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Resumo
No projeto de uma prótese craniana é importante determinar como será o encaixe entre o
crânio e a mesma. Desta forma, é importante determinar a superfície de contato entre
a prótese e a lesão craniana. Os pontos que definem esta superfície são denominados de
zona da lesão, e com estes dados é possível projetar uma prótese com maior precisão e
avaliar o contato entre a prótese e o crânio, ao determinar as distância entre as duas partes.
Nesta tese é proposto um método semi-automático iterativo para se determinar a zona da
lesão, em que é utilizado um modelo de curvas como base para se determinar todos os
pontos que compõem essa região. O modelo de curvas é determinado com o auxílio do
recozimento simulado de vizinhança adaptativa, onde os parâmetros que determinam a
curva são ajustados de forma que a curva se aproxime da região requerida. É utilizado
uma curva cúbica de Bézier por trechos, em que cada trecho da curva aproxima somente
uma parte da zona da lesão. A cada iteração pontos são adicionados e removidos na
zona da lesão e um novo modelo de curva do contorno da lesão é determinada. Este
processo de inclusão e remoção de pontos é realizado até que não haja mais buracos na
superfície de contato. O método proposto foi testado em quatro exemplos; três com lesões
criadas artificialmente e uma com uma lesão real; e em todos os testes o método conseguiu
determinar a zona da lesão com sucesso.

Palavras-chave: Lesão craniana, prótese craniana, curva de Bézier, recozimento simulado,
ajuste de curvas.



Abstract
It is highly important to determine the fitting between the injured skull and the fabricated
prosthesis in the Cranioplasty surgical procedure. This requires a precise definition of the
contact surface between the injured skull and the prosthesis.
A geometric representation that determines this surface is named as injured zone. It is
possible, with the aid of the injured zone, to develop a more accurate prosthesis and
evaluate the contact between the prosthesis and injured skull by determining the gaps
between them. An iterative semi-automatic method is proposed to determine the injured
zone, in which a curve model is used as reference to determine all the points of this
area. The adaptive neighborhood simulated annealing algorithm determines the curve
model, in which the curve parameters are adjusted to determine a curve that approximates
the required zone. A piecewise cubic Bézier curve is used, in which each curve segment
approximates only a part of the injured zone. Points are added and removed to the
injured zone and a new injured zone curve model is determined in each new iteration.
This procedure of adding and removing points is done until there are no more holes in the
injured zone. The proposed method was tested in four examples; three artificially created
injuries and one natural injury; and the method successfully determined the injured zone
in all the four tests.

Keywords: Injured skull, skull prosthesis, Bézier curve, simulated annealing, curve
fitting.
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1 Introduction

Cranioplasty is a surgical procedure to repair an injured skull, that was damaged because
of a trauma, tumor recession, infections or deformity of the skull. This procedure repairs
the skull function which is protect the brain; however, due to aesthetic reasons and
possibly other practically requirements the skull’s shape may influence the patient’s social
and emotional life [TRAINOR; RICHTSMEIER, 2015]. The main difficulties of the
surgery and neurosurgery teams are the complex anatomic geometry of the skull, each
injury is unique, the presence of vital adjacent anatomical structures and the high risk of
infection [PARTHASARATHY, 2014; HIEU et al., 2002; PARK et al., 2016].

The patient autologous bone is the best compatible material to be used in a cranioplasty.
However, there are limitations in size and shape. It cannot be practical if the injury
extension is too large [PARK et al., 2016]. That is why alloplastic materials are also
used, that are not organic material used to manufacture the prosthesis. According
to Park et al. [2016], the prosthesis material required characteristics must be: not
magnetic, radio transparent, light, sterilizable, and must be easily fixable to the skull.
The polymethyl methacrylate (PMMA), hydroxyapatite and titanium are the most used
materials considering the required characteristics.

The cranial prosthesis manufacturing cost is very high, due to the high complexity
of the geometry and mainly to the fact that each prosthesis is unique. Thus, there is
no scalability to reduce the production cost. Due to this fact, the cost of this surgery
procedure has been very high. In the literature, there are several methods to manufacture
the prosthesis. Wehmöller et al. [1995], Eufinger et al. [1995] machined a prosthesis using
a CNC milling machine, however due to the high complexity of the skull geometry, the
machining time is very high. Another possibility is to machine a mold, and the prosthesis
is manufactured by injecting PMMA in the machined mold [HIEU et al., 2002; LEE et al.,
2002]. However, the manufacturing time and cost decreased with the advent of additive
manufacturing. Initially, 3D printers were used to produce a mold [KIM et al., 2012], or
to manufacture a silicon mold from a printed injured skull replica [ROTARU et al., 2012].
The manufacturing time is still high, once firstly it is necessary to create the mold and
then fabricate the prosthesis. However, it is possible to print metallic objects through the
sintering process with the improvement of additive manufacturing techniques. Thus, the
prostheses began to be made of titanium by the sintering process [PARTHASARATHY,
2014; JARDINI et al., 2014; VOLPE et al., 2018] as shown in Fig. 1.1.

The additive manufacturing was not the only one that contributed to the cranioplasty
improvement. The usage of CAD/CAM (Computed Aided Design/Computer Aided
Manufacturing) techniques helped the cranioplasty development in two aspects. The first
one is the capability to design the prosthesis digitally, and second is the capability to plain
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Figure 1.1 – Example of a titanium prosthesis. Font1

the surgical procedure virtually [ZIELINSKI et al., 2015; JAISINGHANI et al., 2017].
There are two basics approaches to design a prosthesis in the literature. The prosthesis
can be designed by mirroring the healthy skull side over the injured side [HIEU et al.,
2002; JARDINI et al., 2014], or the prosthesis can be designed by interpolating a surface
defining its geometry [HIEU et al., 2002; WEHMÖLLER et al., 1995; EUFINGER et al.,
1995].

Only Hieu et al. [2002] studies the detail of the injured zone. According to them the
injured zone is important because it is possible to design a better prosthesis, as well as to
determine a better fit between the prosthesis and the skull.

1.1 Objectives
The main goal of this work is to develop a method to determine the injured skull zone.
Three surfaces defines the injured skull; the inner surface, the outer surface and the surface
that links these two surfaces. The linking surface is the injured zone. The determination
of this zone enables a better prosthesis design.

1.2 Literature Review
Wehmöller et al. [1995] developed a 3D geometric model with surface parameters so that
the defined geometry approximates a skull. The outer injured skull surface is parametrically
1 Source: <https://www.polygonica.com/polygonica-blog/polygonica-software-new-features-at-tct-show-2017/

?amp=&amp=&utm_campaign=TCT_Events_Page&utm_medium=Event_Click&utm_source=
Events%20Page>

https://www.polygonica.com/polygonica-blog/polygonica-software-new-features-at-tct-show-2017/?amp=&amp=&utm_campaign=TCT_Events_Page&utm_medium=Event_Click&utm_source=Events%20Page
https://www.polygonica.com/polygonica-blog/polygonica-software-new-features-at-tct-show-2017/?amp=&amp=&utm_campaign=TCT_Events_Page&utm_medium=Event_Click&utm_source=Events%20Page
https://www.polygonica.com/polygonica-blog/polygonica-software-new-features-at-tct-show-2017/?amp=&amp=&utm_campaign=TCT_Events_Page&utm_medium=Event_Click&utm_source=Events%20Page
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represented considering the surface curvature of the healthy skull portion. An offset of the
outer surface defines the inner surface. However, both surfaces were defined with a gap
of 0.5 to 1 mm between the prosthesis and the skull to ensure the contact between both
parts. This is a limitation of the method, because it does not ensure a perfect contact
between the skull and the prosthesis, once the injured zone is not determined.

Hieu et al. [2002] developed a method that creates three surfaces (internal, external and
contact) to define the skull prosthesis. These surfaces are defined by using contour lines
through the mirroring technique. A curve is defined in each computed tomography image
slice, using the healthy mirror side of the skull and parameters to ensure the continuity
between the skull and the injured part. This methodology has some limitations, once the
curve parameters are separately defined in each slice and each curve modifies the whole
surface. Thus, the complete tangential continuity is not ensured in the whole surface. The
tangential continuity is only guaranteed in each curve, and not in the entire surface.

Lin et al. [2017] used a snakes algorithm to determine the inner border and outer
border of each tomography slice. The stack of several curves determine the prosthesis
surface. This approach has the same problem of the previous method, it does not ensure
the continuity between the curves in each slice.

Carr et al. [1997], Sing et al. [2005] and Chen et al. [2006] projected the prosthesis
using surface interpolation. Each paper used a different surface to define the geometry of
the prosthesis; Carr et al. [1997] used radial basis function, Sing et al. [2005] used Bézier
surfaces and Chen et al. [2006] used NURBS surfaces. This approach ensures the continuity
between prosthesis and skull and it is possible to be used with injuries at any location on
the skull. However, it cannot be used for large injuries, once there are information just in
the border of the prosthesis (the tangent vector between the prosthesis and skull), and
there are few information to define the best geometry in the middle of it.

Jardini et al. [2014] made a simpler approach, the prosthesis was designed through a
Boolean operation by subtracting two solids, the injured skull region and the mirror side of
the healthy skull. This is not an ideal solution, because the skull is not perfectly symmetric
not being possible to ensure the continuity in the contact between the prosthesis and skull.

Other works [KIM et al., 2012; ROTARU et al., 2012; PARK et al., 2016; VOLPE et
al., 2018] designed the prosthesis using proprietary software, such as Materialise Mimics R©

. There is a problem in using these software tools. The user does not have proper control
over the geometric parameters, because the software algorithms are unknown to the user,
the user does not know the limitations and the method of how the geometry is determined.

1.3 Work Structure
The proposed method determines the points from a skull point cloud which defines the
injured skull zone. The input is a STL file from where the point cloud is extracted. The
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user defines two clouds, one representing the healthy region and another representing the
injured region of the skull. A symmetry plane is defined and the point cloud is mirrored
creating a new point cloud. Both point clouds are compared using a distance map. By
filtering the distance map, a first guess for the injured zone is found. The injured zone is
defined by a curve approximating procedure.

This work is structured as follow. Chapter 2 presents some basic concepts on the
curve fitting. Curve fitting is an important part of the thesis because the injured zone
is represented by a curve. In Chapter 3, the optimization algorithm developed based on
simulated annealing is presented. In Chapter 4, the developed application of simulated
annealing to curve fitting is described. In Chapter 5, an integrated procedure based on
the developed methodologies is presented. Chapter 6 presents the validation case studies
and the corresponding results. And conclusions are drawn in Chapter 7.
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2 Curve Fitting - Curve Approximation

In this chapter, the principles of Bézier curves and some basic concepts on curve fitting
are presented.

2.1 Bézier Curve
The Bézier curve P(u) is a parametric curve given by

P(u) =
n∑

i=0
piBi,n(u), u ∈ [0, 1] (2.1)

with pi being the control points, n+1 is the number of control points, (n) is the polynomial
degree and Bi,n(u) is the Bernstein polynomial basis function defined by

Bi,n(u) =
(
n

i

)
ui(1− u)n−i, i = 0, ..., n. (2.2)

with
(

n
i

)
being the binomial given by

(
n

i

)
= n!
i!(n− i)!

(
0
0

)
≡ 1. (2.3)

Fig. 2.2 shows a cubic Bézier curve and its four control points. The control points
p0, p1, p2 and p3 define the curve, and it always passes through the first and last control
points. The curve is always inside the control point convex-hull [CHIYOKURA, 1988,
section 5.2.1]. Points p1, p2 are internal control points.

p0

p1 p2

p3

Figure 2.2 – Bézier curve, with control points p0, p1, p2 and p3.
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2.2 Introduction to Curve Approximation
The objective of the curve fitting problem is to determine an approximating curve from a
sequence of points. This curve can be an interpolation curve, in which the curve passes
through all the points; or an approximation curve, in which a smooth curve approximates
the sequence of points.

Approximating curve

Interpolating curve

Sequence of points

Figure 2.3 – Approximating curve (dashed) versus the interpolating curve (red).

Fig. 2.3 shows an example of the difference between these two curves, in which the
dashed curve is the approximating curve and the red curve is the interpolating curve.

The procedure to find a curve that approximates a sequence {d} of m points can be
translated into the determination of control points (p0, ...,pn) that defines the approxi-
mating curve. Thus, it is necessary to minimize the summation of the distances between
each point to the curve, and the function that describes this summation is

f(p0, ...,pn) =
m∑

k=0
||dk −P(uk)||2, (2.4)

with n being the number of control points. The expression ||dk−P(uk)|| is the discrepancy
or distance between point dk and the curve. Several approaches to determine the distance
between a point and a curve were proposed. Hasegawa et al. [2013] and Pandunata and
Shamsuddin [2010] determined the distance with a predetermined parametrization, in
which a parameter uk obtained by the cord length parametrization determines the curve
closest point to a point dk. This parameter is the ratio between the chord length of two
consecutive points of the sequence {d} ( ||dk − dk−1||), and the summation of all the
chords (∑m

i=1 ||di−di−1||). An advantage of this method is its agility, since the calculation
is done only once, and if an iterative algorithm needed to determine the distance, it would
be quickly determined. However, this method does not ensure the correct distance, once
this parameter changes by modifying the curve. Fig. 2.4 shows a Bézier curve with 4
control points and a sequence of 5 points, in which each point dk of the sequence has a
closest point P(uk). It is possible to observe that at point d3 the distance to the curve is
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p0,P(u1),d1, u1 = 0

p3,P(u5),d5, u5 = 1P(u2)

P(u3)

d2, u2 = 0.24

p1

d3, u3 = 0.47

P(u4)

p2

d4, u4 = 0.76
Control Point
Bézier Curve
Nearest Point on the Curve
Sequence Points

Curve Discrepancy

Figure 2.4 – Distance determined by a predetermined parametrization (Adopted from:
Hasegawa et al. [2013, Figure 1]).

null, but the predetermined parametrization determined point P(u3), and the distance
between these two points are not null.

The second method to determine the distance between a point and a curve is an iterative
method. Maekawa et al. [2007] and Gofuku et al. [2009] used the Newton-Raphson method
to obtain the parameter uk that determines the point P(uk) as the closes point to point
dk. This parameter is determined by solving

(dk −P(uk)) · Ṗ(uk) = 0. (2.5)

Eq. 2.5 determines a parameter uk in which a vector (dk − P(uk)) is orthogonal to
Ṗ(uk) as shown in Fig. 2.5. Another iterative method to determine the distance of a point
to a curve is the algorithm proposed by Hu and Wallner [2005], in which a first and second
order algorithms are presented to obtain the orthogonal projection of a point over the
curve or surface. Both iterative methods can be very accurate, if enough processing time
is available. When the curve fitting method is iterative, the use of this method is not
feasible. Eq. 2.5 may have more than one solution, because it looks for orthogonal lines.
This equation returns multiple solutions if a curve has parallel or orthogonal parts, as can
be seen in Fig. 2.6. Fig. 2.6(a) the point dk (circle) has 3 points (squares) at the curve in
which Eq. 2.5 is satisfied, and there are two solutions in Fig. 2.6(b).

A third method to determine the distance of a point to the curve is by approximation,
in which the curve is discretized, and from the sampled points it is determined the closest
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P(uk)

dk

Ṗ(uk)

Figure 2.5 – Determination of the distance between a point and a curve.

point to dk. Tavares et al. [2011] and Ueda et al. [2016] used this method, which is the best
balance between the accuracy and processing time. Ueda et al. [2016] improved the method
by calculating the distance between point and curve as being the height of a triangle. The
method is divided in three steps. The first step is the above described procedure, in which
the curve is sampled by a sequence of discrete points {P}. The search for the closed point
in {P} happens for every point every point dk. The closest point is named as Pv. Two
triangles are defined using the next and the previous point to Pv; respectively Pv+1 and
Pv−1; and the points dk and Pv, as can be seen in Fig. 2.7. The second step is to define
the triangle with smallest area, by comparing the length of ||Pv+1−dk|| and ||Pv−1−dk||.
If ||Pv−1 − dk|| < ||Pv+1 − dk|| the triangle determined by vertex dk, Pv and Pv−1 has
the smallest area, otherwise the other triangle has the smallest area. The third step is to
verify whether the chosen triangle is acute, because if the chosen triangle is obtuse the
height of the triangle will be smaller than the distance between point dk and the curve, as
can be seen in Fig. 2.8. Thus, if the chosen triangle is obtuse, the other triangle is chosen
to calculate the height; and if both triangle are obtuse, the distance |Pv − dk| is used as
the distance between the point and the curve.

2.3 Approach with Regularization and Statistic Approach
There are others approaches in the literature to solve the curve fitting problem. Because
Eq. 2.4 just minimizes the discrepancy between the sequence of points and the approximat-
ing curve, it may result the generation of a family of curves with the same discrepancy. A
regularization is necessary to distinguish these curves. Ueda et al. [2016] used the absolute
difference between the sequence length and the approximate curve length as regularization,
using

f({pi}, {d}, {P}) = W ·
m−1∑
k=1
||dk −Pv||2 + (1−W ) · |(L(P(u))− L(d)|. (2.6)
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dk

(a)

dk

(b)

Figure 2.6 – Multiple solutions for Eq. 2.5; (a) curve with parallel segments; (b) curve
with orthogonal segments.

dk

P(uk)P(uk−1) P(uk+1)

Figure 2.7 – The distance between dk and the curve is approximated by the height of the
triangle with smallest area. The sampled point Pv is the closest point to dk

in the sampled sequence of points. The previous Pv−1 and next Pv+1 sampled
points are considered in the determination of the triangle with smallest area.

dk

P(uk)
P(uk−1) P(uk+1)

Figure 2.8 – A different approach happens if both triangles are obtuse. In this case the
distance between dk and the curve is the edge between dk and Pv.
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with W being a weight that controls the regularization, L(P(u)) is the approximating
curve length and L(d) is the length of the sequence of points.

The obtained curve using Eq. 2.6 is not smooth considering that a noisy sequence of
points is used. The reason the equation does not minimize the approximate curve length.
This equation minimizes the difference of length, i.e., it equates both lengths. However,
the length of a noisy sequence of points defines a curve longer than a smooth curve, as
can be seen in Fig. 2.9. The sequence of points is represented with blue points, the curve
control point with black diamonds and the approximating curve in red line. Note that in
both Fig. 2.9(a) and (b) the curve length is longer in some specific parts of the curve, in
Fig. 2.9(a) at the junction of the curves and in Fig. 2.9(b) in the middle of the sequence
and in the end of the sequence.

(a) (b)

Figure 2.9 – (a) The curve is not smooth near the concentration of control points; (b)
This one has a similar behavior.

Another approach is a statistic method in which the Akaike Information Criterion
(AIC) [AKAIKE, 1974] is used. This criterion evaluates just a part of the sequence to be
approximated. Thus, it creates a model in which only a part of the sequence is used to
calculate the discrepancy. Ravari and Taghirad [2016] used the following equation to solve
the curve fitting problem applied to the signal treatment problem.

AIC = Nln
1
N

( N∑
i=1

(y(xi)− ŷ(xi))2
)

+ 2k, (2.7)

with N being the number of points to be used in the model, y is the function value
measured in the xi instant, ŷ is the estimated value of the function and k is the number of
parameters used in the model.

Gálvez and Iglesias [2011] used the same criterion with a different penalization. The
criterion is composed by two parts, the first one is the model error estimation, and the
second one is a model penalization. However, this approach has problems. It is known
that if the number of parameters is very low overfitting happens, i.e., the penalization is
low if the number of parameters is too low, and the determined curve is no longer smooth.
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Thus, the number of parameter that describes the model influences the outcome, and it is
difficult to determine the required minimum amount of parameters to make the fitting. A
second problem is to determine how much and which points are used in the calculation of
model error estimation.

In the following chapter it is presented the optimization algorithm called simulated
annealing which is used to determine the best approximating curve for a noisy sequence of
points. The simulated annealing is very flexible, it can simultaneously handle combinatorial
parameters, integer parameters and continuous parameters.
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3 Simulated Annealing

The simulated annealing is a probabilistic metaheuristic based on the Metropolis algorithm
[METROPOLIS et al., 1953] that simulates the atomic re-crystallization of a metal in the
annealing process. Kirkpatrick et al. [1983] modified the algorithm by adopting a cooling
schedule to solve combinatorial optimization problems. Corana et al. [1987] proposed an
adapted version to use it in problems with continuous variables.

During the annealing procedure, atoms migrate resulting in a configuration that always
minimizes the energy. This is analogous to the process of solving an optimization problem,
in which a function is minimized. In the simulated annealing, candidates are generated by
making a random modification of the current solution, then the cost function is evaluated.
If the new candidate is better, i.e., the new cost function value is smaller than the current
value, the new candidate is accepted and the algorithm continues to the next iteration.
However, if the new cost function increases, the candidate is discarded and a new iteration
is performed. There is a possibility of accepting a worst candidate with a probability

P (∆E) = e
− ∆E
kbT (3.1)

with kb being the Boltzman constant; usually kb = 1; ∆E is the cost function variation;
and T is the temperature. If P (∆E) > random(0, 1) the new candidate is accepted.

If the new solution is rejected, a new candidate is generated by applying a random
modification to the current solution. In combinatorial problems, as the one in Kirkpatrick
et al. [1983], the determination of a new candidate is not difficult. A classical example
is the traveling salesman problem. In this problem, a simple variable permutation can
generate the next solution. There are several strategies that can be adopted to continuous
variable optimization problems. According to Bohachevsky et al. [1986], it is necessary to
generate a random unitary vector u (‖u‖ = 1), multiply it to a step of a size ∆r and add
it to the current solution xc to determine the next candidate xn. Thus,

xn = xc + ∆r · u. (3.2)

Unlike the method proposed by Bohachevsky et al. [1986] in which the step size is
unitary and constant, Corana et al. [1987] proposed an anisotropic method, in which the
number of accepted solution is tried to keep constant while the step size in each direction
changes. Thus, the next candidate is generated by

xn = xc + v ·∆ri · ei (3.3)
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with ∆ri being the value of the step towards ei, ei an unitary vector representing the
direction of the i th parameter and v a random value between [−1, 1]. The value of ∆ri

varies with the change of the temperature.

3.1 Adapting Neighborhood and Crystallization Factor

Algorithm 1 Adapting Neighborhood Simulated Annealing (ANSA)
Define T0 and α /* T0 initial temperature and α cooling coefficient */
x0 ← <Random initial solution>
j ← 0
while < Global stop criteria> do

Tj+1 ← Tj ∗ α
j ← j + 1
while <Local stop criteria> do

i← random(0, 1) ∗ n /* n being the number of variables */
xn ← xc + 1

ci

∑
random(−1/2, 1/2) · ei ·∆ri

∆E = F (xn)− F (xc)
if ∆E < 0 then

xc ← xn

ci ← <positive feedback>
else

if random(0, 1) < e−∆E/kbTk then
xc ← xn

ci ← <positive feedback>
else

xn is rejected.
ci ← <negative feedback>

end if
end if

end while
end while

The strategy proposed by Corana et al. [1987] frequently converted to local minimum
because the step size decreases with the temperature. Martins et al. [2012a] hereby
proposed an Adaptive Neighborhood Simulated Annealing (ANSA) (Algorithm 1), in
which the minimum step size is kept constant and the probability of each step size changes.
It is considered that rejected candidates do not contribute to the advance of the simulated
annealing algorithm. Thus, the probability distribution is adjusted according to the
number of accepted candidates. Only one parameter is modified at each iteration, and the
new candidate is given by

xn = xc + 1
ci

ci∑
1
random(−1/2, 1/2) · ei ·∆ri, (3.4)
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with ∆ri being the value of the step towards ei, ei an unitary vector representing the
direction of the i th variable, random a uniform distribution and ci being the crystallization
factor corresponding to a continuous variable i that is modified in this iteration. The
applied modification is a Bates distribution [JOHNSON et al., 1995, section 26.9] center
on zero with amplitude of 1/2. Thus, the standard deviation of this distribution is

σ = 1
2
√

3ci

. (3.5)

Throughout the optimization procedure, each continuous variable is correlated to a
correspondent crystallization factor, in which is adjusted favoring the acceptance of new
candidates. The standard deviation corresponding the probability density of a variable
decreases by rejecting a candidate, resulting a smaller density probability amplitude to
the next modification. There is a standard deviation increase by accepting the solution,
resulting a larger density probability amplitude to the next modification. There is a
positive feedback each time a candidate is accepted, in which the crystallization factor ci

value corresponding to the variable i decreases. The standard deviation given by eq. 3.5
increases, resulting in an increase of probability to choose candidates further from the
current solution. Otherwise, the crystallization factor ci increases with the rejection of a
candidate (negative feedback). There is a decrease of the standard deviation resulting in
a decrease of the distribution probability to choose candidates further from the current
solution. The increase of the crystallization factor cannot be greater than a limit, because
this increase results in a numerical error in the summation of the Bates distribution.

The procedure of accepting and rejecting solutions can be observed in Fig. 3.10. The
expected behavior of the crystallization factor with the temperature variation can be
seen in Fig. 3.11. In this procedure, the crystallization factor tends to increase with
the temperature decrease and there is a change of phase during this decrease. The two
phases are an exploratory phase and a refinement phase. In the exploratory phase, the
crystallization factor is smaller, the probability of choosing further candidates is greater
and the temperature is higher. In the refinement phase the crystallization factor is greater,
the probability decreases and the temperature is lower.

The ANSA accounts that the problem to be minimized has n continuous variables, a
cooling schedule started with a initial temperature T0 and it uses a cooling factor α. This
algorithm has two stop criteria, a local criteria that controls the inner loop, and a global
criteria that controls the outer loop. Usually, it is used as local stop criteria a maximum
number of iterations or maximum number of accepted solutions; and it uses as global
stop criteria a minimum temperature, a maximum number of iterations or a minimum
number of accepted candidates. The decrease of the crystallization factor can be performed
through several ways. It can be made by subtraction or division, with caution. Because,
there is a possibility of freezing the algorithm if the decrease is very mild, resulting the
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Figure 3.10 – Crystallization factor feedback.
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Figure 3.11 – Crystallization factor behavior with the temperature variation.
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parameters in being trapped in a solution; if the decrease is very extreme (such as zeroing
the crystallization factor), the algorithm takes longer time to achieve the global minimum.

This implementation was applied to several problems in the literature; Martins and
Tsuzuki [2010a] and Martins and Tsuzuki [2010b] used this algorithm to solve the cutting
and packing problem; and [MARTINS et al., 2012b] used it to solve the inverse problem
of the electrical impedance tomography (EIT).

3.2 Cooling Schedule
The cooling schedule is the function that defines the temperature decrease throughout
the algorithm. The chosen cooling schedule directly influences the quality of the final
result, as shown in Fig. 3.11. There are two phases in Fig. 3.11; an exploration phase, in
which the temperature is high and the probability to search further candidates is high;
and a refinement phase with the decrease of the temperature, in which the probability
of searching is lower. If the algorithm decreases the temperature in a very abrupt way,
the algorithm does not perform a very long time in the exploration phase, resulting in a
possibility of the algorithm to be trapped in a local minimum.

A possible cooling function is the geometric cooling given by Tk+1 = Tk ∗ α, with
α =]0, 1[. The final result is better if α is closer to 1, however the processing time is
higher. Smaller values for α turns the algorithm faster, but the final result is worst. This is
because for lower values of α the faster the cooling occurs. As mentioned, the exploration
phase is performed in higher temperatures; and the quality of the final result is worst if
the algorithm perform less iteration in the exploration phase. It is not an easy task to
define the right value for α, because it is possible that at some temperatures the sample
distribution standard deviation is low, showing that the sample is already frozen to the
current temperature and therefore the next temperature will be lower than the geometric
decrease. The opposite effect is also possible, the sample distribution standard deviation is
higher and the cooling need to be slower than the geometric decay. Thus, it will adopted
an adaptive cooling, in which the value for α is correlated to the standard deviation
σ(T ) of all the costs from a determined temperature T . α is determined by the following
expression

α = e−
γ.T
σ(T ) . (3.6)

with γ being an adjustable coefficient and σ(T ) the cost function distribution standard
deviation in a determined temperature T .

The simulated annealing generates a lot of cost functions Ci, and these cost functions
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standard deviation is calculate by the probability distribution

Probi(T ) = e
−Ci(T )
kBT∑

j e
−Cj(T )
kBT

. (3.7)

with kB = 1.
The mean cost for a determined temperature is calculated by

〈C(T )〉 =
∑

Ci(T )Probi(T ) (3.8)

The quadratic mean cost is defined as

〈C2(T )〉 =
∑

C2
i (T )Probi(T ). (3.9)

Thus, the variance; the squared standard deviation; is expressed by

σ2(T ) = 〈C2(T )〉 − 〈C(T )〉2. (3.10)

The following chapter describes the application of the ANSA in the curve fitting
problem, focusing on how the cost is handled and explains the problem variables.
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4 ANSA Application in the Curve Fit-
ting Problem

In this work the ANSA is used to solve the curve fitting problem, in which a piecewise
cubic Bézier curve approximates a sequence of points. The method is shown in Fig. 4.12.
The method starts with a random initial solution, and only one parameter is modified in
each iteration. After the modification, there is a verification of the cost function, that is
the composition of the curve discrepancy and the curve length. It is necessary to sample
the approximating curve to determine the discrepancy between the sequence {dk} and
curve. At the end of each iteration it is verified if the ANSA achieved the termination
criteria.

4.1 Piecewise Bézier Curve
It is an undesired effect that the control points of a Bézier curve modify the entire curve, in
the curve fitting. However, the Bézier curve is simpler than B-Spline and NURBS resulting
in faster evaluation and shorter computational time. Thus, the usage of a piecewise Bézier

initial solution
(random piecewise

Bézier curve)

Move control point Discretize approx-
imating curve

Determine closest
points for discrepancy

determination

Compute cost func-
tion with curve dis-
crepancy and length

accept next
candidate?

ANSA stop
criteria

Update
current solution

END

No

Yes

No

Yes

Figure 4.12 – Flowchart of the ANSA method to determine the approximate curve.
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p2 p3 p4

p5
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Figure 4.13 – Piecewise cubic Bézier curve with 2 curve segments, in which p3 is a con-
necting control point.

curve is a way to solve this problem. This curve is a sequence of Bézier curves with
weak-G1 continuity in which each control point modifies just adjacent curves. A piecewise
cubic Bézier curve example is shown in Fig. 4.13, in which a composition of two curve
segments is presented. The first segment is defined by control points p0, p1, p2 and p3 ,
and the second one is defined by control points p3, p4, p5 and p6. Note that the last
control point of the first curve segment is the first control point of the second segment,
and it is necessary to determine the control point p4 to ensure the weak-G1 continuity in
the junction of both curves, that is given by

p4 = p3− β · (p2− p3). (4.1)

This equation makes the derivative of the first curve tail (defined by the control points
p0, p1, p2 and p3) the same as the derivative of the head of the second curve (defined by
the control points p3, p4, p5 and p6). β is a proportional ratio between the module of
both derivatives. The weak-G1 continuity relaxes the condition of continuity at point p3,
in which the derivatives has the same direction, but not necessary the same module. Thus,
the procedure to create a new Bézier curve segment is to define the second control point
with eq. 4.1, and to adopt as first control point the last control point of the previous curve
segment. Yamaguchi [1988, section 5.1.2] used this method to create a piecewise cubic
Bézier curve with G2 continuity, ensuring the equality of the first and second derivative in
the junction of the segments.

4.2 Cost Function Determination
Previously presented cost functions cannot reach satisfactory results. Equation 2.4 was
used by [HASEGAWA et al., 2013; PANDUNATA; SHAMSUDDIN, 2010; ADI et al., 2010].
As mentioned, this equation determines a family of curves with the same discrepancy, but
with different lengths. The usage of this equation results in overfitting. Eq. 2.6 used by
[UEDA et al., 2016] fails in cases of a noisy sequence of points leading to the determination
of longer curves. Eq. 2.7 leads to an increase of variables to be adjusted, the number of
points and which points are new variables.
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Thus, it is used as cost function a similar equation to eq. 2.6. A minor difference is the
regularization function, it will be used as regularization the approximating curve length
instead of the difference of lengths. The adopted cost function is

f({pi}, {d}, {P}) = W ·
m−1∑
k=1
||dk −Pv||2 + (1−W ) · L(P(u)). (4.2)

with W being a weight that controls the regularization, and L(P(u)) the approximating
curve length.

4.3 Determination of the Curve Discrepancy and Curve
Length

The method to calculate the discrepancy between point and curve is the method presented
in Chapter 2. This method is the one in which the discrepancy between point and curve is
the height of the acute triangle with smallest area.

As proposed by Ueda et al. [2016], it is possible to decrease the processing time in
the search performed in the first step of the discrepancy determination. Once the chosen
curve is a piecewise Bézier curve, each segment of this curve just approximates one part of
the sequence of points, as shown in Fig. 4.14. Using as example the curve from Fig. 4.15,
points d5 and dm−5 are junction points between two segments, and curve is sampled with v
points and the curve is composed by j segments. As consequence, the search for the closest
point for points d1, d2, d3 and d4 are performed in the first segment (P1, ...,P9), and
the search to the points dm−4, dm−3, dm−2 and dm−1 are performed in the last segment
(Pv−9, ...,Pv−1). According to this logic, for each point dk there is only one section on
which the search must be performed. The processing time decreases with the local search,
once the search for the closest point is performed in a smaller set of points for each point dk.
A second advantage of this method is the fact that the discrepancy is locally determined.
This advantage can be observed in examples with self-intersecting curves, as shown in
Fig. 4.16. In both examples, the curve length and curve discrepancy are close, however
there is a self-intersection in Fig. 4.16(a), while in Fig. 4.16(b) the self-intersection is not
presented. The points dk approximate the wrong segment using the global search. The
reason is the points that should approximate the red curve approximate the black one, and
vice-versa. Fig. 4.17 shows another examples with self-intersection curves with different
number of curve segments and points, each curve segment is shown in a different color
and the sequence of points {dk} is shown in black points.

The curve length is easily determined. The curve was already been sampled to determine
the curve discrepancy, then the curve length is the summation of all the segments of the
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Sequence of Points

Control Points

Bézier Curve

Figure 4.14 – Each Bézier curve segment approximates just one part of the sequence of
points.

d0, P0, p0

d1

d2
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d4

d5, P9
d6
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d8 d9

dm−5
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dm−1

dm, Pv

. . .

Control point
Discretized curve
Sequence point

d0 d1 d2 d3 d4 d5 . . . dm−5 dm−4 dm−3 dm−2 dm−1 dm

P0 P1 . . . P8 P9 . . . Pv−9 Pv−8 . . . Pv−1 Pv

1st curve j − 2 curves last curve

Figure 4.15 – Local search for the closest point, the search for each point dk is performed
in only one curve segment. The sequence {Pv} are sampled points from the
approximating curve. The sequence {dk} is the sequence of points.

sampled curve, and it is given by

L({pi}) =
v∑

k=1
||Pk −Pk−1||, (4.3)

with v being the number of sampled points, and j the number of Bézier curve segments.
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(a) (b)

Figure 4.16 – Example of a two segment Bézier curve. (a) There is self-intersection; (b)
There is no self-intersection.

(a) (b)

(c) (d)

Figure 4.17 – Curves with self-intersection. (a) 6 curve segments and 85 points; (b) 6
curve segments and 135 points; (c) 4 curve segments and 147 points; (d) 5
curve segments and 111 points.
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Figure 4.18 – Piecewise cubic Bézier curve, circles are point of the sequence of points,
squares are the control points adjusted by the ANSA, and triangles are
control points adjusted by ANSA thought the β proportionality coefficient.

4.4 Parametric Representation of the Piecewise Bézier Curve
The parameters to be adjusted are the control points coordinates and the coefficient β,
the one that modifies the derivative module between two adjacent Bézier curve segments.
It is relevant to notice that it is not required to directly adjust all control points. The
first and last control point of a segment are points of the sequence of points, and Eq. 4.1
determines the second control point of a new segment.

Using Fig. 4.18 as example, in which a curve with three cubic Bézier segments is shown,
the parameters to be adjusted by ANSA are:

1. Coordinate x of point p1 (p1x)

2. Coordinate y of point p1 (p1y)

3. Coordinate z of point p1 (p1z)

4. Coordinate x of point p2 (p2x)

5. Coordinate y of point p2 (p2y)

6. Coordinate z of point p2 (p2z)

7. Proportionality coefficient of point p4 (β4)
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8. Coordinate x of point p5 (p5x)

9. Coordinate y of point p5 (p5y)

10. Coordinate z of point p5 (p5z)

11. Proportionality coefficient of point p7 (β7)

12. Coordinate x of point p8 (p8x)

13. Coordinate y of point p8 (p8y)

14. Coordinate z of point p8 (p8z)

Points p0 and p9 are the first and last points of the sequence, and points p3 and p6 are
points of the sequence. Thus, the parameters to be adjusted are the x, y and z coordinate
of points p1,p2,p5 and p8, and the β proportionality coefficient that determines the
control points p4 and p7.

4.5 Parameter Update
The parameters values are updated using the method shown in Algorithm 1, in which it is
used the crystallization factor to modify the probability distribution for each parameter
throughout the temperature decrease. The parameter update is given by

xn ← xc + 1
ci

∑
random(−1/2, 1/2) · ei ·∆ri. (4.4)
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5 Injured Skull Zone Determination

Using the developed methodologies and principles presented in the previous chapters,
an integrated procedure is developed. In this Chapter the developed procedure as an
algorithm is explained. The proposed method is presented in Fig. 5.19 and the Algorithm 2
describes this method. The input data is a STL file from which the point cloud is extracted.
It has some manual operation to define the healthy and injured region and the symmetry
plane and the initial number of clusters, these procedures correspond the initial section
of the algorithm until the loop. After completing these tanks, the rest of the procedure
is automated. The automatic part is an iterative method that uses the piecewise Bézier
curve as reference to determine all the points of the injured zone.

Algorithm 2 Proposed methodology
i = 1 and P0 = null */ Pi is the injured zone curve model */
Input: STL file
Extraction of unique points from STL (Pc)
User defines healthy and injured regions
Definition of a symmetry plane
Healthy region mirroring creating a new point cloud (Pc′)
Creation of the distance map (Pc′ 	 Pc)
User defines k /* k is the number of clusters */
Set di using a filter threshold t from Pc
while < Stop criteria> do

Cluster di using K-means
Order the clusters and set the junction points between the clusters
Define the injured zone curve model (Pi) from di using the curve fitting algorithm
if < number of finished clusters decreases > then

k + +
else

i+ +
Update di, use the curve model Pi to classify di as inlier and outlier, eliminating

the outliers
end if

end while

5.1 STL File and Extraction of a Point Cloud
The STL file is widely used in rapid prototyping and 3D printing. There is a triangulation
in this stereolithography CAD file, representing a geometric model of the object. The file
consists of a list of a triangle vertex coordinates and its facet normal vector. Thus, using
as example the triangle in Fig. 5.20, an example of a triangle representation is shown in
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Figure 5.19 – Flowchart of the proposed method to determine the injured skull zone.
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Figure 5.20 – Example of a triangle to be represented in the STL file.

1: solid name
2: facet normal Ni Nj Nk
3: outer loop
4: vertex V1x V1y V1z
5: vertex V2x V2y V2z
6: vertex V3x V3y V3z
7: endloop
8: endfacet
9: endsolid name

Figure 5.21 – STL file example.

the file format example in Fig. 5.21. The solid name is defined in the first line, followed
by the definition of a triangle in lines 2 to 8. The triangle facet normal vector is defined
in line 2, and the vertex coordinate of the triangle are defined in lines 4 to 6. Thus, it
is necessary to inform a normal vector and three vertexes coordinates to inform a new
triangle in the file.

In the proposed algorithm, it is used only the triangle vertex coordinates; however
not all the points represented in the STL file will be used, the number of points used in
the method will be smaller. In the STL file, the same vertex is represented several times
inside the file. This multiplicity can be observed in Fig. 5.22, in which the red vertex can
be listed in 6 or 12 triangles; 6 triangles with a normal entering the paper plane and 6
triangles with the opposite normal. Thus, the initial point cloud to be used as initial data
to the proposed algorithm are all the unique vertex presented in the STL file. Fig. 5.23
shows an example of an injured skull, Fig. 5.23(a) presents the skull STL file, and the
respective extracted point cloud in Fig. 5.23(b).

5.2 Determination of the Reference Point Cloud and the
Distance Map

The user manually determines the injured skull region, i.e., whether the injury is in the
right or left side of the skull. Fig. 5.23(b) shows an injured skull point cloud and the
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Figure 5.22 – Example of how the same vertex is presented in several triangles, the red
vertex defines multiple triangles.

(a) (b)

Figure 5.23 – Injured skull example. (a) Rendered from the STL file; (b) Point cloud.

injured region is the left side of the skull. Once the injured region is determined, the
next step is to determine the symmetry plane. Usually, it is used the sagittal plane Z-Y
as default symmetry plane to define a symmetric point cloud. This procedure is simple.
Just multiply the X coordinate of the points by −1, i.e., the signal of the X coordinate
is inverted (positive coordinates will be negative and vice-versa). Fig. 5.24 shows the
input injured skull (gray) overlapping the symmetrical or mirrored skull (red). Notice
that both skulls are displayed with their triangulation to habilitate the observation of the
overlapping. It is possible to observe that there is no perfect overlapping between both
skull point clouds, due to the no perfect symmetry of the skull. If the skull were perfectly
symmetrical the determination of the injured zone and the skull prosthesis would be easily
performed. In this case, a simple Boolean operation would be enough to determine both
features.

The next step is to create the distance map between both point clouds (Pc′ 	 Pc).
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Figure 5.24 – Gray skull is the input data and the red skull is the mirrored one.

This map is not performed in the whole point cloud, it is just performed in a part of the
point cloud. The user defined the injured region of the skull in the previous step, then
just the injured region and a part of the mirrored point cloud are used. The distance map
is a list of pairs of points and their respective distance, then there is a set of respective
point from the input point cloud (Pc) for each point from the mirrored point cloud (Pc′).
Thus, this step consists in the search for a set of correspondent points from Pc for each
point from Pc′, as shown in Fig. 5.25 in which a red point from the left skull (Pc′) has
a correspondent red point in the right skull (Pc). This group of points are the nearest
neighbour or closest point and the points within a determined radius. The radius is the
distance between the point of Pc′ and its respective nearest neighbour plus 10% of this
distance. This increase is limited by the average length size of the triangle edges from
the STL file. Therefore, the number of corresponding points from Pc is different for each
point from Pc′.

The search for the nearest neighbour and the points within a range is performed using
the K-d tree data structure [BENTLEY, 1975]. There is a naive implementation to find
the nearest neighbour, in which the distance between the reference point and every point
in the other is calculated, and the closest point is the one with smallest distance. This
implementation has a problem; if the number of points from Pc is too large, the processing
time increases significantly, once this algorithm cost is O(n). The K-d tree data structure
is a multidimensional binary search tree that divides the space in two half-spaces with a
hyper-plane, so in each level it is generated two half-spaces that contains its child nodes,
which are recursively subdivided. The search for the nearest neighbour uses one property
of the K-d tree to eliminate the search in one half-space in each level. Therefore, if the
number of points from Pc is too large the processing time does not increase a lot, once
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Figure 5.25 – Each red point of the left skull has a correspondent red point in the right
skull.

the average cost of this algorithm is O(log(n)).
This algorithm was used by [TAKIMOTO et al., 2016] to make the registration of two

point clouds, in which it was necessary to determine the distance between two point clouds
to match both point clouds.

5.3 Initial Set of Point to Create a Curve Model
A list of pairs of points (one from Pc and another from Pc′) and their respective distance
was determined in the previous step. A threshold t determines an initial set of points to
create the first curve model. This threshold will eliminate all the pair of points with a
distance smaller than t. The selection of a good value for t is important. If the value of t
is too big, the proposed method will have more iterations, resulting in longer processing
time. Otherwise, if the value of t is too small, the initial date set will have points that
are not from the injured zone. Thus, a good value of t can be selected with the help of
a histogram of the distances. The value will be the one in which the number of points
within a certain range of distance starts to decrease. Using as example Fig. 5.26 a good
value for threshold t is 15.

Fig. 5.26 shows a histogram in which x axis is the distance between a pair of points
determined in the distance map, and y axis is the number of times these distance is
determined, i.e., the number of pair of points with similar distances. Note that the
distances in Fig. 5.26 varies approximately from 27 to 0. These high distances can only be
determined because the reference point cloud is the mirrored point cloud (Pc′). Therefore,
all Pc′ points have a respective closest point in Pc, and the Pc′ points in the middle of
injury with their respective Pc closest points determine these high distances. If the input
point cloud (Pc) is used as reference, the Pc′ points in the middle of injury would never
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Figure 5.26 – Example of a distance histogram to select a threshold value.

be chosen and the high distances would never be determined. Thus, the operation 	 is
not commutative. Pc′ 	 Pc is different than Pc	 Pc′, and in the proposed method the
distance map is Pc′ 	 Pc.

The initial points to create the first curve model are the remaining point from Pc,
naming it as di, i = 1. The remaining points from Pc′ are not used in the proposed
algorithm. However, these points can help to determine the prosthesis surface by informing
the curvature of the skull.

The procedure of determining the initial set of points can also be used to determine
the Deviation Zone Estimation (see Appendix A).

5.4 Injured Zone Curve Model Determination
The injured zone curve model will be determined by analyzing a set of points di selected
from Pc. The initial set of points d1 was determined in the previous step. di will change
in each iteration. The change procedure will be later explained.

The method presented in Chapter 4 determines a piecewise cubic Bézier curve as the
injury curve model. In the first step, the K-means algorithm [LLOYD, 1982] divides di in
several clusters, in which each point from di will be classified in k clusters. The K-means
algorithm is an iterative method that divides the input data in k cluster or regions. The
algorithm is based on the Voronoi diagram [VORONOI, 1908; AURENHAMMER, 1991]
and each of the k points that defines the Voronoi diagram should be close to the mean of
the Voronoi cell respective data. The user defines the number of clusters. The minimum
required number of parameters to determine the fitting curve is still an open issue. The
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Figure 5.27 – Clustering the di point using K-means, each cluster is represented in a
different color.

number of cluster is directly related to the number of parameters that the ANSA adjusts.
Once the piecewise Bézier curve is used as curve model, a good guess is to use the number
of parabolas needed to define the contour of the injury as initial number of clusters. The
number of clusters can be modified throughout the iterations, and this modification will
be later explained. Fig. 5.27 shows an example in which each cluster is represented in a
different color.

Two points within each cluster are determined so that they are as far apart as possible
from each other. Fig. 5.29(a) shows these points marked as diamonds, and these extreme
points are used to order the clusters using the following criteria:

1. Determine the neighbour clusters for each cluster. There is a closest extreme point
from another cluster for each extreme point of a cluster.

2. The starting cluster is the one with the biggest distance between its neighbour
clusters. The starting point of this cluster is the one with longest distance to its
neighbour cluster, the other extreme point is the cluster end point.

3. The second cluster is the closest cluster to the end point of the first cluster, the start
point is the closest extreme point and the end point is the other one.

4. The procedure is repeated until the next cluster is the first cluster.

Each segment of the piecewise cubic Bézier curve approximates only one cluster. Thus,
it is necessary to determine the junction points between the curve segments. The start
and end points inside each cluster is not a good option. These points are close to the outer
or inner part of the injury, determining a boundary curve model that will not approximate
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the middle of the injury. Thus, a point in the middle of the border between two clusters
is the the best junction point. The determination of this point is not an easy task. It is
proposed a method to approximately determine this point.

The first step is to use the cluster start or end point and find the respective closest
point in the neighbour cluster. Fig. 5.28(a) shows an example of this step, in which the
red circles and blue circles are parts of two neighboring clusters and the blue circle with
red contour are the start or end point of the blue cluster and the closest point in the other
cluster is linked with a black line.

The second step determines a group of points that is close to that point. This group is
determined by performing a range search using as radius the closest distance between the
two clusters added to 5 times the average edge length of the input STL file. The mean
point is determined within this group and the closes point of the mean point in the other
cluster is determined as junction point. Fig. 5.28(b) shows an example of of this step;
the closest distance between the two clusters determines the gray area, and the distance
between the two cluster added to 5 times the average edge length of the input STL file
determines the yellow area. The green circle shown in Fig. 5.28(c) is the mean point of the
yellow area points, and the yellow circle shown in Fig. 5.28(d) is the blue cluster junction
point.

This algorithm is performed twice in each cluster and the junction points of the clusters
from the example shown in Fig. 5.27 is shown in Fig.5.29(b), in which each junction point
is cyan or magenta diamond, the cyan is the start and the magenta is the end. Note that
the proposed method just select a better junction point if the contact between two cluster
have a lot of points, and if there are just a few points in the contact area, the initial
extreme point is the junction point. This can be observed in Fig.5.29, in which the end
points determined between blue and purple clusters ( see Fig.5.29(a)) are the same of the
ones determined with the proposed method ( see Fig.5.29(b)). It is also possible to notice
that the junction points between purple and yellow clusters are better selected with the
proposed method.

The next step determines the injured zone curve model (Pi) from the injured zone
points (di). The method to create the curve is the one described in Chapter 2 that uses
the simulated annealing to fit a piecewise cubic Bézier curve to a data set. Each cluster
is going to be approximated by a segment of the piecewise curve, and the junction point
is the start point of each cluster. Using as example the clusters from Fig. 5.29(b), the
piecewise curve will have 4 segments, and the first segment will start in the cyan mark
of purple cluster and end in the cyan mark of yellow cluster. The second segment start
in the cyan mark of yellow cluster and end cyan mark of orange cluster. The third and
forth segments use the same logic, and the end of the last segment is the start of the first
segment. The approximating curve determined from the points shown in Fig. 5.29(b) is
shown in Fig. 5.30. In this figure the points di are shown in yellow points, the piecewise
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(a) (b)

(c) (d)

Figure 5.28 – Determination of junction points between two clusters. (a) red and blue
circles are the extreme of two clusters, blue circle with red line is one of the
extreme point determined in the search of the two furthest points inside a
cluster; (b) There is a respective closest point in the other cluster linked
with a black line. The gray arc is the region determined with the distance
between these two points, and the gray arc radius added to 5 times the
average edge length of the input STL file determines the yellow arc region;
(c) The green circle is the mean point of all the red circles inside the yellow
region; (d) The junction point of the blue cluster is the green circle nearest
point from the blue cluster, and it is marked with a yellow circle.

curve is the red line and its control points are the black diamonds.

5.5 Stop Criteria and Determination of the Next Iteration
Injured Zone Points

The next step verifies whether or not the injured zone points di determines a continuous
surface without holes. It is possible to see that the points in Fig. 5.27 still needs some
points to determine a continuous surface, there are still some missing points between
blue and purple clusters. Thus, the algorithm uses the determined approximate curve as
reference to determine the stop criteria. Each piecewise curve segment is sampled with
100 points and for each sampled point there is a respective nearest point in the injured
zone points di. If the distance between these points are greater than a limit, there is a
hole in di and a new iteration is necessary. Fig. 5.31 shows an illustration, in which the
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(a) (b)

Figure 5.29 – The junction points of each cluster, the junction points are shown in cyan
and magenta diamond. (a) The junction points are the two furthest points
inside a cluster; (b) the junction points are the ones determined by the
proposed methodology.

Figure 5.30 – Approximate curve from injured zone points di, the red curve is the approx-
imate curve, the black diamond are the curve control points and the yellow
points are the injured zone points di.
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Figure 5.31 – The yellow circles are the current di points, the black line with black
diamonds is the approximate curve segment and its control points, and the
red circles are the curve sampled points. The red circle with blue contour
line does not have a close yellow point, showing that the current di points
still need to be completed.

Figure 5.32 – The procedure to update di. The yellow circles are the current di, the black
line with red circles are the approximate curve segment with its sampled
points. The blue circles are the inlier, the new points to be added to di; and
the green circles are the outliers points filtered by the curve model.

approximating curve is the black line with its control point as black diamond, the curve
sampled points are the red circles and part of the di points are the yellow circle. Note that
the corresponding yellow circle closer to the red circle with blue contour line is greater
than the others red circle, showing that there is a possible hole in this area.

The determination of the distance limit is locally done in each cluster. There is a
corresponding nearest sampled point (red circle) for each point of the cluster (yellow
circle). The average and the standard deviation of the distance between these points are
used as stop criteria, let µ(dist) and σ(dist) respectively be the average distance and the
standard deviation. If the distance between a sampled curve point (red circle) and its
respective neared point (yellow circle) be greater than µ(dist) + n.σ(dist) the algorithm
must continue. n is an adjustable parameter that varied from n = 3 for easy examples
(convex boundary) to n = 1 for difficult tests (concave boundary).

Therefore, the algorithm has a local stop criteria once each cluster has a different
stop criteria, and the algorithm continues updating the injured zone points di only in the
cluster that the stop criteria is not achieved.

In the procedure to determine the initial zone points (d1) a threshold t was used to



Chapter 5. Injured Skull Zone Determination 52

filter some points. This threshold t is set as 0 from the second iteration, meaning that
di could be all points from Pc. However, the injured zone curve Pi−1 of the previous
iteration is used as reference model to determine the di points update. The update of
di uses the curve segments that approximates the unfinished clusters as the filtration
criteria. It is used the same limit of the stop criteria (µ(dist) + n.σ(dist)). If the distance
of a point from Pc is smaller than this limit, the point is inserted into di classified as
inlier. Otherwise, it is classified as outlier and not included in di. In the update of di,
the elimination of possible prior accepted outlier is performed. If a point of the cluster is
greater than µ(dist) + n.σ(dist), it is eliminated from di.

An illustration is shown in Fig. 5.32, the yellow circles are the di points from the
previous iteration, the curve model is the black line with its control points in black
diamonds; the red circles are the sampled points from the curve; the green circles are
the outlier and the blue circle are the inliers. The di updated from Fig. 5.27 is shown in
Fig. 6.35(a), the explanation of every element in the figure will be later done in the results.

Note that in the first iteration there is not a previous injured zone curve model
(P0 = null). Therefore, the procedure to classify di as inlier and outlier is not performed
in the first iteration. The process to filter the point is done by the modification of the
threshold t to select the initial injured zone points from Pc.

Each new iteration will add new points to di only in clusters that the stop criteria
is not achieved. However, a new cluster division is done after the classification of di in
inliers and outliers. Thus, all di points with its respective cluster are stored in the end of
every iteration, and a new cluster division is done after the addition of new points in the
new iteration, erasing the current cluster division.

At the end of each iteration, it is verified if the number of k clusters is enough. The
number of clusters is directly correlated to the number of curve segments that is used
to create the injured zone model. If the number of k is high, the algorithm works well.
However, the higher the number of k, the higher is the processing time of the curve
fitting algorithm. On the other hand, if the number of k is low, the curve could not
approximate the required points. Thus, the determination of a good number for k is
important. However, this problem is still an open issue in the curve fitting problem. It is
hard to determine the required minimum number of control points to solve the problem.
Therefore, this verification is necessary at the end of each iteration, in which it is monitored
weather the number of finished clusters decreases. This decreasing is an indication that
the curve could not approximate the injured skull zone points. Thus, if the number of
finished clusters decreases, the current iteration is discarded and k is increased by 1.
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6 Results

The proposed method to determine the injured skull zone is tested in 4 examples. The
first three examples are artificially created injuries, in which a hole in a healthy skull was
produced, and the last example is from a STL file with a injured skull.

6.1 Example 1
The first test is the simplest one. The injured skull is a convex zone created from a healthy
skull, that are respectively shown in Figs. 6.33(b) and (a).

Fig. 6.34(a) shows the initial points (d1) of the injured zone. d1 has 557 points that
are marked in red points. These points were determined using as threshold t = 15, and it
is possible to see that in the lower region of the injury there are still some missing points.
The number of clusters k is set as 4 and Fig. 6.34(b) shows the cluster division of d1,
in which each cluster is represented in a different color and the junction points are the
cyan diamond from each cluster. The injured zone curve model P1 determined from d1 is
shown in Fig. 6.34(c), in which d1 is shown in yellow points and the curve in red line with
its control points in black diamond.

Fig. 6.35(a) shows the second iteration and also shows that the algorithm is finished in
3 clusters using as stop criteria µ(dist) + 3.σ(dist), in which µ(dist) is the average distance
of d1 to the curve and σ(dist) is its standard deviation. Note that it is not verified if the
number of clusters is enough in the first iteration, once there is no previous iteration to

(a) (b)

Figure 6.33 – First injured skull example. (a) Healthy skull; (b) Injured skull.
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Table 1 – First example results. N.Pts is the number of points of di; Rem.di−1 is the
number of points removed from di−1; Inlier and Outlier are respectively the
number of points classified as inliers and outliers, in which the inliers are added
to di; N.F.k is the number of cluster in which the stop criteria is not achieved;
and N.k is the number of clusters used to divide di.

Iteration N. Pts Rem. di−1 Inlier Outlier N.F. k N. k
1 557 – – – 1 4
2 606 20 69 22,879 0 4

compare whether or not the number of finished clusters decreases.
Fig. 6.35(a) shows d2, in which the red points are the d1, the blue points are the inliers

and the green points are the filtered outliers. These inliers and outliers were classified using
as reference the curve shown in Fig. 6.34(c) with a threshold of µ(dist) + 3.σ(dist). d2 is
composed by 606 points, in which 69 points were added and 22, 879 points were filtered
in this iteration. Note that the difference between d2 and d1 are not the same number
of added points, showing that 20 points were removed from d1. Fig. 6.35(b) and (c) are
respectively the cluster division of d2 and the injured zone curve model. The algorithm
achieved the stop criteria in all 4 clusters, and Fig. 6.36(a) shows the final result.

Once the injury is created from a healthy skull, it is possible to determine the geometry
that fills the injury hole by a simple subtraction of the injured skull and the healthy skull.
Fig. 6.36(b) shows the solid of this subtraction. The points of the injured skull zone are
shown in red points in Fig. 6.36(a) and (b). Table. 1 shows the results of the first example,
with N.Pts being the number of points of di, Rem.di−1 the number of points removed
from the previous iteration, N.F.k the number of clusters that the stop criteria is not
achieved and N.k the number of clusters.

6.2 Example 2
The second example is another artificially created injury. This example is created from
the same healthy skull of the first example. In this example, different from the previous
example, the injury was created in the right side of the healthy skull with a concave zone,
and the healthy and injured skull are shown respectively in Figs. 6.37(a) and (b).

The initial points (d1) of the injured zone are shown in Fig. 6.38(a), with d1 being
the 569 red points marked in the figure. These points were determined using as threshold
t = 12, and it is possible to see that there are still some missing points in the upper region
of the injury. In this example it is also used k = 4 for the number of clusters. Figs. 6.38(b)
and (c) are respectively the division in clusters of d1 and the injury curve model P1. It
was used µ(dist) + 2.σ(dist) as stop criteria and as threshold to classify di in inlier or
outlier, and with this stop criteria 3 clusters have achieved the stop criteria.

Fig. 6.39(a) shows the 647 points of d2, in which the red points are the points from
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(a)

(b) (c)

Figure 6.34 – Iteration 1. (a) d1 is represented with red points; (b) Each cluster of d1
is in different color; (c) Injured zone curve model P1 is the red curve, the
control points are the black diamonds and d1 are the yellow points.
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(a)

(b) (c)

Figure 6.35 – Iteration 2. (a) d1 is represented with red points, the inliers added to d2
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d2 is in different color; (c) Injured zone curve model P2 is the
red curve, the control points are the black diamonds and d2 are the yellow
points.
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(a)

(b)

Figure 6.36 – Injured skull zone are the red points. (a) Injured skull; (b) Solid obtained
by the subtraction of the injured skull and the healthy skull.
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(a) (b)

Figure 6.37 – Second injured skull example. (a) Healthy skull; (b) Injured skull.

d1, the blue points are the 78 inliers points added to d2, the green points are the 41, 502
filtered outliers points, and there are no points eliminated from d1. d2 clusters division
and injury curve model P2 are shown respectively in Figs. 6.39(b) and (c). It was used
the same stop criteria of the first iteration, and once again only one cluster is not finished,
showing that it is necessary another iteration. The number of clusters is verified and it is
appropriate.

The third iteration is shown in Fig. 6.40(a), in which d2 are the red points, the blue
points are the 131 inliers points added to d3, the green points are the 63, 288 filtered
outliers points, and one point was eliminated from d2. d3 clusters division and injury
curve model P3 are shown respectively in Figs. 6.40(b) and (c). There is only one cluster
to be completed, and it is possible to see that the yellow cluster is almost filled.

Fig. 6.41(a) shows the forth iteration and the 914 points of d4, in which the red points
are the points from d3, the blue points are the 137 inliers points added to d4, the green
points are the 33, 551 filtered outliers points, and there are no points eliminated from d3.
d4 clusters division and injury curve model P4 are shown respectively in Figs. 6.41(b) and
(c). All the four cluster are completed in this iteration and the final result is shown in
Fig.6.42.

It is possible to determine the geometry of the missing part of the injured skull by
the subtraction of the healthy and injured skull from Figs. 6.37(a) and (b). The injured
skull zone (d4) is shown in red points in the injured skull and the missing part geometry
respectively in Figs.6.42(a) and (b). Table. 2 shows the results of the second example,
with N.Pts being the number of points of di, Rem.di−1 the number of points removed
from the previous iteration, N.F.k the number of clusters that the stop criteria is not
achieved, and N.k the number of clusters.
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(a)

(b) (c)

Figure 6.38 – Iteration 1. (a) d1 is represented with red points; (b) Each cluster of d1
is in different color; (c) Injured zone curve model P1 is the red curve, the
control points are the black diamonds and d1 are the yellow points.
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(a)

(b) (c)

Figure 6.39 – Iteration 2. (a) d1 is represented with red points, the inliers added to d2
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d2 is in different color; (c) Injured zone curve model P2 is the
red curve, the control points are the black diamonds and d2 are the yellow
points.
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(a)

(b) (c)

Figure 6.40 – Iteration 3. (a) d2 is represented with red points, the inliers added to d3
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d3 is in different color; (c) Injured zone curve model P3 is the
red curve, the control points are the black diamonds and d3 are the yellow
points.
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(a)

(b) (c)

Figure 6.41 – Iteration 4. (a) d3 is represented with red points, the inliers added to d4
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d4 is in different color; (c) Injured zone curve model P4 is the
red curve, the control points are the black diamonds and d4 are the yellow
points.
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(a)

(b)

Figure 6.42 – Injured skull zone are the red points. (a) Injured skull; (b) Solid obtained
by the subtraction of the injured skull and the healthy skull.
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Table 2 – Second example results. N.Pts is the number of points of di; Rem.di−1 is the
number of points removed from di−1; Inlier and Outlier are respectively the
number of points classified as inliers and outliers, in which the inliers are added
to di; N.F.k is the number of cluster in which the stop criteria is not achieved;
and N.k is the number of clusters used to divide di.

Iteration N. Pts Rem. di−1 Inlier Outlier N.F. k N. k
1 569 – – – 1 4
2 647 0 78 41,502 1 4
3 777 1 131 63,288 1 4
4 914 0 137 33,551 0 4

(a) (b)

Figure 6.43 – Third injured skull example. (a) Healthy skull; (b) Injured skull.

6.3 Example 3
The third example is another artificially created injury. This example is created from
another healthy skull. In this example, the injury was created in the left side of the healthy
skull with a more complex concave zone, and the healthy and injured skull are shown
respectively in Figs. 6.43(a) and (b).

The initial points (d1) of the injured zone are shown in Fig. 6.44(a), with d1 being the
1320 red points marked in this figure. These points were determined using as threshold
t = 15, and it is possible to see that there are some missing points in the lower part of
the injury. Different from the previous two examples, it is used k = 8 for the number of
clusters in the third example. Figs. 6.44(b) and (c) are respectively the division in clusters
of d1 and the injury curve model P1. It was used µ(dist) + 2.σ(dist) as stop criteria and
as threshold to classify di in inlier or outlier, and with this stop criteria 7 clusters have
achieved the stop criteria, just the burgundy cluster has some missing points.

Fig. 6.45(a) shows the 1361 points of d2, in which the red points are the points from
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Table 3 – Third example results. N.Pts is the number of points of di; Rem.di−1 is the
number of points removed from di−1; Inlier and Outlier are respectively the
number of points classified as inliers and outliers, in which the inliers are added
to di; N.F.k is the number of cluster in which the stop criteria is not achieved;
and N.k is the number of clusters used to divide di.

Iteration N. Pts Rem. di−1 Inlier Outlier N.F. k N. k
1 1,320 – – – 1 8
2 1,361 26 67 14,852 0 8

d1, the blue points are the 67 inliers points added to d2, the green points are the 14, 852
filtered outliers points, and there are 26 points eliminated from d1. d2 clusters division
and injury curve model P2 are shown respectively in Figs. 6.45(b) and (c). There are
no points to input in d2, all the 8 clusters are completed. Therefore, the detection is
completed.

It is possible to determine the geometry of the missing part of the injured skull by
the subtraction of the healthy and injured skull from Figs. 6.43(a) and (b). The injured
skull zone (d2) is shown in red points in the injured skull and the missing part geometry
respectively in Figs.6.46(a) and (b). Table. 3 shows the results of the third example, with
N.Pts being the number of points of di, Rem.di−1 the number of points removed from
the previous iteration, N.F.k the number of clusters that the stop criteria is not achieved
and N.k the number of clusters.

It was expected that this example could be more difficult than the second example,
once the second example just had two concave areas and the third example had more than
four. However, this example determines the injured zone in just 2 iterations, while it was
necessary to have 4 iteration in the second example. This difference is especially due to
the initial points d1. While these points are almost complete in the third example, there
are a bigger region to be filled in the second example. Thus, determining a good initial
points d1 speed up the algorithm, in which less iterations is necessary.

6.4 Example 4
In the previous three examples the injury was artificially created, while the last example
is the one with a natural injury. The artificial injury is smoother than the natural injury,
thus it is expected to have a higher number of iterations to solve this example. Fig. 6.47
shows the forth injured skull test. This example, as expected, is bigger than the previous
three examples and the injured zone has more details.

The initial points (d1) of the injured zone are shown in Fig. 6.48(a), with d1 being
the 7, 054 red points marked in this figure. It is used k = 10 as number of clusters, and
Figs. 6.44(b) and (c) are respectively the cluster division of d1 and the injury curve model
P1. These points were determined using as threshold t = 20, and it is possible to see that
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(a)

(b) (c)

Figure 6.44 – Iteration 1. (a) d1 is represented with red points; (b) Each cluster of d1
is in different color; (c) Injured zone curve model P1 is the red curve, the
control points are the black diamonds and d1 are the yellow points.
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(a)

(b) (c)

Figure 6.45 – Iteration 2. (a) d1 is represented with red points, the inliers added to d2
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d2 is in different color; (c) Injured zone curve model P2 is the
red curve, the control points are the black diamonds and d2 are the yellow
points.



Chapter 6. Results 68

(a)

(b)

Figure 6.46 – Injured skull zone are the red points. (a) Injured skull; (b) Solid obtained
by the subtraction of the injured skull and the healthy skull.
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Figure 6.47 – Forth injured skull example.

there are several regions with missing points; in both yellow clusters, the division between
the green and light blue clusters, the division between the yellow and purple cluster, and
the division between the blue and orange clusters. It was used µ(dist) + 1.σ(dist) as stop
criteria, and just 3 clusters have achieved such condition, remaining 7 clusters to be filled.

Fig. 6.49(a) shows the 6, 719 points of d2, in which the red points are the points from
d1, the blue points are the 563 inliers points added to d2, the green points are the 134, 691
filtered outliers points, and there are 898 points eliminated from d1. d2 clusters division
and injury curve model P2 are shown respectively in Figs. 6.49(b) and (c). The number
of di decreases from the first to the second iteration, once 563 points were included and
898 were excluded. The included points are the points that filled the missing part of the
injured zone, while the excluded points are the ones from the zone boundary, making it
thinner. This behaviour is expected once the stop criteria is lower than the previous three
examples. There are still 7 clusters to be filled and the next iteration is show in Fig. 6.50.

Fig. 6.50(a) shows the 6, 109 points of d3, in which the red points are the points from
d2, the blue points are the 202 inliers points added to d3, the green points are the 91, 295
filtered outliers points, and there are 812 points eliminated from d2. d3 clusters division
and injury curve model P3 are shown respectively in Figs. 6.50(b) and (c). Once again,
there are more eliminated points than added points, and there are still 7 clusters to be
completed.

Fig. 6.51(a) shows the forth iteration, in which the red points are the points from d3,
the blue points are the 670 inliers points added to d4, the green points are the 131, 726
filtered outliers points, and there are 784 points eliminated from d3. Thus, d4 is composed
by 5, 995 points whose cluster division is shown in Fig. 6.51(b). The injury curve model
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P4 is shown in Fig. 6.51(c). There are still 7 clusters to be finished. There are clusters on
the lower part (yellow and purple) almost completed, however there are still four big gaps
in the injured zone.

Fig. 6.52(a) shows iteration 5, in which the red points are the points from d4, the blue
points are the 724 inliers points added to d5, the green points are the 118, 662 filtered
outliers points, and there are 745 points eliminated from d4, resulting 5, 974 points in d5.
The clusters division and injury curve model P5 are shown respectively in Figs. 6.52(b)
and (c). Once again there are 7 clusters to be finished. This iteration added a lot of points,
but added points from the previous iteration that clearly are points of the injured zone
were removed (the lower region between orange and blue cluster). This is due to the poor
curve model P4 that in regions with sharp details created a smooth curve. There are two
possibilities of this poor curve model; the ANSA algorithm failed or the number of curve
segments is not enough.

Fig. 6.53(a) shows iteration 6, in which the red points are the points from d5, the blue
points are the 468 inliers points added to d6, the green points are the 121, 058 filtered
outliers points, and there are 807 points eliminated from d5, resulting 5, 635 points in d6.
The clusters division and injury curve model P6 are shown respectively in Figs. 6.53(b)
and (c). There are just 3 not finished clusters in this iteration, showing that more clusters
have achieved the stop criteria even though the number of d6 decreases. It was used the
same number of cluster from the previous iteration showing that it is possible to create a
good injury curve model with this number of clusters.

Fig. 6.54(a) shows iteration 7, in which the red points are the points from d6, the
blue points are the 206 inliers points added to d7, the green points are the 66, 482 filtered
outliers points, and there are 248 points eliminated from d6, resulting in 5, 593 points in
d7. The clusters division and injury curve model P7 are shown respectively in Figs. 6.54(b)
and (c). There are still 3 not finished clusters in this iteration. However, the purple cluster
is now completed and the missing points are two region between 4 clusters.

Fig. 6.55(a) shows iteration 8, in which the red points are the points from d7, the
blue points are the 224 inliers points added to d8, the green points are the 54, 382 filtered
outliers points, and there are 261 points eliminated from d7, resulting 5, 556 points in d8.
The clusters division and injury curve model P8 are shown respectively in Figs. 6.55(b)
and (c). There are few modification from previous iteration, only some points in the
middle of the yellow right cluster were added. There are still 2 not finished clusters, the
yellow right cluster and the light blue left cluster.

Fig. 6.56(a) shows iteration 9, in which the red points are the points from d8, the
blue points are the 47 inliers points added to d9, the green points are the 52, 897 filtered
outliers points, and there are 165 points eliminated from d8, resulting 5, 438 points in d9.
The clusters division and injury curve model P9 are shown respectively in Figs. 6.56(b)
and (c). There are no visible modification between iteration 9 and iteration 8. However,
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the number of unfinished clusters increases in iteration 10 as shown in Fig. 6.57, in which
the cluster situated in the lower part of the injury is not finished anymore. Thus, it was
necessary to increase the number of clusters from 10 clusters in iteration 9, to 12 clusters
in iteration 10.

Fig. 6.58(a) shows iteration 10, in which the red points are the points from d9, the
blue points are the 401 inliers points added to d10, the green points are the 36, 330 filtered
outliers points, and there are 31 points eliminated from d9, resulting 5, 808 points in d10.
The clusters division and injury curve model P10 are shown respectively in Figs. 6.58(b)
and (c). The increase of the number of clusters helped to create a better injury curve
model and less points are removed from the previous iteration. It is hard to evaluate
whether the removed points are points from the injured zone or not. Thus, a bad curve
model results in a high number of removal points; but a high number of removed points is
not a indication of a bad curve model.

Iteration 10 have 2 unfinished clusters, and Fig. 6.59(a) shows iteration 11, in which the
red points are the points from d10, the blue points are the 361 inliers points added to d11,
the green points are the 40, 308 filtered outliers points, and there are 34 points eliminated
from d10, resulting 6, 135 points in d11. The clusters division and injury curve model P11

are shown respectively in Figs. 6.59(b) and (c). There are few noticeable modifications
from the previous iteration, only a few points in the middle of green and light blue clusters
are added. There are still 2 unfinished clusters.

Fig. 6.60(a) shows iteration 12, in which the red points are the points from d11, the
blue points are the 223 inliers points added to d12, the green points are the 45, 562 filtered
outliers points, and there are 31 points eliminated from d11, resulting 6, 327 points in d12.
The clusters division and injury curve model P12 are shown respectively in Figs. 6.60(b)
and (c). Once again just a few points are visually added, there are a few points added
between blue and burgundy clusters; and there are some points added in the side of green
and blue clusters, but almost no points are added between it.

Fig. 6.61(a) shows iteration 13, in which the red points are the points from d12, the
blue points are the 358 inliers points added to d13, the green points are the 16, 321
filtered outliers points, and there are 149 points eliminated from d12, resulting in 6, 536
points in d13. The clusters division and injury curve model P13 are shown respectively in
Figs. 6.61(b) and (c). There are still 2 unfinished clusters, however it is possible to see
that these two clusters are almost completed.

Fig. 6.62(a) shows iteration 14, in which the red points are the points from d13, the
blue points are the 431 inliers points added to d13, the green points are the 27, 651 filtered
outliers points, and there are 35 points eliminated from d13, resulting 6, 932 points in d14.
The clusters division and injury curve model P14 are shown respectively in Figs. 6.62(b)
and (c). The algorithm finished in this iteration and the final injured skull zone is shown
by the red points in Fig. 6.63.
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Table 4 – Forth example results. N.Pts is the number of points of di; Rem.di−1 is the
number of points removed from di−1; Inlier and Outlier are respectively the
number of points classified as inliers and outliers, in which the inliers are added
to di; N.F.k is the number of cluster in which the stop criteria is not achieved;
and N.k is the number of clusters used to divide di.

Iteration N. Pts Rem. di−1 Inlier Outlier N.F. k N. k
1 7,054 – – – 7 10
2 6,719 898 563 134,691 7 10
3 6,109 812 202 91,295 7 10
4 5,995 784 670 131,726 7 10
5 5,974 745 724 118,662 7 10
6 5,635 807 468 121,058 3 10
7 5,593 248 206 66,482 3 10
8 5,556 261 224 54,382 2 10
9 5,438 165 47 52,897 2 10
10 5,808 31 401 36,330 2 12
11 6,135 34 361 40,308 2 12
12 6,327 31 223 45,562 2 12
13 6,536 149 358 16,321 2 12
14 6,932 35 431 2,7651 0 12

The algorithm finished, however it is possible to see that there are some missing points
in the left side of the injury. Fig.6.64 shows that there a hole in the input STL. Thus, the
algorithm performed well in determining the injured zone, and the missing part is due to
nonexistent points in the input data file. Table. 4 shows the results of the last example,
with N.Pts being the number of points of di, Rem.di−1 the number of points removed
from the previous iteration, N.F.k the number of clusters that the stop criteria is not
achieved and N.k the number of clusters.
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(a)

(b) (c)

Figure 6.48 – Iteration 1. (a) d1 is represented with red points; (b) Each cluster of d1
is in different color; (c) Injured zone curve model P1 is the red curve, the
control points are the black diamonds and d1 are the yellow points.
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Figure 6.49 – Iteration 2. (a) d1 is represented with red points, the inliers added to d2
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d2 is in different color; (c) Injured zone curve model P2 is the
red curve, the control points are the black diamonds and d2 are the yellow
points.
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Figure 6.50 – Iteration 3. (a) d2 is represented with red points, the inliers added to d3
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d3 is in different color; (c) Injured zone curve model P3 is the
red curve, the control points are the black diamonds and d3 are the yellow
points.
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Figure 6.51 – Iteration 4. (a) d3 is represented with red points, the inliers added to d4
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d4 is in different color; (c) Injured zone curve model P4 is the
red curve, the control points are the black diamonds and d4 are the yellow
points.
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Figure 6.52 – Iteration 5. (a) d4 is represented with red points, the inliers added to d5
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d5 is in different color; (c) Injured zone curve model P5 is the
red curve, the control points are the black diamonds and d5 are the yellow
points.
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(b) (c)

Figure 6.53 – Iteration 6. (a) d5 is represented with red points, the inliers added to d6
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d6 is in different color; (c) Injured zone curve model P6 is the
red curve, the control points are the black diamonds and d6 are the yellow
points.
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Figure 6.54 – Iteration 7. (a) d6 is represented with red points, the inliers added to d7
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d7 is in different color; (c) Injured zone curve model P7 is the
red curve, the control points are the black diamonds and d7 are the yellow
points.
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Figure 6.55 – Iteration 8. (a) d7 is represented with red points, the inliers added to d8
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d8 is in different color; (c) Injured zone curve model P8 is the
red curve, the control points are the black diamonds and d8 are the yellow
points.
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(b) (c)

Figure 6.56 – Iteration 9. (a) d8 is represented with red points, the inliers added to d9
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d9 is in different color; (c) Injured zone curve model P9 is the
red curve, the control points are the black diamonds and d9 are the yellow
points.
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Figure 6.57 – Iteration 10 needed to be performed 3 times. The iteration was rejected
twice due to the increase of unfinished clusters, specifically in the lower part
of the injury.
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(a)

(b) (c)

Figure 6.58 – Iteration 10. (a) d9 is represented with red points, the inliers added to d10
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d10 is in different color; (c) Injured zone curve model P10 is the
red curve, the control points are the black diamonds and d10 are the yellow
points.
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Figure 6.59 – Iteration 11. (a) d10 is represented with red points, the inliers added to d11
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d11 is in different color; (c) Injured zone curve model P11 is the
red curve, the control points are the black diamonds and d11 are the yellow
points.
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(a)

(b) (c)

Figure 6.60 – Iteration 12. (a) d11 is represented with red points, the inliers added to d12
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d12 is in different color; (c) Injured zone curve model P12 is the
red curve, the control points are the black diamonds and d12 are the yellow
points.
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(a)

(b) (c)

Figure 6.61 – Iteration 13. (a) d12 is represented with red points, the inliers added to d13
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d13 is in different color; (c) Injured zone curve model P13 is the
red curve, the control points are the black diamonds and d13 are the yellow
points.
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(a)

(b) (c)

Figure 6.62 – Iteration 14. (a) d13 is represented with red points, the inliers added to d14
are the blue points and the filtered outliers are the green points; (b) Each
cluster of d14 is in different color; (c) Injured zone curve model P14 is the
red curve, the control points are the black diamonds and d14 are the yellow
points.
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Figure 6.63 – Injured skull zone are the red points.

Figure 6.64 – There is a hole in the middle of the injured zone.
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6.5 Parameters Sensibility
Throughout this thesis, several parameters were presented. The variation of these param-
eters changes the behavior and the convergence of the proposed method. In the curve
fitting algorithm, there are two important parameters. The first parameter is the weight
W that controls the regularization of the cost function. The higher the spread of the
points the smaller the value for W , in the curves of Fig. 4.17 the value of W is higher
than the one used in the four cases of the determination of the injured zone. The second
parameter is the number of the points in which the curve is discretized. It was used 100
points for each curve segment. The increase of number of discretized points increases the
accuracy of the determination the discrepancy between point and curve. However, this
increase also increases the processing time.

In the automatic procedure, there are four important parameters. The first parameter
is the value used in the range search of the distance map. It was used the minimum
distance plus 10% of this value. The value was empirically determined. The increase of
this value will make correspondence of points that will lead in a worst start for the injured
zone, and the decrease of this value determines a smaller number of points in the initial
injured zone.

The second parameter is the threshold t used to determine the initial injured zone.
It is possible to use higher values for t, but this increase will lead a higher number of
iteration to determine the injured zone. However, if the value for t is smaller, the initial
injured zone will have point that are not from the injured, such as the region of the eyes
or nose. The usage of t as the higher value of the histogram of distances is also very bad,
once the initial injured zone will be just a few sparse points, and could determine a curve
that will never be able to determine all the point of the injured zone.

The third parameter is n, the one used in the stop criteria as well as the classification
of points in inliers and outliers. This parameter was also empirically determined. The
determination of a good value for n is tricky. A higher number for n will classify further
points of the curve as inliers. In simple cases, this increase is good because it is necessary
less iterations to determine the injured zone. However, in more complex examples, this
increase will lead in the classification of points as inliers that are not part of the injury.
These points can be part of the inner or outer part of the skull.

The forth parameter is k, that defines the number of cluster and number of curve
segments. The number of curve segments used in the curve fitting is the same problem to
determine the number of control points necessary in the curve fitting, and this problem
is still an open issue in the curve fitting problem. If the number for k is not enough the
curve will never be close to the injured zone. On the other hand, if the number for k is too
high, two problems can occur. The first one the overfitting problem, that is solved with
the adopted cost function. The second problem is the increase of processing time, once
there are more control points to be adjusted by the ANSA. Then, the adopted strategy
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try to determine a good value for k by previous experience, and a method to increase this
value if it is not suitable.
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7 Conclusion

The proposed method consists in a semi automatic determination of the injured skull
zone. The determination of this zone is important to design a skull prosthesis, considering
the evaluated distances between the prosthesis and the skull. A semi-automatic iterative
method determined the injured skull zone, in which points are added and removed to the
injured zone with the aid of a injured zone curve model. In each iteration, the ANSA
algorithm determined a piecewise Bézier curve and this curve is used as the model to
add and remove points to and from the injured zone. The points of the current zone are
divided in clusters and each cluster is approximated by only one curve segment. The
usage of the a piecewise Bézier curve to determine the injured skull curve model makes
the curve fitting algorithm more flexible and stable. The piecewise curve and the point
cloud cluster division divided the problem in several curve fitting problems. Then, it is not
necessary to order all the points of the point cloud to determine the approximating curve.
it is necessary just to order the cluster and determine the start and end of the cluster.
This is a huge advantage, once it is very difficult and costly to order a point cloud.

The procedure of adding and removing points are done until the stop criteria is achieved.
This stop criteria is not global. Each cluster has its own stop criteria; and the proposed
method will stop only if all the clusters achieve their own stop criteria. The proposed stop
criteria is to verify whether every part of the curve model has a closest point from the
injured skull zone within a certain distance limit. Once the determination of minimum
number of required parameters to solve the curve fitting problem is still an open issue,
there is also a method to increase the number of clusters in the proposed algorithm.

The proposed method was tested with 4 examples: 3 examples were artificially created
and the last example is a natural injury. The algorithm was successful in all 4 the tests,
the stop criteria works in all examples. In the first 3 artificially created examples, the
injured zone is smoother, therefore less iteration was required; while in the last example,
which is from a real injured skull, the injured skull zone has more details requiring more
iterations. Thus, the harder the example, the more iterations it took. The mechanism to
increase the number of clusters also was successful.This mechanism was not necessary in
the first 3 examples due to their smooth geometries. However, in the last example, the
increase of number of clusters was necessary to create a better model of the injured zone
curve.

All the 4 examples have one feature in common, the injury always is in just one side of
the skull. Thus, the proposed method has a limitation. If there are injuries in both sides
of the skull or the injury is in the front or back of the skull, the proposed method will not
work. This limitation is due to the way that the initial guess of the zone is determined,
using the skull’s symmetry. In this case, another way to produce the initial reference is
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required to start the algorithm.
The proposed methodology was used to determine the injured skull zone that can

be used in the cranioplastly to design better prosthesis. However, several parts of the
proposed methodology can be used in another fields. It is possible to use the comparison
of two point clouds to repair expansive parts such as a turbine blade as shown in Appendix
A. The usage of the curve fitting in the reverse engineering field is known. The proposed
curve fitting method could determine a curve of the injured skull. The shape of an injured
skull is very complex, as can be seen in the fourth injury example, and the proposed curve
fitting method could determine this approximating curve. Then, the developed curve
fitting algorithm is more robust and can be used in several cases in the reverse engineering,
in which its geometry is complex.

7.1 Future Works
The proposed method uses the symmetry to determine the initial reference for the injured
zone. Thus, as future work it is necessary to create a method in which this symmetry
is not used, enabling the proposed algorithm to be used in cases of frontal or back skull
injury.

The usage of the injured zone in the design of a prosthesis also needs to be addressed in
the future work to develop a closed surface which defines the prosthesis geometry with the
three set of points (injured zone, inner surface and outer surface) and the injury boundary
tangent vectors.
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APPENDIX A – Deviation Zone
Estimation

The Digital Twin is a replication of the living and the non living physical entities in the
virtual world [El Saddik, 2018]. These replication enable the communication between the
physical and digital world, in which physical and digital entities could exchange data,
that can be widely used to optimize the manufacturing process by the use of artificial
intelligence algorithms. The Deviation Zone Estimation (DZE) is an application of the
Digital Twin, in which it is determined the difference of a measured object and the designed
object. The DZE can be used to make a quality control of manufacturing task [SCHLEICH
et al., 2014], a real-time quality control inspection [BERRY; BARARI, 2019] or preventing
maintenance.

Part of the proposed method could be used to determine the DZE. The initial part of
the algorithm in which determined the initial zone (d1) is the same of determining the
DZE, as can be seen in Fig. A.65.

Thus, as an example it is possible to find the DZE of a worn turbine and monitor
whether or not a maintenance is necessary. A turbine has a CAD model which is used
as reference point cloud (Pc′). Therefore, if the only source of difference between the
reference model and the measured point cloud (Pc) is just the worn, the DZE is easily
determined by just subtracting both point clouds. However, there are at least two sources
of deviation error. The first source is the sensor measurement error and the second one
is manufacturing deviation. The worn region, the sensor error and the manufacturing
deviation are all detectable if the same simple subtraction is done, and it is impossible to
determine which one is which one.

The usage of a threshold t eliminates the sensor error and manufacturing deviations.

CAD model point
cloud (Pc′) and mea-
sured point cloud (Pc)

Distance between Pc
and Pc′ (Pc 	 Pc′)

(Pc 	 Pc′) < t → Discard
(Pc	 Pc′) > t→ Store (Pc′′)

Figure A.65 – Part of the proposed method that can be used to DZE.
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Figure A.66 – Turbine blade CAD model.

(a) (b)

Figure A.67 – Turbine blade created worn region. (a) The wear are in the middle of the
blade with a max of 1 random dislocation in the normal direction; (b) worn
region points are marked with red points.

This time the value of t is known, it is the summation of the manufacturing deviation
and the sensor maximum error. Thus, let Fig. A.66 be the turbine blade CAD model.
The turbine blade worn is created by adding a random noise at the normal direction with
intensity between [−1, 0]. Fig. A.67 shows the created worn region, in which the noise is
added to 16, 193 red points.

The errors and noisy simulation is deformed with the same procedure of the worn
region creation. It is added a random noise to the points at the normal direction, however
the intensity is between [−0.01, 0.01] and it is applied to all the points excluding the red
points. The resulting blade is shown in Fig. A.68.

If the DZE detection is done by a naive implementation by just determining all the
points in which the distance is different than 0 (t = 0), the resulting point cloud will look
like to the blade shown in Fig. A.68(a). Then, if it is used a threshold t = 0.01 to filter
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(a) (b)

Figure A.68 – Turbine blade with noise, all the points excluding the worn region are added
with a max of 0.01 random noise. (a) The worn region are the same of the
previous image, however it is possible to see that there are some noise in
the top and base of the blade; (b) worn region points are marked with red
points.

Figure A.69 – The blue points are the detected worn region points, and the red points are
the not detected worn region points.

the errors, the resulting DZE is the one shown in Fig. A.69, in which the blue points are
the detected worn region points, and the red points are worn region points which were not
detected. It is possible to detect 16, 015 points corresponding 98.9% of the created worn
region points.
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