• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2018.tde-28022018-110833
Document
Author
Full name
João Pedro Prospero Ruivo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Barretto, Marcos Ribeiro Pereira (President)
Cappabianco, Fábio Augusto Menocci
Kim, Hae Yong
Title in Portuguese
Um modelo para inferência do estado emocional baseado em superfícies emocionais dinâmicas planares.
Keywords in Portuguese
Emoções
Filtros de Kalman
Percepção da face
Reconhecimento de imagem
Superfícies emocionais dinâmicas
Abstract in Portuguese
Emoções exercem influência direta sobre a vida humana, mediando a maneira como os indivíduos interagem e se relacionam, seja em âmbito pessoal ou social. Por essas razões, o desenvolvimento de interfaces homem-máquina capazes de manter interações mais naturais e amigáveis com os seres humanos se torna importante. No desenvolvimento de robôs sociais, assunto tratado neste trabalho, a adequada interpretação do estado emocional dos indivíduos que interagem com os robôs é indispensável. Assim, este trabalho trata do desenvolvimento de um modelo matemático para o reconhecimento do estado emocional humano por meio de expressões faciais. Primeiramente, a face humana é detectada e rastreada por meio de um algoritmo; então, características descritivas são extraídas da mesma e são alimentadas no modelo de reconhecimento de estados emocionais desenvolvidos, que consiste de um classificador de emoções instantâneas, um filtro de Kalman e um classificador dinâmico de emoções, responsável por fornecer a saída final do modelo. O modelo é otimizado através de um algoritmo de têmpera simulada e é testado sobre diferentes bancos de dados relevantes, tendo seu desempenho medido para cada estado emocional considerado.
Title in English
A model for facial emotion inference based on planar dynamic emotional surfaces.
Keywords in English
Dynamic emotional surfaces
Emotions
Facial emotion recognition
Kalman filters
Abstract in English
Emotions have direct influence on the human life and are of great importance in relationships and in the way interactions between individuals develop. Because of this, they are also important for the development of human-machine interfaces that aim to maintain natural and friendly interactions with its users. In the development of social robots, which this work aims for, a suitable interpretation of the emotional state of the person interacting with the social robot is indispensable. The focus of this work is the development of a mathematical model for recognizing emotional facial expressions in a sequence of frames. Firstly, a face tracker algorithm is used to find and keep track of a human face in images; then relevant information is extracted from this face and fed into the emotional state recognition model developed in this work, which consists of an instantaneous emotional expression classifier, a Kalman filter and a dynamic classifier, which gives the final output of the model. The model is optimized via a simulated annealing algorithm and is experimented on relevant datasets, having its performance measured for each of the considered emotional states.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-03-07
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.