape transformation in the training images: resizing 

(0.7 to 1.5 of the original image size), rotation (-30o to +30o), and random translation. 

All the training sets were increased 20 times after the transformations. 

The size of most images in the datasets lies from 288 to 154 pixels. Therefore, all the 

images were adjusted into a matrix of size 256 x 256 to be inserted as input in the 

network. Images with smaller sizes were centered in the middle of the matrix and zero-

padded to 256x256. Bigger images were centered, and the exceeding pixels (larger 

than 256x256) were cropped. 
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4.1.4. Training 

To compare our proposed architecture to the U-net we performed a k-fold cross-

validation, using 4 folds. The ACDC dataset was divided into 5 folds randomly, then 

3 folds were used to train, 1 to validate and 1 to test the models. During the training 

process, the training and validation sets were employed. The models were trained 

during 100 epochs, and to avoid overfitting, the weights that performed better in the 

validation set during the training phase were preserved. The loss function utilized to 

enhance segmentation is a linear combination of binary cross-entropy (BCE) 

(KHENED, KOLLERATHU, et al., 2019) and Dice-based loss to decrease foreground 

misclassification. BCE loss is intended to reduce the error pixel-wisely, which is 

important for rough discrimination between background and foreground structures. 

However, in many medical image segmentation tasks, the object of interest is much 

smaller than the background, increasing the probability of misclassification of the 

learned mask using BCE (KHENED, KOLLERATHU, et al., 2019). Thus, to improve 

the segmentation, the loss function was combined with a Dice-based loss (RADAU P., 

LU Y., CONNELLY K., PAUL G., DICK A.J., 2009). The training was performed 

with adaptive moment estimation (ADAM) for stochastic gradient optimization, with 

a learning rate of 10-4 and a batch size of 25. Only the weights with the lowest loss in 

the validation set were saved to prevent overfitting in the training data.  

 

4.1.5. Evaluation 

The Dice index, equation 11, was adopted to evaluate how much the predicted area 

overlaps with the original label. It is defined as the ratio between twice the overlapped 

area over the sum of both areas (MORENO, DE SÁ REBELO, et al., 2019).  
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Dice =
2 |M ∩ M̂|

|M| + |M̂|
 

11 

Where 𝑀 is the ground-truth mask and �̂� the predicted mask. 

 

4.2. Motion quantification  

 

4.2.1. Network 

Inspired by the PWC lightweight and the great results achieved by the network in 

computer vision, we developed a Siamese architecture with a modified version of the 

PWC in unsupervised training. The PWC network (SUN, YANG, et al., 2018) is 

composed of 6 levels of dimensional reduction, we implemented a version with 5 

levels to decrease complexity, due to the smaller dimension of our input. We also 

insert some batch normalization between the convolutional layers to accelerate 

convergence during training. The PWC network architecture implemented consists of 

two feature extraction paths, one for each input volume, decreasing the dimensionality 

of the volumes by 5 times, as shown in Figure 22. A block combining a warp 

transformation layer, with cost volume and optical flow estimator is applied at each 

level of dimensionality reduction. The optical flow field obtained at the output of each 

block is increased in size and concatenated into the next block.  

The PWC was used as the main component of the model, so a structure called the 

Siamese network was created, the intermediate network (PWC) is fixed and the 

weights are shared between the two different processes, as illustrated in Figure 23. 

The reference 3D volume (t0) initially is used as input in position 0 of the intermediate 

network PWC and the moving volume (tn) in position 1, generating a displacement 

field between the reference volume and the moving volume (�̂�0). At the same time, 
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the volume of tn is inserted into the intermediate network PWC at position 0 and the 

volume t0 at position 1, generating another displacement field (�̂�𝑛), which in theory 

is the inverse of the previous one. Then, an average between �̂�0 and −�̂�𝑛is performed, 

generating an average vector field �̂�. In each vector field output, an intermediate loss 

function is calculated using the reference image, the learned displacement field, and 

the image used as moved in each case. The loss function used in network training is 

the average between these intermediate functions together with the smoothing 

function, as shown in equation  12. 

 

 

Figure 22: PWC network used as the main component of the Siamese network. Inputs are 

composed of two volumes acquired at consecutive frames (t0 and tn); Then, the images go 

through a series of dimensionality reduction (Downsampling) and feature extraction and warp 

transformation blocks, cost volume, and optical flow estimator. 
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Figure 23: Siamese network architecture. 

 

ℒ =  𝑑𝑆𝑆𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑉, 𝑉𝑤) + 𝛼ℓ𝑆𝑚𝑜𝑜𝑡ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (�̂�)  12 

𝑑𝑆𝑆𝐼𝑀(𝑉, 𝑉𝑊) = 1 −
(2𝜇𝑉𝜇𝑉𝑊 + 𝑐1)(2𝜎𝑉𝑉𝑊 + 𝑐2)

(𝜇𝑉
2 + 𝜇𝑉𝑊

2 + 𝑐1)(𝜎𝑉
2 + 𝜎𝑉𝑊

2 + 𝑐2)
  13 

ℓ𝑆𝑚𝑜𝑜𝑡ℎ(�̂�) =  ∑ ∇

𝑝∈Ω

�̂�(𝑝)2 14 

Where, V is the volume in any time instant (0 or n) and VW is the warped volume using 

the referenced motion field and the other volume;  𝛼 is a constant, set to 10-7; 𝜇 is the 

average intensity of the respective volume, 𝜎 the variance, 𝜎𝑉𝑉𝑊  the covariance of V 

and VW; 𝑐1 and 𝑐2 constants set to 2.55 and 7.65, respectively; and Ω is the domain of 

�̂�.  

 

4.2.2. Data 

Three datasets were used in the motion estimation. The training set of the ACDC 

dataset (described previously) was used to train the network. The INC dataset was used 
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to test the motion estimation. A mathematical phantom was used to create a synthetic 

dataset to directly compare the displacement field generated mathematically and 

calculated by the network since in real CMR images is very hard to obtain a ground 

truth displacement field.  

CMR synthetic images were generated using the 4D extended cardiac-torso (XCAT) 

mathematical phantom (SEGARS, STURGEON, et al., 2010) produced by MRXCAT 

software (WISSMANN, SANTELLI, et al., 2014). The XCAT mathematical phantom 

is capable of generating synthetic images with highly detailed anatomy, as shown in 

an example in Figure 24 A. It possesses multiple parameters to allow the creation of 

different cardiac motion patterns and generates the displacement field during the 

simulated cardiac cycle, information that would be hardly obtained precisely in real-

life measurements. Since the XCAT images are created as anatomic masks of different 

organs, we used the MRXCAT software to transform those images into realistic CMR. 

The software is built on top of XCAT and assigns magnetic resonance properties to 

each tissue mask. Figure 24 A shows an example of a cardiac short axis simulated in 

the XCAT and Figure 24 B shows the transformation of the image by the MRXCAT 

into a CMR acquisition type. 

 

           

Figure 24: (A) Example of short axis cardiac image generated by the XCAT and (B) the same 

image transformed into a CMR pattern using MRXCAT. 

A B 
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4.2.3. Evaluation 

The metrics used to evaluate the results between the ground truth displacement field, 

generated by XCAT (𝜙), and the predicted by the network (�̂�) were MAE (Mean 

Absolute Error) and End-Point-Error (EPE), described respectively in equation 15 and 

16 (MORALES, IZQUIERDO-GARCIA, et al., 2019) and percentage of correct pixel 

(PCP), equation 17, that analyzes the percentage of pixels that present absolute 

percentage error bellow a threshold (β), in the case, used 10%.  

𝑀𝐴𝐸 =
1

𝑁
∑|

𝑁

𝑖=1

𝜙𝑖 − �̂�𝑖|  15 

𝐸𝑃𝐸 =
1

𝑁
∑√(𝜙𝑢𝑖 − �̂�𝑢𝑖)

2
+ (𝜙𝑣𝑖 − �̂�𝑣𝑖)

2
+ (𝜙𝑤𝑖 − �̂�𝑤𝑖)

2
𝑁

𝑖=1

  
16 

𝑃𝐶𝑃 =
100

𝑁
∑{

|
𝜙𝑖 − �̂�𝑖
𝜙𝑖

| < β                   1

 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               0

𝑁

i=1

 
17 

Where u, v, and w are components of the displacement vector in x, y, and z directions, 

respectively, and N is the number of pixels.  

Since in real images the motion ground truth is hard to obtain, to evaluate the 

performance in the real images the Dice index (equation 11) was applied between the 

myocardium mask in the fixed position and the warped myocardium mask in the 

moving frame using the learned displacement field. 

The results obtained were compared with two classical motion estimation techniques: 

3D Lucas-Kanade Optical Flow (LUCAS, BRUCE D. AND KANADE, 1981), 
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implemented using Python language, and 3D B-Spline registration from the 

SimpleITK1 2.0.2 package for python. 

 

4.3. Strain  

 

To estimate strain, first the components �̂�, �̂�, and �̂� need to be determined in each 

point, for that the myocardium is divided into multiple concentric contours in the 

plane (Figure 25). So, component �̂� can be easily calculated by the tangent to the 

contours in each point.  

Initially, the myocardial mask was divided into 5 concentric contours, as shown in 

Figure 25. 

 

 

Figure 25: Example of 5 concentric contours division (right) performed in the myocardium area. 

 

Then, the strain tensor at each point of each contour was calculated. The C component 

at each point was defined as the tangent to the contour at the point. The L component, 

to simplify the calculation, was defined as the straight line between the point itself 

                                                 
1 https://simpleitk.org/ 
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and its projection in the slice below. The R component was found through the cross-

product between C and L. 

After finding the system components, the system rotation matrix was calculated, so 

that the R, C, and L system is aligned with the x, y, and z directions of the Cartesian 

system. Then, the strain tensor was obtained using the equations 7 to 10.  

 

4.3.1. Data 

The dataset used to assess strain quantification consists of 62 exams collected during 

routine clinical practice. There are 10 healthy individuals and 52 patients with various 

diseases among the participants. The scanners used were 1.5T Canon Vantage Titan 

(Canon Medical System Corporation, Japan), 1.5 GE Signa (GE Healthcare Systems, 

USA), and 1.5 Philips Achieva (Philips Healthcare, Best, The Netherlands). 

We also used the M&Ms-2 dataset to compare our strain quantification method to that 

of (MORALES, VAN DEN BOOMEN, et al., 2021), which was recently published. 

 

4.3.2. Evaluation 

To evaluate the result in the synthetic data it was used the mean average error (MAE), 

which is described in equation 15.  

Obtaining quantitative performance metrics to calculate strain on real cardiac MRI 

images is particularly difficult due to the lack of ground truth. 

Three experienced professionals analyzed CMR images of 62 patients, classifying the 

myocardium regions in the degree of movement based on a semi-quantitative visual 

index called the Wall Motion Score (WMS), characterizing each of the 17 regions of 

the polar plot (Figure 18) into hypokinetic, akinetic, and dyskinetic. As illustrated in 

Figure 26, normal means that the movement of the myocardial wall presents 
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contraction expected for the normality pattern, hypokinetic means that the wall 

presents reduced movement, akinetic means no movement or very close to the absence 

of movement in the region, dyskinesia is when the wall moves in the opposite 

direction of the expected. 

 

 

Figure 26: Illustration of the wall motion score classes: normal, hypokinetic,  akinetic, and 

dyskinetic (LEISCHIK, DWORRAK, ET AL., 2016). 

  

Two of the professionals did the categorization, while a third, more experienced 

professional exanimated the divergences between the determined classes and decided 

a consensus for more reliable labeling. 

Strain is an indirect measure of myocardium wall movement, so values of strain are 

directly related to the WMS. In the radial strain direction, as the strain value increases 

it is closer to normal wall motion, and it follows a linear correlation decreasing in the 

hypokinesia, akinesia, and dyskinesia.  
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The calculated strain was compared with the classical methods described before, and 

with two software available in the market: Circle CVI 42®2 and Medis®3. Two 

experienced professionals generated the strain analysis in the software. A radiologist 

repeated the strain analyses in the commercial systems in a subset of 20 exams (10 

healthy and 10 non-healthy) to explore the intra-observer variation of results in 

systems with the same operator at different times. Another experienced radiologist 

performed the strain studies in the same 20 exams to see how different observers in 

commercial systems affected the strain measurement. 

Using the radial and circumferential strain data, a logistic regression classification 

system was done between the WMS classifications of normal and not normal (other 

classes) to better examine the potential of the proposed technique compared to the 

classical methods and the two commercially available methods. The investigation 

used cross-fold validation using four folds to estimate classification performance for 

various sets of data. 

To compare our method to the developed by Morales et al. (MORALES, VAN DEN 

BOOMEN, et al., 2021), we executed both pipelines on a dataset that neither method 

had seen before. Because the dataset lacks a strain label, one way to measure the 

method's efficacy is to look at its ability to distinguish between healthy and 

pathological participants, so the evaluation, in this case, is performed by the 

differences between the calculated strain along the cardiac cycle in the healthy and 

pathologic groups by the two methods.  

 

 

 

                                                 
2 https://www.circlecvi.com/ 
3 https://medisimaging.com/ 
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5. RESULTS AND DISCUSSION 

 

5.1. Myocardium segmentation 

 

The comparison between the U-net and the proposed LiteResnet was performed in a 

4-fold cross validation experiment, training the models with the ACDC dataset. The 

Figure 27 shows the evolution of the average Dice score in the training set and 

validation set in each model during training, showing also the standard deviation 

across the folds.   

 

Figure 27: Average Dice score during training process of the U-net (left) and LiteResnet (right) 

for the training set and validation set. 

 

The U-net experienced overfitting in the training data, as seen in Figure 27, because 

the Dice increased in the training set but remained constant in the validation set. The 

LiteResnet the Dice score in the validation set keep increasing with the training set, 

indicating that the model did not overfit the training data.  

Table 2, Table 3 and Table 4 show the Dice scores achieved in the endocardium, 

epicardium and myocardium, respectively, for the test set from a distinct dataset.  
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Table 2: Endocardium Dice scores obtained with U-net and LiteResnet tested in set samples 

from the datasets ACDC, INC, SUN, LVSC, and M&Ms-2. 

Dataset Unet LiteResnet  

ACDC 0.92 ± 0.02 0.94 ± 0.01* 

M&Ms 0.88 ± 0.01 0.90 ± 0.00* 

Incor 0.86 ± 0.01 0.87 ± 0.00* 

SB 0.90 ± 0.01 0.92 ± 0.01* 

LVSC 0.76 ± 0.01 0.81 ± 0.01* 

Average 0.86 ± 0.04 0.89 ± 0.04* 
* Statistically significant (p<0.05 with t-test) 

 

 

Table 3: Epicardium Dice scores obtained with U-net and LiteResnet tested in set samples from 

the datasets ACDC, INC, SUN, LVSC, and M&Ms-2 

Dataset Unet LiteResnet  

ACDC 0.96 ± 0.01 0.95 ± 0.01 

M&Ms 0.90 ± 0.01 0.93 ± 0.00* 

Incor 0.92 ± 0.00 0.93 ± 0.00* 

SB 0.93 ± 0.00 0.93 ± 0.00 

LVSC 0.81 ± 0.01 0.86 ± 0.01* 

Average 0.90 ± 0.04 0.92 ± 0.02* 

* Statistically significant (p<0.05 with t-test) 

 

Table 4: Myocardium Dice scores obtained with U-net and LiteResnet tested in set samples 

from the datasets ACDC, INC, SUN, LVSC, and M&Ms-2. 

Dataset Unet LiteResnet  

ACDC 0.89 ± 0.02 0.89 ± 0.02 

M&Ms 0.78 ± 0.01 0.81 ± 0.01* 

Incor 0.82 ± 0.01 0.82 ± 0.00 

SB 0.75 ± 0.01 0.75 ± 0.01 

LVSC 0.73 ± 0.01 0.73 ± 0.01 

Average 0.79 ± 0.05 0.80 ± 0.05 

* Statistically significant (p<0.05 with t-test) 

 

As shown in the Tables 2, 3 and 4, the results obtained in datasets previously unseen 

by the network are similar to those produced in the training datasets' test set for both 

networks. The average Dice standard deviation across all datasets is relatively low, 

showing that the networks are fairly generic. The proposed network (LiteResnet) 

showed an improvement in most of the Dice scores across datasets, the highest 
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improvement was presented in the LVSC dataset, with the U-net model the achieving 

a Dice score in the endocardium of 0.76 and with the LiteResnet achieving 0.81, and 

in the endocardium achieving 0.81 with the U-net and 0.86 with the LiteResnet, 

indicating that a network with less parameters can perform better in generalizing the 

learned task.  

Although it is difficult to compare our Dice results to those given in the literature 

because the data utilized differ, we can note that we achieve a better average Dice 

score in the myocardium in distinct datasets than (PETERSEN, MATTHEWS, et al., 

2015). 

It's worth noting that various specialists used different labeling approaches to separate 

the LV in different datasets. Direct comparisons can result in label divergences, which 

does not necessarily mean that the LV was segmented incorrectly. For example, 

Figure 28 shows the myocardium delineation presented in one image in the 

Sonnybrook dataset in the left, and in the right the segmentation performed by the 

LiteResnet model trained with the ACDC dataset, the Dice between the available 

mask and the mask learned by the model is 0.58. 

 

           

Figure 28: Example of the difference between the ground truth myocardium mask in the 

Sunnybrook (left) and the segmented by the model trained with the ACDC data (right). 

 



72 

 

Although the Dice score achieved between the two masks is low, as it can be seen in 

the images, the network segmented the myocardium correctly, but is not the same as 

the ground truth mask. Moreover, the myocardium area is very small, so differences 

in few pixels impacts greatly in the Dice score.  

 

5.2. Motion quantification 

 

The motion estimation result is divided into two groups: (i) indirect form, using the 

displacement field to warp the myocardium mask; (ii) direct, comparing directly the 

ground truth from the synthetic data and the displacement learned by the network.  

We trained two different network architecture configurations, to explore and compare 

the performance of each one; we use the PWC and the PWC Siamese. The training 

performed in both networks consisted of the same hyper-parameters and the dataset 

used was the ACDC. 

In the Table 5 the Dice is displaced between the myocardium mask in the fixed frame 

and the warped mask in the moving frame, using the displacement field obtained by 

optical flow method, B-spline registration, PWC, PWC network and the result 

reported in the literature using the Carmen Network (MORALES, IZQUIERDO-

GARCIA, et al., 2019). The methods were applied in three different datasets: ACDC, 

INC, and Xcat.  
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Table 5: Dice obtained comparing the fixed myocardium mask and the warped moving 

myocardium mask using the displacement field generated by different methods (Optical flow, 

B-spline registration, PWC network, PWC Siamese network and reported in the literature – 

Carmen) for the ACDC, INC, and Xcat datasets.  
 ACDC INC Xcat 

Optical Flow ± std 0.74 ± 0.07 0.76 ± 0.07 0.86 ± 0.15 

B-Spline ± std 0.59 ± 0.10* 0.58 ± 0.11* 0.73 ± 0.15* 

PWC ± std 0.77 ± 0.04 0.74 ± 0.07 0.78 ± 0.10* 

PWC Siamese ± std 0.76 ± 0.06 0.78 ± 0.05 0.85 ± 0.08 

Carmen (min-max) 0.73 (0.68–0.78)# ------ 0.85 (0.81–0.89) # 

* Statistically significant (p<0.05 in the t-test) in comparison with PWC Siamese 

using the t-test 
# It is not possible to perform the statistical analysis due to the lack of data 

 

As can be seen in Table 5, the PWC Siamese network performed numerically better 

than all the other methods in the ACDC dataset, including the result available in the 

literature. Similarly, PWC Siamese performed numerically better in the INC dataset 

except for the Carmen network, because the dataset was not included in their work. 

And in the Xcat dataset, the PWC Siamese result is better than the B-Spline 

registration, PWC network, and the reported by Morales et al. for the Carmen 

network. The obtained by PWC Siamese for the Xcat data is similar to the Optical 

Flow, but with a lower standard deviation.  

It is important to highlight that the PWC and PWC Siamese training was performed 

in the ACDC training set, thus the good results in the INC and Xcat show the 

generalization of the proposed method. 

Because of the lack of displacement ground truth in real images, the direct comparison 

of the displacement field is done only in the synthetic data. Table 6 shows the results 

for the mean absolute error, end-point error, and percentage of correct pixel between 

the Xcat displacement field and the generated by optical flow, B-spline registration, 

leaned by the PWC network, PWC Siamese network, and reported by Morales et al. 

with the Carmen network.  
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Table 6: Mean absolute error (MAE), end-point-error (EPE), and percentage of correct pixel 

(PCP) between the Xcat displacement field and the generated by optical flow technique, B-

spline registration, PWC network, PWC Siamese network and reported in the literature 

(Carmen).  

 MAE (pixel) EPE (pixel) PCP (%) 

Optical Flow ± std 0.80 ± 0.43* 1.27 ± 0.69* 43.94 ± 10.87* 

B-Spline ± std 1.02 ± 0.20* 1.62 ± 0.32* 19.92 ± 13.61* 

PWC ± std 0.35 ± 0.14* 0.77 ± 0.32* 72.12 ± 12.47* 

PWC Siamese ± std 0.17 ± 0.10 0.37 ± 0.23 85.21 ± 6.71 

Carmen (min-max) ------ 1.7 (1.3–2.1) # -------- 

* Statistically significant (p<0.05 in the t-test) in comparison with PWC Siamese 

using the t-test 
# It is not possible to perform the statistical analysis due to the lack of data 

 

The direct evaluation of the Xcat displacement field and the generated by the 

automatic methods shows that the PWC Siamese performed better than all the other 

methods, even when compared with the result available in the literature (Carmen). 

The good result in the direct evaluation in Table 6, and the good performance shown 

in Table 5 with an indirect comparison of the displacement field, indicate that it is 

possible to rely on the indirect form of evaluation in the real images to analyze the 

performance of the methods.  

To illustrate the PWC network performance in predicting the displacement field, in 

Figure 29 is possible to compare the displacement field generated by the Xcat, in a 

health simulated subject, and the predicted by the PWC Siamese network, in the x, y, 

and z directions. The displacement field was set to zero outside of the myocardium 

mask to ease the visualization. The displacement field is represented here as a color-

coded image, where each color represents the amount of movement in each direction. 

For example, displacement in the x direction in the right part of the myocardium is 

around -5 mm to -10 mm, and the part in the left is around 2 mm to 5 mm, the x 

direction negative displacement in the right part of the myocardium and the positive 
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in the left indicate a contraction, wise because the materials in the boundaries of the 

myocardium are going towards its center.    

 

Figure 29: Example of displacement field obtained from a health simulated subject in the Xcat. 

All the figures on the left are constructed with data simulated by the Xcat and on the left 

generated by the PWC Siamese network, in the columns, there are the displacements in the x 

direction, y direction, and z direction, along with the respective color code representing the 

amount of movement in that direction. The displacement field outside the myocardium mask 

was set to zero to ease the visualization. 

 

It is possible to observe in Figure 29 that the z displacement generated by the network 

is very different from the ground truth (the generated by the Xcat). In general, the 
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distance between slices in CMR short axis exams is larger than the amount of 

displacement in the long axis. In the simulated images the distance between slices is 

10 mm, and in the example of the image, the displacement in the z direction is around 

2 mm. Thus, it is very hard for the network to predict the correct displacement in the 

z direction with a large slice distance.    

  

5.3. Strain 

 

After generating the displacement field, it is possible to calculate the strain in the three 

directions of the cardiac orientation: radial, circumferential and longitudinal using 

equations 7 to 10. With the strain calculated, the polar plot can be constructed for each 

orientation, described in Figure 18. In the real images used, it is not possible to 

compare the expected strain with the calculated using the displacement field 

generated by the network, because of the lack of ground truth. In Figure 30 is possible 

to perform a qualitative result, comparing the radial strain differences in the 

myocardium segments for a health subject and a patient with myocardium infarction, 

both cases belonging to the ACDC dataset. Similarly, Figure 31 and Figure 32 show 

the differences between health and pathological for the circumferential and 

longitudinal strain.   



77 

 

 

Figure 30: Radial strain calculated with the displacement field learned by the PWC Siamese 

network for a normal case (left) and a patient with myocardial infarction (right). 

 

Figure 31: Circumferential strain calculated with the displacement field learned by the PWC 

Siamese network for a normal case (left) and a patient with myocardial infarction (right). 
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Figure 32: Longitudinal strain calculated with the displacement field learned by the PWC 

Siamese network for a normal case (left) and a patient with myocardial infarction (right). 

 

According to Amzulescu et al. (2019), there is no consensus in the literature on the 

definition of strain normal ranges, which makes the quantification of pathological 

states challenging. The review written by Vo et al. (2018) aimed to estimate a normal 

range for strain calculated in CMR images using feature tracking methods, the authors 

detailed that the average values reported by the reviewed papers were 34.1% (28.5% 

to 39.7%) for global radial strain (GRS), −23% (−24.3% to −21.7%) for global 

circumferential strain (GCS) and −20.1% (−20.9% to −19.3%) for global longitudinal 

strain (GLS). In the health case used as an example in the figures 29-31 the GRS 

calculated is 49.39%, the GCS is -12.02%, and GLS -27.45%.  

Due to the large distance between slices in the exams, both of 10 mm, the longitudinal 

strain values in the segments and the GLS are very different from the expected and 

reported in the literature. As mentioned before, there is no consensus in the literature 

about standard values of peak systolic global strain, either radial or circumferential, 

as reported by Vo et al. (VO, MARWICK, et al., 2018).  
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Figure 33 and Figure 34 show the reported healthy values of peak systolic strain, 

respectively, radial and circumferential by some published works as mentioned by Vo 

et Al. (2018), along with the global strain values obtained by the analyzed methods, 

the PWC Siamese, Medis and CVI 42 in the 10 healthy subjects. All reported strain 

was obtained in CMR images. 

 

Figure 33: Comparison of the variation of healthy global systolic radial strain obtained by the 

PWC Siamese method, the Medis and CVI 42, with some values reported in the literature.  

 

 

Figure 34: Comparison of the variation of healthy global systolic circumferential strain obtained 

by the PWC Siamese method, the Medis and CVI 42, with some values reported in the 

literature. 
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Without a standard value to compare with, it is difficult to analyze which method is 

better to determine the strain in comparison to the literature.  

The error quantification between the expected strain and the calculated by the 

proposed method can be executed only in the synthetic data. Table 7 is presented the 

mean average error (MAE) between the strain calculated using the Xcat displacement 

field and the generated by different methods, including the classical optical flow and 

B-spline registration, and the learned by the PWC and PWC Siamese networks. The 

analysis performed in the synthetic data does not include the commercial systems 

because those are not suitable for this type of data.  

 

Table 7: Mean absolute error between the calculated strain using the Xcat displacement field 

and the generated by Optical Flow, B-Spline registration, PWC network, and PWC Siamese 

network, for each strain direction: radial, circumferential and longitudinal.  

 Optical Flow (%) B-Spline (%) PWC (%) PWC Siamese (%) 

Radial 2.13 ± 1.33 9.03 ± 3.9 7.55 ± 4.34 12.49 ± 3.77 

Circumferential 1.24 ± 0.86 7.77 ± 1.78 6.34 ± 3.23 1.77 ± 1.2 

Longitudinal 7.44 ± 5.36 3.28 ± 2.3 5.22 ± 2.71 3.63 ± 3.03 

 

As can be observed in Table 7, the Optical Flow method presented the lowest MAE 

and standard deviation in the radial and circumferential, and the other methods also 

resulted in lower MAE than the PWC Siamese. However, in some cases the strain 

resulted is very small, then, the difference between small ground truth strains 

compared with a small strain generated by the methods results in a small error.  

Figure 35, 35 and 36 show the box-plot of the calculated radial, circumferential and 

longitudinal strain, respectively, using the motion field from the different analyzed 

methods, alongside the ground truth. In the box plot, the simulated exams are divided 

into three ejection fraction categories: normal, lower function and heart failure, to 

better investigate the strain distribution in different scenarios.  
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Figure 35: Box-plot of the global radial strain (GRS) calculated using the motion field from de 

ground truth XCAT and from the PWC Siamese, the B-Spline registration and the optical flow. 

Exams are divided into three ejection fraction categories: normal (N), lower function (LF) and 

heart failure (HF).  

 

 

Figure 36: Box-plot of the global circumferential strain (GCS) calculated using the motion field 

from de ground truth XCAT and from the PWC Siamese, the B-Spline registration and the 

optical flow. Exams are divided into three ejection fraction categories: normal (N), lower 

function (LF) and heart failure (HF). 
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Figure 37 Box-plot of the global longitudinal strain (GLS) calculated using the motion field 

from de ground truth XCAT and from the PWC Siamese, the B-Spline registration and the 

optical flow. Exams are divided into three ejection fraction categories: normal (N), lower 

function (LF) and heart failure (HF). 

 

As can be observed in the Figures above, the range of strain values calculated using 

the B-spline registration is too close to zero, and it reflects in the MAE in Table 7. 

There were no differences between the various groups in the average global strain in 

the radial direction determined by optical flow.   

To analyze the strain quantification in the real CMR images, the wall motion score 

classification performed by the professional was compared with the strain generated 

by the automatic quantification using the PWC Siamese, and the commercial software 

available in the market: CVI 42 and Medis, along with the strain calculated using the 

optical flow and B-spline registration methods. A box plot (Figure 38) was 

constructed to compare the WMS class and the strain obtained by the different 

methods.  
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Figure 38: Box plot comparing WMS class distribution with strain values obtained by the CVI 

42, Medis, and strain quantification using the PWC Siamese networks (our method), optical 

flow and Bspline displacement fields. 

 

As it can be seen in Figure 38 the proposed method follows a linear tendency for the 

strain values and WMS classes, along with the other methods. The classical methods, 

optical flow and Bspline presented displacement very close to zero, consequently, the 

calculate strain is very small for all the WMS classes, as it can be seen in the Figure 

38.  

One important ability of a strain quantification system is to distinguish between 

healthy and unhealthy subjects, related to cardiomyopathy that affects the cardiac 

deformation. To compare our automated technique to commercial solutions, we 

created a box plot (see Figure 39) that shows the distribution of global strain in healthy 

(NOR) and non-healthy (NOT NOR) groups. As previously stated, the dataset 

employed in the strain evaluation consists of 10 healthy control participants and 52 

patients with various heart diseases. 
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Figure 39: (up) Global radial strain (GRS) and (bottom) global circumferential strain (GCS) for 

all the strain quantification methods Medis, CVI, our method, optical flow and Bspline for each 

group of subjects: normal (NOR) and not normal (NOT NOR). 

 

In the healthy group (NOR), the standard deviation of the GRS achieved by the 

proposed technique is lower than that obtained by the Medis systems. The smaller 

strain variance in healthy people shows that the proposed technique is superior to the 

one available in the marketing, to determine peak systolic global strain. 



85 

 

To better analyze the potential of the proposed method compared to the two 

commercially available methods and the classical methods, a logistic regression 

classification system between normal and not normal (other classes) was performed 

using the radial and circumferential strain data. Cross fold validation, using 4 folds, 

was applied in the analysis to estimate the classification performance in different 

selected data. The Receiver Operating Characteristic Curve (ROC curve) for the 

classification system for each method was elaborated, using 4-fold cross-validation,  

Figure 40 shows the ROC curve for the PWC Siamese derived radial strain (our 

method), CVI 42 data, and Medis data, optical flow and bspline calculated strain, and 

Figure 41 shows de ROC curve for the classification system build using the 

circumferential strain data.  

 

Figure 40: ROC curve for the classification system using logistic regression to classify normal 

and not normal WMS classes using radial strain data from our method, CVI 42 system, Medis 

system, optical flow and bspline method, using 4-folds cross-validation. 
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Figure 41: ROC curve for the classification system using logistic regression to classify normal 

and not normal WMS classes using circumferential strain data from our method, CVI 42 

system, Medis system, optical flow and bspline method, using 4-folds cross-validation. 

 

As observed in Figure 40, the classification system build with the PWC Siamese data 

shows an AUC similar to the CVI 42 and Medis, to classify the myocardium regions 

into normal motion and not normal, according to the clinical classification performed 

by a professional. In comparison with the Medis classification system, the PWC 

presented a worse AUC in the circumferential data. The classification systems using 

the classical methods (optical flow and Bspline) presented worse performance than 

all the other methods. 

Although the myocardium motion classification into normal and not normal, 

according to the circumferential strain, of the proposed method showed worse 

performance than the Medis, our deep learning-based automatic method operates 

independently of human observers, making it user-agnostic and invariant to user 

variations. 
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One radiologist replicates the strain analysis in the same software twice for 20 exams, 

to examine the intra-observer variance. Also, two different radiologists performed the 

strain analyses in the commercial systems for the same 20 exams, to investigate the 

inter-observer variation. Table 8 shows the MAE obtained in the intra- and inter-

observer analysis for the CVI 42 and Medis.  

 

Table 8: MAE for the CVI 42 and Medis intra- and inter-observer analyses.  

 Radial (%) Circumferential (%) 

Analysis Intra  Inter Intra  Inter 

Medis  20.07 ± 21.16 23.97 ± 24.45 3.76 ± 4.26 4.87 ± 4.75 

CVI 42  22.26 ± 24.13 20.53 ± 17.62 11.35 ± 11.39 9.66 ± 8.18 

  

Figure 42 and Figure 43 show, respectively, the regional radial and circumferential 

strain Bland-Altman plot for the intra-observer analysis in both commercial systems, 

CVI 42 and Medis.  

 

 

Figure 42: Bland-Altman plot for the intra-observer radial local strain in the CVI 42 system 

(orange) and Medis System (green).  
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Figure 43: Bland-Altman plot for the intra-observer circumferential local strain in the CVI 42 

system (orange) and Medis System (green). 

 

In Figure 44 is the Bland-Altman plot for the inter-observer analysis in the CVI 42 and 

Medis systems, and in Figure 45 is the Bland-Altman plot for the circumferential strain 

inter-observer variation.  

 

Figure 44: Bland-Altman plot for the inter-observer analysis with radial local strain, performed 

with the Medis (green) and CVI 42 (orange) data. 



89 

 

 

Figure 45: Bland-Altman plot for the inter-observer analysis with circumferential local strain, 

performed with the Medis (green) and CVI 42 (orange) data. 

 

According to Figure 42 and Figure 43, it is possible to observe that the circumferential 

strain suffers less divergence in the intra-analyses compared with the radial, in both 

systems. It may happen due to the range of values in both directions, during the 

myocardium contraction the degree of motion in the radial direction is much higher 

than in the circumferential, resulting that absolute values in the radial strain being 

higher than in the circumferential, and consequently, the range of error is higher too.  

The inter-observer analyses follow almost the same behavior as the inter-observer, 

suggesting that the disparity of value is related not only with a different observer, but 

the values diverge with the analysis, even with the same observer. That difference in 

values according to the analysis reduces the reproducibility of the commercial 

systems. 

The proposed automatic strain quantification method using deep learning is invariant 

to the observer, since the method does not require any user interaction, differently 
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from the commercial software CVI 42 and Medis. Therefore, using deep learning to 

quantify strain in cardiac resonance images seems to be a more reliable source to 

understand cardiac diseases than the available methods.  

As mentioned before, Morales et al. (2021) developed an automatic pipeline to 

estimate cardiac strain in CMR images using deep learning, which they called the 

solution DeepStrain. However, they did not explore generalization to other public 

datasets and one of the tests was performed on the same dataset of training.  

To compare our solution with DeepStrain, the source code provided by Morales et al. 

was used to test the pipelines in a public dataset unseen by both methods, the M&Ms-

2 (CAMPELLO, GKONTRA, et al., 2021). There is any quantitative metric available 

to compare both systems. To evaluate the performances, a graph with the global radial 

strain (GRS) through the cardiac cycle was built with the result of both pipelines, 

presented in Figure 46. In the GRS curves, the subjects’ normal health and not normal 

was separated, and a qualitative evaluation can be performed by analyzing how much 

each system separates the healthy and non-healthy groups.   
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Figure 46: Global radial strain over the cardiac cycle resulted by the application of our pipeline 

(left) and the DeepStrain (right) in the M&Ms-2 dataset, showing the curves for the normal 

group (NOR) and not normal (NOT NOR).  

 

Because databases lack true strain labels, we may compare our method to those 

described in the literature indirectly, which makes quantitative comparison of 

methods challenging. When analyzing the graphs in Figure 46, it can be seen that our 

approach yields a bigger gap between the curves of the normal and non-normal 

classes, implying that our method performs better. It is important to note that the 

evaluation was conducted using a dataset that neither approach had before faced, 

implying that our solution generalized better than Morales et al.'s (MORALES, VAN 

DEN BOOMEN, et al., 2021). 

Furthermore, we conducted a comparative analysis of both methods, one proposed in 

our study and the other introduced by Morales, with a focus on assessing the 

complexity of the models. Table 9 presents the number of parameters and the average 

inference time for a single exam in the LiteResnet and CarSon models, which are 

utilized for cardiac structure segmentation in our research and in Morales' work, 

respectively. Additionally, Table 9 provides details on the parameters and inference 
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time for the motion estimation models introduced in our research (PWC Siamese) and 

those presented in Morales' publication (CarMen). The inference time measurements 

were obtained using an NVIDIA Tesla v100 16GB GPU. 

Table 9: Number of trainable parameters and average inference time of the models, including 

the segmentation models and the motion estimation models. 

 Model Parameters (millions) Inference time (s) 

S
eg

m
en

t.
 

LiteResnet 0.58 0.03 

CarSon 57.2 13.5 

M
o

ti
o

n
 

PWC Siamese 10.5 3.6 

CarMen 111.8 8.5 

 

Comparing our study's models to Morales', we find that they are less complex and 

handle data more quickly. The PWC Siamese model is 10 times less in terms of 

parameters than CarMen, and our motion model's average inference time is 2.4 times 

faster than that suggested by Morales, as seen in Table 9. 

 

6. CONCLUSION 

 

In this work, a novel approach based on DL to measure myocardial strain in CMR 

with 2D-SSFP pulse sequence was developed and assessed. We established a hybrid 

pipeline that employs both supervised and unsupervised DL to automatically perform 

the tasks necessary for cardiac muscle segmentation and motion estimation. We 

investigated the generalizability of a supervised DL segmentation method to define 

the heart muscle, and the use of an unsupervised DL model to track motion within the 

left ventricle in both real and synthetic 3D cine magnetic resonance images. Finally, 

we looked into the connection between the segmented myocardium and the estimated 

motion to calculate myocardial strain. 
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The results of this research demonstrated the potential of deep learning techniques in 

automating processes and enhancing the accuracy of myocardial strain quantification. 

The proposed pipeline showed promising results in the strain estimation, achieving AUC 

of 0.78 for classifying the WMS normal class using the radial strain values calculated by 

the proposed method. Additionally, the proposed method exhibits exceptional accuracy 

in segmenting the cardiac muscle, obtaining an average myocardium Dice score of 0.80 

when tested across five distinct datasets. Moreover, the proposed approach demonstrated 

strong performance in tracking cardiac motion, with an EPE of just 0.37 pixels when 

applied to synthetic data. The promising results from the automated method have the 

potential to significantly assist in the diagnosis and monitoring of cardiac diseases. 

Furthermore, the incorporation of deep learning techniques into the segmentation and 

motion estimation processes streamlines the workflow, reducing the necessity for manual 

intervention, consequently saving time and enhancing the overall efficiency. 

In conclusion, this research highlights the potential of deep learning in improving the 

accuracy and efficiency of cardiac imaging analysis. The presented approach holds 

substantial clinical implications, offering clinicians valuable insights into cardiac function 

and disease diagnosis. The study establishes that deep learning techniques can be 

employed to accurately quantify myocardial strain, and this methodology could 

potentially extend to other modalities of medical imaging, ultimately leading to improved 

patient outcomes. 
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