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ABSTRACT

Artificial muscles are materials or devices that changes shape with a stim-
ulus. These biological inspired actuators are getting popular because of their
advantages over conventional actuators, such as electric motors, hydraulic and
pneumatic cylinders. Pneumatic artificial muscles, for example, have several ad-
vantages over conventional actuators, such as the compliance, actuation flexibil-
ity and high power-to-weight ratio, and also have the flexibility to be constructed
without conductive and/or ferromagnetic materials. These characteristics makes
artificial muscles suitable for many applications where conventional actuators
cannot be used or have limited performance, as in high electric and/or magnetic
field environments such as inside magnetic resonance imaging or explosion risk
environments. However, pneumatic artificial muscles usage is limited because of
the complexity of its implementation. Furthermore, designing and controlling a
system actuated by artificial muscles have never been done with totally Magnetic
Resonance Imaging compatible materials and sensors. To improve the applica-
bility of pneumatic muscles, this thesis develops a methodology for designing,
sensing and controlling devices for electromagnetic risk applications. And, to
address the control problem, an optimal control approach is used, considering
several optimization algorithms to tune the controller, in a simulated environ-
ment or in an experimental environment. In this way, parameter tuning can be
customized to each specific application, translating its requirements to an objec-
tive function. A new optimization algorithm is proposed and used to tune the
parameters of the controller, resulting in a 48.15% shorter learning time and a
8% improvement on parameter quality compared to Bayesian Optimization, a
state-of-the-art stochastic optimization algorithm.

keywords: Pneumatic artificial muscle, magnetic resonance imaging com-
patibility, rehabilitation, position control, optimization algorithms.



RESUMO

Músculos artificiais são materiais ou dispositivos que mudam de forma com
um estímulo. Esses atuadores bioinspirados estão se tornando populares pelas
suas vantagens sobre atuadores convencionais, como motores elétricos e cilindros
hidráulicos e pneumáticos. Os músculos artificias pneumáticos, por exemplo,
possuem diversas vantagens em relação aos atuadores convencionais como a com-
placência, flexibilidade de atuação e alta razão de potência-peso, além de per-
mitirem uma fabricação livre de materiais condutores de energia elétrica e ferro-
magnéticos. Estas características os tornam aptos para aplicações onde atuadores
convencionais não podem ser utilizados ou teriam sua performance limitada, como
é o caso de ambientes de ressonância magnética, com risco de explosão e com pre-
sença de campos elétricos intensos. Contudo, a utilização dos músculos artificiais
pneumáticos é limitada pela complexibilidade de sua implementação, dado pelo
seu comportamento altamente não linear. Além disso, um sistema atuado por
músculos artificiais pneumáticos nunca foi construído com materiais totalmente
compatíveis com ambientes de ressonância magnética, por exemplo. Para con-
tribuir no avanço da utilização dos músculos pneumáticos, esta tese desenvolve
uma metodologia para o projeto, sensoriamento e controle de dispositivos para
aplicações de risco eletromagnético. Para endereçar o problema do controle, uma
abordagem de controle ótimo é utilizada, considerando diversos algoritmos de
otimização para ajuste do controlador, tanto em ambiente simulado, como em
ambiente experimental. Desta forma, o ajuste dos parâmetros pode ser feito de
maneira customizada para cada aplicação traduzindo-se os requisitos para uma
função objetivo a ser otimizada. Um novo algoritmo de otimização foi proposto e
utilizado para sintonizar os parâmetros do controlador, resultando em um apren-
dizado 48,15% mais rápido e uma melhora de 8% na qualidade dos parâmetros,
comparado à Otimização Bayesiana, um algoritmo considerado estado da arte
para otimizações estocásticas.

palavras-chave: Músculos artificiais pneumáticos, compatibilidade com ressonân-
cia magnética, reabilitação, controle de posição, algoritmos de otimização.
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1 INTRODUCTION

The term Artificial Muscle (AM) is used to classify materials or devices that

contracts with a stimulus, by analogy with the human skeletal muscle (TONDU,

2015). However, the term is used in a broader manner, where the contraction is

often interpreted as a change of shape in a general way (TONDU, 2015). Materials

and devices classified as artificial muscles are getting increasingly popular in the

literature. This is because conventional actuators, such as electric motors and

hydraulic and pneumatic cylinders struggle to achieve the same performance as

biological muscles in some tasks.

The study of animals locomotion and some plants gave rise to a new era of

biological inspired actuators. These actuators are responsible for a new field of

robotics, known as soft robotics. Soft robotics main advantages are the compliant

behavior of the robots, versatility, lightweight and compactness compared with

conventional robotics. Advances in the field of soft robotics could benefit many

areas such as minimally invasive surgical devices, exploration robots, rehabilita-

tion devices, assistive devices and robots for human interaction and cooperation

(MADDEN et al., 2004; MAJIDI, 2014).

Artificial muscles are not only related to soft robotics, but also to adding flex-

ibility and efficiency to industry applications and to developing new technologies.

There are several types of artificial muscles being developed and studied. One of

them is the Pneumatic Artificial Muscle (PAM).
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PAMs are interesting actuators that have similar static and dynamic charac-

teristics to the human skeletal muscle and, therefore, have many applications in

orthetics and biomimetic systems (DAERDEN; LEFEBER, 2002; TONDU et al.,

2009). They are lightweight, easy to fabricate, low cost, compliant and inherits

the advantages of pneumatic systems.

The invention of the PAM can be traced back to 1930, by S. Garasiev (DAER-

DEN; LEFEBER, 2002; TAKOSOGLU et al., 2016). Later, it was used by McK-

ibben in the 1950’s to power an orthetic upper limb (TONDU; LOPEZ, 1997;

DAERDEN; LEFEBER, 2002). However, it was not given much attention be-

cause of the difficulty of working with these muscles with the technology at that

time (DAERDEN; LEFEBER, 2002). The progress on valve technology and

control techniques have brought back the interest on pneumatic muscles, more

specifically, the McKibben PAM.

The McKibben PAM is the most used PAM today (KOTHERA; PHILEN;

TONDU, 2012). One insteresting characteristic of the McKibben PAM is that

it can be built without ferromagnetic and electric conductive materials. This

characteristic makes them suitable to power devices in intense electromagnetic

field environments without affecting or being affected by these fields, unlike any

other conventional actuator. It is still not widely used in industry or outside

academia because it is highly nonlinear and difficult to model and control accu-

rately (THANH; AHN, 2006; REPPERGER; JOHNSON; PHILIPS, 1999; CHAN

et al., 2003; ANH, 2010; MEDRANO-CERDA; BOWLER; CALDWELL, 1995;

WU et al., 2009a; SITUM; HERCEG, 2008; TANG et al., 2016; GUO et al.,

2021).

There are many researches related to PAM’s control. Classical linear control

techniques such as PI and PID control have been proposed, because they are

simple to design and have high adaptability (SAKTHIVELU; CHONG, 2015).
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However, many of the PID controllers are tuned based on the Ziegler-Nichols

method, which is known to produce poor results in many cases (SAKTHIVELU;

CHONG, 2015; ÅSTRÖM; HÄGGLUND, 2001; SCHRÖDER et al., 2003).

Many nonlinear control techniques were also proposed. Sliding-mode control

is known to have chattering problems (LIN; YEN; WANG, 2013). Neural network

based control may need thousands of training samples before good position control

and suffers from time shift in response because of the iterations of the neural

network (TANG et al., 2016).

Other control techniques that requires linearized models, may suffer for un-

modeled effects and nonlinear behaviour. Sofisticated control techniques, such

as Adaptative Fuzzy Non-singular Terminal Sliding Mode Control (AFNTSMC)

may achieve robust, stable, smooth and fast control action, but have worse posi-

tioning accuracy than other methods and are complex to implement (TANG et

al., 2016).

PID controllers are one of the most common controllers used today and may

have similar performance to very complex control techniques with adequate gains.

A method for choosing good PID gains can make the implementation of PAMs

simpler and promote it’s use in industry and other areas. Also, it is difficult

to tune the controller with custom objectives. Therefore, a method to tune the

controller for different performance characteristics, such as slow response but

accurate positioning (surgeries) or the fastest response as possible without over-

shooting, can provide mode flexibility to PAM’s application. An easy strategy

for designing a controller to meet the application’s requirements is still missing.

The physical modeling of the McKibben PAM is very difficult because of the

high non-linearity of the muscle. PAMs static and dynamic behavior is mostly

dependent on the geometric characteristics as well as the materials used in the

fabrication of the muscle. This means that a muscle can be tuned for a specific ap-
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plication, e.g. exert higher force with less pressure and/or have wider contractile

range with same muscle length. However, there is little known in the literature

about McKibben PAMs characteristics with respect to using different materials

and designs. Additionally, material characteristics may vary from suppliers or

over time, a slightly difference in the muscle construction may have significant

affect on the static and dynamic characteristics of the muscle, contributing to

even more complexity to PAM’s applicability beyond academia and tasks where

positioning accuracy of the actuator is not relevant.

Furthermore, the usage of PAM’s in the context of electromagnetic risk appli-

cations is not extensively explored, although they can be made without ferromag-

netic and conductive materials. There are also sensors and materials that can be

used to produce a totally compatible device for very restrictive applications such

as functional Magnetic Resonance (fMRI) manipulators.

Because every variation of the muscle and mechanisms can drastically affect

the static and dynamic characteristics of the model, and thus, affect the control

performance, it is clear that a learning or adaptive method should be used to

control the muscle.

1.1 Objectives

Because of the limiting factors discussed briefly in section 1, the objectives of

this work are:

• Analise how different materials influence the PAMs dynamic and static

behavior;

• Propose a mathematical model capable of predicting muscle performance

characteristics, which can be used to design muscles based on specific ap-

plication’s requirements, such as pressure ranges, contraction ranges and
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maximum forces;

• Analise sensoring mechanisms for the muscle which are compatible with

electromagnetic risk applications;

• Propose a controller for the muscle and

• Propose a method for tunning the controller to the desired dynamic char-

acteristics of the specific application.

1.2 Methodology

To achieve the objectives presented in 1.1, this thesis uses the following

methodology:

• Test bench - Build a test bench to evaluate muscle’s characteristics and

control performance. Two main test benches were constructed: linear move-

ment bench and angular movement bench. The linear movement bench is

used to evaluate muscle characteristics, such as force, hysteresis, pressures,

dynamics, and so on, and the angular movement bench was used mainly

to evaluate the parameter tuning with different commonly muscle powered

systems and other sensing techniques (camera based sensing).

• PAM prototype - Analise alternative materials for the braid and, spe-

cially, the membrane. Build prototypes with these materials to evaluate

the force, contraction and durability. Two main categories of membranes

are considered: elastic and plastic (folding membranes).

• Static model - Verify if the mathematical models are capable of predict-

ing the static characteristics of the prototypes constructed in the Materials

study stage. Verify the limitations and possible improvements to the mod-
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els. The proposed model should be adequate for designing muscles for

specific applications.

• Sensing - Propose sensing methods for measuring the muscle’s attributes,

which can be used in electromagnetic risk environments. Two main tech-

niques were further evaluated: force-based feedback and movement based

feedback.

• Controller - Test controllers that are flexible and easy to implement. Ini-

tially a proportional integrative derivative (PID) is used because of its flex-

ibility, easy implementation and wide usage in academia and industry.

• Dynamic model - Implementation of dynamic models for the muscle and

for the basic elements of the system. The model will be validated using the

test bench built and used to simulate the system.

• Simulation and optimization - Propose optimization methods for tun-

ing the controller. The proposed methods will be tested in a simulated

environment according to the developed dynamic model. Because opti-

mization methods generally need many iterations before good results can

be achieved and the simulation is computationally expensive, the "Águia"

supercomputer can be used. The supercomputer is available at the "in-

terNuvem" of the University of São Paulo through the superintendence of

information technology. Best algorithms are evaluated in the test bench for

real time parameter tuning.

• Analysis - Process the data of the experiments and study the efficacy of

the proposed methods.
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1.3 Thesis organization

This thesis is organized as follows. Chapter 2 describes some potential appli-

cations that can be built using the proposed method. Current challenges for these

applications are addressed and the general strategy for the proposed method is

described. In chapter 3, alternative actuators are reviewed with the emphasis

on the PAMs. Several types of PAMs are reviewed and each design character-

istic is described. PAMs mathematical models are also reviewed. Chapter 4

reviews control strategies that were used in the literature for positioning con-

trol of PAMs. Optimization methods are also covered for tuning the controllers.

Chapter 5 reviews compatible sensors used or that can be used in electromagnetic

risk environments. An image based method for measuring angles is developed and

described. Chapter 6 describes the system modeling and simulation of nonlinear

systems. These models and simulations are used to tune the controller in chapter

6.8. Other tuning methods which don’t depend on mathematical models are also

addressed in chapter 6.8. To address the difficulties in optimizing the controller

in the bench, chapter 7 describes alternative optimization algorithms. Chapter 8

describes the conclusions of this thesis and chapter 9 describes future works.
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2 POTENTIAL APPLICATIONS,
CHALLENGES AND GENERAL
STRATEGY

There are some applications where conventional actuators cannot be used

or have limited performance. This chapter describes some applications that can

benefit from systems that are fully compatible with electromagnetic risk environ-

ments.

There are several challenges on applying mechatronic devices in such environ-

ments. This chapter addresses these difficulties and proposes a general strategy

for overcoming them.

2.1 Robotic applications and current challenges

Robotics is still considered a futuristic term for the population. However,

many don’t realize that it is part of our daily lives, and will continue to be in the

future in a large scale.

The rapid evolution of technology is feared by people and, specially employees,

that consider robots as job thieves. Actually, the term "robot" was born in the

Czech literature when the brothers Capek wrote stories and plays about robots

evolution and revolt against humans (HOCKSTEIN et al., 2007). Robots became

more popular from the stories of Isaac Asimov and his three laws of robotics,

that dealt with the danger of robots hurting people and taking over the world
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(HOCKSTEIN et al., 2007).

Real robots history started in 1958, when General Motors introduced Uni-

mate, a robotic arm, to assist in the production of automobiles (HOCKSTEIN

et al., 2007). Since then, many robots were applied in various areas to increase

efficiency and lower costs. Robots also have several advantages to humans in spe-

cific tasks, such as accuracy, working time, focus, used for dangerous activities,

strength and many others.

Robots have various applications in many different areas. The sections below

will address some of them, that are relevant for this thesis.

2.1.1 Robotic surgery

The history of robots in surgery started in 1985, when an industrial robotic

arm was modified to perform a stereotactic brain biopsy - a biopsy guided by

images, typically from Magnetic Resonance Imaging (MRI) or Computed To-

mography (CT) - achieving 0.05mm of positioning accuracy (HOCKSTEIN et

al., 2007). This robot served as prototype for the Neuromate, surgical robot from

Integrated Surgical Systems, and received the Food and Drug Administration

(FDA) aproval in 1999 (HOCKSTEIN et al., 2007). Many other robotic systems

were created such as Robodoc, Acrobot, RX-130, CASPAR, Evolution 1, Zeus

and da Vinci, the most successful surgical robotic system (HOCKSTEIN et al.,

2007; BARGAR; BAUER; BÖRNER, 1998; JAKOPEC et al., 2003; FEDERSPIL

et al., 2003).

The position accuracy of the robotic arm is one advantage of the robotic

surgery. The surgeons hand tremor can be filtered and the movements can be

scaled down, for more precise procedures, minimally invasive surgery and lower

tissue damage. These advantages makes robots very likely to substitute human

hand-made surgery in the near future. Many hospitals in the world already have
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robotic surgery available. Just in São Paulo there are several options for robotic

surgery, such as the 9 de Julho Hospital, Sírio Libanes Hospital, Albert Einstein

Hospital, São Luiz Hospital and Cancer Institute of São Paulo.

The ergonomy is also improved because the surgeon is sited in the control

console, even if the location of the surgery is of difficult access.

Other advantages of robotic surgery were recognized by Scott Fisher, a sci-

entist at the National Aeronautics and Space Administration (NASA), and Joe

Rosen, a plastic surgeon from Stanford University, such as the use of telepresence

and remotely controlled surgery (HOCKSTEIN et al., 2007)

Pentagon’s Defense Advanced Research Projects Agency (DARPA) started

researching remotely controlled surgery to allow a surgeon in a safe place to treat

a soldier in the battlefield (HOCKSTEIN et al., 2007). Computer Motion Inc.,

initially funded by DARPA, created the Zeus surgical system, which in 2001

performed the first telepresence surgical procedure (HOCKSTEIN et al., 2007).

It was a laparoscopic cholecystectomy procedure that was performed on a patient

in Strasbourg, France, by a surgeon at 6.115 km away, using a connection of

155ms of latency (HOCKSTEIN et al., 2007).

Some drawbacks of robotic surgery include the lack of haptic feedback that

a surgeon has in a common surgery or laparoscopy and the lack of imaging tech-

niques compatibility, because these devices are made with ferromagnetic and

conductive materials.

2.1.1.1 MRI guided surgery

There are many cases where the surgery or biopsy is guided by images. Some

examples of imaging techniques used for guided surgeries and biopsies include

MRI, X-ray, CT and ultrasound. Depending on the lesion or region, some imaging
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techniques are preferred over another. For example, MRI scans are not indicated

for detecting calcification, such as kidney stones or breast cancer, and so CT and

ultrasound are commonly used for that.

In CT and X-ray patients are exposed to radiation, which is associated with

cancer (BRENNER; HALL, 2007). In general, the higher the radiation dose, the

higher is the image quality, and so the radiation can be increased to detect small

masses. Because of the risks of radiation, alternative techniques should be used

if possible.

Ultrasound is a lower cost and widely available technique for guided biopsies

and surgeries. However there are some limitations for using ultrasound in regions

that absorb or reflect sound waves, causing acoustic shadowing.

MRI is the most expensive technique, but it doesn’t expose the patient to

ionizing radiation and produces high resolution images, including high contrast

images of soft tissue, which is more difficult to see using CT. There are many

imaging sequence techniques to observe different tissue characteristics, and new

techniques are still being developed. As of an example, it is possible to detect

calcification with a new technique using susceptibility-weighted imaging (WU et

al., 2009b).

It is also possible to use MRI in real time to guide the procedure. For example,

real time MRI was used to guide stem cells delivery to the central nervous system

(WALCZAK et al., 2017). The effectiveness of some procedures, such as the

mentioned before, is very sensitive to the position accuracy of the instrument

that executes the procedure at the target region.

Another example is the stereotactic biopsy. Stereotactic biopsies are poten-

tially fatal procedures that are very sensitive to operator skill and experience

(HALL, 1998). Sample error caused by inaccuracy of the sample collection re-
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sults in diagnostic failure (HALL, 1998). Complex regions such as the brain are

very sensitive to the positioning of the needle and the trajectory to reach the

sample site (HALL, 1998).

The usage of MRI guidance with robotic surgery is a logical evolution to the

current state, because the MRI provides precise information of the target region

and the robot is capable of reaching the region with high accuracy. This, however,

represents a great engineering breakthrough.

To produce the images, MRI scanners use four main elements: a strong static

magnet or coil, a radio-frequency coil, a gradient coil and a receiver coil. The

strong static magnetic field is responsible for aligning the protons in the direc-

tion of the magnetic field. The radio-frequency coil produces pulses in a certain

frequency, called Larmor frequency, to produce the image. The gradient coil is

used to produce a magnetic field gradient along inner tube of the scanner, which

is used to identify the location of the signals captured by the antenna, or the

receiver coils.

The high static magnetic field used by the MRI scanner can cause ferromag-

netic materials to turn into projectiles or missiles (BUSHONG; CLARKE, 2014).

The gradient magnetic field in the MRI vary with time, which can induce eddy

currents in conductors (BUSHONG; CLARKE, 2014). Radio-frequency coils can

also induce eddy currents and generate heat (BUSHONG; CLARKE, 2014). Be-

cause of these effects, there are many safety procedures and guidelines to prevent

accidents.

The American College of Radiology (ACR) defined four zones that identify

the electromagnetic risks (BUSHONG; CLARKE, 2014). Zones descriptions are

as follows:

• Zone I - Areas of free access to the general public;
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• Zone II - Areas where patients and visitors are controlled and supervised by

trained MRI personnel. Is the area of transition between no electromagnetic

risk (Zone I) and electromagnetic risk areas (Zone III and Zone IV);

• Zone III - Is, in general, the control or computer room that has direct

access to the Zone IV. There is a potential for injury from ferromagnetic

materials in this area. Access to this zone must be strictly controlled by

trained MRI personnel and must have warning signs in the entrance.

• Zone IV - Is the MRI scanner room. The entrance to this zone must be

visible by MRI personnel at all times to absolutely ensure that no unautho-

rized person enters the room. Not even during an emergency, unscreened

person must not enter this zone. It is the responsibility of the trained MRI

personnel to give basic life support assistance and/or move the patient to

Zone II or Zone I.

Even though there are many safety procedures, guidelines and training, ac-

cidents still occur. There are several reported cases of serious injuries and even

death caused by allowing prohibited materials to enter the MRI room. For ex-

ample, a fourth-degree burn was reported in an extremity of a patient, leading

to amputation (HAIK et al., 2009). It was caused by the oximeter in the pulse

of the patient, which had conductive wires (HAIK et al., 2009).

Because of the high electromagnetic risk, common robotic devices are not

allowed near the scanner, as they represent high risk of injury to the patient,

personnel and the equipment. There are classes of MRI compatible devices. Some

devices, such as aluminum materials, are not ferromagnetic materials and doesn’t

represent risk in certain areas of the room. However, aluminum is an electrical

conductor which might be heated by induced currents. The induced currents also

create a magnetic field, and so forces will act in the aluminum even though it is
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not ferromagnetic.

Conductive materials must not enter into the scanner even if the material

is considered MRI-compatible. One reason is the risk of burn caused by eddy

currents, as mentioned before. Another reason is because conductive materials

distorts and degrades the image generated by the machine (FISCHER et al.,

2008).

The requirements for a MRI compatible robotic device are as follows:

• The device must not represent any risk caused the electromagnetic radiation

produced by the MRI;

• The device must not affect the image quality of the MRI, and

• The device must not be affected by the electromagnetic radiation produced

by the MRI.

These conditions for MRI safety makes the use of conventional mechatronic

devices prohibited.

2.1.2 Robotics in rehabilitation

Stroke is a major cause of mortality and one of the largest cause of disability

worldwide (STEWART et al., 2018; DESIKAN et al., 2016). About 1 in each

6 people will suffer from stoke in their lifetime and this statistic is possibly get-

ting worse in the future, with the increase of elderly and the population growth

(STEWART et al., 2018; ROTH et al., 2015). For those that survive this event,

the rehabilitation process is very important for disability recovery (STEWART

et al., 2018).

A stroke can occur in two main ways: a rupture in a weakened blood vessel

or an obstruction in the blood vessel that supplies blood to the brain cells. The
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obstruction can be temporary, called transient ischemic attack or mini-stroke.

When the blood supply is interrupted, brain cells start to lose their function and

die. If the blood supply is normalized fast enough, brain tissue can be totally

recovered (AGUIAR, 2017).

Patients that survive to a stroke may have serious brain damages and severe

disability. Symptoms depends on the brain region affected, but many present

mobility limitations and movement impairment after the stroke (ANDROWIS;

NOLAN, 2017).

The rehabilitation process relies on the neuroplasticity of the brain. With

certain activities, the brain relearns the movements lost. However, the quality of

the rehabilitation process is important for the recovery (ANDROWIS; NOLAN,

2017; HUANG; KRAKAUER, 2009).

Conventional rehabilitation is challenging. Typically, at least two persons are

needed to help a stroke patient walk, and there is still risk of accidents, e.g. falling

on the floor. It is also difficult to maintain the patient in a good posture during

the rehabilitation. There are also ergonomic concerns for the physiotherapist.

Because of the limitating factors associated with conventional rehabilitation, the

use of robotic devices grew in the past decade (ANDROWIS; NOLAN, 2017).

After the stroke, there is a period of about three months where the plasticity-

dependent recovery is optimum (MORONE et al., 2017). Animal models suggest

that the first month after the stroke is where the neuroplasticity is the highest

and, therefore, is the best period for recovery from impairment (KRAKAUER et

al., 2012; NG et al., 2015). Very early intense rehabilitation, i.e. less than 5 days

after stroke, might be harmful though (KRAKAUER et al., 2012).

While conventional rehabilitation may have little impact on impairment re-

covery over spontaneous biological recovery, robotic rehabilitation have the po-
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tential for a greater impact over impairment recovery (HUANG; KRAKAUER,

2009). This is because of the higher dosage and higher intensity protocols achiev-

able by robotic devices and its more reliable measurements over conventional

rehabilitation (HUANG; KRAKAUER, 2009; KITAGO et al., 2015).

Typically, the patient waits lying on the hospital bed while in this enhanced

plasticity period without any rehabilitation activity. The usage of a robotic de-

vice to entertain the patient, e.g. playing a game, while in this period might

enhance the impairment recovery, and also gather data for more specific training

afterwards.

Measurements monitoring can also enhance the rehabilitation process by tai-

loring the exercise according to the patients improvements, lowering the assistive

force or even exerting a resistive force. Fun, engagement and rewards can also

help in the recovery process, providing higher dosage and higher intensity exer-

cises (WIDMER et al., 2017).

Usage of soft robotics can also improve safety and comfort to the current

rigid conventional robotic rehabilitation devices. While many robotic devices

exists, only a few use soft robotic design. Hard parts, joints and actuators can

cause serious injuries to the patient if they are not well placed or the device

malfunctions.

Although robotic devices could help enhance the rehabilitation process, cur-

rently the effect is not significantly superior (KITAGO et al., 2015). The robotic

rehabilitation might be effective for certain patients and not so effective for others

(MORONE et al., 2017). Many controversial results are found on the effectiveness

of robotic rehabilitation, but different robotic devices stimulates different types

of skills in different levels of assistance (MORONE et al., 2017). Using robotics

for simple repetition of tasks is not sufficient, and so the question of how the

robotic device should act to be most effective for a particular patient is yet to be
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discovered (MORONE et al., 2017).

2.1.2.1 fMRI-guided rehabilitation

The physiology and mechanisms of rehabilitation is not yet well understood.

There are ways to study brain activity during the rehabilitation process, e.g.

electroencephalogram (EEG) based monitoring and functional Magnetic Reso-

nance Imaging (fMRI) techniques. EEG signals are captured from the scalp and,

therefore, only closer to the scalp regions can be reliably recorded. There are also

limitations in capturing lower frequency signals and high noise interference. fMRI

measures the blood oxygen-level dependent (BOLD) signal, which occurs when

there is an increase of metabolism and blood flow. This signal can be traced to

its location of occurrence and, therefore, can be related to regions of the brain

being activated by some rehabilitation task.

fMRI has been widely used and still is an important tool for studying the

brain and how it behaves in response to certain conditions and diseases, such as

Parkinson’s disease and stroke (KHANICHEH et al., 2006). Various advances in

the technology made possible to capture this information in real time using real

time functional magnetic resonance (rtfMRI) (DECHARMS, 2008).

rtfMRI can be used to study and optimize the rehabilitation process. How-

ever, there is a limitation with the devices that can be used in the rtfMRI envi-

ronment to stimulate the patient and, therefore, to study the brain’s response to

a stimuli (KHANICHEH et al., 2006).

Unfortunately, conventional rigid and soft robotic devices for rehabilitation

depend on electronic devices, such as sensors and actuators, ferromagnetic and/or

conductive materials that makes them not suitable for usage in a rtfMRI, fMRI

or MRI scanner (KHANICHEH et al., 2006). With the growing interest in using

MRI for minimally invasive surgeries and fMRI for neuroscience research and



31

rehabilitation, alternative devices such as sensors and actuators were developed

(SU et al., 2017; KHANICHEH et al., 2006; STOIANOVICI et al., 2014).

Many devices are classified as compatible, even when using potentially dan-

gerous materials such as conductive materials, as in (KHANICHEH et al., 2006).

2.2 General Strategy

To avoid risks and limitations when designing mechatronic systems for high

electric and/or magnetic field environments, the easiest way is to ensure all of the

materials used in the system are compatible.

Of course this is not always practical, because generally computers or cir-

cuits are used to control mechatronic systems and alternatives for this aren’t

yet available in a practical way. Therefore, the general strategy when building

such systems is to ensure that the critical parts of the systems are built only

with compatible materials and that other materials are kept in a safe distance.

The communication and power transmission to the critical system is provided by

compatible means, as is illustrated in fig. 1.

Figure 1: General strategy for designing mechatronic systems for electromagnetic risk
applications.

Source: Own authorship.
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For a MRI-guided surgical manipulator, for example, the electromagnetic risk

region is inside the MRI scanner and surroundings (zone IV). PAMs built with

compatible materials can be used to power the system, such as the one in (SCAFF,

2015), and compatible sensors (which are discussed in chapter 5) can be used in

the manipulator, which is the critical system. Pneumatic hoses and optical fiber

cables can transmit power and signals, respectively, from the non critical system

to the critical system, forming the communication and power interface. At the

safe region, air compressors, controllers and valves can be used to process the

signals received from the critical system, compute the control law and command

the manipulator through the interface. Fig. 2 illustrates this example.

Figure 2: General strategy applied to a MRI-guided surgical system.

Source: Own authorship.

2.3 Chapter conclusion

In this chapter, it was reviewed applications where conventional mechatronic

devices cannot be used in a safe way, such as for MRI-guided procedures and

fMRI-guided rehabilitation. There are several engineering challenges to over-

come when designing systems for these applications. One of the main challenges

is to build the system with compatible materials and achieving reasonable per-
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formance.

Unfortunately, building a system only with compatible materials is not prac-

tical and, therefore, a general strategy for building such systems is proposed,

where the critical system is built with compatible materials and all non compat-

ible materials are kept in a safe distance, connected by compatible means.
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3 ARTIFICIAL MUSCLES AND MODELS

Artificial muscles are bioinspired actuators which serve as alternative to be

used in electromagnetic risk environments. There are several types of artificial

muscles, powered by many different forms of energy. Some of them are made

from compatible materials and some of them can be powered by means other

than electrical or magnetic.

Unfortunately, the majority of artificial muscles that are not electrical or

magnetic actuated have limitations of force and/or contraction and, thus, have

limited applicability.

Pneumatic artificial muscles, on the other hand, are comparable to human

skeletal muscles in terms of force and contraction ranges and can be fabricated

with compatible materials. Because of this characteristic, they are the actuator

of choice for this thesis. However, they are known to be difficult to control

accurately. This challenge will be investigated in the next chapters.

This chapter will describe several types of pneumatic artificial muscles, and

how different designs are used to address specific problems. These designs can be

used to tune the actuator for the specific application, e.g. favoring contraction

or force, over higher hysteresis.

Proposed models for predicting the performance of pneumatic muscles and

for the design are also covered in this chapter. These models can also be used to

design controllers for the proposed mechatronic system.
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3.1 Pneumatic artificial muscles

Since the invention of the first pneumatic muscle in 1930, many other types

of pneumatic muscles were invented (DAERDEN; LEFEBER, 2002). They can

be classified by their working principles and construction as:

• overpressure or underpressure operation;

• braided/netted or embedded membrane and

• stretching membrane or rearranging membrane.

3.1.1 Hugh De Haven muscle

In 1949, Hugh De Haven patented a tensioning device for converting fluid

pressure into pulling force. This device is illustrated in fig. 3.

Figure 3: Hugh de Haven muscle schematics.

Source: Adapted from (DE, 1949).

This device was designed for applications where great pulling force and fast

action is necessary, e.g. aircraft crash belts and parachutes (DE, 1949).

The muscle is composed of two end fittings, inner and outer braids, elas-

tic bladder, wrappers, protective fireproof layer, lead wires and ignitable gas-

producing material. Bowline knots are used to form attachment means at each

end of the muscle.
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Fluid pressure is provided by black gunpowder, which is ignited by electric

cables located inside the muscle’s chamber. The gas produced by the gunpowder

rapidly fills the chamber, expanding the muscle radially and contracting axially.

This conversion of radial expansion to linear contraction is provided by strands,

which are around the muscle’s chamber in the shape of right and left helices,

forming the inner and outer braids. Inside the chamber, a flame resistant material

is used to protect the chamber from damage when the gunpowder is ignited (DE,

1949).

Suggested materials for the muscle are rubber, for the elastic bladder, Nylon,

for the braid strands, cotton braid, for the first wrapper, fiberglass tape, for the

second wrapper, and cotton braid dipped in ammonium stearate, for the fireproof

layer (DE, 1949).

Muscle contraction is about thirty percent of the initial length. It is capable

of exerting 6.7kN of force with 6.9kPa of gas pressure (DE, 1949).

3.1.2 Gaylord muscle

The Gaylord muscle was invented by Richard H. Gaylord and patented in

1958 (GAYLORD, 1958). The muscle is illustrated in fig. 4.

Figure 4: Gaylord muscle schematics.

Source: Adapted from (GAYLORD, 1958).

The muscle is composed of end fittings, a cylindrical expansible tube and a

braid (GAYLORD, 1958). When fluid pressure is applied into the expansible
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tube, it expands pushing the braid radially, which results in an axial contraction

due to the way the braid strands are interwoven (GAYLORD, 1958). Another

way of actuation is to lower the external pressure, e.g. with the muscle inside a

vacuum chamber (GAYLORD, 1958).

The expansible tube is attached to the internal part of the end fittings, while

the braid is attached to the external part using clamps (GAYLORD, 1958).

The expansible tube is made of an elastic material such as rubber. The braid

can be made with metal wires, Nylon, Orlon, which is an acrylic fiber, or the like

(GAYLORD, 1958).

3.1.3 McKibben muscle

The McKibben muscle is the most used PAM today (DAERDEN, 1999;

KOTHERA; PHILEN; TONDU, 2012). It can be classified as an overpressure,

braided and stretching membrane muscle. It was introduced in the 1950’s by

Joseph L. McKibben to produce a prothesis for his daughter, which was a victim

of polio (DAERDEN, 1999; BALDWIN, 1969).

Actually, the term "McKibben muscle" is so widespread that many researchers

consider other types of muscles as the McKibben muscle or even consider it as a

synonym for pneumatic muscle.

The McKibben muscle is characterized by an elastic bladder surrounded by

a double helical mesh. The bladder and the mesh is tied in two end fittings at

the extremities. Figure 5 ilustrates a McKibben muscle.

The reason why this is the most used PAM today is not clear. Maybe the

reason lies in its easy construction, with commercially available materials. On

the other hand, as already said above, many researchers use the term "McKibben

muscle", when in fact using another type of muscle. One possible reason for this
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Figure 5: Example of a McKibben muscle.

Source: Produced by the author.

misconception may be because many other types of pneumatic muscles are similar

to the McKibben muscle.

The bladder is typically of latex rubber or silicone. Braid strings are usually

of Nylon, but other materials such as aramid and fiberglass were already used.

The fittings are usually of metallic material, such as aluminum or steel, but

engineering plastics can also be used. The fixation of the fittings, braid and

bladder are typically of metallic hose clamps or tied with strings.

3.1.4 Beullens muscle

The Beullens muscle is similar to the McKibben muscle, patented in 1989 as a

hydraulic or pneumatic drive (BEULLENS, 1989). Figure 6 illustrates a Beullens

muscle.

Figure 6: Beullens muscle schematics.

Source: Adapted from (BEULLENS, 1989).

The muscle is, basically, composed by a chamber, a braid, a wall and fittings

(BEULLENS, 1989).
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In the patent, Beullens describes the chamber material, also referred as blad-

der in the McKibben muscle, as a resiliently distortable material (BEULLENS,

1989). The braid strings material is made from a flexible and substantially un-

stretchable material, such as steel wires (BEULLENS, 1989). Therefore, the braid

and chamber definition in the patent is compatible with the McKibben muscle.

The distinguishing element from the McKibben muscle, the wall, is made from

a substantially resiliently distortable material located between the braid and the

chamber (BEULLENS, 1989). This is a similar approach of the Rubbertuator to

increase the muscle’s durability.

The shape of the chamber and the wall is preferably a cylinder, like in the

McKibben muscle. The reason for the wall is not clear in the patent, but it serves

as a protection to the chamber against the friction. He also considers the use of

a lubricant, such as graphite and talc, to lower the friction between the filaments

and as a protection for the wall (BEULLENS, 1989).

3.1.5 Yarlott muscle

The Yarlott muscle was invented in 1969 by John M. Yarlott, with patent

granted in 1972 (YARLOTT, 1972). Similarly to the McKibben and Beullens

muscle, it is composed of a chamber, strings and fittings. The muscle is illustrated

in figure 7.

Figure 7: Yarlott muscle schematics.

Source: Adapted from (YARLOTT, 1972).
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The chamber has a spherical shape. When the chamber is pressurized and

the fittings are pulled, the muscle shape is of a prolate (elongated) spheroid

(YARLOTT, 1972).

The chamber material is of an elastomer with inextensible strands embedded,

to avoid the elastic expansion and possible rupture of the chamber (YARLOTT,

1972). The strands that connects both fittings are responsible for the axial con-

traction. When the muscle is empty, the strands are straight, which corresponds

to the muscle maximum length. When the chamber is inflated, the strands are

forced outwards radially, reducing the muscle length.

3.1.6 Kukolj muscle

The Kukolj muscle was patented by Mirko Kukolj in 1988 (KUKOLJ, 1988).

This muscle has similar construction to the McKibben muscle. The Kukolj muscle

is illustrated in figure 8.

Figure 8: Kukolj muscle schematics.

Source: Adapted from (KUKOLJ, 1988).

The main difference from the McKibben muscle is the braid size. While in the

McKibben muscle the braid has similar geometry to the bladder, in the Kukolj

muscle the bladder is shorter.

When the Kukolj muscle is not attached to a system, the braid is loose. When

attaching the muscle to a system, the bladder is stretched and the braid elongates

axially, decreasing its diameter to the bladder diameter, as in the McKibben
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muscle.

When not pressurized, the Kukolj muscle is exerting an initial pulling force,

which increases as the fluid enters the chamber.

3.1.7 Immega/Kukolj muscle

Also known as the ROMAC muscle, it was invented by Guy Immega and

Mirko Kukolj and patented in 1990 (IMMEGA; KUKOLJ, 1990). It is basically

composed of a chamber and strings, but have have different geometries than

McKibben like muscles. The ROMAC muscle is illustrated in fig. 9.

Figure 9: Romac muscle schematics.

Source: Adapted from (IMMEGA; KUKOLJ, 1990).

The chamber membrane is made from woven fibers of nylon or kevlar, a

sintetic aramid fiber, bonded with flexible rubber or plastic, thus forming an im-

permeable membrane (IMMEGA; KUKOLJ, 1990). Chamber shape is formed by

various four-sided pyramids, which inflate as fluid pressure increases (IMMEGA;

KUKOLJ, 1990). Muliple-strand steel cables connects both fittings, forming a

diamond-shaped network on the base of the pyramids (IMMEGA; KUKOLJ,

1990). When the chamber is deflated, the network gets stretched straightly.

But when the chamber is inflated, the pyramids pushes the cables, forming the

diamond-shaped network, pulling the fittings and contracting the muscle (IM-
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MEGA; KUKOLJ, 1990).

Contractions rates for specific ROMAC muscles can be greater than 45

3.1.8 Brigestone Rubbertuator

The Rubbertuator was invented by Takeo Takagi Yokohama and Yuji Sak-

aguchi Kawasaki of Brigestone Corporation, and patented in 1986 (TAKAGI;

SAKAGUCHI, 1986). The Rubbertuator is illustrated in fig. 10.

Figure 10: Rubbertuator muscle squematics.

Source: Adapted from (TAKAGI; SAKAGUCHI, 1986).

The construction is similar to the McKibben muscle with further improve-

ments. To address the degradation of the bladder by the friction with the helical

braid, the Rubbertuator has a protective layer in between these elements. The

protective layer is a braid that expands and contracts with the bladder (TAKAGI;

SAKAGUCHI, 1986).

Another improvement is the geometry of the filaments in the braid, which

have an elliptical shape to avoid damaging the bladder (TAKAGI; SAKAGUCHI,

1986).

To reduce air consumption a filler in the bladder is proposed. The filler is

a material that can adapt its shape, such as sand or an incompressible fluid.

When the muscle is pressurized, the amount of air needed is reduced by the

volume of the filler inside the bladder (TAKAGI; SAKAGUCHI, 1986). This saves

air consumption but might cause contamination problems, similar to hydraulic
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actuators, if the bladder is damaged.

To improve the contraction performance and high fatigue strength, the Rub-

bertuator has the diameter of the fittings are twice as larger than the mid portion

of the muscle (TAKAGI; SAKAGUCHI, 1986).

Contractions of 20-40

3.1.9 Morin muscle

The Morin muscle was patented in 1953 by Alexandre H. Morin as an elastic

diaphragm. Fig. 11 illustrates three examples of Morin muscles.

Figure 11: Morin muscle schematics.

Source: Adapted from (HENRI, 1953).

A Morin muscle is basically composed of one or several fluid-tight elastic

films, substantially inextensible thread-like elements, forming a chamber which

is connected to rigid fittings at the extremities of said elastic chamber (HENRI,

1953). The chamber is fixed at the fittings using clamps as in fig. 11(a) or with

the help of a ring as in fig. 11(c).

When a fluid enters the chamber, the chamber expands radially and shortens

axially. This effect occurs when the thread-like elements are axially disposed

between the elastic films or when the thread-like elements are in a shape of a

cylindrical helix (HENRI, 1953).
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Because this device only shortens axially when pressurized fluid enters the

chamber, a compression spring can be used to elongate the device axially when

fluid pressure lowers (HENRI, 1953).

3.1.10 Baldwin muscle

The Baldwin muscle is based on the Morin muscle, and was introduced in

1969 by Howard A. Baldwin (BALDWIN, 1969). Fig. 12 is a picture of the

prototype of a Baldwin muscle.

Figure 12: Baldwin muscle prototype.

Source: Taken from (BALDWIN, 1969).

This muscle consists of a thin elastic bladder of surgical rubber with em-

bedded glass fibers in the muscle’s axial drection. The glass fibers restricts the

bladder elongation in the axial direction, while permitting elongation in the ra-

dial direction. When fluid pressure is applied inside the bladder, it deforms to a

prolate spheroid, contracting the muscle.

Because the bladder is a thin membrane and the glass fibers only restricts

elongation in the axial direction, lower pressures have to be used with this muscle

to avoid membrane rupture in the radial direction.

Maximum contraction rates are about 50% of the muscle’s rest length, consid-

ering a muscle with diameter-to-length ratio of 1
10

. With a 34kg load, the muscle

contracted 9.5mm with a gauge pressure of 138kPa (BALDWIN, 1969).

This muscle is capable of 10 to 30 thousand cycles before failure, considering a
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weight of 4.5kg and being pressurized with 103.4kPa (BALDWIN, 1969). Details

of the geometry of the muscle is not given.

3.1.11 Paynter muscle

The Paynter fluidic muscle was invented by Henry M. Paynter and patented

in 1988 (PAYNTER, 1988a). The Paynter muscle is illustrated in fig. 13.

Figure 13: Paynter muscle schematics.

Source: Adapted from (PAYNTER, 1988a).

The Paynter muscle is composed of fittings and a bladder with embedded

constraining elements. The fluid entrance is located in one or both of the fittings.

When inflated, the bladder increases its volume and is constrained by the thread

network bonded into it. The network is composed of parallel threads and meridian

threads which, when the chamber is inflated, constrains the chamber to a nearly

spherical shape (PAYNTER, 1988a).

According to the patent, the advantages of this muscle over the Yarlott muscle

are working with higher pressures and increased cycles of operation, due to the

network pattern (PAYNTER, 1988a).
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3.1.12 Paynter hyperboloid muscle

The hyperboloid muscle was invented by Henry M. Paynter and patented in

1988 (PAYNTER, 1988b). The hyperboloid muscle is illustrated in 14.

Figure 14: Paynter hyperboloid muscle schematics.

Source: Adapted from (PAYNTER, 1988b).

This muscle is composed of two end fittings, inextensible strands and an

elastomeric shell (PAYNTER, 1988b). The end fittings are of relatively large

size, compared to other muscles, exhibiting less air flow resistance and, thus,

faster action response to pressure increase (PAYNTER, 1988b). The strands are

disposed in such a way as to form a hyperboloid of revolution in its deflated

state (PAYNTER, 1988b). These strands constrains the elastomeric shell which

expands into a nearly spherical shape when fluid pressure is provided (PAYNTER,

1988b).

Mentioned materials to construct this muscle are Dracon polyester or Kevlar

polymer for the strands, Aluminum, polycarbonate, Debrin acetal resin, Nylon

or High density polypropylene for the end fittings and reinforced polyurethane

with a plastic square pattern grid (PAYNTER, 1988b).

According to the inventor, this muscle is capable of working with higher

pressures than the Yarlott muscle and is capable of higher working cycles before

failure than the Yarlott and the Morin muscle, while producing a longer and more

forceful contraction (PAYNTER, 1988b).
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Muscle contraction is of about 37% of the end fittings’ diameter (PAYNTER,

1988b).

3.1.13 Kleinwachter muscles

The Kleinwachter muscles were invented by Hans Kleinwachter and Jens

Geerk and patented in 1972 (KLEINWACHTER; GEERK, 1972). The muscles

are illustrated in fig. 15.

Figure 15: Kleinwachter torsional (left) and linear (right) muscles’ squematics.

Source: Adapted from (KLEINWACHTER; GEERK, 1972).

Both muscles are composed of 2 rigid parts connected by a stretchable di-

aphragm. This diaphragm have anisotropic elastic properties. This is achieved

by embedding flexible but substantially inextensible fibers or strands in one direc-

tion. The chamber is in toroidal shape, attached to the 2 rigid parts by internal

and external rings. When fluid pressure is applied inside the chamber, the di-

aphragm expands radially, bringing both rigid parts toward each other, in the

case of the right muscle in fig. 15. In the case of the left muscle in fig. 15,

strands are disposed obliquely connecting the rigid parts, where one is an exter-

nal fixed ring and the other is a movable shaft that turns when fluid pressure is

applied in the chamber.
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3.1.14 Pleated muscle

The pleated pneumatic muscle was developed in the Vrije University of Brus-

sel, as a result of Frank Daerden doctoral work finished in 1999 (DAERDEN,

1999). The project, however, continued and two more versions of the pleated

pneumatic muscle were designed. The pleated muscle prototype is illustrated in

fig. 16.

Figure 16: Pleated pneumatic muscle prototype.

Source: Taken from (DAERDEN, 1999).

The pleated muscle is composed of two end fittings and a membrane. The

distinctive part of this muscle is the pleated membrane (DAERDEN, 1999). The

membrane material is folded in a circular pattern, forming the pleats. When fluid

pressure is applied, the membrane material unfolds and the chamber increases

in diameter, while contracting axially because of the membrane’s high tensile

stiffness in the axial direction (DAERDEN et al., 2001; DAERDEN; LEFEBER,

2002).

To equally separate the folds and to keep them in place during operation,

teeth are machined in the end fittings. The end fittings also have a conical shape,

where the membrane is attached with a resin (DAERDEN, 1999).

Materials used to make the prototype shown in fig. 16 are aluminum alloy for
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the end fittings and para-aramid, or the commercially known name Kevlar, fab-

ric sealed with poplypropylene film and pressure sensitive rubber-resin adhesive

(DAERDEN, 1999).

Maximum contraction of the prototype shown in fig. 16 was 41.5% (DAER-

DEN; LEFEBER, 2002).

3.2 PAMs models

Because PAMs are very nonlinear devices, physical modeling is complex.

There are many researches of PAMs modeling. One of the most used approach

to model the muscle’s force was developed by Richard H. Gaylord in his 1958

patent. The approach used by Gaylord is the conservation of energy (WANG;

WERELEY; PILLSBURY, 2015).

The perfect muscle would be the one that converts all of the pneumatic energy

into mechanical work. The muscle’s mechanical work Wm can be expressed by

Wm = Fl (3.1)

where F is the muscle’s force and l the load displacement. Equation 3.1 can

also be expressed in infinitesimal form by

dWm = Fdl (3.2)

When pressurized air enters the chamber, it pushes the membrane and braid

radially, realizing work as illustrated in fig. 3.4.

The work done by the fluid can be expressed as
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Figure 17: Fluid work when there is a pressure difference between the chamber and the
exterior.

Source: Own authorship.

dWf = (Pint − Pext) dSi dli (3.3)

Considering that this is an ideal muscle and that energy is conserved, the

principle of virtual work is applied resulting in

dWm = dWf

Fd l = (Pint − Pext) dSi dli (3.4)

Because dSi dli is the differential volume dV , 3.4 can be rewritten to

Fdl = (Pint − Pext) dV

F = (Pint − Pext)
dV

dl
(3.5)

From 3.5, basic models are derived solving dV
dl

for specific muscle volume mod-

els, such as for cylindrical bladders (GAYLORD, 1958; CHOU; HANNAFORD,

1996; SCHULTE, 1961; KLUTE; HANNAFORD, 2000).
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For a McKibben muscle, the volume can be approximated to a cylinder.

This cylinder, however, changes shape according to the double helical braid and,

thus, it have to be considered in the model. Fig. 18 illustrates the parameters

considered in a typical McKibben muscle volume model.

Figure 18: McKibben muscle volume parameters for a cylindrical membrane.

Source: Own authorship.

The braid is composed of several strings at an angle θ with respect to the

fitting, which runs around the membrane n times connecting one fitting to the

other. The membrane length l varies according to the angle θ of the braid, or

according to the diameter of the braid D. If one braid string is unrolled in a

straight line with length L at the angle θ, other muscle parameters can be related

with the triangle formed by the braid string, the membrane and the imaginary

perimeter line unrolled with length πDn, as illustrated in fig. 18.

Using the parameters illustrated in fig. 18, the membrane volume can be

expressed by

V =
πD2l

4
(3.6)

The diameter D can be related to the membrane length, using the right

triangle relation
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L2 = (πDn)2 + l2

D =

√
L2 − l2

π2n2
(3.7)

Substituting 3.7 in 3.6, gives

V =
πl

4

(
L2 − l2

π2n2

)

V =
l (L2 − l2)

4πn2
(3.8)

Calculating dV
dl

of 3.8, results

dV

dl
=

L2 − 3l2

4πn2
(3.9)

Equation 3.5 can be used to calculate the McKibben muscle force Fm, sub-

stituting the dV
dl

term with 3.9, which results in

Fm = (Pint − Pext)
(L2 − 3l2)

4πn2
(3.10)

This model, however, doesn’t predict the force of McKibben muscles accu-

rately for several reasons (KLUTE; HANNAFORD, 2000; WANG; WERELEY;

PILLSBURY, 2015). One reason is because the muscle volume is oversimplified.

Instead of a cylinder, the membrane shape is rounded in the boundaries because

of the fixation at the fittings, which have a constant diameter.

To compensate for the rounded extremities of the muscle, Tondu e Lopez

(2000) propose a constant correction factor. This correction factor is determined
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experimentally (TONDU; LOPEZ, 2000).

Another reason is because McKibben muscles have an elastic bladder that is

ignored in this model. In this respect, Klute e Hannaford (2000) use a Mooney-

Rivlin model to account for the elastic energy stored in the muscle’s membrane.

According to Klute e Hannaford (2000), the force prediction is improved but the

discrepancy between model and experimental data is still significant.

Friction is also not considered in the model, which causes hysteresis. Tondu

e Lopez (2000) believe that the hysteresis is due to the thread-on-thread friction,

and that ideally no friction occurs between the membrane and the braid. Wang,

Wereley e Pillsbury (2015) believe that the interaction between the braid and the

bladder is a source of the observed hysteresis and should be considered.

Many other factors influences the muscle’s performance. The membrane ma-

terial hysteresis, elastic behavior of the threads and temperature and thermal

properties of the materials used are other relevant topics to better models.

Because of this rather complex physics involved in the muscle model, many

researchers prefer to model by identification techniques. Unfortunately, these

models can’t be used to design muscles and to study its properties before it is

built, and are particular to the very muscle used, at the same conditions that

were tested (WANG; WERELEY; PILLSBURY, 2015).

3.3 Chapter conclusions

One of the main components of a mechatronic system are the actuators. When

designing systems for electromagnetic risk applications, there are two alternatives:

keep the actuator far away and provide power transmission to the critical system

or to use compatible actuators.

Pneumatic artificial muscles can be built as compatible actuators for such



54

systems and can provide sufficient force and displacement. These actuators can

be designed with many geometric variations and materials, which changes its

performance characteristic. It was reviewed several different designs of PAMs

and what are the main changes of performance of each design, which can be used

to tune the actuator for specific application requirements.

Mathematical models are available for these devices but the physically based

models aren’t, in general, accurate enough to be used on precise position control

systems. Because of that, identification models are used instead. Physically based

models, however, can be used to design actuators, considering the maximum force

and contraction.

PAMs are also highly nonlinear actuators, which makes them difficult to

model and control accurately.
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4 CONTROL AND OPTIMIZATION
METHODS

Controlling accurately the pneumatic artificial muscle is a challenging task.

Many researchers around the world have tested many different techniques for

the position control of PAMs. This chapter reviews some of these attempts and

discusses some of the drawbacks of each technique.

To address the control problem, machine learning techniques can be used

for the position control of PAMs. Because of that, this chapter also considers

optimization algorithms and machine learning methods to be used in conjunction

with control techniques to tune the controller.

4.1 PAMs control techniques

Because of the nonlinearities of PAMs, accurate position control is challenging

(CSIKÓS; SZ; SÁROSI, 2017; CHIANG; CHEN, 2017; XIE et al., 2018). Many

classical and nonlinear control techniques were proposed for PAMs position con-

trol (CSIKÓS; SZ; SÁROSI, 2017; CHIANG; CHEN, 2017).

Classical proportional-integral-derivative (PID) controllers were proposed for

position control of PAMs. The PID controller is simple, versatile and widely

used in many academic and industrial systems. It is based on three parameters

by which the sum is equal to the control signal. Each parameter adds its con-

tribution to the overall control output. In a typical position control using PID,
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the proportional parameter gives the coarse position control in the medium term,

the integrative parameter is used for fine positioning in the long term and the

derivative tries to react very fast to system disturbance. Two main problems

of PID controllers are that they are supposed to work with linear systems and

finding proper gains (tuning). There are some cases where nonlinear systems can

be controlled using simple PID controllers, by choosing adequate gains by trial

and error or by some approximation method such as the Ziegler-Nichols method.

Because of that, many researchers try to use PID controllers for controlling pneu-

matic muscles. Tan et al. (2016) use a PID controller for angle position control

using an antagonist setup of PAMs. The Ziegler-Nichols method is used to ap-

proximate the gains of the controller and fine tuning of the gains are determined

by trial and error (TAN et al., 2016).

Another approach is to identify the muscle characteristics, fitting a model,

linearizing the model about a working point and calculating the gains for that

particular point and the nearby region. This approach is used by Repperger,

Johnson e Philips (1999) and is called a gain scheduling approach.

Position control can be obtained using fuzzy logic, known as fuzzy controllers.

The system is measured with sensors to provide the inputs. Then membership

functions are distributed in the operation range for the input values of the sys-

tem. According to each range of the membership functions, control rules are

established. With the membership functions and the control rules, the control

surface can be calculated, which is used to produce the output of the controller.

This approach is used by Csikós, Sz e Sárosi (2017) for controlling the position

of a ball in beam, tilted by pneumatic muscles.

With sliding mode controllers, the control system can have multiple control

laws for specific cases. The controller switches to the control laws, also called

modes, to drive the system to the desired position. One mode tends to drive
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the system to a state where another mode is used. Instead of infinitely switch-

ing to both modes, the sliding mode controller determines a combination of the

modes, also called induced mode, by which the system state remains between the

intersection of the modes states, and "slides" along that intersection where the

desired state is. This approach is used by many researchers to control pneumatic

muscles. Shen (2010), for example, use the sliding mode controller for a one de-

gree of freedom (DoF) horizontal mass position control. Cao, Xie e Das (2018)

used multiple-input-multiple-output (MIMO) sliding mode controller in a gait

exoskeleton powered by pneumatic muscles. The controller parameters had to be

tuned experimentally and model parameters also had to be determined experi-

mentally (CAO; XIE; DAS, 2018). Lilly e Yang (2005) used sliding mode control

for controlling a 1-DoF arm with antagonist setup of pneumatic muscles. Model

parameters for the simulation are needed, trial and error parameters were chosen

to yield good performance and a strategy for avoiding chattering problems was

studied (LILLY; YANG, 2005).

Control algorithms that depend on the model are difficult to implement or

lack on performance because of the complex nonlinear nature of PAMs. They

often need parameters to be determined experimentally and trial and error tun-

ing. Linearizing the model can also degrade the control performance, introducing

linearization errors (XIE et al., 2018).

Some control algorithms are robust to disturbance, model uncertainties and

unmodeled dynamics, such as adaptive robust control, fuzzy controllers, sliding

mode and artificial neural networks (SENTHILKUMAR, 2010; XIE et al., 2018).

But there is always a tradeoff between robust controllers and performance, which

have to be taken care according to the application’s requirements.

Sliding mode controllers are knwon to have chattering problems and high-

frequency control laws that generated high control effort and can make the sys-
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tem unstable (XIE et al., 2018; CARBONELL; JIANG; REPPERGER, 2001).

Artificial neural networks may need many samples and exhaustive training before

good control performance is achieved (TANG et al., 2016). There are no system-

atic approaches to design fuzzy controllers, it is time consuming and based on

trial and error (CSIKÓS; SZ; SÁROSI, 2017).

When dealing with very complex problems, machine learning techniques are

often applied. They can be used to avoid human intervention by trial and error

and achieve better performance by learning the control law and/or the control

parameters.

4.2 Machine Learning and optimization algorithms

Machine learning is the study of methods that optimizes the performance

metric of a task over experience or training by a machine. Machine learning is

often used to solve complex problems, e.g. image processing and speech recogni-

tion.

One interesting application of machine learning techniques is for controlling

nonlinear systems. The difficulty of correct modeling the nonlinear system, solv-

ing and designing a controller for it is hidden in the model and the algorithm

learning process. The problem, however, is how to train the algorithm. Typi-

cally, large datasets are used to train the model. The algorithm uses the dataset

to choose the parameters that maximizes some performance metric.

There are several machine learning methods and optimization algorithms.

The following sections will address some of them.
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4.2.1 Newton-Raphson

The Newton’s method, also called Newton-Raphson method, is a root finding

algorithm widely used to solve nonlinear systems or in optimization problems

(YPMA, 1995). The Newton-Raphson method is also the basis for many other

frequently used methods for solving nonlinear equations and optimization algo-

rithms (YPMA, 1995).

The Newton-Raphson method works by using the derivative of the function

to approximate an initial guess to the root of the function, as illustrated in fig.

4.3.

Figure 19: Newton-Raphson method for finding an approximate root of the function by
iteration.

Source: Own authorship.

From fig. 4.3 it is possible to derive a formula for finding x1 starting with x0

using the derivative

f ′(x0) =
f(x0)

x0 − x1

(4.1)

Rearranging the terms in 4.1 as to isolate x1, gives

x1 = x0 −
f(x0)

f ′(x0)
(4.2)
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Generalizing 4.2 results in the Newton-Raphson iterative method

xn+1 = xn −
f(xn)

f ′(xn)
(4.3)

The approximate solution can be as close as desired, according to the stop

criterion. One simple example for the stop criterion would be to stipulate how

close to zero is f(xn+1). This however, can lead to infinite loops. In fact, the

Newton-Raphson method is good when the initial guess x0 is reasonably close to

the root. If this is not the case, convergence can be compromised.

One drawback of this iterative method is that f ′(xn) must be known, which

implies that an algebraic equation exists for the system. Of course one can simply

substitute the f ′(xn) term to a finite difference approximation

xn+1 = xn −
hnf(xn)

f(xn + hn)− f(xn)
(4.4)

or using the last iteration result, also known as the secant method (YPMA,

1995)

xn+1 = xn −
(xn − xn−1)f(xn)

f(xn)− f(xn−1)
(4.5)

For optimization problems, one can use the derivative as the function f(x) =

g′(x), resulting in

xn+1 = xn −
g′(xn)

g′′(xn)
(4.6)

This is because we can find the critical points of the function by finding where

g′(x) = 0, which is where the minimum of the function, or the maximum, is.

To account for multi-variable functions, 4.6 can be written as
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x⃗n+1 = x⃗n −H−1∇x⃗G(x⃗) (4.7)

where ∇x⃗G(x⃗) is the gradient vector defined as

∇x⃗G(x⃗) =



∂ G(x⃗)
∂xn1

∂ G(x⃗)
∂xn2

∂ G(x⃗)
∂xn3

...

∂ G(x⃗)
∂xni


(4.8)

and H is the Hessian matrix defined as

H =



∂2 G(x⃗)
∂x2

n1

∂2 G(x⃗)
∂xn1∂xn2

. . . ∂2 G(x⃗)
∂xn1∂xnj

∂2 G(x⃗)
∂xn2∂xn1

∂2 G(x⃗)
∂x2

n2

. . . ∂2 G(x⃗)
∂xn2∂xnj

...
... . . . ...

∂2 G(x⃗)
∂xni∂xn1

∂2 G(x⃗)
∂xni∂xn2

. . . ∂2 G(x⃗)
∂x2

nj


(4.9)

If, however, x ∈ Rn where n ≫ 10000, then inverting the Hessian matrix

can be very expensive or even infeasible. Because of this, other methods were

developed, such as truncated-Newton or quasi-Newton methods, which can be

used when the Hessian isn’t available or is expensive to compute.

Another alternative to Newton based optimization algorithms is the Gradient

descent algorithm.

4.2.2 Gradient Descent

The gradient descent algorithm is used to find the local minima of a multi-

variable function. The algorithm works by going towards the steepest descent of

the function F at small steps. The steepest descent is calculated by the negative
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gradient of F . The update rule, can be expressed as

x⃗n+1 = x⃗n − γ∇x⃗F (x⃗n) (4.10)

where γ is the step size factor, also called the learning rate in machine learn-

ing.

Of course, the gradient can be substituted by the finite difference when the

gradient isn’t available.

The gradient descent algorithm is slower to converge than the Newton-Raphson

method, but its easier to implement. If the function is convex, then the Newton-

Raphson converges faster and can easily be implemented. However, if the function

is not convex, there are some implementation problems that needs to be solved,

such as saddle point convergence, solution oscilations, root jumping and infinite

loops.

Gradient descent is a first order method and, therefore, it is easier to compute

at each step than the Newton-Raphson method, which is second order.

Because of this factors, gradient descent is widely used in optimization prob-

lems for general functions and in machine learning.

In machine learning, when large datasets are used or many training samples

are needed, gradient descent can be expensive. In these cases, a variation of this

algorithm is used, called stochastic gradient descent.

4.2.3 Stochastic Gradient Descent

The stochastic gradient descent algorithm is widely used in machine learning

(LE et al., 2011). This is because datasets or training samples are getting bigger

and bigger over time, which makes gradient descent expensive. Stochastic gradi-



63

ent descent is a simplification of gradient descent when computing the gradient

of a function.

The difficulty of computing ∇x⃗F (x⃗) is that the function F is often unknown.

When this is the case, training samples are used to estimate F (x⃗). After estimat-

ing F (x⃗), the gradient can finally be computed.

When using gradient descent, the function F is estimated by an hypothesis

h(x⃗), such as a linear hypothesis of the form

h
θ⃗(x⃗)=

∑S
i=0 θixi(4.11)

where θi’s are the terms to be found by the algorithm to approximate hθ⃗(x⃗)

to F (x⃗), and S is the number of samples.

The way gradient descent approximates the hypothesis to the function, is

by minimizing a cost function that relates how the predictions of the hypothesis

differ from F (x⃗). This cost function can be the squared error function of the form

J(θ⃗) =
1

2S

S∑
i=0

(
hθ⃗(x⃗i)−y(x⃗i)

)2

(4.12)

where y(x⃗i) is the value of the sample corresponding to the input x⃗i.

To calculate the gradient of J(θ⃗), its is necessary to compute the summation

for each θi. And this can be computationally expensive if S is large. The stochas-

tic gradient descent addresses this problem by randomly choosing a sample, and

computing the gradient for that sample. This simplified gradient is then used to

slightly update the hypothesis feature vector θ⃗. This procedure is repeated, at

least, for each sample.
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4.2.4 Dynamic Mode Decomposition

Dynamic Mode Decomposition, or DMD, was first introduced by Schmid

(2010) in the fluid dynamics area. It is a method for learning a linear model of a

system from data.

In the same way that a differential equation is useful to predict the future

state of a system, the DMD tries to find a matrix A that maps the previous state

of a system to a future state. In a mathematical sense, the future state x⃗t+∆t is

assumed to be a linear combination of x⃗t given by

x⃗t+∆t = Ax⃗t (4.13)

The state x⃗t can be measured data or numerically solved by finite element

method, for example. However, only two steps x⃗t and x⃗t+1 probably won’t capture

the dominant features of the system (SCHMID, 2010). Moreover, the matrix that

maps one state x⃗i to x⃗i+1 is probably different than the matrix that maps x⃗j to

x⃗j+1.

Therefore, multiple samples of the system state are necessary to find an op-

timal matrix A. If the additional samples doesn’t include additional features of

the system, then the rank of the matrix A won’t increase (SCHMID, 2010).

To include multiple samples, let a matrix X be the state matrix of the form

X =


...

...
...

...

x⃗t1 x⃗t2 . . . x⃗tn

...
...

...
...

 (4.14)

and X ′ be the future state matrix of the form
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X ′ =


...

...
...

...

x⃗t2 x⃗t3 . . . x⃗tn+1

...
...

...
...

 (4.15)

and the goal is to find A such that

X ′ = AX (4.16)

It is possible to solve this equation by multiplying both sides by the pseu-

doinverse of X

A = X ′X† (4.17)

This method gives the "best-fit" linear operator A, according to the pseu-

doinverse used (e.g. least-squares fit for the Moore-Penrose pseudoinverse).

DMD is commonly used in conjunction with the Singular Value Decompo-

sition (SVD), to extract lower order linear models of the system, because A is

often huge and very computationally expensive, or even impractical to work with.

Additionally, since A is huge, it’s best to avoid computing it at all. This can be

done by applying SVD in X and truncated the decomposed matrices with the

rows that most captures the system dynamics.

Applying the SVD to X results in

X = UΣV ∗ (4.18)

and substituting (4.18) in (4.16) gives
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X ′ = AUΣV ∗ (4.19)

Multiplying both sides of (4.19) by U∗ gives

U∗X ′ = U∗AUΣV ∗ (4.20)

and exposes a similar matrix to A (Ã), given by

Ã = U∗AU (4.21)

which is a much simpler matrix to work with.

And substituing (4.21) in (4.20), gives

U∗X ′ = ÃΣV ∗ (4.22)

which can be rearranged to isolate Ã

Ã = U∗X ′V Σ−1 (4.23)

And because Ã is similar to A, they have the same eigenvalues. And it’s also

possible to reproject the eigenvectors of Ã (W ) to match the eigenvectors of A

(Φ), also called DMD modes, given by

Φ = X ′V Σ−1W (4.24)

Therefore, it’s possible to compute the eigenvectors and eigenvalues of A

without having to actually compute A, by working with a truncated similar matrix

Ã. With the eigenvalues and eigenvectors, the prediction of the future state of
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the system can be calculated with

X̂(k∆t) = ΦΛtb0 (4.25)

In summary, DMD can extract a reduced order linear model of a nonlinear

system which can be used to design a control law. For a highly nonlinear system,

it’s not clear if the operator A captures the dominant features and the operator

might need to be updated constantly to be representative of the current state.

In contrast of learning a linear model, which is often the goal, other techniques

are used to learn a nonlinear model of a system, which can be more representative

of the system. To learn a nonlinear model of a system, other approaches are used,

e.g. Artificial Neural Networks (ANN).

4.2.5 Artificial Neural networks

Artificial Neural Networks is a very successful algorithm for solving difficult

problems. It is inspired by the way the brain learns, mimicking the behavior of

neurons.

The neuron have, basically, dendrites and an axon. The dendrites are the

inputs of the neuron and the axon is the output. Each neuron can interact with

another neuron by connecting the axon to the other neuron’s dendrite, forming

a synapse. The neuron sends a signal down the axon for specific combinations of

input signals in the dendrites, or don’t send any signal otherwise.

One way to model this behavior mathematically, and which is used in many

artificial neural networks, is by a linear combinations of the dendrite signals. If

the linear combinations of the inputs are higher than a threshold value, then a

signal is emitted down the axon to other neurons, and if it is bellow the threshold

nothing is emitted. Turns out that this strategy doesn’t work well, and instead
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of sending or not sending a signal (discrete representation), the artificial neuron

sends a signal with a certain intensity (continuous representation), corresponding

to the sigmoid function defined as

σ(x) =
1

1 + e−x
(4.26)

The functions that represents the signal emitted in the axon are called acti-

vation functions, and the sigmoid is just one commonly used one, among many

others.

Fig. 20 represents the basic artificial neuron model.

Figure 20: Artificial neuron diagrammatic representation.

Source: Own authorship.

In fig. 20, x1, x2 and x3 and sometimes x0, known as the bias unit with the

constant value of 1, form the input vector x⃗. The terms θ0, θ1, θ2 and θ3 form the

weight vector θ⃗. Each input value is multiplied by its respective weight value, and

the summation of all the input values times their respective weights forms the

linear combination of the input values to be evaluated by the activation function.

Considering fig. 20 as an example, the output signal down the axon would be

yθ⃗(x⃗) =
1

1 + e−θ⃗x⃗(4.27)
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This, however, represents only one neuron, which isn’t much useful. A com-

bination of neurons, or a network of neurons, is what makes this approach very

useful. There are a lot of ways to interconnect the artificial neurons, each of them

is called an architecture. The architectures are composed of three main parts:

the input layer, the hidden layers and the output layer. One commonly used

architecture is illustrated in fig. 21.

Figure 21: A neural network architecture.

Source: Own authorship.

In fig. 21, only one output is shown, but a neural network can have multiple

outputs, e.g. classification neural networks. Typically, each input and neuron is

connected with every other input or neuron in the previous layer, like in fig. 21.

The output is calculated by propagating the neuron’s signal layer after layer,

until it reaches the output layer. This process is known as forward propagation.

However, the weights of the neural network have to be tuned for the neural

network to work properly. This is the learning, or training, process of the neural

network (NN). This is achieved by the backpropagation algorithm. It’s is a similar

process for finding the θi’s described in section 4.2.3. There is a cost function

that relates how bad the NN, or the NN hypothesis hθ⃗(x⃗), is performing and an

optimization algorithm is used to adjust the θi’s, e.g. Newton-Raphson method,

gradient descent and stochastic gradient descent.

One interesting characteristic of neural networks is that they learn the features
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by themselves with the backpropagation algorithm from the data. They are also

capable of modeling very complex nonlinear functions (DONGARE et al., 2012).

Their performance is basically dependent on the architecture used, the input

parameters and, specifically, the dataset used. Typically, large datasets are used

to train NNs and they can be very computationally expensive to train.

4.2.6 Simulated Annealing

Simulated Annealing (SA) is an optimization algorithm based on the ther-

modynamic process of metals called Annealing (GENDREAU; POTVIN, 2005).

It was first proposed in 1983 by Kirkpatrick, Gelatt e Vecchi (1983).

The annealing process arranges the atoms in an efficient way, creating an

arrangement with low energy state. This occurs when the material is slowly and

gradually cooled. This process is mimicked to find good solutions (lower state

arrangements). It is a probabilistic meta-heuristic with the capacity of "escaping"

from a local minima.

In the annealing process, atoms can easily migrate to form different states,

generally lower energy states, as the material gradually cools down. In some

cases, however, a higher energy state can be formed. Similarly, the SA algorithm

allows a bad solution to be accepted with a certain probability. This allows the

algorithm to escape from a local minima, as mentioned before.

The algorithm has two main stages: the exploration and the exploitation.

The exploration occurs at higher temperatures, where the algorithm explores the

domain space, performing a global search. The exploitation stage occurs at lower

temperatures, where the algorithm performs a local search for solution refine-

ment. The probability of accepting bad solutions decreases with temperature

drop. When no more good solutions are found, the process is considered frozen

and the algorithm finishes.
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Many solution rejections can lower the exploration area and trap the algo-

rithm to a local minima. To address this problem, a crystallization heuristic

can be used. This serves as an instant feedback for the SA algorithm, to refine

search when there are rejected solutions and explore more when there are ac-

cepted solutions. The SA with crystallization heuristic algorithm is shown in fig.

22.

Figure 22: Simulated Annealing with crystallization heuristic algorithm.

Source: Own authorship.

The algorithm works by first selecting an initial solution x⃗ and an initial tem-

perature T0. Then it selects a parameter of the current solution to modify, e.g. the

third element of the solution vector. The parameter is perturbed with a random

distribution. The algorithm then evaluates the objective function, which is the

function to be optimized, with the current solution and the perturbed solution.

The difference between the solutions ∆E corresponds to the increase or decrease

in energy of the system. Therefore, if the perturbed solution is better than the
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current solution, then ∆E < 0, which corresponds in a decrease in the system’s

energy, and the perturbed solution is accepted, overwriting the previous solution.

If, however, there is an increase in energy, or ∆E > 0, there is a probability

that this solution can be accepted. This probability is computed according to

the Boltzmann probability factor (KIRKPATRICK; GELATT; VECCHI, 1983)

given by

P (∆E) = e
− ∆E

kBT (4.28)

The local and global conditions can be an established maximum iteration

parameter and the existence of an accepted solution, respectively.

4.3 Chapter conclusions

Several attempts for muscle precise position control are described in the lit-

erature. Many of them are complex to implement and require highly specialized

personnel to design the control system. This makes the application of PAMs prac-

tically limited to academic works. Additionally, many of the proposed methods

require previous studies and experiments before the actual controller design.

An easy method for designing controllers for PAMs is still missing. One possi-

ble solution is to merge the advantages of classical control with machine learning

techniques, e.g. using a simple and widely used controller and an optimization

method for tuning the controller to the desired performance requirement of the

specific application.

In this respect, some machine learning and optimization algorithms were re-

viewed to address the problem of tuning the controller to the specific application,

through minimizing a user defined cost function.
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Additionally, previous works on PAMs control didn’t focus on electromagnetic

risk applications. Thus, the control problem have to be studied in more detail

using sensors and equipment for these specific applications.
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5 SENSING TECHNIQUES FOR
ELECTROMAGNETIC RISK
APPLICATIONS

Sensors are essential for precise and robust position control, specially when

nonlinear actuators are used. On the previous chapter, some control techniques

were reviewed. However, these techniques generally rely on fast, accurate, low

noise, electronic sensors. Depending on the application, common electric sensors

can be used if properly insulated. Signals can also be sent through wireless net-

works. But there are cases that every electronic device is prohibited, e.g. MRI and

specially fMRI. To address the control problem for electromagnetic risk environ-

ments, alternative sensing techniques must be evaluated. Therefore, this chapter

will describe sensors that can be applied in general to every electromagnetic risk

application.

Also, in this chapter, it is described the development of an image based sensing

technique to be used in the validation of the proposed controller.

5.1 Fluidic power transmission

5.1.1 Balloon sensor

The balloon sensor was used in a grip amplification glove to measure the force

at the finger tips (TADANO et al., 2010). The used sensor is shown in fig. 23.

This device is composed of an elastomeric chamber which is connect through
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Figure 23: Balloon sensor to measure the force applied at the finger tips.

Source: From (TADANO et al., 2010).

a pipe to a differential pressure sensor. When force is applied in the chamber, it

deforms and decreases the inner volume, raising the pressure in the tube. The

pressure is then related to the force applied in the chamber.

This is not an accurate force sensor, but can be used as an end switch or

for coarse force measurement. One drawback of this design is that the pressure

difference will be smaller for longer pipes.

5.1.2 Piston sensor

This type of device uses a piston to transmit fluid pressure to a pressure

sensor. One example is the one used by Liu et al. (2000), which is illustrated in

fig. 24.

The basic principle is to transmit the force applied at the piston in the form

of fluid pressure though the pipe to a pressure sensor. In the device used by

Liu et al. (2000), there is a reservoir above the sensor to providing fluid to the

transmission system. There is a screw by which is possible to flow the fluid out.

The signal of the pressure sensor is then amplified.

Hydraulic systems can cause contamination problems if not properly sealed

(COMBER; BARTH, 2011). Air bubbles can also cause calibration and measure-
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Figure 24: Hand-grip hydraulic force sensor.

Source: From (LIU et al., 2000).

ment errors.

5.2 Optical fiber signal transmission

5.2.1 Optical fiber encoders

Encoders are devices that measures position in a discrete form through marks.

These marks can be reflexive or opaque and disposed in a linear strip or in a wheel,

for measuring linear displacement and angles respectively.

In general, encoders have a light source and a light intensity sensor, typically

an infrared light emitting diode (LED) and a photo-transistor. To avoid using

electric devices near the risk area, one solution is to isolate the LED and photo-

transistor and transmit the light through optical fibers.

This device was used by Krieger et al. (2007) to measure angle and translation

of a MRI-compatible needle placement device. Optical fibers were opposing each

other and, in between the optical fibers, a linear and a wheel with opaque marks

was used to transmit or block the light between fibers.

Another example is the angular encoder used by Gassert et al. (2006), illus-

trated in fig. 25.
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Figure 25: Angular reflexive optical fiber encoders.

Source: From (GASSERT et al., 2006).

The device illustrated in fig. 25 is based on the reflection of the light on the

markers of the encoder disk. A reflexive material or a difference in height can be

used to differentiate the marks in the encoder disk.

The same principle can be used to measure force and torque by attaching the

markers in an elastic material. The displacement of the markers can be related

to the force or torque applied.

5.2.2 Reflexive target force sensor

Gassert et al. (2006) describes a force sensor that uses a reflexive target that

alters the light intensity transmitted through the sensor fiber. The proposed

devices are illustrated in fig. 26.

In fig. 26(a) the reflexive target angle is used to alter the light intensity

transmitted to the sensor fiber, while in fig. 26(b) the distance between the

optical fibers and the reflexive target is used as a way of changing the light

intensity.

The applied force can then be calibrated with the light intensity received in

the sensor. However, the light transmitted through the optical fiber can suffer
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Figure 26: Light reflection based force sensors.

Source: From (GASSERT et al., 2006).

intensity losses during movement of bending of the fibers (GASSERT et al., 2006).

Because of this effect, the placement of the sensor in movable parts have to be

avoided or measurement errors can occur.

Chapuis et al. (2004) also use a reflexive element in a similar manner for a

force and torque sensor.

5.2.3 Reflexive target torque sensor

By moving a reflexive target, torque can also be measured using optical fibers.

Gassert et al. (2006) proposed the model illustrated in fig. 27.

Figure 27: Reflexive target based optical fiber torque sensor.

Source: From (GASSERT et al., 2006).
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Two optical fibers are used to transmit light to the device and back to the

sensor. The fibers are fixed in a wall and the reflexive target is fixed at a movable

wall, attached to a torsion spring. When torque is applied to the torsion spring,

the target moves away from the reflexive target, which dims the light at the sensor

fiber.

As the measurement is based on light intensity, bending or moving the fiber

can cause errors in the measurement.

5.2.4 Fiber Bragg Grating

Fiber Bragg Grating (FBG) is a periodic difference of the refractive index

along the optical fiber length (HILL; MELTZ, 1997). These refractive index

patterns along the fiber can be used as sensors. Because of the properties of the

FBG, multiple sensors can be embedded in a single fiber.

FGBs can be made by the interference pattern of ultra-violet (UV) light. The

optical fiber core is photosensitive to UV light, opposed to the fiber cladding which

is transparent to UV light (HILL; MELTZ, 1997). So, when UV light radiates the

optical fiber, the refractive index of the fiber’s core is changed permanently (HILL;

MELTZ, 1997). These periodic difference of refractive index caused by the UV

light causes part of the incident light on the fiber to be reflected. The strongest

light wavelength that is reflected by the FBG is called the Bragg wavelength λB

given by

λB = 2neffΛ (5.1)

where neff is the modal index and Λ the grating period (HILL; MELTZ,

1997).

Therefore, anything that changes the modal index or the grating period will
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cause a shift in the wavelength of the reflected light.

Interrogators are used to analyse the sensor’s characteristics. When there

are multiple sensors in the fiber, two methods are commonly used: time division

multiplexing (TDM) and wavelength division multiplexing (WDM) (ZHOU et al.,

2003).

With TDM, sensors are built with the same Bragg wavelength λB. Each

sensor has low reflectivity so that other sensors can be illuminated. When the

fiber is submitted to stimuli, such as strain, the time in which each FBG reflects

light differs (ZHOU et al., 2003). This time shift in the FBG is measured and

the magnitude of the stimuli is calculated.

The most common method, however, is the WDM (ZHOU et al., 2003). In

this case, sensors have unique wavelength and the wavelength shift is measured.

5.2.5 Optical fiber interferometers

Interferometers are devices that can accurately measure physical properties

using the interference of coherent light. Typically, a laser is used as light source

and the optical path difference causes an interference fringe, which is measured

by detectors.

One example is the Michelson interferometer (fig. 28). This interferometer

splits the light source in two different paths. One path is the reference distance

and the other is sensing path. If both the reference path and the sensing path

is exactly equal, then there is constructive interference and a bright spot will be

detected in the sensor. However, if there is a difference between the sensing and

reference paths, a destructive interference can occur, resulting in a dark spot.

The optical path length Γ can be calculated by
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Figure 28: Michelson interferometer schematics.

Source: Own authorship.

Γ = dn (5.2)

where d is the geometric distance that the light travels and n is the refractive

index of the medium in which the light is traveling.

The difference in the optical path length ∆Γ for a Michelson interferometer

is

∆Γ = Γs − Γref = dsns − drefnref (5.3)

where Γs is the sensing arm optical path length and Γref is the reference arm

optical path length.

If the difference in optical path length corresponds to half wavelength of the

light source λ, then there is a phase shift ∆ϕ of π radians, resulting in total

destructive interference. In general, there will be total destructive interference

when

∆Γd = (2m+ 1)
λ

2
for m ∈ Z (5.4)
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or

∆ϕd = (2m+ 1)π for m ∈ Z (5.5)

and total constructive interference when

∆Γc = mλ for m ∈ Z (5.6)

or

∆ϕc = 2mπ for m ∈ Z (5.7)

When the movable reflexive surface moves, the sensor will detect bright and

dark spots corresponding to 5.4-5.7. By counting how many bright and dark

spots, it is possible to calculate the displacement of the reflexive surface. There

is, however, a problem to determine the direction of the displacement.

There are some techniques to disambiguate the direction. One strategy pro-

posed by Wang et al. (2001) is to work between a bright and a dark spot, in a

nearly linear region. In this case, the displacement is determined by the intensity

of the light.

5.3 Image based measurements

Another way of measuring is by images or video cameras. Several effects

can be exploited for measuring physical properties of the system. The follow-

ing sections will address some of the techniques for measuring different physical

properties.
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5.3.1 Moiré fringes

Moiré fringes can be used to measure many different physical properties,

such as displacement, strain and object’s geometry. Moiré fringes occur when

superposing two or more patterns with slightly different positions or shapes, as

is illustrated in fig. 29.

Figure 29: Moiré fringes formed by two linear patterns superposed in angle.

Source: Own authorship.

One advantage of using moiré fringes is the ability to measure fine displace-

ments without using very high-resolution cameras. They can be used for monitor-

ing the position of the manipulator’s arms, applied forces, torques and pressure.

These physical properties are measured indirectly, using a flexible material or

displacing the patterns to change the moiré fringes.

5.3.2 Motion capture

Motion capture is commonly used by animators and movie productions. Two

main techniques are used: with targets and without targets. Motion capture

without targets is challenging and currently is a research topic. Using targets is

easier for processing the image and generally produces more robust results.

These targets are used as reference points and can be used to calculate many
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physical properties. Current technologies support keeping track of the position

of many reference points at the same time, even in three dimensions (3D).

Motion capture typically uses a model and assumptions to work properly.

This is because there may be points that can be occluded in certain poses or,

when using multiple cameras, to correspond points between images.

One advantage is that the sensing system can be placed far from the actuation

device, and thus, provide insulation means.

This technique is actually simple to implement and can be used to test the

control system.

5.3.2.1 Implementation

Motion capture is implemented on a test bench, for measuring the angle of a

1-DoF arm powered by a pneumatic artificial muscle. The test bench is illustrated

in fig. 30.

Figure 30: Test bench for a 1-DoF arm actuated by a McKibben type PAM.

Source: Own authorship.

It is used a Logitech c270 720p 30fps webcam for capturing the image, and

the whole image processing is written in Python3.6 using the OpenCV library.
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The green targets are used as the reference positions for the shoulder, elbow

and hand. A heuristic is used to identify which of the points corresponds to the

shoulder, elbow and hand. After the identification, the angle of the arm can be

calculated. The position tracking system identification is illustrated in fig. 31.

Figure 31: Position tracking system arm identification and angle determination.

Source: Own authorship.

This position tracking system is flexible and can be used for industrial robots

or for rehabilitation purposes for controlling an exoskeleton. An example of hu-

man usage is illustrated in fig. 32.

The average time for identifying the targets and calculating the angle is ap-

proximately 13 milliseconds. The accuracy of the system depends on the camera

resolution, camera positioning and distance to the object. Higher resolution im-

ages can be more computationally expensive and, thus, will take longer to process.

5.4 Chapter conclusions

Compatible sensors for electromagnetic risk applications were reviewed. De-

pending on the application and the physical constraints of the environment, dif-
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Figure 32: Arm detection in humans using the position tracking system.

Source: Own authorship.

ferent sensing techniques can be used. The accuracy is also a factor for choosing

one technique over another.

Fortunately, there are sensing methods which provide high accuracy and fast

response, such as FBGs. But they are generally costly to implement. An easy and

more cost effective alternative are the image based methods, which can measure

many physical properties, provided the targets are visible at a safe distance.

An image based measuring technique is implemented to test the proposed

control system.
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6 CONTROLLER TUNNING WITH
SIMULATED ANNEALING

In this chapter, the hypothesis that Simulated Annealing is a viable solution

to tune a controller for the muscle is tested. For that, a model of a test system

is developed based on a real bench. The model from (SCAFF, 2015) is used

to simulate the positioning system. Because the resulting model is nonlinear, a

numeric method is described to simulate the system and test its performance.

6.1 Muscle model

The muscle model used is based on equation 3.10. This is a reasonable force

model to be used in a first attempt for the simulations and control. It’s not a

very accurate force model, as discussed in 3.2, but it’s a good first approximation

to the muscle general behavior.

Additionally, the braid is also considered in the model. When the muscle is

stretched, not only the internal chamber pressure resists the pulling force, but the

braid also, and thus it have to be considered. This is the case when the braid fibers

are touching each other, at the saturation angle. This saturation angle occurs

because of the finite width of the braid fibers. If the muscle is stretched beyond

this saturation angle, braid fiber elastic deformation starts to be significant.

For the sake of simplicity, it is considered that the muscle force beyond the

rest length lrest is
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Fmstretch
= kbraid(l − lrest) + (Pint − Pext)

(L2 − 3l2)

4πn2
(6.1)

where kbraid is the braid’s axial elastic constant.

The internal pressure Pint is calculated using the ideal gas law

Pint =
mℜT
V

(6.2)

where m is the mass of the gas inside the muscle’s chamber, ℜ the universal

gas constant for the gas, T the gas temperature and V the chamber’s internal

volume.

Considering that the muscle volume is a perfect cylinder, 3.8 can be substi-

tuted in 6.2, resulting in

Pint =
4πmℜTn2

l (L2 − l2)
(6.3)

The gas mass m inside the chamber can be calculated by integrating the

valve’s mass flow rate ṁ, given by

m = m0 +

∫ τ

0

ṁ dt (6.4)

where τ is the total execution time of the system and m0 the initial gas

mass inside the muscle’s chamber. If the muscle pressure at the beginning is the

atmospheric pressure, then m0 can be calculated by

m0 =
Patml0(L

2 − l20)

4πℜTn2
(6.5)

where l0 is the muscle’s initial length.
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For the dynamic model of the muscle, a dashpot can be included in parallel

with the muscle as in fig. 33.

Figure 33: Dynamic muscle model schematics.

Source: Own authorship.

The damping coefficient c is determined experimentally. The total muscle

force for the McKibben based muscle Fmk is, then, the sum of the muscle static

force Fm and the dashpot force Fd.

6.2 Valve model

Depending on the valve used, such as proportional valves, a model for the

valve can be avoided. These valves controls the air flow according to an analog

input signal. The controller can be designed to generate the input signal directly

to these valves. This is a simpler way of controlling the muscles, but generally

they make the system expensive (XIE et al., 2018).

Alternatively, fast switching On-Off valves can be used. Using pulse width

modulation (PWM), it is possible to control the mass flow rate through the valve.

The mass flow rate depends on many factors and some are intrinsic to the valve

model. Because of that, an empirical model is adopted.

Because the mass flow rate seems to decay nearly exponentially with the

pressure difference at the inlet and outlet, the following empirical model for the
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mass flow rate is used

ṁ = mmax

(
1− e

(
Pout−Pin
Pin−Patm

)
s+f

)
(6.6)

where mmax, s and f are parameters to be identified experimentally, Pin is

the pressure at the inlet of the valve and Pout is the pressure at the outlet of the

valve.

6.3 PWM model

Pulse width modulation is used to produce the signals to activate the fast

switching valves. The PWM has two main parameters: modulation frequency

and duty cycle. The modulation frequency is the frequency fmod in which the

signal is repeated and the duty cycle dc corresponds to the fraction of time that

the signal is on, given by

dc = tonfmod (6.7)

where ton is the time in which the signal is on and the modulation frequency

fmod is given by

fmod =
1

T
(6.8)

where T is the period of the PWM signal.

The PWM can be modeled as a charging capacitor, where the rate q̇ in which

it charges is proportional to the duty cycle. When the charge in the capacitor is

full, it changes the state of the output signal V (t), as fig. 34 illustrates.

The ton charging rate q̇on is given by
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Figure 34: PWM charging capacitor model.

Source: Own authorship.

q̇on =
fmod

dc
(6.9)

and the toff charging rate q̇off is given by

q̇off =
fmod

1− dc
(6.10)

6.4 Muscle-mass-spring model

For the 1-DoF muscle-mass-spring system, the model of the muscle can be

simply combined with the spring and mass element, as in fig. 35.

The spring elastic constant k is identified experimentally for an extension

spring. The mass element of mass m is pulled by the muscle upwards, while the

spring pulls the mass downwards. The height position z is controlled by opening

and closing the valve, which changes the internal pressure Pint of the muscle.

The differential equation of this system is given by

−Fm − cż −mg − kz = mz̈ (6.11)
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Figure 35: Muscle-mass-spring system dynamic model schematics.

Source: Own authorship.

which is a nonlinear differential equation that needs to be solved numerically.

6.5 PID model

The PID controller, or three term controller, is based on the proportional,

derivative and integrative terms. These terms are calculated with respect to the

system error e(t), which is measured by the control system.

The control signal uPID(t) is given by

uPID(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (6.12)

where Kp, Ki and Kd are the proportional, integrative and derivative gains

and τ is the integration variable corresponding to all times from 0 up to the

current time t.

The system error is the difference between the current position z(t) to the

setpoint position sp(t), given by

e(t) = sp(t)− z(t) (6.13)
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6.6 Control system model

The control system model of the muscle-mass-spring system is summarized

by the block diagram in fig. 36.

Figure 36: Muscle-mass-spring control system block diagram.

Source: Own authorship.

It is of note that a correction factor is used after the PID controller because

of the valve’s response. This correction factor is given by

uc(t) = euPID(t) (6.14)

6.7 Control system simulation

The control system described in 6.6 is solved numerically using the Euler’s

method, also known as Runge-Kutta 1 or RK-1. The Euler’s method is a simple

numerical method used to solve differential equations with initial values. These

initial values are used to progress the solution gradually by steps, as illustrated

in fig. 37.

If the initial conditions are known, such as the value y(t0) = y0 and the

derivative of the function at that point y′(t0) = f(t0, y0) = A0, the next value

of the solution can be approximated by linearly extrapolating the solution in the

direction of the derivative y1 = y0 + A0h. Using the approximated value y1,

the derivative y′(t1) = f(t1, y1) = A1 can be determined using the differential

equation. The following values are determined similarly, by using the derivative
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Figure 37: Euler’s method for solving a differential equation with an initial value.

Source: Own authorship.

of the last point and the differential equation to calculate the next derivative.

The Euler’s method and all of the control system models are implemented

using the Cython programming language.

6.8 Controller tuning methods

Many controllers may need tuning or the selection of parameters. In the case

of the PID controller, the parameters to be selected are the proportional, inte-

grative and derivative gains. Because of the nonlinearity of the system, classical

methods cannot be used directly to select the gains. Nonlinear control theory

was applied by many researches before, as previously commented in chapter 4.1.

In this chapter alternative methods are proposed and discussed.

The tuning can be based in two main ways: simulation based and experimen-

tation methods, or no model methods.
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6.8.1 Simulation based methods

When depending on the simulation, the model have to be accurate for the

tuning to be effective. The model can be identified or physically based (first

principles). With PAMs, identified models are more accurate than first principles

models. However, experiments have to take place before the design of the con-

troller and are accurate to the particular muscle, or control system, used. First

principles based models enables the study and design of the controller before the

system is even constructed, with the drawback that many factors may be ignored

and its accuracy compromised.

Independent of the model used, the tuning method can be used in the same

way. Simulation based methods will use the models and simulation method de-

scribed in the previous sections for testing the efficacy of the proposed tuning

method.

6.8.1.1 Simulated Annealing

The simulated annealing optimization algorithm can be used to tune the con-

troller by properly designing a cost function, or objective function. This objective

function represents the controller desired performance by penalizing undesired be-

havior. The algorithm will try to minimize this cost function and optimize the

system behavior according to the penalization criterion of the objective function.

The SA algorithm was chosen because of the capacity of finding the global

minimum value of very complex cost functions, even with many local minima.

This might be the case for complex systems and should be a robust method for

finding the global minima, instead of the gradient descent that would stop at the

first local minima.

The SA algorithm was coded in Cython based on the pseudo code in fig. 22.
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The global condition used was the number of accepted solutions greater than zero

and the local condition was based on the max number of accepted solutions and

iterations per temperature. Also, the Boltzmann constant kB was not considered.

The objective function value F (x⃗) and the perturbed objective function value

F (x⃗∗) are computed using the designed objective function over the simulation

result using the PID gains vector x⃗.

For all tests, the simulated annealing algorithm was executed in four simul-

taneous processes, using an Intel 64-bit CoreTM I3-2120 CPU @ 3.30GHz with

8GB of RAM on an Arch Linux, kernel version 4.16.11-1, compiled with Cython

0.25.2 and run with Python3.6.

The first step of this method is to design the objective function to be opti-

mized, according to the application’s requirements. As an example, the require-

ment can be the fastest time response without overshoot. For that requirement,

two simple procedures for penalizing the system behavior can be used: direct

penalization and indirect penalization.

The following methods will use the muscle-mass-system control system with

simulation parameters given in table 1.

6.8.1.1.1 Direct penalization In the direct penalization, unwanted be-

haviors are measured and penalized. For example, in the case of fastest response

time without overshoot, the raise time and overshoot can be measured and a

penalization factor can be established for each behavior.

In a simplified way, one can stop the simulation if the position of the mass

passes through the setpoint and set a high penalization for this behavior. In this

way, the simulation time can be drastically reduced. However, a flat region in

the objective function’s hypersurface will be produced by this strategy, causing
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Table 1: Muscle-mass-spring system simulation parameters.

Device Parameter Symbol Value Unit
Spring Rest length xrest 0.10 m
Spring Spring constant k 300 Nm−1

Spring Initial length x0 0.10 m
Mass Mass m 0.5 kg
Mass Gravitational acceleration g 9.8 ms−2
Mass Initial position z0 0.000 m

Muscle Rest length lrest 0.127 m
Muscle Initial length l0 0.127 m
Muscle Fiber length L 0.145 m
Muscle Fiber turns n 1.6
Muscle Atmospheric pressure Patm 101.325 kPa
Muscle Initial pressure Pint0 101.325 kPa
Muscle Braid elastic constant kb 3000000 Nm−1

Gas Temperature T 293.15 K
Gas Specific gas constant ℜ 287.058 Jkg−1K−1

Source: Own authorship.

difficulty for the SA algorithm to converge. Because of that, this actually can

make the algorithm take longer to produce a good result instead of finishing

faster.

For the direct penalization criterion, it will be considered four penalization

situations: under 98% of the setpoint sp, 0 → 98% raise time, overshoot and raise

only. These four situations are illustrated in fig. 38.

The under 98% of the setpoint situation, corresponds to low proportional and

integrative gains which can’t drive the mass to the setpoint during the simulation

time ts. For that situation the penalization ρunder can be based on the distance

to the setpoint d, resulting in

ρunder = ts + d = ts + sp− z(ts) (6.15)

The 0 → 98% of the setpoint penalization ρ0→98% can be the raise time itself.

The lower the raise time, the better is the response. Also, the worst case of the
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Figure 38: Direct penalization criterion situations.

Source: Own authorship.

ρunder is ts, which is the worse raise time. The penalization for this situation is

given by

ρ0→98% = traise (6.16)

In the case of overshoot, the distance from the setpoint to the maximum of

the overshoot can be used. Because overshoot is not desired, a constant factor

can be used to increase its penalization. When there is overshoot, it is possible

that the position oscillates, overshooting again. This is a worse solution and must

be penalized. To account for this situation, the time in which the last overshoot

occurred can be used as the penalization factor. The total penalization for the

overshoot case ρoShoot is

ρos = ts + 350os+ tlast (6.17)
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Table 2: Simulated annealing with direct penalization results.

Test number P I D Score
1 778.1981 33.0148 16.2071 0.1501
2 817.6187 251.7287 18.8097 0.1492
3 808.1250 113.9967 17.6768 0.1512
4 770.8543 136.3697 16.4484 0.1505

Source: Own authorship.

For the raise only situation, the gains are too high and is the worst case of

all. A higher penalization must be applied, based on how much it passed through

the setpoint. The penalization of the raise only situation ρro is given by

ρro = ts + 600 (z(ts)− sp) (6.18)

The best solutions for the overshoot and raise only situations are equal to

ts, which is the best case of the under 98% of the setpoint and the worst raise

time. This helps to avoid discontinuations on the objective function and avoids

attributing different values to pratically identical cases (boundaries).

To conclude, the score is given by the value of the corresponding penalization.

Therefore, after the test is done, the signal is analysed and categorized into the

above penalization categories, and the score is calculated accordingly.

Using this penalization method, the SA algorithm was executed and the PID

gains were optimized. The results are given in table 2.

The PID gains of the 4 executions were close to each other, except for the

integrative gain where the variation was higher. The final scores are also close,

which corresponds to the raise time. These four PID gains were used to simulate

the system responses, which are illustrated in fig. 39.

The SA algorithm execution was manually interrupted with approximately 7

hours of execution because, at the end, the simulation was producing responses
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Figure 39: System step responses for the PID gains obtained with the SA algorithm
and the direct penalization method.

Source: Own authorship.

with equal scores, which makes the algorithm keep accepting these solutions and

never terminate. This is caused by the fix step size adopted for simulating the

system of 0.0001, producing plain regions. This can be avoided by another ap-

pending another global condition for the while loop, terminating the execution if

the same response persists for a maximum number of permitted equal solutions.

The step responses produced with the obtained PID gains resulted in low

raise time and without overshoots. Thus, this is a viable method for successfully

finding good PID gains.

6.8.1.1.2 Indirect method As an example of indirect method, one can

use the integral time-weighted absolute error (ITAE) criterion. This is a common

criterion for tuning controllers. Another variation can be used, which is the

integral of the absolute error (IAE) criterion, that will be used to tune the PID.

The IAE and ITAE criterion measures indirectly the raise time and over-

shoot, producing higher scores when the system have high raise time and over-
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Table 3: Simulated annealing results with the IAE criterion.

Test number P I D Score (10−4) Duration
1 737.3473 371.0319 16.3310 16.3775 12.29h
2 1690.7083 1.9676 14.4064 18.2092 7.44h
3 384.6905 264.2752 2.1301 16.1116 7.60h
4 2049.9084 147.7134 19.9065 18.0224 5.51h

Source: Own authorship.

shoot. These criteria produces more continuous scores and might be easier for

the optimization algorithms to converge.

The IAE criterion cost function ρIAE is given by

ρIAE =

∫ ts

0

|e(t)| dt (6.19)

and the ITAE criterion cost function ρITAE is given by

ρITAE =

∫ ts

o

t |e(t)| dt (6.20)

Using the IAE criterion, the simulated annealing was executed. Results are

available in table 3.

There are 2 solutions that achieved lower scores and 2 solutions that obtained

higher scores. Duration of execution of the SA algorithm also varies between the

tests. Solutions have significantly different PID gains among each other, which

means that there are multiple local minima in the hypersurface of the objective

function.

The simulated step responses with the PID gains obtained by the IAE crite-

rion are illustrated in fig. 40.

Two bad solutions, where there is overshoot, were selected as optimum. How-

ever, the ones that had no overshoot have better performance than all of the
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Figure 40: System step responses for the PID gains obtained with the SA algorithm
and the IAE criterion.

Source: Own authorship.

solutions found with the direct method. While the IAE method can produce

better solutions, it has a more difficult convergence than the direct method.

This is an example of how the design of the objective function is critical

for producing good solutions. And that some objective functions may produce

challenging hypersurfaces for the algorithm to find an optimal solution.

The SA algorithm was able to find good solutions, even though it got stuck

in local minima two times. Although the SA is a robust optimization method, its

a stochastic optimization process that may need multiple executions before the

optimal solution can be found.

Because the two penalization methods produced different optimal solutions,

its not clear weather there are even better solutions for this system with this

penalization method. Unfortunately, the only way to compare the performance

of the SA algorithm with the true minima for this objective function is by brute

force, which can be unfeasible for some applications.
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6.8.1.2 Brute force

Because this is a relatively fast system to simulate using the models described

in the previous section, the brute force method is actually feasible, at least for

studying the objective function and the control system.

To compare the performance of the proposed SA algorithm against pure brute

force, and to be able to analyse how the control system behaves for different PID

gains, the IAE criterion was plotted for various different PID gains.

It was stipulated gains ranging from 0 to 1000 for the Kp and Ki gains and

a constant value for the Kd of 1, for plotting purposes. The result is illustrated

in fig. 41.

Each simulation takes about 1 second to finish. The variation gain step is 1,

and so, one million simulations were executed to produce the plot in fig. 41, with

a total of approximately 11.6 days of processing in single core, excluding storage

operations and other operations like computing the IAE score.

For that, the Águia (Eagle) supercomputer from the Superintendence of In-

formation Technology of the University of São Paulo was used. It is composed

of 128 servers with 20 cores and 512GB of RAM each. The processor is an Intel

Xeon CPU E7- 2870 @ 2.40GHz. It runs on a custom build GNU/Linux system.

The Águia supercomputer is shared among many users, and so, only a fraction of

this resource was used for producing the brute force result. This fraction depends

on the current load, but about 300 processors were used and the whole brute force

took about 1 hour to finish.

It should be noted that this brute force solution is only valid for kd = 1, and

the resolution of the answer is the step size used for the gains of 1, while the

exploration area of the SA algorithm was 0 → 5000 for Kp, 0 → 4000 for Ki and

0 → 20 for Kd.
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Figure 41: Brute force results for the IAE criterion.

Source: Own authorship.

For the exploration area used by the SA algorithm, the brute force would take

more than 16 days to finish using the Águia supercomputer with 300 processors

and with a solution resolution of 1. While SA would take about 8.2h each 4 trials

in a common computer with 4 threads, like most of the computers today.

In terms of efficacy, fig. 41 also compares the brute force solution (red circle)

with the SA annealing solutions (black triangles). SA solutions are close to the

brute force solution in the majority of cases, which demonstrates that the SA is

successfully finding good solutions to the control problem.

Because the system is nonlinear, a gain scheduling approach would be nec-

essary to maintain a good performance among the whole actuator contraction
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range. This would result in a table with PID parameters for specific contraction

ranges that can be switched online during the position control. This table can

be as complete as necessary, attending contraction and extension situations for

many ranges. This table can be made offline and, if the physical model is ac-

curate enough, before the muscle is even built. Brute force solutions would be

impractical for a common computer and, depending on the completeness of the

table, even for a supercomputer like Águia.

The objective function and the simulation can be modified to account for

sensor noise and external disturbances for more robust controller parameters or

even to fit a curve for de P, I and D control parameters, instead of populating a

table.

6.8.2 No model methods

No model methods are based on the real control system. This is a great

advantage because the optimization will occur for that specific control system

without any simplification or modeling limitations. However, it is challenging

because of time constraints, risk of system failure and the objective function

hypersurface can be even more complex for the optimization algorithms.

A test bench was constructed to test these algorithms, previously comented

in section 5.3.2.1 and illustrated in fig. 30.

The control system is composed of two FESTO fast acting solenoid valves

(MHJ10-S-2.5-QS-4-LF), a BeagleBone Black Rev. C single board computer as

the controller, a Logitech c270 720p 30fps webcam for the position tracking, a

desktop computer for image processing and a driver for commanding the valves.

The PID algorithm is implemented in Python in the BeagleBone Black. All

of the image processing and position calculation is done in the desktop computer
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and send via ethernet to the BeagleBone Black.

The controller runs at 30Hz, because the bottleneck of this system is the

camera frame rate.

6.8.2.1 Simulated Annealing

The SA took about 8.2h to find the solution for the simulation base method,

where each simulation took about 1 second to finish, for a 5 seconds simulation

time. Using the SA algorithm in the real bench would take about 7 seconds for

each test, including 5 seconds experiment and 2 seconds for the reset time. If

the hypersurface convergence difficulty is comparable to the simulation objective

function, then the expected execution time would be 57.4h.

To test weather the SA can be used in a real system, the test window was

reduced to 2 seconds, with a total of 4 seconds for each evaluation.

The convergence for the real system is not as good as with the simulation, and

the SA was trapped in a totally random, nearly 100% acceptance ratio regime

during all execution, terminated in a bad solution and, eventually, in a good

solution.

One hypothesis for this bad performance is that the system had a lot of noise

in the objective function. There is fluctuation in the objective function value

for the same PID parameters, that makes the ∆E calculation and acceptance

decision compromised.

One possible solution is to stipulate a dead zone δ in which the system cannot

conclude if ∆E is positive or negative, and more evaluations are executed to

statistically determine ∆E.

However, this can result in even more evaluations and make this optimization

method impractical.
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6.8.2.2 Brute force

Even though SA can be impractical because of the convergence rate and

possibly find a bad solution after that, brute force can be an option for some

systems.

For example, using a range of 0 → 5 for Kp, 0 → 5 for Ki and a constant Kd,

varying the parameters with steps of 0.1 for Kp and 1 for Ki, a brute force solution

for a 4 seconds evaluation would take about 20.4 minutes. Further refinement can

be made at the minimum region.

This approach was used to produce the fig. 42, using the IAE criterion to

optimize the parameters for positioning the arm from 83o → 105o.

Of course, finding a good solution in this case was possible because of the

previous knowledge of the system and the region of interest. Without this knowl-

edge, the exploration area would be bigger and the required time for finding the

solution would be nearly impractical. Furthermore, many tests would be neces-

sary to account for the changing parameters due to the contraction range and

populate a table for gain scheduling.

From the brute force results in fig. 42, the surface of the objective function

doesn’t look so complex to optimize. There are some fluctuations due to sensor

noise, friction, vibrations, PWM timing, and so on, but the obtained surface

doesn’t have many sudden changes and local minima if only P and I gains are

considered.

6.9 Chapter conclusions

Tuning a controller for a nonlinear system is a challenging task. To tackle

this problem, two methods were proposed: model base methods and no model
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Figure 42: Brute force results for the IAE criterion on the 1-DoF arm bench.

Source: Own authorship.

methods.

These methods use an objective function as a metric to be optimized. In the

case of the model based methods, a simulation is executed to compute the value

of the objective function. In contrast, the no model method use a real system to

compute the value of the objective function.

The objective function design is covered, proposing two principles: direct and

indirect. An example objective function is designed using each principle.

Using these methods is possible to find the controller’s parameters before

the control system is even built (model based methods) or find the parameters
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directly in the real system, identifying the model and generating the table of gains

or without modeling at all (no model methods).

Both methods are implemented and tested, showing system responses com-

patible with the objective function criterion for the simulation method. Using the

bench to generate the objective function score made the SA unable to converge

to good solutions, probably because of the noisy position measurements. To ac-

complish an optimization using the bench, a more robust to noise optimization

method must be used.
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7 OPTIMIZATION OF NOISY OBJECTIVE
FUNCTIONS

In the previous chapter, SA and brute force were used to tune the gains of a

PID controller. SA found good solutions to the control problem that were very

close to the brute force solution produced with a supercomputer. Although SA is

capable of finding good gains for the controller on the simulated system, it fails

to converge on the real bench. One hypothesis of this failure is that the bench

system produces noisy data, which produces false positives in the energy test and,

therefore, accept solutions due to noise instead of quality.

In chapter 4, it was reviewed some popular optimization algorithms, but they

are mainly focused on the derivative, or the gradient, of the function, which are

very sensitive to noise. In this chapter, optimization algorithms that are robust

to noise will be described and compared in benchmark functions and the best per-

forming algorithms will be used to find the controller’s gains of the positioning

system on the bench. Additionally, one algorithm called Shrinking Window Op-

timization Algorithm will be proposed and compared with some state-of-the-art

algorithms.

7.1 Genetic Algorithms

The Genetic Algorithms, or GA, are a class of computational models inspired

by the theory of evolution applied to solve optimization problems (WHITLEY,
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1994). The idea that new species arise from a common ancestor and that natural

selection promotes the prosperity of species that adapts to the environment, is

exploited to solve complex optimization problems. The process that generates

new species that are optimal to the environment can be mimicked to generate

new solutions that are optimal to some criteria.

The "environment" is translated into an objective function and the species,

or solutions, are subjected to the survival of the fittest. In nature, however, the

fittest is not always the one that survives, but the one with higher probability of

surviving. In an optimization perspective, this uncertainty of which solution is

going to "survive" is good in the sense that the algorithm is not trapped by a local

optimum. Therefore, this "nature selection" must have some kind of randomness.

Sexual reproduction promotes more genetic diversity than asexual reproduc-

tion, and is dominant among more advanced and complex organisms. For the

optimization analogy, combining two good solutions can produce an even better

solution.

Mutation is also a factor that promotes diversity and the rise of new species,

or a new class of solutions. In an optimization perspective, mutation can be used

to explore the solution space and eventually find the global optimum.

Each individual have a DNA, or genetic code, that is combined due to repro-

duction or changed due to mutation. In a solution, the genetic code is formed

by a sequential list of numbers, or symbols, that represents the parameters to be

optimized, e.g. the coordinates of point in a fitness hypersurface.

A group of solutions are created to "compete" with each other, and this group

is known as a population, which represent a generation. The "natural selection"

occurs in this generation, according to the "fitness value" of the solutions and

some randomness. The selected solutions are used to populate the next genera-
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tion, and so on.

In summary, genetic algorithms have these main steps:

• creation: create the population of the first generation randomly across the

solution space or using some other method;

• selection: attribute a fitness value for each solution and select a subgroup

with a given probability, which is proportional with the fitness value;

• reproduction: copy or combine the solutions in the selected subgroup to

form the population of the next generation;

• mutation: randomly change the parameters of a solution with a given

probability;

• populate: if not all solutions are "children" of the selected subgroup, gen-

erate the rest of the population;

• repeat until stop criteria: go to selection or stop the algorithm.

Some techniques are used to improve exploration and make the selection more

robust to objective function values. In the latter case, instead of using the value of

the objective function to calculate the probability, this value is only used to rank

the solutions. The probability of selection in this case depends on the position

of the solution in the rank. As an example, solutions are ranked in from 1 to

N , 1 being the best solution according the J(xi) and N the population size,

representing the worse solution. So, the probability P can be determined by

P (r) =

{
Pcif r = 1(1− Pc)

r−1Pcif r > 1 < N(1− Pc)
r−1 (7.1)

here Pc is a probability constant to be chosen and r the position in the rank

of the solution. In the former case, a diversity metric can be used in the selection.
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In general, good solutions that are different may produce better solutions when

combined.

Despite the powerful concept, GA has many degrees of freedom for the imple-

mentation. Each of the steps mentioned above can be implemented differently,

using heuristics to guide the process. There is an effort to "tweak" the algorithm

to produce solutions, avoid trapping the generation in local optima and be able

to explore the whole solution space.

7.2 Bayesian Optimization

Bayesian Optimization, or BO, is often used to optimize functions that are

expensive to evaluate and that are subject to noise. It works by building a prob-

abilistic model of the function and calculate an acquisition function to determine

the next sample region.

The probabilistic model is often based on the Gaussian Process (GP), which

is used as a prior, and as data is collected from evaluating the function, the prior

is updated to form a posterior distribution. The posterior distribution is used to

calculate the acquisition function and determine the next sample coordinates.

It is based o the Bayes’ theorem, given by

P (A|B) =
P (B|A)P (A)

P (B)
(7.2)

The term P (B), a normalization term, is often ignored in BO because the

goal is not to calculate a specific conditional probability, but to have a metric to

optimize a quantity. And so, Bayes’ Theorem can be applied to an optimization

problem as
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P (M |E) ∝ P (E|M)P (M) (7.3)

in which the posterior probability of a model M , given evidence data E is

proportional to the likelihood of E given M times the prior probability of M

(BROCHU; CORA; FREITAS, 2010).

GP is used to create a surrogate model of the objective function. The sur-

rogate model f(x) is analogous to a function composed of a mean curve m and

variance of a normal distribution over the possible values of f at x (BROCHU;

CORA; FREITAS, 2010). One example of a surrogate model is illustrated in fig.

43.

Figure 43: Surrogate model of an objective function as a Gaussian Process.

Source: Adapted from (BROCHU; CORA; FREITAS, 2010).

A surrogate model f(x) is specified by

f(x) ∼ GP(m(x), k(x, x′)) (7.4)

where k is the covariance as a function of the values x and x′. One example
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of a covariance function k is the squared exponential function, given by

k(x, x′) = e−
1
2
||x−x′||2 (7.5)

More sophisticated covariance functions are used to tune the smoothness of

the function according to its dimension with a hyperparameter. Therefore, some

parameters may have different levels of smoothness in the surrogate model.

From the example in fig. 43, a good guess for the next sampling region would

be the far right of the graph, where the mean m(xn) plus the standard deviation

σ(xn) is likely to return the highest value of f(x) in this interval. Another possible

strategy would be to explore the hypersurface of f(x) by sampling regions of

high variance. This states a trade-off between exploration and exploitation which

guides the algorithm towards knowing more about f(x) or improving the solution

about a maximum. This trade-off is expressed as an acquisition function and the

sampling coordinate xn is determined by optimizing the acquisition function.

In summary, the algorithm for Bayesian Optimization is as follows:

• determine xn by optimizing the acquisition function;

• sample the, possibly noisy, objective function yn = f(xn) + ϵn, where ϵn

represents the noise of the function evaluation at xn;

• update the GP with the new evidence data xn, yn;

• repeat until the stop criterion.

Although the creation of a surrogate model makes the selection of the sam-

pling coordinate more reasonable, updating the surrogate model, calculating the

acquisition function and optimizing it can introduce significant overhead that in-

creases over the iterations. Because of that, BO is not advised for optimizing
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functions that are fast or cheap to evaluate. Nevertheless, it can be used for

comparison purposes to determine the performance of optimization algorithms in

a benchmark.

When using a test bench to evaluate the objective function, the experiment

setup can take much longer than the experiment itself and the number of it-

erations can be limited. In this case, BO can be a valid option because the

computational overhead might be comparable with the experiment setup time

for few iterations (e.g. < 500 iterations).

7.3 Shrinking Window Optimization Algorithm

The Shrinking Window Optimization Algorithm (SWOA) was inspired by the

Simulated Annealing algorithm and by some ideas from the genetic algorithms,

considering the drawbacks of the SA when optimizing the control system in the

bench. It is a sequential black-box optimization algorithm, designed to optimize

objective functions subjected to noise. Even though it is sequential, it is easy to

improve the learning time through parallelization on the function evaluation.

The algorithm is mainly consisted of a convergence factor, a movable search

area (Window), a sampler and a chooser. The convergence factor is responsible

for tuning the algorithm for exploration or exploitation, by shrinking the search

window or changing the probability of choosing a point. The search window is

the domain in which the sampler will acquire data. The chooser attributes a

probability to each data point and randomly selects one point.

The algorithm works by repeating the process of calculating the convergence

factor, adjusting the window size, sampling and choosing a data point until the

stop criterion is reached.

By attributing a non-zero probability to the sampled data points, the algo-
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rithm has the ability to escape from local minima.

7.3.1 Implementation

Let J be a real-value cost function in ℜn, ξ be the convergence vector, ε be

the search domain size vector, Ω be the complete search domain set and N the

number of samples per iteration. The objective of the algorithm is to find an

element x in the domain Ω which minimizes, or nearly minimizes, the value of

J(x).

Initially, N samples are taken from Ω, which can be made in parallel if possi-

ble. Then, a probability is attributed to each sample xi according to their value

J(xi). Lower values are given higher probability of being chosen than lower val-

ues. The convergence of the algorithm is critically dependent on this probability

attribution. An example is given below:

P (xi|xbest, xmax) =

∣∣∣∣xi − xmax

xi

∣∣∣∣ 1

exi−xbest
(7.6)

Where P (xi|xbest, xmax) represents the probability of the solution xi being

chosen given xbest and xmax. The variable xmax is the value of the worst solution

from the N samples and the variable xbest is the current best solution.

To normalize the samples’ probabilities such that
∑N

i=1 Pi = 1, a range from

0 → 1 is filled with sub-regions for each sampled data point. The size of each

region is proportional to the probability of that point being chosen. Then a

random number from 0 → 1 is generated, which determines the selection of the

point.

In every following iteration, the window size ε is updated according to the

convergence vector ξ:
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εi+1 = εi ⊙ ξi (7.7)

Where ⊙ is the Hadamard product, or element wise product. The convergence

vector can also be updated according to some criterion, e.g. considering the

variance of the samples or, for simplicity, each element can be constant for a

geometrical window shrinking.

The next window is centered at the current solution xn, and the process of

sampling, probability attribution and choosing a point is repeated until the stop

criterion.

The convergence of this algorithm to a, hopefully, good solution is a stochastic

process of solution selections. Initially, the window size is large and solution

from many different locations can be evaluated. The probability of choosing a

good solution is proportionally higher than a worse solution (according to eq.

7.6), which guides the algorithm towards a good subsection of the hypersurface.

Also, the best solution is always considered, which also helps to guide the window

towards the location of the best solutions when transitioning from the exploration

phase to the exploitation phase.

The idea is that the best solution should be the most probable of being found,

which makes sense because on every window, the best solution has always the

highest probability. Also, because the best solution is also considered, very bad

solutions are increasingly more improbable of being selected. So, it is to expect,

that if this process proceeds several times, the probability of finding a good

solution increases, as the chain of probabilities will favor the best solution over

the others. So, the exploration of the hypersurface will occur when the window

size is large, the window will be guided towards the location of good solutions

and exploitation will occur when the window size shrinks and good solutions that
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were found along the way will causes bad solutions to be more difficult to be

selected.

7.4 Optimization on noisy benchmark functions

In this section, some benchmark noisy functions will be used to compare

and analyse the performance of the mentioned optimization algorithms in this

chapter. Additionally, a pure random search is used as a comparison basis.

The implementation of the algorithms are from the author of this thesis,

based on the theory of this chapter, with exception of the Bayesian optimization

in which the python library scikit-optimize implementation was used.

Two benchmark functions will be used, namely J1 and J2. The former is given

by

J1(a, b) = a2 + b2 + 4 sin(a) + 10 sin(b) + χ(0, 5) (7.8)

and the latter is given by

J2(a, b, c, d) = a2+b2+c2+d2+4 (sin(a) + sin(c))+10 (sin(b) + sin(d))+2χ(0, 5)

(7.9)

where χ(0, 5) represents a Gaussian noise with mean value of 0 and stan-

dard deviation of 5. The objective is to find the parameters a, b or a, b, c, d that

minimizes the function J1 and J2, respectively.

On the optimization tests, the time of execution, mean objective function

value, standard deviation and best solution are recorded for comparison. Re-

sults for the optimization of two parameters on J1 are shown in table 4 and the
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Table 4: Optimization results for the J1 benchmark function.

Algorithm ¯min(J1) σ Evaluations Repetition J1best Time of execution
Random -12.918 3.149 100 100 -21.790 0.20s

BO -21.819 2.192 100 100 -30.034 8671.80s
GA -12.427 4.731 100 100 -25.825 0.54s

SWOA -19.650 2.971 100 100 -31.622 0.22s
Random -13.791 4.225 500 10 -20.948 0.01s

BO -25.763 1.834 500 10 -28.896 31279.0s
GA -17.659 4.468 500 10 -24.434 0.22s

SWOA -24.584 2.073 500 10 -29.200 0.11s
Source: Own authorship.

Table 5: Optimization results for the J2 benchmark function.

Algorithm ¯min(J2) σ Evaluations Repetition J2best Time of execution
Random -21.929 3.469 500 10 -28.972 0.12s

BO -15.640 8.523 500 10 -25.200 41118.97s
GA -24.174 4.560 500 10 -34.079 0.24s

SWOA -43.235 8.112 500 10 -62.344 0.41s
Source: Own authorship.

optimization of four parameters on J2 are shown in table 5.

Note that the repetition for the 500 evaluation optimization tests is 10. This

is because BO takes too long to finish and to keep the comparison fair with the

other algorithms. The comparison of the algorithms is illustrated in fig. 44. The

results are normalized and higher values represent better performance.

According to the results in table 4, when dealing with very few iterations (100

evaluations test), BO finds a better solution on average and with less deviation,

but it is much more computationally expensive. GA was the worst performing

algorithm for few iterations, even losing for the random approach. Although

SWOA lost to BO on average, it found the best solution overall.

When more evaluations are taken, GA starts to be more effective and sur-

passes the random algorithm. BO consistently finds the best solution on average,

but SWOA kept on finding the best solution overall, in a fraction of the time of
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Figure 44: Algorithms comparison on the benchmark tests.

Source: Own authorship.

BO.

As the number of the iterations grows, it is expected that GA would be more

effective. However, for optimizing the system in the real world, the number of

iterations can rapidly make this approach unfeasible.

The results in table 5 elucidates the performance of the algorithms when

the number of parameters increases. For instance, BO was the worst performer,

even losing for the random approach. The complexity of the surrogate model

increased to the point that even 500 evaluations was not sufficient for it to find a
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good solution, and also increased the time need to compute the next try. GA was

the second best algorithm, finding the second best solution on average and the

second best solution overall. The most effective algorithm for this function was

the SWOA, finding not only the best solution, but with a considerable difference

in quality of the solution in comparison with the other algorithms.

In summary, it was found that BO is a great algorithm to be used in situations

where there are few parameters to optimize and the time for the evaluation is

long. In this case, the calculation of the surrogate model is compensated by the

fewer iterations needed to find a good solution. GA is a better algorithm when

the number of parameters is higher and the time for the function evaluation is

not high. This way the GA can benefit from more evaluations and find better

solutions than BO. SWOA showed to good in both cases, finding good solutions

in few iterations with few parameters and even the best one when dealing the

increased parameters, also benefiting from more evaluations.

Now these algorithms have to be tested in the real system optimization. Be-

cause the PID controller has only 3 parameters to be optimized and finding the

best solution in the minimum ammount of iterations is desired, the top 2 algo-

rithms for this task would be BO and SWOA.

7.5 Optimizing control parameters in the physical
bench

As discussed in previous sections, there are some algorithms that can optimize

noisy functions. This is very important because bench tests are subject to noise

from several sources, such as from sensors, vibrations, ambient conditions, and

so on. To test whether the discussed algorithms are capable of optimizing the

controller’s parameters in a reasonable time, the following experiment was used.
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A pneumatic muscle is fixed at the top end to a dynamometer and the bottom

end to a mass, which is attached to a spring in a metal beam. This beam can

deform elastically and the displacement is measured by a capacitive sensor. The

sensor signal is used to control the position of the mass, using a PID controller

which parameters are going to be optimized using the top two algorithms that

were described in this chapter: BO and SWOA.

The objective of the control system is to position the mass as fast as possible

without overshoot. The IAE criterion was used to optimize the PID parameters.

The learning process is illustrated in fig. 45.

Figure 45: PID parameters learning and performance comparison.

Source: Own authorship.

This experiment showed that optimizing the controller’s parameters in the
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bench is a viable option when using BO and SWOA. All trials could find a good

solution in the 500 evaluations limit.

While BO took around 2.7h to complete the 500 evaluations, SWOA com-

pleted in around 1.4h, being 48,15

It’s clear from the plot in fig. 45 that while both tries of BO couldn’t improve

the solution after the first 50 evaluations, SWOA kept improving the solution until

the end of the test.

The plot in fig. 46 depicts the SWOA convergence to the solution during the

test.

On every iteration, 20 evaluations are made (repesented by the black points).

On every iteration, a candidate solution is chosen, the window is shrunk and

another iteration begins, which the window is centered on the last iteration’s

result. The blue line represents the selected solution of each iteration and the

red line represents the convergence of the best solution. Note that the iteration

result is not always the best solution to promote exploration.

7.6 Chapter conclusions

Some optimization algorithms known to be robust to noise were described

and evaluated. Also, a novel algorithm called Shrinking Window Optimization

Algorithm was proposed and tested against the described algorithms.

On synthetic functions it was noted that BO is good when very few parameters

needs to be optimized, finding on average the best solution, but needs orders of

magnitude more time to execute. Genetic Algorithms are good when the number

of evaluation is high. SWOA found the best solution in all cases, can be used

for few or many parameters, few iterations or many iterations and the time of

execution is comparable to the fastest algorithm.
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Figure 46: SWOA learning process during the bench test.

Source: Own authorship.

On the real bench, both BO and SWOA could find good solutions to the

control problem, but SWOA found the best solution, being 8

Also, SWOA scales better with increased number of parameters, compared to

BO, being able to find better solutions earlier, which makes it suitable to learn

more complex control responses.
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8 CONCLUSIONS

It was reviewed some potential applications for pneumatic artificial muscles

as non conductive actuators for biomedial and rehabilitation applications. There

are several other applications for these actuators, and the development of tools

for designing, fabricating, sensing and controlling systems powered by PAMs can

spread their use in many areas in the future.

Many different muscle constructions were reviewed. Some design character-

istics can be used to produce an actuator according to the application’s require-

ments. For example, some muscle constructions have lower hysteresis than others,

work with lower pressures, have higher durability, and so on.

Unfortunately, just a few have first principle models and they are not very

accurate. Therefore, models have to be developed or strategies for working with

them without first principle models are necessary.

The control problem was reviewed and, although there were many researches

related to PAMs control, the following drawbacks were identified:

• inaccurate physically based models which affect the controller performance

and limit its practical use in designing model based controllers;

• usage of identified models that requires prior construction and experimen-

tation before designing the controller;

• complex control strategies that require highly qualified personnel for imple-
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menting and tuning the controller;

• usage of high cost valves and sensors;

• usage of conductive and ferromagnetic apparatus, which cannot be used in

electromagnetic risk applications;

• trial and error based tunning;

• controllers designed for specific apparatus and lack of flexibility for inter-

changeable parts and

• not flexible for designing controllers with different performance require-

ments and constraints.

A control strategy was proposed which is to use a simple and flexible controller

and tune it with an optimization algorithm, according to the desired performance

criterion translated into a cost function.

For the sensing problem, it was reviewed some techniques used in the litera-

ture. An image based sensor was implemented and used for controller validation

purposes.

Two approaches were proposed for tuning the controller: model based and no

model methods. Model based methods can be used when the mathematical model

of the PAM is available. For situations where no accurate models are available, it

was proposed optimization methods that are based in the real system evaluation.

Tests were made with both approaches and results showed that it is possible

to tune the controller according to the desired performance criterion, simulating

the nonlinear system and using an optimization algorithm to find the controller’s

parameters, or by optimizing the parameters in real time in the bench.
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When learning the control in the bench, the proposed method SWOA, had

the best results, outperforming state-of-the-art algorithm BO in 8

The hypothesis that the control of a very nonlinear system such as the PAM

actuated positioning system can be learned in real time in the bench is plausi-

ble and the experiments showed good results, positioning the mass rapidly and

without overshoot as the criterion sugested.

The method showed to be flexible, because the proposed algorithms are ca-

pable of finding good solutions on a variety of loss functions. Therefore, custom

loss functions can be tailored to each application’s requirements.

Also, the methods can be combined when a reasonable model is available, be

first optimizing the simulated system and be fine-tuned in the real system.
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9 FUTURE WORK

The proposed algorithm (SWOA) has some parameters that can be further

studied to improve the algorithm performance. The probability attribution,

shrink scheduling, etc, can be further investigated to provide more robustness

on the optimization process.

It was used a controller as a base to be optimized. However, as the SWOA

showed to scale well with more parameters, the entire control law can be learned

instead of using the logic of a fixed controller such as the PID. This way the gain

scheduling approach can be simplified to a generic function or a small Neural

Network.

Another approach would be to learn the system dynamics and to use the

model predictive control approach. A generic function can be used as base and

be optimized in real time to predict the next state, given the controller’s input.

Then the best control signal can be optimized for the next step, and so on.

The design of objective functions can also be studied. They are responsible

for the quality and convergence to a good solution. Combining different objective

functions can make the optimization faster and with higher quality solutions, with

fewer optimization trials.
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