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ABSTRACT

Guenkawa, P. A. S. Detection and location of cavitation through artificial intel-
ligence. 2024. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia
Elétrica, Escola Politécnica, Universidade de São Paulo, São Paulo, 2024.

Myocardial infarction is one of the main causes of morbidity and mortality worldwide.
Among the possible treatments for blood flow obstruction is an emerging technique named
sonothrombolysis. To reach satisfactory results, the event allied to the technique (cavi-
tation of microbubbles) needs to be controlled to avoid harm to the patient. Given that,
this study aimed to detect and classify the phenomenon during sonothrombolysis ther-
apy through artificial intelligence, where the region of interest is the heart. The signals
were generated using the k-Wave toolbox available for MATLAB, where features of the
acoustic medium can be set, including non-linearities, attenuations, and the matrix array
topology. After the simulation of those signals, an automatic and uncomplicated classifier
method was proposed, based on the Continuous Wavelet Transform tool and Convolu-
tional Neural Network (CNN) approach. The method made use of a pre-trained CNN,
called AlexNet, operating a database of 2,800 synthetic waves for training (70%), testing
(15%), and validation (15%). The evaluation included both the detection using broad
and narrowband detectors, the noise level applied, and the database size. For the case
of narrowband receivers, the results of the study indicated that the technique achieved
state-of-the-art values of around 95.7%, and 96.0% for accuracy and precision, respec-
tively. The considerable degree of accuracy demonstrated that using artificial intelligence
could be an approach to explore the detection of cavitation for therapies using ultrasound
signals.

Keywords: Sonothrombolysis. Cavitation detection. Artificial intelligence.
AlexNet.



RESUMO

Guenkawa, P. A. S. Detecção e localização de cavitação via inteligência artificial.
2024. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia Elétrica,
Escola Politécnica, Universidade de São Paulo, São Paulo, 2024.

O infarto do miocárdio é uma das principais causas de morbidade e mortalidade em todo o
mundo. Dentre os possíveis tratamentos para obstrução do fluxo sanguíneo, uma técnica
emergente é denominada sonotrombólise. Para alcançar resultados satisfatórios, o evento
aliado à técnica (cavitação de microbolhas) precisa ser controlado para evitar danos ao
paciente. Diante disso, este estudo teve como objetivo detectar e classificar o fenômeno
durante a terapia de sonotrombólise por meio de inteligência artificial, onde a região de
interesse é o coração. Os sinais foram gerados utilizando a ferramenta k-Wave disponível
para Matlab, onde podem ser definidas características do meio acústico, incluindo não
linearidades, atenuações e a topologia da matriz de transdutres. Após a simulação desses
sinais, foi proposto um método classificador automático e descomplicado, baseado na
ferramenta Transformada Wavelet Contínua e abordagem de Rede Neural Convolucional
(CNN). O método utilizou uma CNN pré-treinada, chamada AlexNet, operando uma
base de dados de 2.800 sinais para treinamento (70%), teste (15%) e validação (15%).
As métricas de avaliação incluíram tanto a detecção em banda larga e estreita, o nível
de ruído aplicado e o tamanho da base de dados. Para o caso dos receptores de banda
estreita, os resultados do estudo indicaram que a técnica alcançou valores em torno de
95,7% e 96,0% para acurácia e precisão, respectivamente. O considerável grau de acurácia
demonstrou que o uso de inteligência artificial pode ser uma abordagem para explorar a
detecção de cavitação para terapias que fazem uso de ultrassom.

Palavras-chave: Sonotrombólise. Detecção de cavitação. Inteligência artificial.
AlexNet.
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1
INTRODUCTION

In this chapter, we present the motivation for this work. Also, we briefly state some
choices made, the objective, and contributions. Finally, we present the organization of
this project.

1.1 MOTIVATION

Cardiovascular disease (CVD) is a generic label for conditions affecting the heart or blood
vessels. Coronary heart disease, cerebrovascular disease, rheumatic heart disease, deep
vein thrombosis, and pulmonary embolism are part of the group of disorders encompassed
by the condition. CVDs are the leading cause of death globally, taking an estimated 17.9
million lives each year. Of these deaths, 85% were due to myocardial infarction (heart
attack) and stroke (WHO 2021).

Approximately 1.5 million cases of myocardial infarction (MI) occur annually in the United
States; the yearly incidence rate is close to 600 cases per 100,000 people (Zafari and Ab-
dou 2019), and MI is a major cause of morbidity and mortality worldwide. It is estimated
that more than 3 million people each year have an acute ST-elevation myocardial infarc-
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tion (STEMI) and more than 4 million have a non-ST-elevation myocardial infarction
(NSTEMI) (White and Chew 2008).

The commonest cause of MI is the partial or complete epicardial coronary artery occlu-
sion from erosion or rupture of vulnerable plaques. Those arterial plaques are composed
of materials that enter the artery wall from the bloodstream, such as fat, cholesterol,
calcium, waste products from cells, or a clotting agent called fibrin. The obstructions
are responsible for around 70% of fatal events and the epicardial and microvascular ren-
ovation flow in acute STEMI can be done by surgical or non-surgical treatment, where
catheter-based reperfusion and fibrinolysis are examples of the methods respectively.

The obstruction of a coronary artery or any of its large branches has long been regarded
as a serious accident and the treatment approach has evolved over the years. MI was
considered to be a "wound" of the heart in the early 20th century. In 1912, (Herrick 1912)
described the importance of absolute rest in bed for several days as a resource for recovery,
later authors recommended morphine for pain. Currently, myocardial reperfusion has
been improved progressively: the addition of aspirin as an agent to the fibrinolytic drug
(Sabatine et al. 2005); the exploration of tissue plasminogen activators to the thrombi
lysing (Cannon et al. 1994); the addition of stents (Zhu et al. 2001), and more recently
the use of diagnostic ultrasound (DUS) inducing cavitation as a method of dissolving
intravascular and microvascular thrombi in acute myocardial infarction (AMI) (Xie et al.
2013).

Ultrasonic energy has been assessed extensively as a method to promote thrombolysis
(Trübestein et al. 1977; Tachibana 1992), and when the amount of energy is sufficient
along with the use of microbubbles (MBs), the activity can restore the blood flow of
vessels, and such procedure is called sonothrombolysis.

Sonothrombolysis is a novel therapy that has noninvasive and non-ionizing features (Medel
et al. 2009). By the application of acoustic emissions directed to the thrombus location,
the intention is to mechanically break up the occlusive blood clot through the cavitation of
MBs. A very important caution to be avoided is the trigger of bubble collapse in undesired
spots, which could result in damage to healthy tissue. Therefore, the detection of the
type of cavitation that is occurring and its location is crucial for methods that combine
acoustic waves and MBs, and consistent sonification is necessary for the method’s safety
and efficacy.
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1.2 OBJECTIVE AND SCOPE

The primary purpose of this project was to develop a feedback mechanism for cavitation
detection based on an Artificial Intelligence algorithm. The guidance allows the classifica-
tion of cavitation phenomena through temporal signals, with the database being obtained
by simulating the use of ultrasonic sensors, and the piezoelectric crystals belonging to the
equipment intended to cause sonothrombolysis. The hypothesis is that the detection is
feasible by the development of a Deep Learning model.

1.3 CONTRIBUTIONS

We consider that this work affirmed the hypothesis that Artificial Intelligence could detect
the cavitation phenomenon in Sonothrombolysis therapy. As contributions regarding this
question, we can cite:

• The development of a classification method based on a feed-forward artificial neural
network.

• We evaluated the Continuous Wavelet Transform as a tool to extract features of the
analyzed signals.

• We verified the possibility of applying transfer learning to a medical problem.

• We evaluated our method’s performance by the inspection of accuracy, recall, pre-
cision, and F1-score metrics.

1.4 ORGANIZATION OF THIS WORK

This work is organized as follows:

• Chapter 2 reviews the medical background for the condition that the therapy aims
to treat, provides details for the Sonothrombolysis method, and presents an intro-
duction to the detection technique we develop in this work;

• Chapter 3 will cover the theory behind Convolutional Neural Networks used in this
work;

• Chapter 4 will cover the most relevant topics behind the Continuous Wavelet Trans-
form tool;
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• Chapter 5 will cover the methodology and simulations regarding the selected ap-
proach;

• Chapter 6 will cover the analysis and results obtained through the method applied,
verifying its effectiveness; and

• Finally, Chapter 7 will share some conclusions and suggestions for future work.
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2
LITERATURE REVIEW

In this chapter, we highlight important concepts regarding the medical background of MI,
then we detail the cavitation phenomenon, and finally, we briefly state some detection
mechanisms for cavitation.

2.1 MEDICAL BACKGROUND

2.1.1 THROMBUS FORMATION

Atherosclerosis is the main contributor to CVD (Libby et al. 2019). The condition de-
nomination derives from the Greek word for "gruel" or "porridge", which is related to the
appearance of the typical atherosclerotic plaque (or atheroma). Those arterial plaques
are composed of materials that enter the artery wall from the bloodstream, such as fat,
cholesterol, calcium, waste products from cells, or a clotting agent called fibrin. The lipid
material can become more fibrous with time, hampering the blood flow and leading to
tissue ischemia.
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Figure 2.1 – (a) Initiation, progression, and complication of human coronary atheroscle-
rotic plaque. (b) Thrombus formation

Source: Libby 2001, Bruce Furie and Barbara Furie 2008.

Figure 2.1a (Libby 2001) illustrates a timeline of human atherogenesis from a normal
artery (1) to more severe stages of atheromas (5, 6, 7). Stages (2) and (3) show the
evolution to the fibrofatty phase. There is the onset of the lesion due to risk factors
such as hyperlipoproteinemia, triggering inflammatory leukocytes to act on the spot.
(4) characterizes the procoagulant feature. If the fibrous cap ruptures at the point of
weakening, there is thrombosis on nonocclusive atherosclerotic plaque (5). When the
thrombus is reabsorbed, it can lead to a healing process (6) and the fibrofatty lesion can
become a calcified plaque. (7) describes the emergence of occlusive thrombi by superficial
erosion of the endothelial layer.

Figure 2.1b (Bruce Furie and Barbara Furie 2008) gives more details about the throm-
bus formation. As described, it is a dynamic process in which the lesions formed in the
endothelial cells cause changes in the vascular wall. Thus, as a defense and regeneration
mechanism, there is platelet aggregation at the injured site, possible thrombus formation
as a response to prevent bleeding from injured blood vessels (Gregg and Goldschmidt-
clermont 2003), and the healing response leads to increased collagen accumulation. De-
creased blood flow due to the presence of an atherosclerotic plaque can also occasion
thrombus formation in some cases in which shear, flow, and turbulence greatly influence
the architecture of the clot.

In the circumstance of the blood clot (thrombus) breaking loose, it is carried by the blood-
stream and it might block another blood vessel in the distal vasculature. The condition
is called thromboembolism and the occlusions cause hypoxia in distal tissues, leading to
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infarction and tissue death (Bader et al. 2016). The slowly progressing obstruction can
affect several arterial beds, and depending on the place of the tissue death, the block-
ages are divided into two main categories: venous and arterial. Some examples of venous
thromboembolism are deep vein thrombosis and pulmonary embolism (Disease Control
and Prevention 2020). Arterial thromboembolism often occurs in the brain (ischemic
stroke) and heart (coronary thrombosis), which could lead to heart tissue damage or an
MI (Lyaker et al. 2013).

As mentioned earlier, this study is part of a bigger project that focuses on heart disease
treatments. For this reason, it is interesting to discuss MI more deeply.

2.1.2 MYOCARDIAL INFARCTION

MI is defined in pathology as myocardial cell death due to prolonged ischemia (Thygesen
et al. 2012). The clinical evaluation involves an electrocardiogram (ECG), biochemical
testing, and invasive and noninvasive imaging. As shown in Figure 2.1, the presence of
the thrombus affects the local circulation, which can cause total occlusion and lead to
STEMI, NSTEMI, or unstable angina (Anderson and David Morrow 2017).

MI was considered to be a "wound" of the heart in the early 20th century and it was
believed that coronary thrombosis was always immediately fatal (Morrow and Braunwald
2016). In 1947, Wood and colleagues started to describe the condition as "intermediate
coronary syndrome" and in 1961, the study (Wood 1961) based on the analysis of 150
cases over 10 years, showed that most deaths were due to the development of cardiac
infarction related to coronary thrombosis. By that time, the true incidence of coronary
insufficiency was difficult to determine.

Since then, our understanding of its pathogenesis has changed with the advance of new
studies and data, leading to a vast improvement in less invasive, efficient, and innovative
treatment options. Some of the therapies are reviewed in the next section.

2.2 FRONTLINE THERAPIES

When a patient is diagnosed with the pathology, work is required on the recanalization
of the occluded coronary artery as soon as possible, which can be achieved mainly by
one of the two widely accepted reperfusion strategies: the use of thrombolytic agents and
percutaneous coronary intervention (PCI) (Bagai et al. 2014).
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PCI, also known as coronary angioplasty, is a non-surgical procedure that requires car-
diac catheterization. A catheter tube is inserted to open the coronary arteries that are
narrowed or blocked by an atherosclerotic plaque. It is mostly a safe procedure, and
serious complications are not common, but they include bleeding, blood vessel damage,
arrhythmias, and damaged arteries. Furthermore, the patient needs to be cautious in the
following months, since restenosis might occur, causing the artery to become narrow or
blocked again (NHLBI 2021).

Fibrinolytic drugs have the role of stimulating the dissolution of blood clots. Heparin,
aspirin, dipyridamole, or the combined application of thrombolytics can be added to
therapy to help prevent the recurrence of occlusive thrombus, but it does not show the
best results in the management of chronic occlusions. Even though clinical issues do
not occur often, the risks of intravenous thrombolytic therapy are harmful and implicate
systemic hemorrhage, immunologic complications, hypotension, and myocardial rupture
(Califf et al. 1992).

A meta-analysis of 22 randomized trials of thrombolysis in 50,246 patients revealed that
the group identified with early treatment within the first hour of symptom onset had
the greatest reduction in mortality (Boersma et al. 1996), which demonstrates that these
interventions are most effective within a limited timeframe. Even though those techniques
show mostly safe outcomes, a major issue with current therapies is the phenomenon of "no-
reflow" (Saint Victor et al. 2014). This happens when the recanalization of the coronary
artery occurs improperly, consequently, blood flow to the ischemic tissue may still be
blocked (Rezkalla and Kloner 2002). Some other treatment methods in current studies
can be cited, such as embryonic stem cells, induced pluripotent stem cells, and bone
marrow cells. These new strategies focus on the regeneration of cardiomyocyte discovery
(Peng and X. Wu 2017). Among the mechanisms of unclogging, the main goal is to
improve the safety and efficacy of the treatments.

Since this project depends on an emerging treatment technique with the use of therapeutic
ultrasound, the method is detailed in the next section.

2.3 SONOTHROMBOLYSIS

Sonothrombolysis is described as ultrasound-assisted clot lysis conducted by the adminis-
tration of acoustically active MBs and fibrinolysis, and potentially being a clinical emerg-
ing application for vessel occlusion therapy. The method takes advantage of the mechani-
cal bioeffects of ultrasound, supporting the diffusion of thrombolytic drugs to mechanically
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break up the thrombus through the cavitation of MBs.

The use of ultrasound technology is powerful and the optimization of its parameters is
fundamental to achieving a target effect. This ability was explored in this study by
simulating different choices of frequency, amplitude, and mode of vibration. The various
mechanisms of thrombolytic enhancement can be combined to meet a specific clinical
requirement, inducing stable cavitation, inertial cavitation, micro-streaming, and acoustic
radiation force, all aiming to reestablish the blood flow. Among those tools, we first discuss
the use of MBs.

2.3.1 EXOGENOUS AND ENDOGENOUS NUCLEI

MBs are broadly used in diagnostic and therapeutic medical applications, for instance,
acting as echo-enhancers and improving the quality of DUS images as contrast agents,
since blood is a poor ultrasound scatterer. For having a similar size as red blood cells, the
MBs can freely circulate within blood vessels and achieve the intended location (Shpak
et al. 2016).

Furthermore, there are two types of MBs, and the threshold for cavitation activity depends
highly on the available nuclei. The endogenous bubbles are present in our body, that is,
gas dissolved in our blood, and they are characterized as nano-scale "gas pockets" very
stabilized with very high surface tension, around 30 MPa (Xu 2020). They can also be
intentionally produced in the body for clinical applications such as lithotripsy (treatment
for kidney stones), and another example is a well-known procedure named histotripsy,
which uses ultrasound to mechanically liquefy the target tissue (Maxwell et al. 2009).

On the other hand, the insertion of exogenous nuclei allows a wider range of applications,
such as drug delivery (T.-Y. Wang et al. 2013) and gene therapy (J. Wu and R.-K. Li 2016).
MBs are commercially available as ultrasound enhancing agents (UEAs), frequently used
as ultrasound contrast agents (H. Lee et al. 2017), as we already cited. The main benefit
of the MBs administered intravenously is the control of the type and location of cavitation
activity, and the use of UEAs greatly enhances the biological effects of sonothrombolysis
since a higher cavitation phenomenon is allowed to occur (Shen et al. 2009). The presence
of either endogenous or exogenous MBs can have multiple biological and thermal effects.

The injected MBs are composed of a shell of a biocompatible material such as a protein,
lipid, or polymer, and they may be filled by air, perfluorocarbon, or sulfur hexafluoride
inert gas (Quaia 2005). The commercially available MBs normally range in size from 1



28

to 4.5 µm (Brown et al. 2011), and that is because they need to be capable of passing
through the circulation after intravenous injection, i.e., a diameter smaller than 8–10 µm
(Quaia 2005).

This study, which is part of the sonothrombolysis project, makes use of exogenous MBs.
The cavitation phenomenon, which involves the interaction with the MBs, is detailed in
the next section.

2.3.2 CAVITATIONAL INTERACTION

Acoustic waves are three-dimensional fluctuations in the pressure field. Ultrasound waves
are defined as a set of acoustic waves, with frequencies higher than the limit of audible
by humans, that is, higher than 20 kHz.

The interaction of acoustic waves and tissue can generally be categorized as thermal and
mechanical effects. The absorption of ultrasound energy causes the elevation of tempera-
ture of the tissue and surroundings, and in some methods, that is exactly the application
purpose. For instance, we have the High-intensity focused ultrasound (HIFU), which a
common clinical application is the thermal ablation with consequent tissue necrosis (Du-
binsky et al. 2008). When absorption and scattering mechanisms are directed towards
the target, the resultant force is acoustic radiation (Bader et al. 2016) and it describes
the primary mechanical effect.

The secondary mechanical effect is acoustic cavitation, which refers to both the formation
and oscillation of bubbles due to acoustic pressure. The precise mechanism of sonothrom-
bolysis is still not fully understood, but the previous hypotheses indicate the ability of
MBs to potentiate ultrasound-induced thrombolysis, leading to destabilization and sub-
sequent thrombus dissolution (Porter and Xie 2001; Schleicher et al. 2016).

Cavitation activity is mainly categorized into two types: stable and inertial cavitation.
This physical phenomenon is induced when an ultrasound wave is applied to a liquid, so
the medium goes through alternating cycles of expansion (rarefaction) and compression,
as we can see in Figure 2.2.
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Figure 2.2 – Schematic image of acoustic (a) inertial and (b) stable cavitation process

Source: Izadifar et al. 2018.

When sonicated, MBs are subjected to the interchange act of expansion and compression,
which pulls molecules apart and pushes them together, respectively. The amplitude is
maximal when the MB is sonificated at the resonant frequency, and that depends on the
size of the bubble (resonant size decreases with frequency) (Ellens and Hynynen 2015).
As we can see in Figures 2.2a and 2.2b, the growth process of the MBs is the same in
both cases until it hits a critical bubble size. Before that moment, at moderate ultrasound
intensities, the oscillation is stable over many cycles, where diffusion is proportional to
the surface of the bubble, and the maximum size rarely exceeds twice the equilibrium
radius (Dalecki 2004). Such interaction is known as stable cavitation, where the bubble
motion stimulates fluid mixing through microstreaming, and the process is illustrated in
Figure 2.2b.

At sufficiently high acoustic intensities, the bubble implosion happens because the oscil-
lations become highly nonlinear, leading to a violent collapse (Figure 2.2a). As a result,
the surrounding tissue can receive microjets, shock waves, and a punctual increase of
temperature of thousands of degrees Kelvin (Dalecki 2004), characterizing inertial cavita-
tion. Many methods explore those bioeffects from inertial cavitation, such as Histotripsy
(Maxwell et al. 2009) or HIFU (Sun-young et al. 2013; Crouzet et al. 2013), but it is
important to notice the deleterious effects as well, that is, the thermal coagulation for
example, which is protein denaturation and irreversible cell damage on the tissue (Jolesz
2009). Another possible problem is the trigger of inertial cavitation in undesired locations,
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resulting in damage to healthy tissue. So, the detection of the type of cavitation that is
occurring and the location, become crucial for methods that combine acoustic waves and
MBs, and consistent sonification is necessary for safe and efficient sonothrombolysis, which
leads again to the importance of the study.

But before we approach the cavitation detection techniques, it is pertinent to understand
the basics of bubble dynamics since it is part of the cavitation phenomenon.

2.3.2.1 BUBBLE ACTIVITY

A bubble in liquids is a spherical volume of gas. As we discussed before, the oscillations
in size can be related to external forces, and cavitation can be categorized into stable and
inertial. The well-known equation that describes the bubble radial oscillations in terms
of hydrodynamics is the Rayleigh-Plesset (RP) equation

R̈R + 3
2

Ṙ2 = ∆P

ρ
(2.1)

where R, Ṙ, and R̈ are the radius, the velocity, and the acceleration of the bubble wall,
respectively. ρ is the liquid mass density, and ∆P = PL(R)−P∞ is the pressure difference
between the liquid at the bubble wall and the infinitely far external pressure. Equation
(2.1) was originally derived by (Rayleigh 1917) and refined by (Plesset 1949), it assumes
spherical symmetry of the bubble, and the liquid around it is considered incompressible.

A generalized RP equation (2.2) was obtained some years later with the contribution of
colleagues. The surface tension constant of the bubble, σ, was introduced by (Noltingk
and Neppiras 1950), the coefficient of the viscosity of the liquid, µ, was added by (Poritsky
and Horvay 1952), R0 is the equilibrium radius, and γ is the polytropic constant. The
derivation of this equation and the main assumptions adopted can be found in bubble
dynamics textbooks (e.g. Brennen 1995).
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P∞ can be considered the sum of the acoustic forcing P (t) and the ambient pressure P0

(equation (2.3)), and since the bubble is assumed to be significantly smaller than the
acoustic wavelength, the acoustic pressure is treated as uniform.
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P∞ = P (t) + P0 (2.3)

Experiments (Putterman et al. 2001) verified that the RP equation describes the dynam-
ics of bubbles well from a macroscopic point of view, however, it is still unclear if the
equation is applicable to the dynamic of nanobubbles or MBs. The main reason for that
is the fragility of the bubbles of a small size, complicating the experimental investigation.
Besides that, the RP equation only models the bubble’s growth, disregarding the moment
of collapse present in the inertial cavitation. Further, the limitation also exists because
the analysis is restricted to an isolated bubble.

2.3.3 ACOUSTIC RADIATION FORCE

We discussed briefly in the previous section the equations (2.1 - 2.3) that describe the
bubble radial oscillations. Now we analyze the effect of the ultrasound waves in those
bubbles, and their behavior when an acoustic radiation force (ARF) is applied.

To understand the concept, (Clark and Aliseda 2016) recorded the fluid dynamics of
UEAs, exhibiting their response under the influence of an acoustic field. The experimental
setup consists of a cylindrical phantom, composed of water and glycerin and encircled by
a silicon material, along with an ultrasound transducer (the device is off initially). UEAs
(1 – 10 µm) are injected into the fluid mixture, and they rise due to the buoyancy force
(Figure 2.3a).
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Figure 2.3 – Sequence of Bjerknes Forces acting on UEAs: (a) Transducer is turned off
and bubbles rising due to buoyancy. (b) The transducer is turned on and the Primary
Bjerknes force is acting. (c) Interaction of the oscillating bubbles provokes a secondary
Bjerknes force

Source: Figure assembled from Gallery of Fluid Motion video (Clark and Aliseda 2016).

When the ultrasound transducer is turned on, it causes the translation of the MBs in the
direction of the ultrasound propagation, and that happens as a consequence of the primary
Bjerknes force (Figure 2.3b). Furthermore, the interaction of the oscillating bubbles causes
a secondary force (secondary Bjerknes force), so the bubbles clump together (Figure 2.3c).
The forces were first described by Vilhelm Bjerknes in 1906 (Bjerknes 1906), and the
contact of two bubbles is described by

F12 = −V2∆p1 (2.4)

where bubble 2, with volume V2, experiences a force F12 as a result of the pressure emitted
by bubble 1 (∆p1).
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However, both the bubble oscillation equation and the forces between two MBs, do not
describe the vaporization phenomenon well, since they model a limited interaction between
the bubbles (one and two bubbles, respectively). The cavitation modeling is a challenge
mostly due to the difficult numerical implementation and complexity of the process. That
said, a preferable approach might be to simulate transmit and receive signals, rather than
modeling the behavior of MBs. This is the approach used in our work.

2.4 MECHANISMS OF DETECTION

The optimization of sonothrombolysis treatments can be achieved by three golden rules
(Apfel 1981): identify the sound field, know the liquid, and detect the cavitation activity.
The first aspect will be seen in the Methodology section; the description of the liquid
involves the cavitation nuclei we are dealing with, which we addressed in Section 2.3.1;
and in this section, we will explore the most common mechanisms of monitoring cavitation
activity employed nowadays for ultrasound applications.

So, to investigate Apfel’s final rule, we start examining the passive cavitation detection
(PCD) technique. As we can verify in Figure 2.4a, cavitation acoustic emissions are
passively received by a transducer, and the signal is inspected by verifying its frequency
spectrum, detecting whether or not cavitation is occurring and the type of cavitation
detected, if any.

Figure 2.4 – (a) PCD setup for measuring ultrasound-induced MB cavitation. (b) Illus-
tration of the focused ultrasound system, and image acquisition and registration by PCI
and positron emission tomography/computed tomography (PET/CT)

Source: Liao et al. 2020, Y. Yang et al. 2019.

A second method, and a more recent one, is passive cavitation imaging (PCI). The limited
information received by PCD is overcome by the implementation of a monitoring system,
which enables verifying the location and type of cavitation activity more easily. Figure
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2.4b brings an example of the setup, and even with the real-time follow-up imaging, it is
notable that the treatment process is not portable or practical when we envision using it
outside of a hospital setting.

A third acoustic approach to characterize the phenomenon is active cavitation detection
(ACD). Unlike PCD and PCI, in the ACD technique, a transducer sends an ultrasonic
wave to the cavitation field, and the ultrasonic reflection from the cavitation bubbles is
captured by the same transducer or a specific one for the function. Moreover, we have
self-sensing cavitation detection (SSCD) as well. In this method, the different frequency
components, which are acoustic indicators for cavitation, can also be analyzed from the
electrical signals of the ultrasound transducer. In other words, the spectrograms of the
transducers current signal for different current amplitudes are used to classify the cavita-
tion (Saalbach et al. 2018). Figure 2.5 illustrates the ACD, SSCD, and PCD methods.

Figure 2.5 – Schematic of ACD, SSCD, and PCD approaches for characterizing cavitation

Source: P. Wu, X. Wang, et al. 2021.

Those are some of the most common methods applied nowadays as a feedback mechanism
for cavitation activity detection, and each method is more appropriate for each experimen-
tal scenario, having its own limitations. Single-element PCDs for example are restricted
by the trade-off between spatial sensitivity and specificity (Haworth, Salgaonkar, et al.
2015), meanwhile, due to focusing and size constraints, the ACD system is difficult to be
applied in industrial practices (P. Wu, X. Wang, et al. 2021). Considering those detection
techniques, the chosen approach to analyze the acoustic emissions is based on the PCD
physical setup, and more details for the simulation arrangement are described in Section
5. In the next section, we briefly summarize artificial intelligence methods, which is the
proposed detection strategy in the proposed study.
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2.5 ARTIFICIAL INTELLIGENCE AND CAVITATION PREDICTION

John McCarthy, recognized as the father of Artificial Intelligence (AI), defines it as

The science and engineering of making intelligent machines, especially intelli-
gent computer programs (McCarthy 2022).

In other words, AI’s main goal is to create systems that understand, learn, and behave like
humans. It has been used to develop and advance a wide range of fields, some applications
include translation between languages, speech recognition, and visual perception. AI is
also a tool that is extensively applied in medical sciences: diagnosing, remotely treating
patients, and cancer detection based on CT scans are examples of its significant impact
in healthcare (Basu et al. 2020).

Another application, still in the medical context, is the detection of anomalies during
signal processing, which plays an important role in patient monitoring, indicating to
be essential for treatments in general, including CVDs. The concern of this work is to
analyze the acoustic emissions produced by the MBs when exposed to an acoustic field
and explore AI for cavitation detection. The investigation to identify the phenomenon
during the bubble activity is not recent in hydraulic systems, where the solutions based
on Machine Learning (ML) are numerous (Dutta, Vishnu, et al. 2018; B.-S. Yang et al.
2005; Dutta, Subramaniam, et al. 2020). For our scenario, we want to detect cavitation
in a healthcare application.

Figure 2.6 – AI and its subsets Machine Learning (ML) and Deep Learning (DL)

Source: Figure based on (Vrana and Singh 2020).
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The analysis and detection of cavitation by AI is part of the feedback mechanism we
aimed to achieve and seems to be a useful tool with the capability of processing raw data
into clinical decision-making for effective detection. To do so, the range of possibilities
that AI provides to the study topic starts with the AI subsets (Figure 2.6). Notably, the
complexity of the proposed problems demands same-level solutions, and in each of the
subsets, there are a large number of approaches to the problem.

The exploring options are exemplified in Figure 2.7. The ML subdivision is commonly
branched into three fields: supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning has the goal of finding the connection between the input
data and the output target in a way to effectively reach the correct output. It is impor-
tant to highlight that the question, of whether the result is right, is determined by the
training data, depending on our assumptions and labeling. So issues such as incorrect
data description or noise would reduce the effectiveness of models in the study. On the
other hand, the idea of unsupervised learning is to make use of data without explicitly
provided labels, and this attribute leads to the difficulty of discovering a way to compare
the performance between the methods applied if more than one strategy is presented.
Meanwhile, the reinforcement learning method is based on rewarding desired behaviors
and/or punishing undesired actions. This means, the concept is to lead the action model
to maximum cumulative reward feedback, where the model learns from its mistakes.

Figure 2.7 – Techniques of ML

Source: Figure adapted from (V. Sharma 2018).
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Figure 2.7 shows just a few of the methods, and there are many others. We present more
details in the Methodology section, but in advance, the proposed study explores a DL
approach, categorized as a supervised learning. DL has become a reference in different
data analyses because of its potential to recognize patterns. In healthcare, its applications
cover fields such as medical imaging, drug delivery, and disease diagnosis, and extend into
numerous other implementations (D. K. Sharma et al. 2022). We focused on DL methods
because (i) this subset of AI eliminates some of the data pre-processing that is typically
necessary for ML methods; (ii) it has shown substantial success in the different fields
already cited; and (iii) it is appropriate for complex tasks. Even though there is a lack
of literature on cavitation detection for biological signals, the phenomenon’s analysis in
hydraulic systems is well described, and it shows excellent results when DL approaches
are employed (Sha et al. 2022; Tiwari et al. 2021). Therefore, we hypothesized that it
could yield significant accuracy in the present study as well.

Inside the DL subset, the feed-forward neural network selected was the Convolutional
Neural Network (CNN). CNNs are well-known for their effective image recognition (Long
et al. 2015), text recognition (Vaillant et al. 1993), and other applications. Since CNNs
focus on different kinds of features at each level (pixel level in the first layer, for instance),
the network structure is highly invariant to translation, scaling, or other forms of deforma-
tion (Uijlings et al. 2013). Besides that, explicit feature extraction is avoided and learning
is implicitly performed from the training data, enhancing the architecture performance
and minimizing computational expenses (Zhang et al. 2018). Additionally, due to the
consistent neuron weights across the same feature map, the network can undergo parallel
learning (S. Lee et al. 2017). The distinctive local weight-sharing structure reduces the
training parameters of the network, which results in a simpler structure and more versatile
neural network. Another adaptability feature in CNNs is the use of linear filters. Linear
filters tend to perform well with small window widths, and in image processing, the input
image and topology of the network can be better matched (Taye 2023).

Considering this context and these benefits, our research explored the supervised learning
approach, more specifically a CNN proposal. Taking into account that CNNs are spe-
cialized in tasks involving image classification into different predefined classes, this work
methodology involved the conversion of the echo signals to images to detect the cavitation
phenomenon, and the main features of CNNs are presented in the following section.
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3
CONVOLUTIONAL NEURAL

NETWORK

In this chapter, we describe the convolution neural network class. Further details about
the DL subset are presented in the Appendix A.

3.1 INTRODUCTION

Haykin defines a convolutional network as

A convolutional network is a multilayer perceptron designed specifically to rec-
ognize two-dimensional shapes with a high degree of invariance to translation,
scaling, skewing, and other forms of distortion (Haykin 2009).

A typical CNN is compounded by convolutional layers, pooling layers, and a fully con-
nected layer, as we can verify in Figure 3.1, and all weights in every layer of a convolutional
network are learned through training.
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In the Feature-extraction group, each neuron takes its synaptic inputs from a local re-
ceptive field in the previous layer, thereby forcing it to extract local features (Haykin
2009).

Figure 3.1 – A general CNN architecture

Source: Patterson and Gibson 2017.

The following sections provide an introduction to the constituent layers of CNNs, consid-
ering the calculations involved.

3.2 CONVOLUTION LAYER

A convolution is a mathematical operation that merges two sets of information (Patterson
and Gibson 2017). The convolution of two functions, f and g, produces a third one (f ∗g)
defined as the integral of the product of these functions after one is reflected and shifted.
It expresses how the shape of one function is modified by the other, and the symbol
∗ denotes the convolution operator. Equation (3.1) brings the convolution of the two
functions.

(f ∗ g)(t) =
ˆ ∞

−∞
f(τ)g(t− τ) dτ (3.1)

In convolutional network terminology, for equation (3.1), the first argument (function f)
is often referred to as the input. The second argument (function g) is attributed as the
kernel, and the output can be indicated as the feature map.

For the case of digital information, time is discretized and the data is provided at reg-
ular intervals, i.e., t can have only integer values. Therefore, we can define the discrete
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convolution as equation (3.2).

(f ∗ g)(t) =
∞∑

τ=−∞
f(τ)g(t− τ) (3.2)

In machine learning applications, both input and kernel are usually multidimensional
arrays of data. However, since each element of them must be explicitly stored separately,
and these functions are usually assumed to be zero everywhere but the finite set of points
for which we store the values, consequently, the implementation can be summarized as a
summation over a finite number of array elements (Goodfellow et al. 2016).

Thus, given a two-dimensional image, where I (input) is convolved by a kernel K (also
called convolutional filter), equation (3.3) can be used.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m, n)K(i−m, j − n) (3.3)

and since convolution is commutative, the equivalent equation can be written

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m, n) (3.4)

The convolution operator is also called the striding method since the kernel sweeps the
input until the first dimension is reached, and stride is the number of pixels that shift
over the input matrix. Through the same stride parameter, the kernel slides across the
second dimension. For i and j where there are undefined values of I(i−m, j − n), there
are two options for adjustment: the padding operation (zero-padding) or discard the part
of the input where the filter does not fit (valid padding).

For didactic purposes, Figure 3.2 presents the process for a two-dimensional case. In
this example, the matrix [0, 1; 1, 2] is our 2 × 2 kernel, and the highlighted area in the
input matrix represents where the current operation occurs. The input is a 3 × 3 size
image, padding of value 1, and stride of 1 as well. The operation is often referred to
as convolution. To be more accurate, this procedure is called cross-correlation and not
convolution. In the AI field, both operations are represented using ∗ and referred to
interchangeably for convenience (Venkatesan and B. Li 2017).
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Figure 3.2 – Example of the convolutional computation, where 1st, 2nd, 3rd, 5th, and 16th

steps are represented

Source: Own work.

As we can notice, the output does not have the same size as the input. To calculate the
convolution output size, we apply equations (3.5) and (3.6), where I refers to the input,
f to the filter, and the subscripts w and h are for width and height, respectively. p and
s are the padding and stride values (F.-F. Li et al. 2023).

output width = Iw − fw + 2p

sw

+ 1 (3.5)

output height = Ih − fh + 2p

sh

+ 1 (3.6)

Figure 3.3 illustrates the difference between 2D and 3D cases, where p = 0 and s = 1.
In 3D convolution, the filter depth is smaller than the input layer depth. Consequently,
the 3D kernel can move in all 3 directions, and besides the width and height, the third
dimension is the channel of the image, and the output numbers are arranged in a 3D
space as well.
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Figure 3.3 – (a) 2D convolution. (b) 3D convolution

Source: Huang et al. 2015.

3.3 POOLING LAYER

The Pooling layer is usually employed immediately after the convolutional layer, and it
is used to perform downsampling from one layer to another, which reduces the number of
feature-map coefficients. The operation helps to make the representation approximately
invariant to small translations of the input, so if we apply a small amount of shift, the
values of most of the pooled outputs do not change (Goodfellow et al. 2016).

Two common functions used in the pooling operation are Average Pooling and Max Pool-
ing, and we describe both ahead.

3.3.1 MAXIMUM POOLING

Maximum Pooling, more usually called Max Pooling, calculates the maximum value for
each patch of the feature map. It extracts stronger features and has been found to work
better than average pooling for tasks such as image classification (Chollet 2017). Figure
(3.4) presents an example of the operation: in the four squares of the gray rectified feature
map, we take the maximum value among (8, 3, 6, 7) = 8, and place this in the gray cell of
the pooled feature map.
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Figure 3.4 – Example of Max Pooling operation with a kernel of 2× 2

Source: Own work.

3.3.2 AVERAGE POOLING

The average pooling calculates the average value for each patch on the feature map.
Figure (3.5) shows an example of the process: in the four squares of the gray rectified
feature map, we take the average value among (8, 3, 6, 7) = 6, and place this in the gray
cell of the pooled feature map.

Figure 3.5 – Example of Average Pooling operation with a kernel of 2× 2

Source: Own work.

3.4 FULLY CONNECTED LAYER

Fully connected layers (FCs), also called densely connected, perform the dot product
between current inputs and weights in each layer. Thus, all possible connections layer-
to-layer are present, resulting in the influence of every input vector element in every
component of the output vector, and Figure 3.6 illustrates the layout of an FC feedforward
neural network.
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As we saw in Figure 3.1, the FCs are the last structure of CNNs and their function is
classification. It is important to understand that during the computational processing in
the feature-extraction layers, the data are three-dimensional matrices while the FC has
a unidimensional characteristic. Thus, to connect the convolutional and FC layers, it is
necessary to convert the three-dimensional into one-dimensional matrices.

Figure 3.6 – Fully connected feedforward network with one hidden layer and one output
layer

Source: Haykin 2009.

3.5 ACTIVATION FUNCTION

The activation functions are responsible for transforming the summed weighted inputs
from the neuron and addressing them to the next layer. They implement the nonlinear
component to the model, permitting the performance of more complex tasks. Among
the most common activation functions, the rectified linear unit (ReLU) is used to learn
complex structures from the data and it is computationally efficient.

ReLU is defined by equation 3.7, and its greatest advantage is the non-saturation of the
gradient, which accelerates the convergence of the algorithm optimization.
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ReLU(x) = max(0, x) (3.7)

Figure 3.7 represents the function’s plot. We can observe that the activation is a simple
threshold x = 0, making ReLU very efficient (Krizhevsky et al. 2012).

Figure 3.7 – ReLU Function for x ∈ [−2, +2]

Source: Own work.

Having briefly stated the main features of a CNN, we can now discuss possible approaches
to be explored in our problem.

3.6 IMAGE CLASSIFICATION MODEL

Among popular models for image recognition, each with its own strengths and weaknesses,
some examples of deep CNN architectures are LeNet, AlexNet, Visual Geometry Group
(VGGNet), and Residual Neural Network (ResNet).

One of the earliest CNNs, LeNet (Lecun et al. 1998) was designed for handwritten digit
recognition. Its architecture consists of several convolutional and pooling layers, followed
by fully connected layers. VGGNet (Simonyan and Zisserman 2014) is characterized by
using small filters (3×3), and two examples of its variants include VGG-16 and VGG-19,
which have 16 and 19 layers, respectively. ResNet (He et al. 2015) has several variants as
well, ResNet-50 and ResNet-150 have 50 and 150 layers, respectively.
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When compared to these other models, AlexNet has less depth, holding 8 layers. However,
the selection of a complex architecture is not always necessary and the computational
cost needs to be evaluated as well. Considering the resource availability, and the authors’
experience with the chosen CNN, this study chose the AlexNet architecture, and details
about this CNN are described below.

3.6.1 ALEXNET

The AlexNet network (Krizhevsky et al. 2012) was introduced in 2012 in the ImageNet
Large Scale Visual Recognition Challenge competition, resulting in the victory by a sig-
nificant margin. The event is an annual contest for large-scale object detection and image
classification algorithms, and in contrast to other respondents who used standard classi-
fication characteristics and training techniques, the winners used neural networks, par-
ticularly CNNs. AlexNet is a CNN and is a leading architecture for any object-detection
task, it is composed of 3 fully connected layers and 5 convolutional layers. The first layer
is used to input a filtered image with a dimension of 227× 227× 3 respectively for width,
height, and color channel (red, green, blue). Its architecture can be seen in Figure 3.8.

The last fully connected layer connects 1,000 neurons and the rest of the layers work as
feature extractors. To give an insight into the robustness of the model, its architecture
includes 650,000 neurons and 60 million parameters, being trained on approximately 1.2
million training images and tested on 150,000 test images from ImageNet datasets (large-
scale hierarchical image database).

Figure 3.8 – AlexNet architecture: ImageNet 2012 winning CNN model

Source: Krizhevsky et al. 2012.
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Taking advantage that the network has learned rich feature representations for a wide
range of images, we employed the AlexNet model as a transfer learning framework with
pre-trained ImageNet weights. More details about the knowledge transference are pre-
sented following.

3.6.2 TRANSFER LEARNING

An interesting approach enabled by ML is the use of Transfer learning (TL). TL is a tool
that makes use of the knowledge gained while solving one problem and applies it to a
different problem in a similar application. So, to implement this idea, we make use of the
AlexNet CNN model, thus we take a pre-trained network and use it as a starting point
to learn a new task.

Figure 3.9 – General idea of Transfer Learning

Source: Figure adapted from Natrajan et al. (2018).

So, the idea is to reuse a pre-trained model (AlexNet) with a new problem and remove the
need to create a CNN model from scratch. Figure 3.9 illustrates the basic idea of TL for
AlexNet. The last three layers of AlexNet are replaced (Fully Connected, SoftMax, and
Classification) considering our problem attributes so the model can learn specific features
from our dataset.

AlexNet input starts with 227×227×3 images, and since we are inspecting signals, before
feeding the network, we transform and decompose those waves in the sized inputs. To
understand the mathematical tool applied for feature extraction, in the next Section, the
Wavelet Transform decomposition is detailed.
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4
WAVELET TRANSFORM

An important aspect when analyzing biomedical signals is that the information of interest
is frequently a combination of phenomena. Classical signal processing tools, such as
the Fourier Transform, are not suited for non-stationary signals, thus, an approach that
performs multi-scale analysis is necessary to manage our inputs. Processing is faster and
simpler in a sparse representation where few coefficients reveal the information we are
looking for (Mallat 2008), and a well-structured mathematical approach is fundamental
to analyzing those input signals efficiently.

An interesting technique is the Wavelet Transform (WT), which has shown good results
for physiological signals studies, for example, electrocardiogram (ECG) cycles investiga-
tions (T. Wang et al. 2021; Mashrur et al. 2019). WTs can be classified into two broad
classes: the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform
(DWT). DWT is useful for compressing and denoising signals and images while main-
taining important features since its scales are discretized more coarsely than with CWT.
For our problem, we want to differentiate cavitation signals, and since those signals are
structured of different frequency components and are non-stationary, the CWT could
be a more appropriate tool for exploration. The signals are transformed into the time-



50

frequency domain, decomposing a signal into wavelets, which facilitates the extraction of
features.

As the CWT window shrinks and expands, it maps the signal differences onto a time-
frequency spectrogram, thus inheriting and developing the idea of location from the Short-
time Fourier transform (STFT). The drawback of STFT is related to the dilemma of
resolution, i.e., a narrow window (good time resolution) provides a poor frequency reso-
lution, and a wide window (poor time resolution) results in a good frequency resolution.
Such uncertainty of what frequency exists at what time intervals is overcome in the CWT
analysis. The mathematical expression of the CWT for a signal x(t) is defined as

C(a, b) = 1√
a

ˆ +∞

−∞
x(t) ·Ψ

(
t− b

a

)
dt (4.1)

where a and b are the scales and time shifts of a reference wavelet Ψ(t), respectively, and
by continuously varying those parameters, the CWT coefficients C(a, b) are obtained.

Figure 4.1 – Mapping the wavelet scalogram

Source: Shoeb and Clifford 2006

The results of the equation 4.1 are a set of coefficients, which represent the correlation
with the wavelet Ψ(t) and the signal x(t). The correlation is localized in time, where the
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time begins at t = b and ends at t = b + L, and L is the Ψ(t) duration. The plot of such
correlation is called a scalogram, and the idea of "matching" the signal and the chosen
wavelet for different scales, is illustrated in Figure 4.1.

For the a < 1 case, the wavelet is contracted, offering high temporal resolution, which
fits well with short-time events such as spikes. On the other hand, values of a > 1 result
in high spectral resolution since the wavelet is dilated, and is well-suited for long-term
events such as baseline oscillations. The scales a from the CWT are used to create the
wavelet bandpass filters and depending on the chosen parameters as input for the CWT,
those values change. The number of levels of decomposition depends on the problem
being inspected, the sampling frequency, and the range frequency of interest. Thus, a few
parameters have to be tested so the finest value can be chosen.

Another important parameter is the choice of the wavelet family, also called wavelet
mother. Some examples are: Gaussian Wave, Mexican Hat, and Morlet (Gabor), and the
goal is to choose one with the most similar morphology to the signal, which follows better
outcomes. In advance, the wavelet that yielded the best results for this study was the
Morlet.

Figure 4.2 – Some families of CW

Source: Bajaj 2020
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Figure 4.3 illustrates an example of the wavelet transform decomposition applying the
Gaussian wavelet, and the coefficients calculation. Since the C(a, b) coefficients reflect
the correspondence between the selected wavelet function and the signal x(t), the greater
the C(a, b), the higher the correlation. Figures 4.3A and 4.3B show the wavelet function
moving rightwards along the time axis (parameter b), and the respective coefficient values.
Figure 4.3C displays the condition in which the wavelet function is stretched (parameter
a). The greater the value of C(a, b), the more significant the similarity between the section
of the signal inspected and the wavelet.

Figure 4.3 – Example of a general step of wavelet transform

Source: Liu and Jiang 2010

The same procedure is applied to our problem, and after the scanning, we obtain the
coefficients produced at different scales by different sections of the signal. It is important
to clarify that the coefficients acquired reveal patterns from the signals and are essential
for the feature extraction of our neural network. Following, the signals’ decomposition,
the idea is to convert the obtained coefficients into images, and those figures will be the
input for our neural network model.

More details of the CWT approach for the problem are presented in Section 5.6.2.
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5
METHODOLOGY

In this section, we outline the selected approach to develop the feedback mechanism
involving AI, and how we manipulated and inspected the acoustic emissions. But before
we start to explore the signal analysis and the detection method, we provide an overview
of the different studies being conducted in the research group this study is part of.

5.1 BIOMEDICAL ENGINEERING LABORATORY (LEB)

The overview of the Sonothrombolysis project being operated in the LEB is branched as
in Figure 5.1. The first subsection is the development of a portable and effective system,
and the goal is to assemble a prototype for the therapy (Silva and Furuie 2024). The
second ramification study aims to evaluate the mechanisms and biological effects due to
the Sonothrombolysis technique and verify the thresholds for the application (Souza and
Furuie 2023). The third division explores the electronic and signal acquisition for bone
location and cavitation, inspecting the heterogeneous scenario. And lastly, this work
itself.
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Figure 5.1 – Overview of the Sonothrombolysis project in the LEB

Source: Own work.

For this work, it is important to provide an overview of the physical experiments as well
since the numerical simulations are directly linked to those conducted tests, in a way to
try to mimic reality. In this sense, the details are provided ahead.

5.2 PHYSICAL EXPERIMENTS

The experimental procedure that is being developed by the laboratory group aims to
explore and propose an equipment prototype for the recanalization of thrombotic oc-
clusion, along with investigating ways to improve the efficiency of the sonothrombolysis
technique. The idea is to make use of a 2-D array of transducers capable of producing
beamforming ultrasound waves that can be guided to sonify a defined 3-D volume (heart
and surroundings).

To understand the selected parameter settings exhibited below, first, we need to inspect
the target volume, i.e., the heart dimensions. Mean values of the heart’s length, width,
and thickness in Grays Anatomy are 120 mm, 85 mm, and 60 mm, respectively (Gray
2005). These measurements can be seen in Figure 5.2, and are important when we consider
the region of interest (ROI), which is the cardiac volume.
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Figure 5.2 – Standard heart dimensions and distance between patient skin and heart.

Source: Figure assembled from (123RF 2022).

The average skin-to-heart parasternal distance found in adults is 32.1 ± 7.9 mm (Rahko
2008), so the deepest the ultrasound wave needs to penetrate is 100 mm since the thickness
value adopted is 60 mm and the skin-to-heart distance can reach 40 mm. In other words,
the attenuation factor is an important key to be analyzed, and the maximum value set
in the project is 3 dB (Silva and Furuie 2024). Considering that depth and the limit
attenuation, the maximum center frequency could be evaluated, and it was found that it
should be lower than 428 kHz (Silva and Furuie 2024).

Out of possession of the cited aspects, the piezoelectric transducer from American Piezo
Ceramics (APC), whose features are present in Table 5.1, was selected to perform the
physical tests and simulations.

For the current experiments, 64 piezoelectric ceramics were assembled in the form of
an 8×8 matrix (Figure 5.3), and an acoustic tank of approximate internal dimensions of
550.1 mm × 302.4 mm × 200.0 mm (length×width×height), designed by the Mechatronic
Engineering Department of the University of São Paulo, was used in the tests. After the
electric excitation of the elements, a needle-type hydrophone was used to measure and
map the acoustic field.

It is important to acknowledge the features of the physical settings so the numerical
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Table 5.1 – Features of the initial chosen transducer, as informed by the manufacturer

Transducer features
Geometry Circular plate

Diameter 10.15 mm

Thickness 6.4 mm

Center frequency 318.75 kHz

Brand APC

Material APC850

Model 408

Source: APC.

analyses draw nearer to substantial results.

Figure 5.3 – Illustration of the project’s piezoelectric transducer matrix array (two-
dimensional)

5.3 NUMERICAL EXPERIMENTS

In order to describe the simulations that are being performed, this section brings the
parameters considered for the model.

First, we explore the geometry and coordinate system applied. As already mentioned, the
ROI consists of the volume composed by the heart and surroundings, therefore, to ensure
scanning the entire target, the volume of simulation selected is 120×120×120 mm3. The
transducers’ faces are in the yz-plane, evenly distributed, and located in x0 = −60 mm.
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Figure 5.4 – Normals at transducers’ centers.

Source: Figure based on author’s advisor results.

To understand the geometry better, Figure 5.4 shows the transducer elements, ROI, and
normals at transducers’ centers.

Figure 5.5 – (a) Matrix array (two-dimensional). (b) Selected focus. (c) Activation matrix

Source: Figure based on (EWI 2010).

The geometry for the computer simulation follows the description mentioned in Figure
5.3 and Table 5.1. We assume initially that each element is capable of emitting and
receiving ultrasound pulses, and the focus spot is achieved by exciting multiple elements
simultaneously with a relative delay between them. The idea is to activate a submatrix
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of 5×5 elements, Figure 5.5c for example, and focus on a target spot (Figure 5.5b).

Computer simulations were conducted using k-Wave (Treeby et al. 2020), an open-source
acoustics toolbox for MATLAB. The basic modeling features are displayed in Table 5.2,
some of them were evaluated by other projects of the group, and some during the simu-
lation tests. The estimation for the number of grid points can be made by the function
checkFactors, which will return appropriate values to improve computational performance.
But more than that, to avoid the aliasing effect it was concluded that the voxel dimension
should be smaller than d = 2.415 mm in the three directions (Silva and Furuie 2024),
which led to the result of 128 pixels/axis.

Table 5.2 – Simulation features

k-Wave simulation features
Computational grid Grid nodes 128 pixels/axis

Acoustic Medium

Isentropic sound speed 1540 m/s

Ambient mass density 1000 kg/m3

Nonlinearity parameter Non-defined

Absorption coefficient 0.7 dB/(MHz cm)

Absorption exponent 1.1

Acoustic Source

Central frequency 250 kHz

Number of cycles 7

Source magnitude 100 kPa

Elements’ geometry Circular plate

Number of elements 64

Elements’ distribution 8 × 8

Activation matrix 5 × 5

Distance between centers 15.3 mm

Distance between edges 5.6 mm

Sensor Sensor mask Default

Source: Own work, values assembled from the group’s work.

The setting parameters considered for the acoustic medium follow the characteristics of
the average soft tissue for humans (Culjat et al. 2010; Mast 2000), the simulation is
assumed to be linear, the mean attenuation for the human body is applied (Szabo 2004),
and the absorption exponent was selected during some tests that probably will be refined
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after some deeper studies related to the heat impacts on the tissue.

As we mentioned in the Physical Experiments section, the acoustic source features obey
the attributes of the APC transducer and the geometry already discussed. Equation
5.1 brings the relation between the source magnitude and the desired Mechanical Index
(MIx). Considering the central frequency of 318.75 kHz from the manufacturer manual
(Table 5.1) and MIx = 0.5, we acquire the value of Pr = 282 kPa for the rarefactional
acoustic pressure, and to avoid focal overlapping, 200 kPa was selected so we assure that
the MIx does not exceed the desired estimation. However, this value of pressure was still
so high that it triggered reflections, so the amplitude used in the simulations was 100 kPa.

MIx = Pr√
fc

(5.1)

The resonant frequency obtained in the assembled transducer for the physical experiments
was not 318.75 kHz as described in Table 5.1. As a result of the matching layer’s insertion
and steel welding, the center frequency obtained was near 250 kHz, and this frequency
was applied in the numerical simulations. For the pulse duration, the number of cycles
chosen was 7 after some tests.

Figure 5.6 – Waveforms delayed, consequently, they sum constructively

Source: Haworth, Bader, et al. 2016.

Due to the different distances along each source’s centers and the focal location, it is
required to calculate the delays for each element in order to energize the focusing spot
simultaneously by all components of the activation matrix. The idea is to make the
pulses arrive at the same time so the waveforms sum constructively, which provides a
higher amplitude and more energy. Figure 5.6 brings the concept for the linear array.
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Even though our case is a 2-D array, the approach is similar. To contextualize the pro-
cedure, firstly we can imagine a projected focus (yellow point) in the transducers’ faces
plane, as in Figure 5.7a. Subsequently, the closest element to the projection is detected,
which is the central element of the activation matrix, allowing the nomination of the
subgroup matrix. Figures 5.7b and 5.7c bring the notion of different distances between
elements and focus spots.

Figure 5.7 – (a) Matrix array (two-dimensional). (b) Example of activation matrix. (c)
Active subgroup focusing on the target (illustrated by the yellow point). (d) Example of
25 signals from a 5×5 subgroup with their respective delays

Source: Own work.

Figure 5.7d illustrates how the signal for each element of the activation matrix behaves
after applying the appropriate delays. The calculation relies on relative time-of-flight
information, and we assume the excitation of the furthest element as the initial time, in
this case, element 55. The general delay for any emitter i is

di = tmax(r⃗f )− ∥r⃗i − r⃗f∥
c

(5.2)

where r⃗f is the location of the focused spot, and r⃗i is the position of the emitter element
(i = 1 : n, being n the size of the active subgroup). c is the ultrasound propagation
velocity, and since the internal structure of the ROI is unknown, we use a constant velocity
(c = 1540 m/s). Besides that, tmax(r⃗f ) is related to the furthest element, and it is obtained
by

tmax(r⃗f ) = max
i

∥r⃗i − r⃗f∥
c

(5.3)
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In short, the closest element to the focal point is the last to be excited, and observing
Figure 5.7a again, the nearest component is number 37. So, to exemplify the calculations
for Figure 5.7 case, we can imagine the focus in r⃗f = (10; 0; 0) position for instance. As
we already mentioned, the transducers’ faces are in the yz-plane, and located in x0 = –
60 mm (Figure 5.4), so following the elements’ distribution, we have

r⃗55 = (−60; 38.25; 38.25)

r⃗37 = (−60; 7.65; 7.65)

in other words, the distance between the elements and the focus are

d(f, 55) = ∥r⃗55 − r⃗f∥ = 88.47mm

d(f, 37) = ∥r⃗37 − r⃗f∥ = 70.83mm

which allows us to determine the delay we need to apply on element 37

d37 = [d(f, 55)− d(f, 37)]
c

= 11.45µs

To illustrate the comparative delay, Figure 5.8 shows the excitation waveforms in elements
55 (the furthest from the focus), 37 (the closest to the focus), and 46, which is a component
between the two. The previous analytical values obtained can be verified in the simulation
below, and the other delays can be acquired the same way.
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Figure 5.8 – Excitations waveforms in elements 55, 46, and 37 from Figure 5.7, showing
the comparative delay between them. Parameters applied: Sampling frequency: 20 MHz,
Central frequency: 250 kHz, number of cycles: 7, respective offsets

Source: Own work.

The instant that the initial stimulus (thit) achieves the focal point is determined by the
shortest time-of-flight, in other words, it is associated with the element 55. We already
know that d(f, 55) = 88.47 mm, therefore

thit = d(f, 55)
c

= 57.4µs

After reaching the focused spot, the echo propagates towards the transducer, and now
the elements behave as receivers. Depending on how those waves meet at the focused
spot, we have some possibilities for the returned signals. For our analysis, there are two
alternatives: the presence of MBs or not. In other words, the dynamic at the focus can
be determined by the interaction of the waves with the MBs and if there is enough energy
to instigate cavitation.

But in the same way, as when we generate the acoustic emissions, the time of travel is
different to reach each element since the distances are different, and the received signals
must be synchronized so the information can be combined. Besides that, it is important
to mention that we are initially assuming that the transducers are capable of reading
distinct ranges of frequencies.
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The synchronization time for each receptor can be obtained by

tsyn(f, i) = thit + ∥r⃗i − r⃗f∥
c

(5.4)

which allows us to match the received signals from the focal point, thus, it is possible
to classify the type of source. The evaluation of the signal response is based on the
delay-and-sum (D&S) beamforming algorithm, and the idea is to reconstruct the acoustic
emissions received on each ultrasonic sensor and sum those emissions after applying the
proper shifting (equation 5.4). The resulting signal can be estimated by

sf (t) = 1
m

m∑
j=1

sj(t + tj) (5.5)

t ≥ tsyn

where m is the number of active sensors, sj is the signal received by each element, tj is the
time-of-flight for every receptor, and j = 1 : m, with m > 1. Besides, tj can be obtained
by

tj = ∥r⃗j − r⃗f∥
c

(5.6)

In addition to analyzing the signals in the time domain, the discussion in the frequency
domain is important because it highlights the behavior characteristics of the cavitation
phenomenon itself, both inertial and stable. For that, the next section brings the catego-
rization based on the spectrum of received signals.

5.4 FREQUENCY AND CAVITATION CLASSIFICATION

As we discussed in Section 2.3.2, when MBs are under the power of acoustic pressure, it
could lead to their collapse or just their size oscillation. The need for inertial cavitation
occurrence to provide thrombolysis is still not quite understood, since many studies point
out the effectiveness of stable cavitation to recanalize the micro-circulation (Shi et al.
2010; Hu et al. 2018). Of course, many aspects of ultrasound use are essential to be
considered to test such capability, including intensity range, number of cycles, operating
frequency, and so on. Therefore, properly understanding and modeling both cavitation
behaviors are important to classify the signals we are analyzing.
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Recently, the International Electrotechnical Commission (IEC 2019)1 reported a technical
specification to measure cavitation noise in ultrasonic baths and ultrasonic reactors. In the
document, the acoustic pressure spectrum (Figure 5.9) is available schematically, being
divided into three types of frequency components: in blue, the largest peak (called direct),
is the fundamental frequency (f0); smaller peaks are described as stable cavitation (shown
in yellow); and the broadband emissions are labeled as transient cavitation, i.e., inertial
cavitation (red).

Figure 5.9 – Schematic representation of acoustic pressure spectrums: frequency compo-
nents

Source: IEC 2019.

The distinction of frequency components present in Figure 5.9 is important to illustrate
the shape of the acoustic pressure spectrum we are aiming to obtain for classification
purposes, even though there is some lack of alignment between the IEC’s representation
and studies in the literature. The first conflict is the absence of stable cavitation at the f0,
(P. Wu, Lin, et al. 2018) found that the bubbles’ oscillation that characterizes the stable
cavitation also vibrates at f0, and they emit the fundamental acoustic signal, which is not
observed in Figure 5.9. A second distinction is related to the sub-harmonic oscillation,
(Song et al. 2016) discovered that the sub-harmonic component can be related to the
collapse of cavitation clouds during HIFU, and IEC’s diagram does not represent that.

1An updated version is available (IEC 2024).
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To summarize, it is important to acknowledge that the understanding of the discernment
of which frequency component relates to which type of signal is still not fully understood,
therefore, certain simplifications and compromises are necessary to advance the studies.

Thus, the start of the problem formulation was determined by values in the literature.
Based on Chen et al. (2015), the stable cavitation is related to the ultra-harmonic waves,
hence, it operates at a frequency that is between integer multiples of the f0. Equation
5.7 describes the frequency for the nth ultra-harmonic

fn = 2n + 1
2
· f0 (5.7)

n = 1, 2, ...

In contrast, since inertial cavitation occurs when MBs collapse violently, the literature
correlates it to the fundamental concept of Kelvin impulse (J. R. Blake 1988; J. Blake
et al. 2015), describing the behavior of a jet impact in consequence of a collapsing bubble.
From there, we represent the response of the source as an impulse, and the component
frequencies are spread across the frequency spectrum. To investigate the signal of inertial
cavitation detection, we distinguish such frequency from harmonic and ultra-harmonic
waves, which leads us to

fn = 2n + 1
4
· f0 (5.8)

n = 1, 2, ...

Besides those types of sources, if there is a lack of MBs in the focal spot, we will receive just
an echo if the medium conditions enable it. To put it simply, the greater the impedance
difference between two structures, the greater the intensity of reflection, and we have
echoes with higher amplitude. To summarize, we explore four forms of classification, and
they are condensed in Table 5.3.

It is important to highlight that the addition of noise to the generated signals is funda-
mental to approximating the simulations to the real scenario. Figure 5.9 illustrates that
the transient cavitation would be hardly distinguished from any noise fluctuation, demon-
strating that the addition of noise is essential to emulate the real signals. The appropriate
undesired random disturbances motivated by electronics, or the environment, are added
to the signal processing through the incorporation of a noise level.
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Table 5.3 – Types of signals received by the receptor elements and frequency aspects

Type of source Frequency feature Occurrence

Echo
Signal similar to the Impedance difference between two
excitation media

Inertial Cavitation (IC) Broadband emissions
Presence of MBs and enough energy
to provoke the MBs collapse

Stable Cavitation (SC) Ultra-harmonics
Presence of MBs and not enough
energy to provoke the MBs collapse

Combination
Occurrence of 2 or 3 The pixel region has sub-regions
phenomena above with different phenomena occurrence

Source: Own work.

The noise is random, independent, with normal distribution and zero mean, and it follows
the dynamic range of the signals, being set values of 2%, 5%, and a random noise (RN)
level between 2 and 5%.

5.5 DETECTION: RECEIVERS’ FEATURES

For detection purposes, the used ceramic piezoelectric receivers behave as bandpass fil-
ters with the central frequency corresponding to the resonant frequency and an imputed
bandwidth (BW). Since the receivers attenuate some of the components of interest, ultra-
harmonics for instance, the compensation for the signals is necessary for the detection.
However, there are more expensive options using other types of piezoelectric transducers
with broader BWs or even ceramics with different resonant frequencies.

Basically, the features presented in Table 5.2 are preserved with some adaptations for the
reception attribute. For the narrowband receivers, the used frequency band is 100% at
-6 dB (BW = 250 kHz), while for broadband receivers the frequency band is extensive,
capturing and processing a wide spectrum of data. The examination of both scenarios is
relevant considering that one of the inquiries presented in this work is if the same emission
group of transducers could be applied for the detection operation.

5.6 GENERAL CLASSIFICATION PROCESS

To state the general steps of the process, figure 5.10 brings a flowchart of the procedure.
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Figure 5.10 – Flowchart with the general steps of the process

Source: Own work.

5.6.1 SIGNALS’ GENERATION

The first part of Figure 5.10 (signals’ generation) was performed by Furuie et al. (2023).
As we illustrated in Figure 5.7, considering a focal source, the temporal signal emitted is
simulated as

source(t) = E0 × echo(t) + S0 × SC(t) + I0 × IC(t) + noise(t) (5.9)

The amplitude factors E0, S0, and I0 correspond to the echo, ultra-harmonic signal,
and inertial signal, respectively. The assembling of a database with different signals is
possible because we set several pairs (S0, I0) in which those coefficients are multipliers
of the predefined 100 kPa amplitude for SC and IC, correspondingly. Thus, during the
simulation of the signals, a couple of thresholds for the pairs were tested, and it was
decided to follow values that had already shown consistent results (Furuie et al. 2023).

As shown in (Furuie et al. 2023), the criteria used to find the minimum S0 and I0 val-
ues were the search for estimations that yielded the maximum number of appropriate
detections (true positives) and that respected the real scenario of occurrence of IC or SC.
In short, it was established that the SC occurs for S0 ⩾ 0.035 and the IC arises when
I0 ⩾ 2.0, while E0 is always 1.
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Figure 5.11 – Reconstructed signals after delay and sum (D&S). (A1) Example of an
estimated temporal source signal with echo, and noise. (B1) Example of an estimated
temporal source signal with echo, SC, and noise. (C1) Example of an estimated temporal
source signal with echo, IC, and noise. (D1) Example of an estimated temporal source
signal with echo, SC, IC, and noise

Source: Own work.

To exemplify the sources described in Table 5.3, Figure 5.11 illustrates samples of the 4
different sources previously indicated. After the signals’ generation and processing, we
enter the last box present in the flowchart, and that is discussed in the next section.

5.6.2 CWT APPLICATION AND RGB IMAGES

As shown in the procedure diagram (Figure 5.10), after creating the signals, we started the
feature extraction step. For our problem, each signal comprises 2,257 temporal samples,
and the data is converted into time-frequency spectrograms (CWT tool) in which no
information overlaps, thus overfitting problems are avoided. The chosen wavelet mother
Ψ(t) was the Wavelet Morlet (Gabor) as a parameter of the CWT. As we mentioned in
Section 4, the wavelet selection was based on the best correlation since the coefficients
constitute the outcomes of a regression of the original signal performed on the wavelets.
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After we obtain the absolute wavelet coefficient values from the signals through the CWT
filterbank from MATLAB, we rescale those coefficients into the [0,1] interval. The ap-
plication of the rescale function is necessary for the conversion of the coefficients into
8− bit unsigned integers so that we can transform the values to an RGB image using the
selected colormap. Since our neural network is the AlexNet, the Jet colormap selected
has 256 colors, i.e., compatible with AlexNet inputs. Figure 5.12 shows the time domain
for signals with different features and the respective scalograms to exemplify the process.

As we mentioned in Section 4, the scales a from the CWT are used to create the wavelet
bandpass filters, and depending on the chosen parameters as input for the CWT, those
values change. They are discretized considering the number of wavelet filters per octave,
which is 12 for this work, resulting in 141,000 coefficients for each signal. The larger the
number of voices per octave, the finer the discretization of a, thus, the selection of the value
considers the amount of computation required since it increases with its increment. The
number of scales is calculated considering the energy spread of the wavelet in frequency
and time (MATLAB 2016).
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Figure 5.12 – Signals (A1), (B1), (C1), (D1), and respective scalograms for each signal:
(A2) RGB image for signal (A1); (B2) RGB image for signal (B1); (C2) RGB image for
signal (C1); (D2) RGB image for signal (D1)

Source: Own work.

5.6.3 DATASET

It is pertinent to clarify that there are four types of problems that we explored considering
each with a database size of 2,800 waves. They are:
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• Broadband receivers + RN level

• Narrowband receivers + RN level

• Narrowband receivers + 2% noise level

• Narrowband receivers + 5% noise level

Thus, the total number of synthetic signals inspected for the different scenarios is 4 ×
2, 800 = 11, 200.

Table 5.4 shows a summary of the dataset features for our problem.

Table 5.4 – Dataset Summary

Attribute Value

Total samples
(each base)

2,800

Height × Width 227 × 227 px
Image size ≈ 3kb, 96 dpi

Total targets 4

Source: Own work.

The generation of each database took approximately 8 days. The measurements and
simulations were done with Intel (R) Core (TM) i5-4460 CPU @ 3.20 GHz processor, and
the system used is the NVIDIA GeForce RTX 970 graphical processing unit.

We randomly divided the RGB images into 3 new datasets following the proportion of 70%
for training, 15% for validation, and 15% for testing purposes. The dataset placement for
each case analyzed has a distribution according to Table 5.5.

5.6.4 MODEL IMPLEMENTATION

In this study, we took advantage of the transfer learning approach, where there is the reuse
of a pre-trained model (AlexNet) on a new problem and no need to create a CNN model
from scratch. To operate the model for our problem, the last three layers of AlexNet were
replaced: Fully Connected, SoftMax, and Classification. Besides that, the hyperparameter
selection is relevant since they are values that control the learning process of the model.
Below, we have the definition of each one of them:
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Table 5.5 – Dataset Distribution

Type Quantity Percentage

Training images 1,960 70%
Validation images 420 15%

Testing images 420 15%

Source: Own work.

• Batch size: the batch size defines the number of samples that will be propagated
through the network at each iteration during the training.

• Learning rate (α): it determines the step size an algorithm updates or learns the
values of a parameter estimate.

• Activation function: its main purpose consists of permitting the neural network to
handle intricate tasks by performing non-linear computations.

• Epoch: it commands the number of complete passes through the training dataset.

• Optimizer: optimizers are algorithms or methods used to change the attributes of
the neural network in order to reduce the losses. A common optimization technique
is the Stochastic Gradient Descent (SGD), and when the runtime is comparatively
high, momentum is suitable for quick learning, thus leading to faster converging.
Then the optimizer is called Stochastic Gradient Descent with Momentum (SGDM).

Table 5.6 – List of hyperparameter values for the network model employed

Parameter Selected value

Minibatch size 32
Activation ReLU
Optimizer SGDM

Learning rate 1−4

Epochs 40
Loss function Cross entropy

Source: Own work.

CNN is implemented using the DL Toolbox Model for AlexNet Network (MATLAB 2020).
During the hyperparameter optimization, we tested different values of the attributes,
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considering the computational cost as well, and the best results were obtained when
the model was implemented with the values synthesized in Table 5.6. More details of
the hyperparameters for a DL model and their influence in updating the network are
presented in Appendix A.
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6
ANALYSES AND RESULTS

6.1 METRICS

The evaluation of our method’s performance is obtained by four metrics: accuracy, recall,
precision, and F1-score are applied to analyze the results of transferred AlexNet. The
equations are presented ahead:

Accuracy = TP + TN
TP + TN + FP + FN

(6.1)

Precision = TP
TP + FP

(6.2)

Recall = TP
TP + FN

(6.3)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives,
and false negatives, respectively.
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The accuracy has the advantage that it is very easily interpretable, but it is not robust
if the data is unevenly distributed, or the existence of a particular type of error. To
overcome possible issues, the F1-score is also inspected as a performance metric, and it is
defined as

F1-score = 2 x Precision x Recall
Precision + Recall

(6.4)

6.2 RESULTS ANALYSIS

Table 6.1 shows the results both considering narrow and broadband receivers. The broad-
band receivers yielded the best results (accuracy of 98.8%), which was expected among
the cases proposed. However, the scenario applying narrowband receivers also produced
acceptable detection indicators, with values of 96% for precision, 95.9% for F1-score,
and 95.7% for accuracy for RN level. Those results suggest that it is possible to detect
the phenomenon using the same set of ultrasound transducers or alternative broadband
receivers.

Table 6.1 – Performance for the different sources, comparing narrow and broadband re-
ceivers, and distinct levels of noise (2%, 5%, and RN)

Narrow Band Broad Band

Measure RN 2% 5% RN

Accuracy 95.7 ± 1.0 97.1 ± 0.6 96.1 ± 0.4 98.8 ± 0.4
Precision 96.0 ± 1.1 97.3 ± 0.5 96.3 ± 0.9 98.7 ± 1.0

Recall 95.8 ± 1.1 97.3 ± 0.6 96.2 ± 0.6 98.8 ± 0.6
F1-score 95.9 ± 1.7 97.2 ± 0.7 96.2 ± 0.5 98.7 ± 0.5

Note: for each case, 5 simulations were conducted.

Source: Own work.

Furthermore, by comparing the narrowband results, it is possible to verify the influence
of the noise level in the algorithm’s evaluation. RN level seems to have a slight major
impact on the disturbance in the classification, where the metrics exhibit less accurate
results and are less consistent (higher variance).

A confusion matrix is also presented to assess the procedure’s performance for the RN
case (narrowband) (Figure 6.1). As we can observe, it referred to the 4 types of sources
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from Table 5.3. The columns correspond to the target class (real classification), with
the one on the far right of the matrix showing the percentages of the correctly (green)
and incorrectly (red) predicted values. These metrics represent the precision and false
discovery rate, respectively.

The rows meet the output obtained (method’s classification), with the row at the bot-
tom of the plot indicating the percentages that are correctly (green) and incorrectly (red)
classified. The accurately categorized value is also called recall (or true positive rate),
and the misclassified result is the false negative rate. The diagonal cells represent the
correctly classified inspections and the off-diagonal values correspond to incorrectly clas-
sified observations. The last cell shows the approach’s global accuracy acquired and it
was 95.7%.

Figure 6.1 – Confusion Matrix for narrowband receiver case - RN rate (840 waves for
testing and validation, 210 for each target class - 30% of the database)

Source: Own work.

We can observe that the mislabeling concentration occurs between Echo + IC and Echo
+ IC + SC signals (cell(2,4)). Therefore, there are two important aspects to notice in
this result: even confounding the two sources, the goal of identifying the IC was achieved,
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and receiving such feedback, the medical professional would be able to avoid harm to the
patient since this event is undesirable. However, the second point of attention is the failure
to recognize the SC presence, which is the desired phenomenon for the sonothrombolysis
technique.

Verifying the influence of the database size in the classification was also done. We tested
a dataset with a smaller dimension as input of the CNN, and we attested a significant
decrease in accuracy. For a database of 400 signals, for example, we obtained an accuracy
of 68.3% for broadband receivers (Figure 6.2). It was noticed that the classification starts
to produce appropriate results for databases with more than 1,000 samples.

Figure 6.2 – Confusion Matrix for broadband receiver case - RN rate (120 waves for testing
and validation, 30 for each target class - 30% of the database).

Source: Own work.

For the case with fewer samples, the higher inaccuracy is clear. The Echo + IC class is
mislabeled in almost 50% of the trials.
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7
DISCUSSION

The experiments conducted across the present work revealed that

• The selection of the Mother Wavelet is important but not crucial to extracting the
features of the signals.
Even though the inspection and care for a wavelet that would show a better cor-
relation with the signals was made, the application of a different wavelet did not
disclose results with a considerable discrepancy. When the "Bump" wavelet was
tested, for instance, the accuracy was still bearable (≈ 93%).

• Analysis of different scenarios.
Although it was not present in the results, scenarios with different thresholds for
(S0, I0) were conducted, yielding acceptable results even though not as fine as the
ones we showed for the cases analyzed.

• The project’s limitations.
Since AI models heavily rely on data for training and testing, a limitation that is
often observed is the influence of the database size on classification. The results are
directly affected by the number of samples available, which could be challenging if
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the method is applied to experimental data signals. Furthermore, DL models are
often considered black boxes because the decision-making processes of the system are
not transparent or easily understandable. With millions of parameters organized
in intricate architectures, understanding how input data transitions into output
predictions is not trivial.

• Presentation of results.
Through the development of the laboratory projects, we presented and published
our results at prestigious conferences such as the Congresso Brasileiro de Engen-
haria Biomédica (CBEB) (Guenkawa, Furuie, and Caurin 2022), the Computing
in Cardiology (CINC) Conference (Guenkawa and Furuie 2023), and the Canadian
Conference on Electrical and Computer Engineering (IEEE CCECE) (Furuie et al.
2023). It is anticipated that this work will be submitted for publication in a Journal
as well.

Given the results obtained in this project and the appositeness of the topic, we propose
other research lines as follows

• Explore other Machine Learning algorithms that apply transfer learning.
The implementation of other transfer learning approaches would enrich the work so
the performance metrics could be compared. Some other architectures are LeNet
(Lecun et al. 1998), VGGNet (Simonyan and Zisserman 2014), or ResNet (He et al.
2015).

• Insert experimental signals in the database.
Since experiments are being conducted in the group’s laboratory, the insertion of
tested signals with the reevaluation of the algorithm would reinforce the suitability
of the method implemented if good results were obtained.

• Explore Deep Learning algorithms often applied to medical problems.
U-Net is a CNN that was developed initially for biomedical image segmentation
and cell tracking (Ronneberger et al. 2015). But in recent years, its applications
have expanded, meeting the signal processing field as well. Speech enhancement
and ECG analysis are two examples of the applicabilities for signal analysis, and
thus it might be a solution to be implemented for our problem.
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8
CONCLUSION

Considering the relevance of the study when we highlight CVDs conditions, accounting
for 17.9 million deaths each year globally (WHO 2021), and the potential and innovation
involving the sonothrombolysis technique, it is important to emphasize the significance
of favorable outcomes for studies related to the therapy. Besides that, since the clot lysis
mechanism is still not fully understood, the detection of the type of cavitation that is
occurring and its location is crucial for the methods safety and efficacy.

The main goal of this work was to evaluate the possibility of applying an AI approach
to detect and classify the cavitation phenomenon during therapy. The tested technique
was a DL model (AlexNet), carried with transfer learning, and the CWT tool to extract
information from the signals. The choice considered the computational cost of the method,
the presence of satisfactory results for similar applications, and the particular interest of
the authors in CNN models.

The results revealed that the automatic and uncomplicated classifier method proposed
reached an acceptable performance and in fact, it also showed the possibility of apply-
ing the same set of transducers as emitters and receivers, since the narrowband device
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simulation yielded appropriate outcomes as well. For the case of narrowband receivers,
the study’s result indicated that the technique achieved state-of-the-art values of around
95.7%, and 96% for accuracy and precision, respectively. The considerable degree of
accuracy demonstrated that using AI could be an approach to explore the detection of
cavitation for therapies using ultrasound signals.

We also learned that the number of samples is essential to achieve a considerable degree
of performance. We noticed that databases with a low quantity of samples (400 signals)
did not offer tolerable results (68.3% of accuracy), while acceptable outcomes started
to show for bases greater than 1,000 waves (accuracy > 70%). Furthermore, AlexNet
showed substantial learning potential for the metrics explored, especially considering the
few epochs applied (40). The dispensable high number of epochs is due to the use of the
transfer learning technique, revealing it to be a fast approach. Since the model is already
trained, we adapt the algorithm to our problem by replacing the three last layers, so the
learning process becomes fast and efficient. In short, the duration of each round for the
training, testing, and validating varied approximately from 20 to 40 minutes.

Besides that, due to the fact the cavitation signals are structured of different frequency
components and are non-stationary, the CWT tool was demonstrated to be a suitable
feature extractor instrument for the ultrasound signals we inspected. Through the analysis
in the time-frequency domain and the use of the calculated coefficients, we constructed
the RGB images and fed our neural network. By direct observation, the images do not
show an evident dissimilarity, demonstrating the great potential of AI approaches for
characteristic recognition.
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A
DEEP LEARNING

In this Appendix, we describe the main concepts related to Deep Learning as a comple-
ment to the details present in Section 3. As deep learning is a wide field, we prioritize
Neural Networks (structure and components). The objective is to provide an overview
of the concepts applied during the development of this work. We start by describing the
inspiration behind the abstraction of a Neural Network.

BIOLOGICAL INSPIRATION

Neurons are responsible for carrying information throughout the human body, and they
communicate with each other by sending electrical and chemical signals at a synapse.
There are three kinds of neurons:

1. The sensory neurons conduct impulses from a sense organ to the central nervous
system;

2. The motor neurons are responsible for voluntary and involuntary movements;

3. The interneurons pass signals from sensory neurons to motor neurons and other
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interneurons.

Each neuron consists of a cell body, dendrites, and an axon, and the structure can be
seen in Figure A.1a. With the intention to mimic the anatomy and function of the
human brain, the organization of artificial neural networks is similar to that of biological
neural networks. The comparison can be seen in Figure A.1, where the weight factors
wk correspond to synapses, and the stimuli coming to the cell (x1, x2, ..., xm) perform the
same function as the information that is carried in biological cells.

Figure A.1 – Similarity between biological and artificial neural networks. (a) Represen-
tation of a biological neuron cell. (b) an artificial neuron model

Source: Arbib 2023, Haykin 2009.

NEURAL NETWORKS

A neural network is a learning representation whose goal is to approximate some func-
tion f ∗, and it is a structure composed of processing units called neurons (Haykin 2009).
Within the data collected from a problem analyzed, the neural network defines an ap-
proximate mapping function y = f ∗(x) that outlines an input x to an output y. During
the neural network training, the objective is to adjust f(x) to match f ∗, by using the
training dataset.
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A neuron is structured by a linear combiner, an activation function, and a set of synapses
- designated as synaptic weights, which store the knowledge achieved through a learning
algorithm. The governing equations of each single neuron are equations A.1 and A.2:

vk =
m∑

j=1
wkjxj + bk (A.1)

yk = φ(vk) = φ

(
m∑

i=1
wkrxr + bk

)
(A.2)

The output yk represents an input to the neurons of another layer, or an element of the
output vector of the neural network, as we can observe in Figure A.2. The standard
architecture has as the first layer an input vector I = [i1, i2, ..., in], which is called the
input layer, and the last layer is featured by a vector O = [O1, O2, ..., Or], called the output
layer. The other layers are called hidden layers, and they are not seen directly from the
input or output of a network, being the depth of a neural network related to the number
of layers in the architecture. The linear combiner is represented by Σ, φ(·) represents an
activation function, and bk represents the bias, which has the effect of applying an affine
transformation1 to the result of the linear combiner.

Figure A.2 – Artificial neuron and the structure of the feed-forward artificial neural net-
work

Source: Modified from (Tanikic and Despotovic 2012) and (Haykin 2009).

The artificial neural networks can hold an arbitrary number of layers and a random number
1Affine transformation is a linear mapping method that preserves points, straight lines, and planes.
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of neurons. Besides those parameters, the performance of an artificial neural network also
depends on the chosen transfer function, the presence of a bias, and the scheme in which
the neurons are connected. Since there are no formal rules to drive the selection of the
mentioned arguments, the recommendation is to use personal skills and experience in a
manner to obtain the least error.

To understand how the layers are connected to one another, we have a simple example of
a neural network in Figure A.3, with an input layer (red), a hidden layer (blue), and an
output layer (green).

Figure A.3 – Layers representation: input level (red), hidden level (blue), and output level
(green)

Source: Own work.

For this case, the architecture has three inputs (x1, x2, x3), a hidden layer, and one output
(green). Let us define a

(l)
j and b

(l)
j as the activation and bias of neuron jth in layer lth,

respectively. And since the first layer in every neural network is the input layer, a
(1)
j = xj,

where xj is an input, as we can see in Figure A.4. The weight parameter from the kth

neuron in the (l − 1)th layer to the jth neuron in the lth layer is denoted by w
(l)
jk .
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Figure A.4 – General flow graph of a neural network with 3 layers

Source: Own work.

Therefore, for the equations that govern the neural network from Figure A.4, the linear
combinations of the inputs weighted by w(2) of the second layer are:

v
(2)
1 = w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1 (A.3)

v
(2)
2 = w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3 + b

(1)
2 (A.4)

v
(2)
3 = w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3 + b

(1)
3 (A.5)

v
(2)
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41 x1 + w

(1)
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(1)
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v
(2)
5 = w

(1)
51 x1 + w

(1)
52 x2 + w

(1)
53 x3 + b

(1)
5 (A.7)

And the outputs of each neuron of the second layer are presented by the equations from
A.8 to A.12:

a
(2)
1 = φ

(
v

(2)
1

)
= φ

(
w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1

)
(A.8)
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2
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= φ
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)
(A.9)
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For the output layer, we have:
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More generally, we can rewrite the equations as:

a
(2)
i = φ

(
v

(2)
1

)
= φ

 3∑
j=1

w
(1)
ij xj + b

(1)
i

 , i ∈ {1, 2, 3, 4, 5} (A.15)

a
(3)
i = φ

(
v

(3)
1

)
= φ

 5∑
j=1

w
(2)
ij a

(2)
j + b

(2)
i

 , i = 1 (A.16)

We can define a(l) a vector with each neuron output ai from a layer l, W (l) as a vector
compounded by the w

(l)
ij , and b(l) the vector within each bias b

(l)
i from layer l. Then, fol-

lowing the reasoning presented for architecture with few layers, for a general architecture
with l + 1 layers (l > 1), as in Figure A.5 - the output, or activation, can be calculated
recursively as a function of the outputs of the previous layer (a(l)), the matrix of weights
(W (l)), and the vector of biases (b(l)), according to A.17:

a(l+1) = φ
(
W (l)a(l) + b(l)

)
(A.17)

Figure A.5 – General flow graph of a neural network with (l + 1) layers

Source: Own work.
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Now we introduce in more detail the concept behind activation functions since they play
an integral role in neural networks by introducing nonlinearity.

ACTIVATION FUNCTIONS

The activation functions are responsible for transforming the summed weighted inputs
from the neuron and addressing them to the next layer. They implement the nonlinear
component to the model, permitting the performance of more complex tasks. In the
absence of an activation function, the network is reduced to a model of linear regression.

The most common activation functions are the sigmoid, the hyperbolic tangent, and the
rectified linear unit, and each one is more suited to the specific problem.

SIGMOID FUNCTION

The sigmoid function assumes values only in the interval (0, +1), and it is defined by the
equation (A.18):

sigmoid(x) = 1
1 + e−x

(A.18)

The sigmoid function is the most common form of activation function used in the con-
struction of neural networks (Haykin 2009), however, its considerable disadvantage is that
the sigmoid’s derivative is almost zero when it approaches 0 or 1, which impacts the it-
erative calculations required for the network optimization. Figure A.6 is the plot of the
sigmoid function for x ∈ [−4, +4].
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Figure A.6 – Sigmoid function for x ∈ [−4, +4]

Source: Own work.

HYPERBOLIC TANGENT FUNCTION

The hyperbolic tangent function is given by equation (A.19).

tanh(x) = ex − e−x

ex + e−x
(A.19)

The hyperbolic tangent function is similar to the sigmoid function, having similar shapes,
but tanh is symmetric in the x axis, and ∈ [−1, +1]. Figure A.7 plots the function.
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Figure A.7 – Hyperbolic Tangent Function for x ∈ [−2, +2]

Source: Own work.

RECTIFIED LINEAR UNIT

The rectified linear unit (ReLU) function is defined in equation A.20. Contrasting this
function with the two presented before, its greatest advantage is the non-saturation of the
gradient, which accelerates the convergence of the algorithm optimization.

ReLU(x) = max(0, x) (A.20)

Figure A.8 represents the function’s plot. We can observe that the activation is a simple
threshold x = 0, making ReLu much more efficient than the functions mentioned above
(Krizhevsky et al. 2012).
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Figure A.8 – ReLU Function for x ∈ [−4, +4]

Source: Own work.

SOFTMAX

The softmax function is defined to be

Softmax(x)i = exi=1...n∑n
j=1 exj

(A.21)

with n ⩾ 1.

Figure A.9 represents the function’s plot. The softmax function, also known as soft-
argmax, takes a vector x of n real numbers as input and normalizes it into a probability
distribution. The advantage is that after applying the function, a vector that could have
components negative or greater than one, now each element will be in the interval (0, 1),
expressing the likelihood of each value.
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Figure A.9 – Softmax function for x ∈ [−10, +10]

Source: Own work.

LOSS FUNCTION

The loss function, or cost function, is a method of evaluating the neural network model
applied to predict the expected outcome. It is responsible for optimizing the values of
the weight (W ) and bias (b) since those parameters are calculated iteratively when the
running model compares the predicted outcomes to the actual output values.

Considering x the input vector and y the output vector, the loss function is conditional
to x, y, W , and b, and the purpose is to minimize it. Let us call the loss function L, thus,
the algorithm optimization involves finding the W ∗ and b∗ which decrease the value of L,
as we can verify in (A.22).

(W ∗, b∗) = argmax
W,b

L(W, b, x, y) (A.22)

There are several types of loss functions, each more suited to certain problems. Selecting
an appropriate cost function is extremely important since neural networks operate those
calculations in order to learn parameters.

To choose a loss function, we first have to classify the problem we are trying to solve.
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There are mainly two different categories: Classification loss and Regression loss. The
first group includes problems of binary or multiclass classification, for example, if we want
to label a dataset compounded of handwritten images of digits from 0 to 9. Whereas,
in the regression loss, we are dealing with continuous data problems. For instance, if we
want to predict the prices of houses on the basis of some features.

CLASSIFICATION LOSS

In classification, we are trying to predict the output from a set of finite categorical values.
Below we have the two main loss functions for this category.

• Cross-Entropy Loss

It estimates the performance of a classification model through the evaluation of the pre-
dicted output’s probability (value between 0 and 1). As the probability converges to the
actual label, the cross-entropy decreases, and it can be calculated by

L = − 1
m

m∑
i=1

yi · log(ŷi) (A.23)

where y is the true probability distribution, ŷ is the predicted probability distribution, m

is the number of training samples, and i is the ith training sample in the dataset.

• Hinge Loss

It is the second most common loss function used for classification problems after the
cross-entropy. The function penalizes both the wrong and uncertain predictions, and it
is evaluated by

L = max(0, 1− t · y)) (A.24)

where t = ±1 is the intended output for class labels of +1 or −1, and y is the true
probability distribution.



107

REGRESSION LOSS

The other category of loss function is the regression. Below we have two types of regression
losses.

• Mean Square Error

The mean square error (MSE) loss function is defined as the average of squared differences
between the actual and the predicted output. The model is robust because the penalties
occur by squaring the errors, and it can be calculated by

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (A.25)

where y is the true probability distribution, ŷ is the predicted probability distribution, n

is the number of training samples, and i is the ith training sample in the dataset.

• Mean Absolute Error

We define the Mean Absolute Error (MAE) loss function as the average of absolute dif-
ferences between the actual and the predicted value, i.e., the average magnitude of errors
in a set of predictions. It is calculated as

MAE =
∑n

i=1 |hatyi − yi|
n

(A.26)

where y is the true probability distribution, ŷ is the predicted probability distribution, n

is the number of training samples, and i is the ith training sample in the dataset.

GRADIENT DESCENT AND BACKPROPAGATION

As we discussed in the Loss Function topic, the main goal of neural network training is
to find the optimized W and b parameters that suit the function and data distribution
represented. For that, the cost function needs to be minimized, and the most popular
algorithm to perform optimization is called Gradient Descent (Cauchy 1847).

The Gradient Descent technique is an iterative method that calculates the derivative of
the cost function and applies them as step updates according to a learning rate formerly
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set, α. The parameter α adjusts the dimension of the modifications at each update step
of the model. The method admits the evaluation of the cost function at an arbitrary
point, and with a process named Backpropagation, it is possible to measure its negative
gradient, which results in a step in that direction.

Equation (A.27) brings the algorithm’s approach in the (k + 1) iteration, with θ being a
set of parameters for a target function f(θ).

θ[k + 1]← θ[k]− α∇f(θ[k]) (A.27)

For updating the neural network, not only does the gradient for the output layer need to
be calculated, but for each layer as well. For this, we require the chain rule of calculus.

Let x ∈ R, and we have two functions: f : R→ R and g : R→ R. Suppose that y = g(x)
and z = f(g(x)) = f(y). Then the chain rule asserts that

dz

dx
= dz

dy

dy

dx
(A.28)

We can generalize to a vectorial structure. Let x ∈ Rm, y ∈ Rn, g : Rn → Rp, and
f : Rm → Rn. If y = g(x) and z = f(y), then

∂z

∂xi

=
∑

j

∂z

∂yj

∂yj

∂xi

(A.29)

Now we can apply the gradient for each layer of the neural network. As we saw in Section
A, the weighted linear combination of the (l + 1)th layer of a neural network, with n

neurons, can be expressed by

v
(l+1)
i =

n∑
j=1

wl
ija

(l)
j + b

(l)
i , l > 1 (A.30)

And its activation is

a
(l+1)
i = φ

 n∑
j

wl
ija

(l)
j=1 + b

(l)
i

 , l > 1 (A.31)
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Combining equations (A.30) and (A.31), the output v can be written recursively by (A.32).

v
(l+1)
i =

n∑
j=1

wl
ijφ(v(l)

k ) + b
(l)
i , l > 1 (A.32)

Then, we can apply the formula present in (A.28), and we get:

∂v
(l+1)
i

∂v
(l)
j

= φ
′(v(l)

j )w(l)
ij , l > 1 (A.33)

Now we can calculate the derivative of the cost function L (equation (A.34)).

∂L
∂v

(l)
i

=
n+1∑
j=1

∂L
∂v

(l+1)
j

∂v
(l+1)
j

∂v
(l)
i

= φ
′(v(l)

i )
n+1∑
j=1

w
(l)
ij

∂L
∂v

(l+1)
j

 (A.34)

Since we are interested in the derivatives of the weights and biases, equations (A.35) and
(A.36) are calculated.

∂L
∂w

(l)
ij

= ∂L
∂v

(l+1)
i

∂v
(l+1)
i

∂w
(l)
ij

(A.35)

∂L
∂b

(l)
i

= ∂L
∂v

(l+1)
i

∂v
(l+1)
i

∂b
(l)
i

(A.36)

Considering that the derivatives for weight and bias are respectively

∂v
(l+1)
i

∂w
(l)
ij

= φ(v(l)
j ) (A.37)

∂v
(l+1)
i

∂b
(l)
i

= 1 (A.38)

Substituting equation (A.37) in (A.35) and equation (A.38) in (A.36), we have

∂L
∂w

(l)
ij

= φ(v(l)
j ) ∂L

∂v
(l+1)
i

(A.39)
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∂L
∂b

(l)
i

= ∂L
∂v

(l+1)
i

(A.40)

Therefore, the values obtained in equations (A.39) and (A.40) are used to update W and
b, as described in equation (A.27). The model "recognizes" the parameters’ adjustment
through the backpropagation algorithm for training feedforward, and it takes the equation
(A.27) recursively until the gradient is transmitted to all layers of the neural network.
Thus, the updated equations are described below.

w
(l)
ij ← w

(l)
ij − αφ(v(l)

j ) ∂L
∂v

(l+1)
i

(A.41)

b
(l)
i ← b

(l)
i − α

∂L
∂v

(l+1)
i

(A.42)

As an example of the method, figure A.10 brings the graphs and contours of a function
of two variables (x and y).

Figure A.10 – Gradient Descent example

Source: Adapted from (Saeed 2021).

Since the function exemplified is described by equation (A.43), the general form of the
gradient vector is given by equation (A.44).

f(x, y) = x2 + 2y2 (A.43)

∇f(x, y) = 2xi + 4yj (A.44)
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The Algorithm 1 brings two iterations of the procedure with α = 0.1. In this example, we
have only two iterations, but normally the calculations run until there is no change in the
values computed, if they are below a certain threshold, or we settle a defined maximum
number of iterations.

Algorithm 1 Gradient Descent algorithm example
Require: t ≥ 1
Require: Learning rate α

Require: Initial parameters W and b

1. Initial t = 0
x[0] = (2, 4) ▷ This is a randomly chosen point

2. At t = 1
x[1] = x[0]− α∇f(x[0])
x[1] = (2, 4)− 0.1× (4, 16)
x[1] = (1.6, 2.4)

3. At t = 2
x[2] = x[1]− α×∇f(x[1])
x[2] = (1.6, 2.4)− 0.1× (3.2, 9.6)
x[2] = (1.28, 1.44)

While the Gradient Descent updates the parameters for each θ, which increases the com-
putational cost and memory allocation size, an alternative is the optimizer stochastic
gradient descent (SGD). SGD performs a parameter update for each training example,
which makes the processing much faster.



112

Figure A.11 – Red arrow illustrates the direction of the negative gradient descent at
iteration t = 1

Source: Adapted from (Saeed 2021).


