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ABSTRACT

DE OLIVEIRA, É. L. Modular Strategies Applied to the Control of Underwater Vehicle-
Manipulator Systems during Cooperative Transportation. 2023. 281 p. Thesis (Doctor of
Sciences in Control and Mechanic Automation Engineering) – Escola Politécnica, Universidade
de São Paulo, São Paulo, 2023.

The demand for natural resources (e.g., oil and gas, minerals, etc.), together with the high
cost and operators fatigue associated with the classical teleoperation approach used by the
offshore industry in Remotely Operated Vehicles (ROVs), brings the need for a higher degree
of automation in the intervention tasks. To meet this requirement, the Underwater Vehicle-
Manipulator Systems (UVMSs) are intended to be used in an autonomous way to perform
Inspection, Maintenance and Repair (IMR) operations in the next fell years. Also, there is an
increasing demand for alternative means of transportation in the underwater environment to assist
in construction, deep-sea mining and general dexterous manipulation, which a single UVMS
cannot perform. This work focuses on the motion control and coordination of UVMSs during
cooperative transportation. Among the theoretical developments, the main contribution is the
introduction of the Modular Control Methodology (MCM) for general multibody systems, whose
potential engineering applications go beyond the class of problems that originally motivated this
thesis. This novel methodology simplifies the control synthesis with a hierarchical approach,
using standard controllers for the subsystems in the lowest levels of the control hierarchy and
enforcing the constraints a posteriori. It also enables control allocation in the case of over-
actuation and optimal control synthesis. The MCM can also be used for coordination during
cooperative transportation, since the prescribed formation can be treated as a set of constraints
among the agents according to the established communication topology. The contributions made
here are tested through numerical simulations in different scenarios.

Keywords: Mathematical modeling, Nonlinear control, Multibody systems.



RESUMO

DE OLIVEIRA, É. L. Estratégias Modulares Aplicadas ao Controle de Sistemas do tipo
Veículo-Manipulador Subaquático durante o Transporte Cooperativo. 2023. 281 f. Tese
(Doutorado em Ciências na área de Engenharia de Controle e Automação Mecânica) – Escola
Politécnica, Universidade de São Paulo, São Paulo, 2023.

A demanda por recursos naturais (por exemplo, petróleo e gás, minerais, etc.), juntamente
com o alto custo e fadiga dos operadores associados à abordagem clássica de teleoperação
utilizada pela indústria offshore em Veículos Operados Remotamente (ROVs), traz a necessidade
de um maior grau de automação nas tarefas de intervenção. Para atender a esse requisito, os
Sistemas de Veículos-Manipuladores Subaquáticos (UVMSs) pretendem ser utilizados de forma
autônoma para realizar operações de Inspeção, Manutenção e Reparo (IMR) nos próximos
anos. Além disso, há uma demanda crescente por meios alternativos de transporte no ambiente
subaquático para auxiliar na construção, mineração em alto mar e manipulação hábil geral, que
um único UVMS não pode realizar. Este trabalho tem como foco o controle de movimento e
coordenação de UVMSs durante o transporte cooperativo. Entre os desenvolvimentos teóricos,
a principal contribuição é a introdução da Metodologia Modular de Controle (MCM) para
sistemas multicorpos genéricos, cujas potenciais aplicações em engenharia vão além da classe
de problemas que originalmente motivou esta tese. Essa nova metodologia simplifica a síntese
do controle com uma abordagem hierárquica, usando controladores padrão para os subsistemas
nos níveis mais baixos da hierarquia de controle e impondo os vínculos de modelagem a

posteriori. Esta ainda permite realizar a alocação de controle em caso de redundância de atuação
e a síntese dos controladores padrão. A MCM também pode ser utilizada para coordenação
durante o transporte cooperativo, já que a formação prescrita pode ser tratada como um conjunto
de restrições entre os agentes de acordo com a topologia de comunicação estabelecida. As
contribuições aqui feitas são testadas através de simulações numéricas em diferentes cenários.

Palavras chave: Modelagem matemática, Controle não-linear, Sistemas multicorpos.
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1 INTRODUCTION

Underwater Vehicle-Manipulator Systems (UVMSs) are robots composed of an Unmanned

Underwater Vehicle (UUV) endowed with at least one underwater robotic manipulator. UUVs

can be of two types: Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles

(AUVs). The manipulators available on the market generally have an anthropomorphic structure,

varying the number of active joints from three to seven, or even more, depending on the type of

application. The drive can also vary between hydraulic and electric. When an ROV is combined

with one or more manipulators capable of carrying out Inspection, Maintenance and Repair

(IMR) operations, it is an Intervention-ROV (I-ROV), also known as work-class ROV. Similarly,

an AUV equal equipped is called Intervention-AUV (I-AUV). In this taxonomy, shown in Fig. 1,

both I-ROVs and I-AUVs are part of the UVMS class. Fig. 2 (a) shows an I-ROV used for

deep-water IMR operations (WRIGHT’S, 2020) and Fig. 2 (b) shows a prototype of an I-AUV

developed by the University of Girona, Spain (YOUAKIM et al., 2017).

Unmanned
Underwater

Vehicles (UUVs)

Autonomous
Underwater

Vehicles (AUVs)

Remotely
Operated Vehicles

(ROVs)

Intervention-AUVs
(I-AUVs)

Conventional
AUVs for search

and survey

Underwater
Vehicle-

Manipulator
Systems (UVMSs)

Observation Class
ROVs (OC-ROVs)

Work Class or
Intervention-ROVs

(WC-ROVs or
I-ROVs)

Figure 1: Taxonomy associated to UVMSs
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(a): I-ROV operating an underwater panel (b): I-AUV GIRONA 500 in pool experiment

Figure 2: Examples of UVMSs

Source: (a): Wright’s (2020); (b): Youakim et al. (2017)

The offshore industry is the main application area for UVMSs. This is due to the need for

underwater manipulation to perform dexterous tasks such as maintenance in sensors, valves

and ducts, in addition to the transport of objects, e.g., tools or construction materials in this

environment (SIMETTI et al., 2018), as illustrated in Fig. 3 (a)–(b). Nevertheless, the range of

application for this type of equipment is not restricted to the offshore industry only. UVMSs have

a high potential for application in the recovery of objects from the seabed, e.g., retrieving the

black box of an aircraft, shown in Fig. 3 (c). Also the application in the marine archaeological

research (RIDAO et al., 2014) or in the maintenance of pressurized water nuclear reactors, where

UVMSs can be used to inspect and perform maintenance on pipelines that are susceptible to

corrosion and that can put the nuclear plant functioning at risk (LEE et al., 2007; MAZUMDAR

et al., 2012), as illustrated in Fig. 3 (d).

(a): IMR simulation with DexROV (b): I-AUV test for valve turn

(c): I-AUV test in a black-box recovery (d): UVMS for IMR in nuclear reactor

Figure 3: Examples of underwater manipulation

Source: (a): Simetti, Galeano and Casalino (2016); (b): Youakim et al. (2017);

(c): MIR (2020); (d): MHI (2011)
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1.1 MOTIVATION

The demand for UVMSs has been growing due to the increase in oil and gas exploration in

deep waters (RIDAO et al., 2014). However, current IMR operations at these depths are carried

out with I-ROVs on the classical teleoperation scheme, where one operator takes care of the

umbilical and steers the vehicle, while the other operates the manipulator (YOUAKIM et al.,

2017). Despite this scheme being widely used in the offshore industry, it requires a large structure

on the Support Surface Vessel (SSV), which turns the operation very expensive (SIVČEV et al.,

2018). For example, the cost for ROV with SSV to perform an acoustic inspection of a pipeline

can reach 50 k€ per day (SIMETTI, 2020). Other disadvantages of this kind of operation are

the fatigue exposure that the operators are subjected to during the positioning and manipulation

activities and the communication delays between the SSV and ROV, which can severely degrade

the performance of whole operation (SIVČEV et al., 2018).

These problems can be solved by increasing the autonomy level of underwater manipu-

lation tasks. One way to do this is to replace the I-ROVs by the I-AUVs, since they are seen

as the natural evolution of the work-class ROVs, not requiring an expensive support structure

due its autonomy and possibility to be operate from cheap vessels. Such a modification can

reduce the operational costs associated with the classical teleoperation scheme and eliminate

the human burden, since the operator will be responsible for high-level tasks as the assistance

on task planning and operation management/supervision. For instance, the economy can reach

85% for the previous acoustic inspection, if it is performed by AUVs operating in tandem

configuration (SIMETTI, 2020). Beyond the presented applications, recent works (CONTI et al.,

2015; NIELSEN et al., 2016; SIMETTI; CASALINO, 2017; HESHMATI-ALAMDARI, 2018;

HESHMATI-ALAMDARI et al., 2018; HESHMATI-ALAMDARI; KARRAS; KYRIAKOPOU-

LOS, 2019; VERGINIS; MASTELLARO; DIMAROGONAS, 2019; HESHMATI-ALAMDARI

et al., 2021a; HESHMATI-ALAMDARI et al., 2021b) highlighted that I-AUVs also could be

used to perform cooperative manipulation tasks, in cases where more agents are needed to

execute a single operation. In this context, they can be used to transport objects that cannot

be carried by a single UVMS, due to their shape and weight restrictions, to carry and replace

pipelines and cables lying on the ocean floor or on assembly tasks such as building and repairing

underwater structures. Furthermore, underwater search, such as resource exploration, as the

search for mineral deposits, and rescue tasks, could be more efficient and effective if multiple

I-AUVs are used.

Looking for the presented possibilities and for the important role that AUVs and I-AUVs will

play in the exploration of the sea in the future, many research projects focused on the development
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of underwater autonomous manipulation systems. The list is long, including AMADEUS (LANE

et al., 1997), UNION (RIGAUD et al., 1998), SAUVIM (MARANI; CHOI; YUH, 2009),

TRIDENT (PRATS et al., 2012a; PRATS et al., 2012c; SANZ et al., 2012; FERNANDEZ et al.,

2013; SIMETTI et al., 2014; RIBAS et al., 2015), PANDORA (LANE et al., 2012; CARRERA

et al., 2014; CARRERA et al., 2015), DexROV (GANCET et al., 2016; SIMETTI; GALEANO;

CASALINO, 2016) and ROBUST (SIMETTI et al., 2018; SIMETTI et al., 2020) and many

others. All projects presented important developments on their scope of work and some of them

being considered as milestones, nevertheless there is a long way to go until the I-AUVs can be

used in the operational environment (RIDAO et al., 2014; SIVČEV et al., 2018). This is due to

the strong constraints imposed on this kind of system that challenges its control.

For example, the vehicle has large inertia compared to the manipulator, which makes it

adequate for slow and low precision motions (i.e., high amplitude displacements). In contrast,

the manipulator is used in short-range tasks (e.g., picking and placing an object, turning a valve,

or connecting a plug) due to its fast response and high precision. This heterogeneous behavior

almost decouples the manipulator dynamics from vehicle motion. On the other hand, the vehicle

is still prone to respond to the disturbances induced by the motion of the manipulator, which may

severely affect its attitude (DUNNIGAN; RUSSELL, 1998; BARBALATA, 2017), depending

on the ratio between the vehicle and manipulator masses (SIVČEV et al., 2018). There is also

kinematic coupling since the position of the end-effector depends on the motion of the vehicle.

Thus, any error in the vehicle positioning influences the end-effector, even if the manipulator is

assumed to be dynamically decoupled from the vehicle.

In addition, the dynamics of this system is complex, highly nonlinear and time-varying

because the UVMS is a multibody system, subject to severe environmental forces associated

with the hydrodynamic forces due to the added mass, drag, waves and current effects, and due to

the hydrostatic restoring forces. Although the hydrostatic forces can be estimated based on the

geometry of the bodies, this can be done only within a certain precision. As well, there is not

exactly a model for hydrodynamic forces since the classical maneuvering models are established

only for UUVs and for basic geometry (e.g., sphere, parallelepiped, cylinder, ellipsoid, etc.).

Moreover, as pointed by Richard and Lévesque (1996), the stochasticity associated with the

environmental conditions is a very important factor that is not always taken into account.

There is also the redundancy resolution problem, because the I-AUVs have more Degrees of

Freedom (DoFs) than those required to perform a task on the operational workspace. Hence, an

inverse kinematics approach needs to be applied to generate the references for the coordination

control in the joint space based on the desired path for the end-effector (ANTONELLI, 2014).
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This brings the possibility to use these redundant DoFs to achieve secondary task objectives (e.g.,

avoid joints limits, reduce energy consumption, minimize the restoring moments, etc.). Similarly,

the coordination of multiple I-AUVs in cooperative tasks is an important feature associated

with the kinematics, where the references should preserve the formation (e.g., regulating agents

position and velocity) and guarantee security objectives (e.g., collision avoidance, loss of agents,

etc.).

Regarding technological aspects, I-AUVs are powered by batteries, being fundamental to

save energy, seeking higher autonomy for long-time missions and higher operation capacity (e.g.,

payload transportation). Another important restriction is on the available feedback information,

which is restricted to the onboard sensors. This feedback may be inaccurate and limited (i.e., low

bandwidth), where it is necessary to adopt some kind of sensor fusion scheme to produce reliable

information (HESHMATI-ALAMDARI et al., 2021a; HESHMATI-ALAMDARI et al., 2021b).

Besides that, there are problems related to the actuation system, since in general UUVs are

propelled by thrusters, while the manipulators are actuated by electric motors. Although the

electric motors have a fast response with a negligible influence in the global dynamics, this is

not the case for thrusters, whose coupling effects can result in limit cycles on the closed-loop

positioning when not compensated (YOERGER; COOKE; SLOTINE, 1990; BESSA et al.,

2004; BESSA, 2005; BESSA; DUTRA; KREUZER, 2006; BESSA; DUTRA; KREUZER, 2013;

ANTONELLI, 2014). Thus, based on the comments made above, one can summarize the main

problems associated with the control of I-AUVs as below:

1. kinematic/dynamic coupling between the vehicle and manipulator;

2. complex dynamic model with several sources of uncertainty;

3. unstructured operating environment subjected to disturbances;

4. kinematic redundancy;

5. coordination of multiple agents in cooperative tasks;

6. thrusters dynamics;

7. limited operational capacity defined by its batteries;

8. restricted feedback information and low sensors bandwidth.

Moreover, the UVMSs are a part of the robotic field of mobile systems with manipulation

capabilities, such as Vehicle-Manipulator Systems (VMSs), Aerial Manipulators (AMs), Under-

water Manipulators (UMs) and I-AUVs. The research interest in these topics has been increasing
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over the last years, as seen in the normalized scientific production factor of the previous decade

raised by the author from Scopus (2022) and shown in Fig. 4 with the total number of publica-

tions indicated in the legend. Therefore, it is essential to contribute to developing such a field,

presenting new approaches and techniques for modeling and control.
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Figure 4: Scientific production of the last decade.

1.2 OBJECTIVES

The main objective of this thesis is to develop strategies for modeling and control of I-AUVs.

To address this issue, the novel Modular Control Methodology (MCM), applicable to multibody

dynamic systems in general and particularly to the class of I-AUVs, is introduced. The secondary

objective is to test the approaches developed during a cooperative transportation.

The specific objectives are as below:

1. Create a generalized modeling approach for underwater multibody systems, where the

models on the literature for submerged bodies can be used. This new approach enables a

structured process and reduces the possibility of misleading actions during the modeling;

2. Develop the MCM for multibody systems, applicable to both in- and off-the-shelf systems,

to reduce the control synthesis to the syntheses of sub-controllers and its coupling. This

new methodology allows the utilization of already validated control algorithms for the

sub-controllers, which may reduce the complexity of the design process;
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3. Test the developed approaches by means of numerical simulations of operational tasks

(e.g., station-keeping, coordinate control and cooperative transportation).

1.3 THESIS ORGANIZATION

Chapter 2 presents the literature review. The mathematical modeling approach, including

several simulation studies considering benchmark models to validate the modeling, is presented

in chapter 3. Chapter 4 is reserved for the formulation of the MCM and highlights the method

features through numerical simulations with classical benchmark models for robotic systems.

Chapter 5 applies the MCM of chapter 4 in simulation studies of cooperative transportation task

performed by teams I-AUVs and modular ROVs. Finally, chapter 6 brings the conclusions and

further works.
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2 LITERATURE REVIEW

The state-of-the-art review is divided into: (i) dynamic modeling; (ii) inverse kinematics;

(iii) coordinated control and (vi) cooperative control.

2.1 DYNAMIC MODELING

Over the years, many works have focused on developing dynamic models for UVMSs. Below,

the items that we consider most important for this work were reviewed.

Ioi and Itoh (1990) derived a dynamic model for an underwater manipulator through the

recursive Newton-Euler algorithm considering the influence of added mass, drag and lift forces

on the links. As example, the inverse dynamics problem is treated considering and a 9-DoFs

dual-arm manipulator. In addition, they investigated the inverse dynamics problem, considering a

hybrid control for force and position regulation of a 6-DoFs manipulator. Schjolberg and Fossen

(1994) developed a dynamic model of a UVMS through the same approach of Ioi and Itoh (1990)

and proposed a feedback linearization control law for the coordinated control of the system.

Despite the consistent modeling and detailed control synthesis presented by Schjolberg and

Fossen (1994), there are no simulations or experiments in this work to show the applicability of

the proposed control law.

Lévesque and Richard (1994) proposed a mathematical model for the drag forces on an

underwater manipulator. The model considers the local variation of the velocity profile through

the cross-flow principle for the drag force calculation. Due to this dependency, it is necessary

numerically evaluate the drag forces, increasing the operations by 2-3 times compared to a

standard algorithm without hydrodynamic forces evaluation. Lévesque and Richard (1994) also

presented a method for the computation of the buoyance forces in fully or partially submerged

bodies. Moreover, in Richard and Lévesque (1996), the importance of the stochastic effects

between the fluid environment and manipulator is highlighted. According to the authors, such

effects can be taken into account writing the relative velocity as the sum of a deterministic
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component (mean value) associated with the manipulator motion and a stochastic component

(zero-mean Gaussian white noise) related to the fluid velocity with respect to the links.

McMillan, Orin and McGhee (1994) presented a simulation algorithm for a UUV endowed

with a robotic manipulator. This model is based on a modified version of the O(N) algorithm

adapted for the inclusion of moving base effects and environmental forces, e.g., added mass,

viscous drag, fluid acceleration and buoyance forces. McMillan, Orin and McGhee (1994)

highlighted that despite the efficiency of the O (N) algorithm, the computations increased almost

two times, when the environmental forces are added, in comparison with the case for an on-land

moving base manipulator. Another interesting observation is that the computations grew linearly

with the number of links of the manipulator.

McLain and Rock (1998) developed a model for the hydrodynamic forces on a single-link

underwater manipulator of cylindrical geometry. Firstly, the model is constructed based on the

two-dimensional potential-flow theory taking into account the effects of vortices in the wake,

and then it is extended to include 3-D flow effects through the strip theory. Furthermore, the

model counts with state-dependent coefficients for the inertial (added mass) and drag forces,

written for each strip as functions (cubic-splines) of the diameters traveled along the longitudinal

axis of the cylinder through the regression of hydrodynamic torque measurements. These data

come from the experiments conducted with a circular PVC cylinder of ratio aspect (L/D) of

9.1, swinging with angles less than 120 degrees. Experimental tests validated the predictions

of torque evaluation of the cylinder under different motion conditions. In this comparison, the

state-dependent model showed to be very accurate, providing a significant improvement over the

constant coefficients model.

Tarn, Shoults and Yang (1996) derived a dynamic model for a UVMS with an n-link manip-

ulator through Kane’s method, considering the major hydrodynamic effects such as added mass,

profile drag, fluid acceleration and buoyancy forces. Kane’s method made possible the direct

incorporation of external environmental forces into the model, which simplified its derivation.

Tarn, Shoults and Yang (1996) also present a modeling example of a 6-DoFs UUV with a 3-DoFs

manipulator in a tutorial approach. The model developed by Tarn, Shoults and Yang (1996) is

considered as a closed-form solution suitable for model-based control strategies.

Based on McLain’s model (MCLAIN; ROCK, 1998), Leabourne and Rock (1998) developed

a hydrodynamic model for an underwater two-link manipulator. The objective was to create a

suitable representation of the hydrodynamic coupling between an UUV and a two-link manip-

ulator, used for the coordinated control. This model can be interpreted as an extension of the

one proposed by McLain and Rock (1998) for a single link manipulator. However, the model
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of Leabourne and Rock (1998) does not consider the added mass effects, modeling only the

drag torques experimented on the joints during the manipulator motion. This model considers a

cylindrical-shaped links, fixed elbow angle and different drag coefficients for each link. The drag

torque on the joints is determined by applying the strip theory on the links, considering only the

in-line forces (those on the same plane of the cylinder motion) for the calculation. In addition,

to include the 3-D flow effects, the drag coefficients are empirically determined as functions of

joints angles. Compared with experimental results produced with a 2-DoFs planar manipulator

(Fig. 5) mounted on the Stanford Aerospace Robotics Laboratory (ARL) test tank, the model

with empirically determined coefficients had excellent results for estimating the drag torques,

which were two times more accurate than those of the version for fixed coefficients. However, the

model with fixed coefficients still produced good results, precise enough for use in the modeling

and control synthesis.

Figure 5: Two-link manipulator prototype

Source: Leabourne and Rock (1998)

Sagara et al. (2001) developed a dynamic model for a UVMS on the horizontal plane with

a structure very similar to the previous works (IOI; ITOH, 1990; SCHJOLBERG; FOSSEN,

1994; MCMILLAN; ORIN; MCGHEE, 1994; TARN; SHOULTS; YANG, 1996). They validated

the model through experimental tests in a water tank using a 5-DoFs prototype of the UVMS.

The prototype was composed of a 3-DoFs cylindrical base and a 2-DoFs manipulator with

rectangular-shaped links. In the experiments, the base only reacted to disturbances induced by

the motion of the servo-controlled manipulator. They used the recording of the end-effector

displacements caused by the motion of the manipulator at constant angular velocities and

compared it with the results obtained with the mathematical model. Model and experiments

showed good agreement for the path made by the end-effector. This is the only work found that

tries to perform experimental tests to validate a mathematical model. In fact, the work of Sagara



31

et al. (2001) is very important since it also validates the modeling approaches adopted in previous

works.

Dunnigan and Russell (1998) carried out a study on the dynamic coupling present in UVMSs.

The numerical simulations have shown that the reaction forces generated by the manipulator

movement are very harmful to the station-keeping of the UUV. This effect, in turn, directly affects

the positioning of the end-effector of the manipulator, as it is kinematic coupled to the UUV.

Dunnigan and Russell (1998) also synthesized a Sliding Mode Control (SMC) for the yaw angle

of the UVMS considering the reaction moment generated by the manipulator as a feedforward

term of the control law. This combination significantly improved the station-keeping of the

UUV during underwater manipulation. Periasamy, Asokan and Singaperumal (2012) applied

the bond graph method to study the dynamics of a UVMS composed of a 6-DoFs AUV with

a 3-DoFs manipulator. To perform the modeling, the UVMS was divided into two individual

modules, one for the AUV and the other for the manipulator, connected through the energy ports.

Similarly simulation results of Dunnigan and Russell (1998) have shown that reaction forces

due to the manipulator motion act like induced disturbances on the AUV, affecting its position

and attitude. An important observation made by Periasamy, Asokan and Singaperumal (2012) is

about the attitude DoFs of the AUV, described by the Euler angles – yaw, pitch and roll, which

are more disturbed compared to the translational DoFs. In fact, Dunnigan and Russell (1998) also

verified a stronger coupling influence for the attitude DoFs, which was credited to the restorative

moments and reactions induced by the manipulator, as in Periasamy, Asokan and Singaperumal

(2012).

The dynamic coupling in a lightweight UVMS was studied by Barbalata (2017). In this work,

the pitch angle was the most affected DoF, corroborating previous research observations. The

key point raised by Barbalata (2017) is the ratio manipulator/vehicle masses, once the dynamic

coupling is intensified when the manipulator mass is similar to the vehicle mass. A practical

rule given by Sivčev et al. (2018) says that the mass ratio should be less than 10%, meaning

that for a lighter manipulator, the dynamic coupling effects are negligible. Xiong et al. (2022)

proposed a method to evaluate the dynamic coupling intensity during manipulation tasks. This

method is based on the calculation of coupling coefficients using the EoMs. These coefficients

are associated with linear and angular motions. As expected, the angular coupling factor is much

higher than the linear during manipulation. Vehicle motion is neglected during the analysis under

the hypothesis of slow velocities. In Kolano and Davidson (2023), a recurrent neural network was

proposed to predict the pitch motion of a small ROV during a manipulation task. The network

was trained based on the simulated data from a mathematical model building in Julia. In the

numerical simulations, the network learned the dynamics, predicted the pitch motion 4 seconds
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in advance, and was robust to uncertainties in the hydrodynamic coefficients.

Gümüşel and Özmen (2011) presented the modeling and control of a horizontal two-link

robot manipulator for on-land and underwater conditions. The modeling performed through

Hamilton’s Principle and differential eigenvalue problem, assumes the first link is a rigid body

and the second is a flexible link. The inclusion of drag torques modeled the underwater case,

described by the classical strip theory. The system response was evaluated and compared with

three control methods (Proportional (P), Proportional-Derivative (PD) and integral augmented

fuzzy control) through numerical simulations. The results show that the classical P control is not

enough for set-point regulation on the underwater environment, especially when a payload is

considered. Despite the similar performance between the PD and augmented fuzzy control on

the land scenario, the PD control performed better on the underwater case. The author believes

that the derivative control action better compensates the drag torques.

Huang et al. (2022) presented a dynamic model of a two-link underwater flexible manip-

ulator based on the assumed mode method for flexibility and on Morrison’s equation for the

hydrodynamics forces. The singular perturbation method was adopted to decompose the dynamic

model into two subsystems (i.e., slow and fast subsystems) and a composite controller was

designed. An adaptive fuzzy sliding mode control was designed for the slow subsystem to com-

pensate for the disturbances and suppress vibration. A PD controller was proposed to suppress

residual vibration at the end-effector for the fast subsystem. The Lyapunov theory was used to

prove the controller stability. Numerical simulations were performed with MSC ADAMS® and

MATLAB/Simulink® to test the controller during trajectory tracking. The proposed controller

performed better than a composite SMC and a standard PID. In the simulations, they verified that

the effect of hydrodynamic force changes the flexible deformation and further interferes with the

joints motion. Similarly, Shang et al. (2023) developed a mathematical model for a single-link

flexible underwater manipulator. The model is based on the assumed mode method considering

two modes, i.e., flexional and torsional. In the modeling, hydrodynamics forces and frictions

were treated as disturbances. Shang et al. (2023) also presented an adaptive PI controller with a

disturbance observer to compensate for lumped disturbances and suppress vibration. Numerical

simulations and experiments with a physical prototype have shown the improved performance of

the proposed controller compared to simpler PI controllers.

Nielsen, Blanke and Schjølberg (2016) presented a methodology for the modeling of re-

configurable underwater robots, according to the Udwadia-Kalaba equation for constrained

mechanical systems. The main idea is to model the moduli separated, using some previously

available models and then calculate the coupling forces between the moduli a posteriori, with the
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Udwadia-Kalaba equation. This approach is further validated in Nielsen et al. (2016), where its

effectiveness is accessed through experimental tests considering an underwater robot composed

of two spherical-shaped moduli. Moreover, the analyses are extended in Nielsen et al. (2018),

where they used the approach to model a reconfigurable ROV composed of two units of the

BlueROV. This work also brings details about the identification of the parameters used in the

model. They reported also some open-loop tests to verify the identified model.

Ingrosso et al. (2020) also presented a modeling approach for modular and reconfigurable

UUVs. However, in the method of Ingrosso et al. (2020) the constraints are imposed a priori in

the mathematical model. They applied the idea to the 4-Folaga cluster multi-hull system obtained

from single-vehicle Folaga-AUV.

Sharma et al. (2019) developed a dynamic model for a UVMS with a structure similar

to the previous ones in the literature, considering the rigid body dynamics and environmental

hydrostatic and hydrodynamic forces. They based the modeling on a recursive approach using

the decoupled natural orthogonal complement matrices of Saha (1999), which is advantageous

for systems with many DoFs. Sharma et al. (2019) also proposed a simplified model for the

hydrodynamic drag in an underwater manipulator. Despite not explicitly cited, the model employs

the strip theory and assumes the profile drag as the most relevant part of the drag forces. Even with

this simple structure, the model can capture variations on the drag coefficient, if adopting some

identification scheme. This model also considers the dependency of the drag center in the UVMS

configuration. To validate the proposed model, Sharma et al. (2019) performed experiments with

a cylindrical-shaped underwater pendulum in free fall, considering two configurations (single

and 2-links). In this comparison, the model results for the joints displacements were in good

agreement with the experimental ones, despite some difference in the oscillation amplitude,

attributed to the constant drag coefficient used in the simulation. In Sharma and Saha (2019),

the previous model is reformulated, expressing the velocity distribution of a link with a constant

cross-section as a function of its endpoints velocities. With such a modification, Sharma and Saha

(2019) could express the drag coefficient as a function of the endpoints velocities and the aspect

ratio of the link (link length/circular cross-section diameter). Thereby, the drag coefficient leaves

the integrand for the calculation of the drag force, leading to the development of an analytical

expression, which eliminates the need for numerical integration or discretization. However, the

expression developed by Sharma and Saha (2019) is valid only if the endpoints velocities have

the same sign; otherwise, the integration will need to be performed in two parts, considering

the point with the null velocity of the link as the intermediate point of integration. Sharma

and Saha (2019) used the proposed model to simulate the free fall of the 2-link underwater

pendulum in different initial conditions. The obtained results were compared with those from
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experiments, part of them already presented in Sharma et al. (2019). In this comparison, the

authors found a good agreement between the simulation results and experimental ones concerning

the joints displacements, velocities and accelerations. Sharma and Saha (2019) also made a

comparison between the proposed model and a drag model based on the strip theory. In the

comparison, despite the results being similar for both models, the one of Sharma and Saha (2019)

was computationally more efficient than the result from the strip theory, due to the analytical

expression for the drag force calculation. Sharma and Saha (2019) also shown the versatility

of the proposed drag model combining it with the decoupled natural orthogonal complement

matrices of Saha (1999) for the inverse dynamics simulation of a 10-DoFs UVMS (6-DoFs AUV

and 4-DoFs manipulator).

Razzanelli et al. (2020) developed a hybrid simulator for UVMSs based on V-REP1 with

the Bullet Real-Time Physics Simulation engine for the rigid body dynamics and on the MAT-

LAB/Simulink for computation of the hydrodynamics effects and implementation of guidance,

navigation, control and machine interface. Numerical simulations were performed with a 6-DoFs

work-class ROV endowed with a 3-DoFs manipulator. The dynamic coupling and collision

effects on the vehicle body during a manipulation task could be verified in the results.

Shah et al. (2021) presented the mathematical modeling and the dynamic analysis of a

UVMS composed of an AUV with 6-DoFs and a 2-link flexible manipulator. The modeling uses

the quasi-Lagrange formulation on the AUV fixed-frame, considering joints friction, hysteresis

in the coupling between the manipulators joints and links, hydrodynamic and hydrostatic forces

acting on the system, including the lift forces associated with vortex shedding effects. Shah et al.

(2021) performed a numerical simulation campaign to demonstrate the influence of the various

effects on the precision of the end-effector positioning. Despite interesting results showing

the impact of joints flexibility and Vortex-Induced Vibration (VIV) forces on the end-effector

positioning, there is no comment about effects of the dynamics of the thrusters on the system

response. McLain and Rock (1998) reported that the VIV forces in an underwater manipulator

can be significant only in specific conditions, when the motion frequency coincides with the

structural frequency of the manipulator. Even in such a case, VIV can still be suppressed if the

trajectory performed by the manipulator disturbs the vortex shedding pattern, e.g., in the case of

oscillatory motion. Another point in the analysis presented by Shah et al. (2021) is the dynamic

coupling representation, which does not show influence of the manipulator motion on the vehicle

pose, because the ratio between the manipulator and vehicle mass is low, around 5%.

Figure 6 presents the timeline and the main topics covered in the publications associated

1The robotics simulator CoppeliaSim.
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with mathematical modeling2.
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2.2 INVERSE KINEMATICS

The kinematic redundancy may allow multiple coordination strategies of the manipulators

end-effector, while achieving secondary task objectives (e.g., minimize energy, avoid singularities,

improve manipulability, etc.). To this end, many works focus on developing redundancy resolution

algorithms for UVMSs.

Antonelli and Chiaverini (1998) proposed a task-priority inverse kinematics approach for

the redundancy resolution of a UVMS considering additional secondary objectives, such as

2Although this review section is focus on floating base UVMSs, one can find interesting works about modeling
and experimentation with articulated UVMSs (i.e., snake-type robots) in the research of Kelasidi (KELASIDI;
PETTERSEN; GRAVDAHL, 2014; KELASIDI et al., 2014; KELASIDI et al., 2015; KELASIDI et al., 2016;
KELASIDI et al., 2016; KOHL et al., 2016; KELASIDI et al., 2017; KELASIDI et al., 2018; KELASIDI et al.,
2019) and in Schmidt-Didlaukies, Sørensen and Pettersen (2018).
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energy-saving and the increase of the system manipulability. The energy-saving objective is

achieved by minimizing the UVMS velocities, while the manipulability measured is used to

avoid singular configurations during the manipulator motion. Numerical simulations tested the

approach, considering a UVMS composed of the NPS-AUV II and 3-DoFs manipulator. The

study considering only the horizontal plane (i.e., considering surge, sway and yaw motions of the

AUV) incorporates the action of a time-constant ocean current. In the simulations, the approach

of Antonelli and Chiaverini (1998) generated the references for the UVMS to align the AUV

motion and current directions, to minimize the drag forces due to the relative velocity profile

induced by the ocean current. The approach of Antonelli and Chiaverini (1998) also provides

less energy consumption for long-term tasks compared to the case of fixed AUV orientation. The

task-priority approach developed by Antonelli and Chiaverini (1998) is one of the first works

dedicated to redundancy resolution in UVMSs.

Sarkar and Podder (2001) developed a motion planning algorithm for redundancy resolution

and drag minimization of a UVMS. The redundancy resolution performs on the acceleration level,

augmented with the UVMS dynamics. Sarkar and Podder (2001) also present the mathematical

modeling of a UVMS with an n-link manipulator through the quasi-Lagrangian approach, which

permits the direct derivation of the EoMs in the vehicle frame. The thrusters dynamics are

also included in the mathematical modeling with the four-quadrant mapping for lift and drag

forces proposed by Healey et al. (1995). The drag minimization requirements are expressed

through a quadratic cost function, written in terms of the drag forces obtained from the math-

ematical modeling. The motion-planning algorithm was tested through numerical simulations

considering a UVMS made of a 6-DoFs AUV and 3-DoFs planar manipulator. The simulations

were performed considering a torque computed control law to track the references generated by

the motion planning algorithm. Results reveal a significant minimization of the control forces,

obtained with the references generated by the scheme of Sarkar and Podder (2001) compared

to the classical Pseudo-Inverse (PI) approach. Moreover, Podder and Sarkar (2004) extended

this work with a dynamic-based motion planning for UVMSs, to solve the inverse kinematics

problem considering the different bandwidth characteristics of both subsystems. This scheme

employs Fourier series expansion, to distribute the slow and fast parts of the trajectory on the

UUV and manipulator, respectively, resulting in a significant reduction of the dynamic coupling

intensity.

Santos et al. (2006) developed a redundancy resolution approach to UVMSs using the screw

representation of the differential kinematics of rigid bodies, the Davies’ method and a virtual

kinematic chain model and it is based on explicitly applying kinematic constraints inherent to

this type of system. Santos et al. (2006) conducted numerical simulations in the same simulation
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scenario presented in Antonelli and Chiaverini (1998) to test the proposed approach. The results

show that the undesirable motion that arises on the vehicle with the usual methods based on

minimizing a cost function associated with the secondary objectives can be avoided with the

approach developed by Santos et al. (2006). One should point that such result is due to the

constraints imposed to the vehicle and that similar results can be obtained using a weighting

matrix to allocate the motion in the active DoFs.

Soylu, Buckham and Podhorodeski (2010) presented a fault-tolerant redundancy resolution

scheme for an I-ROV. The redundancy resolution happens through the Moore-Penrose PI on the

velocity level. For secondary objectives achievement, the Gradient Projection Method (GPM) is

used with a low-level fuzzy-rule-based artificial pilot, which determines the weighting factor for

each secondary objectives, including joints limits, manipulability measurement for singularity

avoidance, camera pose to keep the end-effector in the camera sight and drag minimization

performed as in Antonelli and Chiaverini (1998). Fault management use a weighting matrix

with adjustable gains that permits to choose the DoFs where the motion is allocated. Numer-

ical simulations test the scheme, considering an I-ROV composed of a 6-DoFs Saab Seaeye

FALCONTM-ROV and 4-DoFs HydrolekTM manipulator. The results reveal superior perfor-

mance for this scheme during a manipulation operation with fault in joints, compared to simple

versions of this scheme, without an artificial pilot and a fault management algorithm. Despite

the promising results, the approach of Soylu, Buckham and Podhorodeski (2010) depends on

the definition of fuzzy rules set to manage the secondary objectives, which can be a very time

dispending task.

Han and Chung (2014) develop a task planning algorithm for redundancy resolution of a

UVMS, which uses the extra DoFs for optimizing the restoring moments through a modified

version of GPM with a variable gradient gain, calculated by comparing the task direction with

the restoring moments one. Han and Chung (2014) also presented a robust adaptive coordinated

control for UVMSs with an online update of the restoring moments based on the regressor

method. The whole scheme developed and tested through numerical simulations by Han and

Chung (2014) in the trajectory tracking problem considers a UVMS composed of the 6-DoFs

PETUS-AUV and the 5-DoFs PUM-manipulator. In the simulations, the redundancy resolution

algorithm of Han and Chung (2014) generated improved references to minimize the restoring

moments compared to the classical PI approach. The coordinated control of Han and Chung

(2014) performed better than the two versions of the classical Proportional-Integral-Derivative

(PID) control tested, one without restoring moments information and the other considering the

nominal restoring moments in a feedforward term. The algorithms of Han and Chung (2014) use

many ad-hoc solutions, which can compromise the reliability of the framework. Moreover, the
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hydrodynamic forces are neglected in the coordinated control, which justifies the assumption

of using a robust PID control, another ad-hoc solution. However, the hydrodynamic forces are

negligible in the conditions of slow UVMS motion and no current effects were simulated by Han

and Chung (2014). These assumptions lead to a false sense of robustness.

Wang et al. (2017) presented a redundancy resolution method on the velocity level for

a UVMS that take into account the payload transported by the manipulator as a secondary

task objective to improve the system stability. As done in Soylu, Buckham and Podhorodeski

(2010), Wang et al. (2017) used a set of fuzzy rules to manage the secondary task objectives.

The numerical simulations considering a UVMS composed of a 4-DoFs AUV and a 5-DoFs

manipulator reveals that with the secondary objective proposed by Wang et al. (2017) the

manipulator motion is restricted, when operating with a payload. In practice, this can result

in smaller pitch and roll angles for the UUV and improve the overall stability of the vehicle.

Moreover, Tang et al. (2017) investigated a task-priority redundancy resolution scheme for

UVMSs with restoring moments optimization on the acceleration level. Despite the similarity

with the algorithm of Sarkar and Podder (2001) and Wang et al. (2017), the scheme of Tang

et al. (2017) includes feedback terms to prevent numerical drift during the integration, which

makes the algorithm more robust and suitable for real implementation in this sense. Also, to

produce feasible references for pitch and roll angles, constraints are imposed for these DoFs in

the primary task of the approach of Tang et al. (2017). The numerical simulations with a UVMS

made of a 6-DoFs AUV and a 3-DoFs manipulator show that the scheme proposed by Tang et

al. (2017) provides smaller restoring moments compared to two other approaches, one on the

velocity level and the other acceleration one, but both using the generalized inertia matrix as

weighting matrix.

Kang et al. (2017) developed a redundancy resolution method based on the GPM for

the minimization of the relative distance between the UVMS center of gravity and the point

where the moments summation generated by all active forces is equal to zero, namely zero

moment point. As in previous works, the minimization was performed as a secondary objective

considering a quadratic cost function written in terms of the relative distance. The penalization

of the manipulator joints limits was also considered in the secondary objectives with an ad-

hoc cost function. To verify the proposed approach, Kang et al. (2017) performed numerical

simulations and experimental tests with a 6-DoFs UVMS prototype (Fig. 7) composed of a

3-DoFs floating base and a 3-DoFs manipulator on the vertical plane during the manipulation

experiment. The results showed a significant improvement in the UVMS stability with the new

secondary objective compared to the standard approach based on the PI during the manipulation

experiment. Moreover, in Nguyen et al. (2018) these analysis were extended with new simulations
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and experiments. The results obtained with a Inertial Measurement Unit (IMU) placed on the

floating base showed a pitch acceleration two times smaller for the redundancy resolution scheme

of Kang et al. (2017) compared to the PI approach. This is due to the reduction in the active

moments generated by minimizing the distance between the center of gravity and zero moment

point.

Figure 7: Hardware structure of UVMS

Source: Nguyen et al. (2018)

Simetti et al. (2014) presented an extension of the task-priority approach for achieving a

dexterous object grasping with a UVMS while satisfying inequality constraints for safety and/or

operational-enabling conditions, such as respecting joint limits and keeping the object centered

in the camera system. Simulations and experimental trials with the TRIDENT I-AUV validate

this approach. Simetti et al. (2015) extended the previous work to a dual-arm manipulator with

the inclusion of multidimensional inequality control objectives. This modified version of the

task-priority approach presented in Simetti et al. (2014) is tested through numerical simulations

considering a UVMS within the scope of the project MARIS. More recently, Simetti et al. (2018)

extended the previous works, which were limited to the grasping actions, to different applications

in the scope of the DexROV and ROBUST projects. The simulation results show the applicability

of this new framework to pipeline inspection and deep-sea mining.

A kinematic control approach for the coordination of a UVMS was presented by Hau-

galøkken, Jørgensen and Schjølberg (2018). This scheme generates the velocity references taking

into account the velocity tracking errors, which eliminates the hypotheses of perfect tracking

on the kinematic control. Haugaløkken, Jørgensen and Schjølberg (2018) applied this scheme

to stabilizing the manipulator end-effector when the UVMS is under the action of a slow time-

varying disturbance force emulating the ocean current effects. Also, a SMC with integral action

is used to track the velocity references. This scheme is verified experimentally with a UVMS
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composed of the SeaArm manipulator with 3-joints mounted under a BlueROV 2. The results

obtained show a lower Root Mean Square Error (RMSE) for the end-effector error with the

kinematic control proposed by Haugaløkken, Jørgensen and Schjølberg (2018) compared to two

other approaches, one based on a decoupled control, disregarding the influence of the vehicle

motion on the end-effector positioning and another considering the coupled kinematics.

Dai, Yu and Yan (2019) addressed the redundancy resolution of a UVMS during moving tar-

get tracking through an Extended Kalman Filter (EKF) based fast tube Model Predictive Control

(MPC) algorithm. Authors formulated the scheme as a control problem, where the kinematic

constraints are used to derive the dynamic model. The fast tube MPC is composed of an online

fast nominal MPC and an auxiliary nonlinear controller to treat uncertainties and disturbances

on the redundancy resolution level. This scheme could improve the performance of the low-level

control generating controller references that are consistent with the physical constraints and

closed-loop dynamics. The EKF was used to estimate the moving target trajectory through sensor

measurements generally corrupted by measurement noises, thus, eliminating the assumption of

precisely know tracking reference trajectory. The effectiveness of the prosed control scheme

was verified through numerical simulation on the UnderWater Simulator (UWSim) software

(PRATS et al., 2012b; FERNANDEZ et al., 2015) considering an I-AUV composed of a 6-DoFs

AUV with a 5-DoFs manipulator based on the GIRONA 500 UVMS. The simulation results have

shown the fast computation time and robustness of the EKF-based fast tube MPC to uncertainties

and external disturbances while satisfying the physical constraints. This work was extended in

Dai et al. (2020) with a motion controller and an EKF to estimate the lumped disturbances. In

Dai et al. (2022), the motion controller was modified using a fast tube MPC formulation based

on a nominal model and an SMC. Numerical simulations validated the schemes presented in Dai

et al. (2020) and Dai et al. (2022).

Li et al. (2019) developed an uncalibrated IBVS with an eye-in-hand configuration cam-

era. This approach also accounts with the restoring moments optimization in the redundancy

resolution on the velocity level by the GPM. An adaptative control was developed to handle

the parameters uncertainties in the camera model. Li et al. (2019) also addressed the motion

control problem with a composite controller based on the nominal model, an SMC term and

the disturbances estimates provided by a high-order disturbance observer. The Lyapunov theory

was used to perform the stability proof. Simulations with a 9-DoFs UVMS composed of a

6-DoFs UUV and a 3-DoFs manipulator validated the scheme. Gao et al. (2021) proposed an

Image-Based Visual Servoing (IBVS) with an eye-in-hand configuration camera. The redundancy

resolution problem is solved on the velocity level using an MPC based on the camera model

and its relationship with the end-effector kinematics. Gao et al. (2021) also presented a motion



41

control composed of a nonlinear PD augmented with the disturbance estimates provided by an

extended state observer. In the control synthesis, the dynamic coupling between the vehicle and

the manipulator was treated as an external disturbance, estimated by the extended state observer.

Also, a UKF is used to estimate the UUV velocities based on visual measurements. Numerical

simulations with a 12-DoFs UVMS composed of a 6-DoFs NPS Phoenix UUV and a 6-DoFs

SMART-3S manipulator proved the effectiveness of the presented scheme. Karras et al. (2022)

also presented an IBVS with an eye-in-hand configuration camera. The redundancy resolution

problem was solved on the velocity level using the PI approach based on the camera model and

its relationship with the end-effector kinematics. Prescribed performance functions were added to

the scheme to address the physical limits (e.g., the field of view, joints limits, etc.). A model-free

motion control based on the prescribed performance functions was also presented. Simulations

in the UWSim environment with an 8-DoFs UVMS composed of a 4-DoFs UUV and a 4-DoFs

manipulator validated the approach.

Yu et al. (2023) proposed a task-priority control with motion coordination and inequality-

based singularity avoidance for the redundancy resolution on the velocity level. In this scheme,

a heuristic subset is added to specify the boundary of the desired position of the end-effector

relative to the vehicle to avoid boundary singularities. Experimental tests were performed with

a 12-DoFs UVMS composed of a 6-DoFs ROV and a 6-DoFs manipulator. Results reveal an

improved performance for the scheme presented by Yu et al. (2023) compared to the conventional

PI approach and the QP-problem formulation.

Figure 8 presents the timeline and the main topics covered in the publications related to the

inverse kinematics problem.
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2.3 COORDINATED CONTROL

The coordinated control refers to the motion control of the whole UVMS system simulta-

neously. This topic has received much attention over the years due to the difficulty to perform

the control of the entire UVMS under dynamic coupling, modeling uncertainties and external

disturbances. To treat this problem, many researchers developed their own coordination control

approaches.

Practical experiments were conducted by McLain, Rock and Lee (1996) in the coordinate-

control of a small AUV named OTTER with a single link underwater manipulator. The results

have shown that the dynamic coupling can be very significant when the vehicle is not controlled.

It was also noticed that the coordinate-control of the system, using the dynamic coupling

forces as feedforward terms, provides a significant improvement in station-keeping with only

a 5% increase in the total thrust when compared with a decentralized-control approach, where

decoupled controllers are used for the vehicle and manipulator.

Canudas de Wit, Olguin Diaz and Perrier (1998) developed a non-model-based robust

nonlinear decoupling control to a UVMS based on the singular perturbation theory. This control

algorithm can decouple the UUV and manipulator dynamics due to the different bandwidth

characteristics of the system while preserving the closed-loop stability. A critical remark made
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by the authors says that only the UUV (slow subsystem) needs a robust control law since the

manipulator response is too fast. According to the authors, the mass ratio between the vehicle

and the manipulator is related to the bandwidth characteristics of the system, as in the previous

works, which focus on the dynamic coupling, as in Dunnigan and Russell (1998), Periasamy,

Asokan and Singaperumal (2012) and Barbalata, Dunnigan and Petillot (2014).

Chung et al. (2000) proposed a robust control algorithm based on a disturbance observer for

UVMSs. In their scheme, the DoFs of the UUV are treated as passive joints, while the manipulator

DoFs are taken as active joints. This idea comes from the fact that during manipulation the UUV

should be as much stationary as possible. However, this cannot be totally achieved since there

will be the disturbances induced by the manipulator motion. This trajectory-tracking was tested

through numerical simulations considering a UVMS composed of 1-DoF translational passive

base and a 3-DoFs planar manipulator. The simulations results reveal higher performance for the

scheme of Chung et al. (2000) compared to the classic PID control. However, the most important

drawback in the mathematical model considered by Chung et al. (2000) is the absence of attitude

DoF in the base. As pointed before, the attitude DoFs are the most disturbed by the dynamic

coupling between the vehicle and manipulator.

Sagara (2009) presented a continuous and a discrete version of the resolved acceleration

control method for UVMSs. Unlike conventional approaches, this method obtains the desired

values for the joints from kinematic and momentum equations with feedback of task-space

signals. Sagara (2009) also presented two types of disturbance observers for the UUV, to improve

the compensation provided by the resolved acceleration control method for the variation of

hydrodynamic parameters and disturbances induced by the manipulator motion. He compared

the control performance numerically and experimentally with the Computed Torque Control

(CTC) technique on the trajectory tracking problem, considering a planar UVMS composed of a

3-DoFs AUV and a 2-DoFs manipulator (Fig. 9). Results confirm the superior performance of the

resolved acceleration control over the CTC in compensating for the modeling errors and external

disturbances during the trajectory tracking. The author believes this is due to the disturbance

observers, which play an essential role in the UUV stabilization. The inclusion of task-space

feedback terms in the reference acceleration also contributes to the improved performance. In fact,

all the resolved acceleration control method has a structure very similar to the CTC technique,

except for the reference acceleration.



44

Figure 9: Vertical type 2-link underwater robot

Source: Sagara (2009)

Han, Park and Chung (2011) also proposed a robust coordination scheme for the control of a

UVMS. Their approach exploits the problem of redundancy resolution to perform the minimizing

of the restoring moments along with a nonlinear H-∞ control law and a disturbance observer for

the motion control of the system. The minimization of the restoring moments is performed by

penalizing the distance between the center of gravity and the center of buoyancy of the UVMS

through the performance index presented in Han, Park and Chung (2011). The advantage of

this index highlighted by Han, Park and Chung (2011) is that it generates a reduction in energy

consumption without requiring knowledge of any hydrodynamic parameter. Han, Park and Chung

(2011) achieved the synthesis of the nonlinear H-∞ control by solving the Riccati differential

equation analytically. Then, they chose the disturbance observer so that the L2-norm conditions

of the H-∞ are relaxed and the robustness of the control system is improved. The whole scheme

is tested through numerical simulations in the trajectory-tracking problem considering a UVMS

composed of a 6-DoFs PETUS-AUV and a 5-DoFs PUM-manipulator. In the simulations, the

redundancy resolution scheme of Han, Park and Chung (2011) performed well, providing a

significant reduction of the restoring moments compared to the classical PI approach. In addition,

the nonlinear H-∞ control with disturbance observer provided enhanced tracking performance

compared to a resolved acceleration control. This better tracking performance is due to the

compensation provided by the nonlinear H-∞ control for parameters uncertainties and ocean

current effects considered in the simulations. Han, Park and Chung (2011) also studied the

trajectory tracking problem considering the thrusters dynamics in the mathematical model. To

perform the control of the thrusters, a PD regulator is used to control the angular velocity of

the motor shaft. The results obtained reveal a delay effect in the generated thrusts caused by the

thrusters dynamics. However, the nonlinear H-∞ control still performed well but with tracking

errors ten times greater compared to the case without the thrusters dynamics.

Mohan and Kim (2012) developed an indirect adaptive control scheme for UVMSs consider-
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ing a CTC law combined with a disturbance observer based on the EKF algorithm. This approach

permits the direct estimation of the disturbances without a proper structure on the mathematical

model. However, the performance of this scheme depends on the disturbance observer accuracy,

which can compromise the control performance when the estimations are not good enough. The

coordination control can be performed on the task-space to avoid solving the inverse kinematics

problem. Kim, Mohan and Kim (2014) proposed a coordination control for UVMSs on the

task-space to the trajectory tracking in the presence of modeling errors and external disturbances.

The control is based on a feedback linearization law. An EKF is used as a state observer to

estimate the unmeasured states. The control was tested by numerical simulations considering a

UVMS composed of a 6-DoFs AUV and a 3-DoFs manipulator. Experiments were also done

with an ROV on the horizontal plane, i.e., considering surge, sway and yaw motions. The results

are compared to those of a classical PID and of an indirect adaptive control Mohan and Kim

(2012). The comparison showed improved tracking performance and less energy consumption

with the control of Kim, Mohan and Kim (2014). Moreover, Mohan, Kim and Singh (2015)

improved the previous scheme with a disturbance observer. To verify the effectiveness of this

scheme, simulations of different tasks were conducted and compared with the indirect adaptive

control of Mohan and Kim (2012). The results showed a better energy efficiency of the proposed

control and less error in tracking the trajectory and good robustness in the presence of external

disturbances and parametric uncertainties. Londhe et al. (2017) presented a robust nonlinear PID

control algorithm with gain adjustment by fuzzy rules for the motion control of a UVMS. This

algorithm has a structure similar to the scheme of Mohan and Kim (2012), including the use of a

disturbance observer. However, despite Londhe et al. (2017) approach seems to be more robust

to modeling uncertainties and external disturbances, it is also more complex due to the need to

develop a set of fuzzy rules for tuning the gains of the PID. Dai and Yu (2018) synthesized an

adaptive coordinated control for UVMSs composed of three terms: (i) an EKF for estimating

external uncertainties and disturbances, (ii) a CTC term based on the nominal model, and (iii)

an H-infinity control term. This scheme was tested through numerical simulations in different

scenarios, e.g., nominal conditions, under parametric uncertainties and external disturbances,

and considering a time-varying ocean current. The results were compared with other controllers

(PID, SMC and the indirect adaptive control of Mohan and Kim (2012)), and greater precision in

the trajectory tracking with the controller by Dai and Yu (2018) were verified.

Antonelli and Cataldi (2014) highlighted that off-the-self manipulators are often endowed

with position or velocity controllers on the joints. In these cases, the coordinated control of

the UVMS is limited to the regulation of the UUV, taking into account feedforward terms to

counteract the reactions developed by the manipulator motion. To this end, Antonelli and Cataldi
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(2014) developed an adaptative-recursive control approach with a minimal set of parameters

based on the virtual decomposition control. A stability analysis using the Lyapunov theory was

also presented. To evaluate the proposed controller, Antonelli and Cataldi (2014) performed

numerical simulations in the Simurv 4.0 simulator considering a UVMS composed of a 6-DoFs

Romeo-ROV with and a 7-DoFs manipulator from TRIDENT project. In the simulations, the

adaptative-recursive control is used to control the Romeo-ROV, while a PID controller was

used for the manipulators joints. The results obtained for the station-keeping of the vehicle and

end-effector trajectory tracking showed improved performance for the controller of Antonelli

and Cataldi (2014) in terms of the tracking errors of positioning and orientation compared to a

benchmark controller (not specified).

Farivarnejad and Moosavian (2014) presented a recursive mathematical model based on

the Lagrange equation for a dual-arm I-AUV considering the main effects (e.g., rigid body

dynamics, added mass, drag and hydrostatic forces). Also, Farivarnejad and Moosavian (2014)

compared the multiple impedance control and the augmented object model approaches for

manipulation control. Simulations were performed considering an I-AUV composed of a 6-DoFs

ellipsoidal-shaped AUV and two PUMA-type robotic manipulators. The multiple impedance

control approach performed better in the numerical simulations concerning the tracking errors

and energy dissipation during impact.

A hybrid cable-thruster control for UVMSs (Fig. 10) was proposed in El-Ghazaly, Goutte-

farde and Creuze (2015). In this approach, a set of cables attached to the UUV allows the control

through the regulation of the cables lengths and tension, which is performed with winches fixed

on the offshore structure near UVMS workplace. This idea comes from the cable-driven parallel

robots, which consist of a moving platform connected to a fixed base through a set of cables.

This control approach permits some extra actuation on the UVMS since the thrusters are not the

only elements able to generate control forces on the UUV. Beyond this new control approach,

in El-Ghazaly, Gouttefarde and Creuze (2015) also focused on the determination of the force

capability of the hybrid cable-thruster control. To do this, the available set of end-effector forces

with the hybrid cable-thruster control was determined in a suitable mathematical representation.

As a case study, the developed map was applied to a planar UVMS composed of a 3-DoFs UUV

and 2-DoFs manipulator. The results of the analysis showed a significant improvement in the

end-effector force with the hybrid tensioned cable-thruster control. Sacchi et al. (2022) studied

the hybrid-cable thruster approach for the grasping operation in 6-DoFs accounting for the

cable flexibility. In control, a QP-based algorithm was proposed for thrusters and cables forces

allocation. Numerical simulations were performed in Vortex Studio considering the 6-DoFs

Vortex Heavy Work Class ROV. Compared to the configuration with only thrusters, improved
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performance was verified in peak, place, and hovering operations.

Figure 10: Hybrid cable-thruster control for UVMSs

Source: El-Ghazaly, Gouttefarde and Creuze (2015)

Esfahani, Azimirad and Danesh (2015) developed an improved Time Delay Control (TDC)

approach for a UVMS. The controller is composed of an adaptative time-delay-estimation term,

with fuzzy rules to tune its gains, to compensate for the system nonlinearities, a terminal SMC

term to give a fast response and a PID term to reduce the tracking errors. In conventional TDC

and terminal SMC, the tuning gains dependent on the system uncertainties, which is considered

as a drawback for the need of some knowledge of the uncertainties. In the proposed approach this

problem is fixed with fuzzy rules that adaptatively tune the gains. Numerical simulations were

done to show the effectiveness of the proposed controller. The results showed that the proposed

controller has high performance in the trajectory tracking and satisfactory robustness to external

disturbances in comparison with a standard SMC.

Wang, Chen and Wu (2018) presented a continuous nonsingular fast terminal SMC with

and TD estimation for UVMSs. The proposed controller was intended to be model-free due to

TD estimation and ensure satisfactory control performance due to continuous nonsingular fast

terminal SMC. The closed-loop stability proof was performed using the Lyapunov stability theory.

The controller was tested through pool experiments using a 7-DoFs UVMS prototype composed

of a 2-DoFs AUV and a 5-DoFs manipulator. An improved performance was obtained for the

proposed controller on the trajectory tracking compared to a PD control with TD estimation

and a standard PD control. However, the controller of Wang, Chen and Wu (2018) has many

parameters, which can be challenging to tune.

Barbalata, Dunnigan and Petillot (2018) compared decoupled and coupled force/motion

controllers for a lightweight UVMS. The decoupled controller was based on a task decomposition
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technique and formulated on the vehicle and the manipulator task space. The coupled controller

was fully synthesized in the task space. In the decoupled controller, the PILIM controller of

Barbalata, Dunnigan and Petillot (2014) was adopted for vehicle positioning. Also, an integral

SMC and a standard SMC were used for motion and force control of the manipulator, respectively.

In the coupled controller, an integral SMC and a standard SMC were used for motion and force

control, respectively. Numerical simulations were performed to test the controllers considering

a 11-DoFs lightweight UVMS composed of a Nessie VII-AUV of 5-DoFs and a 6-DoFs HDT-

MK3-M-manipulator. Better performance was verified for the coupled controller, especially

during high-stiffness contact, due to the dynamic coupling considered in the control design.

Borlaug et al. (2019) study the trajectory tracking of an Articulated Intervention-Autonomous

Underwater Vehicle (AI-AUV) with the Super Twisting Algorithm (STA) with adaptive gains and

a higher-order sliding mode observer used when velocity measurements are not available. The

ultimate boundedness of the tracking problem with the proposed scheme is proved by using the

Lyapunov stability theory and the effectiveness of this controller is accessed through numerical

simulations in the horizontal plane considering an AI-AUV with 16-links. In Borlaug, Pettersen

and Gravdahl (2018), this approach is extended to the trajectory tracking in 6-DoFs and the

simulations are performed considering an AI-AUV composed of 9-links and 7-thrusters. Next,

a Generalized STA (GSTA) is proposed by Borlaug, Pettersen and Gravdahl (2019) for the

previous problem of tracking in 6-DoFs. As before, the ultimate boundedness of the tracking

errors is proved through the Lyapunov stability theory and the GSTA is compared with STA in the

tracking problem presented in Borlaug, Pettersen and Gravdahl (2018). The simulations reveal

an improved performance in terms of tracking errors and robustness to the GSTA. A modified

version of the GTSA with adaptive gains is presented in Borlaug, Pettersen and Gravdahl

(2020b). The analyses in Borlaug, Pettersen and Gravdahl (2019) are then extended in Borlaug,

Pettersen and Gravdahl (2021) with simulations and experiments. Also, the observer presented

in Borlaug et al. (2019) is used for the joint velocities estimation. Borlaug et al. (2019) proposed

a kinematic/dynamic control for an AI-AUV, eliminating the assumption of perfect dynamic

control in the kinematic stability analysis. In this approach, the velocity references are generated

through a robust algorithm to solve the multiple task priority problem. A velocity controller based

on the SMC is used to track the generated references. The simulations considering an AI-AUV

of 5-links have shown the effectiveness of this approach in regulating all tasks to their respective

set-point values. Moreover, Borlaug, Pettersen and Gravdahl (2020a) extended the previous

work considering the GSTA and SMC technique to the velocity tracking problem and comparing

it with standard control methods, as the classical PID control and the feedback linearization

technique. Also, a detailed stability proof regarding the kinematic/dynamic control is presented
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and the numerical simulations are performed considering AI-AUVs with different parameters.

A neural-adaptive network control for trajectory tracking of UVMSs was proposed by Wang

and Perkins (2019). In this scheme, a feedback linearization law is used to compensate for

the nominal dynamics, while a neural network is used to estimate the lumped disturbances,

which are composed both by the modeling errors associated with parameter uncertainties and

external disturbances. The control was tested through numerical simulations considering a

UVMS composed of an ellipsoidal-shaped AUV with 6-DoFs endowed with a manipulator

of 2-DoFs. The results showed improved performance for the neural control in the trajectory

tracking compared to a standard PID control. However, there is no information about the accuracy

of the estimates provided by the neural network, nether for the control efforts provided by both

controllers, which compromises the comparison since one cannot attribute the improved tracking

achieved with the control proposed by Wang and Perkins (2019) to the better compensation for

the dynamics of the UVMS.

Taira, Sagara and Oya (2020) presented a model-based controller for the manipulator of a

UVMS. This controller is developed considering one of the three types of servo subsystems,

i.e., voltage-controlled, torque-controlled and velocity-controlled, for the manipulator and an

independent controller for the UUV of poor performance. The motivation for the design of

Taira, Sagara and Oya (2020) came from the practical observations. It is too difficult to obtain

a good control performance for the UUV due to some factors, such as the greater body inertia

compared to the manipulator one, inaccurate thrusters dynamics, inaccurate sensor information,

etc. Therefore, to circumvent this problem, the approach of Taira, Sagara and Oya (2020) was

made independent of the performance of the UUV control. This idea is very interesting and

can help to solve many practical problems associated with the coordination of UVMSs. Also,

this control can be used as a framework to design an end-effector control independent of the

UUV motion. The controller was tested through numerical simulations in the trajectory tracking

problem considering a UVMS prototype moving on the vertical plane composed of a 3-DoFs

AUV and a 2-DoFs planar manipulator. However, the simulation results presented by Taira,

Sagara and Oya (2020) are not appealing once only the tracking errors are shown. Also, there

is no comparison with other control techniques, which difficult to access the real performance

capabilities of the proposed controller. Moreover, the control synthesis presented by Taira, Sagara

and Oya (2020) seems to be too complex and with many submodules in the control architecture,

turning its applicability too tricky. In, Taira, Sagara and Oya (2022) this work was extended for

motion and force control of a UVMS. This was done by adding a force error filter to allow force

control and perform the stability proof. Numerical simulations validated the approach.
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Han et al. (2020a) developed a fuzzy decoupling controller for a UVMS. This controller

adapts the terms outside the main diagonal of the system inertia matrix through a fuzzy algorithm,

which allows the decoupling between the UUV and the manipulator by means of a feedback

linearization control law. Such a scheme was also tested through numerical simulation following

a reference trajectory predefined by the final maker to reduce the effects of dynamic coupling.

The results obtained confirmed the controller capability to estimate the terms outside the main

diagonal of the inertia matrix, decoupling the system and ensuring that the reference trajectory is

followed by the UVMS. Moreover, a coordination scheme composed of motion planning and a

robust coordinated control was proposed by Han et al. (2020b) for UVMSs. In this scheme, a new

secondary task objective is defined in inverse kinematics to minimize the energy consumption

and dynamic coupling through the redundancy resolution. The energy minimization is performed

penalizing the velocities of the UVMS through the GPM. However, it is not clear how the

dynamic coupling is mitigated with the term proposed by Han et al. (2020b). Moreover, the

coordinated control was constructed based on a feedback linearization law augmented with

joint and task space feedback terms. A time-delay control was used to estimate the lumped

disturbances and a fuzzy rule-based compensator was added to improve the robustness to external

disturbances. An EKF was used to perform state estimation and attenuate sensor noise effects.

Nonetheless, there is no much information about the sensors and parameters considered. This

scheme was tested through numerical simulations in the trajectory tracking problem considering

a UVMS composed of the REMUS-AUV with 5-DoFs endowed with a manipulator with 3-DoFs.

The results were compared to another coordination scheme built on the robust coordinate control

reported in Dai and Yu (2018), which was based on the H-∞ control technique augmented with

an EKF to estimate the disturbances. The comparison revealed an improved tracking performance

with less energy consumption for the scheme presented by Han et al. (2020b). However, despite

the good results, the comparison seems to be not fair since there was no penalization for the

velocities of the UVMS in the inverse kinematics modulus used in the scheme considered for

comparison.

To overcome uncertainties and external disturbances while respecting the bounds of the

control inputs of a UVMS, Dai et al. (2020) proposed a modified constrained H-infinity controller

with a CTC and a nonlinear disturbance observer. The CTC provides the nominal model-based

control and the disturbance observer designed based on the system dynamics estimates the

lumped disturbances. The modified constrained H-infinity control was synthesized using a grey

wolf optimizer to compensate for biased estimation, satisfy control input bounds and provide fast

calculation. The Lyapunov theory was used to perform the closed-loop stability proof. Numerical

simulations were performed with a 12-DoFs UVMS composed of a 6-DoFs AUV and a 6-DoFs
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manipulator. Results reveal an improved tracking performance for the control proposed by Dai et

al. (2020) compared to standard nonlinear H-infinity, nonlinear PID and nonlinear SMC.

Within the ROBUST project framework, Di Vito et al. (2021) presented the modeling and

control of a multi-hull UVMS for sea mining (Fig. 11). Since the ROBUST base vehicle is seen

as a composition of AUVs, the dynamic model is derived according to the modular approach

presented in Ingrosso et al. (2020). The hydrodynamic parameters were calibrated experimentally.

This model, together with the identified parameters, was used in a navigation filter based on

the EKF algorithm used to provide the necessary feedback for the control scheme proposed by

Di Vito et al. (2021), which was composed of a kinematic and a dynamic control layer. The

kinematic control generated the references for the UVMS control. It was constructed based on

the task-priority approach of Simetti et al. (2018), to accomplish several control objectives at

the same time (e.g., bathymetric and optical survey, hold position, joint-space motion, etc.) but

with a defined order priority. The dynamic control layer presented by Di Vito et al. (2021) only

calculated the vehicle control forces needed to track the references generated by the kinematic

control since the ROBUST manipulator had an embedded control on the motor joints to perform

the tracking of the velocity references. Also, in this layer, one could choose between a standard

PID control or a model-based adaptive control to the vehicle dynamic positioning. Di Vito

et al. (2021) also reported remarkable results in the sea trials tests of this navigation-control

architecture, where the UVMS successfully identified, tracked, landed and inspected a mock-up

of a manganese nodule.

Figure 11: ROBUST UVMS

Source: Di Vito et al. (2021)

Cai et al. (2023) developed a composite controller based on NMPC and disturbance observer.

The NMPC was synthesized using a prediction model network based on long short-term memory

to estimate future disturbances and use these estimates on the prediction model to estimate
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future states. The disturbance observer was formulated based on the radial basis function. The

disturbance estimates provided by the disturbance observer were used as input in the prediction

model network. Numerical simulations on the UWSim environment and water tank experiments

with a 7-DoFs UVMS composed of a 3-DoFs AUV and a 4-DoFs manipulator were performed.

Good results were obtained in autonomous grasping task validating the control proposed by Cai

et al. (2023). However, there are no comparisons with other approaches.

Figure 12 presents the timeline and the main topics covered in the publications treating

coordinated control.
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Figure 12: Timeline of publications related to coordinated control

2.4 COOPERATIVE CONTROL

Although cooperative control is a trending topic in dynamic systems control researches, it is

still in an embryonic phase for UVMSs. Due to its intrinsic potential, coordination schemes have

been developed over the last two decades.

Sun and Cheah (2004) developed two set-point regulators to perform the coordination

of multiple UVMSs carrying a common object. The control stability proof was made by the

Lyapunov stability theory, where sufficient conditions were established to guarantee the closed-

loop stability even when the restoring forces are not exactly known. Despite the interesting

controller formulations in Sun and Cheah (2004), the work lacks numerical simulations to test

the developed algorithms.

Conti et al. (2015) proposed a very interesting decentralized approach for cooperative mobile
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manipulation performed by I-AUVs. Such an approach was based on the use of the potential

field method, which was employed in a multi-layer control structure to, in parallel, coordinate

the swarm, guidance and navigation phases. Despite its low accuracy and robustness, the main

advantage in the use of potential fields is the reduction of the transmitted data for navigation

and control, which could be evaluated only with the distance vector between the vehicles, object

and obstacles. This improvement was the core of this architecture because it also permitted

the reduction of the onboard sensors and, consequently, the reduction of vehicle complexity

while allowing operations with low bandwidth. The contribution of the work was also to use

the manipulated object as the swarm reference system and the surface vehicle as the origin of

the world reference system, that permitted the use of acoustic modems rather than an expensive

Ultra Short Base Line (USBL) system. Due to the difficulty in performing a real experiment, the

authors evaluated the proposed strategy only with numerical simulations. The simulation scenario

established considered a swarm composed of four I-AUVs, each one with 7-DoFs. The objective

was to transport an object of known geometry along the desired trajectory transmitted by the

surface vessel through an unknown environment where some obstacles were placed. The results

have shown that with this control strategy the swarm was able to keep the formation during the

manipulation phase and to avoid collisions with the obstacles during the object transportation.

Cataldi, Chiaverini and Antonelli (2018) developed a cooperative control approach to perform

the transportation of an object by two UVMSs. The proposed architecture was constituted by

several control loops, each one with a specific goal, e.g., object pose control, end-effector force

control, inverse kinematics resolution and UVMS low-level control. This structure permitted

dealing with the constraints on each control loop, i.e., the uncertainties on the UVMS model,

the sensors low bandwidth and limitations related to the manipulator control and the object

pose estimation. The authors tested the proposed approach through numerical simulations on

MATLAB/Simulink® environment with the Simscape™ package. In the scenario considered

the two UVMSs (each one constituted of a fully actuated UUV and a 7-DoFs manipulator)

transporting a cylindrical-shaped bar of unknown mass and known geometry over the desired

trajectory. The results presented endorse the capacity of the proposed scheme to perform the task

coordination with success and handle the limitations mentioned.

Heshmati-Alamdari (2018) proposed a distributed leader-following architecture based on

impedance control for the object cooperative transportation by multiple UVMSs in a constrained

workspace with static obstacles (Fig. 13). In this approach, to avoid explicit data exchange,

the leading UVMS was the only one to know the object desired trajectory. So, the following

UVMSs estimate the trajectory by a prescribed performance estimation considering that each

UVMS is equipped with a force/torque sensor on its end-effector. The desired tracking behavior
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was achieved through impedance control laws that linearize the dynamics and incorporate

coefficients for load sharing among the UVMSs. To avoid the collisions with the obstacles, the

work presented an obstacle-free path planning scheme based on Navigation Functions. The

proposed architecture was tested through numerical simulation. In the scenario considered, a

team of four UVMSs, each one composed by an AUV and a small 4-DoFs manipulator, was

transporting an object on an unstructured environment with obstacles, represented by spheres

and subjected to disturbances as slow time-varying water current. The simulations results have

shown the feasibility of the proposed architecture for the transportation of the object from an

initial position to the desired one, without collision with the obstacles, even with the disturbances

considered in the simulation. Moreover, the analyses presented in Heshmati-Alamdari (2018)

were extended in Heshmati-Alamdari et al. (2021b) with more simulation cases, considering a

centralized cooperative scheme for comparison and more a complex scenario, where additional

obstacles were placed.

Figure 13: Cooperative transportation by two UVMSs

Source: Heshmati-Alamdari (2018)

Heshmati-Alamdari, Karras and Kyriakopoulos (2019) proposed a Nonlinear MPC (NMPC)

scheme for coordination of a team of UVMS on the transportation of an object in a constrained

workspace with static obstacles. In this approach, the coupled dynamics between the UVMSs

and the object was penalized by load sharing coefficients according to the specific payload

capabilities of each UVMS. The penalized model was used to design a distributed NMPC, which

permits the inclusion of limits and constraints related to the operation (e.g., obstacles, joint

limits, control input saturation and avoidance of singular configurations) in a unified way. A

feedback scheme with no explicit exchange of information based on onboard measurements

(e.g., sensor fusion based on sensors like IMU, USBL and Doppler Velocity Log (DVL)) was

established to reduce bandwidth requirements and avoid intensive communication between the

UVMSs. In addition, navigation functions were used to generate an obstacle-free path for object

transportation. The proposed coordination scheme was tested through numerical simulations
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with the UWSim simulator on the Robot Operating System (ROS) environment and by means of

real-time experiments performed within a test tank. The case study considered for the numerical

simulations consisted of two ROVs, each one with a 4-DoFs manipulator, transporting a bar over

an unstructured environment (with obstacles). The results obtained confirmed the effectiveness

of the proposed scheme for the coordination of cooperative transportation, while meeting the

limitations and constraints imposed during the design processes. The experimental validation

was performed with two small ROVs – a 4-DoFs Seabotix LBV and 3-DoFs VideoRay PRO

– each one equipped with a custom-made underwater manipulator actuated by waterproof

servomotors (Fig. 14). The experiments performed considered the transportation of an object

(a plastic tube) in two distinct scenarios: 1) the stabilization of the object in the setpoint, and

2) the transportation of the object through various waypoints. Despite the simplifications, the

experimental tests confirmed the validation of the scheme proposed by Heshmati-Alamdari,

Karras and Kyriakopoulos (2019) on the scenarios tested. In the authors opinion, this work

is a milestone in underwater cooperative transportation since they were the first to perform

experimental validation.

Figure 14: Small custom made UVMSs under cooperative transportation

Source: Heshmati-Alamdari, Karras and Kyriakopoulos (2019)

Pi et al. (2021) developed a decentralized task-priority kinematic control for cooperative

transportation with I-AUVs adapted to the limited communication bandwidth. The control is

based on the simultaneous coordination of the end-effectors velocities to achieve a common

goal. In this scheme, an independent optimization of the task-priority hierarchies was performed

for each I-AUV separately, with safety tasks at the top. Also, a normalization approach of the

resulting velocities was considered to ensure that each agent can achieve end-effector velocity

in all directions (i.e., linear and angular). Numerical simulations and pool experiments were

performed with a team of two I-AUVs, each one with 8-DoFs and composed of the 4-DoFs

GIRONA500-AUV and the 4-DoFs ECA 5E manipulator (mini and micro versions). The core

simulation tool used was the open-source Stonefish C++ simulation library combined with the
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ROS interface package called stonefish_ros. Promising results were obtained for a complex task

comprising detection, pickup, transport, and placement operations.

Bae et al. (2022) presented a cooperative manipulation scheme for UVMSs with dual

manipulators. This scheme was developed based on the assumption that the system can be treated

as a parallel mechanism when fixed to a working structure. The PI approach was used to solve

the redundancy resolution problem on the velocity level for motion coordination during task

execution. The cooperation occurs with the UUV thrusters helping in the manipulation task and

the manipulator motors helping compensate for disturbances (e.g., ocean current, thrusters fault,

etc.). Numerical simulations and experiments with a prototype constructed with servo motors

validated the proposed approach. Results reveal smaller errors and reduced energy consumption

when the UUV and manipulator work cooperatively.

Kabanov et al. (2022) studied the cooperative transportation of a concentrated mass object

by a team of UVMSs. The modeling was performed by coupling the individual models using

the relationships between the end-effectors wrenches and those generated on the object. The

redundancy resolution problem was solved using the PI approach with the kinematic relationships

between the end-effectors and the object. Two motion control strategies were developed, central-

ized and decentralized, based on the state-dependent differential Riccati equation. A load-sharing

approach was considered in control to distribute the object load between the agents. Numerical

simulations were performed considering a team of two UVMSs, each one with 12-DoFs and

composed of the 6-DoFs Sf-30k-ROV and the 6-DoFs Orion 7R manipulator. Good results were

obtained on the trajectory tracking. However, the mathematical models and the simulation condi-

tions are too simple, e.g., full-state feedback was considered available and the object dynamic

was assumed to be known.

Figure 15 presents the timeline and the main topics covered in the publications of cooperative

control3.
3Despite not being the focus of this thesis, one can find interesting works about cooperative transportation with

Unmanned Aerial Vehicles (UAVs) and general modular robots in Georgia Tech (2021) and ModLab (2023).
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Figure 15: Timeline of publications related to coordinated control

2.5 COMMENTARIES

This chapter presented a literature review of UVMSs. Regarding the topics covered, i.e.,

mathematical modeling, inverse kinematics, coordinated and cooperative control, various ap-

proaches were developed, each one with particular features. However, except for Antonelli and

Cataldi (2014), none of the reviewed works tried to create any unifying methodology where early

developments already available can be used within a structured approach. Thus, the developments

presented in the following chapters try to address this knowledge gap.
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3 MATHEMATICAL MODELING

3.1 RECURSIVE MATHEMATICAL MODELING

This chapter presents a general modular and recursive mathematical modeling approach

for a class of underwater multibody systems. Some experimental results from other authors are

reproduced to verify the presented modeling approach.

3.1.1 Simplifying hypotheses

The mathematical model is derived under the following assumptions:

1. The bodies are rigid, symmetric and with uniform mass distribution;

2. The kinematic joints are ideal in the sense that there is no clearance;

3. The system is completely immersed on an unbounded fluid domain, thus, the invariance

of the dynamics concerning rigid body transformation holds and boundary effects can be

neglected (VIROZUB et al., 2019);

4. The free surface effects can be modeled as disturbances, which eliminates the frequency-

dependent potential damping and making constant the local added mass and hydrodynamic

damping matrices (NIELSEN et al., 2016);

5. The hydrodynamic interference between the bodies (i.e., vehicle and manipulator links) is

neglected, thus the parasitic forces arising from proximity of other bodies are considered

as second-order hydrodynamic effects (NIELSEN et al., 2016; VIROZUB et al., 2019);

6. The flow around the bodies is incompressible and irrotational and all the hydrodynamic

effects can be directly superposed;

7. The ocean current is irrotational (FOSSEN, 1996; NIELSEN et al., 2016);
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8. The dynamics of the actuators are independent of rigid body motions and can be described

by active forces and moments described by ad-hoc1 models (e.g., lookup-table);

9. The bodies mass and inertia proprieties are augmented with the actuators ones such that

they are included together in the dynamics.

3.1.2 Hierarchical conception

A schematic representation of the modeled system, along with its hierarchical conception, is

shown in Fig. 16. The AUV is denoted as body i = 0, the links of the manipulator are denoted

as bodies i = 1, . . . ,N − 1, while the end-effector as body i = N (Fig. 16 (a)). Moreover, for

each rigid body i a body-fixed coordinate system Oixiyizi, along with the respective orthonormal

vector basis (x̂i, ŷi, ẑi) is defined. The Earth-fixed coordinate system is denoted by Oxyz and

its orthonormal vector basis is (x̂, ŷ, ẑ). Notice that the Earth is treated as an inertial reference

frame. In the modeling hierarchy (Fig. 16 (b)), body A is the AUV, bodies denoted by B are

the manipulator links, and body C is the end-effector. Also, Sr (r = 1, . . . , 4) represents the

subsystems constructed during the modeling and S is the complete I-AUV constrained model.

Also, active revolute joints (grey circles) connects the manipulator with the AUV, the manipulator

links between them and the end-effector with the last manipulator link.

x̂0
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ŷ0

O0

x̂1

ŷ1ẑ1

O1

x̂2

ŷ2

ẑ2
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x̂3
ŷ3
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ŷ

ẑ
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ŷn

ẑn
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x̂ee

ŷee

ẑee
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γ3

γn
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ηee = [xee, yee, zee, φee, θee, ψee]
T

A B B B B C

CBBBS1

CBBS2

CBS3

CS4

S

(a): I-AUV schematic diagram (b): Modeling hierarchy

Figure 16: I-AUV model with (6 + n)-DoFs

1An ad-hoc model is a mathematical representation developed for a specific purpose.
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3.1.3 Kinematics

Let ηi =
[
ηT

i,1, η
T
i,2

]T
be the vector of generalized coordinates of the i-th body describing its

configuration with respect to the Earth-fixed frame, with ηi,1 =
[
xi, yi, zi

]T being the Cartesian

coordinates and ηi,2 =
[
ϕi, θi, ψi

]T being the Euler angles (i = 0, 1, . . . ,N), as shown on the

schematic diagram of the base model in Fig. 17. Also, let νi =
[
νT

i,1, ν
T
i,2

]T
be the vector of

quasi-velocities expressed in the body-fixed coordinate system, with νi,1 = [ui, vi,wi]T being the

components of the velocity of the origin Oi and νi,2 =
[
pi, qi, ri

]T being the components of the

angular velocity of the body.

~FD,i

~FE,i~FG,i

~FB,i

~FA,i

x̂

ẑ
ŷ

O

x̂i

ẑiŷi

Oi

ηi = [xi, yi, zi, φi, θi, ψi]
T

Bi

Ai

Di

Ei
Gi

η̇∞

Figure 17: Base model schematic diagram

The following relations hold under the hypotheses 1 (FOSSEN, 1996):

η̇i = Jiνi; η̈i = Jiν̇i + J̇iνi, (3.1)

where Ji is the transformation matrix between body-fixed and Earth-fixed coordinate systems,

written as:

Ji = blkdiag
(
J1,i, J2,i

)
, (3.2)

with J1,i and J2,i satisfying (FOSSEN, 1996):

η̇1,i = J1,iν1,i; ν̇1,i = J−1
1,iη1,i = JT

1,iη1,i,

η̇2,i = J2,iν2,i; ν̇2,i = J−1
2,iη2,i. (θi , ±90◦)

(3.3)

If it is necessary to avoid singularities, i.e., when θi = ±90◦, then, a 4-column-vector

η2,i =
[
e0,i, e1,i, e2,i, e3,i

]T of Euler parameters (unit quaternions) is adopted instead of Euler angles

(ϕi, θi, ψi) to described the transformation matrix Ji. To do this, let the normalizing factor be
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given by (ORSINO, 2020):

ρi =
2

ηT
2,iη2,i

=
2

e2
0,i + e2

1,i + e2
2,i + e2

3,i

. (3.4)

In this case, the rotation matrices from body-fixed to Earth-fixed coordinates are expressed

by (ORSINO, 2020):

J1,i
(
η
)
= I + ρi

(
e0,iSi + S2

i

)
; J2,i

(
η
)
= ρiLi, (3.5)

where Si is the skew-symmetric matrix representation of the 3-column-vector
[
e1,i, e2,i, e3,i

]T and

Li comes from the skew-symmetric of ν2,i given by JT
1,iJ̇1,i, such that (ORSINO, 2020):

Si =


0 −e3,i e2,i

e3,i 0 −e1,i

−e2,i e1,i 0

 ; Li =


−e1,i e0,i e3,i −e2,i

−e2,i −e3,i e0,i e1,i

−e3,i e2,i −e1,i e0,i

 . (3.6)

Due to the presence of the normalizing factor ρi in the former expressions, it can be verified

that regardless of the value of the norm of η2,i, J1,i is always an orthogonal matrix, i.e., J−1
1,i = JT

1,i

(ORSINO, 2020).

3.1.4 Euler-Lagrange dynamics

Based on the Euler-Lagrange equation in terms of the quasi-velocities2, the Equations of

Motion (EoMs) of the i-th body can be written as (MEIROVITCH, 2003):

d
dt

(
∂Li

∂νi

)
+ JT

i

(
γi
∂Li

∂νi
+
∂Li

∂ηi

)
+
∂Ri

∂νi
= JT

i Qi, (3.7)

where Li = Ti −Ui is the Lagrangian function, with Ti andUi being the kinetic and potential

energy functions, respectively, Ri is the Rayleigh dissipation function, Qi is the column-vector

of non-conservative generalized forces and γi is a matrix given by (MEIROVITCH, 2003):

γi =

[
νT

i JT
i

(
∂αi

∂ηi

)]
−

[
νT

i JT
i

[
∂αi

∂ηi

]]
, (3.8)

where αi = J−T
i .

We must refer to Meirovitch (2003) for the correct interpretation of the matrix notation in

Eq. (3.8). For example, let αi =
[
αi, j,k

]
( j = 1, . . . ,m; k = 1, . . . , n). Thus, the terms of the left

2Assuming that the quasi-velocities are defined as linear combinations of generalized velocities. The coefficients
of this linear combination, given by the Jacobian Ji, may depend explicitly on the configuration of the body.
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matrix of Eq. (3.8) are calculated as follows (MEIROVITCH, 2003):

νT
i JT

i

(
∂αi, j,k

∂ηi

)
=

n∑
r=1

∂αi, j,k

∂ηi,r
η̇i,r, (3.9)

which is a scalar. It must be stressed here that the above triple matrix product does not involve

summation over the indices j and k.

Following the same pattern, we write (MEIROVITCH, 2003):

νT
i JT

i

[
∂αi

∂ηi,k

]
=

n∑
j,k=1

∂αi, j,k

∂ηi,r
η̇i,k, (3.10)

where the summations over both indices j and k are involved. However, there is no summation

over the index r.

Eq. (3.7) can be rewritten in the canonical form of the EoMs:

Miν̇i + (Ci (νi) + Di (νi)) νi + gi
(
ηi

)
= τi + di, (3.11)

where Mi is the generalized inertia matrix, Ci is the Coriolis and centrifugal forces matrix, Di

is the drag forces matrix, gi is the column-vector of restoring forces, τi is the column-vector of

control forces, and di stands for the column-vector of externals disturbances forces.

3.1.4.1 Kinetic energy

The expression of the kinetic energy of a submerged body can be extended to directly include

the inertial forces due to the added mass effects on the EoMs, as below:

Ti =
1
2
νT

i Miνi =
1
2
νT

i
(
MRB,i +MA,i

)
νi, (i = 0, 1, . . . ,N) (3.12)

where MRB,i and MA,i are the mass matrices of rigid body and added mass expressed on the

body-fixed frame, respectively, and calculated concerning the origin (Oi).

Calculating the right-hand-side terms of Eq. (3.7) for the quasi-velocities terms, disregarding

the dissipation function, we get:

∂Li

∂νi
=
∂Ti

∂νi
=Miνi;

d
dt

(
∂Li

∂νi

)
=

d
dt

(
∂Ti

∂νi

)
=Miν̇i, (i = 0, 1, . . . ,N) (3.13)

From Eq. (3.13), we can define the matrix of Coriolis and centrifugal forces matrix as:

Ciνi = JT
i γiMiνi = JT

i γi
(
MRB,i +MA,i

)
νi =

(
CRB,i + CA,i

)
νi, (i = 0, 1, . . . ,N) (3.14)
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where CRB,i and CA,i are the rigid body and added mass portions of the Coriolis and centrifugal

forces matrix, respectively.

The terms of the added mass tensor can be identified from experimental results, or calculated

with discrete methods (e.g., strip theory, panel method, etc.), or even with analytical formulations

developed for regular geometries (e.g., cylinder, ellipsoid, parallelepiped, sphere, etc.). The

former is especially suitable for the manipulator links since they are constructed based on those

geometries. In this vein, McLain and Rock (1998) developed a very accurate model for the added

mass forces experimented on cylindrical-shaped links through the strip theory and considering

the local variation of the acceleration profile. The model of McLain and Rock (1998) can be

adapted to the Lagrangian formulation exploring the relation between the strips velocities and

the links generalized coordinates. To this end, let the added mass generalized forces be given by:

dA,i =
p∑

s=1

f⃗ i
A,s,i ·

∂ν1,s,i

∂νi
, (i = 1, . . . ,N) (3.15)

where ν1,s,i =
[
us,i, vs,i,ws,i

]T is the velocity vector of the s-th strip (s = 1, . . . , p) expressed in

the body-fixed frame and f⃗ i
A,s,i =

[
XA,s,xi ,YA,s,yi ,ZA,s,zi

]T
is the added mass forces vector, with

components given by (MCLAIN; ROCK, 1998):

XA,s,xi = ρCA,xiVs,xias,xi ,

YA,s,yi = ρCA,yiVs,yias,yi ,

ZA,s,zi = ρCA,ziVs,zias,zi ,

(3.16)

where ρ is the water density; Vs,i is the volume of s-th strip; CA,xi , CA,yi and CA,zi are the added

mass coefficients, adopting here a conservative approach and considering them as constants but

who can be taken as function of the traveled distance along the links length (MCLAIN; ROCK,

1998); as,xi , as,yi and as,zi are the acceleration components expressed in the body-fixed frame.

Introducing the relations:

ν1,s,i = Jν1,s,iνi; ν̇1,s,i = Jν1,s,i ν̇i + J̇ν1,s,iνi, (i = 1, . . . ,N) (3.17)

and after some algebraic manipulation, the generalized added mass forces can be rewrite as:

dA,s,i =
p∑

s=1

MA,iν̇i + CA,iνi, (i = 1, . . . ,N) (3.18)

with MA,i and CA,i as the added mass matrix of the i-th link, given by:

MA,i =

p∑
s=1

MA,s,i; CA,i =
p∑

s=1

CA,s,i, (i = 1, . . . ,N) (3.19)
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MA,s,i = JT
ν1,s,i
ΦA,s,iJν1,s,i; CA,s,i = JT

ν1,s,i
ΦA,s,iJ̇ν1,s,i , (i = 1, . . . ,N) (3.20)

where

ΦA,s,i = ρVs,i diag
(
CA,xi ,CA,yi ,CA,zi

)
. (3.21)

The kinetic energy function of the i-th link can be obtained with the added mass tensor of

Eq. (3.12), considering the dynamic center velocity calculated as in Sharma et al. (2019) and

Sharma and Saha (2019). Also, a discrete form of the kinetic energy function can be obtained

considering the local variation of the velocity profile along with the link, as shown below:

Ti =
1
2

p∑
s=1

νT
i JT
ν1,s,i
ΦA,s,iJν1,s,iνi =

1
2

p∑
s=1

νT
i MA,s,iνi =

1
2
νT

i MA,iνi. (i = 1, . . . ,N) (3.22)

3.1.4.2 Potential energy

The restoring effects associated with the hydrostatic forces can be added on the model with

a generalized potential related to the weight and buoyancy forces, as shown below:

Ui = Ui(0) + f⃗ i
W,i · p⃗

i
Gi |OI
+ f⃗ i
B,i · p⃗

i
Bi |OI

, (i = 0, 1, . . . ,N) (3.23)

where p⃗i
Gi |OI
= JT

1,ip⃗
I
Gi |Oi

and p⃗i
Bi |OI
= JT

1,ip⃗
I
Bi |Oi

are the position vectors of the center of gravity

and center of buoyancy of the i-th body and expressed on the body-fixed frame, respectively;

f⃗ i
W,i = JT

1,if⃗
I
W,i with f⃗ I

W,i =
[
0, 0,mig

]T and f⃗ i
B,i = JT

1,if⃗
I
B,i with f⃗ I

B,i =
[
0, 0,−ρVig

]T are the vectors of

weight and buoyancy forces expressed on the body-fixed frame, in this order, with mi as the mass,

Vi as the displaced volume and g as the acceleration of gravity.

Let us introduce the following relations:

ν1,Gi =
˙⃗pi

Gi |OI
= Jν1,Gi

νi; ν1,Bi =
˙⃗pi

Bi |OI
= Jν1,Bi

νi. (i = 0, 1, . . . ,N) (3.24)

Based on the Euler-Lagrange equation in terms of quasi-velocities and considering the

relations of Eq. (3.24), the generalized restoring forces becomes:

gi = JT
i
∂Ui

∂ηi
=

N∑
i=0

JT
ν1,Gi

f⃗ i
W,i + JT

ν1,Bi
f⃗ i
B,i =

N∑
i=0

JT
ν1,Gi

JT
1,if⃗

I
W,i + JT

ν1,Bi
JT

1,if⃗
I
B,i. (i = 0, 1, . . . ,N) (3.25)
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3.1.4.3 Drag forces

Generalized drag forces arise due to the viscous effects associated to the relative velocity

between the submerged bodies and the fluid medium. The model presented by Fossen (1996) for

the hydrodynamic damping on UUVs can be used to model the linear and quadratic drag forces

acting on the AUVs, as follows:

∂R0

∂ν0
= f⃗0
D,0 ·

∂ν1,0

∂ν0
+ n⃗0

D,0 ·
∂ν2,0

∂ν0
= D0ν0, (3.26)

where f⃗0
D,0 and n⃗0

D,0 are the vectors of drag forces and moments, respectively, expressed on the

body-fixed frame whereas D0 is the associated hydrodynamic damping matrix, which can be

divided into linear and quadratic parts:

D0 = DL,0 + DQ,0, (3.27)

where DL,0 and DQ,0 are the matrices of linear and quadratic hydrodynamic damping coefficients.

There are semi-empirical models based on Morison’s equation that are more appropriate

for the manipulator links. One of those is the model of Leabourne and Rock (1998), which is a

multi-link version of the model of McLain and Rock (1998) for the drag forces developed on

cylindrical-shaped bodies. This model is based on the links discretization into strips along its

length, as shown by Fig. 18.

∆ls,i

x̂

ẑ
ŷ

O

1 2 3
Ei−1

ν2,i

ẑi

x̂i
Oi

ŷi p− 1 p
Eis

f⃗ iD,s,i

p⃗I
Ei−1|O p⃗I

Ei|O

Figure 18: Discretization of the i-th link into strips

In this work, a modified version of the model of Leabourne and Rock (1998) is introduced

by incorporating the generalized directions onto the drag forces calculation. The generalized

drag forces are computed by taking the drag forces of each strip projected on the generalized

directions. Following the same rationale of the added mass forces, the generalized drag forces
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can be included on the EoMs as follows:

∂Ri

∂νi
=

p∑
s=1

f⃗ i
D,s,i ·

∂ν1,s,i

∂νi
, (i = 1, . . . ,N) (3.28)

where f⃗ i
D,s,i =

[
XD,s,xi ,YD,s,yi ,ZD,s,zi

]T
is the vector of drag forces of the s-th strip expressed in the

body-fixed frame, with components given by:

XD,s,xi =
1
2
ρCD,xi |us,xi |us,xi As,xi ,

YD,s,yi =
1
2
ρCD,yi |vs,yi |vs,yi As,yi ,

ZD,s,zi =
1
2
ρCD,zi |ws,zi |ws,zi As,zi ,

(3.29)

where As,xi , As,yi and As,zi are the projected areas on the flow direction, while CD,xi , CD,yi and CD,zi

are the drag coefficients dependent on the flow conditions. If experimental results are available,

these coefficients can be identified as a function of the links length (MCLAIN; ROCK, 1998)

and in terms of the configuration of the system (LEABOURNE; ROCK, 1998). If not, as in this

work, a more conservative approach is adopted, in which the drag coefficients are assumed to be

constant, leading to an overestimation of the drag forces.

With the first relation of Eq. (3.17) and after some algebraic manipulation, the generalized

drag forces becomes:
∂Ri

∂νi
= Diνi, (i = 1, . . . ,N) (3.30)

where Di is the hydrodynamic damping matrix of the i-th link, calculated as:

Di =

p∑
s=1

JT
ν1,s,i
ΦD,s,iJν1,s,i , (i = 1, . . . ,N) (3.31)

with

ΦD,s,i =
1
2
ρ diag

(
CD,xi Axi |ur,xi |,CD,yi Ayi |vr,yi |,CD,zi Azi |wr,zi |

)
. (3.32)

The disadvantage of the model of Leabourne and Rock (1998) is the number of computations

which should be performed for each strip. An alternative to reduce the computational effort is

to use a continuous model, such as the one of Shah et al. (2021). However, the former has a

significant limitation since it is assumed to be continuous velocity profile along the link during

its derivation. To overcome these issues, this work introduces a novel model, alternative to the

ones of Leabourne and Rock (1998) and of Shah et al. (2021), that is continuous but also able to

handle discontinuities of the velocity profile along the link.



67

Ci,Ei

x̂

ẑ
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Figure 19: Schematic diagram of the continuous drag model for the i-th link

Based on Fig. 19 and considering the i-th link with length equal to 2li, angular velocity qi

around yi axis and transversal velocity wi along the axis zi and at Oi, then, let ai = qi + δi be

the damped angular velocity, with 0 < δi << 1 as the numeric damping, bi = wi − aili is the

transversal velocity at extremity Ei−1 and wi (x̄i) = bi + ai x̄i is the transversal velocity profile as a

function of the longitudinal displacement x̄i along the link measured from the extremity Ei−1.

The transversal drag force along the axis zi of the i-th link can be written as:

d fD,zi

dx̄i
=

1
2
ρCD,zidiwi (x̄i) |wi (x̄i) |. (3.33)

To handle the absolute value function inside the integral, consider the transformation of

variables expressed by ūi = bi + ai x̄i, with dūi = aidx̄i, such that Eq. (3.33) becomes:

ai
d fD,zi

dūi
=

1
2
ρCD,zidiūi|ūi| ⇒ d fD,zi =

1
2ai

ρCD,zidiūi|ūi|dūi. (3.34)

Performing the integration along the link length, we obtain:

fD,zi =

∫ 2li

0
d fD,zi ,

=

∫ ūi(2li)

ūi(0)

1
2ai

ρCD,zidiūi|ūi|dūi,

=

∫ bi+2aili

bi

1
2ai

ρCD,zidiūi|ūi|dūi,

=
1

6ai
ρCD,zidiū3

i sign(ūi)
∣∣∣∣∣bi+2aili

bi

,

=
1

6ai
ρCD,zidi

(
w3

i,2li sign
(
wi,2li

)
− w3

i,0 sign
(
wi,0

))
,

(3.35)
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where wi,0 = wi (0) and wi,2li = wi (2li).

From Eq. (3.35), the following drag force expression arises:

fD,zi (x̄i) =
1

6ai
ρCD,zidiw3

i (x̄i) sign (wi (x̄i)) . (3.36)

Eq. (3.35) can be rewritten in terms of two force components, as follows:

fD,zi = fD,zi,2li − fD,zi,0, (3.37)

where fD,zi,0 = fD,zi (0) and fD,zi,2li = fD,zi (2li).

The same procedure is used to calculate the drag moment, but now considering the force

location inside the expression, as shown below:

dnD,yi

dx̄i
=

1
2
ρCD,zidiwi (x̄i) |wi (x̄i) |x̄i. (3.38)

From the change of variables, we have:

ai
dnD,yi

dūi
=

1
2
ρCD,zidiūi|ūi|

ūi − bi

ai
⇒ dnD,yi =

1
2ai

ρCD,zidiūi|ūi|
ūi − bi

ai
dūi. (3.39)

Performing the integration of Eq. (3.37) along the link length, we get:

nD,yi =

∫ 2li

0
dnD,yi ,

=

∫ ūi(2li)

ūi(0)

1
2ai

ρCD,zidiūi|ūi|
ūi − bi

ai
dūi,

=

∫ bi+2aili

bi

1
2ai

ρCD,zidiūi|ūi|
ūi − bi

ai
dūi,

=
1

6ai
ρCD,zidiū3

i sign(ūi)
3ūi − 4bi

4ai

∣∣∣∣∣bi+2aili

bi

,

=
1

6ai
ρCD,zidi

(
w3

i,2li sign
(
wi,2li

) 3wi,2li − 4bi

4ai
− w3

i,0 sign
(
wi,0

) 3wi,0 − 4bi

4ai

)
,

(3.40)

Analyzing the drag moment expression we can identify the drag centers position along the

longitudinal axis of the link, as follows:

Ci (ūi) =
3ūi − 4bi

4ai
⇒ Ci (xi) =

3ai x̄i − bi

4ai
. (3.41)

With Eq. (3.41), the drag moment of (3.40) can be rewritten as:

nD,yi = fD,zi,2liCi,2li − fD,zi,0Ci,0. (3.42)
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where Ci,0 = Ci (0) and Ci,2li = Ci (2li).

To extend the model given by Eqs. (3.33)–(3.38) to the 3D case, let p⃗i
Ei−1 |Oi

= [−li, 0, 0]T,

p⃗i
Ei |Oi
= [li, 0, 0]T be the position vectors of Ei−1 and Ei with respect to Oi on the body-fixed frame,

such that νEi−1 = ν1,i−ν2,i×p⃗i
Ei−1 |Oi

=
[
uEi−1 , vEi−1 ,wEi−1

]T and νEi = ν1,i+ν2,i×p⃗i
Ei |Oi
=

[
uEi , vEi ,wEi

]T

are the velocity vectors of Ei−1 and Ei, in this order. Also, let ayi = ri + δi and azi = δi − qi be the

damped angular velocities along yi and zi axes, respectively, while byi = vEi−1,yi and bzi = vEi−1,zi

are the velocities components at the extremity Ei−1.

Defining f⃗ i
D,Gi
=

[
fD,xi,Gi , 0, 0

]T, f⃗ i
D,Ei−1
=

[
0, fD,yi,Ei−1 , fD,zi,Ei−1

]T
and f⃗ i

D,Ei
=

[
0, fD,yi,Ei , fD,zi,Ei

]T
as

the drag force vector on Gi, Ei−1 and Ei, respectively, the generalized drag forces on the i-th link

are given by:

∂Ri

∂νi
= f⃗ i
D,Gi
·
∂ν1,Gi

∂νi
+ f⃗ i
D,Ei−1
·
∂νEi−1

∂νi
+ f⃗ i
D,Ei
·
∂νEi

∂νi
, (i = 1, . . . ,N) (3.43)

with the velocity vectors ν1,Gi , ν1,Ei−1 and ν1,Ei obeying the relations:

ν1,Gi = Jν1,Gi
νi; ν1,Ei−1 = Jν1,Ei−1

νi; ν1,Ei = Jν1,Ei
νi. (i = 1, . . . ,N) (3.44)

From Eq. (3.36), the drag components can be written as:

fD,xi,Gi =
1
2
ρCD,xi AxiuGi sign

(
uGi

)
,

fD,yi,Ei−1 =
1
2
ρCD,yidiv2

Ei−1
sign

(
vEi−1

)
/3ayi ,

fD,yi,Ei =
1
2
ρCD,yidiv2

Ei
sign

(
vEi

)
/3ayi ,

fD,zi,Ei−1 =
1
2
ρCD,zidiw2

Ei−1
sign

(
wEi−1

)
/3azi ,

fD,zi,Ei =
1
2
ρCD,zidiw2

Ei
sign

(
wEi

)
/3azi .

(3.45)

The drag centers associated to each drag component of Eq. (3.45) are written based on (3.41),

as below:

Cyi,Ei−1 =
3vEi−1 − 4byi

4ayi

; Cyi,Ei =
3vEi − 4byi

4ayi

,

Czi,Ei−1 =
3wEi−1 − 4bzi

4azi

; Czi,Ei =
3wEi − 4bzi

4azi

.

(3.46)

Moreover, the drag centers of Eq. (3.41) can be rewritten with respect to the gravity center

of the i-link (see Fig. 20), as follows:

Gyi,Ei−1 = Cyi,Ei−1 −
(
li + xGi

)
; Gyi,Ei = Cyi,Ei −

(
li + xGi

)
,

Gzi,Ei−1 = Czi,Ei−1 −
(
li + xGi

)
; Gzi,Ei = Czi,Ei −

(
li + xGi

)
.

(3.47)
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where xGi is the longitudinal body-fixed coordinate of the center of gravity of the i-th link.

Ci,Ei

x̂

ẑ
ŷ

O

Ei−1 Ei

Ci,Ei

f⃗ iD,Ei−1

Ci,Ei−1

Ci,Ei−1

ẑi

x̂iŷi

Gi,Ei−1

Gi,Ei

Oi Gi

f⃗ iD,Ei

Figure 20: Relative centers of the continuous drag model for the i-th link

Developing Eq. (3.43), we obtain the following damping matrix of the i-th link:

Di = JT
ν1,Gi
ΦD,GiJν1,i + JT

ν1,Gi
ΦD,Ei−1Jν1,Ei−1

+ JT
ν1,Gi
ΦD,EiJν1,Ei

+ IT
Ei−1
ΓD,Ei−1 J̄ν1,Ei−1

+ IT
Ei
ΓD,Ei J̄ν1,Ei

, (3.48)

where
ΦD,Gi = − diag

(
− fD,xi,Gi , 0, 0

)
,

ΦD,Ei−1 = − diag
(
0, fD,yi,Ei−1 , fD,zi,Ei−1

)
,

ΦD,Ei = − diag
(
0,− fD,yi,Ei ,− fD,zi,Ei

)
,

ΓD,Ei−1 = − diag
(
0, 0, 0, 0,− fD,zi,Ei−1GEi−1,zi , fD,yi,Ei−1GEi−1,yi

)
,

ΓD,Ei = − diag
(
0, 0, 0, 0, fD,zi,EiGEi,zi ,− fD,yi,EiGEi,yi

)
,

(3.49)

with “diag” indicating a diagonal matrix and

IEi−1 =

0 0

0 I

 ; IEi = IEi−1 ,

J̄ν1,Ei−1
=

 0

AIJν1,Ei−1

 ; J̄ν1,Ei
=

 0

AIJν1,Ei

 ; AI =


0 0 1

0 1 0

1 0 0

 .
(3.50)

3.1.4.4 Generalized actuation forces

With respect to the actuation, the I-AUVs have two kinds of actuators, namely the thrusters

of the AUV and the motors of the manipulator joints.
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The generalized forces due to the action of the thrusters on the AUV are given by:

τ0 = f⃗0
M,0 ·

∂ν1,0

∂ν0
+ n⃗0

M,0 ·
∂ν2,0

∂ν0
= B0t0, (3.51)

where f⃗0
M,0 and n⃗0

M,0 are the vectors of forces and moments generated by the thrusters expressed on

the body-fixed frame, respectively; B0 is the thrust allocation matrix that expresses the thrusters

configuration on the AUV and t0 =
[
T j

]T
( j = 1, . . . , p) is the column-vector of the generated

thrusts, whose dimension depends on the numbers of thrusters mounted on the AUV.

The generalized motor torques of the manipulators joints are written as:

τi = n⃗i
M,i ·

∂ν2,i

∂νi
= Jini

i − Ji+1ni+1
i+1, (i = 1, . . . ,N) (3.52)

with ni
i = [0, 0, 0, 0, 0, τi]T being the torque generated by the motor located at Oi and ni+1

i+1 =

[0, 0, 0, 0, 0, τi+1]T as the reaction torque induced by the motor of the subsequent link on the

kinematic chain, both expressed at the respective body-fixed frame (according to the Denavit-

Hartenberg convention). Notice that τ0 = 0 (i = 0) since there is no actuated joints on the AUV.

Also, if there is no motors on the end-effector wrist, τN = 0 (i = N).

If the motors dynamic should be considered, its EoMs need be incorporated on the modeling.

For sake of example, let us consider a model of a current controlled Direct Current (DC) brushless

motor with a gearbox of reduction NR,i and efficiency ηM,i expressed by:

τM,i = N2
R,iηM,iIM,iγ̈i − N2

R,iηM,ibM,iγ̇i − NR,iηM,icM,i sign (γ̇i) , (i = 1, . . . ,N) (3.53)

where γi is motor shaft angle, IM,i is the motor-shaft inertia moment, bM,i is the coefficient of

back-emf and of viscous damping, and cM,i is the coefficient of Coulomb friction.

Eq. (3.53) can be rewritten in matrix form as follows:

τM = IMγ̈ − BMγ̇ − CM sign (γ̇) , (3.54)

where IM, BM and CM are the matrices of motors equivalent inertia, viscous and Coulomb friction,

respectively, given by:

IM = diag
(
N2
R,1ηM,1IM,1, . . . ,N2

R,NηM,N IM,N
)
,

BM = diag
(
N2
R,1ηM,1bM,1, . . . ,N2

R,NηM,NbM,N
)
,

CM = diag
(
NR,1ηM,1cM,1, . . . ,NR,NηM,NcM,N

)
.

(3.55)
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3.1.4.5 Generalized disturbance forces

Let the column-vector of fluid-velocity expressed on the Earth-fixed frame be given by η̇∞ =

[ẋ∞, ẏ∞, ż∞, 0, 0, 0]T, where the last three components are under the hypothesis 7 of irrotational

current. The current-induced disturbances can be written considering the approximated solution

of Froude-Krylov and diffraction forces, as follows (FOSSEN, 1996):

di =
(
MFK,i +MA,i

)
ν̇∞,i +

(
CA,i + Di

)
ν∞,i, (i = 0, 1, . . . ,N) (3.56)

with MFK,i as the Froude-Krylov mass matrix associated with the displaced volume, expressed

on the body-fixed frame and calculated concerning the origin (Oi), while ν∞ and ν̇∞ are the

column-vectors of fluid-velocity and acceleration on the body-fixed frame, written as:

ν∞,i = Jiη̇∞; ν̇∞,i = Jiη̈∞ + J̇iη̇∞. (3.57)

Other disturbances such as forces and moments induced during contact can be written as:

di = f⃗ i
P,i ·

∂ν1,i

∂νi
+ n⃗i

P,i ·
∂ν2,i

∂νi
= PiτP,i, (i = 0, 1, . . . ,N) (3.58)

where f⃗ i
P,0 = JT

1,if⃗
I
P,0 with f⃗ I

P,0 =
[
fP,x,i, fP,y,i, fP,z,i

]T
and n⃗i

P,0 = J−1
2,i n⃗

I
P,0 with n⃗I

P,0 =
[
nP,x,i, nP,y,i, nP,z,i

]T

are the vectors of external forces and moments with respect to the origin (Oi) and expressed on

body-fixed frame, respectively, while τP,i =
[(⃗

f i
P,0

)T
,
(
n⃗i
P,0

)T
]T

is the column-vector of external

wrenches and Pi is the associated projection matrix, which is written as:

Pi = blkdiag
(
I, JT
ν2,i

)
, (i = 0, 1, . . . ,N) (3.59)

with Jν2,i satisfying ν2,i = Jν2,iνi and “blkdiag” indicating a block-diagonal matrix3.

3.1.5 Modular modeling

Let S be a v-DoFs system (v finite). Denote η as the n-column-vector (n ≥ v) of generalized

coordinates and ν as the m-column vector (m ≥ v) of quasi-velocities, such as:

η =
[
ηT

0 , . . . , η
T
N ,γ

T
]T

; ν =
[
νT

0 , . . . , ν
T
N , γ̇

T
]T
, (3.60)

where ηi and νi are the column-vectors of generalized coordinates and quasi-velocities of the i-th

body, respectively, and γ is the column-vector of generalized motors displacements.

3A block diagonal matrix is a square matrix of other square matrices lying along the diagonal, and all the other
entries of the matrix equal zero.
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The relaxed dynamic model is written as a collection of EoMs for each body of the system

S expressed in the following matrix form:

η̇ = J
(
η
)
ν,

Mν̇ + (C (ν) + D (ν)) ν + g
(
η
)
= τ + d,

(3.61)

where
g =

[
gT

0 , . . . , g
T
N , 0

T
]T
,

τ =
[
τT

0 , . . . , τ
T
N , τ

T
M

]T
,

d =
[
dT

0 , . . . ,d
T
N ,

(
CM sign (γ̇)

)T
]T
,

J = blkdiag (J0, . . . , JN , I) ,

M = blkdiag (M0, . . . ,MN , IM) ,

C = blkdiag (C0, . . . ,CN , 0) ,

D = blkdiag (D0, . . . ,DN ,BM) .

(3.62)

Let φ be the r-column-vector (r ≥ n − v) of bilateral4 holonomic and nonholonomic material

constraints of the system S, such that:

φ
(
η, η̇, t

)
= 0. (3.63)

Differentiating Eq. (3.63) with respect to time, results in:

Aη
(
η, η̇, t

)
η̈ = bη

(
η, η̇, t

)
, (3.64)

where Aη is the r by n Jacobian matrix of the constraints in terms of the generalized velocities

with rank ≤ n − v, with less than n − v only in singular configurations and bη is the associated

n-column-vector.

Using the relations of Eq. (3.1) in (3.64), the constraints can be written in terms of the

quasi-velocities and quasi-accelerations, as follows:

A
(
η, ν, t

)
ν̇ = b

(
η, ν, t

)
, (3.65)

in which

A = AηJ; b = bη − AηJ̇ν, (3.66)

where A is the r by m Jacobian matrix of the constraints in terms of the quasi-velocities with

4Bilateral constraints take the form φ
(
η, η̇, t

)
= 0, such as internal constraints, which give rise to the constant

distances between the points of a rigid body. Unilateral constraints take the form φ
(
η, η̇, t

)
≤ 0, such as the motion

of a body suspended by a soft thread.
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rank ≤ m − v, with less than m − v only in singular configurations and b is the corresponding

m-column-vector.

Conceiving the system S as a hierarchy of subsystems (see Sec. 3.1.2) distributed into

r = 0, 1, . . . , s − 1 levels, the constraints at level r + 1 can be expressed as (ORSINO, 2017):

Ar+1 =

 Ar

Ãr+1

 ; br+1 =

 br

b̃r+1

 , (3.67)

where Ar and br comes from the constraints at level r, while Ãr+1 and b̃r+1 are from the constraints

at current level, r + 1.

Let the sum of active and inertial generalized forces acting on the system be written according

to Eq. (3.61) as below:

f = τ + d −Mν̇ − Cν − Dν − g. (3.68)

The Gauss’s principle for reversible virtual displacements becomes:

δZ = f(η, ν) · δν̇ = 0, (3.69)

which does not mean that f = 0 since the quasi-velocities are not independent.

To solve this we need to introduce a set of independent quasi-velocities consistent with the

constraints, such that:

Aν̇ − b = 0⇒ δφ̈ = Aδν̇ = 0,∀ν. (3.70)

Let S be a v-rank matrix representing the orthogonal complement of A, such that:

δν̇ = Sδζ̇ ⇒ ASδζ̇ = 0,∀ζ̇ ∴ AS = 0, (3.71)

where ζ is v-column-vector of arbitrary quasi-velocities associated with the actuated coordinates.

Substituting the relation of Eq. (3.71) into (3.69), results in:

f · δν̇ = δν̇Tf = δζ̇TSTf = 0,∀ζ̇ ⇒ STf = 0, (3.72)

which is the forward dynamic equation.

The following relations come from Eq. (3.71):

ν = Sζ; ν̇ = Ṡζ + Sζ̇, (3.73)

with S ∈ Cn for n ≥ 1.
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Using the Modular Modeling Methodology (MMM) framework presented in Orsino (2017),

we can get at level r + 1 that:

νr+1 = Sr+1ζr+1 = SrS̃r+1ζr+1,

ν̇r+1 = Ṡr+1ζr+1 + Sr+1ζ̇r+1 =
(
ṠrS̃r+1 + Sr

˙̃Sr+1

)
ζr+1 + Sr+1ζ̇r+1,

(3.74)

where S̃r+1 is the orthogonal complement of Ãr+1Sr, thus (ORSINO, 2017):(
Ãr+1Sr

)
S̃r+1δζr+1 = 0,∀δζr+1 ∴

(
Ãr+1Sr

)
S̃r+1 = 0. (3.75)

Using Eq. (3.67), the modeling constraints of (3.65) can be rewritten as: Ar

Ãr+1

 ar+1 =

 br

b̃r+1

 . (3.76)

Moreover, let the quasi-accelerations be rewritten as:

ar+1 = Qr+1a#
r+1 + Rr+1a∗r+1, (3.77)

where a#
r+1 and a∗r+1 are the quasi-accelerations parcels associated to the independent and depen-

dent quasi-accelerations, respectively, while Qr+1 and Rr+1 are identifications matrices related to

these parcels, i.e., matrices of zeros and ones, written as follows:

Qr+1 = QrQ̃r+1; Rr+1 =

[
Rr R̃r+1

]
, (3.78)

where Qr and Rr comes from the constraints until level r, while Q̃r+1 and R̃r+1 comes from the

constraints at current level, r + 1. In a more practical sense, the matrices Qr and Rr identifies

the actuated and non-actuated quasi-velocities at level r, respectively. If constraints are added

to the model at level r + 1 such that the number of actuated quasi-velocities decrease, then, the

identification matrices should be updated as shown in Eq. (3.78), i.e., Qr+1 lose columns with

respect to Qr while the same amount of columns are added to Rr+1, when compared to Rr.
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Substituting Eqs. (3.77) and (3.78) into (3.76) and applying the Gauss’s principle, we get: Ar

Ãr+1

 δar+1 = 0,

=

 Ar

Ãr+1

 Qr+1δa#
r+1 +

 Ar

Ãr+1

 Rr+1δa∗r+1 = 0,

=

 Ar

Ãr+1

 QrQ̃r+1δa#
r+1 +

 Ar

Ãr+1

 [Rr R̃r+1

]
δa∗r+1 = 0.

(3.79)

Let a∗r+1 =

[(
a∗r

T
)T
,
(
ã∗r+1

)T
]T

. Eq. (3.79) can be rewritten as:

ArRrδa∗r = −Ar

(
QrQ̃r+1δa#

r+1 + R̃r+1δã∗r+1

)
, (3.80)

Ãr+1Rrδa∗r + Ãr+1R̃r+1δã∗r+1 = −Ãr+1QrQ̃r+1δa#
r+1. (3.81)

Solving Eq. (3.81) for δãr+1, we get:

δã∗r+1 = −
(
Ãr+1SrR̃r+1

)g
Ãr+1SrQr+1δa#

r+1, (3.82)

where
(
Ãr+1SrR̃r+1

)g
is any {1, 4}-inverse of Ãr+1SrR̃r+1.

Substituting Eq. (3.82) into (3.80) and solving for δa∗r , results in:

δa∗r = − (ArRr)g Ar

(
QrQ̃r+1δa#

r+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1δa#

r+1

)
, (3.83)

with (ArRr)g as any {1, 4}-inverse of ArRr.

Gathering Eqs. (3.82) and (3.83), we obtain: δa∗rδã∗r+1

 =
− (ArRr)g Ar

(
Qr+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQr+1

)
−

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQr+1

 δa#
r+1. (3.84)
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Substituting Eq. (3.84) into (3.79), we get:

δar+1 = Qr+1δa#
r+1 − Rr (ArRr)g Ãr (Qr+1 + . . .

−R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQr+1

)
δa#

r+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQr+1δa#

r+1,

=
(
I − Ag

r Ar

(
I − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr

)
Qr+1 + . . .

−R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr

)
Qr+1δa#

r+1,

=
(
I − Ag

r Ar +
(
Ag

r Ar − I
)

R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr

)
Qr+1δa#

r+1,

=
(
I − Ag

r Ar

) (
I − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr

)
Qr+1δa#

r+1,

= Sr

(
I −

(
Ãr+1Sr

)g
Ãr+1Sr

)
Qr+1δa#

r+1,

= SrS̃r+1Qr+1δa#
r+1,

= Sr+1Qr+1δa#
r+1,

= Er+1δa#
r+1,

= ErẼr+1δa#
r+1,

(3.85)

where
Ag

r = Rr (ArRr)g ,(
Ãr+1Sr

)g
= R̃r+1

(
Ãr+1SrR̃r+1

)g
,

Sr = I − Ag
r Ar = I − Rr (ArRr)g Ar,

S̃r+1 = I −
(
Ãr+1Sr

)g
Ãr+1Sr = I − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr,

Sr+1 = SrS̃r+1,

Er = (I − Rr (ArRr)g Ar) Qr,

Ẽr+1 =
(
I −QT

r R̃r+1

(
Ãr+1ErQT

r R̃r+1

)g
Ãr+1Sr

)
Q̃r+1,

(3.86)

which are the recursive expressions to calculate the orthogonal complement5.

Gathering the Eqs. (3.60)–(3.86), the following algorithm arises.

5The detailed derivation of the expressions presented in Eq. (3.86) can be seen in Appendix A.1
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Algorithm 1. (Modular EoMs): Considering the relaxed model of Eq. (3.60) and the relations

of (3.74), the present algorithm can be applied to obtain the constrained EoMs of S.

(a) Initialize at r = 0:

M =M(η); C = C(ν); D = D(ν),

g = g(η); τ = τ(η); d = d(η, ν); S0 = I.

(b) For r = 0, . . . , s − 1, do:

Ãr+1 = Ãr+1(t, η),

S̃r+1, such that,
(
Ãr+1Sr

)
S̃r+1 = 0,

Mr+1 = S̃T
r+1MrS̃r+1,

Cr+1 = S̃T
r+1CrS̃r+1 + S̃T

r+1Mr
˙̃Sr+1,

Dr+1 = S̃T
r+1DrS̃r+1,

gr+1 = S̃T
r+1gr,

τr+1 = S̃T
r+1τr,

dr+1 = S̃T
r+1dr.

(c) For r = s, compute the quasi-accelerations:

ζ̇ s =M−1
s

(
τs + ds − Csζ s − Dsζ s − gs

)
.

(d) Propagate the model through numerical integration:

ξ̇ = ϕ (ξ, ζ) ,

ζ̇ = ζ̇ s.

where ϕ is the generalized velocities function.



79

3.2 MODEL VALIDATION

To validate the modeling approach some experiments reported in early works are reproduced

through numerical simulations.

3.2.1 Experiments by Sharma and Saha (2019)

The first experiments reproduced are the ones of Sharma and Saha (2019), which consists of

the free-falling test of underwater pendulums as shown in Fig. 21.

(a): Single pendulum (b): Double pendulum

Figure 21: Experiments performed by Sharma and Saha (2019)

The schematic diagram of the mathematical model used to reproduce the experiments and

the adapted modeling hierarchy are shown in Fig. 22. The independent coordinates used in the

comparison are indicated in Fig. 22 (a). The modeling is performed considering the mathematical

model of an underwater body on the vertical plane presented by Fossen (1996) with the modified

versions of the added mass and hydrodynamic damping matrices for the manipulator links (see

Subsecs. 3.1.4.1 and 3.1.4.3) on the lowest level of the modeling hierarchy. In the modeling

hierarchy of Fig. 22 (b), G is the ground, body A1 is the first link, body A2 is the second link,

subsystem S1 is the underwater inverted pendulum subsystem and system S is the underwater

double pendulum system. Passive revolute joints (with circles) connects the first link with the

ground and the second link with the first one. At level 1, the constraints between the first link

and ground are imposed. The model obtained in this level corresponds to the model of the first

experiment with a single link underwater pendulum. Then, at the level 2, the constraints between

the first and second links are imposed and the model of the second experiment is obtained.
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Figure 22: Underwater double pendulum model
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To demonstrate the modeling procedure, the terms of the relaxed model of the double

pendulum are given below:
J = blkdiag (J1, J2) ,

M = blkdiag (M1,M2) ,

C = blkdiag (C1,C2) ,

D = blkdiag (D1,D2) ,

η =
[
ηT

1 , η
T
2

]T
,

ν =
[
νT

1 , ν
T
2

]T
,

g =
[
gT

1 , g
T
2

]T
,

d =
[
dT

1 ,d
T
2

]T
,

τ =
[
τT

1 , τ
T
2

]T
,

(3.87)

where ηi = [xi, zi, θi]T, νi =
[
ui,wi, qi

]T and di = τi = 0 (i = 1, 2).

The constraints equations at the levels 1 and 2 and are written as:

φ1
(
η, t

)
=

x1 − l1 cos (θ1)

z1 + l1 sin (θ1)

 = 0,

φ2
(
η, t

)
=

x1 + l1 cos (θ1) − (x2 − l2 cos (θ2))

z1 − l1 sin (θ1) − (z2 + l2 sin (θ2))

 = 0.

(3.88)

Their respective Jacobian matrices follows:

∂φ1

∂η
=

 1 0 l1 sin (θ1) 0 0 0

0 1 −l1 sin (θ1) 0 0 0

 ,
∂φ2

∂η
=

 1 0 −l1 sin (θ1) −1 0 −l2 sin (θ2)

0 1 −l1 cos (θ1) 0 −1 −l2 cos (θ2)

 .
(3.89)

The identification matrices are given by:

Q = Q1Q̃2 =



0 0

0 0

1 0

0 0

0 0

0 1


; Q1 =



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


; Q̃2 = Qg

1Q =



1 0

0 0

0 0

0 1


, (3.90)
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and

R =
[
R1 R̃2

]
=



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0


. (3.91)

With A1 =
∂φ1

∂η
J, Q1 and R1 the terms of the EoMs at level 1 are:

S1 = I − R1 (A1R1)g A1,

M1 = ST
1MS1,

C1 = ST
1CS1 + ST

1MṠ1,

D1 = ST
1DS1,

g1 = ST
1g,

τ1 = ST
1τ,

d1 = ST
1d.

(3.92)

Next, with Ã2 =
∂φ2

∂η
J, Q̃2 and R̃2 the terms of the EoMs6 at level 2 are:

S̃2 = I − R̃2

(
Ã2S1R̃2

)g
Ã2S1,

M2 = S̃T
2M1S̃2,

C2 = S̃T
2C1S̃2 + S̃T

2M1
˙̃S2,

D2 = S̃T
2D1S̃2,

g2 = S̃T
2g1,

τ2 = S̃T
2τ1,

d2 = S̃T
2d1.

(3.93)

The numerical simulations were conducted in MATLAB/Simulink® environment by inte-

grating the dynamic model in a state-space form with the ode8 function using a time step of

0.001 s. The parameters used in the simulations are shown in Tabs. 1 and 2. The initial states used

in the simulations are indicated in Sharma and Saha (2019). The relations between the absolute
6The EoMs can also be obtained recursively with matrices Er and Ẽr+1 (r = 0, 1, . . . , s − 1) instead of Sr and

S̃r+1. This modification will include Qr and Q̃r+1 directly in the orthogonal complement, reducing the matrices size
and the computational effort associated with its calculation.
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angular coordinates used on the modeling and the relative ones are given by γ1 = θ1 + π/2 and

γ1 + γ2 = θ2 + π/2.

Table 1: Single pendulum parameters.

Symbols Values Units (SI)

MRB diag (0.3, 0.3, 0.004) kg, kgm2

CA,x,CA,y 0, 1 –

W, B 2.94, 0.13 N

CD,x,CD,y 0, 1.2 –

lO2 |O1 , d,∆l 0.4, 0.02, 0.04 m

p⃗1
G1 |O1

[0, 0.2, 0]T m

p⃗1
B1 |O1

[0, 0.2, 0]T m

Table 2: Double pendulum parameters.

Symbols (i = 1, 2) Values Units (SI)

MRB,i diag (0.17, 0.17, 0.0006) kg, kgm2

CA,xi ,CA,yi 0, 1 –

Wi, Bi 1.66, 0.62 N

CD,x1 ,CD,x2 ,CD,y1 ,CD,y2 0, 0, 3.5, 1.3 –

lOi+1 |Oi ,Di,∆li 0.2, 0.02, 0.02 m

p⃗i
Gi |Oi

[0, 0.1, 0]T m

p⃗i
Bi |Oi

[0, 0.1, 0]T m

The comparison with the experimental results is shown by Figs. 23–25. Figure 23 shows

the states in the single pendulum experiment. The end-effector path in the double pendulum

experiment is shown in Fig. 24. The respective states are shown in Fig. 25. There is a good

adherence between the experimental and the models results in all comparisons, which is achieved

without parameters calibration. This is owed to the structure of the mathematical model that

includes the most important dynamic effects.
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Figure 23: Comparison with the underwater pendulum experiment
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(b): Second configuration

Figure 24: End-effector path comparison during free fall motion

We will also use the underwater double pendulum to verify the added mass and drag

forces models developed on Subsecs. 3.1.4.1 and 3.1.4.3, respectively. So, let us consider the

double pendulum as a 2-link underwater manipulator, with reference trajectories given by (i)

γi = Ai sin (ωit) (i = 1, 2) for the continuous velocity profile case, and (ii) γ1 = A1 sin (ω1t),
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(a)-(d): First configuration; (e)-(h): Second configuration

Figure 25: Comparison with the underwater double pendulum experiment
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γ2 = A2 cos (ω2t) for the discontinuous velocity profile case. In both case the trajectories

parameters are given by Ai = π/2 rad and ωi = 0.2π rad/s (i = 1, 2).

Figures 26-28 shows the results comparison of the proposed models with other ones from

the literature. The added mass torque on each joint is shown by Fig. 26. As we can see, the

continuous model early used by Tarn, Shoults and Yang (1996) and the discrete model developed

by McLain and Rock (1998) present similar results. This is expected once these models do not

consider the Coriolis and centrifugal effects induced by the added mass tensor, thus, treating it as

a pure active force. On the other hand, the lumped model evaluated with the added mass tensor

for high aspect ratio cylinders presented by Antonelli (2014) and the proposed one produce

produces similar results. This is due to the fact that these models consider the Coriolis and

centrifugal effects neglected by the other models. Moreover, once the proposed model is discrete,

it can be calibrated to consider 3D flow effects on low aspect ratio cylinders.

Figure 27 shows the drag torque on each joint. We note that all the models produce similar

results on the continuous velocity profile trajectory. However, on the discontinuous case, the

model proposed by Sharma and Saha (2019) presents discontinuities on the torque profiles

shown by Fig. 27 (b). These discontinuities are due to the hypothesis of continuous velocity

profile adopted during the derivation of the model, as early commented. Also, the models of

Tarn, Shoults and Yang (1996), McLain and Rock (1998) and the proposed one presented similar

results on the discontinuous case too. A different behaviour is observed in Fig 28 when we

compare the centers of drag calculated for each model, since the drag center calculated with the

model of Sharma and Saha (2019) is continuous and the other ones are discontinuous. These

results make sense once the model of Sharma and Saha (2019) does not capture the discontinuity

on the velocity profile along the second link, resulting in the discontinuities on the joint torques.

Moreover, the proposed model presents accurate results, comparable to the models of Tarn,

Shoults and Yang (1996) and McLain and Rock (1998), while it is simple to implement, require

no numerical integration or discretization, with a few number of algebraic computations.
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(a): First trajectory (b): Second trajectory

Figure 26: Manipulator added mass torques

(a): First trajectory (b): Second trajectory

Figure 27: Manipulator drag torques

(a): First trajectory (b): Second trajectory

Figure 28: Manipulator drag centers with 0 and L referring to the lower and upper centers
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3.2.2 Experiment by Sagara et al. (2001)

The second experiment reproduced here was made by Sagara et al. (2001) to verify the

mathematical model developed for a UVMS. The objective was to reproduce the end-effector

path of a 5-DoFs UVMS prototype generated by the rotation of the servo-controlled joints at

a constant angular velocity. The idea is to verify if the mathematical model can reproduce the

dynamic coupling effects between the floating base and manipulator observed in the experiment.

The prototype and the experimental apparatus used by Sagara et al. (2001) in the experiments

are shown in Fig. 29.

(a): 5-DoFs UVMS prototype

Underwater Robot Manipulator

Link-1

Link-2

X-Y Tracker

CCD Camera

Cable

DC Servo Motor with Encoder

Digital Computer
Base

Joint-1
Joint-2

Top View

LED

Side View

(b): Experimental apparatus

Figure 29: Prototype and experimental setup used by Sagara et al. (2001)
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Figure 30 show the schematic diagram of the mathematical model and the modeling hierarchy

adopted, composed on only two levels. Fig. 30 (a) show the independent coordinates used in

the comparison. At the lowest level of the modeling hierarchy in Fig. 30 (b) is used the model

of an underwater body on the horizontal plane presented by Fossen (1996) with the modified

versions of the added mass and hydrodynamic damping matrices for the manipulators links. In

the modeling hierarchy of Fig. 30 (b), body A is the AUV, bodies Bi (i = 1, 2) are the manipulator

links and system S is the 5-DoFs UVMS. Active revolute joints (grey circles) connects the first

link with the AUV and the second link with the first one. At level 1, the constraints between the

joints are imposed and the mathematical model of the experiment is obtained.

γ1

γ2

ψ

O0 = G0

ŷ0 x̂0

(x, y)
ŷ

x̂
O

ŷee

x̂ee

ŷ1 x̂1

O1

G1

O2

G2

Oee

x̂2

ŷ2
S

A B1 B2

(a): 5-DoFs UVMS schematic diagram (b): Modeling hierarchy

Figure 30: 5-DoFs UVMS prototype model

The terms of the relaxed model of the 5-DoFs UVMS prototype are given below:

J = blkdiag (J0, J1, J2) ,

M = blkdiag (M0,M1,M2) ,

C = blkdiag (C0,C1,C2) ,

D = blkdiag (D0,D1,D2) ,

η =
[
ηT

0 , η
T
1 , η

T
2

]T
,

ν =
[
νT

0 , ν
T
1 , ν

T
2

]T
,

g =
[
gT

0 , g
T
1 , g

T
2

]T
,

d =
[
dT

0 ,d
T
1 ,d

T
2

]T
,

τ =
[
τT

0 , τ
T
1 , τ

T
2

]T
,

(3.94)

where ηi =
[
xi, yi, ψi

]T, νi = [ui, vi, ri]T and di = 0 (i = 0, 1, 2), while τ0 = 0, τ1 = [0, 0, τ1]T and
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τ2 = [0, 0, τ2]T, with τ1 and τ2 being the motor torques of the first and second revolute joints,

respectively.

The constraints equations are written as:

φ
(
η, t

)
=



x0 + l0 cos (ψ0) − (x1 − l1 cos (ψ1))

y0 + l0 sin (ψ0) − (y1 − l1 sin (ψ1))

x1 + l1 cos (ψ1) − (x2 − l2 cos (ψ2))

y1 + l1 sin (ψ1) − (y2 − l2 sin (ψ2))


= 0. (3.95)

Their Jacobian matrix follows:

∂φ

∂η
=



1 0 −l0 sin (ψ0) −1 0 −l1 sin (ψ1) 0 0 0

0 1 l0 cos (ψ0) 0 −1 l1 cos (ψ1) 0 0 0

0 0 0 1 0 −l1 sin (ψ1) −1 0 −l2 sin (ψ2)

0 0 0 0 1 l1 cos (ψ1) 0 −1 l2 cos (ψ2)


. (3.96)

The identification matrices are given by:

Q =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1



; R =



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0



. (3.97)

With A =
∂φ

∂η
J, Q and R the terms of the constrained EoMs of the 5-DoFs UVMS prototype

can be written similarly to the terms of the level 1 of the EoMs of the double pendulum.

A second-order transfer function with a PID controller is used in each manipulator joint to

reproduce the servomotors dynamics. The simulations were done for different joints velocities.

Two configurations are considered for the manipulators in the simulations: (i) the second joint is

blocked and the first one rotates, and (ii) the first joint is blocked and the second one rotates. The

numerical simulations are performed considering the setup presented before. The parameters used

in the simulations are shown in Tab. 3. The relation between the absolute angular coordinates
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used on the modeling and the relative ones are given by γ1 = ψ0 − ψ1 and γ2 = ψ1 − ψ2.

Table 3: 5-DoFs UVMS prototype parameters

Symbols (i = 1, 2) Values Units (SI)

MRB,0 diag (31.72, 31.72, 0.41) kg, kgm2

MRB,1 diag (7.48, 7.48, 0.2) kg, kgm2

MRB,2 diag (9.68, 9.68, 0.37) kg, kgm2

MA,0 diag (48.26, 48.26, 0) kg, kgm2

CA,xi ,CA,yi 0, 1 –

D0 diag (53.76, 53.76, 0) Ns/m,Nms

CD,xi ,CD,yi 0, 2 –

lOi |Oi+1 ,D0,Hi,∆li 0.30, 0.16, 0.30, 0.03 m

p⃗0
G0 |O0

[0, 0, 0]T m

p⃗i
Gi |Oi

[0, 0.15, 0]T m

Figure 31 shows the UVMS motion and end-effector path comparison with the experimental

results for the two configurations tested. The final configuration is defined by the total simulation

time. At the first configuration there is no much agreement between the simulation and experiment

for lower velocities (γ̇ < 15 ◦/s), as seen in Figs. 31 (a) and (b). This can be attributed to some

factors. For example, the servomotors dynamics were modeled by PI controllers since there

is no information about that. The transmission made by a drive belt between the servomotor

mounted in the floating base and the first link was not modeled. Moreover, the center of mass

was approximated by the geometric center once there is no information about that. The friction

torques in the mechanical joints were not considered and the three-dimensional flow effects and

the hydrodynamic interference were neglected. Also, the prototype was not fully immersed in

the water; thus, diffraction effects may occur, which was not considered in the model. When the

angular velocity increases, the paths get closer, as seen in Fig. 31 (c). This happens because the

drag forces are quadratic in the velocity, i.e., for low velocities, the model does not represent the

experiment very well, as explained above. However, as the velocity increases (ω = 30 ◦/s), the

drag forces become predominant and the prediction generated by the mathematical model gets

closer to the experiment. The same can be said for the second configuration, but the agreement

between the paths for lower velocities is much better than the first one. We believe this is due to

the position of the second servo motor, which is mounted directly on the second link, without a

drive belt transmission.
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(a)-(c): First configuration; (d)-(f): Second configuration

Figure 31: UVMS motion on the horizontal plane
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3.2.3 Experiment by McLain, Rock and Lee (1996)

The last experiment reproduced here was made by McLain, Rock and Lee (1996) to test a

coordinated control scheme for a 4-DoFs I-AUV, composed of the 3-DoFs OTTER-AUV and a

single link manipulator. Figure 32 shows the I-AUV prototype used in the experiment by McLain,

Rock and Lee (1996). To induce the dynamic coupling effects in all AUV DoFs, the manipulator

is mounted in front of the AUV on the horizontal plane and tilted down 60◦. However, to simplify

the modeling process and reduce the number of DoFs involved, the manipulator is considered

tilted down by an angle of 90◦, such that the modeling can be performed on the vertical plane.

Such simplification showed to be reasonable since the coupling between the horizontal and

vertical planes is weak for this application.

(a): 4-DoFs UVMS prototype (b): Swing motion performed during the experiment

Figure 32: Prototype and experimental setup used by McLain, Rock and Lee (1996)

The mathematical modeling was performed similar to the previous ones, as shown in the

schematic diagram and modeling hierarchy in Fig. 33. The independent coordinates for the

comparison are shown in Fig. 33 (a). As done before, in the lowest level of modeling hierarchy

shown in Fig. 33 (b), we used the mathematical model of an underwater body on the vertical plane

with the modified versions added mass and hydrodynamic damping matrices for the manipulator

link. In the modeling hierarchy of Fig. 33 (b), body A is the AUV, body B is the manipulator

link and system S is the 4-DoFs UVMS. An active revolute joint (grey circle) connects the

manipulator link with the AUV. At level 1, the constraints between the AUV and manipulator are

imposed and the mathematical model of the I-AUV prototype is obtained.
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(a): 4-DoFs I-AUV schematic diagram (b): Modeling hierarchy

Figure 33: 4-DoFs UVMS prototype model

The terms of the relaxed model of the 4-DoFs UVMS prototype are presented below:

J = blkdiag (J0, J1) ,

M = blkdiag (M0,M1) ,

C = blkdiag (C0,C1) ,

D = blkdiag (D0,D1) ,

η =
[
ηT

0 , η
T
1

]T
,

ν =
[
νT

0 , ν
T
1

]T
,

g =
[
gT

0 , g
T
1

]T
,

d =
[
dT

0 ,d
T
1

]T
,

τ =
[
τT

0 , τ
T
1

]T
,

(3.98)

where ηi =
[
yi, zi, ϕi

]T, νi =
[
vi,wi, pi

]T and di = 0 (i = 0, 1), while τ0 = 0 and τ1 = [0, 0, τ]T

with τ being the motor torque of the revolute joint.

The constraints equations are written as:

φ
(
η, t

)
=

y0 + b0 cos (ϕ0) − h0 sin (ϕ0) − (x1 − l1 cos (ϕ1))

z0 − b0 sin (ϕ0) + h0 cos (ϕ0) − (z1 − l1 sin (ϕ1))

 = 0, (3.99)

where b0 and h0 are body-fixed coordinates of the revolute joint center with respect to the AUV.
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Their Jacobian matrix follows:

∂φ

∂η
=

 1 0 −h0 cos (ϕ0) − b0 sin (ϕ0) −1 0 −l1 sin (ϕ1)

0 1 −b0 cos (ϕ0) − h0 sin (ϕ0) 0 −1 l1 cos (ϕ1)

 . (3.100)

The identification matrices are given by:

Q =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


; R =



0 0

0 0

0 0

1 0

0 1

0 0


. (3.101)

With A =
∂φ

∂η
J, Q and R the contrained terms of the EoMs of the 4-DoFs UVMS prototype

can be written similarly to the previous examples.

The simulation performed reproduces the AUV open-loop response under the disturbances

induced by the manipulator swing motion. This test is useful to verify if the dynamic model

can reproduce the coupling effects between the AUV and manipulator on the vertical plane. In

the experiment of McLain, Rock and Lee (1996), the manipulator performs a controlled swing

motion described by a quasi-sinusoidal reference signal, shown in Fig. 34 (a). The reference

derivatives used in the control are obtained through a filtering scheme. However, no bigger details

are given about such a process. Therefore, in the simulation, the reference signal is approximated

by a sinusoidal function with amplitude of 45◦ and period 5 s, as shown in Fig. 34 (a). A

feedback linearization control law augmented with a PD regulator is used in the manipulator

control, similar to the one used in McLain, Rock and Lee (1996). The numerical simulation

was performed with the same set-up reported before. The tracking performance obtained in the

simulation can be verified in Fig. 34 (a). The parameters used in the simulation are shown in

Tab. 4. The relation between the absolute angular coordinates used on the modeling and the

relative angular displacement of the manipulator is given by ϕ0 + γ = π/2 − ϕ1.
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Table 4: 4-DoFs I-AUV prototype parameters

Symbols Values Units (SI)

MRB,0 diag (145, 145, 4.72) kg, kgm2

MRB,1 diag (0.84, 0.84, 0.07) kg, kgm2

MA,0 diag (1410, 3000, 33.44) kg, kgm2

CA,x1 ,CA,y1 0, 1 –

D0 diag (450, 1570, 36.7) Ns/m,Nms

CD,x1 ,CD,y1 0, 1.2 –

lO1 |O2 ,∆l 1, 0.20 m

W0, B0,W1, B1 1422.5, 1422.2, 8.21, 8.42 N

p⃗0
G0 |O0

[0, 0.02, 0]T m

p⃗0
B0 |O0

[0, 0, 0]T m

p⃗1
G1 |O1

[0, 0.50, 0]T m

p⃗1
B1 |O1

[0, 0.50, 0]T m

The comparison with experimental results is shown in Fig. 34 (b) and (c). The time series

for the UUV displacement on the lateral plane are shown in Fig. 34 (b). Good agreement is

found between simulated and experimental displacements for all of them. However, in the roll

angle, we can notice some phase shift between the displacements. We believe this is due to the

approximation made in the manipulator reference displacement. Moreover, Fig. 34 (c) shows

the hydrodynamic torque experienced on the manipulator joint during the swing motion. Again,

despite some phase shift between the series and some dry friction effects not considered on the

mathematical model, the series amplitudes and shape agreement is considered good. Finally,

Fig. 35 shows the I-AUV motion comparison on the lateral plane for some instants. Fig. 35

also shows the end-effector path comparison. In those frames, we can see a good agreement

between simulated motion and the experiment. The end-effector path is very well reproduced by

the mathematical model.
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Figure 34: 4-DoFs I-AUV results comparison
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Figure 35: I-AUV motion on the vertical plane
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3.3 COMMENTARIES

This chapter presented a new modular mathematical modeling approach for multibody

underwater systems, specifically for UVMSs. This approach permits the derivation of the

mathematical model of any underwater multibody system in the classical EoMs form of UUVs,

which turns the application direct of already synthesized control algorithms. Moreover, new

mathematical models for the hydrodynamic loads on underwater manipulator links are also

developed to overcome the limitations of previous models existent in the literature. Finally, the

approaches presented in this chapter are validated by comparing the numerical simulation results

with those of experiments reported by previous works.
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4 MODULAR CONTROL METHODOLOGY

This chapter presents the MCM formulation. All the content presented here is original and

is a part of the contributions of this thesis. Figure 36 shows a block diagram describing the

contributions of this chapter.

Constraints
Task

Constraints
Input

Control
Optimal

Sec. 4.2.3.1

Constraints
Hard Control

Sec. 4.1.3.1

Constraints
Soft Control

Sec. 4.1.3.2

Enforcement
Constraints

Sec. 4.1.1.2

Constraints
Underactuation

Sec. 4.1.2.1

Allocation
Control

Sec. 4.1.2.2

Minimal

Recursive Model

Coordinates
Sec. 3.1.5

Decentralized Control

Centralized Control

Maximal
Coordinates
Sec. 4.2.3

OR

OR

OR

OR

Switch

q,v, auu0

umin,umax

ϕSC, ϕ̇SC, ϕ̈SC

q,v

q,v, a

q,v q,v, a

u1

u2

Figure 36: MCM block diagram

4.1 FORMULATION

4.1.1 Constraint enforcement based on the Gauss’s principle

4.1.1.1 Closed-loop dynamic constraints

Let S be a v-DoFs system (v finite). Denote q as the n-column-vector (n ≥ v) of generalized

coordinates, v as the m-column vector (m ≥ v) of quasi-velocities and a as the m-column vector

of quasi-accelerations such that v̇ = a. Also, let φ be the r-column-vector (r ≥ m − v) of bilateral

holonomic and nonholonomic material modeling constraints of the system S, such that:

φ (v,q, t) = 0. (4.1)
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Differentiating Eq. (4.1) with respect to time results in:

A (v,q, t) a = b (v,q, t) , (4.2)

where A is the r by m Jacobian matrix of the constraints with rank = m − v, with less than m − v

only in singular configurations, and b is the associated m-vector.

Let M be the m by m symmetric and positive semi-definite generalized inertia matrix and

f the m-column-vector of active forces not associated to the control forces. With the extended

definition of Gaussian deviation function proposed by Orsino (2020), the admissible substitutes

for M and f are given, respectively, by:

N (v,q, t) =M + ATWA,

g (v,q, t) = f + ATWb,
(4.3)

where W is a m by m symmetrical positive definite matrix. The substitutes of M and f are used in

the case M−1 is singular. If M is already a positive definite matrix, then, W = 0 is an appropriated

choice (ORSINO, 2020).

Let u be a m-column-vector of generalized control forces associated with the quasi-velocities

and consistent with the modeling constraints.

To obtain a stable closed-loop dynamic we propose the following constraints:

A
(
a + N−1u

)
= b, (4.4)

AN−1u = 0, (4.5)

where AN−1u represents the acceleration parcel due to the control forces consistent with the

modeling constraints.

The relaxed dynamic model is given by:

a0 (v,q, t) = N−1 (g + c) , (4.6)

where c is the m-column-vector of knowing functions of states related to the non-ideal constraints

forces.

The constrained dynamic is given by the Udwadia-Kalaba equation, as follows:

a = a0 + N−1AT
(
AN−1AT

)g
(b − Aa0) , (4.7)

where the second term represents the modeling constraints accelerations. The superscript “g”

indicates the generalized inverse matrix, which is classified according to the proprieties presented
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in Orsino (2020). For example, a matrix Xg is a generalized inverse of X if it satisfies at least

property P1 among the following:

P1 : XXgX = X, P3 : (Xg)T XT = (XXg)T = XXg,

P2 : XgXXg = Xg, P4 : XT (Xg)T = (XgX)T = XgX.
(4.8)

The Moore-Penrose generalized inverse of X, which is also denoted by X+, is the unique

matrix Xg that satisfies the four properties above. A generalized inverse which satisfies at least

property P1 is called a {1}-inverse, a generalized inverse which satisfies at least properties P1 and

P4 is called a {1, 4}-inverse, and so on.

From Eq. (4.7), the closed-loop dynamic1 can be written as:

a + N−1u = a0 + N−1u0 + N−1AT
(
AN−1AT

)g (
b − Aa0 − AN−1u0

)
, (4.9)

where
(
AN−1AT

)g
is any {1, 4}-inverse of AN−1AT and u0 is the m-column vector of decentralized

(relaxed) controllers.

Based on the feedback linearization technique and the relaxed dynamic model in Eq. (4.6),

we get the following decentralized control:

u0 = Nυ − (g + c) , (4.10)

where υ is the m-column-vector of injection terms that must be chosen to obtain stable closed-

loop error dynamic.

Substituting Eqs. (4.10) and (4.9) into (4.4), results in:

Aa + AN−1u = Aυ + AN−1AT
(
AN−1AT

)g
(b − Aυ) ,

Aa − Aυ = AN−1AT
(
AN−1AT

)g
(b − Aυ) .

(4.11)

Let the desired closed-loop dynamic be described by a stable 2-nd order error dynamics:

ã +KDṽ +KPq̃ = 0, (4.12)

where the tracking errors are given by:

q̃ = q − qd; ṽ = v − vd; ã = a − ad, (4.13)

with the subscript “d” indicating the desired states.

1The detailed derivation of the expression presented in Eq. (4.9) can be seen in Appendix A.2
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Based on Eq. (4.12), the linear controllers are chosen as:

υ = ad −KDṽ −KPq̃. (4.14)

Substituting Eq. (4.14) into (4.11) and using the propriety P2 with X = AN−1AT, we get:

Aa − Aad + A (KDṽ +KPq̃) = XXg (b − Aad + A (KDṽ +KPq̃)) ,

XgAad = Xg (b − A (a − ad)) ,

XgAad = Xg (b − Aã) .

(4.15)

From Eq. (4.12), the quasi-acceleration tracking error can be written as:

ã = −KDṽ −KPq̃. (4.16)

Substituting Eq. (4.16) into (4.15) and using the modeling constraints in Eq. (4.2), we obtain:

XXg (Aa + A (KDṽ +KPq̃)) = XXgAad,

XXg (A (a − ad) + A (KDṽ +KPq̃)) = 0,

XXgA (ã +KDṽ +KPq̃) = 0.

(4.17)

Once XXgA = A, a stable closed-loop dynamic consistent with the modeling constraints can

be obtained if the control forces are consistent with the modeling constraints, as follows:

A (ã +KDṽ +KPq̃) = 0, (4.18)

which completes our proof.

4.1.1.2 Generalized control forces

To obtain control forces consistent with the modeling constraints, let us define a Gaussian

deviation function as follows:

Z(u) =
1
2

(u − u0)T N−1 (u − u0) . (4.19)

From the control constraints presented before, we have:

AN−1u = 0. (4.20)

The consistent control forces are obtained by solving the minimization problem in Eq. (4.19)
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subjected to the constraints in (4.20).

Let λ be a r-column-vector of Lagrange multipliers used in the following constrained

optimization problem:

Z (u, λ) =
1
2

(u − u0)T N−1 (u − u0) − λTAN−1u. (4.21)

The sufficient conditions to solve the optimization problem are obtained by calculating the

stationary points, as follows:

∂Z
∂u
= N−1 (u − u0) − N−1ATλ = 0⇔ u = u0 + ATλ, (4.22)

∂Z
∂λ
= AN−1u = 0⇔ AN−1u = 0. (4.23)

Introducing Eq. (4.22) into (4.23) and solving for the λ, results in:

λ = −
(
AN−1AT

)g
AN−1u0 +

(
I −

(
AN−1AT

)g
AN−1AT

)
w, (4.24)

where w is an arbitrary column-vector.

Multiplying Eq. (4.24) by AT, we get:

ATλ = −AT
(
AN−1AT

)g
AN−1u0 + AT

(
I −

(
AN−1AT

)g
AN−1AT

)
w. (4.25)

Let us prove that ATU = 0, where U is given by:

U = I −
(
AN−1AT

)g
AN−1AT. (4.26)

Multiplying Eq. (4.26) by AN−1AT and developing, results in:

AN−1ATU = AN−1AT
(
I −

(
AN−1AT

)g
AN−1AT

)
,

= AN−1AT − AN−1AT
(
AN−1AT

)g
AN−1AT,

= AN−1AT − AN−1AT,

= 0.

(4.27)

Multiplying Eq. (4.27) by UT and developing, we get:

UTAN−1ATU = 0,

UTAN−1/2N−1/2ATU = 0,(
N−1/2ATU

)T
N−1/2ATU = 0.

(4.28)
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From Eq. (4.28) we have N−1/2ATU = 0, that is equivalent to:

N−1/2ATU = 0,

N1/2N−1/2ATU = N1/20,

ATU = 0,

(4.29)

which completes our proof.

Substituting Eq. (4.24) into (4.22), we get:

u = u0 − AT
(
AN−1AT

)g
AN−1u0. (4.30)

Equation (4.30) represents a set of control forces consistent with the modeling constraints.

The term AT
(
AN−1AT

)g
AN−1u0 in Eq. (4.30) can be interpreted as a feedforward term associated

with the constraints forces when the control is turned on.

To simplify Eq. (4.30), let us introduce the scaled control as µ = N−1/2u and µ0 = N−1/2u0.

Also, let H = AN−1/2, such that Eq. (4.30) multiplied by N−1/2 becomes:

N−1/2u = N−1/2u0 − N−1/2AT
(
AN−1/2N−1/2AT

)g
AN−1/2N−1/2u0,

µ = µ0 −HT
(
HHT

)g
Hµ0,

= (I −HgH)µ0,

(4.31)

where Hg = HT
(
HHT

)g
is any {1, 4}-inverse of H.

Let P = I−HgH be the orthogonal projector onto kernel of H, such that HP = H (I −HgH) =

H −HHgH = 0, and PTHT =
(
I −HT (Hg)T

)
HT = HT − (HHgH)T = 0. Thus, Eq. (4.31) can be

rewritten as:

µ = (I −HgH)µ0 = Pµ0. (4.32)

In terms of u and u0, we have:

u = N1/2PN−1/2u0. (4.33)

4.1.1.3 Stability proof

To verify closed-loop asymptotic stability the Lyapunov theory is used.

Let σ be m-column-vector of like-error functions (e.g., tracking error derivative, sliding
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surface variables, etc.) defined as follows:

σ (v,q, t) = Sr = 0, (4.34)

where S is the m by v orthogonal complement matrix associated with the modeling constraints

such that AS = STAT = 0, and r is v-column-vector of like-error functions related to the DoFs of

the system S.

The semi-definite positive scalar function considered as Lyapunov candidate is:

V =
1
2
σTNσ =

1
2

rTSTNSr =
1
2

rTÑr, (V ≥ 0) (4.35)

where Ñ = STNS = STMS + STATWAS = STMS is the v by v generalized inertia matrix related

to the DoFs of the system S.

Performing the time-derivative of Eq. (4.35), we get:

V̇ = rTSTNṠr + rTSTNSṙ = rTSTN(Ṡr + Sṙ). (4.36)

From Eq. (4.34) we note that σ̇ = Ṡr + Sṙ in (4.36). Moreover, since σ is chosen during the

synthesis we can impose that σ̇ = a− ar, with ar as the reference acceleration2 vector. Therefore,

we obtain:

V̇ = rTSTNσ̇ = rTSTN (a − ar) . (4.37)

Substituting Eq. (4.6) into (4.9) and using (4.5), the closed-loop dynamic becomes:

a = N−1 (g + c) + N−1u0 + N−1AT
(
AN−1AT

)g (
b − AN−1 (g + c) − AN−1u0

)
. (4.38)

Let the decentralized control be chosen as follows:

u0 = Nar − (g + c) −Kσ, (4.39)

where K is a m by m symmetric positive semi-definite control gains matrix.

Substituting Eq. (4.39) into (4.38), results in:

a − ar = −N−1Kσ + N−1AT
(
AN−1AT

)g (
b − A

(
ar − N−1Kσ

))
. (4.40)

2The reference acceleration is written as a function of the desired acceleration such that its values are shifted
according to the velocity and position errors.
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Multiplying Eq. (4.40) by STN, since AS = STAT = 0, it can be stated that:

STN (a − ar) = −STKσ + STAT
(
AN−1AT

)g (
b − A

(
ar − N−1Kσ

))
,

= −STKSr,

= −K̃r,

(4.41)

where K̃ = STKS is the v by v symmetric positive semi-definite control gains matrix related with

the DoFs of the system S.

Substituting Eq. (4.41) into (4.37), we obtain:

V̇ = rTSTNσ̇ = rTSTN (a − ar) = −rTSTKSr = −rTK̃r = −σTKσ, (4.42)

which guarantees the closed-loop stability in the Lyapunov sense for the system S since V is

positive semi-definite (V ≥ 0) and V̇ is negative semi-definite (V̇ ≤ 0).

The former result can be extended to prove that the closed-loop system is stable only if all

the closed-loop subsystems are stable. To show that let us define σ =
[
σT

i

]T
and K = blkdiag (Ki)

(i = 1, . . . ,N) in terms of the i-th sub-controller, as follows:

σ =
[
σT

1 , . . . ,σ
T
N

]T
; K = blkdiag (K1, . . . ,KN) . (4.43)

The structure adopted for the column-vector σ and for the matrix K is consistent with the

present formulation since there is no interaction between the control laws of the subsystems.

Substituting Eq. (4.43) into (4.42), we get:

V̇ = −
N∑

i=1

σT
i Kiσi =

N∑
i=1

V̇i ∴ V =
N∑

i=1

Vi. (i = 1, . . . ,N) (4.44)

Therefore, to guarantee that V ≥ 0 and V̇ ≤ 0 is enough to prove that each Vi ≥ 0 and V̇i ≤ 0.

This result recovers the classical theorem of the virtual decomposition technique (ZHU, 2010).

4.1.2 General formulation

4.1.2.1 Consistent enforcement of underactuation constraints

The control forces of Eq. (4.25) are defined based on the set of quasi-velocities. However,

the system S may be underactuated in the sense of the quasi-coordinates since, in practice, the

number of actuators is limited. Therefore, we should allocate the control forces on the actuators

coordinates to solve this problem.
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To perform the allocation we propose the following modified control constraints:

AN−1u = e, (4.45)

where e is a m-column-vector, which should be determined to guarantee that the control forces

are generated only in the actuators coordinates.

We need to make some definitions. Let u# be the v-column-vector of independent generalized

control forces associated with the respective quasi-velocities of the actuators. Define u∗ as the

r-column-vector of generalized control forces related with the dependent coordinates. These

forces are effective control efforts necessary for the individual subsystems to achieve the control

objectives. Regarding the actual system, such forces are associated with the passive coordinates,

where there is no actuation source. Thus, the control forces can be rewritten as follows:

u = Qu# + Ru∗, (4.46)

where Q is a m by v symmetric matrix used to identify the independent control forces and R is a

m by r symmetric matrix used to identify the dependent control forces.

The following equalities holds:

u# = QTu; u∗ = RTu; QQT + RRT = I. (4.47)

The actuators can generate only the independent control forces. Therefore, to perform the

allocation we introduce the underactuation constraints as below:

u∗ = RTu = 0. (4.48)

We must point-out that such constraints cannot be added directly on the constrained min-

imization since R, by definition, has rows that are identically zero. In this case, the Lagrange

multipliers method will not be effective for enforcing this particular type of constraints, as can

be seen in Nunemacher (2003).

The constrained optimization, considering the control constraint in Eq. (4.45), becomes:

Z (u, λ) =
1
2

(u − u0)T N−1 (u − u0) − λT
(
AN−1u − e

)
. (4.49)
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The stationary points of Eq. (4.49) follows:

∂Z
∂u
= N−1 (u − u0) − N−1ATλ = 0⇔ u = u0 + ATλ, (4.50)

∂Z
∂λ
= AN−1u − e = 0⇔ AN−1u = e. (4.51)

Substituting Eq. (4.50) into (4.51) and solving for λ, results in:

λ =
(
AN−1AT

)g (
e − AN−1u0

)
+

(
I −

(
AN−1AT

)g
AN−1AT

)
w1. (4.52)

where w1 is an arbitrary column-vector.

Multipliying Eq. (4.52) by AT and using the result AT
(
I −

(
AN−1AT

)g
AN−1AT

)
= 0 from

Eq. (4.31), we get:

ATλ = AT
(
AN−1AT

)g (
e − AN−1u0

)
. (4.53)

Introducing Eq. (4.52) into (4.50), we obtain:

u = u0 + AT
(
AN−1AT

)g (
e − AN−1u0

)
. (4.54)

Imposing the underactuation constraints of Eq. (4.48) on (4.54), we get:

RTu = RTu0 + RTAT
(
AN−1AT

)g (
e − AN−1u0

)
,

0 =
(
RTAT

)g
RTu0 +

(
RTAT

)g
RTAT

(
AN−1AT

)g (
e − AN−1u0

)
.

(4.55)

Solving Eq. (4.55) for
(
AN−1AT

)g (
e − AN−1u0

)
, we obtain:(

AN−1AT
)g (

e − AN−1u0

)
=

(
I −

(
RTAT

)g
RTAT

)
w2 −

(
RTAT

)g
RTu0, (4.56)

where w2 is an arbitrary column-vector.

Multiplying Eq. (4.56) by AN−1AT and developing, results in:

AN−1AT
(
AN−1AT

)g (
e − AN−1u0

)
= AN−1AT

(
I −

(
RTAT

)g
RTAT

)
w1 + . . .

− AN−1AT
(
RTAT

)g
RTu0,

(4.57)

assuming AN−1AT
(
I −

(
RTAT

)g
RTAT

)
= 0.

Solving Eq. (4.57) for e, results in:

e = AN−1AT
(
AN−1AT

)g
AN−1

(
I − AT

(
RTAT

)g
RT

)
u0 +

(
I − AN−1AT

(
AN−1AT

)g)
w3, (4.58)
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where w3 is an arbitrary column-vector.

Multiplying Eq. (4.58) by
(
AN−1AT

)g
and developing, we obtain:(

AN−1AT
)g

e =
(
AN−1AT

)g
AN−1AT

(
AN−1AT

)g
AN−1

(
I − AT

(
RTAT

)g
RT

)
u0 + . . .(

AN−1AT
)g (

I − AN−1AT
(
AN−1AT

)g)
w3,

=
(
AN−1AT

)g
AN−1

(
I − AT

(
RTAT

)g
RT

)
u0 + . . .((

AN−1AT
)g
−

(
AN−1AT

)g
AN−1AT

(
AN−1AT

)g)
w3,

=
(
AN−1AT

)g
AN−1

(
I − AT

(
RTAT

)g
RT

)
u0.

(4.59)

Substituting Eq. (4.59) into (4.50), we get:

u = u0 + AT
(
AN−1AT

)g (
AN−1

(
I − AT

(
RTAT

)g
RT

)
− AN−1

)
u0,

= u0 − AT
(
AN−1AT

)g
AN−1AT

(
RTAT

)g
RTu0.

(4.60)

Multiplying Eq. (4.60) by N−1/2, results in:

N−1/2u = N−1/2u0 − N−1/2AT
(
AN−1/2N−1/2AT

)g
AN−1/2N−1/2AT

(
RTAT

)g
RTu0,

= N−1/2u0 −HT
(
HHT

)g
HHT

(
RTAT

)g
RTu0,

= N−1/2u0 −HT
(
HHT

)g
HHT

(
RTAT

)g
RTu0,

= N−1/2u0 −HT
(
HT

)g
HT

(
RTAT

)g
RTu0,

= N−1/2u0 −HT
(
RTAT

)g
RTu0.

(4.61)

Multiplying Eq. (4.61) by N1/2, we have:

N1/2N−1/2u = N1/2N−1/2u0 − N1/2HT
(
RTAT

)g
RTu0,

N1/2N−1/2u = N1/2N−1/2u0 − N1/2N−1/2AT
(
RTAT

)g
RTu0,

u =
(
I − AT

(
RTAT

)g
RT

)
u0.

(4.62)

Using the first relation of Eq. (4.47) on (4.62), we obtain:

u# = QT
(
I − AT

(
RTAT

)g
RT

)
u0, (4.63)

which is the set of independent control forces.

Define HQ = QT, HR = RT and HA = A such that Eq. (4.63) can be rewritten in a more

compact form, as follows:

u# = HQ
(
I −HT

A

(
HRHT

A

)g
HR

)
u0 = HQ

(
I −Hg

R|AHR
)

u0, (4.64)
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where Hg
R|A = HT

A

(
HRHT

A

)g
.

Let
(
RTAT

)g
be any {1, 4}-inverse of RTAT. Thus, the following proprieties holds for Hg

R|A:

P1 : XXgXXT = XXT ⇔ HRHg
R|AHRHT

A = RTAT
(
RTAT

)g
RTAT = HRHT

A,

P2 : XgXXg = Xg ⇔ Hg
R|AHRHg

R|A = AT
(
RTAT

)g
RTAT

(
RTAT

)g
= Hg

R|A,

P4 : (XgX)T
= XgX⇔ HT

R

(
Hg

R|A

)T
= R (AR)g A = HT

R

(
HAHT

R

)g
HA = Hg

A|RHA.

(4.65)

Therefore, if
(
RTAT

)g
is any {1, 4}-inverse of RTAT, then, Hg

R|A is a {1, 2, 4}-inverse of HR|A.

Similarly, if (AR)g is any {1, 4}-inverse of AR, then, Hg
A|R is a {1, 2, 4}-inverse of HA|R.

Thus, from Eq. (4.64), we can write:

u# = HQ
(
I −Hg

R|AHR
)

u0 = HQPR|Au0, (4.66)

where PR|A = I −Hg
R|AHR is the orthogonal projector onto the kernel of HR, such that HRPR|A =

HR −HRHg
R|AHR = 0 and PT

R|AHT
R = HT

R −HT
R

(
Hg

R|A

)T
HT

R = 0. Moreover, PA|R = I −Hg
A|RHA

is the orthogonal projector onto the kernel of HA, i.e, HAPA|R = HA − HAHg
A|RHA = 0 and

PT
A|RHT

A = HT
A −HT

A

(
Hg

A|R

)T
HT

A = 0.

4.1.2.2 Simultaneous constraint enforcement and control forces allocation

The overactuation problem can also be solved with the proposed methodology.

Consider the following modified Gaussian function:

Z (u, τ) =
1
2

(u − u0)T N−1 (u − u0) +
1
2
τTLτ, (4.67)

where τ is the p-column-vector of actuators forces and L is the p by p symmetric positive

semi-definite weighting matrix.

The independent control forces should be distributed between the actuators. To do that, we

propose a set of additional constraints, given by:

u# = QTu = Tτ, (4.68)

where T is the v by p matrix that expresses the actuators configuration in the system S. The

matrix T for allocating independent generalized control forces to the actuators efforts is supposed

to be known a priori for problems with actuation redundancy.

Let µ be a v-column-vector of additional Lagrange multipliers associated with the constraints
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in Eq. (4.68). The new constrained optimization problem becomes:

Z (u, τ, λ,µ) =
1
2

(u − u0)T N−1 (u − u0) +
1
2
τTLτ − λT

(
AN−1u − c

)
− µT

(
QTu − Tτ

)
. (4.69)

The stationary points of Eq. (4.69) follow:

∂Z
∂u
= N−1 (u − u0) − N−1ATλ −Qµ = 0⇔ u = u0 + ATλ + NQµ, (4.70)

∂Z
∂τ
= Lτ + TTµ = 0⇔ τ = −L−1TTµ, (4.71)

∂Z
∂λ
= AN−1u − c = 0⇔ AN−1u = c, (4.72)

∂Z
∂µ
= QTu − Tτ = 0⇔ QTu = Tτ. (4.73)

The underactuation constraints still holds:

u∗ = RTu = 0. (4.74)

Substituting Eq. (4.71) into (4.73) and solving for µ, results in:

µ =
(
I −

(
TL−1TT

)g
TL−1TT

)
w1 −

(
TL−1TT

)g
QTu, (4.75)

where
(
TL−1TT

)g
is any {1, 4}-inverse of TL−1TT and w1 is an arbitrary column-vector.

Introducing Eq. (4.75) into (4.71), we get:

τ = L−1TT
(
TL−1TT

)g
QTu − L−1TT

(
I −

(
TL−1TT

)g
TL−1TT

)
w1, (4.76)

with L−1TT
(
I −

(
TL−1TT

)g
TL−1TT

)
= 0, similar to Eq. (4.29).

Using Eq. (4.75) on (4.70), results in:(
I + NQ

(
TL−1TT

)g
QT

)
u = u0 + ATλ + NQ

(
I −

(
TL−1TT

)g
TL−1TT

)
w1. (4.77)

Let Z be a m by m symmetric positive semi-definite matrix, given by:

Z = I + NQ
(
TL−1TT

)g
QT. (4.78)

Substituting Eq. (4.76) into (4.77) and solving for u (supposing that Z−1 exist), we get:

u = Z−1u0 + Z−1ATλ + Z−1NQ
(
I −

(
TL−1TT

)g
TL−1TT

)
w1. (4.79)

with Z−1NQ
(
I −

(
TL−1TT

)g
TL−1TT

)
being the orthogonal projector associated with the actua-
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tion redundancy. For simplicity, we will disregard this second part of the solution. However, this

term can be used to achieve secondary objectives (e.g., reduce the control effort, penalize control

inputs near the actuation limits, etc.).

Introducing Eq. (4.79) into (4.72) and solving for λ, results in:

λ =
(
AN−1Z−1AT

)g (
c − AN−1Z−1u0

)
+

(
I −

(
AN−1Z−1AT

)g
AN−1Z−1AT

)
w2, (4.80)

where
(
AN−1Z−1AT

)g
is any {1, 4}-inverse of AN−1Z−1AT and w2 is an arbitrary column-vector.

Using Eq. (4.80) in (4.79), we obtain:

u = Z−1u0 + Z−1AT
(
AN−1Z−1AT

)g (
c − AN−1Z−1u0

)
+ . . .

Z−1AT
(
I −

(
AN−1Z−1AT

)g
AN−1Z−1AT

)
w2,

(4.81)

with Z−1AT
(
I −

(
AN−1Z−1AT

)g
AN−1Z−1AT

)
= 0, similar to Eq. (4.29).

Imposing the underactuation constraint of Eq. (4.74) in (4.81) and multiplying the result by(
RTZ−1AT

)g
, we obtain:

0 =
(
RTZ−1AT

)g
RTZ−1u0 + . . .(

RTZ−1AT
)g

RTZ−1AT
(
AN−1Z−1AT

)g (
c − AN−1Z−1u0

)
.

(4.82)

Solving Eq. (4.82) for
(
AN−1Z−1AT

)g (
c − AN−1Z−1u0

)
, we get:(

AN−1Z−1AT
)g (

c − AN−1Z−1u0

)
=

(
I −

(
RTZ−1AT

)g
RTZ−1AT

)
w3 + . . .

−
(
RTZ−1AT

)g
RTZ−1u0,

(4.83)

where w3 is an arbitrary column-vector.

Multiplying Eq. (4.83) by AN−1Z−1AT and developing, we obtain:

AN−1Z−1AT
(
AN−1Z−1AT

)g (
c − AN−1Z−1u0

)
= . . .

AN−1Z−1AT
(
I −

(
RTZ−1AT

)g
RTZ−1AT

)
w3 − AN−1Z−1AT

(
RTZ−1AT

)g
RTZ−1u0,

(4.84)

assuming AN−1Z−1AT
(
I −

(
RTZ−1AT

)g
RTZ−1AT

)
= 0.

Solving Eq. (4.84) for c and developing, results in:

c =
(
I − AN−1Z−1AT

(
AN−1Z−1AT

)g)
w4 + . . .

AN−1Z−1AT
(
AN−1Z−1AT

)g
AN−1Z−1

(
I − AT

(
RTZ−1AT

)g
RTZ−1

)
u0,

(4.85)

where w4 is an arbitrary column-vector.
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Substituting Eq. (4.85) into (4.72) and developing, we obtain:

u = Z−1u0 + . . .

Z−1AT
(
AN−1Z−1AT

)g
× . . .(

AN−1Z−1AT
(
AN−1Z−1AT

)g
AN−1Z−1

(
I − AT

(
RTZ−1AT

)g
RTZ−1

)
u0 + . . .(

I − AN−1Z−1AT
(
AN−1Z−1AT

)g)
w4 − AN−1Z−1u0

)
,

= Z−1u0 + . . .

Z−1AT
((

AN−1Z−1AT
)g

AN−1Z−1AT
(
AN−1Z−1AT

)g
× . . .

AN−1Z−1
(
I − AT

(
RTZ−1AT

)g
RTZ−1

)
u0 + . . .(

AN−1Z−1AT
)g (

I − AN−1Z−1AT
(
AN−1Z−1AT

)g)
w4 −

(
AN−1Z−1AT

)g
AN−1Z−1u0

)
,

= Z−1u0 + . . .

Z−1AT
((

AN−1Z−1AT
)g

AN−1Z−1AT
(
AN−1Z−1AT

)g
× . . .

AN−1Z−1
(
I − AT

(
RTZ−1AT

)g
RTZ−1

)
u0,((

AN−1Z−1AT
)g
−

(
AN−1Z−1AT

)g
AN−1Z−1AT

(
AN−1Z−1AT

)g)
w4 + . . .

−
(
AN−1Z−1AT

)g
AN−1Z−1u0

)
,

= Z−1u0 + . . .

Z−1AT
((

AN−1Z−1AT
)g

AN−1Z−1
(
I − AT

(
RTZ−1AT

)g
RTZ−1

)
u0 + . . .((

AN−1Z−1AT
)g
−

(
AN−1Z−1AT

)g)
w4 −

(
AN−1Z−1AT

)g
AN−1Z−1u0

)
,

= Z−1u0 + . . .

Z−1AT
((

AN−1Z−1AT
)g

AN−1Z−1
(
I − AT

(
RTZ−1AT

)g
RTZ−1

)
u0 + . . .

−
(
AN−1Z−1AT

)g
AN−1Z−1u0

)
,

= Z−1u0 + . . .

Z−1AT
((

AN−1Z−1AT
)g

AN−1Z−1u0 + . . .

−
(
AN−1Z−1AT

)g
AN−1Z−1AT

(
RTZ−1AT

)g
RTZ−1u0,

−
(
AN−1Z−1AT

)g
AN−1Z−1u0

)
,

= Z−1u0 + . . .

− Z−1AT
(
AN−1Z−1AT

)g
AN−1Z−1AT

(
RTZ−1AT

)g
RTZ−1u0.

(4.86)
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Multiplying Eq. (4.86) by N−1 and developing, we obtain:

N−1u = N−1Z−1u0 + . . .

− N−1Z−1AT
(
AN−1Z−1AT

)g
× . . .

AN−1Z−1AT
(
RTZ−1AT

)g
RTZ−1u0,

= N−1Z−1u0 + . . .

− N−1/2N−1/2Z−1/2Z−1/2AT
(
AN−1Z−1AT

)g
× . . .

AN−1Z−1AT
(
RTZ−1AT

)g
RTZ−1u0,

= N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
N−1/2Z−1/2AT

(
AN−1Z−1AT

)g
× . . .

AN−1Z−1AT
(
RTZ−1AT

)g
RTZ−1u0.

(4.87)

Define H = A
(
Z−1/2

)T
N−1/2 such that Eq. (4.87) can be rewritten as:

N−1u = N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
HT

(
HHT

)g
HHT × . . .(

RTZ−1AT
)g

RTZ−1u0,

= N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
HT

(
HT

)g
HgHHT × . . .(

RTZ−1AT
)g

RTZ−1u0,

= N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
HT

(
HT

)g
HT

(
HT

)g
HT × . . .(

RTZ−1AT
)g

RTZ−1u0,

= N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
HT

(
HT

)g
HT × . . .(

RTZ−1AT
)g

RTZ−1u0,

= N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
HT

(
RTZ−1AT

)g
RTZ−1u0.

(4.88)
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Expanding the terms H of Eq. (4.88) and developing, results in:

N−1u = N−1Z−1u0 + . . .

− N−1/2
(
Z−1/2

)T
N−1/2Z−1/2AT

(
RTZ−1AT

)g
RTZ−1u0,

= N−1Z−1u0 − N−1Z−1AT
(
RTZ−1AT

)g
RTZ−1u0.

(4.89)

Multiplying Eq. (4.89) by N, we obtain:

u =
(
I − Z−1AT

(
RTZ−1AT

)g
RT

)
Z−1u0. (4.90)

To simplify the expressions, we can rewrite Eqs. (4.90) and (4.76) as follows:

u# = QT
(
I − Z−1/2Z−1/2AT

(
RTZ−1/2Z−1/2AT

)g
RT

)
Z−1/2Z−1/2u0, (4.91)

τ = L−1/2L−1/2TT
(
TL−1/2L−1/2TT

)g
u#. (4.92)

Let us define HQ = QT, H̄R = RTZ−1/2, H̄T
A = Z−1/2AT, µ0 = Z−1/2u0 and H̄T = TL−1/2.

Thus, Eqs. (4.91) and (4.92) become:

u# = HQZ−1/2
(
I − H̄T

A

(
H̄RH̄T

A

)g
H̄R

)
µ0 = HQZ−1/2

(
I − H̄g

R|AH̄R
)
µ0, (4.93)

τ = L−1/2H̄T
T

(
H̄TH̄T

T

)g
u# = L−1/2H̄g

Tu#, (4.94)

with H̄g
R|A = H̄T

A

(
H̄RH̄T

A

)g
being a {1, 2, 4}-inverse of H̄R and H̄g

T = H̄T
T

(
H̄TH̄T

T

)g
as any {1, 4}-

inverse of H̄T.

Using the definitions above, the matrix Z can also be rewrite in a more compact form, as

shown below:
Z = I + NQ

(
TL−1/2L−1/2TT

)g
QT,

= I + NQ
(
TL−1/2L−1/2TT

)g
QT,

= I + NHT
Q

(
H̄TH̄T

T

)g
HQ,

= I + NHT
Q

(
H̄T

T

)g
H̄g

THQ,

= I + N
(
H̄g

THQ
)T

H̄g
THQ.

(4.95)
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4.1.3 Decentralized controllers synthesis

4.1.3.1 Hard control constraints

Instead of using an ad-hoc control algorithm for the decentralized controllers, we can use

the proposed methodology to obtain such controllers to guarantee their consistency with the

modeling constraints, while other control objectives are achieved.

Let φSC be the l-column-vector of bilateral holonomic and nonholonomic material servo-

constraints of the system S, such that:

φSC (v,q, t) = 0. (4.96)

Performing the time-derivative of Eq. (4.96), we get:

ASCaSC = bSC, (4.97)

where ASC is the l by m Jacobian matrix associated with the control constraints and bSC is the

respective l-column-vector.

Let the servo controlled quasi-accelerations be defined as:

aSC = a + N−1u. (4.98)

Substituting Eqs. (4.7) and (4.25) into (4.98), we obtain:

aSC = a0 + N−1u0 + N−1AT
(
AN−1AT

)g (
b − Aa0 − AN−1u0

)
. (4.99)

Gathering the terms of Eq. (4.99) multiplied by u0, we get:

N−1 − N−1AT
(
AN−1AT

)g
AN−1 = N−1/2N−1/2 + . . .

−N−1/2N−1/2AT
(
AN−1/2N−1/2AT

)g
AN−1/2N−1/2.

(4.100)

With H = AN−1/2, we can rewrite Eq. (4.100) as:

N−1/2N−1/2 − N−1/2HT
(
HHT

)g
HN−1/2 = N−1/2

(
I −HT

(
HHT

)g
H

)
N−1/2,

= N−1/2 (I −HgH) N−1/2,

= N−1/2PN−1/2,

(4.101)

with P = I −HgH.
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Substituting Eq. (4.101) into (4.99), results in:

aSC = a + N−1/2PN−1/2u0. (4.102)

Let the Gaussian function be given by:

Z (u0) =
1
2

uT
0Γu0, (4.103)

where Γ is a m by m symmetric positive semi-definite weighting matrix related with the decen-

tralized controllers.

Let λ be a l-column-vector of Lagrange multipliers related to the constraints in Eq. (4.97).

The new constrained optimization problem becomes:

Z (u0, λ) =
1
2

uT
0Γu0 − λ

T (ASCaSC − bSC) . (4.104)

Substituting Eq. (4.102) into (4.104), we get:

Z (u0, λ) =
1
2

uT
0Γu0 − λ

T
(
ASCa + ASCN−1/2PN−1/2u0 − bSC

)
. (4.105)

The stationary points of Eq. (4.105) are given by:

∂Z
∂u0
= Γu0 − N−1/2PTN−1/2AT

SCλ = 0⇔ u0 = Γ
−1N−1/2PTN−1/2AT

SCλ, (4.106)

∂Z
∂λ
= ASCa + ASCN−1/2PN−1/2u0 − bSC = 0⇔ ASCa + ASCN−1/2PN−1/2u0 = bSC. (4.107)

Substituting Eq. (4.106) into (4.107), we obtain:

ASCN−1/2PN−1/2Γ−1N−1/2PTN−1/2AT
SCλ = bSC − ASCa. (4.108)

Eq. (4.108) can be rewritten as follows:

H̄SCH̄T
SCλ = bSC − ASCa, (4.109)

with H̄SC = ASCN−1/2PN−1/2Γ−1/2 = HASCH̄PΓ
−1/2, where HASC = ASC and H̄P = N−1/2PN−1/2.

Solving Eq. (4.109) for λ, results in:

λ =
(
H̄SCH̄T

SC

)g
(bSC − ASCa) +

(
I −

(
H̄SCH̄T

SC

)g
H̄SCH̄T

SC

)
w, (4.110)

where
(
H̄SCH̄T

SC

)g
is any {1, 4}-inverse of H̄SCH̄T

SC and w is an arbitrary column-vector.
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Multiplying Eq. (4.110) by Γ−1/2H̄T
SC, we get:

Γ−1/2H̄T
SCλ = Γ

−1/2H̄T
SC

(
H̄SCH̄T

SC

)g
(bSC − ASCa) + Γ−1/2H̄T

SC

(
I −

(
H̄SCH̄T

SC

)g
H̄SCH̄T

SC

)
w. (4.111)

Let us prove that Γ−1/2H̄T
SCU, where U is given by:

U = I −
(
H̄SCH̄T

SC

)g
H̄SCH̄T

SC. (4.112)

Multiplying Eq. (4.112) by Γ−1/2H̄T
SC and developing, results in:

H̄T
SCU = H̄T

SC

(
I −

(
H̄SCH̄T

SC

)g
H̄SCH̄T

SC

)
,

= H̄T
SC − H̄T

SC

(
H̄SCH̄T

SC

)g
H̄SCH̄T

SC,

= H̄T
SC − H̄T

SC

(
H̄T
SC

)g (
H̄SC

)g
H̄SCH̄T

SC),

= H̄T
SC − H̄T

SC

(
H̄T
SC

)g
H̄T
SC

(
H̄T
SC

)g
H̄T
SC,

= H̄T
SC − H̄T

SC

(
H̄T
SC

)g
H̄T
SC,

= H̄T
SC − H̄T

SC,

= 0.

(4.113)

From Eq. (4.113) we have Γ−1/2H̄T
SC = 0 which completes our proof.

Using Eq. (4.110) in (4.106) with ãSC = bSC − ASCa, we get:

u0 = Γ
−1/2H̄T

SC

(
H̄SCH̄T

SC

)g
(bSC − ASCa) = Γ−1/2H̄g

SC
(bSC − ASCa) = Γ−1/2H̄g

SCãSC, (4.114)

where H̄g
SC = H̄T

SC

(
H̄SCH̄T

SC

)g
is any {1, 4}-inverse of H̄SC.

Equation (4.114) is the solution for the decentralized controllers.

4.1.3.2 Soft control constraints

The constraints expressed by Eq. (4.96) are classified as hard constraints once it should be

strictly equal to zero. If the initial error is relatively large, such constraints can result in actuators

saturation in the beginning of the motion. To solve this, the time derivative of Eq. (4.96) can be

used to be written as a soft control constraint, as follows:∣∣∣φ̇SC (a, v,q, t)
∣∣∣ = ε⇔ −ε ≤ φ̇SC (a, v,q, t) ≤ ε, (4.115)

where ε is a m-column-vector of a slack variable to be defined during the design.
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The time-derivative of Eq. (4.96) can be written as:

φ̇SC (a, v,q, t) = ASCaSC − bSC. (4.116)

Substituting Eq. (4.101) into (4.116), we obtain:

ASC
(
a + N−1/2PN−1/2u0

)
= bSC,

ASCa + ASCN−1/2PN−1/2u0 = bSC,

ASCN−1/2PN−1/2u0 = bSC − ASCa.

(4.117)

The new set of control constraints is defined as follows:

HSCu0 = ãSC, (4.118)

where HSC = HASCH̄P = ASCN−1/2PN−1/2 and ãSC = bSC − ASCa.

The soft control constraints become:

−ε ≤ φ̇SC (a, v,q, t) ≤ ε⇔ −ε ≤ HSCu0 − ãSC ≤ ε. (4.119)

Equation (4.119) can be solved as a QP-problem defining a quadratic cost function associated

with the control energy subjected to the proposed form of soft control constraints, as below:

min
u0(·)

J =
1
2

uT
0Γu0,

s.t. GSCu0 ≤ σSC,

(4.120)

where

GSC =

−HSC
+HSC

 ; σSC =

ε − ãSC
ε + ãSC

 . (4.121)

4.2 RECURSIVE MODULAR CONTROL

4.2.1 Definitions

Let S be a generic mechanical system in which the control is conceived as a hierarchy of s

levels for which the equations associated with the constraints enforced at level r can be expressed

in matrix form as Ar (v,q, t) a = er (v,q, t) and RT
r ur = 0. In this case, the control of S can be
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expressed by the following system of equations:

u = u0 (v,q, t) + γ (v,q, t) ,

Ã1 (v,q, t) N−1u = e1 (v,q, t) ,

R̃T
1u = 0,

Ã2 (v,q, t) N−1u = e2 (v,q, t) ,

R̃T
2u = 0,
...

Ãs (v,q, t) N−1u = es (v,q, t) ,

R̃T
s u = 0.

(4.122)

As an example, consider the conception of the three bars mechanism shown in Fig. 37 (a) and

its control hierarchy shown in Fig. 37 (b). The decoupled controller for each bar Ai (i = 1, 2, 3)

constitute the base components. As shown in Fig. 37 (b), the constraints of S are distributed

in two levels. At level 1, the constraints between the ground G and A1, indicated by the active

revolute joint (grey circle), and between A1 and A2, indicated by the passive revolute joint (white

circle), are enforced and the controller for the serial mechanism associated with the subsystem S1

is obtained. Still at level 1, the constraints between the ground G and A3, indicated by the passive

revolute joint (white circle), are enforced, and the controller for the link related to subsystem S1

is obtained. At level 2, the constraints among S1 and S2, indicated by the passive revolute joint

(white circle), are enforced, providing the centralized controller for the three bars mechanism

associated with the system S.

x̂

ŷ
ŷ1

x̂1

O1
O

x̂2

ŷ2

x̂3

ŷ3

O2

O3

S1

A1 A2 A3G G

S2

S

(a): Three-bar linkage (b): Control hierarchy

Figure 37: Hierarchical conception of a planar three-bar linkage mechanism constituted by a
serial mechanism S1 and a single link S2.
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Define for r = 1, . . . , s − 1:

Ar+1 =

 Ar

Ãr+1

 ; er+1 =

 er

ẽr+1

 . (4.123)

The system Eqs. (4.122) can be rewritten in the form of (4.61) considering that all the

constraint equations can be grouped in a single matrix form A (v,q, t) a = e (v,q, t) and RTu = 0,

with As =

[
ÃT

1 ÃT
2 . . . ÃT

s

]T
, es =

[
ẽT

1 ẽT
2 . . . ẽT

s

]T
and Rs =

[
R̃1 R̃2 . . . R̃s

]
.

Also, let ur denote the m-vector of control that minimizes the Gaussian deviation function of

the control design considering just the constraints enforced up to the hierarchical level r. The

corresponding controller in this case can be expressed as follows:
ur (v,q, t) = u0 (v,q, t) + γr,

Ar (v,q, t) N−1ur = er (v,q, t) ,

RT
r ur = 0.

(4.124)

Set W (v,q, t), such that N =M + ATWA is a positive definite matrix and consider:

u0 = Nυ + (g + c) = Nυ +
(
f + ATWb + c

)
. (4.125)

Also, define for r = 1, . . . , s:

H̃r = R̃T
r ; Hr = RT

r ; C̃T
r = Ãr; CT

r = Ar. (4.126)

Since any control can be expressed as Eq. (4.61), considering the definitions provided above,

Eq. (4.124) can be rewritten as:  ur = u0 + CT
r λ j,

HrCT
r λr = −Hru0.

(4.127)

The solution of Eq. (4.127) is given by:

ur =
(
I −Hg

r Hr

)
u0 = Pru0, (4.128)

with Hg
r = AT

r

(
RT

r AT
r

)g
= CT

r

(
HrCT

r

)g
as the {1, 2, 4}-inverse of Hr and Pr = I − Hg

r Hr as the

orthogonal projector onto the kernel of Hr.
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4.2.2 Recursive algorithm based on the orthogonal complement

In order to derive a recursive modular algorithm based on Eq. (4.61), consider the following

definitions at the level r + 1:

H̃r+1 = R̃T
r+1; Hr+1 = RT

r+1 =

 RT
r

R̃T
r+1

 =
 Hr

H̃r+1

 . (4.129)

Also, let:

C̃T
r+1 = ÃT

r+1; CT
r+1 = AT

r+1 =

[
AT

r ÃT
r+1

]
=

[
CT

r C̃T
r+1

]
. (4.130)

The gain matrix at the level r + 1 is defined as follows:

Kr+1 = ST
r ÃT

r+1

(
R̃T

r+1ST
r ÃT

r+1

)g
= PrC̃T

r+1

(
H̃r+1PrC̃T

r+1

)g
. (4.131)

Moreover, consider the following equality:

Hg
r+1 =

[(
I −Kr+1H̃r+1

)
Hg

r Kr+1

]
. (4.132)

From previous results derived, we have that Sr+1 = SrEr+1, with:

Sr = I − Rr (ArRr)g Ãr,

Er+1 = I − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr.

(4.133)

Let Pr = ST
r = I −Hg

r Hr and Pr+1 = ST
r+1 = I −Hg

r+1Hr+1, such that:

Pr+1 =
(
I − ST

r ÃT
r+1

(
R̃T

r+1ST
r ÃT

r+1

)g
R̃T

r+1

)
ST

r ,

=
(
I −Kr+1H̃r+1

)
Pr.

(4.134)

We can proof that Pr and Pr+1 are idempotent matrices, i.e., PrPr = Pr and Pr+1Pr+1 = Pr+1,

as follows:
PrPr =

(
I −Hg

r Hr

) (
I −Hg

r Hr

)
,

= I −Hg
r Hr −Hg

r Hr +Hg
r HrHg

r Hr,

= I −Hg
r Hr −Hg

r Hr + CT
r

(
HrCT

r

)g
HrCT

r

(
HrCT

r

)g
Hr,

= I −Hg
r Hr −Hg

r Hr + CT
r

(
HrCT

r

)g
Hr,

= I −Hg
r Hr −Hg

r Hr +Hg
r Hr,

= I −Hg
r Hr,

= Pr.

(4.135)
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Similarly, for Pr+1 and using Eq. (4.135), we have:

Pr+1Pr+1 =
(
I −Kr+1H̃r+1

)
Pr

(
I −Kr+1H̃r+1

)
Pr,

=
(
I −Kr+1H̃r+1

)
Pr

(
I − PrC̃T

r+1

(
H̃r+1PrC̃T

r+1

)g
H̃r+1

)
Pr,

=
(
I −Kr+1H̃r+1

)
Pr − PrC̃T

r+1

(
H̃r+1PrC̃T

r+1

)g
H̃r+1Pr + . . .

+ PrC̃T
r+1

(
H̃r+1PrC̃T

r+1

)g
H̃r+1PrC̃T

r+1

(
H̃r+1PrC̃T

r+1

)g
H̃r+1Pr,

=
(
I −Kr+1H̃r+1

)
Pr − PrC̃T

r+1

(
H̃r+1PrC̃T

r+1

)g
H̃r+1Pr + . . .

+ PrC̃T
r+1

(
H̃r+1PrC̃T

r+1

)g
H̃r+1Pr,

=
(
I −Kr+1H̃r+1

)
Pr,

= Pr+1,

(4.136)

which completes our proof.

Thus, with Eqs. (4.135) and (4.136), (4.134) can be rewritten as:

Pr+1 =
(
I −Kr+1H̃r+1

)
Pr

(
I − Lr+1C̃r+1

)T
, (4.137)

where Lr+1 = PT
r H̃T

r+1

(
C̃r+1PT

r H̃T
r+1

)g
.

From Eq. (4.134), we identify the following equality:

Kr+1H̃r+1Pr = Pr − Pr+1. (4.138)

Using Eq. (4.138) we can prove that (4.132) is a valid expression for Hg
r+1, as follows:

Hg
r+1Hr+1 =

[(
I −Kr+1H̃r+1

)
Hg

r Kr+1

]  Hr

H̃r+1


=

(
I −Kr+1H̃r+1

)
Hg

r Hr +Kr+1H̃r+1,

= I − Pr −Kr+1H̃r+1 +Kr+1H̃r+1Pr +Kr+1H̃r+1,

= I − Pr + Pr − Pr+1,

= I − Pr+1,

= Hg
r+1Hr+1,

(4.139)

which completes our proof.

Considering Eq. (4.128) with u∗r being an additional m-column-vector of auxiliary control

associated to the non-actuated quasi-velocities (e.g., an additional control term to compensate
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for disturbances on the end-effector), we have:

u#
r = u0 +Hg

r
(
u∗r −Hru0

)
. (4.140)

Based on Eq. (4.140) and considering the relation of Eq. (4.132) for Hr+1, we get:

u#
r+1 = u0 +Hg

r+1
(
u∗r+1 −Hr+1u0

)
,

u#
r+1 − u0 =

(
I −Kr+1H̃r+1

)
Hg

r
(
u∗r −Hru0

)
+Kr+1

(
ũ∗r+1 − H̃r+1u0

)
,

u#
r+1 − u0 =

(
I −Kr+1H̃r+1

) (
u#

r − u0

)
+Kr+1

(
ũ∗r+1 − H̃r+1u0

)
,

u#
r+1 − u0 = u#

k − u0 −Kr+1H̃r+1

(
u#

r − u0

)
+Kr+1

(
ũ∗r+1 − H̃r+1u0

)
,

u#
r+1 = u#

r +Kr+1

(
ũ∗r+1 − H̃r+1u#

r

)
.

(4.141)

Gathering the Eqs. (4.129)–(4.141), the following algorithm arises.

Algorithm 2. (Recursive modular control): Generalized recursive modular control algorithm

based on Eq. (4.128).

(a) Initialize at r = 0:

P0 = I; u#
0 = u0.

(b) For r = 0, . . . , s − 1, do:

Kr+1 = PrC̃T
r+1

(
H̃r+1PrC̃T

r+1

)g
,

u#
r+1 = u#

r +Kr+1

(
ũ∗r+1 − H̃r+1u#

r

)
,

Pr+1 =
(
I −Kr+1H̃r+1

)
Pr.

(c) For r = s, compute the control:

u# = QTu#
s .

The algorithm 2 is analog to the Kalman filter for state estimation from a set of noiseless

measurements. In this analogy, the constraint equations, ũ∗r+1 = H̃r+1u#
r , can be taken as the

measurements, and the orthogonal projectors onto the kernel of Hr, i.e., Pr, as the updated

estimate covariance matrix.

With algorithm 2 the computational implementations of the Kalman filter can be adapted

to develop modular recursive control strategies. Moreover, measurement noises in the Kalman

filter can provide an alternative approach to represent unmodeled dynamics or to improve the
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numerical stability of the algorithm 2. However, these issues are intricate and will be properly

addressed in future works.

For example, if Or+1 is the covariance matrix associated to the measurement noises, then,

Kr+1 and Pr+1 are calculated as follows:

Kr+1 = PrC̃T
r+1

(
H̃r+1PrC̃T

r+1 +Or+1

)−1
, (4.142)

and

Pr+1 =
(
I −Kr+1H̃r+1

)
Pr

(
I − Lr+1C̃r+1

)T
+Kr+1Or+1LT

r+1. (4.143)

4.2.3 Recursive algorithm based on the Udwadia-Kalaba equation

The classical form of the Udwadia-Kalaba equation can be seen as a closed-loop dynamic

that is corrected according to a quasi-acceleration error weighting by a feedback gain. However,

this structure can be better used for control purposes if written in a linear state-space-like form.

Furthermore, such modification can enable the synthesis of optimal control techniques, which

are generally challenging for multibody systems due to their nonlinearities. For this purpose, let

us consider the linear closed-loop state-space system, as follows:
ẋ = Ex + B (γ + u + d) ,

y = Cx + Dγ,

γ = K (r − y) ,

(4.144)

where x, γ, u, d and y are the m-column-vectors of states, constraints forces, control inputs,

disturbances and measured outputs, respectively, while E, B, C and D are the m by m state-space

matrices. Figure 38 shows the state-space block diagram associated with Eq. (4.144).

r B
1

s
C

D

A

K

+− +
+

+
+γ ẋ x y

+
+

+

u

d

Figure 38: Closed-loop state-space block diagram
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To show the existing analogy between the Udwadia-Kalaba equation and the state-space form

presented in Eq. (4.144), let us consider the following modified version of the Udwadia-Kalaba

equation where a first-order low-pass filter, for the sake of example, emulates a non-modeled

dynamic (e.g., flexibility, actuators dynamics, delays, etc.) described by a m by m symmetric

positive-definite cutoff frequency matrix Ωa:
a0 = N−1 (g + c) ,

Aa = b,

ȧ +Ωaa = a0 + N−1AT
(
AN−1AT

)g
(b − Aa0) .

(4.145)

Also, consider that:

ẋ = ȧ; x = a; u = Qu#; d = g + c; r = b, (4.146)

and
E = −Ωa,

B = ΩaN−1,

C = AΩ−1
a ,

D = −AN−1,

K = AT
(
AN−1AT

)g
.

(4.147)

The constraint enforcement on the Udwadia-Kalaba equation is performed on the quasi-

accelerations. Thus, to preserve constraints, the dynamic associated with the low-pass filter

should be turned off to calculate the states to be used on the feedback control, as follows:

ẋ = 0⇒ ẋ = Ex + B (γ + u + d)⇒ x = B (γ + u + d) . (4.148)

Substituting the control expression of Eq. (4.144) into (4.148), we obtain:

x = BK (r − y) + B (u + d) . (4.149)

Introducing Eq. (4.149) in the output expression of (4.144), results in:

y = Cx + Dγ,

= CBK (r − y) + CB (u + d) + DK (r − y) ,

= CB (u + d) − DK (r − y) + DK (r − y) ,

= CB (u + d) .

(4.150)
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Using Eq. (4.150) in the first expression of (4.144), we get:

ẋ = Ex + BK (r − CB (u + d)) + B (u + d) ,

= Ex + (I − BKC) B (u + d) + BKr.
(4.151)

Eq. (4.151) can be rewritten as:

ẋ = Ex + Lz0 +Hr,

= Ex + Fu# +Gd +Hr,
(4.152)

where
L = I − BKC,

z0 = B (Qu# + d) ,

F = LBQ,

G = LB,

H = BK.

(4.153)

Substituting Eqs. (4.147) and (4.153) into (4.152), we obtain:

ẋ = Ex + Fu# +Gd +Hr,

ẋ = Ex + (I − BKC) B (u + d) + BKr,

ȧ +Ωaa = Ωa
(
a0 + N−1AT

(
AN−1AT

)g
(b − Aa0)

)
,

a = (Is +Ωa)−1Ωa
(
a0 + N−1AT

(
AN−1AT

)g
(b − Aa0)

)
,

(4.154)

which is the soft form of the Udwadia-Kalaba equation, completing the demonstration.

If we choose the cutoff frequency as ∥Ωa∥ >> 0, such that (Is +Ωa)−1Ωa = I, then:

a = (Is +Ωa)−1Ωa
(
a0 + N−1AT

(
AN−1AT

)g
(b − Aa0)

)
,

= a0 + N−1AT
(
AN−1AT

)g
(b − Aa0) ,

(4.155)

which is the classical form of the Udwadia-Kalaba equation.

Gathering the Eqs. (4.144)–(4.155) and using the recursive formulation developed in Sub-

sec. 4.2.2, the following algorithm arises, which can be used for simulation purposes, calculating

the constrained quasi-accelerations with the decoupled model and the modular control obtained

with the formulations presented in this chapter.

Algorithm 3. (Recursive state-space model): Generalized recursive state-space model based

on the soft Udwadia-Kalaba equation.
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(a) Initialize at r = 0:

P0 = I; z0 = B (Qu# + g + c) .

(b) For r = 0, . . . , s − 1 do:

Kr+1 = PrÃT
r+1

(
Ãr+1BPrÃT

r+1

)g
,

Pr+1 =
(
I −Kr+1Ãr+1B

)
Pr,

Lr+1 = I − BKr+1Ãr+1,

Hr+1 = BKr+1,

zr+1 = Lr+1zr +Hr+1rr+1.

(c) For r = s, compute the state-space model:

ẋs = Esxs + zs.

4.2.3.1 Model predictive control

The analogy between the closed-loop state-space form and the Udwadia-Kalaba equation

enables the application of linear control techniques to complex multibody systems. For example,

let us consider the MPC formulation presented by Wang (2009) along with the discrete form of

Eq. (4.152), as follows:

x (k + 1) = Ed (k) x (k) + Fd (k) u# (k) +Gd (k) d (k) +Hdr (k) ,

y (k) = Cd (k) x (k) ,
(4.156)

where x (k), u# (k), d (k), r (k) and y (k) are the states, control inputs, disturbances, references and

measured outputs column-vectors in the discrete form, respectively, while Ed (k), Fd (k), Gd (k),

Hd (k) and Cd (k) are the discrete version of the state matrices, calculated here through the Euler

method considering a sample time Ts:

Ed (k) = (I + E (x) Ts)|x=x(k) ,

Fd (k) = (F (x) Ts)|x=x(k) ,

Gd (k) = (G (x) Ts)|x=x(k) ,

Hd (k) = (H (x) Ts)|x=x(k) ,

Cd (k) = C (x) .

(4.157)
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Let p be the prediction horizon. The predicted states are given by the iteration of the discrete

model in Eq. (4.156) at each prediction step, with i = 1, 2, . . . , p steps, as:

x (k + i) = Ei
d (k) x (k) +

i∑
j=1

E j−1
d

(k) (Fd (k) u#(k + i − j) +Gd (k) d (k) +Hd (k) r (k)) . (4.158)

Also, let c be the control horizon, with c ≤ p. Thus, based on Eq. (4.158) and considering

u# (k + i) = u# (k + c − 1) ; c ≤ i ≤ p − 1, i.e., admitting constant control inputs after reaching

the control horizon, the predicted outputs vectors can be rearranged as follows, where the time

step dependency is not used in the state matrices for the sake of notation simplicity:

Y = Sxx (k) + SuU# + Sdd + Srr, (4.159)

where
Y =

[
yT (k + 1) , yT (k + 2) , . . . , yT (k + p)

]T
,

U# =
[
uT

# (k) ,uT
# (k + 1) , . . . ,uT

# (k + c − 1)
]T
,

Sx =



CdEd
CdE2

d

...

CdEp
d


,

SU# =



CdFd 0 · · · 0

CdEdFd CdFd · · · 0
...

...
. . .

...

CdEp−1
d

Fd CdEp−2
d

Fd · · · CdEp−c
d

Fd


,

Sd =



CdGd
CdEdGd + CdGd

...

CdEp−1
d

Gd + CdEp−2
d

Gd + . . . + CdGd


,

Sr =



CdHd
CdEdHd + CdHd

...

CdEp−1
d

Hd + CdEp−2
d

Hd + . . . + CdHd


.

(4.160)

We should note that in Eq. (4.160), the matrices Sx, SU# , Sd and Sr are written in terms of the

prediction and control horizons, p and c.
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The objective of the MPC is to solve the following quadratic optimization problem:

min
U#(·)

J = (Y − Yr)T Q̃Y (Y − Yr) + UT
#R̃U#U#,

s.t. Y = Sxx (k) + SU#U# + Sdd + Srr,

U#,min ≤ U# ≤ U#,max,

(4.161)

with
Yr =

[
yT
r (k + 1) , . . . , yT

r (k + p)
]T
,

Q̃Y = blkdiag (QY, . . . ,QY,PY) ,

R̃U# = blkdiag
(
RU# , . . . ,RU#

)
,

(4.162)

where yr (k + i) is the reference column-vector at the i-th prediction time step, QY and RU# are

the weighting matrices for the tracking errors and control efforts, respectively, while PY is the

terminal weighting matrix used to enforce the closed-loop stability.

Inserting the predictive model of Eq. (4.158) into the cost function of (4.161) and after some

algebraic manipulation neglecting the terms without U#, comes:

min
U#(·)

J = UT
#

(
ST

U#
Q̃YSU# + R̃U#

)
U# + . . .

2 (Sxx + Sdd + Srr − Yr)T Q̃YSU#U#,

s.t. U#,min ≤ U# ≤ U#,max.

(4.163)

The Quadratic Programming (QP) problem associated with Eq. (4.161) follows:

min
U#(·)

J = UT
#HQPU# + fQPU#,

s.t. GQPU# ≤ φQP,
(4.164)

where
HQP = ST

U#
Q̃YSU# + R̃U# ,

fQP = 2 (Sxx + Sdd + Srr − Yr)T Q̃YSU# ,

GQP = blkdiag (−I,+I) ,

φQP =
[
UT

#,min,U
T
#,max

]T
,

U#,min =
[
uT

#,min, . . . ,u
T
#,min

]T
,

U#,max =
[
uT

#,max, . . . ,u
T
#,max

]T
.

(4.165)
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The block diagram of the MPC is shown in Fig. 39. The following steps summarize the MPC

working process:

1. the controller receives the output reference, yr (k), at the time instant t = kTs;

2. based on the dynamic model of the system and on the current states, x (k), disturbances,

d (k), and reference, r (k), an optimization process is performed over the prediction horizon,

p, to minimize the cost function given in Eq. (4.161). The optimization is done through

the calculation of an optimum control sequence, U#, over the control horizon, c;

3. the first element of the control sequence is associated with the control input u# (k), and

sent to the system;

4. this process is repeated until k = N.

Optimization

Simulation
Model

Output Predictions Input Predictions

r(k)

y(k) u(k)

d(t)

System
Dynamics

û

cTspTs

ŷ

MPC

Figure 39: MPC block diagram



134

4.3 EXAMPLES

Some examples are presented to illustrate the application of the proposed methodology. The

control objectives are to perform (1) set-point regulation and trajectory-tracking while ensuring

(2) closed-loop stability and (3) disturbance rejection proprieties.

The control examples are implemented according to Fig. 40, where y, yd, u and d are the

column-vectors of outputs, desired values, control and disturbances inputs, respectively. Also,

in the block diagram of Fig. 40, the plants model is implemented using the recursive version

of the Udwadia-Kalaba equation presented by Orsino (2020) and the controllers synthesis are

performed with the MCM framework presented before.

Reference Control Plantyd u y

(MCM) (MMM)

d

+
+

Figure 40: General control block diagram

4.3.1 Inverted pendulum

Figure 41 (a) shows the schematic diagram of the inverted pendulum physical model while

Fig. 41 (b) shows the modeling/control hierarchy adopted.

x1

θ2

(x2, y2)

x̂

ŷ

O
O1

x̂1

ŷ2 x̂2

ŷ1

f

A1 A2G

S

(a): Inverted pendulum physical model (b): Modeling/control hierarchy

Figure 41: Invented pendulum model

The generalized coordinates used in the modeling are given by q =
[
qT

1 ,q
T
2

]T
, with qi =[

xi, yi, θi
]T as the column-vector of generalized coordinates associated to the i-th body (i = 1, 2),
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as shown in Fig. 41 (a). In the modeling hierarchy of Fig. 41 (b), G is the ground, body A1 is

the cart and body A2 is the pendulum, while system S is the inverted pendulum. Also, an active

prismatic joint (grey circle) connects the cart with the ground, and a passive revolute joint (white

circle) connects the cart with the pendulum. A trivial set of quasi-velocities and accelerations is

used on the synthesis, i.e., v = q̇ and a = v̇.

The relaxed dynamic model is given by:

Na0 = g, (4.166)

where

N =M; M =

M1 0

0 M2

 ; g = f; f =

f1

f2

 . (4.167)

The inertia matrix and active forces column-vectors related to the i-th body are written as:

Mi =


mi 0 0

0 mi 0

0 0 Ii

 ; fi = fA,i + fM,i, (i = 1, 2) (4.168)

where mi is the mass and Ii is the inertia moment, while fA,i and fM,i are the column-vectors of

active forces due to the natural physical effects (e.g., weight, friction, etc.) and due to the motor

forces, respectively. In this example, the active forces column-vectors are expressed by:

fA,1 =


−b1 ẋ1 − c1 sign (ẋ1)

−m1g

0

 ; fA,2 =


0

−m2g

−b2θ̇2 − c2 sign
(
θ̇2

)
 ;

fM,1 =


f

0

0

 ; fM,2 =


0

0

0

 ,
(4.169)

where bi and ci (i = 1, 2) are the coefficients of viscous and dry friction, respectively, and f is

the horizontal control force on the cart.

The modeling constraints are written with respect to joints centers, as follows:

φ (q, t) =



y1

θ1

x2 − x1 − l cos (θ2)

y2 − l sin (θ2)


= 0, (4.170)
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in which 2l is the pendulum length.

Performing the second time derivative of Eq. (4.170), we get:

φ̈ (a, v,q, t) = 0⇔ A (q, t) a = b (v,q, t) , (4.171)

where

A =



0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 1 0 l sin (θ2)

0 0 0 0 1 −l cos (θ2)


; b =



0

0

−l cos (θ2) θ̇2
2

−l sin (θ2) θ̇2
2


. (4.172)

Since the cart horizontal displacement (x1) is actuated, the identification matrices become:

Q =



1

0

0

0

0

0


; R =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (4.173)

The decentralized controllers are given by:

u0 =

u0,1

u0,2

 , (4.174)

where

u0,i = Niυi + fA,i. (i = 1, 2) (4.175)

Let the cart sliding surface variable be given by:

s1 (v1,q1, t) = v1 + Λq̃1 = 0, (4.176)

where q̃1 = q1 − qd,1 is the tracking error column-vector and Λ = ΛT ≥ 0 is a control gain matrix

associated with the closed-loop bandwidth.

Based on Eq. (4.176), the following SMC3 law is used for the cart:

υ1 = −Λv1 −K sign (s1) , (4.177)

3To attenuate chattering effects in the SMC, the sign function will be replaced by tanh, i.e., sign (s) ≈ tanh (s/ϵ),
where ϵ > 0 regulates smoothness of such approximation. This procedure will be applied every time a SMC is used.
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where K = KT ≥ 0 is a control gain matrix.

For the pendulum we used a simple PD control, given by:

υ2 = −KPq̃2 −KDv2, (4.178)

where q̃2 = q2 − qd,2 is the tracking error column-vector, while KP = KT
P ≥ 0 and KD = KT

D ≥ 0

are the proportional and derivative control gain matrices, respectively.

Let u# = f . From Eq. (4.58), the control force is calculated as:

f = QT
(
I − AT

(
RTAT

)+
RT

)
u0, (4.179)

where the superscript “+” denotes the Moore-Penrose PI.

The controller is tested for the set-point regulation/stabilization problem. The objective is

to keep the pendulum on the upright position (θ2 = π/2) while the cart passes through a series

of predefined set-points. The numerical simulations were performed in MATLAB/Simulink®

environment. The dynamic model is numerically integrated with the ode8 function using a

fixed-time step of 0.001 s. The controller is implemented at a fixed rate frequency of 100 Hz.

Table 5 shows the parameters used in the simulation.

Table 5: Inverted pendulum parameters

Symbols Values Units (SI)

m1,m2 2.70, 2.65 kg

I1, I2 0.01, 0.06 kgm2

l 0.25 m

g 9.81 m/s2

K diag (40, 40, 40) m/s2, rad/s2

Λ diag (2, 2, 2) 1/s

ϵ 0.01 –

KP diag (400, 400, 400) 1/s2

KD diag (800, 800, 800) 1/s
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Figure 42 shows the set-point regulation/stabilization achieved with the proposed method-

ology. The horizontal control force is shown by Fig. 43. The set of control forces is shown

by Fig. 43. We notice that the controller ensures the cart set-point regulation while stabilizing

the inverted pendulum, bringing it from the bottom to an upright position and keeping it there.

Moreover, the control forces consistency with the modeling constraints can be verified in Fig. 44

since the vertical control force and the control torque of the cart are null.
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Figure 42: Set-point regulation of the inverted pendulum
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Figure 43: Horizontal control force of the inverted pendulum
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Figure 44: Control forces and torques of the inverted pendulum
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4.3.2 Slider-crank mechanism

The schematic diagram of the slider-crank mechanism is shown in Fig. 45 (a), while the

modeling/control hierarchy used in this example is shown in Fig. 45 (b).

θ1

x̂

ŷ
ŷ1 x̂1
O1O=

θ2

x̂3

ŷ3

x̂2

ŷ2

x3

(x1, y1) (x2, y2)

τ

A1 A2G B G

S

(a): Slider-crank schematic diagram (b): Modeling/control hierarchy

Figure 45: Slider-crank model

The generalized coordinates used on the synthesis are given by q =
[
qT

1 ,q
T
2 ,q

T
3

]T
, with

qi =
[
xi, yi, θi

]T as the column-vector of generalized coordinates associated with the i-th body

(i = 1, 2, 3), as shown in Fig. 45 (a). In the modeling hierarchy of Fig. 45 (b), G is the ground,

bodies Ai (i = 1, 2) are the links, body B is the slider block, and system S represents the slider-

crank mechanism. Also, an active revolute joint (grey circle) connects the crank (first link) with

the ground, two passive revolute joints (white circles) connect the crank with the rod (second

link) and the rod with the slider, and a passive prismatic joint (white circle) connects the slider

with the ground. The trivial set of quasi-velocities and quasi-accelerations is used again on the

synthesis, i.e., v = q̇ and a = v̇.

The terms of the relaxed dynamic model for the slider-crank are given by:

N =M; M =


M1 0 0

0 M2 0

0 0 M3

 ; g = f; f =


f1

f2

f3

 , (4.180)

where

Mi =


mi 0 0

0 mi 0

0 0 Ii

 ; fi = fA,i + fM,i. (i = 1, 2, 3) (4.181)
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The active forces due to natural physical effects are written as:

fA,1 =


0

−m1g

−b1θ̇1 − c1 sign
(
θ̇1

)
+ b2

(
θ̇1 + θ̇2

)
+ c2 sign

(
θ̇1 + θ̇2

)
 ,

fA,2 =


0

−m2g

−b2

(
θ̇1 + θ̇2

)
− c2 sign

(
θ̇1 + θ̇2

)
 ; fA,3 =


−b3 ẋ3 − c3 sign (ẋ3)

−m3g

0

 ,
(4.182)

and the active motor forces are expressed by:

fM,1 =


0

0

τ

 ; fM,2 = fM,3 =


0

0

0

 , (4.183)

in which τ is the control torque on the first link.

The modeling constraints are written with respect to the joints center, as follows:

φ (q, t) =



x1 − l cos (θ1)

y1 − l sin (θ1)

x2 − x1 − l cos (θ1) − l cos (θ2)

y2 − y1

x3 − x2 − l cos (θ2)

y3 − y2 + l sin (θ2)

y3

θ3



= 0. (4.184)

where l is half of the links length.
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Performing the second time-derivative of Eq. (4.184), we get:

A =



1 0 l sin (θ1) 0 0 0 0 0 0

0 1 −l cos (θ1) 0 0 0 0 0 0

−1 0 l sin (θ1) 1 0 l sin (θ2) 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 0 −1 0 l sin (θ2) 1 0 0

0 0 0 0 −1 l cos (θ2) 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



,

b =



−l cos (θ1) θ̇2
1

−l sin (θ1) θ̇2
1

−l cos (θ1) θ̇2
1 − l cos (θ2) θ̇2

2

0

−l cos (θ2) θ̇2
2

l sin (θ2) θ̇2
2

0

0



.

(4.185)

Only the angle of the first link (θ1) is actuated, therefore we have:

Q =



0

0

1

0

0

0

0

0

0



; R =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (4.186)

The decentralized controllers are given by:

u0 =


u0,1

u0,2

u0,3

 , (4.187)
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where

u0,i = Niυi + fA,i. (i = 1, 2, 3) (4.188)

Let the tracking errors be defined as:

q̃i = qi − qd,i; ṽi = vi − vd,i; ãi = ai − ad,i. (i = 1, 2, 3) (4.189)

A CTC law is used in each sub-controller as follows:

υi = ad,i −KP,iq̃i −KD,iṽi, (i = 1, 2, 3) (4.190)

with KP,i = KT
P,i ≥ 0 and KD,i = KT

D,i ≥ 0 as the proportional and derivative control gain matrices,

respectively.

Let u# = τ. From Eq. (4.63), the control torque is as follows:

τ = QT
(
I − AT

(
RTAT

)+
RT

)
u0. (4.191)

The controller of Eq. (4.191) is tested for the trajectory tracking problem.

The desired trajectory used in the simulation is given by (in radians):

θd,1 (t) =
π

4
+ sin (0.2πt) . (4.192)

The other desired coordinates are calculated using Eq. (4.192) on the modeling constraints

in (4.184) and solving it for the other displacements.

The numerical simulations were performed with the same previous setup. Table 6 show the

simulation parameters.



144

Table 6: Slider-crank parameters

Symbols (i = 1, 2, 3) Values Units (SI)

m1,m2,m3 2.65, 2.65, 5.40 kg

I1, I2, I3 0.06, 0.06, 0.01 kgm2

b1, b2, b3 0.1, 0.1, 0.1 Nms,Nms,Ns/m

c1, c2, c3 0.01, 0.01, 0.01 Nm,Nm,N

l 0.25 m

g 9.81 m/s2

KP,i diag (10, 10, 10) 1/s2

KD,i diag (20, 20, 20) 1/s

Figure 46 shown the tracking achieved for θ1 and x3. The control torque is shown by Fig. 47

while the set of control forces is shown by Fig. 48. We can see a good tracking performance for

the displacements in Fig. 46. Also, the control forces in Fig. 48 are consistent with the modeling

constraints since the vertical control force and the control torque of the slider are null.
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Figure 46: States tracking of the slider-crank mechanism
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Figure 47: Control torque of the slider-crank mechanism
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Figure 48: Control forces and torques of the slider-crank mechanism
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4.3.3 RR-manipulator

Figure 49 (a) show the schematic diagram of the 2-link RR-manipulator and Fig. 49 (b) show

the modeling/control hierarchy adopted in this example.
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(a): RR-manipulator schematic diagram (b): Modeling/control hierarchy

Figure 49: RR-manipulator model

In this example we used the same set of generalized coordinates, quasi-velocities and quasi-

accelerations of the slider-crank mechanism. The only differences between the dynamic model of

the RR-manipulator and the slider-crank are the active forces of each subsystem and the modeling

constraints. For example, in the modeling hierarchy of Fig. 49 (b), G is the ground, bodies Ai

(i = 1, 2) are the links, body B is the end-effector, and system S represents the RR-manipulator.

Regarding the constraints, two active revolute joints (grey circles) connect the first link with the

ground and the second link with the first one, while a rigid joint connects the second link with

the end-effector (white circle).

The active forces for the RR-manipulator are written as:

fA,1 =


0

−m1g

−b1γ̇1 − c1 sign (γ̇1) + b2 (γ̇2) + c2 sign (γ̇2)

 ,

fA,2 =


0

−m2g

−b2 (γ̇2) − c2 sign (γ̇2)

 ; fA,3 =


0

−m3g

0

 ,
(4.193)

where γ1 = θ1 and γ2 = θ2 − θ1.
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The active motor forces for the RR-manipulator are given by:

fM,1 =


0

0

τ1 − τ2

 ; fM,2 =


0

0

τ2

 ; fM,3 =


0

0

0

 , (4.194)

where τ1 and τ2 are the total motor torques on the first and second joint, respectively.

In this problem, we introduce actuation redundancy as an artificial hypothesis to test the

presented methodology. Thus, let us considers that are two actuators in each revolute joint acting

simultaneously, such that:

τ1 = τ1,1 + τ1,2; τ2 = τ2,1 + τ2,2, (4.195)

where τi,1 and τi,2 (i = 1, 2) are the motor torques in the i-th joint.

The modeling constraints for the RR-manipulator are given by:

φ (q, t) =



x1 − l cos (θ1)

y1 − l sin (θ1)

x2 − x1 − l cos (θ1) − l cos (θ2)

y2 − y1 − l sin (θ1) − l sin (θ2)

x3 − x2 − l cos (θ2)

y3 − y2 − l sin (θ2)

θ3



= 0. (4.196)

where l is half of the links length.
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Performing the second time-derivative of Eq. (4.196), we get:

A =



1 0 l sin (θ1) 0 0 0 0 0 0

0 1 −l cos (θ1) 0 0 0 0 0 0

−1 0 l sin (θ1) 1 0 l sin (θ2) 0 0 0

0 −1 −l cos (θ1) 0 1 −l cos (θ2) 0 0 0

−1 0 l sin (θ1) 0 0 2l sin (θ2) 1 0 0

0 −1 −l cos (θ1) 0 0 −2l cos (θ2) 0 1 0

0 0 0 0 0 0 0 0 1



,

b =



−l cos (θ1) θ̇2
1

−l sin (θ1) θ̇2
1

−l cos (θ1) θ̇2
1 − l cos (θ2) θ̇2

2

−l sin (θ1) θ̇2
1 − l sin (θ2) θ̇2

2

−l cos (θ1) θ̇2
1 − 2l cos (θ2) θ̇2

2

−l sin (θ1) θ̇2
1 − 2l sin (θ2) θ̇2

2

0



.

(4.197)

The control torques are defined as follows:

τ =
[
τ1,1, τ1,2, τ2,1, τ2,2

]T . (4.198)

Let u# = [τ1 − τ2, τ2]T such that u# = Tτ. From Eq. (4.194), we get:

T =

1 1 −1 −1

0 0 1 1

 . (4.199)

The weighting matrix is chosen as:

L =



1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2


. (4.200)
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Only the angle of the first and second links are actuated (θi; i = 1, 2). Thus, the identification

matrices become:

Q =



0 0

0 0

1 0

0 0

0 0

0 1

0 0

0 0

0 0



; R =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



. (4.201)

Let us consider the same decentralized controllers used in the slider-crank mechanism. From

Eq. (4.90), the control forces are as follows:

u# = QT
(
I − Z−1AT

(
RTZ−1AT

)+
RT

)
Z−1u0, (4.202)

where

Z = I + NQ
(
TL−1TT

)+
QT. (4.203)

According to Eq. (4.76), the motor torques becomes:

τ = L−1TT
(
TL−1TT

)+
u#. (4.204)

The controller of Eq. (4.204) is tested for the trajectory tracking problem.

The desired trajectory used in the simulation are written in terms of the end-effector coordi-

nates as below (in meters):
x3,d (t) = −0.3 sin (0.2πt) ,

y3,d (t) = 0.5 − 0.3 cos (0.2πt) .
(4.205)

The numerical simulations were performed with the same previous setup. Table 7 shows the

parameters used in the simulation.
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Table 7: RR-manipulator parameters

Symbols Values Units (SI)

m1,m2,m3 2.65, 2.65, 5.40 kg

I1, I2, I3 0.06, 0.06, 0.01 kgm2

b1, b2 0.1, 0.1 Nms

c1, c2 0.01, 0.01 Nm

l 0.25 m

g 9.81 m/s2

KP,1,KP,2,KP,3 0, 0, diag (1000, 1000, 0) 1/s2

KD,1,KD,2,KD,3 0, 0, diag (2000, 2000, 0) 1/s

The end-effector tracking is shown by Figs. 50 and 51. The control torques are shown by

Figs. 52 and 53. Concerning the control performance, the tracking achieved is good, both for the

coordinates in Fig. 50 and for the path in Fig. 51. Moreover, the effect of using different weights

on the control allocation can be seen in Fig. 48 since we have different motors in the same joint.
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Figure 50: End-effector coordinates tracking of the RR-manipulator
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Figure 51: End-effector path tracking of the RR-manipulator
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Figure 52: Total control torques of the RR-manipulator
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Figure 53: Control torques of the RR-manipulator
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4.3.4 5R-manipulator

Figure 54 (a) shows the schematic diagram of the 5R-manipulator on the horizontal plane

and Fig. 54 (b) shows the modeling/control hierarchy adopted to this example. Due to the parallel

structure, this manipulator is used for high precision tasks, such as pick an place, printing, etc.

We should point that this example is based on the prototype of the parallel manipulator CLARA

constructed by Coutinho (2019) during his Ph.D.
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(a): 5R-manipulator schematic diagram
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Figure 54: 5R-manipulator model

In the modeling hierarchy of Fig. 54 (b), G is the ground, bodies Ai (i = 1, 2) are the

manipulator links, body B is the end-effector, considered in this example as a massless point,

subsystems Si (i = 1, 2) are the RR-manipulators, while system S represents the 5R-manipulator.
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In the subsystems Si (i = 1, 2), two active revolute joints (grey circles) connect the ground with

the first link and the second link with the first one. In the system S, passive revolute joints (white

circles) connect the RR-manipulators with the end-effector. In this example, the control synthesis

is performed from two sub-controllers originally made for the RR-manipulators. Therefore, the

generalized coordinates of the synthesis are given by q =
[
qT

1 ,q
T
2

]T
, where qi =

[
θ1,i, θ2,i

]T is

the column-vector of generalized coordinates of the i-th RR-manipulator (i = 1, 2), as seen in

Fig. 54 (a). The trivial set of quasi-velocities and quasi-accelerations is used once again, i.e.,

v = q̇ and a = v̇.

The dynamic model of the i-th RR-manipulator is written as:

Niai = gi; Ni =Mi; gi = fi, (i = 1, 2) (4.206)

with the generalized inertia matrix given by:

Ni =

 I1,i + l2
1,i

(
m1,i + 4

(
m2,i + m3,i

))
2 cos

(
θ12,i

)
l1,i

(
lG2,im2,i + l2,im3,i

)
2 cos

(
θ12,i

)
l1,i

(
lG2,im2,i + l2,im3,i

)
I2,i + l2

G2,i
m2,i + 4l2

2,im3,i

 , (4.207)

and the active forces expressed as:

fi = fA,i + fM,i, (i = 1, 2) (4.208)

where

fA,i =

−τD,i − 2 sin
(
θ12,i

)
l1,ilG2,im2,iθ̇

2
2,i − 4 sin

(
θ12,i

)
l1,il2,im3,iθ̇

2
2,i

2 sin
(
θ12,i

)
l1,i

(
lG2,im2,i + 2l2,im3,i

)
θ̇2

1,i

 ; fM,i =

τ12,i

τ2,i

 , (4.209)

in which θ12,i = θ1,i − θ2,i, τ12,i = τ1,i − τ2,i and τD,i = b1,iθ̇1,i + c1,i sign
(
θ̇1,i

)
.

Let the coordinates of the i-th end-effector and their references be defined as follows:

p3,i =

x3,i

y3,i

 ; p3,d,i = p3,d =

x3,d

y3,d

 , (i = 1, 2) (4.210)

with x3,i and y3,i written as:

x3,i = 2l1,i cos
(
θ1,i

)
+ 2l2,i cos

(
θ2,i

)
± l3,

y3,i = 2l1,i sin
(
θ1,i

)
+ 2l2,i sin

(
θ2,i

)
.

(4.211)

Also, let the sliding surface for the i-th end-effector be given by:

s3,i (vi,qi, t) = ˙̃p3,i + Λip̃3,i = 0, (i = 1, 2) (4.212)
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where p̃3,i = p3,i − p3,d is the tracking error column-vector and Λi = Λ
T
i ≥ 0 is a control gain

matrix associated to the closed-loop bandwidth.

Based on Eq. (4.212), the following control constraint is defined:

φSC,i (vi,qi, t) = s3,i (vi,qi, t) = 0. (i = 1, 2) (4.213)

Performing the time-derivative of Eq. (4.213) and imposing the sliding condition, we get:

φ̇SC,i = −Lis3,i −Ki sign
(
s3,i

)
, (i = 1, 2) (4.214)

where Li = LT
i ≥ 0 and Ki = KT

i ≥ 0 are control gains matrices.

Moreover, Eq. (4.214) can be rewritten as:

ASC,i (qi, t) aSC,i = bSC,i (vi,qi, t) , (i = 1, 2) (4.215)

where

ASC,i =

−2 sin
(
θ1,i

)
l1,i −2 sin

(
θ2,i

)
l2,i

2 cos
(
θ1,i

)
l1,i 2 cos

(
θ2,i

)
l2,i

 ,
bSC,i = p̈3,d − ȦSC,iq̇i − Λi ˙̃p3,i − Lis3,i −Ki sign

(
s3,i

)
.

(4.216)

From Eq. (4.114), the decentralized control of the i-th RR-manipulator is given by:

u0,i = Γ
−1/2
i H̄+SC,i

(
bSC,i − ASC,iai

)
. (i = 1, 2) (4.217)

In this case Pi = I (i = 1, 2) since the modeling constraints are already imposed on the

RR-manipulator model. Moreover, taking Γi = I, we get:

H̄SC,i = ASC,iN−1/2
i PiN−1/2

i Γ
−1/2
i = ASC,iN−1

i . (4.218)

The decentralized control of the 5R-manipulator is written as:

u0 =

u0,1

u0,2

 . (4.219)

The modeling constraints of the 5R-manipulator are written concerning the center of the

end-effectors, as follows:

φ (q, t) =

x3,1 − x3,2

y3,1 − y3,2

 = 0. (4.220)
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Performing the second time-derivative of Eq. (4.220), we get:

A = 2

−l1,1 sin
(
θ1,1

)
−l2,1 sin

(
θ2,1

)
l1,2 sin

(
θ1,1

)
l2,2 sin

(
θ2,2

)
l1,1 cos

(
θ1,1

)
l2,1 cos

(
θ2,1

)
−l1,2 cos

(
θ1,1

)
−l2,2 cos

(
θ2,2

)
 ,

b = 2

l1,1 cos
(
θ1,1

)
θ̇2

1,1 + l2,1 cos
(
θ2,1

)
θ̇2

2,1 − l1,2 cos
(
θ1,2

)
θ̇2

1,2 − l2,2 cos
(
θ2,2

)
θ̇2

2,2

l1,1 sin
(
θ1,1

)
θ̇2

1,1 + l2,1 sin
(
θ2,1

)
θ̇2

2,1 − l1,2 sin
(
θ1,2

)
θ̇2

1,2 − l2,2 sin
(
θ2,2

)
θ̇2

2,2

 .
(4.221)

Since only θ1,i (i = 1, 2) are actuated, the identification matrices becomes:

Q =



1 0

0 0

0 1

0 0


; R =



0 0

1 0

0 0

0 1


. (4.222)

Let u# = τ = [τ1, τ2]T. From Eq. (4.58) the controller of the 5R-manipulator becomes:

τ = QT
(
I − AT

(
RTAT

)+
RT

)
u0. (4.223)

The controller of Eq. (4.223) is tested on the trajectory tracking problem of a triangular

trajectory with vertices coordinates given by (in meters):

p⃗1 =

 0

0.11

 ; p⃗2 =

0.05

0.26

 ; p⃗3 =

−0.05

0.26

 . (4.224)

Each side of the triangle is parameterized as a polynomial trajectory of 7-th to impose zero

velocity, acceleration and jerk at the beginning and end of each segment. The polynomial is

expressed by:

r(t) = r(ti) + (r (tf) − r (ti))
(
35δt4 − 84δt5 + 70δt6 − 20δt7

)
, (4.225)

where r(ti) is the initial position, r(tf) is the final position and δt is the fraction of time, defined

with respect to the actual time instant.

The numerical simulations were performed with the same previous setup. Table 8 show the

parameters used in the simulation.
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Table 8: 5R-manipulator parameters

Symbols (i = 1, 2) Values Units (SI)

m1,1,m2,1,m1,2,m2,2,m3 0.062, 0.097, 0.062, 0.0124, 0.001 kg

I1,1, I2,1, I1,2, I2,2, I3 0.0003, 0.001, 0.0001, 0.0004, 0 kgm2

b1, b2 0.0002, 0.0001 Nms

c1, c2 0.05, 0.04 Nm

l1,1, l2,1, l1,2, l2,2, lG2,1 , lG2,2 , l3 0.06, 0.08, 0.06, 0.08, 0.058, 0.078, 0.05 m

Λi diag (5, 5) 1/s

Li diag (100, 100) 1/s

Ki diag (50, 50) m/s2

The results obtained are shown by Figs. 55 to 59. Figs. 55 and 56 show the end-effector

tracking. The tracking achieved is good and the motion is smooth, which is due to the polynomial

used to parameterize the triangle sides. The control torques are shown by Fig. 57. We can

notice the dry friction effects in Fig. 57. The decentralized control torques are shown by Fig. 58.

The constraints are shown by Fig. 59. The modeling constraints order is 10−4 and the control

constraints order is 10−3.

-0.1 -0.05 0 0.05 0.1
0.08

0.13

0.18

0.23

0.28
Desired Actual

Figure 55: End-effector path tracking of the 5R-manipulator
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0 1.5 3 4.5 6
-0.06

0

0.06
Desired Actual

0 1.5 3 4.5 6
0.1

0.185

0.27

Figure 56: End-effector coordinates tracking of the 5R-manipulator

0 1.5 3 4.5 6
-1

-0.5

0

0.5

1

Figure 57: Control torques of the 5R-manipulator
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0 1.5 3 4.5 6
-0.4

0

0.4

0 1.5 3 4.5 6
-0.4

0

0.4

Figure 58: Decentralized control forces of the 5R-manipulator

0 1.5 3 4.5 6
-6

-4

-2
(a): Model constraints

0 1.5 3 4.5 6
-4

-2

0
(b): Control constraints of the first chain

0 1.5 3 4.5 6
-4

-2

0
(c): Control constraints of the second chain

Figure 59: Constraints of the 5R-manipulator
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4.3.5 4×RR-mechanism

Figure 60 (a) show the 4×RR-mechanism. This parallel mechanism is similar to the previous

example of the 5R-manipulator in the kinematic structure once it is composed of open chains

connected to the end-effector. However, the improved rigidity of the 4×RR-mechanism enables

the execution of more complex tasks, such as high precision machining, grinding, etc. Also, it

should be emphasized that there is an actuation redundancy (non-kinematic) once the system has

more actuators than those required to perform the planar motion.

(x1,1, y1,1)

(x2,1, y2,1)

θ1,1

θ2,1

O1,1
x̂1,1

ŷ1,1

x̂2,1

ŷ2,1

O2,1

(x2,2, y2,2)

(x1,2, y1,2)

θ1,2

θ2,2

O1,2
ŷ1,2

x̂1,2

O2,2

ŷ2,2

(x1,4, y1,4)

(x2,4, y2,4)

θ1,4

θ2,4

O1,4
x̂1,4

ŷ1,4

x̂2,4

ŷ2,4

O2,4

(x2,3, y2,3)

(x1,3, y1,3)

θ1,3

θ2,3

O1,3
ŷ1,3

x̂1,3

O2,3

ŷ2,3

x̂3

ŷ3

x̂2,2

x̂2,3

(x3, y3)

O x̂

ŷ

τ1 τ2

τ3τ4

B

H

(a): 4×RR-mechanism schematic diagram

S

B

A1 A2G

S1

A1 A2G

S2

A1 A2G

S3

A1 A2G

S4

B

(b): Modeling/control hierarchy

Figure 60: 4×RR-mechanism model
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In the modeling hierarchy of Fig. 60 (b), G is the ground, bodies Ai (i = 1, 2) are the

manipulator links, and body B is the end-effector. In the subsystems Si, an active revolute joint

(grey circle) connects the first link with the ground and a passive revolute joint connects the

second link with the first one. In the system S, four passive revolute joints (white circle) connects

the chains with the end-effector. In this example, the control synthesis is performed from five

sub-controllers, i.e., one controller four each chain and one for the end-effector. The generalized

coordinates of the synthesis are given by q =
[
qT

12,1, . . . ,q
T
12,4,q

T
3

]T
, where q12,i =

[
θ1,i, θ2,i

]T

(i = 1, . . . , 4) and q3 =
[
x3, y3, θ3

]T as seen in Fig. 60 (a). The trivial set of quasi-velocities and

quasi-accelerations is used once again, i.e., v = q̇ and a = v̇.

For this example, we synthesized the decentralized controllers using the soft control con-

straints formulation of Eq. (4.120). Due to the kinematic structure, we can use the same control

constraints initially made for the RR-manipulators of the previous example on the chains of

the 4×RR-mechanism. First, however, we should add a new set of control constraints for the

end-effector. For this sake, let the sliding surface for the end-effector be given by:

s3 (v3,q3, t) = ˙̃q3 + Λq̃3 = 0, (4.226)

where q̃3 = q3 − qd,3 is the tracking error column-vector and Λ3 = Λ
T
3 ≥ 0 is a control gain

matrix associated to the closed-loop bandwidth.

Based on Eq. (4.226), the following servo-constraints are defined:

φSC,3 (v3,q3, t) = s3 (v3,q3, t) = 0. (4.227)

Performing the time-derivative of Eq. (4.227) and imposing the sliding condition, we get:

φ̇SC,3 = −L3s3 −K3 sign (s3) , (4.228)

where L3 = LT
3 ≥ 0 and K3 = KT

3 ≥ 0 are control gains matrices.

Moreover, Eq. (4.228) can be rewritten as:

ASC,3aSC,3 = bSC,3 (v3,q3, t) , (4.229)

where

ASC,3 =


1 0 0

0 1 0

0 0 1

 ; bSC,3 = q̈3,d − Λ3 ˙̃q3 − L3s3 −K3 sign (s3) . (4.230)
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The decentralized controllers are obtained with the constraints of Eqs. (4.215) and (4.229),

solving the following QP-problem based on Eq. (4.120):

min
u0

Ji =
1
2

uT
0,iRu0,i,

s.t.

−JSC,i
+JSC,i

 u0,i ≤

εi − xSC,i
εi + xSC,i

 , (i = 1, . . . , 5)
(4.231)

where εi =
[
εi, j

]T
(i = 1, . . . , 5; j = 1, . . . , n) with components εi, j. A possible choose of smooth

function presented in Heshmati-Alamdari et al. (2021b) is:

εi, j(t) =
(
εi, j,0 − εi, j,∞

)
exp (−λt) + ρi, j,∞, (4.232)

where the constant λ dictates the exponential convergence rate, εi, j,∞ denotes the ultimate bound

and εi, j,0 is chosen to satisfy ρi, j,0 ≥
∣∣∣ḣSC,i, j(0)

∣∣∣.
The decentralized controllers are given by:

u0 =



u0,1

u0,2

u0,3

u0,4

u0,5


. (4.233)

To enforce the modeling constraints on the decentralized controllers of Eq. (4.233) with the

recursive Algorithm 2, let the constraint equation between each end-effector and the platform be

given by:

φ̃i (q, t) = p⃗I
O3,i |Si

(q, t) − p⃗I
O3,i |B (q, t) = 0, (i = 1, . . . , 4) (4.234)

with

p⃗I
O3,1 |S1

=

x3 − B cos (θ3) − H sin (θ3)

y3 − H cos (θ3) + B sin (θ3)

 ; p⃗I
O3,2 |S2

=

x3 + B cos (θ3) − H sin (θ3)

y3 − H cos (θ3) − B sin (θ3)

 ,
p⃗I

O3,3 |S3
=

x3 + B cos (θ3) + H sin (θ3)

y3 + H cos (θ3) − B sin (θ3)

 ; p⃗I
O3,4 |S4

=

x3 − B cos (θ3) + H sin (θ3)

y3 + H cos (θ3) + B sin (θ3)

 ,
(4.235)
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and

p⃗I
O3,1 |B =

2l1,1 cos
(
θ1,1

)
− x0 + 2l2,1 cos

(
θ1,1 + θ2,1

)
2l1,1 sin

(
θ1,1

)
− y0 + 2l2,1 sin

(
θ1,1 + θ2,1

)
 ,

p⃗I
O3,2 |B =

x0 − 2l1,2 cos
(
θ1,2

)
− 2l2,2 cos

(
θ1,2 + θ2,2

)
2l1,2 sin

(
θ1,2

)
− y0 + 2l2,2 sin

(
θ1,2 + θ2,2

)
 ,

p⃗I
O3,3 |B =

x0 − 2l1,3 cos
(
θ1,3

)
− 2l2,3 cos

(
θ1,3 + θ2,3

)
y0 − 2l1,3 sin

(
θ1,3

)
− 2l2,3 sin

(
θ1,3 + θ2,3

)
 ,

p⃗I
O3,4 |B =

2l1,4 cos
(
θ1,4

)
− x0 + 2l2,4 cos

(
θ1,4 + θ2,4

)
y0 − 2l1,4 sin

(
θ1,4

)
− 2l2,4 sin

(
θ1,4 + θ2,4

)
 ,

(4.236)

where B and H are the dimensions of the end-effector platform, ±x0 and ±y0 are the coordinates

of the first revolute joint of each chain, while 2li, j (i = 1, . . . , 4; j = 1, . . . , 4) are the links lengths.

Performing the second time-derivative of Eq. (4.234), we get:

¨̃φi (a, v,q, t) = 0⇔ Ãi (q, t) a − b̃i (v,q, t) = 0, (i = 1, . . . , 4) (4.237)

where

Ã1 =

 −2l1,1 sin
(
θ1,1

)
− 2l2,1 sin

(
θ1,1 + θ2,1

)
−2l2,1 sin

(
θ1,1 + θ2,1

)
0 0 0 0 0 0 −1 0 H cos (θ3) − B sin (θ3)

2l1,1 cos
(
θ1,1

)
+ 2l2,1 cos

(
θ1,1 + θ2,1

)
2l2,1 cos

(
θ1,1 + θ2,1

)
0 0 0 0 0 0 0 −1 −B cos (θ3) − H sin (θ3)

 ,
Ã2 =

 0 0 2l1,2 sin
(
θ1,2

)
+ 2l2,2 sin

(
θ1,2 + θ2,2

)
2l2,2 sin

(
θ1,2 + θ2,2

)
0 0 0 0 −1 0 H cos (θ3) + B sin (θ3)

0 0 2l1,2 cos
(
θ1,2

)
+ 2l2,2 cos

(
θ1,2 + θ2,2

)
2l2,2 cos

(
θ1,2 + θ2,2

)
0 0 0 0 0 −1 B cos (θ3) − H sin (θ3)

 ,
Ã3 =

 0 0 0 0 2l1,3 sin
(
θ1,3

)
+ 2l2,3 sin

(
θ1,3 + θ2,3

)
2l2,3 sin

(
θ1,3 + θ2,3

)
0 0 −1 0 B sin (θ3) − H cos (θ3)

0 0 0 0 −2l1,3 cos
(
θ1,3

)
− 2l2,3 cos

(
θ1,3 + θ2,3

)
−2l2,3 cos

(
θ1,3 + θ2,3

)
0 0 0 −1 B cos (θ3) + H sin (θ3)

 ,
Ã4 =

 0 0 0 0 0 0 −2l1,4 sin
(
θ1,4

)
− 2l2,4 sin

(
θ1,4 + θ2,4

)
−2l2,4 sin

(
θ1,4 + θ2,4

)
−1 0 −H cos (θ3) − B sin (θ3)

0 0 0 0 0 0 −2l1,4 cos
(
θ1,4

)
− 2l2,4 cos

(
θ1,4 + θ2,4

)
−2l2,4 cos

(
θ1,4 + θ2,4

)
0 −1 H sin (θ3) − B cos (θ3)

 ,

(4.238)

and

b̃1 =

 2θ̇2
1,1l2,1 cos

(
θ1,1 + θ2,1

)
+ 2θ̇2

2,1l2,1 cos
(
θ1,1 + θ2,1

)
+ 2θ̇2

1,1l1,1 cos
(
θ1,1

)
+ Bθ̇2

3 cos (θ3) + Hθ̇2
3 sin (θ3) + 4θ̇1,1θ̇2,1l2,1 cos

(
θ1,1 + θ2,1

)
2θ̇2

1,1l2,1 sin
(
θ1,1 + θ2,1

)
+ 2θ̇2

2,1l2,1 sin
(
θ1,1 + θ2,1

)
+ 2θ̇2

1,1l1,1 sin
(
θ1,1

)
+ Hθ̇2

3 cos (θ3) − Bθ̇2
3 sin (θ3) + 4θ̇1,1θ̇2,1l2,1 sin

(
θ1,1 + θ2,1

)
 ,

b̃2 =

 Hθ̇2
3 sin (θ3) − 2θ̇2

2,2l2,2 cos
(
θ1,2 + θ2,2

)
− 2θ̇2

1,2l1,2 cos
(
θ1,2

)
− Bθ̇2

3 cos (θ3) − 2θ̇2
1,2l2,2 cos

(
θ1,2 + θ2,2

)
− 4θ̇1,2θ̇2,2l2,2 cos

(
θ1,2 + θ2,2

)
2θ̇2

1,2l2,2 sin
(
θ1,2 + θ2,2

)
+ 2θ̇2

2,2l2,2 sin
(
θ1,2 + θ2,2

)
+ 2θ̇2

1,2l1,2 sin
(
θ1,2

)
+ Hθ̇2

3 cos (θ3) + Bθ̇2
3 sin (θ3) + 4θ̇1,2θ̇2,2l2,2 sin

(
θ1,2 + θ2,2

)
 ,

b̃3 =

 −2θ̇2
1,2l2,3 cos

(
θ1,3 + θ2,3

)
− 2θ̇2

2,3l2,3 cos
(
θ1,3 + θ2,3

)
− 2θ̇2

1,2l1,3 cos
(
θ1,3

)
− Bθ̇2

3 cos (θ3) − Hθ̇2
3 sin (θ3) − 4θ̇1,3θ̇2,3l2,3 cos

(
θ1,3 + θ2,3

)
Bθ̇2

3 sin (θ3) − 2θ̇2
2,3l2,3 sin

(
θ1,3 + θ2,3

)
− 2θ̇2

1,2l1,3 sin
(
θ1,3

)
− Hθ̇2

3 cos (θ3) − 2θ̇2
1,2l2,3 sin

(
θ1,3 + θ2,3

)
− 4θ̇1,3θ̇2,3l2,3 sin

(
θ1,3 + θ2,3

)
 ,

b̃4 =

 2θ̇2
1,4l2,4 cos

(
θ1,4 + θ2,4

)
+ 2θ̇2

2,4l2,4 cos
(
θ1,4 + θ2,4

)
+ 2θ̇2

1,4l1,4 cos
(
θ1,4

)
+ Bθ̇2

3 cos (θ3) − Hθ̇2
3 sin (θ3) + 4θ̇1,4θ̇2,4l2,4 cos

(
θ1,4 + θ2,4

)
−2θ̇2

1,4l2,4 sin
(
θ1,4 + θ2,4

)
− 2θ̇2

2,4l2,4 sin
(
θ1,4 + θ2,4

)
− 2θ̇2

1,4l1,4 sin
(
θ1,4

)
− Hθ̇2

3 cos (θ3) − Bθ̇2
3 sin (θ3) − 4θ̇1,4θ̇2,4l2,4 sin

(
θ1,4 + θ2,4

)
 .

(4.239)
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The angle of the first link of each chain is actuated
(
θ1,i; i = 1, 2, 3, 4

)
. Thus, the identification

matrices Q and R are given by:

Q =



1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



; R =
[
R̃1 R̃2 R̃3 R̃4

]
=



0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1



. (4.240)

The terms of the last columns of R are set to one to handle actuation redundancy directly.

The controller of the 4×RR-mechanism is obtained using the decentralized controllers of

Eq. (4.233) and the modeling constraints of Eqs. (4.234)–(4.240) as inputs into Algorithm 2.

The controller is tested on the trajectory tracking problem of the following circular trajectory

(in meters):
x3,d (t) = 0.55 cos (0.20πt) ,

y3,d (t) = 0.55 sin (0.20πt) ,

θ3,d (t) = 0.

(4.241)

The numerical simulations were performed with the same previous setup. Table 9 shows the

parameters used in the simulation.
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Table 9: 4×RR-mechanism parameters

Symbols (i = 1, ..., 4) Values Units (SI)

m1,i,m2,i,m3 1, 1, 5 kg

I1,i, I2,i, I3 1, 1, 5 kgm2

b1,i, b2,i, b3 1, 1, 1 Nms

c1,i, c2,i, c3 1, 1, 1 Nm

l1,i, l2,i, lG1,i, , lG2,i, l3 0.5, 0.5, 0.25, 0.25, 0.25 m

Λi,Λ5 diag (1, 1), diag (1, 1, 1) 1/s

Li,L5 diag (5, 5), diag (5, 5, 5) 1/s

Ki,K5 diag (2, 2), diag (2, 2, 2) rad/s2,m/s2

ϵi = ϵ5 0.1 –

The results are shown in Figs. 61 to 67. Figs. 61 and 62 show the end-effector tracking,

while Fig. 63 show the associated angular displacements of the chains. The tracking achieved is

good, and the motion obtained is smoother, especially on the reaching phase, which is due to

soft control constraints formulation. The decentralized control torques and forces are shown in

Figs. 64 and 65, while the control torques are shown in Fig. 66. We can notice the dry friction

effects in Figs. 64 and 65, which is reflected on control torques of Fig. 65. Also, there is no

control saturation since the soft control constraints relieve the feedback action during the early

instant, as can be seen in Fig. 67, where the control constraints are around 2, at the beginning of

the simulation, and about 0.1 at the end. The modeling constraints order is 10−4.
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Figure 61: End-effector path tracking of the 4×RR-mechanism
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Figure 62: End-effector coordinates tracking of the 4×RR-mechanism
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Figure 63: Displacements of the 4×RR-mechanism

Figure 64: Decentralized control torques of the 4×RR-mechanism chains
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Figure 65: Decentralized control forces and torque of the 4×RR-mechanism load
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Figure 66: Control torques of the 4×RR-mechanism
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Figure 67: Constraints of the 4×RR-mechanism
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4.3.6 2×PRR-manipulator

Figure 68 (a) show the 2×PRR-manipulator, which is another variation of the 5R-manipulator

with kinematic redundancy once the system has more independent DoFs than those required

to perform the planar motion. It comprises two open chains similar to the slider-crank mecha-

nism but without prismatic constraints on the end-effector. This structure permits an increased

workspace compared to the 5R-manipulator, which indicates its application for tasks involving

long-range motion, such as machining or 3D printing.
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(a): 2×PRR-manipulator schematic diagram
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(b): Modeling/control hierarchy

Figure 68: 2×PRR-manipulator model

In the modeling hierarchy of Fig. 68 (b), G is the ground, body A is the sliding block,

bodies Bi (i = 1, 2) are the manipulator links, and body C is the end-effector. The subsystems
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S i (i = 1, 2) are the chains and the system S represents the entire 2×PRR-manipulator. In the

subsystems S i (i = 1, 2), an active prismatic joint (grey circle) connects the sliding block with

the ground, an active revolute joint (grey circle) connects the first link with the sliding block and

a passive revolute joint (white circle) connects the second link with the first one. For the system

S, a passive revolute joint (white circle) connects chains and the end-effector. In this example,

we perform the control synthesis from the sub-models of the PRR-manipulator. The independent

generalized coordinates considered for the synthesis are given by q# =
[
qT

#,1,q
T
#,2

]T
, where q#,i =[

x1,i, γ1,i, γ2,i
]T (i = 1, 2) as seen in Fig. 68 (a). The dependent generalized coordinates considered

for the synthesis are given by q∗ =
[
qT
∗,1,q

T
∗,2

]T
, where q∗,i =

[
y1,i, θ1,i, γi, x2,i, y2,i, θ2,i, x3,i, y3,i, θ3,i

]T

(i = 1, 2) as seen in Fig. 68 (a). The generalized coordinates can be arranged as q = Qq# +Rq∗ =[
qT

j,i

]
, with qT

j,i =
[
x j,i, y j,i, θ j,i, γ j,i

]T
( j = 1, 2, 3). The trivial set of quasi-velocities and quasi-

accelerations is used again, i.e., v = q̇ and a = v̇.

The terms of the relaxed dynamic model for the PRR-manipulator are given by:

Mi =


M1,i 0 0

0 M2,i 0

0 0 M3,i

 ; fi =


f1,i

f2,i

f3,i

 , (i = 1, 2) (4.242)

where

M j,i =



m j,i 0 0 0

0 m j,i 0 0

0 0 I j,i 0

0 0 0 0


; fi = fA,i + fM,i. (i = 1, 2; j = 1, 2, 3) (4.243)

The zero on the last diagonal term of M j,i is due to the additional coordinated associated with

the relative angular coordinate γ j,i (i = 1, 2; j = 1, 2, 3) of the rotational motor on the respective

body.

The active forces due to natural psychical effects and motor forces are written as:

fA, j,i =



0

−m j,ig

0

0


; fM,1,i =



f1,i

0

0

0


; fM,2,i =



0

0

0

τ2,i


; fM,3,i =



0

0

0

0


, (i = 1, 2; j = 1, 2, 3) (4.244)

where f1,i is the actuation force of the sliding block and τ2,i is the motor torque on the second

link of the i-th chain (i = 1, 2).
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The modeling constraints of the i-th chain are given by:

φi (q, t) =



y1,i

θ1,i − γi

γ1,i − ϕi

x2,i −
(
x1,i + li cos

(
θ2,i

))
y2,i −

(
y1,i + li sin

(
θ2,i

))
γ2,i − θ2,1

x3,i −
(
x2,i + li cos

(
θ2,i

)
+ li cos

(
θ3,i

))
y3,i −

(
y2,i + li sin

(
θ2,i

)
+ li sin

(
θ3,i

))
γ3,i −

(
θ3,i − θ2,i

)



= 0. (i = 1, 2) (4.245)

The Jacobian matrix and the associated column-vector of the constraints of Eq. (4.245), i.e.,

Ai and bi (i = 1, 2), respectively, follow:

Ai =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 li sin
(
θ2,i

)
0 0 0 0 0

0 −1 0 0 0 1 −li cos
(
θ2,i

)
0 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 0 li sin
(
θ2,i

)
0 1 0 li sin

(
θ3,i

)
0

0 0 0 0 0 −1 −li cos
(
θ2,i

)
0 0 1 −li cos

(
θ3,i

)
0

0 0 0 0 0 0 1 0 0 0 −1 1



,

bi =



0

0

−li cos
(
θ2,i

)
θ̇2

2,i

−li sin
(
θ2,i

)
θ̇2

2,i

0

−li

(
cos

(
θ2,i

)
θ̇2

2,i + cos
(
θ3,i

)
θ̇2

3,i

)
−li

(
sin

(
θ2,i

)
θ̇2

2,i + sin
(
θ3,i

)
θ̇2

3,i

)
0



.

(4.246)
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For q#,i =
[
x1,i, γ2,i, γ3,i

]T (i = 1, 2), the identification matrices of the chains become:

Qi =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1



; Ri =



0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0



. (4.247)

Using Eqs. (4.242)–(4.247) together with the relations q̇i = Siq̇#,i and q̈i = Siq̈#,i + Ṡiq̇#,i as

inputs to the Algorithm 1, the modular model of the i-th chain in minimal coordinates is obtained

as below:

Ni = ST
i MiSi + ST

i AT
i WiAi; gi = ST

i

(
fi −MiṠiq̇#,i + AT

i bi + ci

)
, (i = 1, 2) (4.248)

where Ni is the generalized inertia matrix and gi is the column-vector of active forces of the i-th

chain in minimal coordinates. Once ST
i AT

i = AiSi = 0, then, Eq. (4.248) becomes:

Ni = ST
i MiSi; gi = ST

i

(
fi −MiṠiq̇#,i

)
. (i = 1, 2) (4.249)

The generalized inertia matrix of the i-th chain is written as:

Ni =


N11,i N12,i N13,i

N21,i N22,i N23,i

N31,i N32,i N33,i

 , (i = 1, 2) (4.250)
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with
N11,i = m123,i,

N12,i = −m3,i2lisγ2,i − m2,ilisγ2,i − m3,ilisγ23,i ,

N13,i = −m3,ilisγ23,i ,

N21,i = N12,i,

N22,i = m3,i4l2
i + 2m3,icγ3,i2l2

i + m2,il2
i + m3,il2

i + I23,i,

N23,i = m3,il2
i + m3,ilicγ3,ili + I3,i,

N31,i = N12,i,

N32,i = N23,i,

N33,i = m3,il2
i + I3,i.

(4.251)

The column-vector of active forces of the i-th chain is written as:

gi =


g1,i

g2,i

g3,i

 , (i = 1, 2) (4.252)

where

g1,i = m3,iliγ̇
2
2,icγ23,i − m123,igsϕi + m3,iliγ̇

2
3,icγ23,i + m3,iliγ̇

2
2,icγ2,i + . . .

m2,iliγ̇
2
2,icγ2,i + 2m3,iliγ̇2,iγ̇3,icγ23,i ,

g2,i = m3,i2l2
i γ̇3,isγ3,i

(
2γ̇2,i + γ̇3,i

)
− m3,iglicϕi+γ23,i − m3,iglicϕi+γ2,i − m2,iglicϕi+γ2,i ,

g3,i = −m3,il2
i sγ3,i γ̇

2
2,i − m3,iglicϕi+γ23,i .

(4.253)

In Eqs. (4.251) and 4.253, we have:

sγ2,i = sin
(
γ2,i

)
;

sγ3,i = sin
(
γ3,i

)
;

sγ23,i = sin
(
γ2,i + γ3,i

)
;

sϕi = sin (ϕi) ;

sϕi+γ2,i = sin
(
ϕi + γ2,i

)
;

sϕi+γ23,i = sin
(
ϕi + γ2,i + γ3,i

)
;

cγ2,i = cos
(
γ2,i

)
,

cγ3,i = cos
(
γ3,i

)
,

cγ23,i = cos
(
γ2,i + γ3,i

)
,

cϕi = cos (ϕi) ,

cϕi+γ2,i = cos
(
ϕi + γ2,i

)
,

cϕi+γ23,i = cos
(
ϕi + γ2,i + γ3,i

)
,

(4.254)

where ϕ1 = 0 and ϕ2 = π/2 radians.



175

From Eqs. (4.250)–(4.253), the decoupled model of the 2×PRR-manipulator becomes:

N =

N1 0

0 N2

 ; g =

g1

g2

 . (4.255)

The modeling constraints between the chains are given by the equality of the end-effectors

position:

φ (q, t) = p⃗I
4,1 (q, t) − p⃗I

4,2 (q, t) = 0, (4.256)

where

p⃗I
4,1 =

x4,1

y4,1

 =
r1,1 cos (ϕ1) + 2l1 cos(ϕ1 + γ2,1) + 2l1 cos

(
ϕ1 + γ23,1

)
r1,1 sin (ϕ1) + 2l1 sin(ϕ1 + γ2,1) + 2l1 sin

(
ϕ1 + γ23,1

)
 ,

p⃗I
4,2 =

x4,2

y4,2

 =
x0 + r1,2 cos (ϕ2) + 2l2 cos

(
ϕ2 + γ2,2

)
+ 2l2 cos

(
ϕ2 + γ23,2

)
y0 + r1,2 sin (ϕ2) + 2l2 sin

(
ϕ2 + γ2,2

)
+ 2l2 sin

(
ϕ2 + γ23,2

)
 ,

(4.257)

with x0 and y0 are the initial coordinates of the sliding block of the second chain.

The second time-derivative of Eq. (4.256) results in:

φ̈ (a, v,q, t)⇔ A (q, t) a − b (v,q, t) = 0, (4.258)

where

A = 2
[
A1:2,1 −A1:2,2

]
; b = 2

b1

b2

 , (4.259)

with

A1:2,1 =

 0.5 cos (ϕ1) −l1
(
sin

(
ϕ1 + γ2,1

)
+ sin

(
ϕ1 + γ23,1

))
−l1 sin

(
ϕ1 + γ23,1

)
0.5 sin (ϕ1) l1

(
cos

(
ϕ1 + γ2,1

)
+ cos

(
ϕ1 + γ23,1

))
l1 cos

(
ϕ1 + γ23,1

)
 ,

A1:2,2 =

 0.5 cos (ϕ2) −l2
(
sin

(
ϕ2 + γ2,2

)
+ sin

(
ϕ2 + γ23,2

))
−l2 sin

(
ϕ2 + γ23,2

)
0.5 sin (ϕ2) l2

(
cos

(
ϕ2 + γ2,2

)
+ cos

(
ϕ2 + γ23,2

))
l2 cos

(
ϕ2 + γ23,2

)
 ,

(4.260)

and

b1 = l1γ̇
2
2,1 cos

(
ϕ1 + γ2,1

)
− l2γ̇

2
2,2 cos

(
ϕ2 + γ2,2

)
+ l1γ̇

2
2,1 cos

(
ϕ1 + γ23,1

)
+ . . .

l1γ̇
2
3,1 cos

(
ϕ1 + γ23,1

)
− l2γ̇

2
2,2 cos

(
ϕ2 + γ23,2

)
− l2γ̇

2
3,2 cos

(
ϕ2 + γ23,2

)
+ . . .

2l1γ̇2,1γ̇3,1 cos
(
ϕ1 + γ23,1

)
− 2l2γ̇2,2γ̇3,2 cos

(
ϕ2 + γ23,2

)
,

b2 = l1γ̇
2
2,1 sin

(
ϕ1 + γ2,1

)
− l2γ̇

2
2,2 sin

(
ϕ2 + γ2,2

)
+ l1γ̇

2
2,1 sin

(
ϕ1 + γ23,1

)
+ . . .

l1γ̇
2
3,1 sin

(
ϕ1 + γ23,1

)
− l2γ̇

2
2,2 sin

(
ϕ2 + γ23,2

)
− l2γ̇

2
3,2 sin

(
ϕ2 + γ23,2

)
+ . . .

2l1γ̇2,1γ̇3,1 sin
(
ϕ1 + γ23,1

)
− 2l2γ̇2,2γ̇3,2 sin

(
ϕ2 + γ23,2

)
.

(4.261)
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With the actuated coordinates be given by q# =
[
qT

#,1,q
T
#,2

]T
, where q#,i =

[
x1,i, γ2,i

]T (i = 1, 2),

the identification matrices become:

Q =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



; R =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (4.262)

Also, let the sliding surface for the states of the 2×PRR-manipulator be given by:

s (v,q, t) = ˙̃q + Λq̃ = 0, (4.263)

where q̃ = q − qd is the column-vector of tracking error and Λ = ΛT ≥ 0 is a control gain

matrix associated to the closed-loop bandwidth. The reference states (qd, q̇d, q̈d) of the 2×PRR-

manipulator are generated through the redundancy resolution approach on the acceleration level

presented by Tang et al. (2017). This approach establishes a relation between the end-effector

coordinates and the joints displacements by the direct kinematics. Performing the second-time

derivative of this relation is possible to solve for the joints accelerations in terms of the end-

effector variables. The joints accelerations are then numerically integrated with compatible initial

conditions to obtain the associated velocities and displacements.
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Based on Eq. (4.263), the following servo-constraints are defined:

φSC (v,q, t) = s (v,q, t) = 0. (4.264)

Performing the time-derivative of Eq. (4.264) and imposing the sliding condition, we get:

φ̇SC = −Ls −K sign (s) , (4.265)

where L = LT ≥ 0 and K = KT ≥ 0 are control gains matrices.

Moreover, Eq. (4.265) can be rewritten as:

ASCaSC = bSC (v,q, t) , (4.266)

where

ASC =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


; bSC = q̈d − Λ ˙̃q − Ls −K sign (s) . (4.267)

Taking yr = bSC and Eqs. (4.255)–(4.267) as inputs to the Algorithm 3, the MPC formulation

can be used to obtain the controller of the 2×PRR-manipulator.

The controller is tested on the trajectory tracking problem of a linear trajectory with vertices

coordinates given by (in meters):

p⃗1 =

0.40

1.60

 ; p⃗2 =

1.60

0.40

 . (4.268)

The linear trajectory is parameterized as a polynomial trajectory of 5-th degree to impose

zero velocity, acceleration and jerk at the beginning and end of the motion, as follows:

rd (t) = r (ti) + (r (tf) − r (ti))
(
6δt5 − 15δt4 + 10δt3

)
. (4.269)

The numerical simulations were performed with the same previous setup. Table 10 show the

parameters used in the simulation.
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Table 10: 2×PRR-manipulator parameters

Symbols (i = 1, 2) Values Units (SI)

m1,i,m2,i,m3,i 1, 1, 1 kg

I1,i, I2,i, I3,i 0.25, 0.25, 0.25 kgm2

l2,i, l3,i, lG2,i, lG3,i 0.25, 0.25, 0.25, 0.25 m

Λi diag (1, 1, 1) 1/s

Li diag (100, 100, 100) 1/s

Ki diag (100, 100, 100) m/s2, rad/s2

ϵ 0.1 –

QY,PY diag (10, 10, 10, 10, 10, 10) –

RU# diag (0.10, 0.10, 0.10, 0.10) –

Ωa diag (900, 900, 900, 900, 900, 900) rad/s

p, c 20, 10 –

Ts 0.1 s

The results are shown in Figs. 69 to 73. Figs. 69 and 70 show the end-effector tracking,

while Fig. 71 show the associated displacements of the chains. The tracking achieved is good,

and the motion obtained is smooth. The control torques are shown in Fig. 72, where we can

notice a discontinuity at the beginning of the simulation, which is induced by the reference states

generated through the redundancy resolution approach of Tang et al. (2017). Also, a saturation at

t = 0.6 s is intentionally induced during the simulation to verify control stability. As can be seen

in Fig. 73, the saturation results in a peak in the cost function, which monotonically decreases

the after that, ensuring the control stability. The modeling constraints order is 10−14.
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Figure 69: End-effector path tracking of the 2×PRR-manipulator
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Figure 70: End-effector coordinates tracking of the 2×PRR-manipulator
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Figure 71: Displacements tracking of the 2×PRR-manipulator
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Figure 72: Control torques of the 2×PRR-manipulator
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Figure 73: Cost function of the 2×PRR-manipulator
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4.3.7 2-DoFs helicopter

Figure 74 show the Quanser AERO model, a 2-DoFs helicopter plant used as a standard

platform for general control tests. It comprises two bodies connected by revolute joints. The

pitch and yaw angles are actuated by the thrusters attached to the upper body.

Figure 74: Quanser AERO

The schematic diagram and modeling hierarchy adopted of this example are shown in Fig. 75.
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(x2, y2, z2)

f2

f1

x̂1
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(a): 2-DoFs helicopter schematic diagram

S

A1 A2G

(b): Modeling/control hierarchy

Figure 75: 2-DoFs helicopter model
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In this example the modeling is performed in the 3D space, thus, the generalized coordinates

and quasi-velocities are given by q =
[
qT

1 ,q
T
2

]T
and v =

[
vT

1 , v
T
2

]T
, with qi =

[
xi, yi, zi, ϕi, θi, ψi

]T

and vi =
[
ui, vi,wi, pi, qi, ri

]T being the column-vectors of generalized coordinates and quasi-

velocities, respectively, both associated to the i-th body (i = 1, 2), as shown in Fig. 75 (a). In

the modeling hierarchy of Fig. 75 (b), G is the ground, body A1 is the base and body A2 is the

helicopter, while system S is the 2-DoFs helicopter. Also, active revolute joints (grey circles)

connect the base with the ground and the helicopter with the base. The relationship between

generalized velocities and quasi-velocities and its time derivative are given, respectively, by

q̇ = Jv and q̈ = Jv̇+ J̇v, where J is the transformation matrix between body-fixed and Earth-fixed

coordinate systems.

The relaxed dynamic model is given by:

q̇ = Jv; Na0 = g, (4.270)

where

J =

J1 0

0 J2

 ; N =M; M =

M1 0

0 M2

 ; g = f; f =

f1

f2

 . (4.271)

The transformation matrix related to the i-th body in terms of Euler angles is given by:

Ji =



cos (ψi) cos (θi) cos (ψi) sin (ϕi) sin (θi) − cos (ϕi) sin (ψi) sin (ϕi) sin (ψi) + cos (ϕi) cos (ψi) sin (θi) 0 0 0

cos (θi) sin (ψi) cos (ϕi) cos (ψi) + sin (ϕi) sin (ψi) sin (θi) cos (ϕi) sin (ψi) sin (θi) − cos (ψi) sin (ϕi) 0 0 0

− sin (θi) cos (θi) sin (ϕi) cos (ϕi) cos (θi) 0 0 0

0 0 0 i sin(ϕi) sin(θi)
cos(θi)

cos(ϕi) sin(θi)
cos(θi)

0 0 0 0 cos (ϕi) − sin (ϕi)

0 0 0 0 sin(ϕi)
cos(θi)

cos(ϕi)
cos(θi)


. (i = 1, 2) (4.272)

The inertia matrix and active forces column-vectors related to the i-th body are written as:

Mi =



mi 0 0 0 mizG,i −miyG,i

0 mi 0 −mizG,i 0 mixG,i

0 0 mi miyG,i −mixG,i 0

0 −mizG,i miyG,i Ixx,i −
Ixy,i

2
−

Iyx,i

2
−

Ixz,i

2
−

Izx,i

2
mizG,i 0 −mixG,i −

Ixy,i

2
−

Iyx,i

2
Iyy,i −

Iyz,i

2
−

Izy,i

2
−miyG,i mixG,i 0 −

Ixz,i

2
−

Izx,i

2
−

Iyz,i

2
−

Izy,i

2
Izz,i


,

fi = fA,i + fM,i, (i = 1, 2)

(4.273)

where mi is the mass and Ii is the inertia moment, while fA,i and fM,i are the column-vectors of

active forces due to the natural physical effects (e.g., weight, friction, etc.) and due to the motor
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forces, respectively. In this example, the active forces column-vectors are expressed by:

fA,i = −Vi (qi, vi) − Divi −Gi (qi) ; fM,1 =



0

0

0

0

0

0


; fM,2 =



0

0

0

0

τθ

τψ


, (4.274)

with

Vi =



V1,i

V2,i

V3,i

V4,i

V5,i

V6,i


; Di =



bu,i 0 0 0 0 0

0 bv,i 0 0 0 0

0 0 bw,i 0 0 0

0 0 0 bp,i 0 0

0 0 0 0 bq,i 0

0 0 0 0 0 br,i


; Gi =



Wi sin (θi)

−Wi cos (θi) sin (ϕi)

−Wi cos (ϕi) cos (θi)

−Wi cos (θi)
(
yG,i cos (ϕi) − zG,i sin (ϕi)

)
Wi

(
zG,i sin (θi) + xG,i cos (ϕi) cos (θi)

)
−Wi

(
yG,i sin (θi) + xG,i cos (θi) sin (ϕi)

)


, (4.275)

and

V1,i = mi

(
qiwi − rivi − q2

i xG,i − r2
i xG,i + piqiyG,i + pirizG,i

)
,

V2,i = −mi

(
piwi − riui + p2

i yG,i + r2
i yG,i − piqixG,i − qirizG,i

)
,

V3,i = mi

(
pivi − qiui − p2

i zG,i − q2
i zG,i + pirixG,i + qiriyG,i

)
,

V4,i = mi piviyG,i − miqiuiyG,i + mi piwizG,i − miriuizG,i −
Iyz,iq2

i

2
−

Izy,iq2
i

2
+ . . .

Iyz,ir2
i

2
+

Izy,ir2
i

2
−

Ixz,i piqi

2
−

Izx,i piqi

2
+

Ixy,i piri

2
+

Iyx,i piri

2
− Iyy,iqiri + Izz,iqiri,

V5,i = −mi pivixG,i + miqiuixG,i + miqiwizG,i − mirivizG,i −
Ixz,ir2

i

2
+

Ixz,i p2
i

2
+ . . .

Izx,i p2
i

2
−

Izx,ir2
i

2
+

Iyz,i piqi

2
+

Izy,i piqi

2
−

Ixy,iqiri

2
−

Iyx,iqiri

2
+ Ixx,i piri − Izz,i piri,

V6,i = −mi piwixG,i + miriuixG,i − miqiwiyG,i + miriviyG,i −
Ixy,i p2

i

2
−

Iyx,i p2
i

2
+ . . .

Ixy,iq2
i

2
+

Iyx,iq2
i

2
−

Iyz,i piri

2
−

Izy,i piri

2
+

Ixz,iqiri

2
+

Izx,iqiri

2
− Ixx,i piqi + Iyy,i piqi,

(4.276)

where bi (i = 1, 2) are the coefficients of viscous friction, while τθ and τψ are the control torques

generated by the thrusters with associated drive voltages uθ and uψ.

Let τ =
[
τθ, τψ

]T
and u =

[
uθ, uψ

]T
be the columns-vectors of control torques and associated

drive voltages of the motors, respectively, such that τ = Tu, where T is the thruster configuration
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matrix, written as follows:

T =

kyy kyz

kzy kzz

 , (4.277)

where kyy, kyz, kzy and kzz are modeling parameters.

The modeling constraints are written with respect to joints centers, as follows:

φ (q, t) =



x1

y1

z1

ϕ1

θ1

x2 − x1

y2 − y1

z2 − z1

ϕ2 − ϕ1

ψ2 − ψ1



= 0. (4.278)

Performing the second time derivative of Eq. (4.275), we get:

φ̈ (a, v,q, t) = 0⇔ A (q, t) a = b (v,q, t) , (4.279)

where

A =
[
A1:2,1 A1:2,2

]
J; b =



b1

b2

b3

b4

b5

b6

b7

b8

b9

b10



− AJ̇v, (4.280)
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with

A1:2,1 =



cos (ψ1) cos (θ1) cos (ψ1) sin (ϕ1) sin (θ1) − cos (ϕ1) sin (ψ1) sin (ϕ1) sin (ψ1) + cos (ϕ1) cos (ψ1) sin (θ1) 0 0 0

cos (θ1) sin (ψ1) cos (ϕ1) cos (ψ1) + sin (ϕ1) sin (ψ1) sin (θ1) cos (ϕ1) sin (ψ1) sin (θ1) − cos (ψ1) sin (ϕ1) 0 0 0

− sin (θ1) cos (θ1) sin (ϕ1) cos (ϕ1) cos (θ1) 0 0 0

0 0 0 1
sin (ϕ1) sin (θ1)

cos (θ1)
cos (ϕ1) sin (θ1)

cos (θ1)
0 0 0 0 cos (ϕ1) − sin (ϕ1)

− cos (ψ1) cos (θ1) cos (ϕ1) sin (ψ1) − cos (ψ1) sin (ϕ1) sin (θ1) − sin (ϕ1) sin (ψ1) − cos (ϕ1) cos (ψ1) sin (θ1) 0 0 0

− cos (θ1) sin (ψ1) − cos (ϕ1) cos (ψ1) − sin (ϕ1) sin (ψ1) sin (θ1) cos (ψ1) sin (ϕ1) − cos (ϕ1) sin (ψ1) sin (θ1) 0 0 0

sin (θ1) − cos (θ1) sin (ϕ1) − cos (ϕ1) cos (θ1) 0 0 0

0 0 0 −1 −
sin (ϕ1) sin (θ1)

cos (θ1)
−

cos (ϕ1) sin (θ1)
cos (θ1)

0 0 0 0 −
sin (ϕ1)
cos (θ1)

−
cos (ϕ1)
cos (θ1)



,

A1:2,2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

cos (ψ2) cos (θ2) cos (ψ2) sin (ϕ2) sin (θ2) − cos (ϕ2) sin (ψ2) sin (ϕ2) sin (ψ2) + cos (ϕ2) cos (ψ2) sin (θ2) 0 0 0

cos (θ2) sin (ψ2) cos (ϕ2) cos (ψ2) + sin (ϕ2) sin (ψ2) sin (θ2) cos (ϕ2) sin (ψ2) sin (θ2) − cos (ψ2) sin (ϕ2) 0 0 0

− sin (θ2) cos (θ2) sin (ϕ2) cos (ϕ2) cos (θ2) 0 0 0

0 0 0 1
sin (ϕ2) sin (θ2)

cos (θ2)
cos (ϕ2) sin (θ2)

cos (θ2)

0 0 0 0
sin (ϕ2)
cos (θ2)

cos (ϕ2)
cos (θ2)



,

(4.281)
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and
b1 = q1u1 sin (ϕ1) sin (ψ1) − p1v1 sin (ϕ1) sin (ψ1) − q1w1 cos (ψ1) cos (θ1) + . . .

r1v1 cos (ψ1) cos (θ1) − p1w1 cos (ϕ1) sin (ψ1) + r1u1 cos (ϕ1) sin (ψ1) + . . .

− p1v1 cos (ϕ1) cos (ψ1) sin (θ1) + q1u1 cos (ϕ1) cos (ψ1) sin (θ1) + . . .

p1w1 cos (ψ1) sin (ϕ1) sin (θ1) − r1u1 cos (ψ1) sin (ϕ1) sin (θ1) ,

b2 = r1v1 cos (θ1) sin (ψ1) − q1w1 cos (θ1) sin (ψ1) + p1w1 cos (ϕ1) cos (ψ1) + . . .

− r1u1 cos (ϕ1) cos (ψ1) + p1v1 cos (ψ1) sin (ϕ1) − q1u1 cos (ψ1) sin (ϕ1) + . . .

− p1v1 cos (ϕ1) sin (ψ1) sin (θ1) + q1u1 cos (ϕ1) sin (ψ1) sin (θ1) + . . .

p1w1 sin (ϕ1) sin (ψ1) sin (θ1) − r1u1 sin (ϕ1) sin (ψ1) sin (θ1) ,

b3 = q1w1 sin (θ1) − r1v1 sin (θ1) + p1w1 cos (θ1) sin (ϕ1) − r1u1 cos (θ1) sin (ϕ1) + . . .

− p1v1 cos (ϕ1) cos (θ1) + q1u1 cos (ϕ1) cos (θ1) ,

cos (θ1)2b4 = sin (ϕ1) q2
1 cos (ϕ1) cos (θ1)2

− sin (2ϕ1) q2
1 + 2q1r1cos (ϕ1)2cos (θ1)2 + . . .

− 4q1r1cos (ϕ1)2
− q1r1cos (θ1)2 + 2q1r1 − p1 sin (θ1) q1 cos (ϕ1) cos (θ1) + . . .

− sin (ϕ1) r2
1 cos (ϕ1) cos (θ1)2 + sin (2ϕ1) r2

1 + p1 sin (ϕ1) sin (θ1) r1 cos (θ1) ,

cos (θ1) b5 = − sin (θ1) q2
1cos (ϕ1)2 + sin (θ1) q2

1 + 2 sin (ϕ1) sin (θ1) q1r1 cos (ϕ1) + . . .

p1 cos (θ1) sin (ϕ1) q1 + sin (θ1) r2
1cos (ϕ1)2 + p1 cos (θ1) r1 cos (ϕ1) ,

b6 = p1v1 sin (ϕ1) sin (ψ1) − q1u1 sin (ϕ1) sin (ψ1) − p2v2 sin (ϕ2) sin (ψ2) + . . .

q2u2 sin (ϕ2) sin (ψ2) + q1w1 cos (ψ1) cos (θ1) − r1v1 cos (ψ1) cos (θ1) + . . .

− q2w2 cos (ψ2) cos (θ2) + r2v2 cos (ψ2) cos (θ2) + p1w1 cos (ϕ1) sin (ψ1) + . . .

− r1u1 cos (ϕ1) sin (ψ1) − p2w2 cos (ϕ2) sin (ψ2) + r2u2 cos (ϕ2) sin (ψ2) + . . .

p1v1 cos (ϕ1) cos (ψ1) sin (θ1) − q1u1 cos (ϕ1) cos (ψ1) sin (θ1) + . . .

− p2v2 cos (ϕ2) cos (ψ2) sin (θ2) + q2u2 cos (ϕ2) cos (ψ2) sin (θ2) + . . .

− p1w1 cos (ψ1) sin (ϕ1) sin (θ1) + r1u1 cos (ψ1) sin (ϕ1) sin (θ1) + . . .

p2w2 cos (ψ2) sin (ϕ2) sin (θ2) − r2u2 cos (ψ2) sin (ϕ2) sin (θ2) ,

b7 = q1w1 cos (θ1) sin (ψ1) − r1v1 cos (θ1) sin (ψ1) − q2w2 cos (θ2) sin (ψ2) + . . .

r2v2 cos (θ2) sin (ψ2) − p1w1 cos (ϕ1) cos (ψ1) + r1u1 cos (ϕ1) cos (ψ1) + . . .

p2w2 cos (ϕ2) cos (ψ2) − r2u2 cos (ϕ2) cos (ψ2) − p1v1 cos (ψ1) sin (ϕ1) + . . .

q1u1 cos (ψ1) sin (ϕ1) + p2v2 cos (ψ2) sin (ϕ2) − q2u2 cos (ψ2) sin (ϕ2) + . . .

p1v1 cos (ϕ1) sin (ψ1) sin (θ1) − q1u1 cos (ϕ1) sin (ψ1) sin (θ1) + . . .

− p2v2 cos (ϕ2) sin (ψ2) sin (θ2) + q2u2 cos (ϕ2) sin (ψ2) sin (θ2) + . . .

− p1w1 sin (ϕ1) sin (ψ1) sin (θ1) + r1u1 sin (ϕ1) sin (ψ1) sin (θ1) + . . .

p2w2 sin (ϕ2) sin (ψ2) sin (θ2) − r2u2 sin (ϕ2) sin (ψ2) sin (θ2) ,

b8 = r1v1 sin (θ1) − q1w1 sin (θ1) + q2w2 sin (θ2) + . . .

− r2v2 sin (θ2) − p1w1 cos (θ1) sin (ϕ1) + r1u1 cos (θ1) sin (ϕ1) + . . .

p2w2 cos (θ2) sin (ϕ2) − r2u2 cos (θ2) sin (ϕ2) + p1v1 cos (ϕ1) cos (θ1) + . . .

− q1u1 cos (ϕ1) cos (θ1) − p2v2 cos (ϕ2) cos (θ2) + q2u2 cos (ϕ2) cos (θ2) ,

−cos (θ1)2cos (θ2)2b9 = sin (ϕ1) q2
1 cos (ϕ1) cos (θ1)2cos (θ2)2

− 2 sin (ϕ1) q2
1 cos (ϕ1) cos (θ2)2 + . . .

2q1r1cos (ϕ1)2cos (θ1)2cos (θ2)2
− 4q1r1cos (ϕ1)2cos (θ2)2

− q1r1cos (θ1)2cos (θ2)2 + . . .

2q1r1cos (θ2)2
− p1 sin (θ1) q1 cos (ϕ1) cos (θ1) cos (θ2)2

− sin (ϕ2) q2
2 cos (ϕ2) cos (θ1)2cos (θ2)2 + . . .

2 sin (ϕ2) q2
2 cos (ϕ2) cos (θ1)2

− 2q2r2cos (ϕ2)2cos (θ1)2cos (θ2)2 + 4q2r2cos (ϕ2)2cos (θ1)2 + . . .

q2r2cos (θ1)2cos (θ2)2
− 2q2r2cos (θ1)2 + p2 sin (θ2) q2 cos (ϕ2) cos (θ1)2 cos (θ2) + . . .

− sin (ϕ1) r2
1 cos (ϕ1) cos (θ1)2cos (θ2)2 + 2 sin (ϕ1) r2

1 cos (ϕ1) cos (θ2)2 + . . .

p1 sin (ϕ1) sin (θ1) r1 cos (θ1) cos (θ2)2 + sin (ϕ2) r2
2 cos (ϕ2) cos (θ1)2cos (θ2)2 + . . .

− 2 sin (ϕ2) r2
2 cos (ϕ2) cos (θ1)2

− p2 sin (ϕ2) sin (θ2) r2cos (θ1)2 cos (θ2) ,

−cos (θ1)2cos (θ2)2b10 = −2 sin (ϕ1) sin (θ1) q2
1 cos (ϕ1) cos (θ2)2

− 4 sin (θ1) q1r1cos (ϕ1)2cos (θ2)2 + . . .

2 sin (θ1) q1r1cos (θ2)2
− p1q1 cos (ϕ1) cos (θ1) cos (θ2)2 + 2 sin (ϕ2) sin (θ2) q2

2 cos (ϕ2) cos (θ1)2 + . . .

4 sin (θ2) q2r2cos (ϕ2)2cos (θ1)2
− 2 sin (θ2) q2r2cos (θ1)2 + p2q2 cos (ϕ2) cos (θ1)2 cos (θ2) + . . .

2 sin (ϕ1) sin (θ1) r2
1 cos (ϕ1) cos (θ2)2 + p1 sin (ϕ1) r1 cos (θ1) cos (θ2)2 + . . .

− 2 sin (ϕ2) sin (θ2) r2
2 cos (ϕ2) cos (θ1)2

− p2 sin (ϕ2) r2cos (θ1)2 cos (θ2) .

(4.282)
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Once pitch (θ2) and yaw (ψ1) angles are actuated, the identification matrices become:

Q =



0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

1 0

0 0



; R =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



. (4.283)

The decentralized controllers are given by:

u0 =

u0,1

u0,2

 , (4.284)

where

u0,i = Niυi + fA,i. (i = 1, 2) (4.285)

Four control types are tested, i.e., PID, SMC, Integral SMC (ISMC) and MPC.

The second-order error dynamic associated with the PID control is given by:

˙̃vi +KD,iṽi +KP,iJ−1
i q̃i +KI,i

∫ t

0
J−1

i q̃idτ = 0, (4.286)

where q̃i = qi−qd,i is the tracking error column-vector, while KP,i = KT
P,i ≥ 0, KI,i = KT

I,i ≥ 0 and

KD,i = KT
D,i ≥ 0 are the proportional, integral and derivative control gain matrices, respectively.

The sliding surface variables are written as:

sSMC,i (vi,qi, t) = ṽi + ΛiJ−1
i q̃i = 0,

sISMC,i (vi,qi, t) = ṽi + 2ΛiJ−1
i q̃i + Λ

2
∫ t

0
J−1

i q̃idτ = 0,
(4.287)

where Λi = Λ
T
i ≥ 0 is a control gain matrix associated with the closed-loop bandwidth.
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Based on Eqs. (4.287) and (4.288), the following control laws are obtained:

υPID,i = v̇d,i −KP,iJ−1
i q̃i −KI,i

∫ t

0
J−1

i q̃idτ −KD,iṽi,

υSMC,i = v̇d,i − Λiṽi − ΛiJ̇−1
i q̃i −Ki sign (si) ,

υISMC,i = v̇d,i − 2Λiṽi −
(
2ΛiJ̇−1

i + Λ
2
i

)
q̃i −Ki sign (si) ,

(4.288)

where Ki = KT
i ≥ 0 is a control gain matrix.

Let u# = τ =
[
τθ, τψ

]T
. From Eq. (4.63), the control force is calculated as:

τ = QT
(
I − AT

(
RTAT

)+
RT

)
u0; u = T−1τ. (4.289)

The MPC is synthesized using the derivative of the sliding surface variable of the SMC as

reference signal, i.e., yr =
[
υT
SMC,1, υ

T
SMC,2

]T
and Eqs. (4.270)–(4.289) as inputs to the Algorithm 3.

The simulations were performed using the Digital Twin version of the Quanser AERO in

MATLAB/Simulink® environment. This model considers highly fidelity dynamics (e.g., rigid

body, motors and thrusters), sensors noise and communication limitations of the real plant. The

simulations were done with ode4 integrator using a fixed-time step of 0.001 s. The controller is

implemented at a fixed rate frequency of 100 Hz.

The results are shown in Figs. 76 to 81. Figure 76 show the trajectory tracking achieved

by all the controllers. The SMC and the MPC produced a faster response compared to the

PID. The ISMC produced lower tracking errors at the price of some peaks at the beginning of

each step. The control inputs are shown in Fig. 77, where we can notice the chattering effects,

especially on the SMC and the MPC. The chattering is reduced on the ISMC due to the integral

term. The normalized Integral Time Absolute Error (ITAE) indices for pitch and yaw angles are

shown in Fig. 78. For the pitch angle, the ISMC performed better, followed by the MPC. The

SMC produced a smaller yaw angle index trailed by the MPC. Other states recorded during the

simulations, such as angular rates, motor velocities and electric currents, are shown in Figs. 79

to 81.
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Table 11: 2-DoFs helicopter parameters

Symbols (i = 1, 2) Values Units (SI)

m1,m2 0, 1.075 kg

Ixx,1, Ixy,1, Ixz,1 0, 0, 0 kgm, kgm2

Iyx,1, Iyy,1, Iyz,1 0, 0, 0 kgm, kgm2

Izx,1, Izy,1, Izz,1 0, 0, 0.0220 kgm, kgm2

Ixx,2, Ixy,2, Ixz,2 0, 0, 0 kgm, kgm2

Iyx,2, Iyy,2, Iyz,2 0, 0.0219, 0 kgm, kgm2

Izx,2, Izy,2, Izz,2 0, 0, 0 kgm, kgm2

xG,1, yG,1, zG,1 0, 0, 0 m

xG,2, yG,2, zG,2 0, 0, 0.0076 m

bu,1, bv,1, bw,1 0, 0, 0 Ns/m

bp,1, bq,1, br,1 0, 0, 0.0220 Nms

bu,2, bv,2, bw,2 0, 0, 0 Ns/m

bp,2, bq,2, br,2 0, 0.0071, 0 Nms

W1,W2 0, 1.55 N

l1, l2 0, 0.158 m

kyy, kyz, kzy, kzz 0.0011, 0.0021, - 0.0027, 0.0022 Nm/V

ΛSMC,i diag (1, 1, 1, 1, 1, 1) 1/s

LSMC,i diag (10, 10, 10, 10, 10, 10) 1/s

KSMC,i diag (10, 10, 10, 10, 10, 10) m/s2, rad/s2

ΛISMC,i diag (0.3, 0.3, 0.3, 0.3, 0.3, 0.3) 1/s

LISMCi diag (0, 0, 0, 0, 0, 0) 1/s

KISMCi diag (10, 10, 10, 10, 10, 10) m/s2, rad/s2

KP,i diag (1, 1, 1, 1, 1, 1) 1/s2

KI,i diag (10, 10, 10, 10, 10, 10) 1/s3

KD,i diag (10, 10, 10, 10, 10, 10) 1/s

ϵ 0.001 –

QY,PY diag (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) × 103 –

RU# diag (1, 1) × 102 –

Ωa diag (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) × 102 rad/s

p, c 30, 10 –

Ts 0.01 s
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Figure 76: Displacements tracking of the 2-DoFs helicopter
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Figure 77: Control inputs of the 2-DoFs helicopter
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Figure 78: ITAE indices of the 2-DoFs helicopter
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Figure 79: Angular rates of the 2-DoFs helicopter
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Figure 80: Motors velocities of the 2-DoFs helicopter
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Figure 81: Motors currents of the 2-DoFs helicopter
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4.3.8 Invented pendulum experiment

In this last example, the inverted pendulum is revisited. The intention is to test the MCM

formulation in a physical prototype. Figure 82 show the inverted pendulum prototype and the

hardware components used.

(a): Prototype

(b): Top view detailing

Figure 82: Inverted pendulum prototype

The inverted pendulum shown in Fig. 82 (a) was constructed based on the structure of an

older paper printer. The main hardware components are indicated in Fig. 82 (b). The pendulum

itself consists of a cylindrical rod mounted in bearing support. The 12V DC Motor with an
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encoder commands the support through a pulley-rack system. The control hardware used in the

experiment consists of Arduino Mega 2560 with H-Bridge L298N and Sensor Shield V5. The

Arduino Mega 2560 drives the motor through the H-Bridge L298N. The readings from the motor

encoder and the absolute encoder (used to measure the pendulum angle) are sent to the Sensor

Shield V5 and then to the Arduino Mega 2560.

Figure 83 shown the schematic diagram and modeling hierarchy of the inverted pendulum

system for the experiment.

x1

θ2

(x2, y2)

x̂

ŷ

O
O1

x̂1

ŷ2 x̂2

ŷ1

τ

(x3, y3)

ŷ3

x̂3

(a): Inverted pendulum prototype schematic diagram

G A1 A2 BC

S

(b): Modeling/control hierarchy

Figure 83: Inverted pendulum prototype model

The generalized coordinates used in the modeling are given by q =
[
qT

1 ,q
T
2 ,q

T
3 , γ

]T
, with

qi =
[
xi, yi, θi

]T as the column-vector of generalized coordinates associated with the i-th body

(i = 1, 2, 3) and γ is the motor displacement, as shown in Fig. 83 (a). In the modeling hierarchy

of Fig. 83 (b), G is the ground, body A1 is the cart, body A2 is the pendulum, body B is the

end-effector and component C is the motor while system S is the inverted pendulum prototype.

Also, an active prismatic joint (grey circle) connects the motor with the cart, a passive revolute

joint (white circle) connects the cart with the pendulum and a fixed joint (white circle) connects

the pendulum with the end-effector. A trivial set of quasi-velocities and accelerations is used on

the synthesis, i.e., v = q̇ and a = v̇.
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The relaxed dynamic model is given by:

Na0 = g, (4.290)

where

N =M + ATA; M =



M1 0 0 0

0 M2 0 0

0 0 M3 0

0 0 0 I4


; g = f + ATb; f =



f1

f2

f3

f4


. (4.291)

The inertia matrix and active forces column-vectors related to the i-th body are written as:

Mi =


mi 0 0

0 mi 0

0 0 Ii

 ; fi = fA,i + fM,i, (i = 1, 2, 3) (4.292)

where mi is the mass and Ii is the inertia moment, while fA,i and fM,i are the column-vectors of

active forces due to the natural physical effects (e.g., weight, friction, etc.) and due to the motor

forces, respectively. In this example, the active forces column-vectors are expressed by:

fA,1 =


−b1 ẋ1 − c1 sign (ẋ1)

−m1g

0

 ; fA,2 =


0

−m2g

−b2θ̇2 − c2 sign
(
θ̇2

)
 ; fA,3 =


0

−m3g

0

 ,

fA,4 = −
(

K2
4

R4
+ b4

)
θ̇4 − c4 sign

(
θ̇4

)
; fM,1 = fM,2 = fM,3 =


0

0

0

 ; fM,4 = τ4,

(4.293)

where bi and ci (i = 1, 2, 3, 4) are the coefficients of viscous and dry friction, respectively, and

τ4 = (K4/R4) V4 is the motor, with K4, R4 and V4 as the torque constant, electric resistance and

drive voltage associated with the motor, respectively.
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The modeling constraints are written with respect to joints centers, as follows:

φ (q, t) =



y1

θ1

x1 − x2 + l2 cos (θ2)

y1 − y2 + l2 sin (θ2)

x3 − x2 − l2 cos (θ2)

y3 − y2 − l2 sin (θ2)

θ3 − θ2

x1 − θ4r4



= 0. (4.294)

in which l2 is half of the pendulum length and r4 is the pulley radius.

Performing the second time-derivative of Eq. (4.294), we get:

φ̈ (a, v,q, t) = 0⇔ A (q, t) a = b (v,q, t) , (4.295)

where

A =



0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 −1 0 −l2 sin (θ2) 0 0 0 0

0 1 0 0 −1 l2 cos (θ2) 0 0 0 0

0 0 0 −1 0 l2 sin (θ2) 1 0 0 0

0 0 0 0 −1 −l2 cos (θ2) 0 1 0 0

0 0 0 0 0 −1 0 0 1 0

1 0 0 0 0 0 0 0 0 −r4



,

b =



0

0

l2 cos (θ2) θ̇2
2

l2 sin (θ2) θ̇2
2

−l2 cos (θ2) θ̇2
2

−l2 sin (θ2) θ̇2
2

0

0



.

(4.296)



198

Since the motor displacement (γ) is actuated, the identification matrices become:

Q =



0

0

0

0

0

0

0

0

0

1



; R =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0



. (4.297)

The decentralized controllers are given by:

u0 =



u0,1

u0,2

u0,3

u0,4


= Nυ + fA + ATb; υ =



υ1

υ2

υ3

υ4


; fA =



fA,1
fA,2
fA,3
fA,4


. (4.298)

For the pendulum we used a simple PD control, given by:

υi = −KP,iq̃i −KD,ivi; υ4 = −kP,4θ̃4 − kD,4θ̇4, (i = 1, 2, 3) (4.299)

where q̃i = qi−qd,i is the tracking errors column-vector, while KP,i = KT
P,i ≥ 0 and KD,i = KT

D,i ≥ 0

are the proportional and derivative control gain matrices, respectively. Similarly, θ̃4 = θ4 − θd,4 is

the tracking error associated with the motor while kP,4 ≥ 0 and kD,4 ≥ 0 are the proportional and

derivative control gains, respectively.

Let u# = τ4. From Eq. (4.63), the control torque is calculated as:

τ4 = QT
(
I − AT

(
RTAT

)+
RT

)
u0; V4 = (R4/K4) τ4. (4.300)
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Table 12: Inverted pendulum prototype parameters

Symbols Values Units (SI)

m1,m2,m3 0.3, 0.02, 0 kg

I1, I2, I3, I4 0, 0.0004, 0, 0 kgm2

b1, b2, b3 0.1, 0, 0 Nms

c1, c2, c3 0, 0, 0 Nm

l1, l2 0, 0.125 m

r4 0.005 m

R4 6.84 Ω

K4 0.05 Nm/A

KP,1 diag (1000, 1000, 1000) 1/s2

KP,2 diag (360, 360, 360) 1/s2

KP,3 diag (360, 360, 360) 1/s2

kP,4 100 1/s2

KD,1 diag (1000, 1000, 1000) 1/s

KD,2 diag (66, 66, 66) 1/s

KD,3 diag (66, 66, 66) 1/s

kD,4 10 1/s

The experiment was performed with an initial condition corresponding to the pendulum

misaligned with the vertical by 0.3 rad (unstable condition) and the cart displaced by 0.15 m

from the origin. The control object is to stabilize the pendulum in the vertical position and bring

the cart back to the origin. The desired displacements are (in meters and radians):

xd,1 = 0; θd,2 = π/2. (4.301)

The remain desired displacements were calculated with Eqs. (4.301) and (4.294). All the

desired velocities were set to zero, as shown in Eq. (4.299). The controller was implemented

using a rate frequency of 100 Hz.

The results are shown in Figs. 84 and 85. The states stabilization is shown in Fig. 84. The

stabilization occurs with the pendulum reaching the vertical equilibrium position in less than

1.5 s. The drive voltage calculated with Eq. (4.300) is shown in Fig. 85. There is no control

saturation, even at the beginning of the motion, where the positioning error is more significant.
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Figure 84: States stabilization of the inverted pendulum prototype
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Figure 85: Control input of the inverted pendulum prototype
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4.4 COMMENTARIES

This chapter presented the MCM for general multibody systems. This methodology permits

the control synthesis through a hierarchical approach starting from already available decentralized

controllers (or sub-controllers) and imposing the constraints a posteriori. This methodology is

further extended considering the control allocation, decentralized controllers syntheses from

prescribed servo-constraints and optimal control formulation. The methodology is validated

through numerical simulation considering a series of problems presented in a tutorial approach,

starting from classical mechanical systems and ending with more complex mechanisms of

parallel kinematic structure. Also, some test are performed with a digital twin of a 2-DoFs

helicopter and an inverted pendulum prototype.
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5 CASES OF STUDY

This chapter presents three case studies with the MCM applied on the underwater cooperative

transportation tasks. Some specific developments for each case of study regarding the formation-

keeping are also presented. Numerical simulations are used to evaluate the presented approaches.

5.1 GENERAL INFORMATION

The case studies consist of 2D and 3D cooperative transportation tasks. General information

regarding the common aspects between these cases (e.g., plant modeling, control, sensors, state

estimation and simulation setup) is presented in the sequence.

Modeling

1. The models consider the inertial forces related to the mass and inertia of each body;

2. The manipulator and load links are cylindrical-shaped with high aspect ratio (L/D > 10);

3. The hydrodynamic forces (added mass and drag forces) are modeled with the lumped

parameters model for the AUVs and by the discrete model based on the strip theory for

the manipulator and load links. The hydrodynamic coefficients of the strips are calculated

with the travel diameters relation along the length of the links (D/L) presented by McLain

and Rock (1998) and shown in Fig. 86. To include 3D flow effects, the drag coefficients

are corrected considering the stationary relation between two consecutive links raised by

Leabourne and Rock (1998) and shown in Fig. 87. This correction is applicable in the 2D

case once the relation between the stationary drag coefficients and the relative angle is only

valid for a 2-link manipulator performing planar motion (LEABOURNE; ROCK, 1998);
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Figure 86: Added mass and drag coefficients of the 1-link manipulator
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Figure 87: Drag coefficients of the 2-link manipulator

4. The hydrostatic forces, i.e., weight and buoyancy forces, are evaluated based on the mass

and volumetric proprieties of each body;

5. The thrusters dynamic in the 2D cooperative transportation is modeled by the four quad-

rants model presented by Bachmayer, Whitcomb and Grosenbaugh (2000). For the other

cases, a 3D table raised from the manufacturer experiments of the T560 thrusters (TEC-

NADYNE, 2008) in series with a firs-order low-pass filter models the thrusters dynamic.

The 3D table shown in Fig. 88 maps the gain of the low-pass filter as a function of the

commanded motor velocity in Revolutions Per Minute (RPM) and the flow velocity along

the propeller in m/s. A low-pass filter of unitary gain and time constant of 0.1 s models the

delay associated with the dynamic response of the thrusters;
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Figure 88: 3D model of the T560 thruster accounting for the losses due to the propeller flow

6. The manipulator motors are modeled with a second-order dynamic model, considering

reduction and friction effects (viscous and Coulomb friction).

Control

1. The discrete models for the hydrodynamic forces of the manipulator are unsuitable for the

control design since it needs many parameters and their estimation can be unfeasible in

practice. Thus, for the control, the lumped model of the added mass matrix of Antonelli

(2014) and the continuous drag model presented in chapter 3 are used (see Subsec. 3.1.4.3);

2. The control inputs are thrusts and torques generated by thrusters and motors. Thus, these

inputs need to be converted into commanded signals. For example, the relation between

the motors torque and current can be considered stationary, i.e., τM = kMiM, where τM is the

motor torque, kM is the torque constant and iM is the motor current. In the thrusters case,

the calculated thrusts should be converted into commanded motor-shaft velocity with the

inverse model of the thrusters raised in ideal condition
(
bollard-pull1). The thrusters curves

used as inverse models for the 2D and 3D cooperative transportation problems are shown

by Figs. 89 and 90, respectively;

1The bollard-pull test is performed by connecting a thruster with a measuring device and computing the force or
tension developed in the connection using a load cell or similar component.
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Figure 89: Twin-Burger 4-quadrant thruster model in bollard-pull condition
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Figure 90: T560 thruster model in bollard-pull condition

3. The formation control is formulated as servo-constraints based on the graph theory. For sake

of example, we adopted the sliding surface proposed by Ianagui (2019) as servo-constraint.

However, any other type of formation error measurement based on the graph theory can be

used (e.g., tracking error, second-order error dynamics, etc.). The formation topology is

established based on Fig. 91 of an undirected graph, i.e., with bilateral connections, where

a virtual leader is running on each agent to generate the desired load trajectory;
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Figure 91: Formation topology

4. The reference trajectory of the load on the 2D and 3D cooperative transportation with

I-AUVs is designed so that each segment is described by a cycloidal function. In this case,

for a segment starting at the position rd(t0) and ending in rd(t1), for t ∈ [t0, t1], it can be

stated that:

rd (t) = rd (t0) + (rd (t1) − rd (t0))
t − t0

t1 − t0
−

1
2π

sin
(
2π

t − t0

t1 − t0

)
; (5.1)

5. For the 2D cooperative transportation with I-AUVs, the reference trajectory is described by

horizontal, transversal and rotational segments with relative displacements of 10 m, 20 m

and ±π/2 rad, respectively, with a duration of 50 s. For the 3D cooperative transportation

with I-AUVs, the reference trajectory is described by horizontal, transversal and vertical

segments with relative displacements of 6 m, 6 m and 12 m, respectively, and by a final

rotation with a relative displacement of π/4 rad. In this case, all segments have a duration

of 30 s.

Sensors and state estimation

1. The proposed case studies assume an explicit communication between the agents at

full state level (generalized coordinates, quasi-velocities and quasi-accelerations). To

achieve explicit communication, some approaches can be adopted. For example, acoustic

communication through onboard modems can be used to transmit information and image-

based visual serving can be applied to estimate the relative distance between the agents.

If the communication is too restrictive, the estimation schemes presented in Conti et

al. (2015), Heshmati-Alamdari et al. (2021b) and Heshmati-Alamdari et al. (2021a) for

cooperative transportation can be adopted. To handle broadcast information in discrete-time

with limited information and time delays, an event-triggered communication algorithm
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can be used (ALMEIDA; SILVESTRE; PASCOAL, 2017; BRIÑÓN-ARRANZ; SEURET;

PASCOAL, 2019; HUNG; PASCOAL, 2022). Once efficient acoustic communications are

still very challenging, depending on the agent configurations, a cable-guided system (e.g.,

to avoid interference on the thrusters and joints) can be used for communication among

agents;

2. The vehicles measurements are provided by the onboard sensors. For the Twin-Burger and

BlueROV 2, we considered:

• a Long-Baseline (LBL) measures the linear displacements (xLBL, yLBL, zLBL);

• a Digital Pressure Transducer (DPT) measures the depth relative to the free surface

(zDPT);

• an Inertial Measurement Unit (IMU) measures the linear accelerations and angular

velocities (u̇IMU, v̇IMU, ẇIMU, pIMU, qIMU, rIMU);

• a Doppler Velocity Log (DVL) measures the linear velocities (uDLV, vDLV,wDLV);

• a set of inclinometers and compass measures the attitude (ϕINC, θINC, ψCOM).

3. Concerning the manipulator sensors, we considered that a set of encoders measures the

joints displacements and velocities
(
γENC, γ̇ENC

)
;

4. A Kalman filter algorithm using a process (propagation) model established based on the

kinematics of the agents are used to estimate the full state feedback, including the estimates

of the quasi-accelerations. The kinematic model is formulated in minimal coordinates,

therefore, to calculate the generalized coordinates, quasi-velocities and quasi-accelerations,

the following relations are used: η̇ = Jν, ν = Sζ and ν̇ = Sζ̇ + Ṡζ;

5. Details concerning the sensors parameters, the process and measurements models so as

the Kalman filter algorithm can be found in Oliveira, Orsino and Donha (2021), Oliveira,

Donha and Cardoso (2021), Oliveira, Orsino and Donha (2022) and Oliveira et al. (2022).

Disturbances

1. To reproduce realistic operation conditions, modeling errors and external disturbances are

added on the simulation. Except for the 3D cooperative transport with modular ROVs, the

modeling errors come from the transported load dynamics, since it is not considered on the

design of the controllers. The external disturbances are modeled by a time-varying ocean

current (on the 2D cooperative transportation problem) and by first-order wave forces (on

the 3D cooperative transportation problems):
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• As pointed out by Richard and Lévesque (1996), the stochasticity associated with

the ocean current dynamic should be considered too. To this end, a first-order order

Markov process is used to model its dynamics, as in Fossen (1996). The time history

of the ocean current profile considering a mean value of 0.27 m/s, variance of a 0.15

m2/s2, saturation of ±0.3 m/s and incidence angle of π/4 rad is shown by Fig. 92;
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Figure 92: Ocean current velocity

• Wave forces are modeled by Morison’s equations using the hydrodynamic coefficients

previous defined. The sea state is defined by the wave velocity profile, which is cal-

culated on the Earth-fixed frame through the summation of N sinusoidal components,

where N is sufficiently large (PEREZ, 2005), as follows (LEWANDOWSKI, 2004):

ẋw,i (xi, yi, zi, t) =
N∑

j=1

ω j cos
(
χ j

) cosh
(
k j (h + zi)

)
sinh

(
k jh

) A j

(
ω j

)
× . . .

sin
(
ω jt + ϵ j − k jxi cos

(
χ j

)
− k jyi sin

(
χ j

))
,

ẏw,i (xi, yi, zi, t) =
N∑

j=1

ω j cos
(
χ j

) cosh
(
k j (h + zi)

)
sinh

(
k jh

) A j

(
ω j

)
× . . .

sin
(
ω jt + ϵ j − k jxi cos

(
χ j

)
− k jyi sin

(
χ j

))
,

żw,i (xi, yi, zi, t) =
N∑

j=1

ω j

sinh
(
k j (h + zi)

)
sinh

(
k jh

) A j

(
ω j

)
× . . .

cos
(
ω jt + ϵ j − k jxi cos

(
χ j

)
− k jyi sin

(
χ j

))
,

(5.2)

where xi, yi and zi are the i-th body coordinates, A j

(
ω j

)
is the wave amplitude at

frequency ω j, χ j is the propagation angle, ϵ j is the phase defined as independent

identically distributed random variable with uniform distribution in the interval



209

ϵ j ∈ [0, 2π]. The choice of random phase ensures a Gaussian process (PEREZ, 2005).

Also, each sinusoidal function is exponentially attenuated by the term exp
(
−k jzi

)
expressed by the hyperbolic identity, with k j as the respective wave number and h as

the local depth.

The wave height is obtained by the time integration of the wave velocity profile in

Eq. (5.1) concerning the vertical component and ζw,0 (0) = 0 as the initial condition

relative to the vehicle (LEWANDOWSKI, 2004):

ζw,0 (x0, y0, z0, t) =
N∑

j=1

sinh k j(h + z)
sinh k jh

A j

(
ω j

)
× . . .

cos
(
ω jt + ϵ j − k jx0 cos

(
χ j

)
− k jy0 sin

(
χ j

))
.

(5.3)

According to Dantas, Cruz and Barros (2014), the wave amplitude is given by:

A j

(
ω j

)
= ωe, j

√
2S

(
ω j

)
∆ω, (5.4)

where ωe, j is the encounter frequency, S
(
ω j

)
is the spectral energy density at the

corresponding frequency and ∆ω is the constant increment between two successive

frequencies.

The encounter frequency follows (PEREZ, 2005; DANTAS; CRUZ; BARROS, 2014):

ωe, j = ω j + k jui cos(β), (5.5)

where β is the wave heading angle.

Based on the static observation model, the DPT measure is modeled as the summation

between the vehicle height, z0, and the wave elevation, ζw,0, as follows:

zDPT = z0 + ζw,0 (x, z, t) . (5.6)

The spectral energy density is calculated according to the wave spectrum, S
(
ω j

)
. In

this work, the Pierson–Moskowitz spectrum is used since it is appropriate to represent

the sea conditions on the Brazilian southeast coast if the right parameters are used

(DANTAS; CRUZ; BARROS, 2014):

S
(
ω j

)
H2
sT1
=

0.11
2π

(
ω jT1

2π

)−5

exp
−0.44

(
ω jT1

2π

)−4 , (5.7)

where Hs is the significant wave height, defined as the average height of the highest

one-third of all waves on the sea (CHAKRABARTI, 1987) and T1 is the mean wave

period.
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Figure 93: Pierson–Moskowitz spectrum for Hs = 2 m

2. The disturbances are added into the models through the column-vectors di (i = 1, . . . , n).

Simulation

1. The constrained models are derived from the relaxed models and the modeling constraints

in deferential form using the recursive version of the Udwadia-Kalaba equation developed

by Orsino (2020) into the scope of the MMM;

2. To avoid numerical drift associated with the modeling during the numerical integration,

the Baumgarte’s stabilization coefficients (BAUMGARTE, 1972) are used such that during

integration the differential constraints are replaced by:

φ̇
(
η, ν, t

)
= 0⇒ A

(
η, t

)
ν̇ = b

(
η, ν, t

)
⇒ Aν̇ = b − 2αBφ̇ − β2

Bφ, (5.8)

where αB > 0 and βB > 0 are the stabilization coefficients. For all the simulations, we have

adopted αB = βB = 1.

3. All the simulations are performed in MATLAB/Simulink® environment using the ode5

function and a fixed time-step of 0.001 s for the numerical integration of the constrained

models in state-space form. The reference generators (including the predictive-cooperative

reference filter) are implemented with a rate frequency of 100 Hz; the low-level controllers

(centralized and decentralized) and state estimators are implemented considering a rate

frequency of 20 Hz; the sensors measurements are implemented with the associated noise

variances and sample frequencies; the communication between the agents is performed

considering a rate frequency of 10 Hz. Also, quantization effects (assuming the second

decimal place for the hardware precision) are added to the simulation.
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5.2 2D COOPERATIVE TRANSPORTATION WITH I-
AUVs ON THE HORIZONTAL PLANE

5.2.1 Modeling

Figure 94 (a) show the 2D cooperative transportation with I-AUVs on the horizontal plane.

The system comprises four I-AUVs transporting a rigid rectangular frame made of cylindrical-

shaped links of aluminum. The I-AUV model is based on the Twin-Burger AUV equipped with

a 2-DoFs manipulator with cylindrical-shaped links of stainless steel. This case of study is

inspired by the works of Sagara (SAGARA et al., 2001; ISHITSUKA; SAGARA; ISHII, 2004;

YATOH; SAGARA; TAMURA, 2008; SAGARA, 2009; TAIRA; SAGARA; OYA, 2018; TAIRA;

SAGARA; OYA, 2020; SAGARA; AMBAR, 2020), who studied the motion control of I-AUVs

using the Twin-Burger in some of them.

14

3 2

5

(a): 2D cooperative transportation system

j.0 j.1 j.2 j.3j.1

j

j.1 j.4

1.5 2.5 3.5 4.5

1 2 3 45

S

(b): Agent modeling hierarchy (c): Cooperative transportation modeling hierarchy

Figure 94: 2D cooperative transportation on the horizontal plane
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In the modeling hierarchy of Fig. 94 (b), the j-th agent ( j = 1, . . . , 4) is constituted by

the bodies 0, 1, 2, 3 and 4. In this hierarchy, the body j.0 is the vehicle, bodies j.1 are the

motors, bodies j.2 and j.3 are the manipulator links, while body j.4 is the end-effector which is

modeled as a sphere. Also, in Fig. 94 (c), agent 5 represents the load which is constituted by four

other bodies, i.e., j.5 representing the frame links. In the j-th agent subsystems ( j = 1, . . . , 4),

active revolute joints (grey circles) connect the motors with the links and passive revolute joints

(white circles) connect the vehicle with the manipulator, the links between them and the end-

effector with the second link. In the system S, passive revolute joints (white circles) connect the

end-effectors with the load.

5.2.1.1 I-AUV

The relaxed model of the j-th is written as follows:

η̇ j = J j

(
η j

)
ν j,

M jν̇ j = f j

(
η j, ν j

)
,

(5.9)

with
J j = blkdiag

(
J j.0, J j.1, J j.2, J j.3, I

)
,

M j = blkdiag
(
M j.0,M j.1,M j.2,M j.3, I j.M

)
,

η j =
[
ηT

j.0, η
T
j.1, η

T
j.2, η

T
j.3,γ

T
j

]T
,

ν j =
[
νT

j.0, ν
T
j.1, ν

T
j.2, ν

T
j.3, γ̇

T
j

]T
,

f j =



τ j.0 − C j.0ν j.0 − D j.0ν j.0 − g j.0 + d j.0

τ j.1 − C j.1ν j.1 − D j.1ν j.1 − g j.1 + d j.1

τ j.2 − C j.2ν j.2 − D j.2ν j.2 − g j.2 + d j.2

τ j.3 − C j.3ν j.3 − D j.3ν j.3 − g j.3 + d j.3

τ j.M − B j.Mγ̇ j − C j.M sign
(
γ̇ j

)


,

(5.10)

where η j.i =
[
x j.i, y j.i, ψ j.i

]T
and ν j.i =

[
u j.i, v j.i, r j.i

]T
(i = 0, 1, 2, 3, 4) are the column-vectors of

generalized coordinates and quasi-velocities related to each body of the j-th agent and γ j =[
γ j.1, γ j.2, γ j.3

]T
is the column-vector of motors displacements; τ j.0 = T j.0u j.0 is the column-vector

of generalized control forces generated on the vehicle by the thrusters, with T j.0 being the thrusters

configuration matrix and u j.0 =
[
T j.1,T j.2,T j.3

]T
as the column-vector of thrusts; τ j.M = T j.Mu j.M

is the column-vector of actuation torques generated by the motors on the manipulator joints,

with T j.M as the gain matrix associated with the motors reduction and u j.M =
[
τ j.1, τ j.2

]T
is the

column-vector of drive torques generated on the motors shaft which follows the stationary

relation between motor current and torque constant; τ j.i = 0 (i = 1, 2, 3) once the manipulator
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links are actuated by the motors and the end-effector is non-actuated; g j.i = 0 (i = 0, 1, 2, 3)

since the motion is performed on the horizontal plane under the hypothesis of using the vertical

thrusters of the AUVs to compensate for the forces out-off the horizontal plane.

The matrices T j.0 and T j.M follows:

T j.0 =


1 1 0

0 0 1

y j.T −y j.T 0

 ; T j.M =


N j.Mη j.M 0

0 N j.Mη j.M

0 0

 , (5.11)

where y j.T is the distance between the thrusters line of action and vehicle center. We should point

out that the zero line in T j.M is because the motor j.3 is non-actuated, acting as a pin used to

connect the end-effector with the load.

The constraint associated to the revolute joints of the j-th agent are given by:

φI, j
(
η j, t

)
=



x j.0 + l j.0 cos
(
ψ j.0

)
−

(
x j.1 − l j.1 cos

(
ψ j.1

))
y j.0 + l j.0 sin

(
ψ j.0

)
−

(
y j.1 − l j.1 sin

(
ψ j.1

))
x j.1 + l j.1 cos

(
ψ j.1

)
−

(
x j.2 − l j.2 cos

(
ψ j.2

))
y j.1 + l j.1 sin

(
ψ j.1

)
−

(
y j.2 − l j.2 sin

(
ψ j.2

))
x j.2 + l j.2 cos

(
ψ j.2

)
− x j.3

y j.2 + l j.2 sin
(
ψ j.2

)
− y j.3

ψ j.3 − ψ j.2

ψ j.1 −
(
ψ j.0 − γ j.1

)
ψ j.2 −

(
ψ j.1 − γ j.2

)



= 0, (5.12)

where l j.i (i = 0, 1, 2, 3) are the lengths of the bodies of the j-th agent.
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5.2.1.2 Load frame

The relaxed model of the load can be written as follows:

η̇5 = J5
(
η5

)
ν5,

M5ν̇5 = f5
(
η5, ν5

)
,

(5.13)

with
J5 = blkdiag (J1.5, J2.5, J3.5, J4.5) ,

M5 = blkdiag (M1.5,M2.5,M3.5,M4.5) ,

η5 =
[
ηT

1.5, η
T
2.5, η

T
3.5, η

T
4.5

]T
,

ν5 =
[
νT

1.5, ν
T
2.5, ν

T
3.5, ν

T
4.5

]T
,

f5 =



τ1.5 − C1.5ν1.5 − D1.5ν1.5 − g1.5 + d1.5

τ2.5 − C2.5ν2.5 − D2.5ν2.5 − g2.5 + d2.5

τ3.5 − C3.5ν3.5 − D3.5ν3.5 − g3.5 + d3.5

τ4.5 − C4.5ν4.5 − D4.5ν4.5 − g4.5 + d4.5


,

(5.14)

where η j.5 =
[
x j.5, y j.5, ψ j.5

]T
and ν j.5 =

[
u j.5, v j.5, r j.5

]T
( j = 1, . . . , 4) as the column-vectors of

generalized coordinates and quasi-velocities associated to each body of the load; τ j.5 = 0 and

g j.5 = 0 since the load is non-actuated and the motion is performed on the horizontal plane.

The constraints related to rigid connections between the load bodies are given by:

φI,5
(
η5, t

)
=



x1.5 + l1.5 cos (ψ1.5) − (x2.5 − l2.5 cos (ψ2.5))

y1.5 + l1.5 sin (ψ1.5) − (y2.5 − l2.5 sin (ψ2.5))

x2.5 + l2.5 cos (ψ2.5) − (x3.5 − l3.5 cos (ψ3.5))

y2.5 + l2.5 sin (ψ2.5) − (y3.5 − l3.5 sin (ψ3.5))

x3.5 + l3.5 cos (ψ3.5) − (x4.5 − l4.5 cos (ψ4.5))

y3.5 + l3.5 sin (ψ3.5) − (y4.5 − l4.5 sin (ψ4.5))

x4.5 + l4.5 cos (ψ4.5) − (x1.5 − l1.5 cos (ψ1.5))

y4.5 + l4.5 sin (ψ4.5) − (y1.5 − l1.5 sin (ψ1.5))

ψ1.5 − ψ4.5 − π/2



= 0, (5.15)

where l j.5 are the load lengths.
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5.2.1.3 Cooperative transportation

The relaxed model of the 2D cooperative transportation performed with I-AUVs follows:

η̇ = J
(
η
)
ν,

Mν̇ = f
(
η, ν

)
,

(5.16)

with
J = blkdiag (J1, J2, J3, J4, J5) ,

M = blkdiag (M1,M2,M3,M4,M5) ,

η =
[
ηT

1 , η
T
2 , η

T
3 , η

T
4 , η

T
5

]T
,

ν =
[
νT

1 , ν
T
2 , ν

T
3 , ν

T
4 , ν

T
5

]T
,

f =
[
fT
1 , f

T
2 , f

T
3 , f

T
4 , f

T
5

]T
.

(5.17)

The constraints between the end-effectors and load are given by:

φII
(
η, t

)
=



x1.3 − (x1.5 + l1.5 cos (ψ1.5))

y1.3 − (y1.5 + l1.5 sin (ψ1.5))

x2.3 − (x2.5 + l2.5 cos (ψ2.5))

y2.3 − (y2.5 + l2.5 sin (ψ2.5))

x3.3 − (x3.5 + l3.5 cos (ψ3.5))

y3.3 − (y3.5 + l3.5 sin (ψ3.5))

x4.3 − (x4.5 + l4.5 cos (ψ4.5))

y4.3 − (y4.5 + l4.5 sin (ψ4.5))

γ1.3 − (ψ1.3 − ψ1.5)

γ2.3 − (ψ2.3 − ψ2.5)

γ3.3 − (ψ3.3 − ψ3.5)

γ4.3 − (ψ4.3 − ψ4.5)



= 0. (5.18)
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5.2.2 Formation filter based on the servo-constraints formulation

The formation control is applied to the kinematic model of each agent independently,

assuming that the formation-keeping objectives correspond to servo-constraints from which the

reference values for the control inputs could be directly computed using formulation presented

in chapter 4. Thus, let us consider a cooperative system for which a sliding surface variable σSC, j
( j = 1, . . . , 4) as proposed by Ianagui (2019) is defined for each agent as a set of servo-constraints,

as follows:

σSC, j = d j, j

(
η̇L

j + Λ jη
L
j

)
−

n∑
k=1

a j,k

(
η̇L

k + δ̇ j,k + Λ j

(
ηL

k + δ j,k

))
= 0, (5.19)

where d j, j is a diagonal entry of the in-degree matrix, standing for the number of vehicles from

which the j-th agent receives some communication signal and a j,k is an entry of the adjacency

matrix, i.e., a j,k = 1 if the j-th agent receives a communication signal from the k-th agent, and

a j,k = 0, otherwise; δ j,k stands from the desired offset between the j-th and k-th agents and Λ j

is a diagonal matrix whose terms are chosen to control the convergence towards the desired

sliding surface. The superscript “L” indicate that the current variable is expressed on the leader

body-fixed frame. Let the time derivative of Eq. (5.19) be written as:

σ̇SC, j = ASC,η j
η̈ j − bSC,η j

, (5.20)

with ASC,η j
=
∂σ̇SC, j

∂η̈ j
and bSC,η j

standing for all the terms in the expression of σ̇SC, j which do not

depend explicitly on η j. Thus, imposing the sliding condition on σSC, j, we obtain:

σ̇SC, j = −L jσSC, j −K j sign
(
σSC, j

)
⇒ ASC, jη̈ j = bSC, j − L jσSC, j −K j sign

(
σSC, j

)
. (5.21)

Using the kinematic relations between body-fixed and Earth-fixed frames, i.e., η̇ j = J jν j and

η̈ j = J jν̇ j + J̇ jν j, into Eq. (5.21), we get:

ASC, jν̇ j = bSC, j, (5.22)

where ASC, j = ASC,η j
J j and bSC, j = bSC,η j

− ASC,η j
J̇ jν j − L jσSC, j −K j sign

(
σSC, j

)
.

Based on Eq. (4.149), the cooperative reference filter of the j-th can be written as:

η̇d, j = J jνd, j,

ν̇d, j = ESC, jν̇0, j +HSC, jbSC, j,
(5.23)

where the subscript “d” refers to the desired states and ν̇0, j is the kinematic model of j-th agent

expressed on the body-fixed frame which will be derived in the sequence.
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Considers the reference filter of Fossen (1996) expressed on the Earth-fixed frame:

η̈0, j = Ω
2
jr j − 2Z jΩ jJ jνd, j −Ω

2
jηd, j, (5.24)

where Ω j is the matrix of shaping natural frequencies, Z j is the matrix of shaping damping

factors and r j is the column-vector of input references.

Again, using the relations between body-fixed and Earth-fixed frames into Eq. (5.24), we

obtain the kinematic model of j-th agent expressed the body-fixed frame as follows:

ν̇0, j = JT
jΩ

2
jr j − JT

j

((
2Z jΩ jJ j + J̇ j

)
νd, j +Ω

2
jηd, j

)
. (5.25)

Substituting Eq. (5.25) into (5.23), we get:

η̇d, j = J jνd, j,

ν̇d, j = FSC, jJT
jΩ

2
jr j +GSC, jd0, j +HSC, jbSC, j,

(5.26)

where d0, j = −JT
j

((
2Z jΩ jJ j + J̇ j

)
νd, j +Ω

2
jηd, j

)
.

From Eqs. (4.146) and (4.150), we have:

FSC, j = GSC, j,

GSC, j =
(
I −KSC, jCSC, j

)
,

HSC, j = KSC, j,

CSC, j = ASC, j,

KSC, j = AT
SC, j

(
ASC, jAT

SC, j

)g
= Ag

SC, j,

(5.27)

with Ag
SC, j being any {1, 4}-inverse of ASC, j.

Gathering Eqs. (5.19)–(5.27), we get the cooperative reference filter of the j-th agent as

follows:η̇d, jν̇d, j
 =

 0 J j

−GSC, jΩ2
j −GSC, jJT

j

(
2Z jΩ jJ j + J̇ j

)
ηd, jνd, j

 +
 0

FSC, jJT
jΩ

2
j

 r j +

 0

HSC, j

 bSC, j. (5.28)

Let xd, j =
[
ηT
d, j, ν

T
d, j

]T
and r j be the states and the control input column-vectors, respectively.

Thus, the following state-space model can be written based on Eq (5.28):

ẋd, j = E jxd, j + F jr j +H jbSC, j,

yd, j = xd, j,
(5.29)
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where

E j =

 0 J j

−GSC, jΩ2
j −GSC, jJT

j

(
2Z jΩ jJ j + J̇ j

) ; F j =

 0

FSC, jJT
jΩ

2
j

 ; H j =

 0

HSC, j

 . (5.30)

The state-space model of Eq. (5.29) is the input into the MPC of Eq. (4.164) to obtain the

predictive-cooperative reference filter. Furthermore, the state-space model of Eq. (5.29) can be

numerical integrated directly to generate the reference for the j-th agent without a predictive

action.

5.2.3 Results

The predictive-cooperative reference filter developed for the 2D cooperative transportation

with I-AUVs was tested on the trajectory tracking problem. The block diagram of the complete

coordination scheme is shown by Fig. 95.

I-AUV Dynamic

FK-MPC MC-MPC

Observer

Plant

SensorsConstraints

Reference Leader

Follower-j

Follower-k

Formation Keeping Motion Control

x̂k x̂j

yd,j uj

xj

yj

bSC,j

Figure 95: Cooperative MPC block diagram

In Fig. 95, the block diagram of the j-th agent is comprised by three sub-blocks:

• Formation keeping: constituted by the predictive-cooperative reference filter to generates

the desired states to be tracked according to the formation requirements;

• Motion control: referring to the low-level MPC with augmented observer, similar to one

presented by Oliveira, Orsino and Donha (2021), which is used to generate the commanded

thrusts and torques in order to track the filter references and compensate for modeling

errors and disturbances;
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• I-AUV dynamics: representing the model of the 2D cooperative transportation and the

sensor measurements specified before.

The simulation is performed using the previous specified setup. The modeling and control

parameters are shown by Tabs. 13–15.

The formations matrices referring to the undirected graph of Fig. 91 follow:

AFK =



0 0 0 0 0

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0


; DFK =



0 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3


. (5.31)

The off-sets between the j-th and the k-th agent, δ j,k ( j = 1, . . . , 4; k = 1, . . . , 4), are grouped

as follows:
δ1 =

[
δ1,L, δ1,1, δ1,2, δ1,3, δ1,4

]
; δ2 =

[
δ2,L, δ2,1, δ2,2, δ2,3, δ2,4

]
,

δ3 =
[
δ3,L, δ3,1, δ3,2, δ3,3, δ3,4

]
; δ4 =

[
δ4,L, δ4,1, δ4,2, δ4,3, δ4,4

]
,

(5.32)

where the subscript “L” refers to the virtual leader.

The off-sets values in the form of Eq. (5.32) are given by (in meters and radians):

δ1 =


2 0 4 0 0

−2 0 0 0 −4

3π/4 0 0 0 0

 ;

δ3 =


−2 0 0 0 −4

2 0 4 0 0

−π/4 0 0 0 0

 ;

δ2 =


−2 −4 0 0 0

−2 0 0 −4 0

π/4 0 0 0 0

 ,

δ4 =


2 0 0 4 0

2 4 0 0 0

5π/4 0 0 0 0

 .
(5.33)

Let qE, j

(
η j.0,γ j

)
be a function to calculate the end-effector coordinates of the j-th agent on

the Earth-fixed frame using the vehicle coordinates and the manipulator joints angles. Also, let

qE, j.5

(
η j.5

)
be a function to calculate the coordinates of the load vertices connected to the j-th

agent with the load coordinates such that q̃E, j

(
η j.0,γ j, η j.5

)
= qE, j

(
η j.0,γ j

)
− qE, j.5

(
η j.5

)
= 0. To

actively use the manipulator during the transportation, the following set of servo-constraints are

added on the sliding surface of the formation control:

φ̇SC, j
(
q̈E, j, q̇E, j,qE, j, t

)
= ¨̃qE, j + λ j ˙̃qE, j + k jq̃E, j = 0, (5.34)

where λ j > 0 and k j > 0 are stabilization coefficients.
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Table 13: 5-DoFs Twin-Burger I-AUVs and load model parameters

Symbols (i = 1, 2) Values Units (SI)

MRB,0 diag (120, 120, 1.33) kg, kgm2

MRB,1 diag (6, 6, 0.19) kg, kgm2

MRB,2 diag (6, 6, 0.012) kg, kgm2

MRB,3 diag (38.34, 38.34, 0.35) kg, kgm2

MRB,5 diag (38.34, 38.34, 0.35) kg, kgm2

MA,0 diag (191.90, 320.10, 29.40) kg, kgm2

MA,1 diag (2, 5.6, 0.45) kg, kgm2

MA,2 diag (4, 5.6, 0.024) kg, kgm2

MA,3 diag (7.07, 7.07, 0) kg, kgm2

MA,5 diag (7.07, 7.07, 0) kg, kgm2

D0 diag (150.30, 338.40, 1.56) Ns/m,Nms

CD,x1 ,CD,y1 , δ1 0, 1.2, 0.001 –

CD,x2 ,CD,y2 , δ2 0, 1.2, 0.001 –

D3 diag(17.67, 17.67, 0) Ns/m,Nms

2l1, d1,∆l1 0.5, 0.12, 0.025 m

2l2, d2,∆l2 0.5, 0.12, 0.025 m

2l5, d5,∆l5 4, 0.20, 0.20 m

p⃗0
G0 |O0

[0, 0, 0]T m

p⃗1
G1 |O1

[0, 0, 0]T m

p⃗2
G2 |O2

[0, 0, 0]T m

p⃗3
G3 |O3

[0, 0, 0]T m

p⃗5
G5 |O5

[0, 0, 0]T m

NM, ηM 10, 0.9 –

bM, cM 1, 0.1 Nms,Nm
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Table 14: 5-DoFs Twin-Burger I-AUVs formation filter parameters

Symbols Values Units (SI)

M diag(1000, 1000, 1, 1, 1) kg, kgm2

Ω diag(0.20π, 0.20π, 0.20π, 0.20π, 0.20π) rad/s

Z diag(1, 1, 1, 1, 1) -

T diag(0.1, 0.1, 0.1, 0.1, 0.1) 1/s

Λ diag(0.1, 0.1, 0.1, 0.1, 0.1) 1/s

K diag(10, 10, 10, 10, 10) m/s2, rad/s2

L diag(100, 100, 100, 100, 100) 1/s

ϵ 1 -

QY blkdiag(QY,η,QY,ν,QY,ν̇) -

QY,η diag(0, 0, 0, 0, 0) -

QY,ν diag(1000, 1000, 1000, 1000, 1000) -

QY,ν̇ diag(10000, 10000, 10000, 10000, 10000) -

RU# diag(1, 1, 1, 1, 1) -

Ts 0.01 s

p, c 100, 20 -

λ, k 10, 100 1/s, 1/s2

Table 15: 5-DoFs Twin-Burger I-AUVs low-level control parameters

Symbols Values Units (SI)

QY diag (1000, 1000, 1000, 1000, 1000) -

RU#, j diag (1, 1, 1, 1, 1) -

Ts 0.1 s

p, c 20, 10 -
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Figure 96 shows the reference displacements, velocities and accelerations generated by the

predictive-cooperative reference filters. As we can see, the references are smooth and continuous

due to the velocities penalization on the optimization and the choice of shaping parameters for

the kinematic filter. The commanded control inputs generated during the trajectory tracking are

shown in Fig. 97. The noisy profiles for the thrusts and torques calculated by the low-level MPC

are due to the sensors noise and sampling effects. Also, some saturation is due to the modeling

errors and disturbances associated with the load dynamics and ocean current effects. Despite

this, the control remains stable during the simulation, even when the load should be stopped on

the final instants and the dry friction arises on the manipulator joints due to the velocity switch.

Fig. 98 shows the trajectory tracking of the load. In Fig. 98 (a), we can see the path tracking

obtained. Despite some significant errors in the medium of the trajectory due to modeling errors

and disturbances, the track performance remains acceptable. The same behavior is observed on

the coordinates tracking shown by Fig. 98 (b). Figure 99 shows a couple of animation frames

of the 2D cooperative transportation with I-AUVs to illustrate the motion performed during the

trajectory tracking.

The modeling and servo-constraints are shown in Fig. 100. These results are significant once

they are related to the modeling and to the predictive-cooperative reference filter consistency.

For example, the modeling and the servo-constraints order are 10−7 and 10−6, respectively. These

small values are due to the numerical stability of the model and of the predictive-cooperative

reference filter, even in the presence of modeling errors and disturbances.
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Figure 96: Agents references on the 2D horizontal transportation with I-AUVs
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Figure 97: Agents control on the 2D horizontal cooperative transportation with I-AUVs
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Figure 98: Load tracking on the 2D cooperative transportation with I-AUVs
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Figure 100: Constraints of the 2D horizontal cooperative transportation with I-AUVs
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5.3 3D COOPERATIVE TRANSPORTATION WITH MOD-
ULAR ROVs

5.3.1 Modeling

Figure 101 (a) show the model of the 3D cooperative transportation with modular ROVs.

The system comprises four modular ROVs transporting a rigid block of aluminum. The ROVs

are based on the BlueROV 2 equipped with a support frame of stainless steel to attach the load.

This case is inspired by the works of Nielsen (NIELSEN et al., 2016; NIELSEN; BLANKE;

SCHJØLBERG, 2016; NIELSEN; JOHANSEN; BLANKE, 2018; NIELSEN et al., 2018), who

studied the application of the Udwadia-Kalaba equation on the modeling of modular UUVs.

(a): 3D cooperative transportation system

S

51

51.0 1.1

2 3 4

2.0 2.1 3.0 3.1 4.0 4.1

(b): Modeling hierarchy

Figure 101: 3D cooperative transportation with modular ROVs
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In the modeling hierarchy of Fig. 101 (b), the j-th agent ( j = 1, . . . , 4) is constituted by the

bodies 0 and 1, where the body j.0 is the ROV and body j.1 stands for the support. The agent

5 represents the load which is constituted by one single body. For the j-th agent ( j = 1, . . . , 4)

subsystems, rigid joints (white circles) connect the ROV with the support. In system S, rigid

joints (white circle) are used again to connect the agents with the load.

5.3.1.1 Modular ROV

The relaxed model of the j-th can be written as follows:

η̇ j = J j

(
η j

)
ν j,

M jν̇ j = f j

(
η j, ν j

)
,

(5.35)

where
J j = blkdiag

(
J j.0, J j.1

)
,

M j = blkdiag
(
M j.0,M j.1

)
,

η j =
[
ηT

j.0, η
T
j.1

]T
,

ν j =
[
νT

j.0, ν
T
j.1

]T
,

f j =

τ j.0 − C j.0ν j.0 − D j.0ν j.0 − g j.0 + d j.0

τ j.1 − C j.1ν j.1 − D j.1ν j.1 − g j.1 + d j.1

 ,
(5.36)

where η j.i =
[
ηT

1, j.i, η
T
2, j.i

]T
and ν j.i =

[
νT

1, j.i, ν
T
2, j.i

]T
(i = 0, 1) are the column-vectors of generalized

coordinates and quasi-velocities related to each body of the j-th agent, with η1, j.i =
[
x j.i, y j.i, z j.i

]T
,

η2, j.i =
[
ϕ j.i, θ j.i, ψ j.i

]T
, ν1, j.i =

[
u j.i, v j.i,w j.i

]T
and ν2, j.i =

[
p j.i, q j.i, r j.i

]T
; τ j.0 = T j.0u j.0 is the

column-vector of generalized control forces generated on the vehicle by the thrusters, with T j.0

as the thrusters configuration matrix and u j.0 =
[
T j.1, . . . ,T j.8

]T
as the column-vector of thrusts.

According to Wu (2018), the matrix T j.0 of the BlueROV 2 is (in SI units):

T j.0 =



0.71 0.71 −0.71 −0.71 0 0 0 0

−0.71 0.71 −0.71 0.71 0 0 0 0

0 0 0 0 −1 1 1 −1

0.06 −0.06 0.06 −0.06 −0.22 −0.22 0.22 0.22

0.06 0.06 −0.06 −0.06 0.12 −0.12 0.12 −0.12

−0.19 0.19 0.19 −0.19 0 0 0 0


. (5.37)
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The constraints related to the rigid joints of the j-th agent are written as:

φI,1
(
η1, t

)
=



x1.0 − x1.1 − l1 cos (ψ1.0) cos (θ1.0)

y1.0 − y1.1 − l1 cos (θ1.0) sin (ψ1.0)

z1.0 − z1.1 + l1 sin (θ1.0)

ϕ1.0 − ϕ1.1

θ1.0 − θ1.1

ψ1.0 − ψ1.1


= 0,

φI,2
(
η2, t

)
=



x2.0 − x2.1 − l2 (cos (ϕ2.0) sin (ψ2.0) − cos (ψ2.0) sin (ϕ2.0) sin (θ2.0))

y2.0 − y2.1 + l2 (cos (ϕ2.0) cos (ψ2.0) + sin (ϕ2.0) sin (ψ2.0) sin (θ2.0))

z2.0 − z2.1 + l2 cos (θ2.0) sin (ϕ2.0)

ϕ2.0 − ϕ2.1

θ2.0 − θ2.1

ψ2.0 − ψ2.1


= 0,

φI,3
(
η3, t

)
=



x3.0 − x3.1 + l3 cos (ψ3.0) cos (θ3.0)

y3.0 − y3.1 + l3 cos (θ3.0) sin (ψ3.0)

z3.0 − z3.1 − l3 sin (θ3.0)

ϕ3.0 − ϕ3.1

θ3.0 − θ3.1

ψ3.0 − ψ3.1


= 0,

φI,4
(
η4, t

)
=



x4.0 − x4.1 + l4 (cos (ϕ4.0) sin (ψ4.0) − cos (ψ4.0) sin (ϕ4.0) sin (θ4.0))

y4.0 − y4.1 − l4 (cos (ϕ4.0) cos (ψ4.0) + sin (ϕ4.0) sin (ψ4.0) sin (θ4.0))

z4.0 − z4.1 − l4 cos (θ4.0) sin (ϕ4.0)

ϕ4.0 − ϕ4.1

θ4.0 − θ4.1

ψ4.0 − ψ4.1


= 0,

(5.38)

where l j are the lengths defined between the centers of the bodies (ROVs and supports).

5.3.1.2 Cooperative transportation

The relaxed model of the 3D cooperative transportation with modular ROVs is written as:

η̇ = J
(
η
)
ν,

Mν̇ = f
(
η, ν

)
,

(5.39)
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with
J = blkdiag (J1, J2, J3, J4, J5) ,

M = blkdiag (M1,M2,M3,M4,M5) ,

η =
[
ηT

1 , η
T
2 , η

T
3 , η

T
4 , η

T
5

]T
,

ν =
[
νT

1 , ν
T
2 , ν

T
3 , ν

T
4 , ν

T
5

]T
,

f =
[
fT
1 , f

T
2 , f

T
3 , f

T
4 , f

T
5

]T
,

φII =
[
φT
II,1,φ

T
II,2,φ

T
II,3,φ

T
II,4

]T
,

(5.40)

where η5 =
[
ηT

1,5, η
T
2,5

]T
and ν5 =

[
νT

1,5, ν
T
2,5

]T
are the column-vectors of generalized coordinates

and quasi-velocities associated to the load, with η1,5 =
[
x5, y5, z5

]T, η2,5 =
[
ϕ5, θ5, ψ5

]T, ν1,5 =

[u5, v5,w5]T and ν2,5 =
[
p5, q5, r5

]T, while f5 = τ5 − C5ν5 − D5ν5 − g5 + d5 with τ5 = 0 once the

load is non-actuated.
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The constraints related to the rigid joints between the supports and load are given by:

φII,1
(
η, t

)
=



x1.1 − x5 − l5 cos (ψ1.1) cos (θ1.1)

y1.1 − y5 − l5 cos (θ1.1) sin (ψ1.1)

z1.1 − z5 + l5 sin (θ1.1)

ϕ1.1 − ϕ5

θ1.1 − θ5

ψ1.1 − ψ5


= 0,

φII,2
(
η, t

)
=



x2.1 − x5 − l6 (cos (ϕ2.1) sin (ψ2.1) − cos (ψ2.1) sin (ϕ2.1) sin (θ2.1))

y2.1 − y5 + l6 (cos (ϕ2.1) cos (ψ2.1) + sin (ϕ2.1) sin (ψ2.1) sin (θ2.1))

z2.1 − z5 + l6 cos (θ2.1) sin (ϕ2.1)

ϕ2.1 − ϕ5

θ2.1 − θ5

ψ2.1 − ψ5


= 0,

φII,3
(
η, t

)
=



x3.1 − x5 + l7 cos (ψ3.1) cos (θ3.1)

y3.1 − y5 + l7 cos (θ3.1) sin (ψ3.1)

z3.1 − z5 − l7 sin (θ3.1)

ϕ3.1 − ϕ5

θ3.1 − θ5

ψ3.1 − ψ5


= 0,

φII,4
(
η, t

)
=



x4.1 − x5 + l8 (cos (ϕ4.1) sin (ψ4.1) − cos (ψ4.1) sin (ϕ4.1) sin (θ4.1))

y4.1 − y5 − l8 (cos (ϕ4.1) cos (ψ4.1) + sin (ϕ4.1) sin (ψ4.1) sin (θ4.1))

z4.1 − z5 − l8 cos (θ4.1) sin (ϕ4.1)

ϕ4.1 − ϕ5

θ4.1 − θ5

ψ4.1 − ψ5


= 0,

(5.41)

where l4+ j are the lengths defined between the bodies (supports and load).

5.3.2 Centralized cooperative control

The centralized cooperative control is formulated imposing the modeling constraints into

the decentralized controllers and performing the control allocation together. The decentralized

controllers are synthesized as sliding mode controllers to handle the modeling errors and external

disturbances. The references used by the controllers are generated from the desired trajectory of
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the load, solving the IK-problem on the acceleration level for each control sub-system with the

Jacobians matrices of the modeling constraints. The approach used to solve the IK-problem is

based on Tang et al. (2017).

5.3.2.1 Decentralized controllers

Let the sliding surface of the j-th agent be given by:

s j

(
η j, η̇ j

)
= ˙̃η j + Λ jη̃ j = 0, ( j = 1, . . . , 5) (5.42)

where η̃ j = η j.5 − ηd,5 is the tracking error column-vector and Λ j = Λ
T
j ≥ 0 is a control gain

matrix associated to the closed-loop bandwidth.

Based on Eq. (5.42), the following control constraint is defined:

φSC, j
(
η j, η̇ j

)
= s j

(
ηi, η̇ j

)
= 0. ( j = 1, . . . , 5) (5.43)

Performing the time-derivative of Eq. (5.43) and imposing the sliding condition, we get:

φ̇SC, j = −L js j −K j sign
(
s j

)
, ( j = 1, . . . , 5) (5.44)

where L j = LT
j ≥ 0 and K j = KT

j ≥ 0 are control gains matrices.

Moreover, Eq. (5.44) can be rewritten as:

ASC, jν̇SC, j = bSC, j, ( j = 1, . . . , 5) (5.45)

where ASC, j =
∂φSC, j

∂η j
J j and bSC, j = −ȦSC, jJ jν j − ASC, jJ̇ jν j + η̈d,5 − Λ jη̃ j − L js j −K j sign

(
s j

)
.

From Eq.(4.110), the decentralized control of the j-th agent is given by:

u0, j = F−1/2
j H̄+SC, j

(
bSC, j − ASC, jν̇ j

)
. ( j = 1, . . . , 5) (5.46)

Moreover, taking F j =M−2
j , we get from Eq. (4.108):

H̄SC, j = ASC, jP jM−1
j F−1/2

j = ASC, jP j. ( j = 1, . . . , 4) (5.47)

where P j = I − Hg
jH j, with H j = A jM−1

j and A j =
∂φI, j

∂η j
J j ( j = 1, . . . , 4) related to the

modeling constraints between the ROVs and the supports (1-st level of the modeling hierarchy).

Concerning the load, we have P5 = I since no modeling constraints need to be included. Thus,

from Eq. (4.108) and with F5 =M−2
5 , we get H̄SC,5 = ASC,5M−1

5 F−1/2
5 = ASC,5.
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5.3.2.2 Centralized controller with thrust allocation

From Eq. (5.46), u0 =
[
uT

0,1, . . . ,u
T
0,5

]T
is the column-vector of decentralized controllers.

The thrusters configuration matrix of the system is written as:

T = blkdiag (T1,T2,T3,T4,T5) , (5.48)

where T j = blkdiag
(
T j.0,T j.1

)
, T j.1 = 0 ( j = 1, . . . , 4) and T5 = 0 once the supports and load are

non-actuated.

With Eqs. (4.93) and (4.94), the centralized cooperative control becomes:

u# = HQZ−1/2
(
I − H̄g

R|AH̄R
)
µ0,

τ = L−1/2H̄g
Tu#,

(5.49)

where
HQ = QT,

H̄R = RTZ−1/2,

H̄T
A = Z−1/2AT,

Z = I +M
(
H̄g

THQ
)T

H̄g
THQ,

µ0 = Z−1/2u0,

H̄T = TL−1/2,

H̄g
T = H̄T

T

(
H̄TH̄T

T

)g
.

(5.50)

In Eq. (5.50), Q and R are calculated considering the actuated and non-actuated quasi-

velocities, i.e., Q =
∂ν#

∂ν
and R =

∂ν∗
∂ν

, with ν# =
[
νT

1.0, . . . , ν
T
4.0

]T
and ν∗ =

[
νT

1.1, . . . , ν
T
4.1, ν

T
5

]T
.

5.3.3 Results

The centralized cooperative control is tested on the tracking problem of a circular trajectory

close to the free surface. The load desired trajectory are described by (in meters and radians):

xd (t) = 10 sin (0.063t) ,

yd (t) = 10 cos (0.063t) ,

zd (t) = 2,

ϕd (t) = θd (t) = ψd (t) = 0.

(5.51)

The simulation is performed using the previous specified setup. The modeling and control
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parameters are shown in Tabs. 16 and 17. The wave parameters used to model the wave forces

are found in Oliveira et al. (2022).

Table 16: Modular ROVs, supports and load model parameters

Symbols Values Units (SI)

MRB,0 diag (11.5, 11.5, 11.5, 0.16, 0.16, 0.16) kg, kgm2

MRB,1 diag (4.7, 4.7, 4.7, 0.15, 0.30, 0.44) kg, kgm2

MRB,5 diag (175, 175, 175, 7.29, 7.29, 7.29) kg, kgm2

MA,0 diag (5.5, 12.7, 14.6, 0.12, 0.12, 0.12) kg, kgm2

MA,1 diag (0, 0, 0, 0, 0, 0) kg, kgm2

MA,5 diag (112.25, 112.25, 112.25, 1.09, 1.09, 1.09) kg, kgm2

D0 diag (18.18, 21.66, 36.99, 1.55, 1.55, 1.55) Ns/m,Nms

D1 diag (0, 0, 0, 0, 0, 0) Ns/m,Nms

D5 diag (143.75, 143.75, 143.75, 0.84, 0.84, 0.84) Ns/m,Nms

l1, l2, l3, l4 0.08 m

l5, l6, l7, l8 0.66 m

W0, B0 112.82, 114.78 N

W1, B1 46.11, 166.77 N

W5, B5 1716.70, 1226.30 N

p⃗0
G0 |O0

[0, 0, 0]T m

p⃗0
B0 |O0

[0, 0,−0.2]T m

p⃗1
G1 |O1

[0.23, 0, 0]T m

p⃗1
B1 |O1

[0, 0, 0]T m

p⃗5
G5 |O5

[0, 0, 0]T m

p⃗5
B5 |O5

[0, 0, 0]T m

Table 17: Modular ROVs and load control parameters

Symbols Values Units (SI)

Λ diag (1, 1, 1, 1, 1, 1) 1/s

K diag (5, 5, 5, 5, 5, 5) m/s2, rad/s2

L diag (10, 10, 10, 10, 10, 10) 1/s



234

Figure 102 shows the control block diagram for the 3D cooperative transportation with

modular ROVs.

ROVs Dynamic

MCM

Observer

Plant

SensorsReference

IK

Motion Planning Motion Control

yd,j uj

xj

yj

x̂jyd,5

Figure 102: Cooperative centralized control block diagram

Figure 103 shows the displacements of each agent. Despite some oscillations on the height

and on the Euler angles, the motion performed is continuous and smooth. These oscillations are

due to the relative velocity effects on the thrusters propeller caused by the wave velocity profile

and the system motion. As previously mentioned, the relative velocity effects on the thrusters

propeller are included in the model through a 3D interpolation table. The commanded thrusts and

associated motor velocities are shown in Fig. 104. There is a saturation at the beginning of the

simulation for the thrusts and motor velocities profiles. This saturation is due to the additional

control effort needed to reach the desired trajectory, as shown on the trajectory tracking shown

in Fig. 105. Regarding the task quality, the control keeps the system stable and performs the

tracking with acceptable performance as shown by the path and coordinates tracking in Fig. 105

(a) and (b), respectively. However, for higher significant wave heights (Hs > 2 m), the wave

effects can comprise the task execution. Figure 106 shows some animation frames of the 3D

cooperative transportation with modular ROVs to illustrate the motion performed during the

trajectory tracking.

The modeling and servo-constraints orders are 10−9 and 10−1 as shown in Fig. 107.
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Figure 103: Agents displacements on the 3D cooperative transportation with modular ROVs
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Figure 104: Control inputs on the 3D cooperative transportation with modular ROVs
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Figure 105: Load tracking on the 3D cooperative transportation with modular ROVs
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Figure 106: Frames of the 3D cooperative transportation with modular ROVs
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Figure 107: Constraints of the 3D cooperative transportation with modular ROVs

5.4 3D COOPERATIVE TRANSPORTATION WITH I-
AUVs

5.4.1 Modeling

Figure 108 (a) shows the 3D cooperative transportation performed with I-AUVs. The system

comprises four I-AUVs transporting a rigid rectangular frame made of cylindrical-shaped links of

polyethylene. The I-AUV model is based on the BlueROV 2 equipped with a 3-DoFs manipulator

of anthropomorphic structure made of cylindrical-shaped links also made of polyethylene. This

case of study is inspired by the works of Heshmati-Alamdari (HESHMATI-ALAMDARI et al.,

2017; HESHMATI-ALAMDARI, 2018; HESHMATI-ALAMDARI et al., 2018; HESHMATI-

ALAMDARI; KARRAS; KYRIAKOPOULOS, 2019; HESHMATI-ALAMDARI et al., 2021a;

HESHMATI-ALAMDARI et al., 2021b), who studied the cooperative transportation performed

by groups of I-AUVs.
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(a): 3D cooperative transportation system (main dimensions in millimeters) where

(1) is the AUV, (2) is the link, (3) is the motor, (4) is the end-effector and (5) is the load

j.4 j.4j.4 j.1

j.3j.2j.1j.3j.2j.1j.3j.2j.1j.0

j.0

j.5 j.6j.4

j

j.1

(b): Agent modeling hierarchy

3.51.5 2.5 4.5

1 2 3 45

S

(c): Cooperative transportation modeling hierarchy

Figure 108: 3D cooperative transportation with I-AUVs

In the modeling hierarchy of Fig. 108 (b), the j-th agent ( j = 1, . . . , 4) is constituted by the

bodies 0, 1, 2 and 3. The body j.0 is the vehicle, bodies j.1 are spheres used to model the motors

house and the end-effector, bodies j.2 are the motors and bodies j.3 are the manipulator links.

Also, in Fig. 108 (c), agent 5 represents the load and is constituted by four other bodies, i.e., j.5

representing the frame links. In the j-th agent subsystems ( j = 1, . . . , 4), active revolute joints

(grey circles) connect the motors with the houses and rigid joints (white circles) connect the
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vehicle with the motor house, the motor house with the manipulator links, the manipulator links

with the motors and the end-effector with third manipulator link. For system S, passive spherical

joints (white circle) connect the end-effectors with the load.

We should point out that in this case of study, the use of Euler angles (ϕ, θ, ψ) to describe the

rotations result in numerical problems once the initial position of the manipulator links represents

a singular configuration (θ = ±90◦). To avoid these problems, in this system, the rotations are

parameterized with the Euler parameters (e0, e1, e2, e3), as described in Subsec. 3.1.3.

5.4.1.1 I-AUV

The relaxed model of the j-th agent is written as follows:

η̇ j = J j

(
η j

)
ν j,

M jν̇ j = f j

(
η j, ν j

)
,

(5.52)

with
J j = blkdiag

(
J j.0, J j.1, J j.2, J j.3, J j.4, J j.5, J j.6, J j.7, I

)
,

M j = blkdiag
(
M j.0,M j.1,M j.2,M j.3,M j.4,M j.5,M j.6,M j.7, I j.M

)
,

η j =
[
ηT

j.0, η
T
j.1, η

T
j.2, η

T
j.3, η

T
j.4, η

T
j.5, η

T
j.6, η

T
j.7,γ

T
j

]T
,

ν j =
[
νT

j.0, ν
T
j.1, ν

T
j.2, ν

T
j.3, ν

T
j.4, ν

T
j.5, ν

T
j.6, ν

T
j.7, γ̇

T
j

]T
,

f j =



τ j.0 − C j.0ν j.0 − D j.0ν j.0 − g j.0 + d j.0

τ j.1 − C j.1ν j.1 − D j.1ν j.1 − g j.1 + d j.1

τ j.2 − C j.2ν j.2 − D j.2ν j.2 − g j.2 + d j.2

τ j.3 − C j.3ν j.3 − D j.3ν j.3 − g j.3 + d j.3

τ j.4 − C j.4ν j.4 − D j.4ν j.4 − g j.4 + d j.4

τ j.5 − C j.5ν j.5 − D j.5ν j.5 − g j.5 + d j.5

τ j.6 − C j.6ν j.6 − D j.6ν j.6 − g j.6 + d j.6

τ j.7 − C j.7ν j.7 − D j.7ν j.7 − g j.7 + d j.7

τ j.M − B j.Mγ̇ j − C j.M sign
(
γ̇ j

)



,

(5.53)

with η j.i =
[
ηT

1, j.i, η
T
2, j.i

]T
and ν j.i =

[
νT

1, j.i, ν
T
2, j.i

]T
(i = 0, 1, . . . , 7) as the column-vectors of general-

ized coordinates and quasi-velocities associated to each body of the j-th agent, where η1, j.i =[
x j.i, y j.i, z j.i

]T
, η2, j.i =

[
e0, j.i, e1, j.i, e2, j.i, e3, j.i

]T
, ν1, j.i =

[
u j.i, v j.i,w j.i

]T
and ν2, j.i =

[
p j.i, q j.i, r j.i

]T
;

γ j =
[
γ j.1, γ j.2, γ j.3

]T
is the column-vector of motors displacements; τ j.0 = T j.0u j.0 is the

column-vector of generalized control forces generated on the vehicle by the thrusters, with

T j.0 as the thrusters configuration matrix and u j.0 =
[
T j.1, . . . ,T j.8

]T
as the column-vector of
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thrusts; τ j.M = T j.Mu j.M is the column-vector of actuation torques generated by the motors on

the manipulator joints, with T j.M as the gain matrix associated with the motors reduction and

u j.M =
[
τ j.1, τ j.2, τ j.3

]T
is the column-vector of drive torques generated on the motors shaft which

follows the stationary relation between motor current and torque constant.

The constraints related to the joints of the j-th agent are given by:

φI, j
(
η j, t

)
=



η1, j.0 + J1, j.0p⃗ j.0
O j.1 |O j.0

−
(
η1, j.1 − J1, j.1p⃗ j.1

C j.1 |O j.1

)
η1, j.1 + J1, j.1p⃗ j.1

O j.2 |C j.1
−

(
η1, j.2 − J1, j.2p⃗ j.2

C j.2 |O j.2

)
η1, j.2 + J1, j.2p⃗ j.2

O j.3 |C j.2
−

(
η1, j.3 − J1, j.3p⃗ j.3

C j.3 |O j.3

)
η1, j.0 + J1, j.0p⃗ j.0

O j.1 |O j.0
− η1, j.4

η1, j.1 + J1, j.1p⃗ j.1
O j.2 |C j.1

− η1, j.5

η1, j.2 + J1, j.2p⃗ j.2
O j.3 |C j.2

− η1, j.6

η1, j.3 + J1, j.3p⃗ j.3
O j.4 |C j.3

− η1, j.7

η∗2, j.0 ⊗ η2, j.1 − η2,γ j.1

η∗2, j.1 ⊗ η2, j.2 − η2,γ j.2

η∗2, j.2 ⊗ η2, j.3 − η2,γ j.3

η∗2, j.0 ⊗ η2, j.4 − η2,0◦

η∗2, j.1 ⊗ η2, j.5 − η2,0◦

η∗2, j.2 ⊗ η2, j.6 − η2,0◦

η∗2, j.3 ⊗ η2, j.7 − η2,0◦



= 0, (5.54)

where

• J1, j.i (i = 0, 1, . . . , 7) is the rotation matrix from body-fixed to Earth-fixed frame;

• p⃗ j.0
O j.1 |O j.0

=
[
0, 0, l j.0

]T
is the position vector defined between the points O j.1 (first joint

center) and O j.0 (vehicle origin) expressed on the body-fixed frame;

• p⃗ j.i
C j.i |O j.i

=
[
l j.i, 0, 0

]T
(i = 1, . . . , 7) is the position vector defined between the points C j.i

(body center) and O j.i (joint origin) expressed on the body-fixed frame;

• p⃗ j.i
O j.i+1 |C j.i

=
[
l j.i, 0, 0

]T
(i = 1, . . . , 3) is the position vector defined between the points O j.1+1

(joint centers) and C j.i (body centers) expressed on the body-fixed frame;

• l j.0 is the length between the points O j.1 and O j.0;

• l j.i is the length between the points C j.i and O j.i as the points O j.i+1 and C j.i;
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• η2,γ j.i
=

[
cos

(
γ j.i/2

)
, sin

(
γ j.i/2

)
, 0, 0

]T
(i = 1, . . . , 3) are the relative quaternions associ-

ated to the manipulator displacements;

• η2,0◦ = [1, 0, 0, 0]T is the unity quaternion.

In Eq. (5.54), the superscript “∗” indicates the quaternion conjugate and “⊗” represents the

Hamiltonian product.

5.4.1.2 Load frame

The relaxed model of the load is written as follows:

η̇5 = J5
(
η5

)
ν5,

M5ν̇5 = f5
(
η5, ν5

)
,

(5.55)

with
J5 = blkdiag (J1.5, J2.5, J3.5, J4.5) ,

M5 = blkdiag (M1.5,M2.5,M3.5,M4.5) ,

η5 =
[
ηT

1.5, η
T
2.5, η

T
3.5, η

T
4.5

]T
,

ν5 =
[
νT

1.5, ν
T
2.5, ν

T
3.5, ν

T
4.5

]T
,

f5 =



τ1.5 − C1.5ν1.5 − D1.5ν1.5 − g1.5 + d1.5

τ2.5 − C2.5ν2.5 − D2.5ν2.5 − g2.5 + d2.5

τ3.5 − C3.5ν3.5 − D3.5ν3.5 − g3.5 + d3.5

τ4.5 − C4.5ν4.5 − D4.5ν4.5 − g4.5 + d4.5


,

(5.56)

where η j.5 =
[
ηT

1, j.5, η
T
2, j.5

]T
and ν j.5 =

[
νT

1, j.5, ν
T
2, j.5

]T
are the column-vectors of generalized coor-

dinates and quasi-velocities associated to each body of the load, with η1, j.5 =
[
x j.5, y j.5, z j.5

]T
,

η2, j.5 =
[
e j.5,0, e j.5,1, e j.5,2, e j.5,3

]T
, ν1, j.5 =

[
u j.5, v j.5,w j.5

]T
and ν2, j.5 =

[
p j.5, q j.5, r j.5

]T
; τ j.5 = 0 once

the load is non-actuated.
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The constraints associated to the vertices position of the load are given by:

φI,5
(
η5, t

)
=



η1,1.5 − J1,1.5p⃗1.5
C1.5 |O1.5

−
(
η1,2.5 + J1,2.5p⃗2.5

C2.5 |O2.5

)
η1,2.5 − J1,2.5p⃗2.5

C2.5 |O2.5
−

(
η1,3.5 − J1,3.5p⃗3.5

C3.5 |O3.5

)
η1,3.5 + J1,3.5p⃗3.5

O3.5 |C3.5
−

(
η1,4.5 − J1,4.5p⃗4.5

C4.5 |O4.5

)
η1,4.5 + J1,4.5p⃗4.5

O4.5 |C4.5
−

(
η1,1.5 + J1,1.5p⃗1.5

C1.5 |O1.5

)
η∗2,1.5 ⊗ η2,3.5 − η2,0◦

η∗2,2.5 ⊗ η2,4.5 − η2,0◦

η∗2,3.5 ⊗ η2,4.5 − η2,90◦



= 0, (5.57)

where η2,90◦ = [cos (π/4) , 0, 0, sin (π/4)]T is the relative quaternion associated with the fixed

orientation between the frame links.

5.4.1.3 Cooperative transportation

The relaxed model of the 3D cooperative transportation with I-AUVs is written as:

η̇ = J
(
η
)
ν,

Mν̇ = f
(
η, ν

)
,

(5.58)

where
J = blkdiag (J1, J2, J3, J4, J5) ,

M = blkdiag (M1,M2,M3,M4,M5) ,

η =
[
ηT

1 , η
T
2 , η

T
3 , η

T
4 , η

T
5

]T
,

ν =
[
νT

1 , ν
T
2 , ν

T
3 , ν

T
4 , ν

T
5

]T
,

f =
[
fT
1 , f

T
2 , f

T
3 , f

T
4 , f

T
5

]T
.

(5.59)

The constraints associated to the spherical joints connecting the end-effectors with the load

vertices are written as:

φII
(
η, t

)
=



η1,1.5 − J1,1.5p⃗1.5
C1.5 |O1.5

− η1,1.7

η1,2.5 − J1,2.5p⃗2.5
C2.5 |O2.5

− η1,2.7

η1,3.5 + J1,3.5p⃗3.5
O3.5 |C3.5

− η1,3.7

η1,4.5 + J1,4.5p⃗4.5
O4.5 |C4.5

− η1,4.7


= 0. (5.60)
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5.4.2 Decentralized cooperative control

To handle the modeling and control constraints while considering the control inputs bounds,

the cooperative control of the j-th agent is synthesized as a MPC using the QP-problem formula-

tion presented in chapter 3 (see Subsec. 4.2.3.1).

Thus, let us consider the predictive model of the j-th agent written in the form of Eq. (4.159)

and defined along the prediction and control horizons, p and c.

Based on Eq. (5.22), the formation constrains along the prediction horizon can be written as

(the agent index is committed here to simplify the notation):

ÃSC = blkdiag (ASC, . . . ,ASC) ; b̃SC =
[
bT
SC, . . . ,b

T
SC

]T
. (5.61)

With Eqs. (4.161), (4.159) and (5.61), the QP-problem of the j-th agent becomes:

min
U#(·)

J = (Y − Yr)T Q̃Y (Y − Yr) + UT
#R̃U#U#,

s.t. Y = Sxx + SU#U# + Sdd + Srr,

ÃSCY = b̃SC,

U#,min ≤ U# ≤ U#,max.

(5.62)

Let λ̃ be a column-vector of Lagrange multipliers associated with the formation constraints

along the prediction horizon, such that λ̃ =
[
λT

1 , . . . , λ
T
p

]T
. Thus, the modified QP-problem of the

j-th agent becomes:

min
U#(·), λ̃(·)

J = (Y − Yr)T Q̃Y (Y − Yr) + UT
#R̃U#U# − λ̃

T (
ÃSCY − b̃SC

)
,

s.t. Y = Sxx + SU#U# + Sdd + Srr.
(5.63)

Inserting the predictive model of Eq. (4.159) into the cost function of (5.63), we get:

min
U#(·), λ̃(·)

J =UT
#

(
ST

U#
Q̃YSU# + R̃U#

)
U# + 2 (Sxx + Sdd + Srr − Yr)T Q̃YSU#U# + . . .

−
(
ÃSC

(
Sxx + SU#U# + Sdd + Srr

)
− b̃SC

)T
λ̃.

(5.64)

The conditions related to the stationary points of Eq. (5.64) follow:

δJ
δU#
= 2

(
ST

U#
Q̃YSU# + R̃U#

)
U# + 2ST

U#
Q̃Y (Sxx + Sdd + Srr − Yr) − ST

U#
ÃT
SCλ̃ = 0,

δJ
δλ̃
= ÃSC

(
Sxx + SU#U# + Sdd + Srr

)
− b̃SC = 0.

(5.65)
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We can define ΦU# = 2
(
ST

U#
Q̃YSU# + R̃U#

)
as the inverse of the Hessian matrix and HU# =

ÃSCSU#Φ
−1/2
U#

. Then, Eq. (5.65) becomes:

U# = Φ
−1/2
U#

(
HT

U#
λ̃ − 2Φ−1/2

U#
ST

U#
Q̃Y (Sxx + Sdd + Srr − Yr)

)
,

HU#H
T
U#
λ̃ = 2HU#Φ

−1/2
U#

ST
U#

Q̃Y (Sxx + Sdd + Srr − Yr) + b̃SC − ÃSC (Sxx + Sdd + Srr) .
(5.66)

Let ãU#,Y = ST
U#

Q̃Y (Sxx + Sdd + Srr − Yr) be the weighted column-vector of tracking errors

associated with the secondary objectives and ãSC = b̃SC−ÃSC (Sxx + Sdd + Srr) the column-vector

of tracking errors related to the formation. Thus, Eq. (5.66) can be rewritten as:

U# = Φ
−1/2
U#

(
HT

U#
λ̃ − 2Φ−1/2

U#
ãU#,Y

)
,

HU#H
T
U#
λ̃ = 2HU#Φ

−1/2
U#

ãU#,Y + ãSC.
(5.67)

The unconstrained solution (disregarding the control inputs bounds) of the QP-problem of

Eq. (5.62) is given by:

U# = Φ
−1/2
U#

(
Hg

U#
ãSC − 2

(
I −Hg

U#
HU#

)
Φ
−1/2
U#

ãU#,Y
)
. (5.68)

Let PU# = I−Hg
U#

HU# be the orthogonal projector onto the kernel of HU# such that HU#PU# =

PT
U#

HT
U#
= 0. Then, Eq. (5.68) can be rewritten as:

U# = Φ
−1/2
U#

Hg
U#

ãSC − 2Φ−1/2
U#

PU#Φ
−1/2
U#

ãU#,Y. (5.69)

For numerical implementation, Eq. (5.69) should be saturated to consider the control inputs

bounds, as below:

U# = sat
(
Φ
−1/2
U#

Hg
U#

ãSC − 2Φ−1/2
U#

PU#Φ
−1/2
U#

ãU#,Y,U#,min,U#,max

)
. (5.70)

To simplify the implementation, Eq. (5.70) control can be rewritten as a two-loop controller,

as follows:

U# = sat
(
C1ãSC + C2ãU#,Y,U#,min,U#,max

)
, (5.71)

where C1 = Φ
−1/2
U#

Hg
U#

and C2 = −2Φ−1/2
U#

PU#Φ
−1/2
U#

.

The block diagram of the two-loop control structure of the j-th agent is shown by Fig. 109.

The first controller, C1, is associated with the formation-keeping and the second one, C2, is

related to the secondary objectives.
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(C1)

Primary Control

+

+

(C2)

Secondary Control
Dynamic Model

Prediction Model
U#,1 (k)

U#,2 (k) u# (k)

U# (k)

Y (k + 1)

Yr (k)

b̃SC (k)

x (k)

Y (k + 1)

Y (k + 1)

Figure 109: Two-Loop MPC block diagram

In order to consider the control inputs bounds direct on the optimization, the QP-problem of

Eq. (5.62) can be rewritten as:

min
U#(·), λ̃(·)

J =
1
2

UT
#ΦU#U# + 2ãT

U#,YU# − UT
#Φ

1/2
U#
Φ
−1/2
U#

ST
U#

ÃT
SCλ̃,

=
1
2

UT
#ΦU#U# + 2ãT

U#,YU# − UT
#Φ

1/2
U#

HT
U#
λ̃,

s.t. HU#H
T
U#
λ̃ = 2HU#Φ

−1/2
U#

ãU#,Y + ãSC,

U#,min ≤ U# ≤ U#,max.

(5.72)

Let Hg
U#

be any {1, 4}-inverse of HU# , such that inserting the equality constraints associated

with the Lagrange multipliers related to the formation constraints into the cost function of

Eq. (5.72), results in:

min
U#(·)

J =
1
2

UT
#ΦU#U# + 2ãT

U#,YU# −
(
2Hg

U#
HU#Φ

−1/2
U#

ãU#,Y +Hg
U#

ãSC
)T
Φ

1/2
U#

U#,

=
1
2

UT
#ΦU#U# + 2ãT

U#,YΦ
−1/2
U#
Φ

1/2
U#

U# −
(
2Hg

U#
HU#Φ

−1/2
U#

ãU#,Y +Hg
U#

ãSC
)T
Φ

1/2
U#

U#,

=
1
2

UT
#ΦU#U# +

(
2ãT

U#,YΦ
−1/2
U#
− 2ãT

U#,YΦ
−1/2
U#

(
Hg

U#
HU#

)T
+ ãT

SC

(
Hg

U#

)T
)
Φ

1/2
U#

U#,

=
1
2

UT
#ΦU#U# +

(
2ãT

U#,YΦ
−1/2
U#

(
I −

(
Hg

U#
HU#

)T
)
+ ãT

SC

(
Hg

U#

)T
)
Φ

1/2
U#

U#,

=
1
2

UT
#ΦU#U# +

(
2ãT

U#,YΦ
−1/2
U#

PT
U#
+ ãT

SC

(
Hg

U#

)T
)
Φ

1/2
U#

U#,

s.t. U#,min ≤ U# ≤ U#,max.

(5.73)
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Finally, Eq. (5.73) can be rewritten as follows:

min
U#(·)

J = UT
#HQPU# + fQPU#,

s.t. GQPU# ≤ φQP,
(5.74)

where
HQP =

1
2
ΦU# = ST

U#
Q̃YSU# + R̃U# ,

fQP =
(
2ãT

U#,YΦ
−1/2
U#

PT
U#
+ ãT

SC

(
Hg

U#

)T
)
Φ

1/2
U#
,

GQP = blkdiag (−I,+I) ,

φQP =
[
UT

#,min,U
T
#,max

]T
,

U#,min =
[
uT

#,min, . . . ,u
T
#,min

]T
,

U#,max =
[
uT

#,max, . . . ,u
T
#,max

]T
.

(5.75)

5.4.3 Results

The decentralized cooperative control versions (saturated and QP-problem) are tested on the

tracking problem of a cycloidal trajectory as described in Sec. 5.1.

The simulations are performed using the previously specified setup. The modeling and

control parameters are shown in Tabs. 18 and 19.

The off-sets values in the form of Eq. (5.32) are given by (in meters and radians):

δ1 =



2 0 0 0 4

2 0 4 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


;

δ3 =



−2 0 −4 0 0

−2 0 0 0 −4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


;

δ2 =



2 0 0 4 0

−2 −4 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

δ4 =



−2 −4 0 0 0

2 0 0 4 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

(5.76)
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To keep the manipulator joints static during the transportation, the following servo-constraints

are added on the sliding surfaces of the formation-keeping:

φ̇SC, j
(
γ̈ j, γ̇ j,γ j, t

)
= γ̈ j + λ jγ̇ j + k jγ j = 0, (5.77)

where λ j > 0 and k j > 0 are stabilization coefficients.

Table 18: 9-DoFs I-AUV and load model parameters

Symbols Values Units (SI)

MRB,1 diag(0.95, 0.95, 0.95, 0.001, 0.02, 0.02) kg, kgm2

MRB,2 diag(1.41, 1.41, 1.41, 0.0014, 0.0014, 0.0014) kg, kgm2

MRB,5 diag(7.58, 7.58, 7.58, 0.001, 10.11, 10.11) kg, kgm2

MA,1 diag(1410, 3000, 33.44, 1410, 3000, 33.44) kg, kgm2

MA,2 diag(1.41, 1.41, 1.41, 0, 0, 0) kg, kgm2

MA,5 diag(0.08, 4, 0.33, 0.08, 4, 0.33) kg, kgm2

D1 diag(1.96, 1.96, 1.96, 0, 0, 0) Ns/m,Nms

CD,x2 ,CD,y2 ,CD,z2 , δ2 0, 1.2, 1.2, 0.001 –

2l2, d2,∆l2 0.5, 0.05, 0.05 m

2l5, d5,∆l5 4, 0.05, 0.40 m

W1, B1 9.29, 9.63 N

W2, B2 13.87, 5.14 N

W5, B5 74.35, 77.05 N

p⃗1
G1 |O1

[0, 0, 0]T m

p⃗1
B1 |O1

[0, 0, 0]T m

p⃗2
G2 |O2

[0, 0, 0]T m

p⃗2
B2 |O2

[0, 0, 0]T m

p⃗5
G5 |O5

[0, 0, 0]T m

p⃗5
B5 |O5

[0, 0, 0]T m

NM, ηM 10, 0.9 –

bM, cM 1, 0.1 Nms,Nm
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Table 19: 9-DoFs I-AUV control parameters

Symbols Values Units (SI)

Λ diag(1, 1, 1, 1, 1, 1, 1, 1, 1) 1/s

K diag(10, 10, 10, 10, 10, 10, 10, 10, 10) m/s2, rad/s2

L diag(100, 100, 100, 100, 100, 100, 100, 100, 100) 1/s

ϵ 1 –

QY diag(0, 0, 0, 0, 0, 0, 0, 0, 0) –

RU# diag(10, 10, 10, 10, 10, 10, 10, 10, 100, 100, 100) –

Ωa diag (100, 100, 100, 100, 100, 100, 100, 100, 100) rad/s

p, c 20, 20 –

Ts 0.01 s

λ, k 10, 100 1/s, 1/s2

Figures 110 to 115 show the results for the saturated control of Eq. (5.74). Figure 110

shows the displacements of each agent. We can see that the motion performed by the agents is

continuous and smooth. In this case, there are no oscillations due to the relative velocity effects

on the thrusters propeller once the system goes down, thus, reducing the influence of the wave

forces. The commanded thrusts and motor torques are shown in Fig. 111. In this case, there is no

saturation at the beginning of the simulation since the motion starts at the desired trajectory, as

shown on the trajectory tracking in Fig. 113. Concerning the task performance, the controller

keeps the system stable and performs the tracking with good performance as shown by the path

and coordinates tracking in Fig. 113 (a) and (b), respectively. Figure 114 shows some animation

frames of the 3D cooperative transportation with I-AUVs to illustrate the motion performed

during the trajectory tracking.

The modeling and servo-constraints orders are 10−6 and 10−1 as shown in Fig. 115.

Figures 116 to 121 show the results for the QP-problem control of Eq. (5.72). The tracking

performance is similar to the saturated control, as can be seen in Figs. 116, 119 and 114. The

modeling and servo-constraints orders are similar to the saturated control, as shown in Fig. 121.

However, the control inputs calculated by Eq. (5.72) and shown in Figs. 117 and 118 are prone

to chattering due to the sensitive of the QP to the measurements noises.
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(a): Linear displacements (b): Angular displacements

Figure 110: Agents displacements on the 3D cooperative transportation with I-AUVs (saturated)

(a): Thrusts (T1, . . . ,T4) (b): Thrusts (T5, . . . ,T8)

Figure 111: Agents thrusts on the 3D cooperative transportation with I-AUVs (saturated)
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Figure 112: Agents torques on the 3D cooperative transportation with I-AUVs (saturated)

(a): Path tracking (b): Load displacements

Figure 113: Load tracking on the 3D cooperative transportation with I-AUVs (saturated)
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(a): xy-plane (b): yz-plane

(a): xz-plane (b): 3D plot

Figure 114: Frames of the 3D cooperative transportation with I-AUVs (saturated)
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0
(b): Control constraints

Figure 115: Constraints of the 3D cooperative transportation with I-AUVs (saturated)
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(a): Linear displacements (b): Angular displacements

Figure 116: Agents displacements on the 3D cooperative transportation with I-AUVs (QP-
problem)

(a): Thrusts (T1, . . . ,T4) (b): Thrusts (T5, . . . ,T8)

Figure 117: Agents thrusts on the 3D cooperative transportation with I-AUVs (QP-problem)
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Figure 118: Agents torques on the 3D cooperative transportation with I-AUVs (QP-problem)

(a): Path tracking (b): Load displacements

Figure 119: Load tracking on the 3D cooperative transportation with I-AUVs (QP-problem)
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(a): xy-plane (b): yz-plane

(a): xz-plane (b): 3D plot

Figure 120: Frames of the 3D cooperative transportation with I-AUVs (QP-problem)
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(b): Control constraints

Figure 121: Constraints of the 3D cooperative transportation with I-AUVs (QP-problem)
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5.5 COMMENTARIES

This chapter presented three cases of study of underwater cooperative transportation. The

first case considered the 2D cooperative transportation performed by a group of I-AUVs on the

horizontal plane. In this first example, we developed a predictive filter based on the state-space

form of the Udwadia-Kalaba equation of chapter 4 to perform the agents coordination. The

second case concerns the 3D cooperative transportation performed by a group of modular ROVs.

In this example, we used the MCM formulated with control allocation to synthesize a centralized

cooperative control. The third case concerns the 3D cooperative transportation performed by a

group of I-AUVs. In this last example, we merged the agents coordination and control using the

MPC and the servo-constraints approach presented in chapter 4. All cases of study are evaluated

through detailed numerical simulations, considering disturbances, actuators dynamic, sensor

measurements and sampling effects.
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6 CONCLUSIONS

In this thesis, we presented modular methodologies for modeling and controlling UVMSs

applied to cooperative transportation, which can also be used for general underwater or off-the-

self multibody systems.

The modeling approach enables the derivation of the EoMs of any underwater multibody

system starting from bases models, e.g., the 3D submerged body model, and then projecting

the relaxed model in the directions compatible with the modeling constraints a posteriori and

recursively, according to the modeling hierarchical defined. The constrained EoMs are obtained

in the classical form of the UUVs dynamic, which permits the direct application of already

existing algorithms for control, filtering, estimation, localization, etc. The modeling methodology

is validated through numerical simulations, reproducing experiments of underwater multibody

systems reported in the literature.

The modular control methodology permits the control synthesis through a hierarchical ap-

proach starting from already available decentralized controllers of the subsystems and imposing

the constraints a posteriori according to the control hierarchy defined. The methodology also

can handle the control allocation, decentralized controllers synthesis with prescribed servo-

constraints and optimal control formulation. The modular control methodology is tested with

classical robot systems used for control design (e.g., inverted pendulum, slider-crank mechanism,

RR-manipulator) and more complex mechanisms with parallel kinematic structure. Some tests

are also performed with a digital twin of a 2-DoFs helicopter and an inverted pendulum proto-

type. Moreover, the modular control methodology was then applied to underwater cooperative

transportation problems performed by groups of I-AUVs and modular ROVs, resulting in the

following developments:

• A decentralized predictive-cooperative reference filter based on the state-space form of the

Udwadia-Kalaba equation to perform the agents coordination;

• A centralized cooperative control based on the servo-constraints formulation and with

control allocation;
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• A decentralized model predictive control that combines the agents coordination with its

low-level control using the state-space form of the Udwadia-Kalaba equation and the servo

constraints formulation.

All problems were evaluated through detailed numerical simulations, considering distur-

bances (e.g., modeling errors, ocean current, etc.), actuator dynamics (e.g., thrusters and motors

dynamics), sensor measurements, noise and sampling effects. The results confirm the applica-

bility of the proposed approaches for such complex multibody-multiagent systems. However,

experimental tests still needed to be performed.

For future works, we suggest the following topics:

• Perform experimental tests with the modular control methodology in other standard robotic

systems, e.g., double inverted pendulum, 3-DoFs helicopter, 3D gyroscopic, etc.;

• Explore the recursive modular formulation based on the Kalman filter algorithm to com-

pensate for numerical instabilities, modeling errors, disturbances, etc.;

• Adapt the modular control methodology to other cooperative systems, such as aerial and

ground vehicles, with manipulation capabilities or not.



258

REFERENCES

ALMEIDA, J.; SILVESTRE, C.; PASCOAL, A. Synchronization of Multiagent Systems Using
Event-Triggered and Self-Triggered Broadcasts. IEEE Transactions on Automatic Control, v. 62,
n. 9, p. 4741–4746, sep 2017. ISSN 0018-9286. Disponível em: <http://ieeexplore.ieee.org/
document/7858661/>.

ANTONELLI, G. Underwater Robots. Cham: Springer International Publishing, 2014. v. 96.
595–622 p. (Springer Tracts in Advanced Robotics, v. 96). ISBN 978-3-319-02876-7. Disponível
em: <http://link.springer.com/10.1007/978-3-319-32552-1_25>.

ANTONELLI, G.; CATALDI, E. Recursive adaptive control for an underwater vehicle carrying
a manipulator. In: 22nd Mediterranean Conference on Control and Automation. IEEE, 2014.
p. 847–852. ISBN 978-1-4799-5901-3. Disponível em: <http://ieeexplore.ieee.org/document/
6961479/>.

ANTONELLI, G.; CHIAVERINI, S. Task-priority redundancy resolution for underwater vehicle-
manipulator systems. In: Proceedings. 1998 IEEE International Conference on Robotics and
Automation (Cat. No.98CH36146). IEEE, 1998. v. 1, n. May, p. 768–773. ISBN 0-7803-4300-X.
Disponível em: <http://ieeexplore.ieee.org/document/677070/>.

BACHMAYER, R.; WHITCOMB, L.; GROSENBAUGH, M. An accurate four-quadrant nonlin-
ear dynamical model for marine thrusters: theory and experimental validation. IEEE Journal
of Oceanic Engineering, v. 25, n. 1, p. 146–159, jan 2000. ISSN 0364-9059. Disponível em:
<http://ieeexplore.ieee.org/document/820747/>.

BAE, J. et al. Cooperative Underwater Vehicle-Manipulator Operation Using Redundant Res-
olution Method. International Journal of Precision Engineering and Manufacturing, Korean
Society for Precision Engineering, v. 23, n. 9, p. 1003–1017, 2022. ISSN 20054602. Disponível
em: <https://doi.org/10.1007/s12541-022-00685-4>.

BARBALATA, C. Modelling and Control of Lightweight Underwater Vehicle-Manipulator
Systems. 206 p. Tese (Ph.D. Thesis) — Heriot-Watt University, 2017.

BARBALATA, C.; DUNNIGAN, M. W.; PETILLOT, Y. Dynamic coupling and control issues
for a lightweight underwater vehicle manipulator system. In: 2014 Oceans - St. John’s. IEEE,
2014. p. 1–6. ISBN 978-1-4799-4918-2. Disponível em: <http://ieeexplore.ieee.org/document/
7002989/>.

. Coupled and Decoupled Force/Motion Controllers for an Underwater Vehicle-Manipulator
System. Journal of Marine Science and Engineering, v. 6, n. 3, p. 96, aug 2018. ISSN 2077-1312.
Disponível em: <http://www.mdpi.com/2077-1312/6/3/96>.

BAUMGARTE, J. Stabilization of constraints and integrals of motion in dynamical systems.
Computer Methods in Applied Mechanics and Engineering, v. 1, n. 1, p. 1–16, jun 1972. ISSN
00457825. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0045782572900187>.



259

BESSA, W.; DUTRA, M.; KREUZER, E. THRUSTER DYNAMICS COMPENSATION FOR
THE POSITIONING OF UNDERWATER ROBOTIC VEHICLES THROUGH A FUZZY
SLIDING MODE BASED APPROACH. In: ABCM Symposium Series in Mechatronics. [S.l.:
s.n.], 2006. v. 2, n. 1990, p. 605–612.

BESSA, W. M. CONTROLE POR MODOS DESLIZANTES DE SISTEMAS DINÂMICOS COM
ZONA MORTA APLICADO AO POSICIONAMENTO DE ROVS. 106 p. Tese (Ph.D. Thesis) —
Federal University of Rio de Janeiro, 2005.

BESSA, W. M.; DUTRA, M. S.; KREUZER, E. Dynamic Positioning of Underwater Robotic
Vehicles with Thruster Dynamics Compensation. International Journal of Advanced Robotic
Systems, v. 10, n. 9, p. 325, sep 2013. ISSN 1729-8814. Disponível em: <http://journals.sagepub.
com/doi/10.5772/56601>.

BESSA, W. M. et al. AVALIAÇÃO EXPERIMENTAL DA MODELAGEM MATEMÁTICA
DOS PROPULSORES DE UM VEÍCULO ROBÓTICO SUBMARINO. In: III Congresso
Nacional de Engenharia Mecânica. Belém, Brasil: [s.n.], 2004. p. 1–10.

BORLAUG, I.-L.; PETTERSEN, K.; GRAVDAHL, J. Trajectory tracking for an articulated
intervention AUV using a super-twisting algorithm in 6 DOF. IFAC-PapersOnLine, Elsevier
B.V., v. 51, n. 29, p. 311–316, 2018. ISSN 24058963. Disponível em: <https://doi.org/10.1016/j.
ifacol.2018.09.506>.

BORLAUG, I.-L. G. et al. Trajectory Tracking for Underwater Swimming Manipulators using
a Super Twisting Algorithm. Asian Journal of Control, v. 21, n. 1, p. 208–223, 2019. ISSN
19346093.

BORLAUG, I.-L. G.; PETTERSEN, K. Y.; GRAVDAHL, J. T. Tracking control of an articulated
intervention AUV in 6DOF using the generalized super-twisting algorithm. In: 2019 American
Control Conference (ACC). IEEE, 2019. v. 29, n. 1, p. 5705–5712. ISBN 978-1-5386-7926-5.
ISSN 1063-6536. Disponível em: <https://ieeexplore.ieee.org/document/8815093/>.

. Combined kinematic and dynamic control of vehicle-manipulator systems. Mechatronics,
Elsevier Ltd, v. 69, n. October 2019, 2020. ISSN 09574158.

. The generalized super-twisting algorithm with adaptive gains. In: 2020 European Control
Conference (ECC). IEEE, 2020. p. 1624–1631. ISBN 978-3-90714-402-2. Disponível em:
<https://ieeexplore.ieee.org/document/9143617/>.

. Tracking Control of an Articulated Intervention Autonomous Underwater Vehicle in 6DOF
Using Generalized Super-twisting: Theory and Experiments. IEEE Transactions on Control
Systems Technology, IEEE, v. 29, n. 1, p. 353–369, jan 2021. ISSN 1063-6536. Disponível em:
<https://ieeexplore.ieee.org/document/9032376/>.

BORLAUG, I.-L. G. et al. Combined kinematic and dynamic control of an underwater swimming
manipulator. In: 12th IFAC Conference on Control Applications in Marine Systems, Robotics,
and Vehicles CAMS 2019. Elsevier Ltd, 2019. v. 52, n. 21, p. 8–13. ISSN 2405-8963. Disponível
em: <https://doi.org/10.1016/j.ifacol.2019.12.275>.

BRIÑÓN-ARRANZ, L.; SEURET, A.; PASCOAL, A. Circular formation control for cooperative
target tracking with limited information. Journal of the Franklin Institute, v. 356, n. 4, p. 1771–
1788, mar 2019. ISSN 00160032. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/
S0016003219300031>.



260

CAI, M. et al. Autonomous Manipulation of an Underwater Vehicle-Manipulator System by a
Composite Control Scheme With Disturbance Estimation. IEEE Transactions on Automation
Science and Engineering, IEEE, p. 1–11, 2023. ISSN 1545-5955. Disponível em: <https://
ieeexplore.ieee.org/document/10016284/>.

Canudas de Wit, C.; Olguin Diaz, E.; PERRIER, M. Robust nonlinear control of an underwater
vehicle/manipulator system with composite dynamics. In: Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat. No.98CH36146). IEEE, 1998. v. 1, n. May, p.
452–457. ISBN 0-7803-4300-X. Disponível em: <http://ieeexplore.ieee.org/document/677015/>.

CARRERA, A. et al. Learning multiple strategies to perform a valve turning with underwater
currents using an I-AUV. In: OCEANS 2015 - Genova. IEEE, 2015. p. 1–8. ISBN 978-1-4799-
8736-8. Disponível em: <http://ieeexplore.ieee.org/document/7271609/>.

. An Intervention-AUV learns how to perform an underwater valve turning. In: OCEANS
2014 - TAIPEI. IEEE, 2014. p. 1–7. ISBN 978-1-4799-3646-5. Disponível em: <http://ieeexplore.
ieee.org/document/6964483/>.

CATALDI, E.; CHIAVERINI, S.; ANTONELLI, G. Cooperative Object Transportation by Two
Underwater Vehicle-Manipulator Systems. In: 2018 26th Mediterranean Conference on Control
and Automation (MED). IEEE, 2018. p. 161–166. ISBN 978-1-5386-7890-9. Disponível em:
<https://ieeexplore.ieee.org/document/8442760/>.

CHAKRABARTI, S. K. Hydrodynamics of Offshore Structures. Dorchester: WIT Press, 1987.
439 p. ISBN 0-905451-66-X.

CHUNG, G. et al. Disturbance observer-based robust control for underwater robotic sys-
tems with passive joints. In: Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
IEEE, 2000. v. 2, n. April, p. 1775–1780. ISBN 0-7803-5886-4. ISSN 01691864. Disponível
em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844852http://ieeexplore.
ieee.org/document/844852/>.

CONTI, R. et al. An innovative decentralized strategy for I-AUVs cooperative manipulation
tasks. Robotics and Autonomous Systems, Elsevier B.V., v. 72, p. 261–276, oct 2015. ISSN
09218890. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0921889015001347>.

COUTINHO, A. G. CONTRIBUIÇÕES À MODELAGEM DINÂMICA E AO CONTROLE DE
MANIPULADORES PARALELOS. 155 p. Tese (Ph.D. Thesis) — University of São Paulo (USP),
2019. Disponível em: <https://teses.usp.br/teses/disponiveis/3/3151/tde-18052020-092338/pt-br.
php>.

DAI, Y. et al. A fast tube model predictive control scheme based on sliding mode control for
underwater vehicle-manipulator system. Ocean Engineering, Elsevier Ltd, v. 254, n. September
2021, p. 111259, 2022. ISSN 00298018. Disponível em: <https://doi.org/10.1016/j.oceaneng.
2022.111259>.

. Robust Control of Underwater Vehicle-Manipulator System Using Grey Wolf Optimizer-
Based Nonlinear Disturbance Observer and H-Infinity Controller. Complexity, v. 2020, 2020.
ISSN 10990526.



261

DAI, Y.; YU, S. Design of an indirect adaptive controller for the trajectory tracking of UVMS.
Ocean Engineering, Elsevier Ltd, v. 151, n. July 2017, p. 234–245, mar 2018. ISSN 00298018.
Disponível em: <https://doi.org/10.1016/j.oceaneng.2017.12.070>.

DAI, Y.; YU, S.; YAN, Y. An Adaptive EKF-FMPC for the Trajectory Tracking of UVMS. IEEE
Journal of Oceanic Engineering, IEEE, PP, p. 1–15, 2019. ISSN 0364-9059. Disponível em:
<https://ieeexplore.ieee.org/document/8675963/>.

DANTAS, J. L.; CRUZ, J. J. da; BARROS, E. A. de. Study of autonomous underwater vehicle
wave disturbance rejection in the diving plane. Proceedings of the Institution of Mechanical
Engineers, Part M: Journal of Engineering for the Maritime Environment, v. 228, n. 2, p. 122–
135, may 2014. ISSN 1475-0902. Disponível em: <http://journals.sagepub.com/doi/10.1177/
1475090213501650>.

Di Vito, D. et al. Experimental validation of the modeling and control of a multibody underwater
vehicle manipulator system for sea mining exploration. Journal of Field Robotics, v. 38, n. 2, p.
171–191, 2021. ISSN 15564967.

DUNNIGAN, M. W.; RUSSELL, G. T. Evaluation and reduction of the dynamic coupling
between a manipulator and an underwater vehicle. IEEE Journal of Oceanic Engineering, v. 23,
n. 3, p. 260–273, 1998. ISSN 03649059.

EL-GHAZALY, G.; GOUTTEFARDE, M.; CREUZE, V. Hybrid cable-thruster actuated underwa-
ter vehicle-manipulator systems: A study on force capabilities. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015. p. 1672–1678. ISBN 978-1-
4799-9994-1. Disponível em: <http://ieeexplore.ieee.org/document/7353592/>.

ESFAHANI, H. N.; AZIMIRAD, V.; DANESH, M. A Time Delay Controller included ter-
minal sliding mode and fuzzy gain tuning for Underwater Vehicle-Manipulator Systems.
Ocean Engineering, Elsevier, v. 107, p. 97–107, oct 2015. ISSN 00298018. Disponível em:
<https://linkinghub.elsevier.com/retrieve/pii/S002980181500356X>.

FARIVARNEJAD, H.; MOOSAVIAN, S. A. A. Multiple Impedance Control for object manipu-
lation by a dual arm underwater vehicle-manipulator system. Ocean Engineering, Elsevier, v. 89,
p. 82–98, 2014. ISSN 00298018. Disponível em: <http://dx.doi.org/10.1016/j.oceaneng.2014.06.
032>.

FERNANDEZ, J. J. et al. Benchmarking using UWSim, Simurv and ROS: An autonomous free
floating dredging intervention case study. In: OCEANS 2015 - Genova. IEEE, 2015. p. 1–7.
ISBN 978-1-4799-8736-8. Disponível em: <http://ieeexplore.ieee.org/document/7271514/>.

. Grasping for the Seabed: Developing a New Underwater Robot Arm for Shallow-Water
Intervention. IEEE Robotics & Automation Magazine, v. 20, n. 4, p. 121–130, dec 2013. ISSN
1070-9932. Disponível em: <http://ieeexplore.ieee.org/document/6627980/>.

FOSSEN, T. I. Guidance and Control of Ocean Vehicles. Chichester: John Wiley & Sons,
1996. 494 p. ISSN 00051098. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/
0005109896823314>.

GANCET, J. et al. Dexterous Undersea Interventions with Far Distance Onshore Supervision:
the DexROV Project. IFAC-PapersOnLine, Elsevier B.V., v. 49, n. 23, p. 414–419, 2016. ISSN
24058963. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S2405896316320274>.



262

GAO, J. et al. Hierarchical image-based visual serving of underwater vehicle manipulator
systems based on model predictive control and active disturbance rejection control. Ocean
Engineering, Elsevier Ltd, v. 229, n. April, p. 108814, 2021. ISSN 00298018. Disponível em:
<https://doi.org/10.1016/j.oceaneng.2021.108814>.

Georgia Tech. Control System Helps Several Drones Team Up to Deliver Heavy Pack-
ages | News Center. 2021. Disponível em: <https://news.gatech.edu/news/2021/03/22/
control-system-helps-several-drones-team-deliver-heavy-packages>.
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SIVČEV, S. et al. Underwater manipulators: A review. Ocean Engineering, v. 163, n. April, p.
431–450, sep 2018. ISSN 00298018. Disponível em: <https://linkinghub.elsevier.com/retrieve/
pii/S0029801818310308>.

SOYLU, S.; BUCKHAM, B. J.; PODHORODESKI, R. P. Redundancy resolution for underwater
mobile manipulators. Ocean Engineering, Elsevier, v. 37, n. 2-3, p. 325–343, feb 2010. ISSN
00298018. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0029801809002376>.

SUN, Y.; CHEAH, C. Coordinated control of multiple cooperative underwater vehicle-
manipulator systems holding a common load. In: Oceans ’04 MTS/IEEE Techno-Ocean ’04
(IEEE Cat. No.04CH37600). IEEE, 2004. v. 3, p. 1542–1547. ISBN 0-7803-8669-8. Disponível
em: <http://ieeexplore.ieee.org/document/1406351/>.

TAIRA, Y.; SAGARA, S.; OYA, M. Motion and force control with a nonlinear force error filter
for underwater vehicle-manipulator systems. Artificial Life and Robotics, Springer Japan, v. 23,
n. 1, p. 103–117, 2018. ISSN 16147456.

. Model-based motion control for underwater vehicle-manipulator systems with one of the
three types of servo subsystems. Artificial Life and Robotics, Springer Japan, v. 25, n. 1, p. 133–
148, 2020. ISSN 16147456. Disponível em: <https://doi.org/10.1007/s10015-019-00564-8>.

. Motion and force control with a linear force error filter for the manipulator of an underwater
vehicle-manipulator system. Artificial Life and Robotics, Springer Japan, v. 27, n. 1, p. 90–106,
2022. ISSN 16147456. Disponível em: <https://doi.org/10.1007/s10015-021-00708-9>.

TANG, Q. et al. Task-priority redundancy resolution on acceleration level for underwater
vehicle-manipulator system. International Journal of Advanced Robotic Systems, v. 14, n. 4, p.
172988141771982, jul 2017. ISSN 1729-8814. Disponível em: <http://journals.sagepub.com/
doi/10.1177/1729881417719825>.

TARN, T. J.; SHOULTS, G. a.; YANG, S. P. A dynamic model of an underwater vehicle with a
robotic manipulator using Kane’s method. Autonomous Robots, v. 3, n. 2-3, p. 269–283, 1996.
ISSN 0929-5593. Disponível em: <http://link.springer.com/10.1007/BF00141159>.



271

TECNADYNE. Dc Brushless Thruster Model 8020 Model 8020. 2008. 1–7 p. Disponível em:
<https://tecnadyne.com/wp-content/uploads/2017/06/Model-560-Brochure-1.pdf>.

VERGINIS, C. K.; MASTELLARO, M.; DIMAROGONAS, D. V. Robust Cooperative Manipula-
tion Without Force/Torque Measurements: Control Design and Experiments. IEEE Transactions
on Control Systems Technology, p. 1–17, 2019. ISSN 1063-6536.

VIROZUB, E. et al. Planar Multi-Link Swimmers: Experiments and Theoretical Investigation
using Perfect Fluid Model. Robotica, v. 37, n. 8, p. 1289–1301, 2019. ISSN 14698668.

WANG, J.; PERKINS, E. Trajectory Tracking Control for an Underwater Vehicle Manipulator
System Using a Neural-adaptive Network. n. December, 2019.

WANG, L. Model Predictive Control System Design and Implementation Using MATLAB®.
London: Springer London, 2009. 403 p. (Advances in Industrial Control). ISSN 1430-9491. ISBN
978-1-84882-330-3. Disponível em: <http://link.springer.com/10.1007/978-1-84882-331-0>.

WANG, Y.; CHEN, B.; WU, H. Joint space tracking control of underwater vehicle-manipulator
systems using continuous nonsingular fast terminal sliding mode. Proceedings of the Institution
of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, v. 232,
n. 4, p. 448–458, 2018. ISSN 20413084.

WANG, Y. et al. A new redundancy resolution for underwater vehicle–manipulator system
considering payload. International Journal of Advanced Robotic Systems, v. 14, n. 5, p.
172988141773393, sep 2017. ISSN 1729-8814. Disponível em: <http://journals.sagepub.com/
doi/10.1177/1729881417733934>.

WRIGHT’S. Pipeline Services. 2020. Disponível em: <https://www.linkedin.com/company/
wright’s-well-control-services>.

WU, C.-j. 6-DoF Modelling and Control of a Remotely Operated Vehicle. 99 p. Tese (Mas-
ter thesis) — Flinders University, 2018. Disponível em: <https://flex.flinders.edu.au/file/
27aa0064-9de2-441c-8a17-655405d5fc2e/1/ThesisWu2018.pdf>.

XIONG, X. et al. On dynamic coupling effects of underwater vehicle-dual-manipulator system.
Ocean Engineering, Elsevier Ltd, v. 258, n. January, p. 111699, aug 2022. ISSN 00298018.
Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S002980182201054X>.

YATOH, T.; SAGARA, S.; TAMURA, M. Digital type disturbance compensation control of a
floating underwater robot with 2 link manipulator. Artificial Life and Robotics, v. 13, n. 1, p.
377–381, 2008. ISSN 14335298.

YOERGER, D.; COOKE, J.; SLOTINE, J.-J. The influence of thruster dynamics on underwater
vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic
Engineering, v. 15, n. 3, p. 167–178, jul 1990. ISSN 03649059. Disponível em: <http://ieeexplore.
ieee.org/document/107145/>.

YOUAKIM, D. et al. MoveIt!: Autonomous Underwater Free-Floating Manipulation. IEEE
Robotics & Automation Magazine, v. 24, n. 3, p. 41–51, sep 2017. ISSN 1070-9932. Disponível
em: <http://ieeexplore.ieee.org/document/7906569/>.



272

YU, F. et al. Motion coordination and dexterous manipulation for underwater vehicle-manipulator
systems. ISA Transactions, Elsevier Ltd, n. xxxx, 2023. ISSN 00190578. Disponível em: <https:
//doi.org/10.1016/j.isatra.2023.01.027>.

ZHU, W.-H. Virtual Decomposition Control. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010. v. 60. 447 p. (Springer Tracts in Advanced Robotics, v. 60). ISSN 16107438. ISBN
978-3-642-10723-8. Disponível em: <http://link.springer.com/10.1007/978-3-642-10724-5>.



273

APPENDIX A

A.1 Recursive orthogonal complement

Applying the Gauss’s principles in Eq. (3.76), we obtain: Ar

Ãr+1

 ar+1 =

 br

b̃r+1

⇒
 Ar

Ãr+1

 δar+1 = 0. (A.1)

Similarly, applying the Gauss’s principles in Eq. (3.77), we get:

ar+1 = Qr+1a#
r+1 + Rr+1a∗r+1 ⇒ δar+1 = Qr+1δa#

r+1 + Rr+1δa∗r+1. (A.2)

Substituting Eq. (A.2) into (A.1), results in: Ar

Ãr+1

 δar+1 =

 Ar

Ãr+1

 Qr+1δa#
r+1 +

 Ar

Ãr+1

 Rr+1δa∗r+1 = 0,

=

 Ar

Ãr+1

 QrQ̃r+1δa#
r+1 +

 Ar

Ãr+1

 [ Rr R̃r+1

]
δa∗r+1 = 0.

(A.3)

Developing Eq. (A.3), we obtain: Ar

Ãr+1

 [ Rr R̃r+1

]
δa∗r+1 = −

 Ar

Ãr+1

 QrQ̃r+1δa#
r+1, ArRr ArR̃r+1

Ãr+1Rr Ãr+1R̃r+1


 δa∗r
δã∗r+1

 = −
 Ar

Ãr+1

 QrQ̃r+1δa#
r+1,

(A.4)

which can be rewritten as:

ArRrδa∗r + ArR̃r+1δã∗r+1 = −ArQrQ̃r+rδa#
r+1, (A.5)

Ãr+1Rrδa∗r + Ãr+1R̃r+1δã∗r+1 = −Ãr+1QrQ̃r+rδa#
r+1. (A.6)

Solving Eq. (A.5) for δa∗r , we get:

δa∗r = − (ArRr)g Ar

(
R̃r+1δã∗r+1 +QrQ̃r+rδa#

r+1

)
. (A.7)
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Substituting Eq. (A.7) into (A.6) and developing, results in:

−Ãr+1Rr (ArRr)g Ar

(
R̃r+1δã∗r+1 +QrQ̃r+1δa#

r+1

)
+ Ãr+1R̃r+1δã∗r+1 = −Ãr+1QrQ̃r+1δa#

r+1,

−Ãr+1Ag
r Ar

(
R̃r+1δã∗r+1 +QrQ̃r+1δa#

r+1

)
+ Ãr+1R̃r+1δã∗r+1 = −Ãr+1QrQ̃r+1δa#

r+1,

−Ãr+1Ag
r ArR̃r+1δã∗r+1 − Ãr+1Ag

r ArQrQ̃r+1δa#
r+1 + Ãr+1R̃r+1δã∗r+1 = −Ãr+1QrQ̃r+1δa#

r+1.

(A.8)

Equation (A.8) can be further simplified, as follows:

−Ãr+1Ag
r ArR̃r+1δã∗r+1 + Ãr+1R̃r+1δã∗r+1 = Ãr+1Ag

r ArQrQ̃r+1δa#
r+1 − Ãr+1QrQ̃r+1δa#

r+1,

−Ãr+1

(
Ag

r Ar − I
)

R̃r+1δã∗r+1 = Ãr+1

(
Ag

r Ar − I
)

QrQ̃r+1δa#
r+1,

Ãr+1

(
I − Ag

r Ar

)
R̃r+1δã#

r+1 = −Ãr+1

(
I − Ag

r Ar

)
QrQ̃r+1δa#

r+1,

Ãr+1SrR̃r+1δã∗r+1 = −Ãr+1SrQrQ̃r+1δa#
r+1,

(A.9)

where Sr = I − Ag
r Ar.

Solving Eq. (A.9) for δã∗r+1, we obtain:

δã∗r+1 = −
(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1δa#

r+1. (A.10)

Substituting Eq. (A.10) into (A.7), we get:

δa∗r = − (ArRr)g Ar

(
R̃r+1δã∗r+1 +QrQ̃r+1δa#

r+1

)
,

= − (ArRr)g Ar

(
QrQ̃r+1δa#

r+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1δa#

r+1

)
.

(A.11)

Equations (A.7) and (A.10) can be rewritten as follows:

δa∗r+1 =

 δa∗r
δã∗r+1

 ,
=

 − (ArRr)g Ar

(
QrQ̃r+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1

)
−

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1

 δa#
r+1.

(A.12)
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Substituting Eq. (A.12) into (A.2) and developing, results in:

δar+1 = QrQ̃r+1δa#
r+1 + Rr+1δa∗r+1,

= QrQ̃r+1δa#
r+1 +

[
Rr R̃r+1

]
× . . . − (ArRr)g Ar

(
QrQ̃r+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1

)
−

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1

 δa#
r+1,

= QrQ̃r+1δa#
r+1 + . . .

− Rr (ArRr)g Ar

(
QrQ̃r+1 − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1

)
δa#

r+1 + . . .

− R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1SrQrQ̃r+1δa#

r+1.

(A.13)

Equation (A.13) can be further simplified, as follows:

δar+1 = QrQ̃r+1δa#
r+1 − Ag

r Ar

(
QrQ̃r+1 − R̃r+1

(
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)g
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(
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r Ar
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(
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)g
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(
I − R̃r+1

(
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)g
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r Ar

(
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(
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)g
Ãr+1Sr

)
+ . . .
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(
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QrQ̃r+1δa#
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=
(
I − Ag

r Ar + Ag
r ArR̃r+1

(
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Ãr+1Sr . . .

−R̃r+1

(
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)g
Ãr+1Sr

)
QrQ̃r+1δa#
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=
(
I − Ag

r Ar +
(
Ag

r Ar − I
)
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(
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)g
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)
QrQ̃r+1δa#

r+1,

=
(
I − Ag

r Ar −
(
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r Ar

)
R̃r+1

(
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)g
Ãr+1Sr

)
QrQ̃r+1δa#

r+1,

=
(
I − Ag

r Ar

) (
I − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr

)
QrQ̃r+1δa#

r+1,

= Sr

(
I −

(
Ãr+1Sr

)g
Ãr+1Sr

)
Qr+1δa#

r+1,

= SrS̃r+1Qr+1δa#
r+1,

= Sr+1Qr+1δa#
r+1,

= Er+1δa#
r+1,

= ErẼr+1δa#
r+1,

(A.14)
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where
Ag

r = Rr (ArRr)g ,(
Ãr+1Sr

)g
= R̃r+1

(
Ãr+1SrR̃r+1

)g
,

Sr = I − Ag
r Ar = I − Rr (ArRr)g Ar,

S̃r+1 = I −
(
Ãr+1Sr

)g
Ãr+1Sr = I − R̃r+1

(
Ãr+1SrR̃r+1

)g
Ãr+1Sr,

Sr+1 = SrS̃r+1,

Er = (I − Rr (ArRr)g Ar) Qr,

Ẽr+1 =
(
I −QT

r R̃r+1

(
Ãr+1ErQT

r R̃r+1

)g
Ãr+1Sr

)
Q̃r+1,

(A.15)

are the expressions presented in Eq. (3.86) to the calculation of the recursive orthogonal comple-

ment.

A.2 Closed-loop dynamic

The modeling and control constraints are expressed as follows:

Aa = b,

AN−1u = 0.
(A.16)

To obtains the closed-loop dynamics, Eq. (A.16) can be rewritten as:

A
(
a + N−1u

)
= b. (A.17)

To obtain the closed-loop dynamics consistent with the constraints of Eq. (A.17), let us

define a Gaussian deviation function as follows:

Z =
1
2

(a − a0)T N (a − a0) +
1
2

(u − u0)T N−1 (u − u0) . (A.18)

Let λ1 and λ2 be r-column-vectors of Lagrange multipliers used in the following constrained

optimization problem:

Z̄ = Z − λT
1

(
A

(
a + N−1u

)
− b

)
− λT

2AN−1u. (A.19)

The sufficient conditions to solve the optimization problem are obtained by calculating the
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stationary points, as follows:

∂Z̄
∂a
= N (a − a0) − ATλ1 = 0⇒ a = a0 + N−1ATλ1, (A.20)

∂Z̄
∂u
= N−1 (u − u0) − N−1AT (λ1 + λ2)⇒ u = u0 + AT (λ1 + λ2) , (A.21)

∂Z̄
∂λ1
= A

(
a + N−1u

)
− b = 0, (A.22)

∂Z̄
∂λ2
= AN−1u = 0. (A.23)

Using Eq. (A.21) in (A.23), we obtain:

AN−1
(
u0 + AT (λ1 + λ2)

)
= 0. (A.24)

Substituting Eqs. (A.20) and (A.21) into (A.22) and developing, we get:

A
(
a0 + N−1ATλ1 + N−1u0 + N−1AT (λ1 + λ2)

)
= b,

Aa0 + AN−1ATλ1 + AN−1u0 + AN−1AT (λ1 + λ2) = b,

Aa0 + AN−1ATλ1 + AN−1u0 − AN−1u0 = b,

Aa0 + AN−1ATλ1 = b,

AN−1ATλ1 = b − Aa0.

(A.25)

Solving Eq. (A.25) for λ1, we obtain:

λ1 =
(
AN−1AT

)g
(b − Aa0) +

(
I −

(
AN−1AT

)g
AN−1AT

)
w1, (A.26)

where w1 is an arbitrary column-vector.

Using Eq. (A.26) in (A.20) with AT
(
I −

(
AN−1AT

)g
AN−1AT

)
= 0 from Eq. (4.29), we get:

a = a0 + N−1AT
(
AN−1AT

)g
(b − Aa0) , (A.27)

which is the Udwadia-Kalaba equation.
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Using Eq. (A.25) in (A.24) and developing, results in:

AN−1
(
u0 + AT (λ1 + λ2)

)
= 0,

AN−1AT (λ1 + λ2) = −AN−1u0,

AN−1ATλ1 + AN−1ATλ2 = −AN−1u0,

b − Aa0 + AN−1ATλ2 = −AN−1u0,

AN−1ATλ2 = Aa0 − AN−1u0 − b.

(A.28)

Solving Eq. (A.28) for λ2, we obtain:

λ2 =
(
AN−1AT

)g (
Aa0 − AN−1u0 − b

)
+

(
I −

(
AN−1AT

)g
AN−1AT

)
w2, (A.29)

where w2 is an arbitrary column-vector.

Using Eqs. (A.29) and (A.26) in (A.21) with AT
(
I −

(
AN−1AT

)g
AN−1AT

)
= 0 similar to

Eq. (4.29), we get:

u = u0 − AT
(
AN−1AT

)g (
AN−1u0

)
, (A.30)

which is the set of control forces consistent with the modeling constraints presented in Eq. (4.30).

Performing the summation of Eq. (A.27) and (A.30), we obtain:

a + N−1u = a0 + N−1u0 + N−1AT
(
AN−1AT

)g (
b − Aa0 − AN−1u0

)
, (A.31)

which is the closed-loop dynamic presented in Eq. (4.9).
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