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ABSTRACT 
 

 

GARCIA RODRIGUEZ, L. F. Topology optimization of compressible subsonic flow considering 

turbulence and real gases. 2022. 65 p. Doctor of Science Thesis – Mechanical Engineering, University 

of Sao Paulo, Sao Paulo, 2022. 

 

The optimization of compressible turbulent flow is fundamental to improve the performance of 

turbo-machinery and fluid devices used at cutting-edge energy transition technologies such as the 

carbon, capture and storage industry. From the different fluid flow optimization methods, the 

topology optimization offers a flexibility and robustness in the design as handles different 

objective functions and independence on initial domains that helps to create innovative and non-

intuitive domains with splitters and fluid directors. The topology optimization method is 

performed by changing the permeability of the domain cells through the characterization of the 

fluid flow through CFD modelling, which is coupled to optimization methods based on the 

calculation of derivatives acquisition of a Lagrange system. To guarantee a successful topology 

optimization stable CFD models to be employed, which for compressible turbulent flow are 

available at subsonic regime according to the literature review. Therefore, the current research 

develops the topology optimization formulation for compressible turbulent subsonic flow, which 

demands the use of compressibility effects, rotational influence, and turbulence phenomenon 

besides the acquisition of the compressible adjoint system. The methodology considers the finite 

volume method, and the proposed formulation establishes the minimization of the energy 

dissipation subjected to the compressible Favre Averaged Navier-Stokes equations, the 

permeability of the volume cells and a volume constraint. The acquisition of the compressible 

adjoint system is studied simultaneously at two different approaches: via the continuous forward 

system and the discrete adjoint–automatic differentiator, the last adapted and coupled to finite 

volume method applications. Also, the influence of the integer design variables-based optimizer 

is included, which presents a considerable advantage over the common continuous design 

variables optimizers used. Finally, the optimization considering real gas modelling for 

compressible turbulent subsonic flow is presented, where the compressibility and temperature 

effects are embraced by the Peng-Robinson and the Sutherlands’ law. Different tests are 

performed in channels and rotors that validate the mentioned hypothesis in 2D and 3D domains. 

 

Keywords: Topology, Optimization, Turbulence, Compressible flow, Real gas, OpenFoam, 

perfect gas, FVM, FEM, FEniCS 



 

RESUMO 
 

GARCIA RODRIGUEZ, L. F. Otimização topológica de escoamento compressível subsonico 

considerando turbulência e gases reais. 2022. 65 p. Tese de Doutorado em Ciências – Engenharia 

Mecânica, Universidade de São Paulo, São Paulo, 2022. 

A otimização do fluxo turbulento compressível é fundamental para melhorar o desempenho de 

turbo-máquinas e dispositivos de fluidos utilizados em tecnologias de transição energética de 

ponta, como a indústria de captura e armazenamento de CO2. Dos diferentes métodos de 

otimização de fluxo de fluido, a otimização topológica oferece flexibilidade e robustez no 

desenho, pois lida com diferentes funções objetivo e independência em domínios iniciais que 

ajudam a criar domínios inovadores e não intuitivos com splitters e direcionadores de fluidos. O 

método de otimização topológica é realizado alterando a permeabilidade das células do domínio 

através da caracterização do escoamento do fluido através da modelagem CFD, que é acoplada a 

métodos de otimização baseados no cálculo de aquisição de derivadas de um sistema 

Lagrangiano. Para garantir uma otimização topológica bem sucedida, modelos CFD estáveis a 

serem empregados, que para escoamento turbulento compressível estão disponíveis em regime 

subsônico de acordo com a revisão da literatura. Portanto, a presente pesquisa desenvolve a 

formulação de otimização topológica para escoamento subsônico turbulento compressível, que 

demanda o uso de efeitos de compressibilidade, influência rotacional e fenômeno de turbulência, 

além da aquisição do sistema adjunto compressível. A metodologia considera o método dos 

volumes finitos e a formulação proposta estabelece a minimização da dissipação de energia 

submetida às equações compressíveis de Favre Averaged Navier-Stokes, a permeabilidade das 

células de volume e uma restrição de volume. A aquisição do sistema adjunto compressível é 

estudada simultaneamente em duas abordagens distintas: por meio do sistema direto contínuo e 

do diferenciador adjunto-automático discreto, este último adaptado e acoplado a aplicações do 

método de volumes finitos. Além disso, a influência do otimizador baseado em variáveis de 

projeto inteiras está incluída, o que apresenta uma vantagem considerável sobre os otimizadores 

de variáveis de projeto contínuas, comumente usadas. Por fim, é apresentada a otimização 

considerando uma modelagem de gás real para escoamento subsônico turbulento compressível, 

onde os efeitos da compressibilidade e da temperatura são englobados pela lei de Peng-Robinson 

e pela lei de Sutherland. Diferentes testes são realizados em canais e rotores que validam a 

hipótese mencionada nos domínios 2D e 3D. 

Palavras-chave: Topologica, Otimização, Turbulência, Escoamento compressível, Gás real, Gás 

perfeito, OpenFoam, FEniCS, FVM, FEM 
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1. INTRODUCTION 

 

Global warming has increased exponentially during the last decades, mainly due to uncontrolled 

CO2 emissions (e.g. in 2010, 40% of total emissions were by fossil-fired power plants) affecting 

directly the greenhouse effect. Kuckshinrichs (2015) shows that CO2 emissions must be reduced 

by at least 50% up to the year 2050 to limit the temperature increase by 2-3°C worldwide.  To 

do so, the Carbon Capture and Storage (CCS) technology could reduce around 26% of the total 

wide range of CO2 measures, making it the large responsible of CO2 reduction technology 

(Figure 1). 

Figure 1. Measures for reducing CO2 in the IEA (Blue Map scenario) (Kuckshinrichs 2015) 

 

The CCS technology consists of capture CO2 emissions, applying chemical processes of gas 

purification and reusing them for industrial application, e.g. extraction of gases, or storing them 

at geological underground formations, avoiding its direct release into the atmosphere and 

diminishing the greenhouse effect. All technical process routes used at CCS converge in the 

compression stage (Figure 2), which is responsible for up to 50% performance from the whole 

CCS process (e.g. oxyfuel process), supporting its optimization for an efficient CCS 

technology. 
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Figure 2. Principles of CCS technologies (Kuckshinrichs 2015) 

 

The main challenges presented in the compression stage are related to CO2 quantification 

properties, integration of CO2 capture and compression, and systems-components design for 

efficient supercritical CO2 transport (Jensen et al. 2011). The CO2 compressor power required 

for an integrated coal gasification combined cycle (IGCC) power plant is approximately 5% of 

the plant rating (Systems 2009), therefore, any improvement on the CO2 compressors has a 

significant economic impact. 

 

The supercritical CO2 compressor efficiency can state between 65% and 80% (Monje et al. 

2014), which fundaments their study and improvement in developing elaborated 

thermodynamics relations,  experiments (Bae et al. 2016; Kim et al. 2014; Park et al. 2022), 

one-dimensional models (Monje et al. 2014) and computational fluid dynamics (CFD). The 

one-dimensional model provides a detailed tentative design of the compressor elements by 

solving the thermo-fluid dynamics of the solid/fluid interfaces comprised by the 

turbomachinery; however, uncertainties have been found when supercritical CO2 (SC-CO2) is 

analyzed (Monge 2014) due to its unconventional behaviour in the critical point and the lack of 

experimental information. The CFD approaches reveal similar information as the 1D models, 

however, complements its use on the clearance gaps analysis, the viscosity effects near the 

walls, tackles simultaneous modelling between components, e.g. diffuser-impeller, presents 

better agreement at lower speeds, and accurateness in the surge line (Monge 2014). Also, 

studies related to real gas influence on supercritical CO2 compressors (Baltadjiev et al. 2015) 

have shown significant differences in the ideal gas conditions, such as reductions of 9% in the 

choke margin of the stage compressor and condensation near the critical point operating 

conditions, which basis the importance of study real gas influence in the design of the 

components. As seen, theoretical studies complemented by experiments have answered queries 
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about the fluid flow performance of SC-CO2 compressors during the last decades, but the 

analysis phases challenges related to fluid flow modelling, expensive limited experimental tests, 

elaborated thermodynamic relations and high dependences on the supercritical conditions. 

Also, the analysis started in the compressor rotor as the first component responsible to increase 

the kinetic energy from the shaft and delivering it to the stator which converts the kinetic energy 

into pressure (Monge 2014). Therefore, the rotor analysis is a fundamental start to tackling the 

performance of the compression stage of SC-CO2.  

 

The CFD modelling of a CO2 compressor rotor near the critical point is a challenging task as is 

sensible to vary its phase and is generally coupled with uncertainties to experimental results 

(Pecnik, Rene and Colonna 2011; Rinaldi et al. 2013; Takagi et al. 2016), e.g. 25% differences 

in the overall pressure ratio. These uncertainties are mainly found due to the complexity of the 

SC-CO2 modelling, as the fluid faces large velocities, compressibility effects, and large 

temperature gradients are summarized in large Mach numbers flows (transonic and supersonic 

regimes), which are unstable to model due to the shock waves and real gases behaviour (Pecnik, 

Rene and Colonna 2011; Rinaldi et al. 2013; Takagi et al. 2016). Nevertheless, under specifical 

operating conditions, such as operating distant from the critical point (Kim et al. 2014; Takagi 

et al. 2016) or under maximum Mach numbers of 0.8 (Baltadjiev et al. 2015), some similarities 

can be found between the CFD modelling and the experimental tests. As the fluid flow 

modelling of a SC-CO2 compressor is still under research, the topology optimization (T.O.) 

should consider a progressive conservative strategy based on a stabilized CFD compressible 

regime. By definition, the compressible fluid flow is considered when the variations of the 

density field across the domain reach a difference of at least 3% along the domain (Fox et al. 

2015), and three main regimes can be classified as compressible flow according to the Mach 

number: the subsonic (0.3 < Ma < 0.7), transonic (0.7< Ma < 1.2) and supersonic (Ma > 1.2) 

regime mainly. Each regime varies principally by the fluid flow velocity (along with other fluid 

properties), meaning that relative low fluid velocities (subsonic regime) should present fewer 

instabilities than large velocities (supersonic regime). Different works fundament this statement 

(Dewar et al. 2019; Langlois et al. 2016; Petit and Nilsson 2013) and suggest also the analysis 

of ideal-perfect gases firstly before dealing with real gas behaviour (Cantwell 2018). Another 

challenge appears when the turbulence phenomenon is treated via CFD modelling, as Direct 

Numerical Simulations (DNS) show that the turbulence effects are not captured equally as the 

incompressible flow does, and modifications of the turbulences models for compressible regime 

should be considered (Grigoriev 2016). Literature has proved that the Favre Averaged Navier-
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Stokes (FANS) equations (Wilcox 1993) have led to feasible results at compressible subsonic 

steady-state regime (Nikaido et al. 2015; Rahman and Mustapha 2015; Tüzüner et al. 2018), 

which gives a fluid flow settlement for the optimization. 

 

 

1.1. OPTIMIZATION OF FLUID FLOW 
The mentioned works have focused on the analysis and characterization of SC-CO2 compressors 

by means of different strategies (CFD modelling, experimental tests, etc.); nevertheless, the 

optimization of such fluid flow devices requires techniques of algorithmic differentiation to 

reach an optimized point. In general, the optimization of fluid flows is affected by these 

variants: objective function (𝐹), which depends on a vector of design variable 𝛼𝑛, and follows 

the next algorithm: 

• Choose 𝑛 distinct values of the depending parameter (𝛼1, 𝛼2, …𝛼𝑛), which satisfy the 

constraints of the T.O. formulation. 

• Evaluate each objective function (𝐹(𝛼1), 𝐹(𝛼2)…𝐹(𝛼𝑛)) and choose a value 𝛼𝑗 such 

that 𝐹(𝛼𝑗) ≤ 𝐹(𝛼𝑖) for 𝑖 = 1…𝑛. 

 

The coupling of flow control and CFD allows approaches with optimization algorithms to 

design and control fluid systems. This has been made for the last 40 years due to the 

development and implementation of efficient and robust algorithms for CFD and advances in 

the theory of partial differential equations and analytic algorithms (Gunzburger 2003), and 

despite that the simulation of fluid flows is not yet a routine endeavour. The structure of the 

flow control is composed of three main ingredients: objective (e.g. drag minimization), controls 

(shape walls) and constraints (type of flow), and they are put together in an optimization 

problem that seeks the optimal state (Gunzburger 2003).  

 

The fluid flow optimization methods that applied the previous concept are the parametric, shape 

and topology optimization techniques (Figure 3). The parametric optimization varies the 

dimensions of an established domain in a simultaneous fluid flow evaluation until an optimized 

design is reached. The shape optimization consists on modifying the solid/fluid boundary 

through the Lagrange approach, which evolves the shape by gradually moving the boundary 

points. In this case, mesh morphing (e.g. deforming volumes, pseudo-solids and radial basis 

functions) is considered to vary the mesh nodes and avoid re-meshing or discontinuities in the 

computed objective and constraint functions (Haslinger and Mäkinen 2003). Finally, the 
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topology optimization technique is able to modify the entire domain by defining the 

permeability of each cell, which avoids remeshing the entire domain and innovative fluid flow 

passages (Sá and Silva 2016).  

Figure 3. Optimization approaches applied to the design of a straight-blade rotor: (a) parametric, (b) 

shape and (c) topology optimization 

   

(a) (b) (c) 

The optimization of compressible fluid flow is a challenging task as the difficulties of the 

optimization derivatives are related to its instabilities of fluid flow modelling: discretization to 

treat heat transfer processes, enthalpy variations, turbulence compressible phenomenon, 

compressibility factors and stable numerical schemes. The parametric optimization method has 

searched for solutions to optimize aerodynamics applications such as pulsating jets in unsteady 

compressible flow (Désidéri and Duvigneau 2019); Fosas De Pando et al. 2014), which has 

reduced the drag over a plate and the noise of an aerofoil through multi-objective functions and 

the multigradient descent algorithm. Turbomachinery has been also optimized by analysing the 

suction system of a reciprocating compressor for refrigeration systems (Ferreira et al. 2015), 

which treats the isentropic and volumetric efficiencies simultaneously. Nevertheless, the 

optimization on rotors has not been tackled widely and some limitations on the boundary size 

have been found. At shape optimization of compressible flow, aerodynamic applications have 

been widely studied, e.g. (Jameson et al. 1998) consider transonic regime and reduces the wing 

drag up to 8%. Feireisl (2003) determines a method for solving the optimized shape of profiles 

focusing on the viscous layer mainly in regions where the pressure distribution is given as a 

function of the fluid density. Kouhi Esfahani (2013) combines multi-objective function 

algorithms with mesh adaptation to improve the performance of aerofoils in transonic flow. 

Finally, (Kaźmierczak et al. 2018) propose the drag minimization of a theoretical 2D domain 

object by means of an approximated Stokes non-dimensional formulation. At turbomachinery 

applications, (Samad and Kim 2008) optimizes the fluid flow performance of a transonic axial 

compressor rotor by managing the total pressure and adiabatic efficiency as objective functions 

and modelling the fluid flow through the compressor annulus using the Reynolds-averaged 
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Navier–Stokes (RANS) equations. Nejadali (2021) focuses on the aerofoil compressors 

improvement by controlling the isothermal efficiency and the pressure coefficient as objective 

functions, which leads to trailing edge angles improvements of 3.17% compared to the 

reference case. Guo (2013) optimizes the return channel of a centrifugal compressor by means 

of the adjoint method derived for incompressible laminar flow and applied in a compressible 

turbulent regime. Iwakiri et al. (2020) attentions on the optimization of the scroll compressor 

of a turbocharger by means of the adjoint method allowing to reduce the recirculation flow rate 

and an overall efficiency improvement of 1.5%. As seen, the studies focused either on the 

aerofoil shape or the compressor components have been able to optimize the fluid flow 

performance by using both parametric and shape optimization methods, which are able to refine 

and make slight modifications on a preestablished domain accurately. Nevertheless, the 

improvements are limited to a preestablished design, maybe not made for the actual fluid flow 

to be transported, e.g. the transport of SC-CO2, which might limit the accurate fluid flow path 

to be optimized, therefore, doubts arises from about the start domain: which blade design should 

be considered at first? How can we assure that the minimum space between the rotor blades is 

optimized based on the actual fluid flow to be transported? Should any splitter or bifurcation at 

the fluid flow passage be added to improve the fluid flow performance? These questions can be 

answered by including an innovative design technique at the first-stage design: the topology 

optimization method.  

 

 

1.2. TOPOLOGY OPTIMIZATION METHOD FOR FLUID 

FLOW DESIGN 
 

The topology optimization (T.O.) method applied to fluid flows consists on varying the 

permeability of a discretized cell domain in order to achieve the maximization/minimization of 

an established objective function (e.g. power dissipation, isentropic efficiency), which is 

subjected to a series of constraints that control the objective function optimization, e.g. the 

equations of state of the fluid flow, the permeability model, etc. The domain permeability is 

defined through an optimization process until a defined converge criterion is found, resulting 

in the optimized topology. Finally, a postprocessing is made to analyse the primal fields 

performance of the optimized topology. The whole process is shown sequentially at Figure 4. 
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Figure 4. Topology optimization process 

 

 

The T.O. is a recent developed method: proposed in the year 2003 on the analysis of Stokes 

flow (Borrvall and Petersson 2003), and has been applied to incompressible fluid flow mainly. 

The challenges related to optimization of fluid flow depend not only on the fluid modelling, but 

also, in the implementation of the optimization algorithms, the treatment of the turbulence 

phenomenon, the optimizers behaviour and the boundaries between the solid/fluid definition. 

At following a summary of these fluid flow optimization challenges are presented. 

 

In the laminar incompressible flow, (Borrvall and Petersson 2003) formulated the basis and 

methodology for T.O. of fluids in Stokes flow, which was extended to Navier-Stokes flow 

(Gersborg-Hansen et al. 2005), both considering the Brinkman-type model for fluid flow 

through porous media. Following this, (Pingen et al. 2007) considered the Lattice Boltzmann 

method (LBM) for modelling the fluid flow and were able to get the first three-dimensional 

result on a very coarse mesh. Then, the level set method for fluids, widely used at T.O. of solids, 

was considered by (Duan et al. 2008) at Stokes and Navier-Stokes flows, obtaining a smooth 

convergence of the T.O. problem.  

 

Simultaneously, the incompressible turbulent regime has been studied through the Reynolds 

Averaged Navier-Stokes (RANS) modelling and the Boussinesq hypothesis to approximate the 

turbulence phenomenon. At first, (Othmer 2008) provides a turbulence regime approach for 

T.O. considering the continuous adjoint method and Finite Volume Method (FVM). However, 

the derivation of the turbulent viscosity is not performed, leading to the “frozen turbulence” 

approximation. Kontoleontos et al. (2013) included the Spalart-Allmaras (SA) turbulence 

model to analyze incompressible turbulent internal flows, however, the near-wall distance value 

is approximately treated by using a high-refined mesh near the walls, which increases the 

computational cost and improves the accuracy in respect to the frozen turbulence 

approximation. Papoutsis-Kiachagias, et al. (2016) (Papoutsis-Kiachagias and Giannakoglou 

2016) proposes using the stabilized Eikonal equation to approximate the near-wall distance 
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calculation of the SA turbulence model, and the results vary considerably from previous works. 

These assumptions of including the near-wall distance calculation for the SA turbulence model 

is tested at (Dilgen et al. 2018a; Papoutsis-Kiachagias and Giannakoglou 2016; Yoon 2016), 

however the analysis is made through the Hamilton-Jacobi equation resulting in a lower 

computational cost and accurate results too. Yoon (2016) through the discrete adjoint approach 

proposes an independence of the permeability constraint between the momentum and the 

modified Eikonal equation, to avoid inconsistences between the selected values that define the 

fluid/solid domain. Finally, another turbulence models have been tested at incompressible 

turbulence regime, e.g. (Yoon 2020) uses a FEM-based software to analyze the 𝑘 − 𝜖 

turbulence model influence in 2D T.O. studies. In summary, these works gave us a better 

understanding of the challenges related with T.O. of turbulent flow, interpolation of turbulence 

variables and wall distance, and important discussions on the use of the frozen turbulence 

assumption. 

 

Also, T.O. has been applied to the design of turbomachinery at laminar regime for both 

Newtonian and non-Newtonian fluids (Romero and Silva 2017; Romero and Silva 2014; Sá and 

Silva 2016) and 2D swirl models (Alonso et al. 2019). At first, (Romero and Silva 2014) design 

rotors for pumps through a T.O. formulation that minimizes the energy dissipation, the vorticity 

and torque as a multi-objective function. Sá, et al. (2018) (Sá et al. 2018) applied the concept 

to optimize the performance of small blood pumps and the method is validated successfully 

with experimental results. Then, (Sá et al. 2021b) optimize the performance of a rotor 

considering the SA incompressible turbulence model and studies the influence of a curvature 

correction in the turbulence treatment. Alonso (2019) (Alonso et al. 2019) considers the 2D 

swirl effect in the optimization of rotors minimizing the relative energy dissipation, which 

effects have been extended to Tesla turbine designs (Alonso and Silva 2022), non-Newtonian 

fluids (Alonso et al. 2020), influence of shear-stress at the blood damaging in small pumps 

(Alonso and Silva 2021) and the application of the Wray-Agarwal turbulence model in rotor 

design (Alonso et al. 2022). 

 

Previous works were based on continuous design variables (CDV) optimizers, i.e. optimization 

algorithms that use permeability design values between 0 ≤ 𝛼 ≤ 1, which are calibrated in an 

exhaustive process to diminish intermediate solid-fluid interfaces. These effect hinders the 

optimization of turbulent flow as clear information about the fluid walls is important for the 

accuracy of the turbulent flow simulation. Aiming to solve the lack of explicit fluid walls, 
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(Vrionis et al. 2021) proposes cutting the interface of the simulation cells along the optimization 

process under the incompressible laminar regime. In the incompressible turbulent regime, 

(Koch et al. 2017) proposes a shape-topology optimization method combination, which fits the 

solid-fluid interfaces by using non-uniform rational B-spline (NURBS) curves at the volume 

cells. More recently, (Picelli et al. 2022; Souza et al. 2020); (Moscatelli et al. 2022) employed 

an algorithm based on sequential integer linear programming to solve the fluid flow T.O. 

problem at incompressible laminar and turbulent regime respectively, using integer design 

variables (IDV), i.e. an optimization algorithm that works only with fluid (𝛼 = 0) or solid (𝛼 =

1) permeability values. The standard IDV approach is also based on the Brinkman-type model, 

however, it provides fluid walls as all elements are restricted to be only fluid or solid. Also, it 

reduces the dependence on optimization penalization parameters. Other methods, such as 

boundary descriptive or level sets, present fundamental differences in their design space and 

update scheme when compared to the pseudo-density methods based on CDV or IDV, being 

the latter ones usually simpler and simple digital (“pixelated”) approaches. Furthermore, the 

level set method does not allow using an automatic differentiator tool yet to derive the adjoint 

model. 

 

Regarding T.O. of compressible flow, from the author's knowledge, only two works have been 

recently released (Okubo et al. 2022; Sá et al. 2021a), both focusing on the analysis of 

compressible subsonic laminar regime. The main challenge relies on the analysis of 

optimization of compressible flow, which has not been made previously by any literature due 

to the coupled difficulties of modelling compressible fluid flow and obtaining the adjoint code 

of compressible regime. Therefore, no commercial software offers this optimization. Sá, et al. 

(2021) (Sá et al. 2021a) developed FEM-based software to optimize compressible laminar 

regime and proposed minimizing the entropy generation on 2D cases employing the discrete 

adjoint. Okubo, et al. (Okubo et al. 2022) present a T.O. formulation to treat compressible 

laminar regime in a FVM based-software through a finite differences algorithm developed in 

the same code, and (Okubo and Silva 2022) presents an approximation for compressible 

turbulent regime by using a “frozen” turbulence scheme, where the turbulence phenomenon is 

not solved in the adjoint code. As seen, difficulties appear in the optimization of fluid flow 

related to permeability models, the transition of fluid/solid boundaries, turbulence treatment, 

and optimizers software… which arguments that T.O. is ongoing developing research. Now the 

adjoint acquisition and treatment will be explained to fundament the adjoint acquisition 

approach of the current work. 
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1.3. THE CONTINUOUS AND DISCRETE ADJOINT 

APPROACHES 
The gradient-based optimization algorithms are used to determine optimal states and controls, 

which requires an approximation of the functional gradient to be minimized with respect to the 

controls or design variables. If 𝜙 is defined as the state variables, 𝑔 the control variables or 

design parameters, 𝐽(𝜙, 𝑔) the objective function and 𝐹(𝜙, 𝑔) = 0 the constraints, then a 

typical optimization algorithm proceeds as follows: 

1. Solve 𝐹(𝜙(𝑚), 𝑔(𝑚)) = 0 to obtain the corresponding state 𝜙(𝑚) = 𝜙(𝑔(𝑚)) 

2. Compute the gradient of the functional 
𝐷𝐽

𝐷𝑔
(𝜙(𝑚), 𝑔(𝑚)) 

3. Use the results of steps 1 and 2 to compute 𝛿𝑔(𝑚) 

4. Set 𝑔(𝑚+1) = 𝑔(𝑚) + 𝛿𝑔(𝑚) 

 

Each iteration of the optimization algorithm needs at least one solution to the flow equation. 

Step 3 is defined as the adjoint code acquisition and can be determined using an optimization 

method e.g. gradient, conjugate gradient, quasi-Newton, etc. until a convergence criterion is 

satisfied. The sensitivities determine what changes occur in the objective function and 

constraints when the design variables are changed as well.  

 

There are three different approaches to obtaining the adjoint code of a partial differential 

equation (PDE) system (Figure 5): the continuous forward equation, the discrete forward 

equations, and the forward code (Funke 2012).  

Figure 5. Adjoint derivation system stages (Funke 2012) 
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The derivation of the continuous adjoint is usually a handmade task, which advantage relies on 

its computational cost and the direct adjoint system acquisition without numerical errors related 

to the calculation of the derivative. The discrete forward equation approach uses an automatic 

differentiator to derive automatically the adjoint code via matrixial and symbolic manipulation, 

e.g. FEniCS software uses the “libadjoint” library to obtain the discrete adjoint equations and 

system, and its advantage relies on avoiding handmade derivation. Finally, the forward code, 

e.g. via the finite differences method (FD), derives the adjoint model from the forward model 

source implementation to solve the non-linear Jacobian matrix directly, it does not handle 

symbolic representation and in essence, solves directly the adjoint code without handmade or 

symbolic matrixial manipulation.  

 

The continuous forward equations have been used in different research about T.O. of 

incompressible turbulent regime (Dilgen et al. 2018a; Dilgen et al. 2018b; Papoutsis-Kiachagias 

and Giannakoglou 2016) and its advantages on computational cost make it suitable to be 

adopted. On the other hand, the discrete forward equation approach via the automatic 

differentiator has been used in T.O. of incompressible turbulent flow (Yoon 2020; Yoon 2016) 

and T.O. of compressible laminar regime (Sá et al. 2021a). Despite the advantage of avoiding 

hand derivation, the main limitation relies on the absence of compressible fluid flow solvers, 

turbulence treatment for compressible flow applications and real-gas modelling. Finally, the 

forward code via FD has been studied for shape optimization applications in OpenFOAM by 

(Towara 2018) and recently for topology optimization applications by (Okubo et al. 2022), who 

have reached the compressible laminar regime for perfect gas applications at high costs in terms 

of computational cost. As seen, research in parallel computing programming should be 

developed, and still, the turbulence phenomenon is in doubt to be applied, besides the lack of 

coupling of either real gas models or inclusion of real-gas tables from an external software as 

the OpenFOAM-software is able to import. Therefore, the current research tackles two different 

approaches simultaneously aiming to obtain the turbulent adjoint code at T.O. of compressible 

turbulent regime for subsonic and real gas applications: firstly, via the continuous forward 

differentiation and secondly, the discrete forward approach based on the automatic 

differentiator tool. 

 

As seen, the optimization of a compressor rotor employing the topology optimization method 

demands the development of T.O. of compressible turbulent flow at first. No literature has been 

able to reach the mentioned fluid flow regime by the complexity of including a compressible-
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based solver on the fluid flow resolution besides numerical schemes and treatments of the 

energy equation at the fluid/solid interface. In this onset, T.O. of compressible turbulent flow 

could be reached by using an updated and efficient CFD software specially designed to solve 

fluid flow problems (OpenFOAM) and has all the necessary numerical schemes and 

adjustments already implemented. The only drawback is that it does not have the computation 

of the adjoint model, therefore, the current research develops and extends to compressible 

turbulent flow applications the FEniCS TopOpt Foam library (Alonso et al. 2021), which 

couples the automatic differentiator tool from FEniCS/dolfin-adjoint to the OpenFOAM 

software. The turbulence phenomenon at compressible flow is treated under the FANS 

equations and both, the SA and the Wray-Agarwal turbulence models are used to optimize 

channels and rotors respectively. The fluid flow is solved by using FVM and the proposed T.O. 

objective function minimizes the energy dissipation at the domain. The material modelling from 

(Borrvall and Petersson 2003) is adapted to penalize each property in the T.O. formulation 

independently. Also, the walls are considered isothermal during the optimization process, 

ensuring only heat transfer between the fluid regions. An interior point optimizer (iPOPT) is 

adopted to solve the optimization problem. Finally, the real gas influence in T.O. of compressible 

turbulent subsonic flow is quantified through the analysis of channels and rotors, utilizing 

Sutherland’s law and the Peng-Robinson state equation. 

 

 

1.4. MOTIVATION 
 

The development of a flexible and robust optimized approach is essential to tackle uncertainties 

presented at compressible fluid evaluation as the large velocities, the compressibility effects and 

temperature gradients are coupled in compressible Mach numbers of ranges unstable to model 

due to the shock waves and the real gases behaviour. These developments are foundations to be 

used in the evaluation of fluid devices that manages compressible flow such as the one presented 

in the Carbon Capture and Storage (CCS) technology, which enhances compression stage 

inefficiencies. 

 

The topology optimization technique offers the flexibility and robustness of innovating fluid flow 

devices that are being searched, as the efficiency of the fluid flow passages is guaranteed by the 

CFD modelling along with optimization algorithms that design and control the fluid systems. The 

optimization ensures an optimized objective function by solving the primal fluid flow system 
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subjected to the state equations. The topology optimization of compressible flow has been reached 

recently by two works considering laminar flow and perfect gases via the discrete and finite 

differences adjoint approach. Therefore, this research aims to solve the turbulence phenomenon 

and real gas influence on topology optimization of compressible turbulence by considering the 

discrete adjoint approach. 

 

By doing so, the basis of topology optimization of compressible turbulent flow and real gases 

influence can be grounded, as the compressible regime is an unexplored optimization field, 

mainly by the challenges involved during the fluid flow modelling and the adjoint calculation of 

compressible systems, which fundaments the scientific contribution of the current research.     

 

1.5. OBJECTIVES 
• Develop topology optimization formulation of subsonic compressible rotational turbulent 

flow considering the discrete adjoint approach (automatic differentiation) for ideal and real 

gases. 

• Influence of continuous and integer design variables optimizers in the topology 

optimization of incompressible turbulent flow based on the continuous adjoint approach. 

• Apply topology optimization for design channels and rotors under subsonic compressible 

flow considering real and perfect gases. 

 

1.6. METHODOLOGY 
 

Compressible turbulent rotational regime modelling for real gases is a challenging process that 

requires not only powerful solvers and accurate discretization methods, but also, innovative 

techniques for T.O. developed in the current research. The optimization process is tackled with 

a progressive methodology shown in Figure 6. 

Figure 6. Research Methodology 
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The work started by considering T.O. of incompressible regime, developing the continuous 

adjoint formulation in the CFD software OpenFOAM based on the FVM method. The primal 

and adjoint code are programmed along with the MMA (Svanberg 1987) and TOBS (Sivapuram 

and Picelli 2018) optimizers to update the material distribution. Parallel to the mentioned work, 

the discrete adjoint approach is developed as well, by combining OpenFOAM simulation tools 

with the automatic differentiator from FEniCS, which is a stabilized PDEs resolution software 

used to implement T.O. for incompressible flows based on FEM (Mortensen et al. 2011). The 

discrete approach takes the solution of the primal equation from OpenFOAM and uses its weak 

form to obtain the adjoint code via the automatic differentiator tool dolfin-adjoint considering 

the iPOPT (Wachter and Biegler 2006) optimizer. After each software capability is validated, 

the compressible regime is reached by the discrete adjoint approach due to its flexibility, as it 

can get the adjoint code employing the automatic differentiator. At first, perfect gas is 

considered under compressible laminar and turbulent regime, finishing with real gas modelling 

optimization considering the Peng-Robinson state equation.  

 

 

1.7. SCIENTIFIC CONTRIBUTIONS 
 

• Optimize compressible turbulent regime considering ideal and real gas at rotating domains; 

• Analyse the influence of the IDV binary optimization algorithm for topology optimization 

of turbulence regime; 

• Determine the influence of turbulence phenomenon at incompressible flow optimization 

considering FVM; 

• Consider automatic differentiation to solve the adjoint code of compressible turbulent 

regime. 

Three articles were developed with this research: 

a) D. Alonso, L. F. Garcia Rodriguez, and E. C. N. Silva, “Flexible framework for fluid 

topology optimization with OpenFOAM and finite element-based high-level discrete 

adjoint method ( FEniCS / dolfin-adjoint ),” Struct. Multidiscip. Optim., vol. 64, pp. 

4409–4440, 2021, [Online]. Available: https://doi.org/10.1007/s00158-021-03061-4. 

b) Garcia-Rodriguez L.; Kiyono, C; Picelli, R And Silva, E. “On the use of continuous and 

integer design variables in topology optimization of incompressible turbulent fluid 

https://doi.org/10.1007/s00158-021-03061-4
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flow”, App. Math. Model., vol. 115, pp 337-359, 2023, [Online]. Available: 

https://doi.org/10.1016/j.apm.2022.10.039   

c) Garcia-Rodriguez L.; Alonso, D. And Silva, E. “Topology optimization of turbulent 

subsonic compressible flow” (under review). Journal of Structural and Multidisciplinary 

Optimization, 2022. 

 

1.8. DOCUMENT OUTLINE 
 

The document is organized as follows: in Chapter 2, the theory of the continuous and discrete 

adjoint approaches is presented, each following the structure of introducing the equilibrium 

equations, the turbulence model treatment, followed by the topology optimization approach and 

the numerical implementation. In Chapter 4, the results of the optimization cases are presented, 

starting with the incompressible cases at laminar and turbulent regime. Then, the compressible 

cases are presented following the progressive strategy: laminar regime, compressible turbulence 

regime approximation and compressible turbulent flow. Finally, the compressible cases that 

consider real gas modelling are presented. In Chapter 4, some conclusions are inferred, and 

future work on the current research is suggested. In Chapter 6, the references used are detailed.  

Lastly, in Chapter 7, the appendix is shown.

https://doi.org/10.1016/j.apm.2022.10.039
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2. CONTINUOUS ADJOINT APPROACH USED AT 

INCOMPRESSIBLE TURBULENT FLOW 

OPTIMIZATION 
 

The optimization of a fluid flow system can be stated as: by the definition of “Ω” as an open 

domain in the space 𝑅𝑛, 𝑛 = 2, 3, with boundary condition Γ. If 𝜙 denote the scalar valued state 

variable and 𝛼𝑘, 𝑘 = 1,… , 𝐾, denote the discrete set of control parameters or design variables. 

For example, a case where the constraints are of the second order nonlinear, elliptic partial 

differential equation (PDE) 

−∇ ∙ (𝑎∇𝜙) + bi ∙ ∇𝜙 + 𝜙
3 =∑𝛼𝑘𝑓𝑘

𝐾

𝑘=1

 in Ω (1) 

 

along with the boundary condition 

𝜙 = 0 on Γ (2) 

where 𝑎, bi and 𝑓𝑘, 𝑘 = 1, . . . 𝐾 are given functions defined on Ω̅. Then, an example of an 

objective or cost, or performance functional is given by 

𝒯(𝜙, 𝛼1, … , 𝛼𝑘) =
1

2
∫(𝜙 −Φ)2𝑑Ω

 

Ω

+
𝜎

2
∑(𝛼𝑘)

2

𝐾

𝑘=1

 (3) 

where Φ is a given function and 𝜎 a given penalty parameter. The optimization problem is then 

given by: 

“Find 𝜙 and 𝛼𝑘, 𝑘 = 1,…𝐾, such that the functional 𝒯 defined (3) is minimized subject to the 

requirements that 𝜙 and 𝛼𝑘, 𝑘 = 1,…𝐾, satisfy the constraints (1) and (2)” 

To determine the gradient of the functional the chain rule can be applied to 𝒯(𝜙(𝑔), 𝑔) where 

𝜙(𝑔) denotes the solution of the state equation 𝐹(𝜙, 𝑔) = 0, to obtain: 

𝐷𝒯

𝐷𝑔
|
𝑔(𝑚)

=
𝜕𝒯

𝜕𝜙
|
𝑔(𝑚)

𝑑𝜙

𝑑𝑔
|
𝑔(𝑚)

+
𝜕𝒯

𝜕𝑔
|
𝑔(𝑚)

 (4) 

 

where (∙)]𝑔(𝑚) denotes evaluation at the current iterate for the control, i.e. at 𝑔(𝑚). The base is 

to calculate the sensitivities 
𝑑𝜙

𝑑𝑔
. If the derivation is performed by hand, then 𝜆 is the solution of 

the adjoint equation, and the state problem is written as: 

−𝛻 ∙ (𝑎𝛻𝜆) − 𝛻 ∙ (𝑏𝜆) + 3𝜙2𝜆 = 𝜙 −Φ in Ω (5) 

and  
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𝜆 = 0 𝑜𝑛 Γ (6) 

 

where 𝜙 is the solution of the state equation (Eq.1) and its boundary conditions (Eq.2) the 

current values of the design variables. The gradient of its functional in terms of the adjoint 

equation replacing (𝜙 −Φ) is  

𝐷𝐹

𝐷𝛼𝑘
= 𝜎𝛼𝑘 +∫ (−𝛻 ∙ (𝑎𝛻𝜆) − 𝛻 ∙ (𝑏𝜆) + 3𝜙

2𝜆)𝜙𝑘

 

Ω

𝑑Ω, 𝑘 = 1… ,𝐾 

𝐷𝐹

𝐷𝛼𝑘
= 𝜎𝛼𝑘 +∫ (−𝛻 ∙ (𝑎𝛻𝜙𝑘) − 𝛻 ∙ (𝑏𝜙𝑘) + 3𝜙

2𝜙𝑘)𝜆
 

Ω

𝑑Ω, 𝑘 = 1… ,𝐾 

𝐷𝐹

𝐷𝛼𝑘
= 𝜎𝛼𝑘 +∫𝜆𝑓𝑘

 

Ω

𝑑Ω, 𝑘 = 1… ,𝐾 

(7) 

 

By doing so, the components of the gradient of the functional w.r.t. the design variables 𝛼𝑘 are 

given in terms of the solution 𝜆 of the adjoint equations. Therefore, the resolution of the 𝐾 

components using the adjoint equation approach requires the solution of a single linear system 

and the adjoint equations, which are derived by hand according to the T.O. formulation, i.e. the 

adjoint system depends on the fluid flow regime, the objective function and the remaining 

control parameters. The T.O. literature (Giannakoglou et al.; Kontoleontos et al. 2013; 

Papoutsis-Kiachagias et al. 2011; Papoutsis-Kiachagias and Giannakoglou 2016) deals with the 

incompressible regime by the continuous adjoint approach, and none research has found yet the 

continuous adjoint system for a compressible flow due to the mathematical complexity that 

demands the hand derivation of the equilibrium state equations for compressible flow, along 

with the derivation of its turbulence treatment. Nevertheless, the computational cost advantage, 

the programming flexibility, and the straight-understanding behaviour of the continuous adjoint 

approach makes it attractive to study other challenges presented in fluid flow control such as 

optimizers influence, accurate fluid/solid boundary definition, pure diffusive problems among 

others. Therefore, this first stage focuses on analysing new alternatives to overcome challenges 

of fluid flow control apart from the adjoint system acquisition. 

 

The T.O. formulation considers the minimization of the total pressure losses between the 

inlet/outlet boundaries (𝐹) subjected to the RANS equations (expressed as PDE), the volume 

constraint and the permeability design variable of the volume cells.  The main contribution 

states in the analysis of an IDV-based optimizer over the topology optimization resolution, as 

it defines continuously the solid-fluid boundary, which is desired for turbulence treatment. The 

analysis is compared to the CDV-based optimizer and the results are highlighted by its 
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innovation and low computational cost. The developed software is labelled as 

“adjointTopOptFOAM” and is implemented in the OpenFOAM extended version 1912 

(OpenFOAM1912), where the turbulence model is the Spalart-Allmaras for steady-state flow. 

This chapter presents at first the equilibrium equations for incompressible turbulent flow, 

followed by the T.O. formulation, its adjoint equations and an explanation of the optimization 

algorithms used along with its numerical implementation. 

 

2.1. EQUILIBRIUM EQUATIONS OF 

INCOMPRESSIBLE TURBULENT FLOW 

Initially the incompressible, steady-state turbulent regime is considered to validate the 

performance of the developed T.O. software, as literature only has tackled incompressible 

regime for the continuous adjoint approach. The RANS equations are used to model the 

turbulence phenomenon (Wilcox 1993):  

𝑅𝑝 =
𝜕�̅�𝑖
𝜕𝑥𝑖

= 0 (8) 

𝑅𝑢 =
𝜕(�̅�𝑖�̅�𝑗)

𝜕𝑥𝑗
+
1

𝜌

𝜕�̅�

𝜕𝑥𝑗
− [(𝜈) (

𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖
) − 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅] = 0 (9) 

 

where �̅�𝑖 and �̅� are the average velocity and pressure respectively, 𝜌 is the density, 𝜈 the 

kinematic viscosity and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅ the Reynolds stress tensor. 

 
 

2.2. TURBULENCE MODEL TREATMENT 
 

The calculation of the Reynolds stress tensor (𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅) is a cutting-edge research fields of the 

fluid modelling, which is discretized according to the Reynolds number and application area. 

In T.O. applications the literature has shown reliable results via the Boussinesq hypothesis 

(Wilcox 1993): 

𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅ = 2�̃�
𝑡
(
𝜕𝑢�̅�

𝜕𝑥𝑗
+
𝜕𝑢�̅�

𝜕𝑥𝑖
−
1

3

𝜕𝑢�̅�

𝜕𝑥𝑘
𝛿𝑖𝑗) −

2

3
�̅�𝑘𝛿𝑖𝑗 (10) 

As incompressible flow is considered, the terms −
2

3
�̅�𝑘𝛿𝑖𝑗 and −

1

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 are ignored. The 𝜇𝑡 

term is the eddy viscosity obtained via the Boussinesq hypothesis and the turbulence model. 
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2.2.1. Spalart-Allmaras Turbulence Model 

The SA turbulence model has been successfully used in T.O. of turbulent incompressible 

regime (Bueno-Orovio et al. 2012; Dilgen et al. 2018a; Papoutsis-Kiachagias and Giannakoglou 

2016; Yoon 2020), which makes it suitable for the current research. The SA turbulence model 

relates the turbulent eddy viscosity (𝜇𝑡) as following (Spalart and Allmaras 1992):  

�̃�𝑡 = 𝜌𝑣 𝑓𝑣1 (11) 

𝑢𝑗
𝜕�̂�

𝜕𝑥𝑗
= 𝑐𝑏1(1 − 𝑓𝑡2)�̂�𝑣 − [𝑐𝑤1𝑓𝑤 −

𝑐𝑏1

𝑘2
𝑓𝑡2] (

�̂�

𝛥
)
2 1

𝜎
[
𝜕

𝜕𝑥𝑗
((𝑣 + 𝑣)

𝜕�̂�

𝜕𝑥𝑗
) + 𝑐𝑏2

𝜕�̂�

𝜕𝑥𝑖

𝜕�̂�

𝜕𝑥𝑖
]  (12) 

 

where 𝑣 is the viscosity like variable, Δ the nearest wall distance value, and the extra terms 

are defined as: 

𝑓𝑣1 =
𝑋3

𝑋3 + 𝑐𝑣1
3  (13) 

𝑋 =
𝑣

𝑣
 (14) 

�̂� = |𝑊𝑖𝑗| +
𝑣

𝑘2Δ2
𝑓𝑣2 (15) 

𝑓𝑣2 = 1 −
𝑋

1 + 𝑋𝑓𝑣1
 

𝑓𝑤 = 𝑔 [
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6 ]

1
6

 

(16) 

𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟) 

𝑟 = min [
𝑣

�̂�𝑘2Δ2
, 10] 

(17) 

𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝑋
2) 

𝑊𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(18) 

 

with constants 𝑐𝑏1 = 0.1355, 𝜎 = 2/3, 𝑐𝑏2 = 0.622, 𝜅 = 0.41, 𝑐𝑤1 =
𝑐𝑏1

𝜅2
+
1+𝑐𝑏2

𝜎
, 𝑐𝑤2 = 0.3, 

𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1 
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2.2.2. Near-Wall Distance Calculation 

The use of the SA turbulence model needs the near wall distance value (𝛥),  and its variation to 

the normal surface (𝜕Δ/𝜕𝑛), which is calculated specifically by the Eikonal equation (Bueno-

Orovio et al. 2012): 

∂𝛥

∂xj

∂𝛥

∂xj
= 1   (19) 

Nevertheless, its use is highly costly in terms of computational performance. Therefore, the 

current research establishes the use of the Hamilton-Jacobi equation, which is an approximate 

equivalent solution validated by the literature (Papoutsis-Kiachagias and Giannakoglou 2016; 

Tucker et al. 2004): 

𝑅Δ =
∂(𝑐𝑗𝛥)

∂xj
− 𝛥

∂2𝛥

∂xj
2 − 1 =

∂ (
∂𝛥
∂xj

𝛥)

𝜕𝑥𝑗
− 𝛥

∂2𝛥

∂xj
2 − 1 = 0 (20) 

 

2.3. FLUID FLOW MODELLING 
 

The fluid flow modelling is made via the computational fluid dynamics (CFD) technology, 

which is a computational-based method to treat the governing equation of the fluids through 

numerical schemes and discretization methods. There are different approaches of CFD 

modelling mainly based on the discretization technique: the Finite Volume Method (FVM) and 

the Finite Element Method (FEM). The current research stage considers the FVM through the 

“OpenFOAM” software. 

 

2.3.1. The Finite Volume Method Used At The 

OpenFoam Software 

In the FVM, the partial differential equations representing conservation laws are transformed 

into discrete algebraic equations through a finite difference analysis. The FVM is a conservative 

method as the flux entering into a given volume is identical to the outflow of the adjacent 

volume. In addition, it can be formulated at unstructured polygonal meshes as the unknown 

variables are evaluated at the centroids of the volumes and not at their faces. The method starts 

with the discretization of the geometric domain, i.e. divide the domain into non-overlapping 

finite volumes. Then, the partial differential equations are discretized into algebraic equations 

by their integration over each discrete volume. Finally, the system of algebraic equations is 
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solved to compute the dependent variable at each of the control volumes. By using this FVM 

method, some terms in the conservation equation are turned into fluxes evaluated at the faces 

of the finite volumes. The coupling between the pressure and velocity fields is made through 

the “simpleFOAM” solver, which is based on the "SIMPLE” algorithm and explained at 

following. 

2.3.2. Resolution of the Algebraic State Equations 
The SIMPLE algorithm is a numerical method used to solve the algebraic governing state 

equations of fluid flow and provide an accelerated convergence to stabilize steady-state 

solutions for incompressible and compressible flows (Rahman and Mustapha 2015). The 

discretized form of the momentum and mass conservation equations are presented as: 

∑ �̇�𝑓
𝑓~𝑛𝑏(𝐶)

= �̇�𝑒 + �̇�𝑤 = 0 (21) 

 

𝑎𝑒𝑢𝑒
∗ =∑𝑎𝑛𝑏𝑢𝑛𝑏

∗ + 𝑏 + (𝑝𝑝
∗ − 𝑝𝐸

∗ )𝐴𝑒 

𝑎𝑛𝑣𝑛
∗ =∑𝑎𝑛𝑏𝑣𝑛𝑏

∗ + 𝑏 + (𝑝𝑝
∗ − 𝑝𝑁

∗ )𝐴𝑛 

𝑎𝑡𝑤𝑡
∗ =∑𝑎𝑛𝑏𝑤𝑛𝑏

∗ + 𝑏 + (𝑝𝑝
∗ − 𝑝𝑇

∗ )𝐴𝑡 

(22) 

 

where �̇� indicates the mass flux through the face (𝑓) from the East (𝑒) and West (𝑤) sides.  

The system can be solved only when the pressure field is given or estimated. Unless the correct 

pressure field is employed, the resulting velocity field will not satisfy the relation. Therefore, 

an initial velocity field (𝑢∗, 𝑣∗, 𝑤∗) is calculated based on a guessed pressure distribution (𝑝∗) 

to start the iterations.  

𝑎𝑝

𝛼𝑢
𝑢𝑝 =∑𝑎𝑐.𝑣.𝑢𝑐.𝑣. + (𝑝𝑤 − 𝑝𝑒)Δ𝑦 + 𝑏 +

(1 − 𝛼𝑢)𝑎𝑝

𝛼𝑢
𝑢𝑝
(𝑛−1)

 

𝑐.𝑣.

 

 
𝑎𝑝

𝛼𝑣
𝑣𝑝 =∑𝑎𝑐.𝑣.𝑣𝑐.𝑣. + (𝑝𝑠 − 𝑝𝑛)Δx + 𝑏 +

(1 − 𝛼𝑣)𝑎𝑝

𝛼𝑣
𝑣𝑝
(𝑛−1)

 

𝑐.𝑣.

 

(23) 

 

Then, a new value of pressure (𝑝) is updated from the following equation. 

𝑝 = 𝑝∗ + 𝑝′ (24) 

 

where 𝑝′ is described at: 

𝑎𝑐,𝑐𝑝´𝑐,𝑐 = 𝑎𝐸,𝑐𝑝′𝐸,𝑐 + 𝑎𝑊,𝑐𝑝′𝑊,𝑐 + 𝑎𝑐,𝑁𝑝′𝑐,𝑁 + 𝑎𝑐,𝑆𝑝′𝑐,𝑆 + 𝑏𝑐,𝑐
′  

𝑎𝑐,𝑐 = 𝑎𝐸,𝑐 + 𝑎𝑊,𝑐 + 𝑎𝑐,𝑁 + 𝑎𝑐,𝑆 
(25) 
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𝑎𝐸,𝑐 = (𝜌𝑑𝐴)𝑒,𝑐 

𝑎𝑊,𝑐 = (𝜌𝑑𝐴)𝑤,𝑐 

𝑎𝑐,𝑆 = (𝜌𝑑𝐴)𝑐,𝑠 

𝑏𝐼,𝐽
′ = (𝜌𝑢∗𝐴)𝑤,𝑐 − (𝜌𝑢

∗𝐴)𝑒,𝑐 + (𝜌𝑣
∗𝐴)𝑐,𝑠 − (𝜌𝑢

∗𝐴)𝑐,𝑛 

 

Once the pressure is updated, the velocity is corrected with the following: 

𝑢𝑒 = 𝑢𝑒
∗ + 𝑑𝑒(𝑝𝑃

′ − 𝑝𝐸
′ ) 

 
𝑣𝑛 = 𝑣𝑛

∗ + 𝑑𝑛(𝑝𝑃
′ − 𝑝𝑁

′ ) 
 

𝑤𝑡 = 𝑤𝑡
∗ + 𝑑𝑡(𝑝𝑃

′ − 𝑝𝑇
′ ) 

(26) 

 

The described process corresponds to the Semi-Implicit Method for Pressure-Linked (SIMPLE) 

algorithm, which can be summarized as: 

a) Guess the pressure field 𝑝∗. 

b) Solve equation 23 to obtain 𝑢∗, 𝑣∗, 𝑤∗. 

c) Solve the 𝑝′. 

d) Calculate 𝑝 by adding 𝑝′ to 𝑝∗. 

e) Calculate 𝑢, 𝑣, 𝑤 from their previous values. 

f) Solve the discretization equation for other 𝜙′s (such as temperature, concentration, and 

turbulent quantities) if they influence the flow field through fluid properties, source terms, 

etc. 

g) Treat the corrected pressure 𝑝 as a new guessed pressure 𝑝∗, return to step b) and repeat the 

whole pressure until convergence is reached. 

 

After modelling the fluid flow, the adjoint code is needed to perform the topology optimization 

method. The path taken to derive the adjoint code is explained in the following. 

 

 

2.4. TOPOLOGY OPTIMIZATION FORMULATION 

The optimization problem considers the minimization of the total pressure losses between the 

inlet and outlet boundaries of an established domain, obeying (Papoutsis-Kiachagias and 

Giannakoglou 2016) formulation. It is subjected to the constraints of the fluid flow physics, 

established by the modified RANS equations (𝑅𝑝, 𝑅𝒖), the modified turbulence model (𝑅�̃�𝑡), 

the near-wall distance calculation (𝑅∆), the volume constraint, (�̅�) and the permeability design 

variable (𝛾). Each constraint is explained as follows. 
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2.4.1. Permeability Design Variable (𝜶) 

The fluid topology optimization method based on the pseudo-density approach is implemented 

by including an additional porosity term (𝑘𝜙) in Eq. (9), (12) and (20), which allows the solid 

or fluid region definition in the domain. The idea consists of making α to assume 0 or 1 values, 

to represent solid and fluid, respectively. To do so, the material distribution model proposed by 

(Borrvall and Petersson 2003) is applied to each fluid flow equation: 

𝑘𝜙 = 𝑘𝜙 + (𝑘𝜙 − 𝑘𝜙)𝛼
(1 + 𝑞𝜙)

(𝛼 + 𝑞𝜙)
 (26) 

 

where 𝑘𝜙 represents each primal variable to be considered, i.e. 𝑢, �̃�𝑡, or Δ, as it will be described 

in more detail in the next sections. The model behaves like a linear or convex interpolation 

function depending on 𝑞𝜙 chosen value (Figure 7), which is a penalty parameter with a value 

greater than zero used to control the level of “grey” in the optimized design. The 𝑘𝜙 minimum 

value is established as zero to represent fluid and 𝑘𝜙 maximum is calibrated according to each 

case to avoid fluid entrance inside the cell. When 𝛼 is equal to zero, solid regions are 

established, and when 𝛼 equal to 1 a fluid domain is represented. 

Figure 7 Material distribution equation behaviour 

 

 

2.4.2. Modified Equilibrium Equations of 

Incompressible Turbulent Flow 
 

Modified RANS Equations: 𝑹𝒑, 𝑹𝒖 

The penalization term 𝑘𝑢𝑢�̅� is added to the momentum equation relating velocity field (𝑢𝑖) to 

the permeability region 𝛼 that determines the domain solid/fluid regions (Borrvall and 

Petersson 2003). High 𝛼 values overcome the momentum equation and determine a solid 

region, and near-zero values recover the original momentum equation, while the mass 
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conservation remains intact. The previous modification results in the steady-state modified 

averaged RANS equations for the incompressible turbulent regime: 

𝑅𝑝 =
𝜕�̅�𝑖
𝜕𝑥𝑖

= 0 (27) 

𝑅𝑢 =
𝜕(�̅�𝑖�̅�𝑗)

𝜕𝑥𝑗
+
1

𝜌

𝜕�̅�

𝜕𝑥𝑗
− [(𝜈) (

𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖
) − 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅] + 𝑘𝑢�̅�𝑖⏟

𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝑇𝑒𝑟𝑚

= 0 (28) 

where 𝛼𝑢 is the material modelling term of the momentum equation. 

Modified Turbulence Model: 𝑹�̃�𝒕 

It consists of adding the penalization term 𝑘𝑣�̃��̃�𝑡 in the modified turbulent viscosity �̃� 

calculation: 

𝑅�̃�𝑡 = 𝑣𝑗
∂�̃�

∂xj
−
∂

∂xj
[(𝑣 +

�̃�

𝜎
)
∂�̃�

∂xj
] −

𝑐𝑏2
𝜎
(
∂�̃�

∂xj
)

2

− �̃�𝑃(�̃�) + �̃�𝐷(�̃�) + 𝑘𝑣�̃��̃�𝑡⏟  
𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑇𝑒𝑟𝑚

= 0  (29) 

while the other variables remain as the original model (Spalart and Allmaras 1992). Low 𝛼𝑡 

values allow the turbulence calculation in the fluid cells, otherwise the turbulence is not 

considered. 

Modified Near Wall Distance Calculation: 𝑹∆ 

The near-wall distance calculation is part of the equilibrium equations of the fluid flow, 

however, previous works have neglected its independence from the fluid/solid definition. By 

doing so, the wall distance is still calculated independently from the cell permeability, affecting 

the computational cost, and inducing numerical errors on solid cells that are already defined. 

To overcome such differences, the current research proposes to penalize also the near-wall 

distance calculation by including a penalization term 𝑘ΔΔ to the Hamilton-Jacobi equation 

(Eq(20). By doing so, the independent performance of the 𝑘ΔΔ term from the momentum 

equation penalization term (𝑘u𝑢𝑖) allows not to affect the near-wall distance calculation to the 

solid cells, and when the solid/fluid boundary is analyzed, the 𝑘ΔΔ term is zero no matter which 

𝑘Δ is selected. The definition is illustrated in Figure 8. 

Figure 8 Influence of the penalization term on the near-wall distance calculation 
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Therefore, the modified Hamilton-Jacobi equation states as:  

𝑅Δ =

∂(
∂𝛥
∂xj

𝛥)

∂xj
− 𝛥

∂2𝛥

∂xj
2 − 1 + 𝑘ΔΔ⏟

𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝑇𝑒𝑟𝑚

= 0 (30) 

 

2.4.3. Topology Optimization Problem Definition 

The topology optimization problem is stated in Eq.(31), which establishes the minimization of 

the total pressure losses between the inlet/outlet boundaries subjected to the modified 

equilibrium equations for incompressible turbulent flow, the permeability design variable and 

the volume constraint. The total pressure losses objective function has been widely used in 

problems where the incompressible turbulent regime is optimized through the continuous 

adjoint approach (Kontoleontos et al. 2013; Papoutsis-Kiachagias et al. 2011; Papoutsis-

Kiachagias and Giannakoglou 2016), which is an equivalent of the energy dissipation 

(Papoutsis-Kiachagias and Giannakoglou 2016) suitable to the analysis of compressors as by 

reducing the total pressure the vortex generation is reduced too. Then, the T.O. problem 

definition is stated at following: 

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 

𝐹 = ∫ (�̅� +
1

2
�̅�𝑖
2) �̅�𝑖𝑛𝑖 𝑑𝛤

𝛤

 

(31) 

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 

0 ≤ 𝛾 ≤ 1 

𝑅𝑝 =
𝜕�̅�𝑖
𝜕𝑥𝑖

= 0 

𝑅𝑢 =
𝜕(�̅�𝑖�̅�𝑗)

𝜕𝑥𝑗
+
1

𝜌

𝜕�̅�

𝜕𝑥𝑗
− [(𝜈) (

𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖
) − 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅] + 𝑘𝑢�̅�𝑖⏟

𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝑇𝑒𝑟𝑚

= 0 

𝑅�̃�𝑡 = 𝑣𝑗
∂�̃�

∂xj
−
∂

∂xj
[(𝑣 +

�̃�

𝜎
)
∂�̃�

∂xj
] −

𝑐𝑏2
𝜎
(
∂�̃�

∂xj
)

2

− �̃�𝑃(�̃�) + �̃�𝐷(�̃�) + 𝑘�̃�𝑡�̃�𝑡 = 0 

𝑅∆ =

𝜕 (
∂𝛥
∂xj

𝛥)

∂xj
− 𝛥

∂2𝛥

∂xj
2 − 1 + 𝑘Δ𝛥 = 0 

𝑉 ≤ 𝑉𝑓𝑟𝑎𝑐 

where the volume constraint is calculated by: 

𝑉 =
∫ 𝛾dΩ
 

Ω

∫ dΩ
 

Ω

 (32) 
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2.5. SENSITIVITY CALCULATION 

As explained previously, the sensitivities are calculated to get the optimized point of the T.O. 

formulation and derive the optimization of the fluid flow. To do so, an Augmented Lagrange 

Multiplier (ALM) method is used to cope with equality constraints. Since the constraints of the 

state variables are set to zero, i.e. 𝑅𝑝 = 𝑅 
𝑢 = 𝑅�̃� = 𝑅∆ = 0, the augmented objective function 

𝐿𝑎𝑢𝑔, can be defined and minimized instead, defined as: 

𝐿𝑎𝑢𝑔 = 𝐹 +∫𝑞𝑅
𝑝

 

Ω

dΩ +∫𝑣𝑖𝑅 
𝑢𝑖

 

Ω

dΩ +∫ �̃�𝑎𝑅 
�̃�

 

Ω

dΩ +∫∆𝑎𝑅 
∆

 

Ω

dΩ (33) 

 

where 𝑞, 𝑣𝑖 , 𝑇𝑎, �̃�𝑎 and ∆𝑎 expresses the adjoint variables of the state equations, e.g. 𝑞 the adjoint 

pressure, 𝑣𝑖 the adjoint velocity, and so on. Thus, the optimization formulation of Eq. (31) can 

be rewritten as: 

Minimize  {𝐿𝑎𝑢𝑔  

(34) 
Subject to  {

𝑉𝑓𝑟𝑎𝑐 ≤ 𝑉𝑡𝑎𝑟
0 < 𝛾 < 1

   

 

To find out the optimized point, the augmented Lagrange function is differentiated to each 

variable and expressed as: 

δ𝐿 = δ𝑢𝑖𝐿 + δ𝑝𝐿 + δ𝛼𝐿 + δ�̃�𝐿 + δ∆𝐿 (35) 

where δ𝛼𝐿 = 0 and δ𝑝𝐿 + δ𝑢𝑖𝐿 + δ�̃�𝐿 + δ∆𝐿 = 0 allows solving the sensitivity and adjoint 

equations, respectively. The derivation of the adjoint system is performed by hand at the 

continuous adjoint approach, and the literature (Papoutsis-Kiachagias and Giannakoglou 2016) 

presents the derivation of the δ𝑝𝐿, δ𝑢𝑖𝐿 and δ�̃�𝐿 terms at incompressible regime. The adjoint 

near wall distance term (δ∆𝐿) has not been considered previously, however, the current research 

analyses its influence by varying the permeability through the material modelling approach 

(Eq.26). The derivation is presented at following.  

 

2.5.1. Field Adjoint Equations 

The current research proposes a different adjoint wall distance calculation (𝑅Δ𝑎) from the 

literature (Papoutsis-Kiachagias and Giannakoglou 2016), as the Hamilton-Jacobi equation is 
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modified by including the porosity variation term (𝛼ΔΔ). The formulation is developed as 

following: 

δ∆𝐿 = ∫∆𝑎𝑅 
∆

 

Ω

dΩ 

𝛿∆𝐿

𝛿𝑏𝑛
= ∫ ∆𝑎

𝜕𝑅 
∆

𝜕𝑏𝑛

 

𝛺

𝑑𝛺 +∫ 𝛥𝑎𝑅
𝛥

 

𝑆𝑤𝑝

𝑛𝑘
𝛿𝑥𝑘
𝛿𝑏𝑛

dS 

(36) 

By differentiating the modified Hamilton-Jacobi Equation (𝑅Δ): 

𝜕𝑅 
∆

𝜕𝑏𝑛
=

𝜕

𝜕𝑏𝑛
[
𝜕

𝜕𝑥𝑗
(
𝜕𝛥

𝜕𝑥𝑗
𝛥) − 𝛥

𝜕2𝛥

𝜕𝑥𝑗
2 − 1 + 𝑘𝛥𝛥] 

𝜕𝑅 
∆

𝜕𝑏𝑛
=
𝜕

𝜕𝑥𝑗
[
𝜕𝛥

𝜕𝑥𝑗

𝜕𝛥

𝜕𝑏𝑛
+ 𝛥

𝜕

𝜕𝑥𝑗
(
𝜕𝛥

𝜕𝑏𝑛
)] −

𝜕𝛥

𝜕𝑏𝑛

𝜕2𝛥

𝜕𝑥𝑗
2 − 𝛥

𝜕

𝜕𝑥𝑗
[
𝜕

𝜕𝑥𝑗
(
𝜕𝛥

𝜕𝑏𝑛
)] +

𝜕𝑘𝛥
𝜕𝑏𝑛

𝛥 + 𝑘𝛥
𝜕𝛥

𝜕𝑏𝑛
 

𝜕𝑅 
∆

𝜕𝑏𝑛
= 2

𝜕𝛥

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
(
𝜕𝛥

𝜕𝑏𝑛
) +

𝜕𝑘𝛥
𝜕𝑏𝑛

𝛥 + 𝑘𝛥
𝜕𝛥

𝜕𝑏𝑛
 

(37) 

 

As porosity value is independent of the normal boundary vector variation (𝜕𝑏𝑛), the 𝜕𝑘𝛥/𝜕𝑏𝑛 

is cancelled. Replacing Eq.(37) with Eq.(36), it is obtained:    

𝛿∆𝐿

𝛿𝑏𝑛
= ∫∆𝑎

 

𝛺

(2
𝜕𝛥

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
(
𝜕𝛥

𝜕𝑏𝑛
) + 𝑘𝛥

𝜕𝛥

𝜕𝑏𝑛
)𝑑𝛺 +∫ 𝛥𝑎𝑅

𝛥
 

𝑆𝑤𝑝

𝑛𝑘
𝛿𝑥𝑘
𝛿𝑏𝑛

𝑑𝑆 

𝛿∆𝐿

𝛿𝑏𝑛
= ∫2∆𝑎

 

𝛺

𝜕𝛥

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
(
𝜕𝛥

𝜕𝑏𝑛
)𝑑𝛺 + ∫∆𝑎

 

𝛺

𝑘𝛥
𝜕𝛥

𝜕𝑏𝑛
𝑑𝛺 +∫ 𝛥𝑎𝑅

𝛥
 

𝑆𝑤𝑝

𝑛𝑘
𝛿𝑥𝑘
𝛿𝑏𝑛

𝑑𝑆 

𝛿∆𝐿

𝛿𝑏𝑛
= ∫2∆𝑎

 

𝛤

𝜕𝛥

𝜕𝑥𝑗
𝑛𝑗
𝜕𝛥

𝜕𝑏𝑛
𝑑𝛤 −∫2

 

𝛺

𝜕

𝜕𝑥𝑗
(𝛥𝑎

𝜕𝛥

𝜕𝑥𝑗
)
𝜕𝛥

𝜕𝑏𝑛
𝑑𝛺 + ∫∆𝑎

 

𝛺

𝑘𝛥
𝜕𝛥

𝜕𝑏𝑛
𝑑𝛺

+∫ 𝛥𝑎𝑅
𝛥

 

𝛤𝑤𝑝

𝑛𝑘
𝛿𝑥𝑘
𝛿𝑏𝑛

𝑑𝛤 

(38) 

Eq.61 of (Papoutsis-Kiachagias and Giannakoglou 2016) shows the derivation of the primal 

variables, i.e. 𝛿𝑝𝐿/𝛿𝑏𝑛, 𝛿𝑢𝑖𝐿/𝛿𝑏𝑛, 𝛿�̃�𝐿/𝛿𝑏𝑛, which combined with Eq.38 and by imposing the 

multiplier of 𝜕𝛥/𝜕𝑏𝑛 to be equal to zero in the resulting volume integrals, results in the 

modified adjoint Hamilton-Jacobi equation (𝑅𝛥𝑎): 

∫ 𝜈𝜈𝑎𝐶𝛥
𝜕𝛥

𝜕𝑏𝑛

 

𝛺

𝑑𝛺 −∫ 2
𝜕

𝜕𝑥𝑗
(𝛥𝑎

𝜕𝛥

𝜕𝑥𝑗
)
𝜕𝛥

𝜕𝑏𝑛

 

𝛺

𝑑𝛺 + ∫∆𝑎

 

𝛺

𝑘𝛥
𝜕𝛥

𝜕𝑏𝑛
𝑑𝛺 = 0 

∫ [𝜈𝜈𝑎𝐶𝛥 − 2
𝜕

𝜕𝑥𝑗
(𝛥𝑎

𝜕𝛥

𝜕𝑥𝑗
) + ∆𝑎𝑘𝛥]

𝜕𝛥

𝜕𝑏𝑛

 

𝛺

𝑑𝛺 = 0 

𝑅𝛥𝑎 = −2
∂

∂xj
(Δ𝑎

∂𝛥

∂xj
) + 𝜈𝜈𝑎𝐶Δ + ∆𝑎𝑘Δ = 0 

(39) 
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Therefore, the updated continuous adjoint formulation for incompressible turbulent flow 

developed in the current research is shown in equations (40)-(43): 

𝑅𝑞 = −
∂𝑣𝑗

∂xj
= 0 (40) 

𝑅𝑖
𝑣 = 𝑣𝑗

𝜕�̅�𝑗

𝜕𝑥𝑖
−
𝜕(�̅�𝑗𝑣𝑖)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑡) (

𝜕𝑣𝑖

𝜕𝑥𝑗
+
𝜕𝑣𝑗

𝜕𝑥𝑖
)] +

𝜕𝑞

𝜕𝑥𝑖
+ 𝜈𝑎

𝜕�̃�

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑙
(𝜈𝑎𝜈

𝐶𝑌

𝑌
𝑒𝑚𝑗𝑘

𝜕𝑢𝑘̅̅ ̅̅

𝜕𝑥𝑗
𝑒𝑚𝑙𝑖) + 𝑘𝑢𝑣𝑖 = 0  

(41) 

𝑅�̃�𝑎 = −
𝜕(�̅�𝑗𝜈𝑎)

𝜕𝑥𝑗
−
𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈

𝜎
)
𝜕𝜈𝑎
𝜕𝑥𝑗

] +
1

𝜎

𝜕𝜈𝑎
𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
+ 2

𝑐𝑏2
𝜎

𝜕

𝜕𝑥𝑗
(𝜈𝑎

𝜕𝜈

𝜕𝑥𝑗
) + 𝜈𝑎𝜈𝐶�̃�

+
𝜕𝜈𝑡
𝜕𝜈

𝜕𝑣𝑖
𝜕𝑥𝑗

(
𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑖
𝜕𝑥𝑖
) + (−𝑃 + 𝐷)𝜈𝑎 + 𝑘�̃�𝑎𝜈𝑎 = 0 

(42) 

𝑅Δ𝑎 = −2
∂

∂xj
(Δ𝑎

∂𝛥

∂xj
) + 𝜈𝜈𝑎𝐶Δ + 𝑘ΔΔa = 0 (43) 

 

2.5.2. Objective Function Sensitivity Calculation 

Considering the differentiation of Eq. (33), sensitivity is found. At T.O., neither the design 

domain nor the mesh changes, resulting in a total derivate that is equal to the partial derivative 

(Papoutsis-Kiachagias and Giannakoglou 2016): 

δ𝜙

δ𝛼
=
𝜕𝜙

𝜕𝛼
,

δS𝜙

δ𝛼
=
𝜕𝜙

𝜕𝛼
 (44) 

 

therefore, the augmented Lagrange differentiation for the incompressible regime to the design 

variable 𝛾 is established as: 

δ𝐿𝑎𝑢𝑔

δ𝛼
=
δ𝐹

δ𝛼
+∫ 𝑞

𝜕𝑅𝑝

𝜕𝛼

 

Ω

dΩ +∫ 𝑣𝑖
𝜕𝑅 

𝐮𝐢

𝜕𝛼

 

Ω

dΩ +∫ �̃�𝑎
𝜕𝑅 

�̃�

𝜕𝛼

 

Ω

dΩ +∫ ∆𝑎
𝜕𝑅∆

𝜕𝛼

 

Ω

dΩ (45) 

 

Since 𝐹 and 𝑅𝑝 are not expressed in terms of the design variable, 
𝛿𝐹

𝛿𝛼
= 0 and 

𝜕𝑅𝑝

𝜕𝛼
= 0. The next 

three integrals are defined as: 

∫ 𝑣𝑖
𝜕𝑅 

𝑢𝑖

𝜕𝛼

 

𝛺

𝑑𝛺 = ∫ 𝑣𝑖
𝜕(𝑘𝑢𝑢𝑖)

𝜕𝛼

 

𝛺

𝑑𝛺 = ∫ 𝑣𝑖𝑢𝑖
𝜕𝑘𝑢
𝜕𝛼

 

𝛺

𝑑𝛺 (46) 

 

∫ 𝜈𝑎
𝜕𝑅 

�̃�

𝜕𝛼

 

Ω

dΩ = ∫ 𝜈𝑎
𝜕(𝑘�̃�𝑡𝜈𝑡)

𝜕𝛼

 

Ω

dΩ = ∫ 𝜈𝑎𝜈𝑡
𝜕𝑘�̃�𝑡
𝜕𝛼

 

Ω

dΩ (47) 
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∫ ∆𝑎
𝜕𝑅∆

𝜕𝛼

 

Ω

dΩ = ∫ ∆𝑎
𝜕(𝑘Δ∆)

𝜕𝛼

 

Ω

dΩ = ∫ ∆𝑎∆
𝜕𝑘Δ
𝜕𝛼

 

Ω

dΩ (48) 

resulting in: 

δ𝐿𝑎𝑢𝑔

δ𝛼
=
𝛿𝑘𝑢
𝛿𝛼

(𝑣𝑖 ∙ 𝑢𝑖)𝑉 +
δ𝑘�̃�𝑡
δ𝛼

(𝜈𝑎𝜈)𝑉 +
δ𝑘𝛥
δ𝛼

(𝛥𝑎𝛥)𝑉 (49) 

 

δ𝑘𝜙  

δ𝛼
= [(𝑘𝜙 − �̅�)𝑞

(1 + 𝑞𝜙)

(𝛼 + 𝑞𝜙)
2] (50) 

 

The obtained sensitivities fields are validated through the finite difference method presented in 

Appendix 7.1. 

 

2.6. OPTIMIZATION ALGORITHM 
 

As explained earlier, generally the continuous design variables (CDV) optimizers are used, i.e. 

optimization algorithms that use permeability design values between 0 ≤ 𝛼 ≤ 1, which are 

calibrated in an exhaustive process to diminish intermediate (“grey”) solid-fluid interfaces 

(Borrvall and Petersson 2003). The greyscale produced by the CDV approach, however, hinders 

the optimization to include clear information about the fluid walls during optimization, 

important for the accuracy of the turbulent flow simulation. Therefore, the influence of an IDV-

based optimizer is proposed, i.e. an optimization algorithm that works only with fluid (𝛼 = 0) 

or solid (𝛼 = 1) permeability values, which ensures a continuing resolution of the fluid/solid 

boundary during the optimization process. Both optimizers are explained as follows. 

 

2.6.1. Continuous Design Variable Based Optimizer: 

MMA 
The method of moving asymptotes (MMA) (Svanberg 1987) is a popular optimization 

algorithm due to its robust, flexible, and general gradient-based application that handles a large 

number of variables and constraints. The MMA is used for nonlinear programming problems in 

the form of minimization of the objective function, 𝐹, with inequality constraints 𝑅𝜙. The MMA 

algorithm uses as inputs the first derivative of  𝐹 and 𝑅𝜙 to the design variable, 𝛼 of the current 

𝑛 iteration, the 𝑛 − 2 iterations, and the constraints targets. This method can handle unfeasible 

solutions, i.e., it can reach a solution even if the constraints are not satisfied. During the 
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optimization process, the MMA algorithm updates the design variables iteratively to minimize 

the objective function and satisfy the constraints. The algorithm methodology is defined as: 

Step 0: Choose a starting point 𝑥(0), and define the iteration index 𝑘 = 0. 

Step 1: Given an iteration point 𝑥(𝑘), calculate the function value of an objective Function 

𝐹𝑖(𝑥
(𝑘)) and its gradients ∇𝐹(𝑥(𝑘)) for 𝑖 = 0, 1, … ,𝑚. 

Step 2: Generate a subproblem 𝑃(𝑘) by replacing in 𝑃, the functions 𝐹 by approximating explicit 

functions 𝐹𝑖
(𝑘)

, based on the calculation from step 1. 

Step 3: Solve 𝑃(𝑘) and let the optimal solution to this subproblem be the next iteration point 

𝑥(𝑘+1). Let 𝑘 = 𝑘 + 1 and go to step 1. 

 

The method consists of how 𝐹𝑖
𝑘 should be defined and how the subproblem 𝑃(𝑘) should be 

solved. The “dual objective function” 𝑊 is defined, for 𝑦 ≥ 0 as follows: 

𝑊(𝑦) = min{𝐿(𝑥, 𝑦); 𝛼𝑗 ≤ 𝑥𝑗 ≤ 𝛽𝑗 for all 𝑗} 

𝑊(𝑦) = 𝑟0 − 𝑦
𝑇𝑏 +∑𝑙𝑗(𝑥𝑗 , 𝑦)

𝑛

𝑗=1

 
(51) 

 

concluding that an objective function 𝐹 that is restricted to different functions, 𝑅, can be 

expressed in terms of the Lagrangian function, in this case as: 

Minimize 𝐿𝑎𝑢𝑔 = 𝐿 + ∫ 𝑞𝑅
𝑝 

Ω
𝑑Ω + ∫ 𝑣𝑖𝑅 

𝑢𝑖
 

Ω
𝑑Ω + ∫ 𝑇𝑎𝑅 

𝑇 

Ω
𝑑Ω + ∫ �̃�𝑎𝑅 

�̃� 

Ω
𝑑Ω +

∫ ∆𝑎𝑅 
∆ 

Ω
𝑑Ω  

 

Subject to {

∫ 𝛾dΩ
 

Ω

∫ dΩ
 

Ω

≤ �̅�𝑓𝑟𝑎𝑐

0 ≤ 𝛼 ≤ 1

} 

(52) 

 

2.6.2. Integer Design Variable Optimizer: TOBS 
 

The topology optimization of binary structures (TOBS) optimizer (Sivapuram and Picelli 2018) 

is a gradient-based optimization method that treats the design variables as binary values (0 or 

1), which makes independent the penalization for the pure fluid optimization as avoids 

intermediates 𝛾 values, leading to define precisely the solid/fluid interface along the 

optimization process and calculate accurately the near wall distance for turbulence treatment. 

This is made with an objective function 𝑓(𝑥) constrained by 𝑅𝑖(𝑥) ≤ 𝑅�̅�, 𝑖 ∈ [1, 𝑁𝑔], with 𝑥 
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being the design variables. The linearized form of the binary variable optimization problem is 

formulated as follows: 

Minimize⏟      
x

  
{
𝜕𝑓

𝜕x
|
xk

 

(53) 

Subject to    {

𝜕𝑔𝑖

𝜕𝑥
|
𝑥𝑘
𝛥𝑥𝑘 ≤ 𝑅�̅� − 𝑅𝑖

𝑘 𝑖 ∈ [1, 𝑁𝑔]

𝛥𝑥𝑗 ∈ {−𝑥𝑗, 1 − 𝑥𝑗} 𝑗 ∈ [1, 𝑁𝑑]
 

where 𝑅𝑖
𝑘 is the value of the constraint 𝑅𝑖 at iteration 𝑘 of optimization. After each iteration, 

the design variables are updated (Eq.33): 

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥𝑘 (54) 

This method uses an Integer Linear Programming (ILP) algorithm to update the design 

variables, thus, nonlinear problems (objective function and constraints) must be sequentially 

linearized using Taylor first-order approximation. ILP algorithms cannot handle unfeasible 

solutions, thus if the constraint value is too far from the constraint target, the algorithm stops. 

To avoid that, whenever 𝑅𝑖
𝑘 is away from 𝑅�̅� a constraint target relaxation is used: 

Δ𝑅 = {

−𝜖1𝑅
𝑘 ∶ �̅� < (1 − 𝜖1)𝑅

𝑘

�̅� − 𝑅𝑘  ∶ �̅� ∈ (1 − 𝜖1)𝑅
𝑘, (1 + 𝜖2)𝑅

𝑘  

𝜖2𝑅
𝑘 ∶ �̅� > (1 − 𝜖1)𝑅

𝑘

 (55) 

where 𝑅 is any of the 𝑁𝑅 constraints and Δ𝑅 is the right-hand side of the constraint, which is 

relaxed from �̅� − 𝑅𝑘 at iteration 𝑘. The parameters 𝜖1, 𝜖2 are chosen such that ILP has a feasible 

solution, usually small numbers to maintain the linearization validly. For simplicity, here it is 

set 𝜖1 = 𝜖2, similarly to (Picelli et al. 2020). During the optimization process, the relaxation is 

carried out until constraints are satisfied. 

 

2.7. NUMERICAL IMPLEMENTATION 
 

The implemented T.O. method is summarized in the Figure 9 flowchart. Each step is 

programmed in C++, following OpenFOAMv1906 structure and the 

“adjointOptimizationFOAM” library is modified for T.O. applications of incompressible 

turbulent flow using the IDV and CDV optimizers. The developed method starts by solving the 

fluid region through the modified RANS equations (Eq. (27-(30) by using the finite volume 

method, where primal fields are obtained (𝑝, 𝑢𝑖). Then, the adjoint systems uses the primal 
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fields results to solve the adjoint Navier Stokes Equations (Eq. (40-(43) to obtain the adjoint 

fields (𝑞, 𝑣) and calculate the sensitivity (Eq. (50).  After that, the optimizer selected at the case 

is tested, either the CDV or the IDV, which is used to update the design variables along the 

domain establishing the solid-fluid region. The new design is then updated until satisfying the 

convergence criteria, which is established as 1 × 10−6. 

Figure 9 Topology optimization procedure 
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3. DISCRETE ADJOINT APPROACH USED AT 

COMPRESSIBLE SUBSONIC TURBULENT FLOW 

OPTIMIZATION 
 

Another approach for determining sensitivities of the functional gradient (Eq. 4) is to 

differentiate the state equation 𝐹(𝜙, 𝑔) = 0 to obtain by the chain rule, the sensitivity equation: 

(
𝜕𝐹

𝜕𝜙
]
𝑔(𝑚)

)
𝑑𝜙

𝑑𝑔
]
𝑔(𝑚)

= −
𝜕𝐹

𝜕𝑔
]
𝑔(𝑚)

 (56) 

 

Note that (
𝜕𝐹

𝜕𝜙
]
𝑔(𝑚)

) and 
𝜕𝐹

𝜕𝑔
]
𝑔(𝑚)

 depend only on 𝑔(𝑚) and 𝜙(𝑔(𝑚)) so they are evaluated after 

step 1 (section 1.3), then the equation is solved for the sensitivity 
𝑑𝜙

𝑑𝑔
]
𝑔(𝑚)

. The system is linear 

in the sensitivities 
𝑑𝜙

𝑑𝑔
, then if multiple design variables are available, an equation similar to the 

sensitivity equation will be obtain for each corresponding sensitivity. However, the left-hand 

side operator 
𝜕𝐹

𝜕𝜙
]
𝑔(𝑚)

 is independent of the particular design variable. Once the sensitivity 

𝑑𝜙

𝑑𝑔
]
𝑔(𝑚)

 is evaluated at the current values of the design variables, it can be used at Eq. 49 to 

determine the gradient of the functional evaluated at the current values of the design variables.  

Finally, the sensitivities of the state equation equation (Eq.1) can be defined by: 

𝜙𝑘 =
𝜕𝜙

𝜕𝛼𝑘
, 𝑘 = 1,…𝐾 (57) 

 

The direct differentiation w.r.t. design variables 𝛼𝑘, gives the derivative of the functional: 

𝐷𝐹

𝐷𝛼𝑘
= 𝜎𝛼𝑘 +∫(𝜙 −Φ)𝜙𝑘

 

Ω

𝑑Ω, 𝑘 = 1… ,𝐾 (58) 

 

The direct differentiation of the state equation with respect to the design variables 𝛼𝑘, results 

in the sensitivity equations of the system: 

−𝛻 ∙ (𝑎𝛻𝜙𝑘) + b ∙ 𝛻𝜙𝑘 + 3𝜙
2𝜙𝑘 = 𝑓𝑘  in Ω, 𝑘 = 1… ,𝐾 (59) 

 

and  

𝜙𝑘 = 0 on Γ, 𝑘 = 1… ,𝐾 (60) 
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Then, the sensitivity for the gradient of the functional with respect to the control parameters 

can be obtained as 

(

 
 

𝐷𝐹

𝐷𝛼1…
𝐷𝐹

𝐷𝛼1)

 
 
=

(

 
 
𝜎𝛼1 +∫(𝜙 − Φ)𝜙1

 

Ω…

𝜎𝛼𝑘 +∫(𝜙 − Φ)𝜙𝑘

 

Ω )

 
 

 (61) 

 

This is the basis of the discrete adjoint approach used at the following research stage. The 

proposed T.O. formulation establishes to minimize the energy dissipation through the entire 

domain subjected to the FANS equations, the volume constraint, and the permeability design 

variable of the volume cells.  In this approach, the adjoint code is obtained via the automatic 

differentiator tool without hand-derivation. Its flexibility and robustness allow the main 

contribution of the research, relying on the topology optimization of compressible turbulent 

subsonic flow. To do so, the developed FEniCS TopOpt FOAM software is extended to 

compressible fluid flow applications by including the energy equation calculation, the 

compressible treatment of turbulence phenomenon, compressibility factors related to numerical 

schemes and the real gas state equation. Both the Spalart-Allmaras and the Wray-Agarwal 

turbulence models are implemented and analysed for different applications. This chapter 

follows the organization of presenting first the equilibrium equations for compressible turbulent 

flow, followed by the T.O. formulation, its adjoint equations and an explanation of the 

optimization algorithm used along with its numerical implementation. 

 

3.1. EQUATION OF STATE 
 

Perfect Gas Modelling 

This research considers some assumptions for treating compressible turbulent flow modelling. 

At first, the subsonic compressible regime (𝑀𝑎 < 0.7) and the ideal-perfect gas state equation 

Eq.(62): 

𝜌 =
𝑝

�̅�𝑇
 (62) 

where 𝜌 is the fluid density, 𝑝 the pressure, 𝑇 the temperature, �̅� = 𝑅/𝑀, 𝑅 is the perfect gas 

constant and 𝑀 is the gas molar mass. Also, Stokes’ hypothesis is employed to correlate the 

bulk viscosity (𝜁) to the dynamic viscosity (𝜇), which is approximately the case for various 

other gases that are usual in CFD applications (Wilcox 1993): 
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𝜁 = −
2

3
𝜇 (63) 

 

Finally, the fluid is assumed as calorically ideal-perfect so that its specific heat coefficients are 

constants: 

𝑒 = 𝑐𝑣𝑇 and ℎ = 𝑐𝑝𝑇 (64) 

where 𝑐𝑣 and 𝑐𝑝 are the specific heat at constant volume and constant pressure, respectively 

(Wilcox 1993). 

 

Real Gas Modelling 

At the ideal-real gas assumption, the dynamic viscosity 𝜇 is modelled by Sutherland Law  

(White, 2006), which gives a relationship between the dynamic viscosity and the temperature 

of an ideal gas. In Sutherland Law, the local value of dynamic viscosity is determined by 

plugging the local value of temperature (𝑇) into Eq.(65): 

𝜇 = 𝜇0 (
𝑇

𝑇0
)

3
2
(
𝑇0 + 𝑆

𝑇 + 𝑆
) (65) 

 

where 𝜇0 = 1,76 X 10
−5 [𝑘𝑔/𝑚𝑠], 𝑇0 = 491,6𝑅 and 𝑆 = 198,6𝑅.  

 

Another fact for real gas modelling is the real gas compressibility, which in the current works 

is enabled by the Peng-Robinson model for the state equation. The equation is expressed in 

terms of the critical properties (𝑇𝑐, 𝑝𝑐) and the acentric factor (𝑤) Eq.(66): 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎𝛼

𝑉𝑚
2 + 2𝑏𝑉𝑚 − 𝑏2

 

 

𝑎 ≈ 0,45724
𝑅2𝑇𝑐

2

𝑝𝑐
  

 

𝑏 ≈ 0,07780
𝑅𝑇𝑐
𝑝𝑐

 

 

𝛼 = (1 + 𝜅 (1 − 𝑇𝑟

1
2))

2

 

 

𝜅 ≈ 0,37464 + 1,54226𝑤 − 0,2699𝑤2 
 

𝑇𝑟 = 𝑇/𝑇𝑐 

 
(66) 
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3.2. EQUILIBRIUM EQUATIONS OF COMPRESSIBLE 

TURBULENT FLOW 
 

The compressible fluid flow is governed by the mass, momentum and energy equations of fluid 

flow. As turbulence phenomenon will be considered, mass-averaging operations are performed 

through the Favre-averaged (density-weighted) conservation equations (FANS) for steady-state 

compressible flow  (NASA 2017; Wilcox 1993). By doing so, the compressible state equations 

for compressible turbulent flow are obtained (Eq.(67)(69): 

𝜕�̅��̃�𝑗

𝜕𝑥𝑗
= 0 (67) 

𝜕

𝜕𝑥𝑗
�̅��̃�𝑖�̃�𝑗 = −

𝜕�̅�

𝜕𝑥𝑖
+
𝜕𝜎𝑖𝑗̅̅̅̅

𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (68) 

𝜕�̃�𝑗�̅��̃�

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗̅̅̅̅ 𝑢�̃� + 𝜎𝑖𝑗𝑢𝑖

′′̅̅ ̅̅ ̅̅ ̅) −
𝜕

𝜕𝑥𝑗
(𝑞�̅� + 𝑐𝑝𝜌𝑢𝑗

′′𝑇′′̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑢�̃�𝜏𝑖𝑗 +
1

2
𝜌𝑢𝑖

′′𝑢𝑖
′′𝑢𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (69) 

The overbar indicates the statistical time average, with the averaging time scale assumed to be 

long compared to turbulent fluctuations, and short compared to unsteadiness in the mean flow. 

The tilde symbol represents the Favre average (density-weighted), e.g. for a primal variable 𝑓, 

the average is defined as 𝑓 = 𝜌𝑓̅̅̅̅ /�̅�. Note that 𝑓 = 𝑓̅ + 𝑓′ = 𝑓 + 𝑓′′ (NASA 2017; Wilcox 

1993). Therefore,  �̅�, 𝑢�̃�, �̅� are the averaged density, velocity, and pressure, respectively. The 

fluctuating velocity is represented by 𝑢𝑖
′′. 

 

In rotating domains, the centrifugal (2�̅�(ω𝑖 x 𝑢�̃�)) and Coriolis forces (�̅�ω𝑖 x (ω𝑖 x r)) are 

considered at the momentum FANS equation Eq.(70): 

𝜕�̅��̃�𝑖�̃�𝑗

𝜕𝑥𝑗
= −

𝜕�̅�

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗̅̅̅̅ − 𝜌𝑢𝑖

′′𝑢𝑗
′′̅̅ ̅̅ ̅̅ ̅̅ ̅) +  2�̅�(ω𝑖 x �̃�𝑖)  + �̅�ω𝑖 x (ω𝑖 x ri) (70) 

 

Isothermal walls are considered, and the total specific enthalpy (H) includes the kinetic energy 

of the turbulent fluctuating field (𝑘) and it is given by: 

𝐻 = ℎ̃ +
1

2
�̃�𝑖�̃�𝑖 + 𝑘 (71) 

which differs from the total specific enthalpy of laminar flow: 

𝐻 = ℎ +
1

2
𝑢𝑖𝑢𝑖 (72) 
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since the mass-averaged leads to the appearance of molecular diffusion (𝜏𝑖𝑗𝑢𝑖′′̅̅ ̅̅ ̅̅ ̅) and transport 

of turbulent kinetic energy (𝜌𝑢𝑗′′
1

2
𝑢𝑖′′𝑢𝑖′′

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) at the FANS energy equation (Wilcox 1993). 

Furthermore, since the changes in the fluid flow behaviour from the turbulence phenomenon 

are not small, an isentropic (ideal) flow cannot be considered.   

 

The mass-weighted averaged specific enthalpy (�̃�), statistical time-averaged heat flux (𝑞�̅�), 

the viscous stress tensor (𝜎𝑖𝑗̅̅̅̅ ) and the Reynolds stress tensor (𝜏𝑖𝑗) are defined at Eq.(73)-(76), 

respectively (NASA 2017). 

�̃� = �̃� +
�̅�

�̅�
 (73) 

�̅�𝑗 ≈ −𝑐𝑝
�̃�

𝑃𝑟

𝜕�̃�

𝜕𝑥𝑗
 

(74) 

𝜎𝑖𝑗̅̅̅̅ ≈ 2�̃� (�̃�𝑖𝑗 −
1

3

𝜕�̃�𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) 
(75) 

𝜏𝑖𝑗 ≡ −𝜌𝑢𝑖
′′𝑢𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅ (76) 

where �̃�𝑖𝑗 = (𝜕�̃�𝑖/𝜕𝑥𝑗  + 𝜕�̃�𝑗/𝜕𝑥𝑖) /2 and the Prandtl number is 𝑃𝑟 = 𝑐𝑝𝜇/𝑘𝑡ℎ. The following 

terms of the FANS equations need to be modelled: 𝑐𝑝𝜌𝑢𝑗′′𝑇′′̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝜎𝑖𝑗𝑢𝑖′′̅̅ ̅̅ ̅̅ ̅, 
1

2
𝜌𝑢𝑖′′𝑢𝑖′′𝑢𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and −𝜌𝑢𝑖′′𝑢𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅. 

To solve the Reynolds Stress Term (−𝜌𝑢𝑖′′𝑢𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅) the Boussinesq approximation is used Eq.(77): 

𝜏𝑖𝑗 = 2𝜇𝑡 (�̃�𝑖𝑗 −
1

3

𝜕�̃�𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) −
2

3
�̅�𝑘𝛿𝑖𝑗 (77) 

 

where 𝜇𝑡 is the eddy viscosity obtained from the turbulence modelling. Since the subsonic 

regime is being analyzed, the −
2

3
�̅�𝑘𝛿𝑖𝑗 is ignored (NASA 2017). The Reynolds analogy is used 

to model the turbulent heat flux Eq.(78): 

𝑐𝑝𝜌𝑢𝑗
′′𝑇′′̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈  −

𝑐𝑝𝜇𝑡

𝑃𝑟𝑡

𝜕�̃�

𝜕𝑥𝑗
 (78) 

 

where the turbulent Prandtl number for air is 𝑃𝑟𝑡 ≈ 0.9 (NASA 2017). This work considers the 

ideal-perfect gas law to solve the heat capacity at constant pressure, 𝑐𝑝. The terms associated 

with molecular diffusion and turbulent transport in the energy equation are modelled together, 

Eq.(79) (NASA 2017): 

𝜎𝑖𝑗𝑢𝑖
′′̅̅ ̅̅ ̅̅ ̅ −

1

2
𝜌𝑢𝑖

′′𝑢𝑖
′′𝑢𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ (�̃� +
𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
 (79) 
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where 𝜎𝑘 is a coefficient associated with the modelling equation for 𝑘. Nevertheless, by using 

the SA turbulence model, 𝑘 is not considered and all terms related to it are removed from the 

equations, e.g. 𝜕𝑘/𝜕𝑥𝑗 = 0. 

 

3.3. TURBULENCE MODELLING TREATMENT 
The influence of turbulence models at compressible regime is being developed mainly by LES 

and DNS modelling with some relative conclusions over the RANS simulations (Grigoriev 

2016). In high-speed turbulent flows, the compressibility could affect the turbulence structures, 

the Reynolds stress-mean velocity relation, and processes of heat transfer and mixing (Gatski 

et al. 2019), such as found in real gas modelling. However, the analysis is extended to the 

different compressible regimes numbers, and literature has shown a difference between 

turbulence phenomena at incompressible and compressible regimes, such as that the turbulence 

quantities grow exponentially at a smaller rate than incompressible flow (Gatski et al. 2019) 

and that pressure fluctuations are not minor when temperature and density variations appear at 

Mach numbers greater than 0.2 (Hanifi et al. 1998). Therefore, the current research considers 

modifications of compressible flow to the chosen turbulence models: the Spalart-Allmaras and 

the Wray-Agarwal turbulence models. 

 

3.3.1. Compressible Spalart-Allmaras Turbulence 

Model 
 

The T.O. has been implemented under the SA turbulence model as literature proves its flexible 

applications in turbulent fluid flow. The SA formulation for compressible turbulent subsonic 

flow (Bueno-Orovio et al. 2012) has been validated and proved for internal flows, where its low 

computational cost and adaptability to work with dense meshes near the wall favour its use over 

other turbulence models (Deshazer 2007). Therefore, different researchers consider the SA 

turbulence model accuracy at compressible turbulent subsonic flow (Langlois et al. 2016; Ning 

and Xu 2014; Tüzüner et al. 2018), which supports its choice in the current research. The current 

research considers the SA-noft2 (NASA 2017) turbulence model and the Boussinesq 

Hypothesis, where the turbulent eddy viscosity (𝜇𝑡) is obtained by using Eq.(80)-(81):  

𝜇𝑡 = 𝜌𝑣 𝑓𝑣1 (80) 

𝜌𝑢𝑗
𝜕𝑣

𝜕𝑥𝑗
= 𝜌𝑐𝑏1�̂��̂� − 𝜌𝑐𝑤1𝑓𝑤 (

𝑣

𝛥
)
2

+
1

𝜎
[
𝜕

𝜕𝑥𝑗
(𝜌(𝑣 + 𝑣)

𝜕𝑣

𝜕𝑥𝑗
) + 𝜌𝑐𝑏2

𝜕𝑣

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑖
] (81) 
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where 𝑣 is the auxiliary turbulent viscosity, and the extra terms are defined as: 

�̂� = max [Ω +
𝑣

𝑘2𝛥2
𝑓𝑣2, 0.3Ω] (82) 

𝑓𝑣2 = 1 −
𝜒

1 + 𝜒𝑓𝑣1
 (83) 

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐𝑣1
3  (84) 

𝜒 =
𝑣

𝑣
 (85) 

 

Also, 𝑊𝑖𝑗 is the vorticity field that describes the local spinning motion of a particle (i.e. its 

tendency to rotate,  𝑊𝑖𝑗 = 1/2 (
∂𝑢𝑖

∂𝑥𝑗
−
∂𝑢𝑗

∂𝑥𝑖
) ), which will be used to identify regions with large 

turbulence. The Ω = √2𝑊𝑖𝑗𝑊𝑖𝑗 is the vorticity magnitude and  𝛥 the near-wall distance value. 

Finally, the remaining parameters are established in Eq.(88)-(87): 

𝑓𝑤 = 𝑔 [
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6 ]

1
6

 (86) 

𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟) 

𝑟 = min [
𝑣

�̂�𝑘2𝛥2
, 10] 

(87) 

 

with constants 𝑐𝑏1 = 0.1355, 𝜎 = 2/3, 𝑐𝑏2 = 0.622, 𝜅 = 0.41, 𝑐𝑤1 =
𝑐𝑏1

𝜅2
+
1+𝑐𝑏2

𝜎
, 𝑐𝑤2 =

0.3, 𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1 (Allmaras et al. 2012). 

 

 

3.3.2. Compressible Wray-Agarwal Turbulence Model 
 

The optimization of the rotational regime at large Reynolds numbers is tackled by the Wray-

Agarwal turbulence model (Han et al. 2018), which combines the flexibility of the 𝑘 − 𝜔 

turbulence model for rotational flows, in a single equation free of the wall distance calculation. 

This turbulence model has been recently tested in T.O. applications (Alonso et al. 2022) and its 

advantage relies on diminishing the T.O. formulation complexity as the Eikonal constraint is 

no longer needed. The linear model is based on the Boussinesq assumption Eq.(77), which at 

compressible regime uses the Prandtl number as Pr=0.72 and the turbulent Prandtl number as 
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𝑃𝑟𝑡 = 0.9.. The model solves a variable 𝑅 = 𝑘/𝜔, at the following equation for steady-state 

flow: 

𝜕𝑢𝑗𝑅

𝜕𝑥
=

𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝑣)

𝜕𝑅

𝜕𝑥𝑗
] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗
− (1 −

𝑓1)min [𝐶2𝑘𝜖𝑅
2 (

𝜕𝑆

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

𝑆2
) , 𝐶𝑚

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑅

𝜕𝑥𝑗
]  

(88) 

 

where the turbulent viscosity is: 

𝜇𝑡 = 𝜌𝑓𝜇𝑅 (89) 

 

with 𝜌 as the density. The variable 𝑆 takes on the usual definition for mean strain: 

𝑆 = √2𝑆𝐼𝐽𝑆𝐼𝐽 

 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(90) 

 

and 𝑆 = max(𝑆, 10−16𝑠−1) to avoid a zero division. The wall blocking is accounted for by the 

damping function: 

𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3  (91) 

where 𝜒 = 𝑅/𝑣 and 𝑣 = 𝜇/𝜌. The wall distance free switching function is: 

𝑓1 = tanh (𝑎𝑟𝑔1
4) 

 

𝑎𝑟𝑔1 =
𝑣 + 𝑅

2

𝜂2

𝐶𝜇𝑘𝜔
 

(92) 

 

where  

𝑘 =
𝑣𝑡𝑆

√𝐶𝜇
 

 

𝜔 =
𝑆

√𝐶𝜇
 

 

𝜂 = 𝑆max(1, |
𝑊

𝑆
|) 

 

𝑊 = √2𝑊𝑖𝑗𝑊𝑖𝑗  

 

𝑊𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(93) 
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The constants are defined as: 

𝐶1𝑘𝜔 = 0.0829 
 

𝐶1𝑘𝜖 = 0.1284 
 

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜖) + 𝐶1𝑘𝜖 
 

𝜎𝑘𝜔 = 0.72 
 

𝜎𝑘𝜖 = 1.0 
 

𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜖) + 𝜎𝑘𝜖 
 

𝐶2𝑘𝜔 =
𝐶2𝑘𝜔
𝑘2

+ 𝜎𝑘𝜔 

 

𝐶2𝑘𝜖 =
𝐶2𝑘𝜖
𝑘2

+ 𝜎𝑘𝜖 

 
𝑘 = 0.41 

 
𝐶𝜔 = 8.54 

 
𝐶𝜇 = 0.09 

 
𝐶𝑚 = 8.0 

 

(94) 

Finally, the boundary conditions at solid smooth walls are defined as: 

𝑅𝑤𝑎𝑙𝑙 = 0 (95) 

 

and for the freestream: 

𝑅𝑓𝑎𝑟−𝑓𝑖𝑒𝑙𝑑 = 3𝑣∞: 𝑡𝑜 ∶ 5𝑣∞ (96) 

 

 

3.4. FLUID FLOW MODELLING 
 

At this research, two different software are used to model the primal and adjoint fluid flow: the 

OpenFOAM and the FEniCS software. The OpenFOAM software is based on the FVM 

approach, explained in section 2.3 and the FEniCS software is based on the Finite Element 

Method (FEM), which is explained in the following. 
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3.4.1. The Finite Element Method Used In The FEniCS 

Software 

The FEM is a general numerical method for solving PDEs, which subdivides a domain into 

finite elements. Therefore, the domain is discretized by a mesh with a finite number of points 

that influence the accurate representation of the geometry and the capture of the local effects. 

After the mesh division, the elements are set into a global system of equations for the fluid flow 

modelling. To solve the state equations the Galerkin method is applied, which consists of the 

integral construction of the inner product of the residual (trial function) and the weight functions 

(polynomial approximation), and then, set the integral to zero. By doing so, the error of 

approximation is minimized by fitting the trial function into the PDE.  By doing so, the spatial 

derivatives from the PDE are approximated locally by a set of algebraic equations for steady-

state problems. The interpolation function is used to approximate the variables inside the 

elements by using their nodal values. In the current research, a triangular element is used with 

different polynomial interpolation ranks to avoid instabilities in the resolution problem. The 

Taylor-Hood element (Arnold et al. 1984) is considered, where the pressure uses a triangular 

element with three nodes (linear interpolation) and the velocity considers a triangular element 

with six nodes (quadratic interpolation). Also, it helps deal with the complexity of optimizing 

3D domains Finally, the inverse permeability considers one node per element (Sá and Silva 

2016). 

Figure 10. Triangular element interpolation (Sá and Silva 2016) 

 

 

To ensure numerical stability in the fluid flow simulation at FEniCS, the Ladyzhenskaya–

Babuška–Brezzi (LBB) condition is used (Brezzi and Fortin 1991). Also, the turbulence models 

variables pseudo-density (design variable) has a first-degree interpolation to allow the use of a 

Helmholtz filter when non-uniform meshes are considered, as it requires the existence of a first 

derivative. The Helmholtz filter influence is checked at section 4.2.2 and the precision losses 

when the conversion from FEM to FVM is employed is not considered yet, however, the 
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analysis could be performed by using different discretization schemes and meshes. To make 

feasible the mesh conversion it is demanded to use only triangular prisms or tetrahedron meshes 

for the 2D and the 3D optimizations, respectively. The FEniCS solver also considers the 

SIMPLE algorithm, explained in section 2.3, however, it is developed for compressible regime 

applications as the “OpenFOAM” considers the “rhoSimpleFOAM” solver, also based on the 

SIMPLE algorithm (Rahman and Mustapha 2015). 

 

 

 

3.5. TOPOLOGY OPTIMIZATION FORMULATION 
 

The optimization problem considers the minimization of the energy dissipation of an 

established domain, which is subjected to the constraints of the fluid flow physics, established 

by the modified FANS equations (𝑅𝑝, 𝑅𝒖, 𝑅𝑻), the modified turbulence model (𝑅�̃�, 𝑅𝑅), the 

near-wall distance calculation (𝑅∆), the volume constraint, (�̅�) and the permeability design 

variable (𝛼). Each constraint is explained as follows. 

 

3.5.1. Permeability Design Variable (𝜶)  

The fluid topology optimization method based on the pseudo-density approach is implemented 

by including an additional porosity term (𝑘𝜙) in Eq.(67)-(69), Eq.(81) and Eq.(88). This allows 

the solid or fluid region definition in the domain. The idea consists of making 𝛼 to assume 0 or 

1 values, to represent solid and fluid, respectively. To do so, the material distribution model 

proposed by (Borrvall and Petersson 2003) is applied to each fluid flow equation Eq.(97): 

𝑘𝜙 = 𝑘𝜙 + (𝑘𝜙 − 𝑘𝜙)𝛼
(1 + 𝑞)

(𝛼 + 𝑞)
 (97) 

 

Thus, the 𝑘𝜙 term represents each penalization to be considered, i.e. for 𝑢, 𝑣 ̂, 𝛥 and 𝑇, 𝑘𝜙 is 

defined as 𝑘𝑢, 𝑘�̂�, 𝑘𝛥 and 𝑘𝑇 respectively. The penalization term proposed in the energy 

equation, 𝑘𝑇(𝛼)(𝑇 − 𝑇𝑤𝑎𝑙𝑙), considers isothermal walls during the optimization process. Thus, 

when the modelled solid material is present, the boundaries of this material represent isothermal 

walls, and heat transfer is calculated only at the fluid regions and not between the solid/fluid 

boundaries.  
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The model behaves like a linear or convex interpolation function depending on the chosen value 

for 𝑞 (Figure 11), which is a penalty parameter with a value greater than zero used to control 

the level of “grey” in the optimized design during topology optimization. The 𝑘𝜙 minimum 

value is established as zero to represent fluid and 𝑘𝜙 maximum value is calibrated according to 

each case to avoid fluid entrance inside the modelled solid material. When 𝛼 is equal to zero, 

solid regions are established, and when 𝛼 equal to 1, a fluid region is represented. 

Figure 11. Material model behaviour 

 

3.5.2. Modified Equilibrium Equations of Compressible 

Turbulent Flow 
 

Modified FANS Equations: 𝑹𝒑, 𝑹𝒖, 𝑹𝑻 

To optimize fluid flow devices, T.O. is performed by maximizing/minimizing an objective 

function, where the domain cells permeability is changed by considering 𝛼, determining new 

solid/fluid regions. To do so, a penalization term is added to the momentum and energy 

equations relating the velocity and temperature fields, respectively, and treating the walls under 

isothermal conditions. High 𝑘𝜙(𝛼) values raise the importance of the penalized terms in the 

modified equations, determining solid regions, and near-zero 𝑘𝜙(𝛼) values recover the effect 

of the original FANS equations. Finally, the mass conservation is not penalized (Borrvall and 

Petersson 2003), resulting in the modified FANS equations (Eq. 98). 

𝑅𝑝 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 0 

𝑅𝑢 = 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑘𝑢�̃�𝑖⏟
𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑇𝑒𝑟𝑚

= 0 

𝑅𝑇 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑘𝑇 (
ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙
𝑐𝑝  

)
⏟          

𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝑇𝑒𝑟𝑚

= 0 

(98) 

where the subscript "wall" indicates the values that are assumed on the walls. 
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Modified Spalart-Allmaras and Wray-Agarwal Turbulence Models (𝑹�̂�, 𝑹𝑅) 

The SA turbulence model for the turbulent subsonic compressible flow Eq.(81) is modified by 

adding a penalization term (𝑘�̂�𝑣) in the auxiliary turbulent viscosity 𝑣 calculation: 

𝑅�̂� = 𝑆𝑝𝑎𝑙𝑎𝑟𝑡 − 𝐴𝑙𝑙𝑚𝑎𝑟𝑎𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑘�̂��̂�⏟
𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑇𝑒𝑟𝑚

= 0 
(99) 

Analogously, the Wray-Agarwal turbulence model Eq.(88) is modified by adding a penalization 

term (𝑘𝑅𝑅): 

𝑅𝑅 = 𝑊𝑟𝑎𝑦 − 𝐴𝑔𝑎𝑟𝑤𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑘𝑅𝑅⏟
𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑇𝑒𝑟𝑚

= 0 
(100) 

 

Modified Near-Wall Distance Calculation (𝑹∆) 

To calculate the near-wall distance (𝛥), the modified Eikonal equation is considered (Alonso et 

al. 2021; Yoon 2016): 

∂2𝐺

∂xi ∂xi
+ 𝜎𝑤𝐺 (

∂2𝐺

∂xi ∂xi
) = (1 + 2𝜎𝑤)𝐺

4 + 𝑘𝚫(𝐺 − 𝐺0)⏟      
𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑇𝑒𝑟𝑚

 (101) 

where 𝐺 = 𝐺0/(𝐺0𝛥 + 1) and 𝐺0 = 1/𝛥𝑟𝑒𝑓.  𝐺 is the reciprocal near-wall distance, 𝛥𝑟𝑒𝑓 is a 

reference value for the near-wall distance (in the current case, the maximum mesh element 

size), 𝑘𝛥 is the near-wall distance penalization and  𝜎𝑤 is a relaxation factor for the near-wall 

distance computation.  

 

3.5.3. Topology Optimization Problem Definition 

Here, the T.O. is formulated to minimize the energy dissipation (𝐹) across the domain, which 

is commonly used in T.O. of fluids. The objective function is applied to a compressible 

turbulent flow, where the viscous energy dissipation term can be obtained from the integral 

form of the energy equation. The objective function 𝐹, is subjected to the constraints of the 

fluid flow physics, established by the modified FANS equations (𝑅𝑝, 𝑅𝑢, 𝑅𝑇), a volume 

constraint (𝑉𝑓𝑟𝑎𝑐 ≤
∫ 𝛼 𝑑𝛺
 
𝛺

∫ 𝑑𝛺
 
𝛺

) used to express the amount of fluid domain that aims to be 

optimized (Papoutsis-Kiachagias and Giannakoglou 2016), the modified turbulence model is 

selected according to the turbulence model: 𝑅�̂� for SA and 𝑅𝑅 for Wray-Agarwal, the near-wall 

distance calculation (𝑅∆), and the permeability design variable (𝛼), resulting in the final T.O. 

formulation: 
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𝛺
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(102) 

 
 

3.6. NUMERICAL IMPLEMENTATION 
 

The implementation of the adjoint code becomes challenging when compressible fluid flow 

regime is tackled, due to large dependences on the variables to be derived by including the 

energy equation, compressibility effects, real gas performance, among others. Therefore, the 

derivation of the adjoint code is proposed by means of the discrete adjoint approach, which 

manipulates symbolically sensitivities of the variables by using either the automatic 

differentiator or the finite difference approach. The FEniCS software includes a discrete-based 

optimizer that uses the automatic-differentiator tool to obtain the adjoint code of fluid flow.  

 

3.6.1. The Automatic Differentiator From FEniCS 

Software 

In FEniCS, the variational form of the discrete equations is specified in the domain-specific 

language UFL, from which optimized finite element code is generated to compute their 

solutions. This high-level description can be algorithmically manipulated before the code. The 
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forward model equations implemented in the FEniCS platform can then be used by dolfin-

adjoint to automatically derive the adjoint model (Alnæs et al. 2014; Farrell et al. 2013; Mitusch 

et al. 2019). The software library dolfin-adjoint inspects the high-level problem description 

provided at runtime and performs the required tasks for deriving the adjoint model 

automatically. The resulting adjoint model is represented in the same high-level data format as 

the forward problem. Therefore, the code generation technique in FEniCS can be applied to the 

adjoint model as easily as to the forward model. 

 

The use of dolfin-adjoint has the advantage that the derivation and solution of the adjoint model 

require almost no user intervention. Besides, the adjoint derivation is generic: it applies to any 

PDE discretized with the finite element method (Funke 2012). The dolfin-adjoint library 

collects the necessary information about the discrete forward system for the automatic 

derivation of the adjoint model. As such, each equation in the forward model is annotated with 

information about which variable the equation solves for and its dependencies to any forward 

equation that has been solved before (chain rule). 

 

In dolfin-adjoint, the annotation happens automatically during the execution of the forward 

model. This is achieved in dolfin-adjoint by overloading all FEniCS routines that modify the 

forward solution. These overloaded functions extract the required information from the UFL 

input and use the dolfin-adjoint interface to annotate the corresponding equation (Funke 2012).  

 

3.6.2. The FEniCS TopOpt Foam Software 
 

The standard FEniCS version treats only laminar incompressible regimes and the 

implementation of a compressible turbulent based fluid flow solver is not an easy task  as it 

demands a challenging programming to include not only the energy equation, but also the 

turbulence model treatment, numerical schemes to discretise accurately the energy equation 

variables, and even by programming such fluid flow solver it is not guaranteed a stabilized 

solver to treats compressible turbulent fluid flow solver. There are already fluid flow 

simulations software able to model compressible turbulent flow, e.g. the FVM-based 

OpenFOAM software. Unfortunately, these software does not incorporate an automatic-

differentiator tool to manage compressible turbulent regime, and also, it has not been designed 

to optimize fluid flow. Some works (He et al. 2020; Okubo and Silva 2022; Okubo et al. 2022) 

implemented a discrete-adjoint based tool to treat compressible regime al laminar regime and 

turbulence via an approximated solution. Nevertheless, part of the scientific contributions of 
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the current research relies on solving the turbulence phenomenon at the adjoint code and 

coupling of the automatic differentiator tool from an efficient optimization software (FEniCS) 

with an efficient fluid flow modelling software (OpenFOAM), resulting in the FEniCS TopOpt 

Foam software. The advantage of the discrete adjoint approach relies on the automation of the 

adjoint model generation, which means that any objective function, turbulence model, fluid 

flow regime…may be considered, and only the forward model equations need to be specified 

at both software. 

 

Since the automatic derivation of the adjoint model is given in this work in the FEniCS/dolfin-

adjoint approach, an interface programmed in Python is used to combine with the OpenFOAM 

simulation (Figure 12) (Alonso et al. 2021).  

Figure 12. FEnics TopOpt Foam Interaction 

 

 

The optimization using the FEniCS TopOpt FOAM software is composed of the fluid flow 

simulation and the adjoint model acquisition (Figure 13). The OpenFOAM software is used for 

the CFD modelling of the compressible turbulent flow and the “dolfin-adjoint” of FENICS to 

obtain the adjoint model.  

Figure 13. FEniCS and OpenFOAM coupling 
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3.6.3. Weak Form Of The Equilibrium Equation Of 

Compressible Turbulent Flow 

In order to automatically derive the adjoint model, it is needed to specify the weak form of the 

finite element method in FEniCS. The weak form of the compressible turbulent subsonic flow 

is developed in Appendix 7.3, and shown at following: 
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(103) 

 

where 𝑤𝑝, 𝑤�̂�, 𝑤𝐺 , 𝑤𝑇 and 𝑤𝑢 are the test functions of the state variables (�̅�, 𝑣, 𝐺, �̃� and �̃�), 

respectively. From the mutual independence of the test functions, the weak form equations can 

be established as a single equation: 

𝐹 = 𝑅𝑝 + 𝑅𝑢 + 𝑅𝑇 + 𝑅Δ + 𝑅�̂� = 0 (104) 
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3.6.4. Helmholtz Pseudo-Density Filter 
In topology optimization, the use of regularization mechanisms is employed to counter 

numerical instabilities presented due to mesh dependency and local minima (Sigmund and 

Petersson 1998). The regularization used is the Helmholtz filter, which is a PDE-based topology 

optimization pseudo-density filter (Lazarov and Sigmund 2011). It consists of weighting the 

values of the original design variable (𝛼) with a Green function that is always positive with an 

integral equal to 1 (Lazarov and Sigmund 2011). Smaller values of the filter length 𝑟𝐻, leads to 

a Dirac delta function (𝛼𝑓  →𝑟𝐻→0
+  𝛼). The equivalent of the Green function is expressed by 

solving a modified Helmholtz equation with homogeneous Neumann boundary condition, 

which boundary is stated at (Lazarov and Sigmund 2011): 

−𝑟𝐻
2∇2𝛼𝑓 + 𝛼𝑓 = 𝛼 in Π 

𝜕𝛼𝑓

𝜕𝒏
 on Π 

(105) 

  

where 𝛼 is the original design variable, 𝛼𝑓 is the filtered design variable and 𝑟𝐻 is the filter 

length. A one-shot-like scheme is considered, which consists of solving only a few iterations 

(50, in the present work) of the SIMPLE solver in the direct problem, and then computing the 

adjoint model. Through this scheme, stabilized CFD simulations and adjoint model acquisition 

are guaranteed, by avoiding vortex generation along the topology optimization procedure. 

 

3.6.5. Interfacing OpenFOAM with FEniCS/dolfin-

adjoint 
To solve the fluid flow modelling, the rhoSimpleFoam solver from OpenFOAM is modified by 

including the penalization terms to the momentum equation, the energy equation, the Spalart-

Allmaras and the Wray-Agarwal turbulence model. The adjoint model is computed in the finite 

elements software FEniCS through dolfin-adjoint (Farrell et al. 2013). Finally, the T.O. problem 

is solved through the IPOPT optimizer, from the interface of the dolfin-adjoint library. 

 

The idea of coupling FEniCS and OpenFOAM consists of solving the fluid flow modelling at 

first in the OpenFOAM software and derived automatically the adjoint model in FEniCS/dolfin-

adjoint. FEniCS is implemented in C++ and its automatic differentiator considers UFL language 

to represent the weak form and functionals for the finite element matrices. By doing so, the 

adjoint model is automatically derived from the weak form and objective functions by the 

dolfin-adjoint library, which is restricted to a Python interface of FEniCS. On the other hand, 
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the OpenFOAM software is an open-source CFD software also programmed in C++ and based 

on the FVM. OpenFOAM operates in the lowest degree of finite volumes, which advantage 

relies on its computational cost. The difference between the FVM and the FEM is stated as the 

first is based on the local conservation of fluxes and the second is based on the global 

conservation of fluxes. Since dolfin-adjoint is written in Python, the coupling with OpenFOAM 

is feasible when its C++ code and shell script functionalities are accessible in Python as well. 

Therefore, the library that joints this code is developed and labelled as FEniCS TopOpt FOAM.  

The boundary conditions selected in OpenFOAM might differ from the ones available at 

FEniCS due to the discretization based-method of each software. For the turbulent variables, 

the boundary conditions can be implemented in FEniCS equally as in OpenFOAM. The wall 

distance is computed through the finite element method and later imported into OpenFOAM, 

to avoid implementing and solving a similar equation. Although in FEniCS no boundary 

conditions need to be explicitly imposed for the pressure and the outlet velocity, the 

OpenFOAM software requires all boundary conditions to be explicitly imposed: at the inlet and 

wall boundaries, the normal gradient of the pressure is set to zero (𝜕𝑝/𝜕𝑛𝑖 = 0), and the outlet 

regions that consider a Dirichlet boundary condition, e.g. 𝑝 = 0, is stated as a “stress-free” 

boundary condition ((𝑇𝑖 + 𝑇𝑅𝑖)𝑛𝑖 = 0) in FEniCS. 

 

3.6.6. Topology Optimization Loop 
The T.O. developed method (Figure 14) computes the sensitivities as follows:  

a) starts by solving the simulation of the fluid flow: to do so, a mesh conversion between 

FEniCS and OpenFOAM is performed due to OpenFOAM dependence on using 3D meshes 

only, despite 2D simulations can be performed through the “empty” library function (Ltd.).  

After that, the state variables, design variables, boundary conditions and the extra setups 

are converted by “FEniCS TopOpt FOAM” to variable and configuration files. Then, a 

specific solver for OpenFOAM is selected, which will be employed simultaneously by 

FEniCS, e.g. the SIMPLE algorithm.  

b) Conversion from the OpenFOAM files to the FEniCS variables: when the fluid flow 

modelling finish, the state variables files of the result are converted to the state variables in 

FEniCS. At that moment, the dolfin-adjoint computes the adjoint model, which is 

automatically generated from the forward model specified in FEniCS. The conversion starts 

by mapping the internal values of the OpenFOAM variables to the element-wise variables 

in FEniCS (𝑑𝑃0, "𝐷𝐺𝑂"). Then, the element-wise variables are projected into the 
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interpolation that is being used in the adjoint model. After that, the isolated state variables 

are joined together in a single state vector by using the “FunctionAssigner” (Copyright 

FEniCS Project) from FEniCS. When turbulent variables are converted, the values must 

remain positive and different from zero because some turbulence models depend on square 

roots/divisions. Also, a small-radius Helmholtz filter is applied in the turbulent variables to 

alleviate some sharp transitions, which may hinder post-processing operations in FEniCS. 

Finally, the original Dirichlet boundary conditions are reimposed onto the state vector, to 

consider the external faces values from the internal values taken from OpenFOAM. By 

doing so, numerical errors on the boundaries are avoided. A complete picture of the situation 

is given by the weak form of a projection function: 

∫𝑎𝑜𝑟𝑖𝑔𝑤𝑝

 

Π

𝑑Π = ∫𝑎𝑝𝑤𝑝

 

Π

𝑑Π (106) 

 

where 𝑎𝑜𝑟𝑖𝑔 is the function being projected and 𝑎𝑝 is the obtained projected function. 

c) Interfacing of the simulation with dolfin-adjoint: it requires “overloading” a specific 

internal function of the solver object in the dolfin-adjoint library, regarding the “forward 

simulation”. 

Figure 14. T.O. flowchart. 

 

3.7. PROGRESSIVE STRATEGY 

T.O. of compressible turbulent regime is a challenging process that requires not only powerful 

solvers and accurate discretization methods, but also the development of innovative T.O. 

formulations and techniques. The optimization is developed in FEniCS TopOpt Foam (Alonso 

et al. 2021) for compressible turbulent subsonic regime. The optimization process is tackled 

with a progressive strategy, which consists in optimizing the distribution of the design variable 

at laminar regime and taking its topology layout result as an initial guess to consider the 
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turbulent regime (by decreasing the fluid viscosity). This is made to facilitate the T.O. 

parameters calibration and to identify the turbulence influence at T.O. of compressible turbulent 

subsonic regime. The other fluid properties remain constant during the optimization process 

(Figure 15). 

Figure 15. Progressive strategy 
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4. RESULTS 
 

Different 2D and 3D examples are shown in the following chapter, where the incompressible 

regime is developed firstly to calibrate the turbulence model at T.O. Then, the compressible 

regime is tackled by considering the energy equation and the compressibility influence at T.O. 

of real gases. To discretize each regime the Mach number (𝑀𝑎) is defined as Eq.(107):  

𝑀𝑎 =
𝑢𝑖𝑛𝑙𝑒𝑡
𝑢𝑠𝑜𝑢𝑛𝑑

 (107) 

 

where 𝑢𝑖𝑛𝑙𝑒𝑡 and 𝑢𝑠𝑜𝑢𝑛𝑑 are the inlet velocity at the domain boundary and the speed of sound 

of the analyzed fluid respectively. When 𝑀𝑎 < 0.3 the case is considered incompressible, 

which results are presented in section 4.1. Then, the examples at compressible regime, i.e. 

𝑀𝑎 > 0.3, are presented at section 4.2. 

 

In addition, each regime evaluates two kinds of flows: the laminar and turbulent flow, which 

are identified by the Reynolds numbers (𝑅𝑒) at the inlet domain boundary: 

𝑅𝑒𝑖𝑛𝑙𝑒𝑡 =
𝑢𝑖𝑛𝑙𝑒𝑡𝐿𝑖𝑛𝑙𝑒𝑡𝜌

𝜇
 (108) 

 

where 𝐿𝑖𝑛𝑙𝑒𝑡, 𝜇 and 𝜌 are the characteristic inlet length, density, and dynamic viscosity 

respectively. At the current research, the laminar flow is considered when the 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 < 3000, 

otherwise the fluid is treated as turbulent. 

 

4.1. TOPOLOGY OPTIMIZATION OF 

INCOMPRESSIBLE FLOW CONSIDERING THE 

CONTINUOUS ADJOINT APPROACH 

As mentioned before, a progressive methodology is attempted to discretize and calibrate by 

steps the first T.O. formulation to reach compressible turbulent regime. The first step consists 

on solving the incompressible flow at laminar and turbulent regime.  

 

Different domains are evaluated to validate the continuous-adjoint and the automatic 

differentiation approaches implemented at the “adjointTopOptFOAM” and the “FEniCS 

TopOpt Foam” software respectively. All examples of laminar regime consider Table 1 

boundary conditions. 
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Table 1. Boundary conditions at incompressible laminar regime 

 
Primal Boundary 

Conditions 

Adjoint Boundary 

Conditions 

Design Variable 

Boundary Conditions 

 𝒖 𝒑 𝒖𝒂 𝒑𝒂 𝜶 

inlet 𝑢𝑖𝑛𝑙𝑒𝑡  
𝜕𝑝

𝜕𝑛
= 0 𝑢𝑎 = 𝑢 

𝜕𝑝𝑎
𝜕𝑛

=
𝜕𝑝

𝜕𝑛
 1 

Outlet 
𝜕𝑢

𝜕𝑛
= 0 𝑝𝑜𝑢𝑡 

𝜕𝑢𝑎
𝜕𝑛

=
𝜕𝑢

𝜕𝑛
 𝑝𝑎 = 𝑝 1 

wall 𝑢 = 0 
𝜕𝑝

𝑑𝑛
= 0 𝑢𝑎 = 𝑢 

𝜕𝑝𝑎
𝜕𝑛

=
𝜕𝑝

𝜕𝑛
 0 

 

After optimizing the laminar incompressible regime, the turbulence phenomenon is treated with 

the Spalart-Allmaras turbulence model. Therefore, the primal and adjoint boundary conditions 

need to include the turbulent viscosity (𝑣𝑡) and the modified turbulent viscosity (�̃�). This update 

is reflected in Table 2 and Table 3 respectively. 

Table 2. Primal boundary conditions at the incompressible turbulent regime 

Primal Boundary 

Conditions 
𝒖𝒊 [𝐦/𝐬] 𝒑 [𝐏𝐚] 𝒗𝒕

 �̃� 

Inlet 𝑢𝑖𝑛𝑙𝑒𝑡 
𝜕𝑝

𝜕𝑛
= 0 𝑣𝑡𝑖𝑛𝑙𝑒𝑡 �̃� = 𝑐𝑡𝑒 

Outlet 
𝜕𝑢𝑖
𝜕𝑛

= 0 𝑝 = 0 𝑣𝑡𝑜𝑢𝑡𝑙𝑒𝑡  
𝜕�̃�

𝜕𝑛
= 0 

Wall 𝑢 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑣𝑡 = max (0,

𝑢𝑇∗
2

|∇𝑢𝑖|+𝜁
− 𝑣𝑤)  𝑣𝑡 = max (0,

𝑢𝑇∗
2

|∇𝑢𝑖|+𝜁
− 𝑣𝑤)  

 

Table 3. Adjoint boundary conditions at incompressible turbulent regime (Munday 2010; Papoutsis-

Kiachagias and Giannakoglou 2016). 

Adjoint 

Boundary 

Conditions 

𝒗𝒊 [𝐦/𝐬] 𝒒 [𝐏𝐚] �̂�𝒂
 𝜶 

Inlet 𝑣𝑖𝑎 = 𝑢𝑖𝑛𝑙𝑒𝑡 
𝜕𝑞𝑎
𝜕𝑛

=
𝜕𝑝

𝜕𝑛
 𝑣�̃� = 0 

𝛼
= 1 

Outlet 
𝑣𝑖 = 𝑣𝑖𝑡𝑢𝑛 + (𝑣 + 𝑣𝑡) (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) 𝑛𝑗𝑡𝑖  

𝑞 = 𝑣𝑛𝑢𝑛 + 𝑢𝑖 ∙ 𝑣𝑖 +

(𝑣 + 𝑣𝑡) (
𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) 𝑛𝑗𝑛𝑖 + �̃�𝑎�̃�  

−
𝜕𝑣𝑡

𝜕�̃�
𝑣𝑖 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 𝑛𝑗 + �̃�𝑎𝑢𝑗𝑛𝑗 +

(𝑣 +
�̃�

𝜎
)
𝜕�̃�𝑎

𝜕𝑥𝑗
𝑛𝑗 = 0  

𝛼
= 1 

Wall 

𝑣𝑤𝑎 =

√(𝑣 + 𝑣𝑡) (
𝜕𝑣𝑖

𝜕𝑥𝑗
+
𝜕𝑣𝑗

𝜕𝑥𝑖
) 𝑛𝑗 = 0  

𝜕𝑞𝑎
𝜕𝑛

=
𝜕𝑝

𝜕𝑛
 𝑣�̃� = 0 

𝛼
= 0 

 

 

4.1.1. Converging Nozzle Example 
 

The case consists of a horizontal straight channel with an inlet/outlet ratio of 3 discretized by a 

100×100 hexahedral mesh (Figure 16). 
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Figure 16. (a) Nozzle domain, and (b) mesh discretization 

 
(a) 

 
(b) 

At first, the case is tested in laminar incompressible regime to validate the accurate 

implementation of the developed “adjointTopOptFOAM” software. The inlet velocity is stated 

as 𝑢𝑖𝑛𝑙𝑒𝑡 = 1 [m/s], and kinematic viscosity of 𝑣 = 1 [m2/s], resulting in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 1. The 

optimization parameters are calibrated to: �̅�𝑡𝑎𝑟𝑔𝑒𝑡 = 0.5, 𝑞𝜙 = 0.1, 𝑘𝜙 = 2.5 × 10
−4 and 𝑘𝜙 =

2.5 × 104, resulting in the optimized topologies of Figure 17. 

Figure 17. Optimized converging nozzle under laminar incompressible regime reported by (a) 

literature (Borrvall and Petersson 2003) and (b) the “adjointTopOptFoam” software 

 
(a) 

 
(b) 

As seen, the resemblance between the literature and the developed software is high enough to 

validate its implementation.  

Now, the turbulence regime is treated by updating its boundary conditions to |�̅�𝑖𝑛𝑙𝑒𝑡| =

3 [m/s],  fluid properties of �̃�𝑖𝑛𝑙𝑒𝑡 = �̃�𝑜𝑢𝑡𝑙𝑒𝑡 = 1 [m
2/s], and  𝑣 = 1 × 10−3 [m2/s], which 

results in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 3 × 10
3. The influence of both optimizers (the CDV and IDV approach) 

is evaluated during the optimization process, and each case is tested separately under the 

optimization parameters calibrated presented in Table 4, which results in the smooth topologies 

of Figure 19. An interesting case is depicted in the optimization process, where the resolution 

of the topology under the IDV optimizer (Figure 18b) allows a clear fluid-solid boundary 

region, avoiding intermediate grey regions, which occur in the CDV-based approach (Figure 

18a). 

Table 4. Calibrated T.O. parameters at the nozzle case for the CDV and IDV approaches. 

�̅�𝒕𝒂𝒓𝒈𝒆𝒕  𝒒𝝓𝑪𝑫𝑽
 𝒒𝝓𝑰𝑫𝑽

 �̅�𝒖 �̅�𝝂𝒕  �̅�𝚫 

0.3 0.1 1.0 1 × 104 1 × 10−3 25 
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Figure 18. T.O. of Nozzle using (a) CDV and (b) IDV optimizers at incompressible turbulent flow 

 
(a) 

 
(b) 

 

Figure 19. Optimized nozzle using the (a) CDV and (b) IDV approach 

 
 

(a)  
 

(a) 

  

(b) 
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(b) 

 

Table 5. Nozzle IDV and CDV objective functions at incompressible turbulent flow. 

 
Total pressure 

losses (𝑭) 
Difference % 

IDV Optimized Topology (Figure 19b) 21.7 - 

CDV Optimized Topology (Figure 19a) 20.9 3.69 

 

Table 5 shows that the CDV-based optimizer reaches a slight improvement of 3.69% over the 

IDV approach. The analysis is extended by comparing a baseline nozzle design (Figure 20) to 

the optimized CDV-based optimizer result (Figure 19a). For example, the CFD modelling of 

the baseline design is performed and its total pressure losses are calculated as F=26.3, which is 

26% greater than the optimized CDV nozzle. Such difference is depicted in the primal fields 

(Figure 20), where the optimized topology increases the flow velocity (Figure 20b) from 6.2 

[m/s] to 13 [m/s], which is desirable when nozzles are installed. This effect increases the relative 

pressure difference between the inlet/outlet boundaries, resulting in a 65% difference. 

Figure 20. Nozzle primal fields comparison (a) baseline design (b) optimized topology. (|𝑢�̅� | the 

velocity magnitude, 𝑝 is the pressure and 𝑣𝑡 is the turbulent viscosity field) 

   
(a)  

 
 

(a) 

  

(b) 
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(b)  

4.1.2. Double-Channel Example 
The case consists of a straight channel with two inlet/outlet boundaries placed parallel to each 

other (Figure 21). At first, the incompressible laminar regime is tested to validate the 

implementation of the developed “adjointTopOptFOAM” software. To do so, two 𝛿 lengths are 

tested: 1 and 1.5, under an inlet velocity of 𝑢𝑖𝑛𝑙𝑒𝑡 = 1 [m/s] and kinematic viscosity of 𝑣 =

1 [m2/s], resulting in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 0.167. The optimization parameters are: �̅�𝑡𝑎𝑟𝑔𝑒𝑡 = 1/3, 𝑞 = 0.01 

and a 100×100 tetrahedral mesh is considered.  

Figure 21. (a) Double channel domain and (b) Mesh discretization 

 

(a) 

 
 

(b) 
Figure 22. Optimized double-channel topology layout under incompressible laminar regime reported 

by (a) literature (Borrvall and Petersson 2003) (b) the adjointTopOptFOAM software 

 
𝛿 = 1.0 

 
𝛿 = 1.0 

 
𝛿 = 1.5 

 
𝛿 = 1.5 
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According to the chosen 𝛿 length, different topology layouts are obtained and compared in 

Figure 22. By the results resemblance, the developed software is validated again. 

 

Now the case is analyzed under turbulent flow conditions and considers Table 2 and Table 3 

boundary conditions with |𝑢𝑖𝑛𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅| = 1 [m/s], �̃�𝑖𝑛𝑙𝑒𝑡 = �̃�𝑜𝑢𝑡𝑙𝑒𝑡 = 0.2 [m
2/s], 𝑣 = 8 ×

10−5 [m2/s], which leads to a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 3 × 10
3. The optimization is performed with Table 6 

parameters. 

Table 6. Calibrated T.O. parameters at the double-channel case for the CDV and IDV approaches 

�̅�𝒕𝒂𝒓𝒈𝒆𝒕 𝒒𝝓 �̅�𝒖 �̅�𝝂𝒕  �̅�𝚫 

0.33 1.0 25 × 104 1 × 10−3 25-500 

 

Again, the IDV approach defines a clear solid-fluid boundary along the optimization process 

(Figure 23b) as intermediate α values are avoided. On the other hand, the CDV approach leads 

to a curved pipe design (Figure 23a), due to the proximity of wall boundaries that captures fluid 

cells, not easy to modify by the flexibility of the CDV optimizer. This curved pipe-design shows 

an objective function (2.012 × 10−3) larger than the one obtained by the IDV design 

(1.72 × 10−3). Therefore, another test is made with the CDV approach by proposing a 

continuation method, i.e. by running the case under laminar regime at first, and then, taking its 

topology layout result as a start guess of the turbulence regime. Figure 24 describes the 

employed method. 

Figure 23. Double-channel optimization process by considering the (a) CDV and (b) IDV approach 

 
(a) 
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(b)Figure 24. Optimization of double channel case using the CDV optimizer and the continuation 

method 

 

 

As Figure 24 shows, the straight-channel optimized topology is obtained by doing the 

progressive strategy (section 3.7), which updates the fluid viscosity along the optimization 

process. Both optimized topologies can be found in Figure 25. The abrupt variation in the 
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convergence curve of the CDV approach (Figure 25a) is presented due to the continuation 

method used. 

Figure 25 Optimized double-channel topology considering the (a) CDV and (b) IDV approach 

  

(a) 

 
 

(b) 

Table 7 shows the objective functions of each case, where the IDV based-approach solution is 

83% more efficient than the CDV approach. This is due to the thickness of the optimized 

straight channels, where the CDV based-approach presents a thinner solution that accelerates 

the fluid flow (Figure 26), increases the vortex generation along the domain, and ends with the 

highest dissipated energy value. 

Figure 26. Optimized double-channel characteristic flow fields of the (a) CDV and (b) IDV 

approaches 

 
 

(a) 

Vorticity [s−1] 
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(b) 

 
Table 7. Double-channel objective function value. 

Optimized Double Channel Total pressure losses (𝑭) 

CDV Approach (Figure 25a) 9.6 × 10−3 

IDV Approach (Figure 25b) 1.72 x10−3 

 

4.1.3. Pipe-bend Example 

The Pipe-bend case consists of a square domain with perpendicular boundaries representing the 

inlet and outlet boundaries (Figure 27a), discretized by 4.8 × 104 hexahedral mesh (Figure 

27b). The inclusion of extended inlet/outlet channels facilitates the stabilization of the fluid 

flowing through these regions. It considers Table 2 and Table 3 boundary conditions, with 

constant values of |�̅�𝑖𝑛𝑙𝑒𝑡| = 5 [m/s], �̃�𝑖𝑛𝑙𝑒𝑡 = 0.2[m
2/s] and fluid properties 𝑣 =

2 × 10−4[m2/s] reaching a turbulent inlet flow characterized by 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 5 × 10
3. The CFD 

of the original domain (Figure 27c) shows large transversal vortexes generated at the corners 

of the domains, which may be replaced by solid regions during the first iterations of the 

optimization process to mitigate the recirculation zone. 

Figure 27. (a) Pipe-bend Domain, (b) mesh discretization and (c) CFD modelling of initial 

domain 

 
(a) 

 
 

(b) 
 

(c) 

The optimization is performed using the CDV and IDV approaches, where the T.O. parameters 

are calibrated in Table 8. At the IDV approach a constant value of the penalization parameter 

Vorticity [s−1] 
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(𝑞𝜙) is used and �̅�Δ is increased 20% after 100 iterations until a maximum value is reached. 

Then, the optimization stops due to the convergence criteria. 

Table 8. Calibrated T.O. parameters at the pipe-bend case 

 �̅�𝒕𝒂𝒓𝒈𝒆𝒕 𝒒𝝓 �̅�𝒖 �̅�𝝂𝒕  �̅�𝚫 

CDV 0.25 0.01 – 1.0 2.5 × 103 1 × 10−3 300 

IDV 0.25 1.0 2.5 × 103 1 × 10−3 25 – 300 

 

The T.O. process is shown in Figure 28, where the IDV approach presents clear definitions of 

solid and fluid regions along with iterations, meanwhile, the CDV distributes intermediate 

material at the first 40 iterations until a discrete result is found when 𝑞𝜙 gets maximum value. 

Thus, the IDV approach presents a continuum of feasible solutions along with iterations and a 

clear solid/fluid boundary definition. This allows a more accurate CFD modelling through the 

T.O. iterations, as the wall distance can be calculated continuously. Then, solid regions are 

placed across areas where probably vortex are generated. 

Figure 28. Topology layouts evolution of the Pipe-bend case under incompressible turbulent regime 

using the (a) CDV and (b) IDV optimizers 

 

Table 9 presents the objective function values of the optimized pipe-bend case, where the CDV 

approach states the lowest objective function value.  
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Table 9. Comparison of the objective function values for the Pipe-bend examples. 

 
Total pressure losses 

(𝑭) 

Difference from initial 

Domain 

Baseline design (Figure 30b) 7.07 - 

IDV Optimized Topology (Figure 28b) 4.90 30.7% 

CDV Optimized Topology (Figure 28a) 4.48 36.6% 

 

A remark concluded is the T.O. parameters value independence of the IDV approach, i.e. the 

optimization can be performed with different optimization parameters values, in contrast to the 

CDV approach. An example is shown in Figure 29, where the �̅�𝑢 from the previous case is 

changed to �̅�𝑢 = 2.5 × 10
5. The CDV approach (Figure 29a) diverges with the new �̅�𝑢 value 

and the IDV still presents a feasible solution (Figure 29b). 

Figure 29. Influence of �̅�𝑢 value at (a) CDV and (b) IDV optimizer 

 
(a) 

 
(b) 

For example, the primal field performance of the optimized IDV design (Figure 30a) is 

compared to a baseline pipe (Figure 30b). Low velocities values can be seen at the baseline 

outlet region, which might be related to vortex generation. Also, the pressure difference 

between the inlet/outlet boundaries of the baseline case is larger than the IDV optimized case. 

Both phenomena are reflected at the baseline objective function value, which overcomes by 

30.7% the IDV-based case (Table 9).  

Figure 30. Primal fields comparison between (a) optimized IDV and (b) baseline design. 

(|(𝑢𝑖 )̅̅ ̅̅ ̅̅  | the velocity magnitude, 𝑝 is the pressure and 𝑣𝑡 is the turbulent viscosity field 

   
(a) 
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(b) 

 

4.1.4. 2D pipe-joint Example 
 

The design connects one inlet and two outlet boundaries discretized by a uniform hexahedral 

mesh. The boundary conditions are established in Table 2 and Table 3 with |�̅�𝑖𝑛𝑙𝑒𝑡| = 15 [m/s], 

�̃�𝑖𝑛𝑙𝑒𝑡 = 5 × 10
−1 [m2/s] and 𝑣 = 4.29 × 10−4 [m2/s], resulting in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 7 × 10

3.  

Figure 31. (a) 2D pipe-joint domain and (b) Mesh discretization 

 
(a) 

 
(b) 

The optimization parameters are calibrated (Table 10) until reaching a smooth topology layout 

employing the CDV and IDV optimizers.  

Table 10. Calibrated T.O. parameters at the 2D pipe-joint case for the CDV and IDV approaches 

�̅�𝒕𝒂𝒓𝒈𝒆𝒕 𝒒𝝓 �̅�𝒖 �̅�𝝂𝒕  �̅�𝚫 

0.3 1.0 3 × 103 1 × 10−3 25 
 

The CDV and IDV approaches reach an optimized 2D pipe-joint design that joints in the middle 

region, avoiding the domain corners where eddies might be presented. Nevertheless, the 

topologies differ in the joint point and length channels. The topology variation influences each 

objective function value as expected (Table 11), where the IDV performs a better total pressure 

loss distribution between the inlet/outlet boundaries. 
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Figure 32. 2D pipe-joint optimization layout process by considering the (a) CDV and (b) IDV 

approach 

 
(a) 

 
(b) 

Table 11. 2D pipe-joint objective function value. 

Optimized 2D pipe-joint Total pressure losses (𝑭) 

CDV approach (Figure 33a) 71.01 

IDV approach (Figure 33b) 50.4 

 

The vorticity fields (Figure 34) justify the objective function difference: It shows that the CDV 

topology layout generates high vorticity due to its straight channel design mainly at the inlet 

bottom section. This abrupt fluid section change increases the vorticity in the regions, which is 

not depicted in the IDV approach topology. Its smooth curvature-designed channel decreases 

the vorticity generation.  
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Figure 33. Optimized 2D pipe-joint topology using the (a) CDV and (b) IDV approach 

  
(a) 

  

(b) 

Figure 34. Vorticity fields of optimized 2D pipe-joint under the (a) IDV and (b) CDV approach. 

  
(a) (b) 

 

4.1.5. 3D Pipe Joint Example 
Finally, the method is tested in a 3D domain to show its flexible application. A fluid container 

is analyzed (Figure 35a), and which domain is discretized with an uniform hexahedral mesh 

(Figure 35b). It uses Table 2 and Table 3 boundary conditions, with constant values of 

|�̅�𝑖𝑛𝑙𝑒𝑡| = 1 [m/s] and fluid properties of: 𝑣 = 8 × 10−5[m2/s] ensuring a turbulent inlet flow 

characterized by 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 3125. The CFD modelling of the original domain (Figure 35c) 

shows a chaotic flow where non-intuitive fluid passage is detected, which increases the 

difficulty of the optimization process. 
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Figure 35. (a) 3D initial domain, (b) mesh discretization and (c) fluid flow streamlines 

 
(a) 

 
(b) 

   
(c) 

A first guess solution could be a diagonal pipe that joints the inlet and outlet boundaries. Thus, 

initially, the optimization is performed considering a low 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 value (𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 0.2), and the 

diagonal pipe is obtained as expected (Figure 36). 

Figure 36. (a)Optimized container by using IDV optimizer at low 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 and (b) convergence curve 

 
(a) 

 
(b) 

Nevertheless, at turbulent flow, the optimization parameters calibration changes, and different 

tests are performed by changing the volume constraint until reaching the convergence of the 

optimization process and getting smooth topologies. The optimized topologies considering 

CDV and IDV optimizers are reached (Figure 37) when Table 12 optimization parameters are 

calibrated.  

Table 12. Selected optimization parameters at the 3D domain for CDV and IDV approaches 

𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 �̅�𝒕𝒂𝒓𝒈𝒆𝒕 𝒒𝝓 𝒌𝒖̅̅̅̅  𝒌𝒗𝒕
̅̅ ̅̅  𝒌𝚫̅̅̅̅  

0 0.33 1.0 2.5 × 104 1 × 10−3 25 
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Figure 37. Optimized container case by using the (a)CDV and (b) IDV optimizers 

  
(a) 

 
  

(b) 

By using the CDV optimizer, the computational cost is 12.2% of the IDV computational cost, 

and the topologies layouts are considerably different from each other. As Figure 38 shows, the 

IDV binary behaviour avoids intermediate α values, creating an innovative topology where 

clear passages are described.   

Figure 38. Optimized container under the IDV approach: (a) side and (b) superior view 

 
(a) 

 
(b) 

 

The designed passages direct the fluid flow through the domain, avoiding its chaotic random 

behaviour and reducing the vortex generation (Figure 39b). Therefore, the optimized topology 

using the IDV optimizer acts more efficiently than the CDV in the current case. 
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Figure 39. Vorticity field of optimized container topology under (a) CDV and (b) IDV approaches. 

 
(a) 

 
(b) 

 

The IDV optimized design is compared to the baseline topology (Figure 40), by running the 

CFD under the same fluid flow properties, i.e. by using 𝑣 = 8 × 10−5[m2/s], and the same 

�̅�𝑡𝑎𝑟𝑔𝑒𝑡 of the optimized design (Table 12). The baseline primal fields are shown in Figure 40. 

Figure 40. 3D Baseline design (a) velocity and (b) vorticity streamlines 

 
(a) 

 
(b) 

Transversal vortexes are identified at the inlet section and a swirl flow too. Both phenomena 

induce a turbulent flow across the domain and the outlet region too. The vorticity magnitude 

calculation shows an 18% peak difference between both cases. Such improvement is confirmed 

in the Total pressure losses value (𝐹), where the optimized topology presents a 15% 

improvement over the baseline design (Table 13). 

Table 13. Objective function comparison between the baseline and optimized container passage by 

considering incompressible turbulent regime. 

 Total pressure losses (𝑭) Baseline Difference % 

Baseline 0.384 - 

Optimized Topology Layout 

CDV 
0.344 10.4 

Optimized Topology Layout 

IDV 
0.326 15.1 
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4.1.6. Rotor Example 
 

Simultaneously, the continuous adjoint method is tested with the rotational flow under the 

incompressible turbulent regime using the CDV approach. The domain considers the fluid 

cavity between two straight blades of a rotor (Figure 41). The domain is discretised considering 

a hexahedral mesh (Figure 41c) and its boundary conditions are taken in Table 2 and Table 3. 

The fluid properties are: 𝑢𝑖𝑛𝑙𝑒𝑡 = 10 [m/s], 𝑣 = 5 × 10
−5[m2/𝑠], 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 4 × 10

3. 

Figure 41. (a) Straight blade rotor, (b) Cavity domain considered and (c) mesh (Kim et al. 2014).  
 

 
(a) 

 
 

(b) 
 

(c) 

  

The CDV optimizer is used and the optimization parameters are calibrated as: 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.5, 

�̅�𝑡𝑎𝑟𝑔𝑒𝑡 = 0.3, 𝑞𝜙 = 0.1, 𝑘𝑢 = 50, 𝑘𝑣𝑡 = 50, 𝑘𝛥 = 50. The optimization process is seen in 

Figure 42. The selected optimization parameters have lower values than the parameters used 

for the optimization of channels, due to the domain area and the fluid flow, as it requires some 

“freedom” to stabilize the chaotic inlet turbulent rotating flow.  

Figure 42. Topology optimization of straight blade rotor under incompressible turbulent regime by 

using the Spalart-Allmaras turbulence model (Author). 

 
 

The case is tested under different rotations and fluid viscosities, (Table 14), distributing the 

material differently across the domain section (Figure 43). 
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Table 14. Optimization parameters at cavity straight blade rotor under incompressible turbulent flow. 

Case Viscosity, 

𝝂 [𝐦𝟐/𝐬] 
Rotational 

velocity [rpm] 

Volume 

target, �̅� 
𝒌𝝓 𝒒𝝓 

1 1× 10−5 20 0.3 1× 103 0.1 

2 5× 10−5 40 0.3 50 0.1 

 

The T.O. tends to create a narrow blade at the suction side of the blade domain. This is expected 

as vortex generation from the pressure side is different from the suction side (Gaetani, (Gaetani 

2018)). According to the fluid nature of entering through the cavity, e.g. inlet velocity, the 

centrifugal forces could predominate, increasing the mentioned differences between vortex 

generation across the suction and pressure side. Both tests are made using wall boundary 

conditions and case 2 shows how it affects the fluid flow direction, as reverse flow is found in 

the middle section when large Reynolds numbers are tested. 

 

Figure 43. Topology optimization of rotational turbulent flow, Case 1 (a, b, c) and Case 2 (d, e, f) 

 
(a) 

 
(b) 

 
 
 

(c) 

 
(d) 

 
(e) 

 
 
 

(f) 
 

The developed software “adjointTopOptFOAM” based on the continuous adjoint approach 

proves its robustness to optimise incompressible turbulent flow in channel designs, rotors 

domains and 3D fluids interchanges. The analysis of the IDV influence is tested in some cases 

to conclude its flexibility and accurate fluid/solid boundary design along the optimization 

iterations. Furthermore, it can optimize complex domains without treating the progressive 

strategy as the CDV approach demands. At the rotational regime, large rotations are tested with 
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the previous assumption, however, no convergence is found. The research shows that using 

wall boundaries at the rotor cavity restricts the space to be optimized, increases the 

computational cost, and creates undesired instabilities of the rotating flow. Therefore, a cyclic 

boundary condition is proposed to be analysed further to reach large rotational velocities.  

Several tests of hand-derivation to obtain the continuous adjoint code for compressible fluid 

flow regime were made, but challenges related to the derivatives of many variables at 

compressible regime, such as temperature, enthalpy, and compressible turbulent fluctuations, 

which depend on the sensitivity analysis difficult the process. Therefore, another path is 

considered to reach the compressible adjoint code, which is explained in the following. 

 

4.2. TOPOLOGY OPTIMIZATION OF COMPRESSIBLE 

TURBULENT SUBSONIC FLOW FOR AN IDEAL 

PERFECT GAS CONSIDERING THE DISCRETE 

ADJOINT APPROACH 
 

As it is explained in section 3.7, the T.O. of compressible turbulent regime is tackled via the 

progressive methodology (Figure 15), which consists in optimizing the domain at laminar 

regime and taking its topology layout result as an initial guess of the turbulent. The other fluid 

properties remain constant during the optimization process. A fictitious fluid is proposed to be  

discretized, which can be tested at different regimes by changing its dynamic viscosity and 

remaining its thermophysical properties as Table 15 shows. 

Table 15. Thermophysical fluid properties. 

𝑐𝑝 [J/kgK] 1004 

Molar Weight [g/mol] 28.96 

Gas constant (𝑅) [J/mol K] 8.314 

Thermal conductivity (𝑘𝑡ℎ) [W/m K] 0.0263 

 

The software “FEniCS TopOpt FOAM” (Alonso et al. 2021) is modified to deal with T.O. of 

compressible turbulent regime by including: firstly, the FANS equations to treat turbulence at 

compressible regime, and secondly, the Sutherland Law and the Peng-Robinson model to 

represent real gas behaviour. The optimization is performed via the CDV optimizer and the 

IPOPT optimizer, where the established convergence criterion of the T.O. is of 10−10.  

 

The first step of the progressive strategy considers a subsonic regime with low Reynolds 

numbers, which is a much simpler configuration for both simulation and optimization. 
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Therefore, the penalization terms related to the turbulence treatment are zero (𝑘�̂� = 𝑘𝛥 = 0) as 

no turbulence model is employed. Two examples are presented: a converging nozzle and a pipe-

bend. Both cases consider the boundary conditions described in Table 16. 

Table 16. Primal boundary conditions used at compressible regime with low-Re. 

Primal Boundary 

Conditions 
𝑢 [m/s] 𝑝 [Pa] 𝑇 [K] 

Inlet 𝑢𝑖𝑛𝑙𝑒𝑡 
𝜕𝑝

𝜕𝑛
= 0 𝑇𝑖𝑛𝑙𝑒𝑡  

Outlet 
𝜕𝑢

𝜕𝑛
= 0 𝑝𝑡𝑜𝑡𝑎𝑙𝑜𝑢𝑡 = 101325 

𝜕𝑇

𝜕𝑛
= 0 

Wall 𝑢𝑤𝑎𝑙𝑙 = 0 
𝜕𝑝

𝜕𝑛
= 0 𝑇𝑤𝑎𝑙𝑙 = 298.15 

 

As T.O. of turbulent regime demands precise calibration of the optimization parameters, a 

“turbulence regime approximation step” is proposed, which consists of calibrating, at first, the 

T.O. parameters for compressible subsonic regime, without solving the turbulence tensor part 

of the FANS equations, i.e. by not considering any turbulence model. By doing so, the T.O. 

parameters calibration is suitable as fewer variables need to be defined, i.e. �̅�𝚫 and �̅��̂� are not 

considered. 

After performing T.O. at turbulent regime approximation, the obtained topology is used as a 

start guess to solve the turbulence phenomenon considering the modified SA turbulence model. 

Therefore, the boundary conditions are updated with the turbulence model variables, as 

described in Table 17. 

Table 17. Boundary conditions at compressible turbulent regime. 

Boundary 

Conditions 
Inlet Outlet Wall Cyclic-1 Cyclic-2 

𝑢𝑖 𝑢𝑖𝑛𝑙𝑒𝑡 𝜕𝑢

𝜕𝑛
= 0 

𝑢𝑤𝑎𝑙𝑙 = 0 𝑢𝐂𝐲𝐜𝐥𝐢𝐜−𝟏 = −𝑢𝐂𝐲𝐜𝐥𝐢𝐜−𝟐 

𝑝 𝜕𝑝

𝜕𝑛
= 0 

𝑝𝑡𝑜𝑡𝑎𝑙𝑜𝑢𝑡 𝜕𝑝

𝜕𝑛
= 0 𝑝𝐂𝐲𝐜𝐥𝐢𝐜−𝟏 = 𝑝𝐂𝐲𝐜𝐥𝐢𝐜−𝟐 

𝑇 𝑇𝑖𝑛𝑙𝑒𝑡 𝜕𝑇

𝜕𝑛
= 0 

𝑇𝑤𝑎𝑙𝑙 = 298.15 𝑇𝐂𝐲𝐜𝐥𝐢𝐜−𝟏 = 𝑇𝐂𝐲𝐜𝐥𝐢𝐜−𝟐 

𝑣 𝑣 = 0.023 𝜕𝑣

𝜕𝑛
= 0 

𝑣 = 0 𝑣𝐂𝐲𝐜𝐥𝐢𝐜−𝟏 = 𝑣𝐂𝐲𝐜𝐥𝐢𝐜−𝟐 

 

4.2.1. Converging Nozzle Example 

The converging nozzle case is tested at compressible regime by updating its fluid properties to: 

𝑢𝑖𝑛𝑙𝑒𝑡 = 30 [m/s], 𝜇 = 1 [Pa ∙ s], 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 30, 𝑇𝑖𝑛𝑙𝑒𝑡 = 298 [K] and 𝑝𝑡𝑜𝑡𝑎𝑙𝑜𝑢𝑡 =

101325 [Pa]. The boundary conditions from Table 16 are used and the domain is discretized 

by 2500 triangular elements. 
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Figure 44. Mesh discretization of nozzle domain at compressible regime 

 

The initial guess of the domain is �̅�𝑓𝑟𝑎𝑐 = 0.3 [m
3/m3], and the optimization parameters are 

established as 𝑞 = 0.1, 𝑘𝐮 = 5 × 10
5 [kg/(m3s)] and 𝑘𝐓 = 1 × 10

5 [kg/(m K s3)], resulting in the 

optimized topology layout shown in Figure 45. 

Figure 45. (a) Optimized nozzle topology layout (black = solid, white = fluid) under laminar 

compressible flow and (b) convergence curve. 

 
(a) 

 
𝐹 = 667.55 [W/m] 

(b) 

The optimized nozzle characteristic fields (Figure 46) show a peak Mach number difference of 

0.46 and a density variation of 37.5% along the domain, which justifies the use of a 

compressible-based solver to optimize the current domain. 

Figure 46. Velocity, pressure and Mach number fields of the (a) optimized nozzle and (b) baseline 

case under compressible low Re regime.  

   
(a) (b) (c) 

F
 [

W
/m

] 

𝜌 [𝑘𝑔/𝑚3] 
Mach 𝑇 [K] 
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The turbulence regime is reached by updating the dynamic viscosity to μ = 0.01169 [Pa ∙ s],. 

The optimization parameters are calibrated to �̅�𝑓𝑟𝑎𝑐 = 0.4 [m
3/m3 ], 𝑞 = 0.1, 𝑘𝑢 =

2.5 × 107 [kg/(m3s)] and 𝑘𝑇 = 1 × 10
2 [kg/(m K s3)], which outcome is the optimized 

topology layout shown in Figure 47 with the corresponding convergence curve. 

Figure 47. (a) Optimized convergence nozzle without considering a turbulence model, and (b) 

convergence curve 

 
(a) 

 
𝐹 = 182.654 [W/m] 

(b) 

 

After reaching the turbulence regime approximation, the SA turbulence model is used to analyse 

accurately the turbulence phenomenon. Therefore, the boundary conditions of the converging 

nozzle case are updated in Table 17. Also, the optimization parameters related to the SA 

turbulence model and Eikonal equation are calibrated to �̅��̂� = 1 [kg/m
3s] and �̅�𝚫 =

1 × 103 [m−3], respectively. The optimized topology, its convergence curve and the 

comparison between the turbulence approximation solution are shown in Figure 48. The 

optimized SA nozzle presents a slight thinner outlet channel difference than the turbulence 

approximation solution (Figure 48c). 

Figure 48. (a) Optimized converging nozzle considering the SA turbulence model, (b) convergence 

curve and (c) comparison of the SA turbulence model (black continuous line) to the turbulence 

approximation (blue-dotted line) 

 
(a) 

 
𝐹 =  248.6 [W/m] 

 

(b) 

 
 

(c) 
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Despite the influence of the turbulence model calculation is not high in the topology layout, the 

fluid flow presents variations (Figure 49). For example, the velocity field shows a significant 

difference in its peak value of 11.8%. Also, the vorticity field varies when the SA turbulence 

model is employed (Figure 49b), implying the influence of solving accurately the turbulence 

phenomenon. 

Figure 49. Velocity and vorticity fields of the optimized nozzle under compressible turbulent flow 

considering (a) the non-turbulence model and (b) the S-A turbulence model 

 
 

(a)  

  
(b) 

The influence of the turbulent fluid flow modelling is quantified at the objective function, i.e. 

the optimized topology under the turbulence regime approximation presents a 182.654 [W/m] 

objective function, which overcomes by 24.4% the Spalart-Allmaras optimized topology 

(138.064 [W/m]). It can be concluded that the unsolved turbulence phenomena may lead to 

miscalculations of the objective function, even though, in the current case the topology layout 

does not vary considerably. Also, it is found that the continuation method allows a step-by-step 

calibration of the T.O. parameters. Another important fact is reinforced by seeing the primal 

fields of the case (Figure 50), where the Mach number, the density and the temperature across 

Vorticity [s−1] 

Vorticity [s−1] 
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the whole domain varies considerably: 20%, 7% and 6.7% respectively. This consolidates the 

need of using a compressible solver to optimize the topology. 

Figure 50. (a) Mach number, (b) density and (c) temperature fields across optimized converging nozzle 

at compressible turbulent regime 

   
(a) (b) (c) 

 

Incompressible and Compressible cross-check trial 

As seen, the optimized nozzle case presents variations on its topology layout when the fluid 

flow regime is changed from incompressible (Mach < 0.3) to compressible flow (Mach >

0.3) (Figure 51). At the following section, the energy dissipation influence at each case is 

presented. 

Figure 51. Optimized nozzle at turbulent regime (𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 3 × 10
3) considering (a) incompressible, 

and (b) compressible flow 

  
(a) (b) 

Although previous tests indicated the need to use a compressible-based T.O. formulation, a 

cross-check trial is performed between the optimized topologies shown in Figure 51, both at 

the same fluid flow properties of compressible turbulent regime (𝑢𝑖𝑛𝑙𝑒𝑡 = 30 [m/s], 𝑇𝑖𝑛𝑙𝑒𝑡 =

298 [K], 𝜌 = 1.225 [kg/m3], and μ = 0.01169 [Pa ∙ s]). 

𝜌 [kg/m3] Mach 𝑇 [K] 
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The incompressible optimized topology (𝐹 = 29092.40[W/m]) dissipates more energy than 

the recent obtained compressible optimized topology (𝐹 = 138.064[W/m]), which indicates 

the need of using a compressible-based T.O. formulation. The topologies are remarkable 

different, and the fluid characteristic fields (Figure 50 and Figure 52) present differences, e.g. 

the peak Mach number differs 22% between each other. Also, the density variation in each case 

is larger than 20%, which also supports the need of using a compressible-based T.O. 

formulation. 

Figure 52 CFD of optimized nozzle designed for incompressible regime but tested at compressible 

turbulent fluid flow: (a) Mach, (b) density and (c) temperature fields 

   
(a) (b) (b) 

 

 

Reynolds number influence 

The compressible nozzle case is tested at a higher Reynolds number by updating the dynamic 

viscosity to μ = 7 × 10−3 [Pa ∙ s], resulting in a  𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 5 × 10
3. The fluid properties and 

optimization parameters are remained as previously. 

Figure 53. Optimized nozzle under 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 5 × 10
3 

 
(a) 

 
 
 

(b) 

The optimized nozzle topology (Figure 53a) develops an inlet guide vane leading to an energy 

dissipation value of F = 156.743 [W/m], which indicates an advantage of the T.O. method as 

it can produce non-intuitive topologies.  

 
  

 

𝜌 [kg/m3] Mach 𝑇 [K] 

 
  

 

𝜌 [kg/m3] Mach 𝑇 [K] 

 
  

 

𝜌 [kg/m3] Mach 𝑇 [K] 
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To compare the energy performance of the optimized nozzle, a cross-check validation is made 

through the CFD modelling of the previously optimized nozzle (Figure 48a) under a Reinlet =

5 × 103 as well. The calculated energy dissipation of the optimized compressible nozzle at 

Reinlet = 3 × 10
3 (Figure 48a) is larger than the Figure 53a topology, i.e. F = 1119.019 [W/

m], proving the importance of an inlet guide-vane at the Reinlet = 5 × 10
3 regime. The 

characteristic fluid flow fields (Figure 54) display how the fluid flow bifurcation decelerates 

near the inlet-guide vane due to its wall boundary. The observed drop in the fluid flow velocity 

is most probably the reason for the decrease of the energy dissipation calculated across the 

domain, besides resulting in a thinner domain than the domain presented in Figure 50, which 

also affects the calculated volume integral. 

Figure 54. Characteristics flow fields of the optimized nozzle under a Reinlet = 5 × 10
3: (a) Mach, (b) 

density, and (c) temperature distributions 

   
(a) (b) (c) 

4.2.2. Pipe-bend Example 
The pipe-bend case of section 0 is optimized at compressible laminar subsonic regime by 

updating the fluid properties to 𝑢𝑖𝑛𝑙𝑒𝑡 = 50 [m/s], 𝑇𝑖𝑛𝑙𝑒𝑡 = 193.15 [K] and 𝜇 = 1 [Pa ∙ s], which 

results in  𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 60. Each test considers a constant velocity profile at the inlet boundary. In 

many cases of fluid flow, complex geometries (such as pipes, nozzles, external flow cases, 

pumps, etc.) are commonly discretized by non-uniform mesh. Therefore, its influence is initially 

tested (Figure 55). 

Figure 55. Pipe-bend mesh discretization using 2.75 × 104 cells in (a) uniform and (b) non-uniform 

distribution 

  
(a) (b) 

𝜌 [kg/m3] Mach 𝑇 [K] 
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The initial guess material distribution ponders �̅�𝑓𝑟𝑎𝑐 = 0.5 [m
3/m3], and the optimization 

parameters are calibrated to 𝑞 = 0.1, 𝑘𝑢 = 2 × 10
4 [kg/(m3s)] and 𝑘𝑇 = 2 × 10

4 [kg/

(m K s3) ]. The optimization layout from the different meshes is compared (Figure 56), 

depicting the influence of using non-uniform meshes in T.O., where grey regions appear in the 

refined mesh zones and the optimized topology reaches a local minimum. 

Figure 56. Pipe-bend optimization layout considering (a) uniform and (b) non-uniform mesh 

distribution. 

 
 

𝐹 = 5747.8 [W/m] 
(a) 

 

 
𝐹 =  7858.9 [W/m] 

(b) 

The grey regions in T.O. indicate a weak definition of volume permeability, as fluid might flow 

through these volume cells. Therefore, two strategies previous developed at incompressible 

regime are tried (Alonso et al. 2021): firstly, adjust the sensitivity calculation through its volume 

division, and secondly, applying the Helmholtz filter with 𝑟𝐻 = 0.5 ×

(minimum element size). By doing so, the topology layout improves its solid/fluid definition 

and allows using non-structural meshes in the following T.O. cases (Figure 57). Nevertheless, 

the objective function varies 20% between the structured uniform and the unstructured non-

uniform meshes optimized topologies. Since both optimized topologies are different, this shows 

that there is a mesh-dependency effect.  

𝛼 

𝛼 
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The T.O. mesh-dependency effect is not present in structured uniform meshes, however, the 

optimization at unstructured non-uniform meshes may feature such effect intensely. In the field 

of optimization, there is the mathematical concept of the Riesz map, which converts between 

the primal (simulation) and dual (adjoint) spaces the sensitivities to their mesh-independent 

variants by essentially weighting them by the volume around each node. The resulting 

"adjusting sensitivity method", featuring such conversion, makes the difference only when 

unstructured non-uniform meshes are used, e.g. when complex domains are required. 

Figure 57. Optimized pipe-bend topology in a non-uniform mesh adjusting sensitivity and employing 

the Helmholtz filter 

 
 

𝐹 =  7598.8 [W/m] 

Figure 58. Characteristic flow fields of the optimized pipe-bend case at compressible laminar regime 

   

(a) (b) (c) 

Figure 58 shows a 68.5% density variation along the optimized pipe-bend domain, which 

justifies again the development of a compressible-based T.O. formulation as previously. The 

large peak temperature gradients are found near the walls, and the achieved peak Mach number 

supports the optimization of compressible subsonic regime. 

 

Then, the turbulent compressible regime is setup by updating the 𝑢𝑖𝑛𝑙𝑒𝑡 = 60 [m/s] and 𝜇 =

5 × 10−4 [Pa ∙ s], reaching a Re𝑖𝑛𝑙𝑒𝑡 = 2.4 × 10
4. The optimization parameters are calibrated to 

�̅�𝑓𝑟𝑎𝑐 = 0.5 [m
3/m3], 𝑘𝑢 = 2 × 10

4 [kg/(m3s)], 𝑘𝑇 = 2 × 10
4 [kg/(m K s3)] and 𝑞 = 0.1, 

resulting in Figure 59 topology layout. 
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Note that in Figure 59 instabilities are found at the optimized topology due to lower fluid 

viscosity and the domain shape, which is sensitive to vortex generation at the outlet region, 

challenging the T.O. process. To overcome the mentioned instabilities in the topology layout, 

a viscosity continuation is proposed by starting with high viscosity values (𝜇𝑠𝑡𝑎𝑟𝑡 = 0.5 [Pa ∙

s]) and taking each topology layout result to start the next optimization process until reaching 

the desired fluid viscosity (𝜇𝑒𝑛𝑑 = 5 × 10
−4 [Pa ∙ s]), which is depicted in Figure 60. 

Figure 59. Pipe-bend topology layout at compressible turbulent regime approximation

 

Figure 60. (a) Optimized pipe-bend under the compressible turbulent approximation regime and (b) 

convergence curve. 

 
(a) 

 
𝐹 = 2149.3 [W/m] 

 

(b) 

 

The analysed case is updated by solving the turbulence phenomenon. The T.O. parameters are 

calibrated for the SA turbulence model (k̅v̂ = 5 [kg/m
3 s]) and the Eikonal equation (k̅Δ =

25 [m−3]), resulting in the optimized topology and convergence curve presented in Figure 61. 

 

By solving the turbulence phenomenon, the pipe-bend topology decreases its thickness in 

comparison to the optimized pipe-bend turbulence approximation solution (Figure 60). This 

channel thickness variation leads to an objective function difference of 46% between the 

optimized cases. 
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Figure 61. (a) Optimized pipe-bend topology layout considering the Spalart-Allmaras turbulence 

model, (b) convergence curve 

 
(a) 

 
F=1160.7 [W/m] 

(b) 

 

The characteristic flow fields (Figure 62) analysis also demonstrates that not solving the 

turbulence phenomenon overestimates the peak fluid acceleration by 16.7%, which influences 

the Mach number calculation presenting a peak difference of 33.9%. Also, the vorticity field 

comparison shows that not solving the turbulence phenomenon, overestimates the regions and 

values where eddies could be identified. 

Figure 62. Pipe-bend characteristic flow fields under compressible subsonic (a) turbulence 

approximation and (b) SA turbulence model  

 
  

(a) 

   

(b)  
 

Finally, the optimized pipe-bend (Figure 61) is compared to a baseline design (Figure 63) under 

the same fluid flow conditions.  

𝛼 

𝐹
 [
W
/m
] 

Mach 

Mach 

|�̃�𝑖| [m/s] 

|�̃�𝑖| [m/s] 

Vorticity [s−1] 

Vorticity [s−1] 
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A chaotic flow is found in the outlet region of the baseline pipe-bend, which increases its energy 

dissipation to 𝐹 =3233.1 [W/m], which is 64.1% larger than the optimized pipe-bend topology 

(𝐹 =1160.7 [W/m]).  

Figure 63. Pipe-bend baseline at compressible turbulent regime: (a) velocity streamlines and 

(b) Mach field. 

 
(a)  

 
(b)  

 

 

4.2.3. Diffuser 
 

Finally, a diffuser domain from experimental tests (Alvarenga et al. 2016) at compressible 

subsonic flow application is brought to the current research to be optimized. The case consists 

of a duct with a transversal area enlargement (Figure 64). Generally, these kinds of devices are 

employed to diminish the kinetic energy of tube systems by increasing the cross-section, 

generating an increase in the pressure inlet/outlet ratio. 

Figure 64. Diffuser domain (a) dimensions and (b) boundaries 

 
(a) 

 
(b) 

 

 

 

|�̃�𝑖| [m/s] Mach 



Chapter 4. RESULTS  106 

The boundary conditions are established as 𝑝𝑡𝑖𝑛𝑙𝑒𝑡 = 97316 [Pa], 𝑝𝑡𝑜𝑢𝑡𝑙𝑒𝑡 = 101325 [Pa], 

𝜇 = 0.01 [Pa ∙ s], 𝜌𝑖𝑛𝑙𝑒𝑡 = 1.169 [kg/m
3] resulting in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 238. Also, the optimization 

parameters are calibrated to �̅�𝑓𝑟𝑎𝑐 = 0.4 [m
3/m3], �̅�𝑢 = 2.5 × 10

7 [kg/(m3s)], �̅�𝑇 =

1 × 102 [kg/(m K s3)] and 𝑞 = 1 × 10−4, leading the optimization of the diffuser domain to 

the result shown in Figure 65. 

Figure 65. Optimized diffuser under laminar compressible flow: (a) topology layout and (b) 

convergence curve 

 
(a) 

 
𝐹 = 5609.14 [W/m] 

(b) 

As expected, solid cells are placed at the converging transversal area after the inlet tube, to 

avoid vortex generation, which is commonly generated by changes in the cross-section areas 

(Figure 66). 

Figure 66. CFD of original diffuser 

 

Despite some material being placed next to the wall boundaries, the optimized diffuser still 

guarantees the initial pressure difference established (Figure 67). 
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Figure 67. The pressure difference between inlet/outlet boundaries of optimized diffuse 

 

The objective functions of the optimized (F=5609.14 [W/m]) and original (F=5650.61 [W/m]) 

diffuser cases are similar, showing that a thinner optimized diffuser can improve by 0.74% the 

energy dissipation across an original design, and maintains the desired pressure difference of 

the initial domain. This objective function resemblance is seen in the characteristic fields of 

each (Figure 68), where significant variations in the density and temperature fields are found in 

both cases, i.e. of 23% and 3.22% respectively- These variations justify the need of using a 

compressible fluid-based solver. 

Figure 68. Characteristic fields distribution along (a) original and (b) optimized diffuser 

 

 

 
(a) 

 

 

 

 

 

 
(b) 
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After optimizing the laminar compressible regime, the viscosity is updated to 𝜇 =

7 × 10−4 [Pa ∙ s], resulting in a turbulent inlet number of 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 3400. The optimization is 

performed without considering the turbulence approximation approach and includes an update 

of the viscosity value through the optimization process, which can be seen in the convergence 

curve behaviour that changes drastically due to the viscosity update (Figure 69b). The turbulent 

variables are solved directly via the Spalart-Allmaras turbulence model applying a turbulent 

intensity inlet value of 5% and calibrating the T.O. turbulence parameters at �̅��̂� = 1 [kg/m
3 s] 

and �̅�𝛥 = 1 × −3 [m
−3]. The optimized layout is seen in (Figure 69a). 

Figure 69. (a) Optimized diffuser for compressible turbulent subsonic flow and (b) convergence curve 

 
(a) 

 
(b) 

 

A remarkable difference is seen between the optimized diffusers at compressible laminar 

(Figure 65)  and turbulent (Figure 69a) regimes. At first, the optimized diffuser at compressible 

turbulent conditions presents a thinner channel after the inlet variation cross-section, which 

helps to decrease the kinematic fluid conditions. Then, a splitter is generated near the outlet 

region, along with a cross-section reduction. By doing so, the fluid diminishes the kinematic 

energy at the entrance region up to the splitter point, where it is accelerated due to the cross-

section area diminution resulting in optimized energy dissipation of 1527.550 [W/m].   
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The primal fields of the optimized diffuser at compressible turbulent conditions (Figure 70) 

show a subsonic Mach number reached, framed with a temperature reduction at its outlet region 

and a density variation of 23% along the domain. 

Figure 70. Primal fields of the optimized diffuser at compressible turbulent subsonic conditions. 

 

 

 

 
 

4.2.4. 3D pipe-joint 
The robustness and flexibility of the developed methodology in the FEniCS TopOpt FOAM 

software are tested by optimizing a 3D domain. It consists of a hexahedral space with two inlets 

and one outlet boundary with Linlet = Loutlet = 0.2 [m] each (Figure 71a). The domain is 

discretized by a 5 × 104 tetrahedral elements (Figure 71b) and uses Table 17 boundary 

conditions. The velocity and viscosity are updated to uinlet = 40 [m/s] and μinlet =

6 × 10−3[Pa ∙ s], in order to ensure a subsonic turbulent flow, i.e. Mamax = 0.44 and 

Reoutlet = 5.6 × 10
3. The optimization parameters are calibrated as Table 18 shows. 

Figure 71. (a) 3D initial domain, and (b) mesh discretization (4323 tetrahedral elements) 

 
(a) 

 
(b) 

The optimization is achieved (Figure 72) by using the continuation method, which updates the 

fluid viscosity after a series of optimization iterations (Table 19). 
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Table 18. Optimization parameters for compressible turbulent flow. 

T.O. parameters Value 

𝛼𝑠𝑡𝑎𝑟𝑡 1 
�̅�𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 [m

3/m3] 0.33 

𝑞  0.1 

𝑘𝑢̅̅ ̅ [kg/(m
3s)] 1 × 104 

𝑘𝑇̅̅̅̅  [kg/(m K s
3)] 1 × 104 

𝑘𝑣𝑡
̅̅ ̅̅  [kg/m3s] 5 × 10−2 

𝑘𝜟̅̅ ̅ [m
−3] 1 × 103 

 

Table 19. Optimization continuation method used in the fluid interchange case 

Viscosity 𝝁𝒊𝒏𝒍𝒆𝒕 [𝐏𝐚 ∙ 𝐬] 6 × 10−1 6 × 10−2 6 × 10−3 
Optimization iterations 50 50 100 

 

As expected, the inlet pipes are connected at the outlet region, forming a diagonal topology. 

The viscosity update influence is seen at the convergence curve peaks, where the objective 

function varies according to the optimization steps named in Table 19 until the topology and 

the objective function stop varying. The characteristic flow fields of the optimized container 

(Figure 73) show how the fluid reaches the compressible subsonic regime, with a peak Mach 

number of 0.52 and density variation of 42%, which justifies again the implementation of the 

compressible-based T.O. formulation. 

Figure 72. (a) Optimized 3D topology at turbulent subsonic compressible regime and (b) convergence 

curve  

 
Figure 73. Characteristic fluid flow fields of optimized container: (a) Mach, (b) density and (c) 

temperature distribution 

   
(a) (b) (c) 
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The optimized topology is cross-checked and validated to an optimized 3D pipe-joint obtained 

by using incompressible regime conditions (Figure 74). Despite both topologies being similar, 

the dissipated energy performance of the compressible solver-based optimized container 

(Figure 73) is 75.2% better. 

Figure 74. The optimized 3D pipe joint obtained considering incompressible regime 

 
F = 254.33 [W/m] 

4.2.5. Rotor Example 
 

Finally, the developed FEniCS TopOpt FOAM software based on the discrete adjoint 

methodology is applied to a rotational domain. The rotor cavity case mentioned in section 4.1.6, 

is tested at compressible turbulent regime by varying the fluid flow properties to 𝑢𝑖𝑛𝑙𝑒𝑡 =

120 [m/s], μ = 5 × 10
−4 [Pa ∙ s], 𝑛 = 400 [rpm], Tinlet = 298 [K] and pout = 101325 [Pa]. The 

optimization is performed by calibrating the T.O. parameters to �̅�𝑢 = 8 × 10
5 [

𝑘𝑔

𝑚3𝑠
],, and 𝑞𝜙 =

0.2112.  The optimized topology layouts are shown in Figure 75, where instabilities are found 

at the optimized topology due to fluid low viscosity, which is sensible to generate vortexes. 

Figure 75. Optimized straight blade rotor cavity under compressible subsonic turbulent regime 

approximation.  
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To overcome the vortex generation at the optimized topology, the viscosity continuation 

methodology is applied: starting with a high viscosity value (μ
start

= 0.5 [Pa ∙ s]) and take its 

topology layout result to start the next optimization process until reaching the desired regime 

(μend = 5x10
−4 [Pa ∙ s]). The proposed methodology succeeds, and the instabilities found 

previously due to vortex generation are not presented anymore (Figure 76). 

Figure 76. Topology optimization of straight blade rotor under turbulent compressible regime 

approximation: (a) 45° section and (b) complete rotor.  

 
(a) 

 
(b) 

The previous domain is tested under the same fluid flow conditions, however, turbulence is 

solved using the SA turbulence model. Therefore, the material penalization parameters related 

to the turbulence model are included: 𝑘�̂�̅̅ ̅ = 1.0 [kg/m
3s], 𝑘𝚫̅̅ ̅ = 1 × 10

−5 [m−3], and the optimized 

topology layout is shown in Figure 77. By solving the turbulence phenomenon, a thinner convex 

fluid cavity is created, and it is directed to the pressure side of the initial rotor cavity domain 

(Figure 77). 

Figure 77. Topology layout of compressible turbulent rotor (a) 45° section and (b) complete rotor 

(Author) 

 
(a) 

 
𝐹 = 215.46 [W/m] 

(b) 

Finally, the straight blade cavity domain is extended at 3D (Figure 78a), which is discretized 

by 3.4 × 103 tetrahedral elements (Figure 78b). In the 3D domain, large rotational velocities 

are tested, which implies the update of the turbulence model, i.e. the use of the Wray-Agarwal 

turbulence model.  
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Also, the wall boundaries are replaced with the cyclic boundary conditions (Ltd.) (i.e. ensuring 

that the outcome flow from one patch is projected equally as the entering flow from the other 

patch (Ltd.)), to avoid the reverse flow found in Figure 43d. By doing so, the   Table 17 

boundary conditions are updated to 𝑢𝑖𝑛𝑙𝑒𝑡 = 110 [m/s] and 𝜇𝑖𝑛𝑙𝑒𝑡 = 6 × 10
−4[Pa ∙ s] 

respectively, which imposes a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 3.6 × 10
3. Also, each side of the cyclic condition 

receives a nomenclature of cyclic-1 and cyclic-2 as Table 17 shows. The rotor spins at 𝑛 =

1 × 103 [rpm]. 

Figure 78. (a) 3D initial domain, and (b) mesh discretization 

 
(a) 

 
(b) 

The optimization parameters are calibrated (Table 20), until reaching a well-defined optimized 

topology shown in Figure 79. 

Table 20. Optimization parameters for compressible turbulent flow. 

𝛼𝑠𝑡𝑎𝑟𝑡 �̅�𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

[m3/m3] 

𝑞  𝑘𝑢̅̅ ̅  
[kg/(m3s)] 

𝑘𝑇̅̅̅̅   
[kg/(m K s3)] 

𝑘�̂�̅̅ ̅  
[kg/m3s] 

𝑘𝛥̅̅ ̅  
[m−3] 

0 0.33 0.1 16 × 104 2 × 104 1 1 

 

Figure 79. (a) Optimized 3D straight blade rotor cavity at compressible turbulent subsonic regime (b) 

designed rotor and (d) convergence curve. 

 
(a) 

 
(b) 

 
 

(c) 

The domain is tested at 𝑛 = 4 × 103 [rpm], and the optimized topology at 500 iterations results 

in a rotor without blades, similar to a Tesla-type rotor.  
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Figure 80. (a) Optimized 3D straight blade rotor cavity at compressible turbulent subsonic regime (b) 

designed rotor and (d) convergence curve. 

 
(a) 

 
(b) 

 

Therefore, the domain is extended to a real-size rotor discretized by 2.4 × 104 tetrahedral 

elements (Figure 81). The inlet velocity is considered with an axial direction.  

Figure 81. (a) 3D initial domain, and (b) mesh discretization (2.4x104 tetrahedral elements) 

 
(a) 

 
 

(b) 

 

The optimization parameters are calibrated as Table 18 shows, which outcome is the optimized 

topology shown in Figure 82.  

Table 21. Optimization parameters for compressible turbulent flow. 

𝛼𝑠𝑡𝑎𝑟𝑡 �̅�𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 [m
3/m3] 𝑞  𝑘𝑢̅̅ ̅ [kg/(m

3s)] 𝑘𝑇̅̅̅̅  [kg/(m K s
3)] 𝑘𝑅̅̅ ̅ [kg/m

3s] 

0 0.33 0.1 4 × 104 2 × 104 1 
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Figure 82. (a) Optimized 3D straight blade rotor cavity at compressible turbulent subsonic regime (b) 

designed rotor, (c) convergence curve  

 
(a) 

 
(b) 

 
 
 
 

𝐹 =13137.16 [W/m] 
(c) 

 

The current domain allows a well-defined optimization of the fluid cavity with a rotor topology 

overcoming the previous challenge. Figure 83 shows that the optimized rotor at compressible 

turbulent subsonic regime reaches a Mach number of 0.4 in the entire domain, where its large 

acceleration is found at the outlet region. The static pressure (Figure 83a) shows a decrease as 

the fluid flows to the outlet region, which behaviour is similar to the density field (Figure 83b) 

showing a 44.4% density variation in the whole domain. 

Figure 83. Primal fields of optimized rotor under compressible turbulent subsonic regime: (a) pressure, 

(b) density and (c) Mach number distribution 

 
(a) 

 
(b) 

 
(c) 

Different tests are made varying the volume constraint (Figure 84), founding a smooth topology 

when the 0.3 volume fraction is tested. 

Figure 84. Optimized 3D rotor under different volume constraints: (a) 0.3, (b) 0.5 and (c) 0.7 

 
(a) 

 
(b) 

 
(c) 
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As seen, the study on different volume constraints is necessary to accurately select the 

optimized topology. Also, the start guess is fundamental to reaching the T.O. goal.  

 

4.3. TOPOLOGY OPTIMIZATION OF COMPRESSIBLE 

TURBULENT SUBSONIC REGIME FOR REAL GAS 

CONSIDERING THE DISCRETE ADJOINT 

APPROACH 
 

After presenting T.O. of compressible turbulent regime assuming perfect-ideal flows, the study 

is extended to the real gas modelling, where viscosity varies due to temperature interactions 

and the compressibility of the regime is considered. To do so, the state equations of the 

following cases include the compressibility factor based on the Peng-Robinson model (Eq.(66)). 

Also, the dynamic viscosity variation is quantified by Sutherland Law (Eq.(65).  

4.3.1. Converging Nozzle Example 
 

The case considers the Wray-Agarwal turbulence model and its fluid properties are 𝜇 =

0.03 [Pa ∙ s], 𝑇𝑖𝑛𝑙𝑒𝑡 = 298.15 [K], 𝑝𝑡𝑜𝑡𝑎𝑙𝑜𝑢𝑡𝑙𝑒𝑡 = 1 × 10
5 [Pa], resulting in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 1 × 10

3. 

Also, the optimization is performed with 𝛼𝑠𝑡𝑎𝑟𝑡 = �̅� = 0.4 [m
3/m3], 𝑘𝑢̅̅ ̅ = 2.5 ×

107 [
𝑘𝑔

𝑚3𝑠
] , 𝑘𝑇̅̅ ̅ = 1 × 10

2[𝑘𝑔/(𝑚 𝐾 𝑠3)] and 𝑘𝑅̅̅ ̅ = 1.0 [kg/m3s], resulting in the layout shown in 

Figure 85.  

Figure 85. Optimized converging nozzle under compressible turbulent subsonic regime and real gas 

(b) convergence curve. 

 
(a) 

 
𝐹 =  336 [W/m] 

(b) 
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As seen, the real-gas-based solution can capture the inlet-guide vane, which was also found in 

the perfect gas solution at 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 5 × 10
3 (Figure 53). This implies, that the fluid flow is 

highly accelerated in the real-gas solution. To analyse further the implications, a cross-check 

validation is made between the perfect and the real-gas solutions (Figure 86). 

Figure 86. Velocity field comparison between the optimized converging nozzle designed at 

compressible subsonic turbulent regime considering perfect and real gas modelling. 

 
The influence of the real gas modelling and viscosity variation is depicted near the inlet section, 

where a solid region is created. Its effect can be seen at the velocity field cross-section, which 

is compared to the previous optimized converging nozzle designed for the perfect gas 

assumption (Figure 86). The objective function from the perfect gas solution (𝐹 =  248.6 

[W/m]) underestimates the real-gas energy dissipation by 35.2% (Table 22). 

Table 22. Cross-check validation between perfect and real gas assumption at optimized nozzle under 

compressible turbulent regime 

Optimized case Objective Function (F) 

Nozzle under perfect gas assumption 248.6 [W/m] 

Nozzle under real gas assumption 336.1 [W/m] 

 

The solid region makes the fluid diverges into two paths, which causes an acceleration due to 

its cross-section reduction.  As Figure 86 shows, the fluid peak velocity reaches a maximum of 

190 [m/s], which overcomes by 10.5% of the calculated at perfect gas modelling. As seen, the 

real gas modelling influence is noticeable in the optimization layout. The characteristic flow 

fields (Figure 87) show that the compressible subsonic regime is reached with a peak Mach 

number of 0.57, and density variation of 25%, justifying the use of the developed compressible-

based T.O. formulation. 
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Figure 87. Characteristic flow fields of optimized nozzle designed for compressible turbulent subsonic 

regime considering real gas modelling: (a) Mach, (b) density and (c) temperature distribution 

  
 

(a) (b) (c) 

4.3.2. 2D pipe-joint Example 

The 2D pipe-joint domain is discretised by 3 × 103 triangular prism (Figure 88a), and the fluid 

properties are 𝑢𝑖𝑛𝑙𝑒𝑡 = 30 [m/s], 𝜇 = 0.03 [Pa ∙ s], 𝑇𝑖𝑛𝑙𝑒𝑡 = 298.15 [K], 𝑝𝑡𝑜𝑡𝑎𝑙𝑜𝑢𝑡𝑙𝑒𝑡 = 1 × 10
5 [Pa], 

resulting in a 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 = 1 × 10
3. The optimization is performed by calibrating the T.O. 

parameters as Table 23 displays until a smooth optimized topology is reached (Figure 89).  

Table 23. 2D pipe-joint optimization parameters for compressible turbulent subsonic flow. 

𝛼𝑠𝑡𝑎𝑟𝑡 �̅�𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 [m
3/m3] 𝑞  𝑘𝑢̅̅ ̅ [kg/(m

3s)] 𝑘𝑇̅̅̅̅  [kg/(m K s
3)] 𝑘𝑅̅̅ ̅ [kg/m

3s] 

0 0.33 0.1 4 × 104 2 × 104 1 

Figure 88. (a) 2D pipe-joint domain and its (b) mesh discretization 

 
(a) 

 
(b) 

As seen, the two inlet boundaries generate a junction of the fluid path near the outlet region, 

which is optimized as well into a thinner outlet channel. 

 

 

 

 

𝜌 [kg/m3] Mach 𝑇 [K] 
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Figure 89. Optimized 2D pipe-joint domain under compressible turbulent regime considering (a) real 

(b) perfect gas modelling 

 
 

𝐹 =  178.1 [W/m] 
(a) 

  
𝐹 =  53.7 [W/m] 

(b) 

 

The influence of real gas modelling in the 2D pipe-joint case is checked by comparing its result 

with the perfect gas assumption (Figure 90). As seen, the real gas solution (Figure 89) is thinner 

in comparison to the perfect gas state topology layout. This channel thickness influences the 

objective function, where the perfect-gas solution is 69.8% less than the real-gas solution. The 

meaning of such different states is that perfect gas modelling underpredicts the real behaviour 

of the fluid flow, which could affect the real results from the theoretical modelling. 

Figure 90. Optimized 2D pipe-joint topology layout comparison between the perfect and real gas 

modelling 

 
 

Grey region: Real Gas 

Black Edge: Perfect Gas 
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The characteristic fluid flow fields (Figure 91) summarize the difference between the objective 

functions: at first, the perfect gas-based optimization (Figure 90a), underestimates the gradients 

of the fluid flow by giving a peak Mach number of 0.28, which is less than the real gas-based 

formulation of 4.3.  Also, the density field comparison shows a 7.69% difference in the perfect 

gas-based modelling and a 41% difference in the real gas-based solution. The temperature 

gradient is similar, however, large values are found in the real-gas modelling than in the perfect-

gas solution. All these variations consolidate the previous analysis stating that perfect gas 

optimization underestimates the real fluid flow behaviour at compressible turbulent subsonic 

flow. 

Figure 91. Primal fields of optimized 2D pipe-joint under compressible subsonic turbulent regime 

considering the (a) perfect gas and (b) real gas state equation. 

   
(a) 

   
(b) 

4.3.3. Rotor Example 
 

The viscosity variations due to temperature interactions and fluid compressibility are taken. The 

previous domain is tested under the same flow conditions, i.e. 𝑛 = 4 × 103 [rpm] and 𝜇𝑖𝑛𝑙𝑒𝑡 =

5 × 10−4 [Pa ∙ s]. The optimization is performed by calibrating the T.O. parameters to 𝛼𝑠𝑡𝑎𝑟𝑡 =

�̅� = 0.4 [m3/m3], 𝑘𝑢̅̅ ̅ = 8 × 10
5 [

𝑘𝑔

𝑚3𝑠
] , 𝑘𝑇̅̅ ̅ = 1x10

2[kg/(m K s3)], 𝑘�̂�̅̅ ̅ = 1 [kg/m3s] and 𝑘Δ̅̅ ̅ =

1x10−5 [m−3], resulting in the optimized rotor of Figure 92.  
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Figure 92. Optimized rotor under compressible turbulent subsonic regime using real gas modelling (b) 

convergence curve. 

 
(a) 

 
𝐹 =  455.32 [W/m] 

(b) 

In the current test, non-viscosity continuation is used and the topology does not show vortex 

generation at the fluid-solid interface as previous tests did (Figure 75), which proves an 

advantage of using the real gas behaviour.  Also, the fluid domain is less sensitive to switching 

its direction to the pressure side of the rotor blade in comparison to the optimized rotor under 

perfect gas assumptions (Figure 77). This is adequate in terms of blade structure as a thin solid 

region is not desired for the blade construction. Despite the thickness of both fluid cavities 

seeming similar, the objective function difference is around 100% each, meaning that the fluid 

flow characteristics are not equal (Figure 93). 

Figure 93. Flow characteristics of optimized rotor cavity under (a) perfect and (b) real gas modelling  

   
(a) 

   
(b) 
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As seen, the real gas flow characteristics are different from the perfect gas assumption. At first, 

it is fundamental seeing how the pressure distribution is underestimated in the perfect gas 

modelling, which could significantly impact the design of the rotor stress. Also, the velocity 

field is underestimated at the perfect gas modelling, giving a peak difference of 8% 

approximately. The total influence of each variable variation is seen at the Mach number 

distribution, with a 12.5% difference each. 
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5. CONCLUSIONS 
 

Topology optimization at compressible turbulent subsonic regime is successfully achieved by 

considering the discrete adjoint approach from an automatic derivation algorithm. The 

automatic differentiation allows getting the adjoint model without hand derivation. The 

numerical results evaluate step by step the desired regime for topology optimization, starting 

with incompressible regime cases, going through a compressible turbulent approximation, and 

taking that result as an initial guess to consider the compressible turbulence phenomenon. By 

doing so, the generation of vortexes is diminished, and smooth topologies are found.  

 

The topology optimization of incompressible turbulent rotating flow is achieved by considering 

the continuous adjoint approach, which is validated with literature cases and shows its 

computational cost advantages over the automatic differentiation. At laminar regime, the 

optimization parameters selection concerning the material distribution update is independent of 

the optimizer, both the CDV and IDV, respond accurately. Nevertheless, when the turbulence 

regime is analyzed, the use of IDV optimizer facilitates the optimization parameters selection 

due to its binary behaviour. Still, in some cases, the CDV optimizer presents smoother 

topologies layouts despite its difficulties in the T.O. parameter selection. The integer constraint 

in the IDV approach always leads to explicitly defined fluid-solid interfaces, showing to be 

convenient in turbulence modelling, such as for computing near-wall distance. For the nozzle 

case and the 3D pipe-joint example, the CDV optimizer presented a considerably lower 

computational cost. The CDV approach presented challenges related to optimization parameters 

calibration and the need for a continuation method, e.g. in the double channel case, the straight 

pipe solution could not be obtained with the CDV approach even after changing the 

optimization parameter values, while the IDV approach obtained the straight channels solution 

immediately. By using the continuation method, the CDV optimizer can reach a straight 

channel, and despite that, its objective function is larger than the one obtained by the IDV 

optimizer. In this sense, the IDV approach outperforms the CDV optimizer, mainly in terms of 

improved fluid-solid wall definition, independence of material penalization parameters and 

improved objective functions. During the straight blade rotor optimization, its influence 

becomes larger and changes the topology layout. Also, the use of the Spalart-Allmaras 

turbulence model becomes challenging as the Reynolds number increases at the rotational 
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domain, finding its limits to optimize topologies, and suggesting the use of new turbulence 

models adapted for rotational flow. 

The compressible regime is tested firstly with 2D cases, presenting significant results: the 

converging nozzle portrays a case in which the turbulence does not highly affect the topology 

layout when compared to turbulence approximation, however, the fluid flow simulation varies 

significantly and the objective function differs around 40% when turbulence phenomenon is 

solved. The case is tested at different Reynolds numbers and fluid directors are found between 

the optimized topology, helping to accelerate the fluid flow. Also, it is found that considering 

a continuation method is appropriate for domains where the fluid flow faces abrupt changes in 

its direction to reach an optimized topology, e.g., the pipe-bend case. The topology layout is 

largely modified when the fluid flow becomes turbulent, and consequently its fluid solution too. 

Such influence in the turbulence modelling resolution is found too in the diffuser case, where 

not only the optimized topology layout at turbulent compressible subsonic conditions changes 

considerably, but also, the solution of the turbulence phenomenon can propose fluid director in 

the cross-section of the optimized diffuser.  Then, the method is successfully applied to a 3D 

domain, which is compared to a baseline design, showing that the proposed method allows a 

79.5% decrease in the energy consumption of a regular design. Simultaneously, the 

optimization of straight blade rotors in 2D and 3D domains is achieved. The centrifugal forces 

difficult the optimization parameters calibration, however, the continuation method allows a 

continuous smooth topology definition. The 3D analyzed domain is enlarged due to the wall 

boundaries, which were limiting the optimization process. The use of the Wray-Agarwal 

turbulence model allows the optimization at large rotational velocities than the Spalart-

Allmaras turbulence model, as the use of cyclic boundaries instead of wall boundaries too. 

Finally, the real gas-based influence in the topology optimization of compressible turbulent 

subsonic flow is studied. The real gas-based formulation considers Peng-Robinson and 

Sutherland equation to model the compressibility and the viscosity variance due to temperature 

gradients. It is shown in each 2D case that the perfect gas modelling underestimates the real 

fluid flow behaviour in compressible turbulent subsonic regime. Large differences are found 

between the perfect and the real gas-based topologies at the objective function and its fluid flow 

characteristics, especially the sensitivity to include a fluid director in the cross-section at low 

Reynolds numbers. Therefore, this first study enhances the importance of using the real gas-

based formulation in a compressible turbulent regime to accurately calculate the energy 

dissipation at the optimized domains.  
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In future work, the author suggests implementing near-wall mesh refinement with automatic 

distribution to improve the boundary layer definition. Such a study could improve the optimized 

topology definition by refining the solid/fluid boundaries section only and avoiding large 

computational costs. Also, the IDV optimizer presented an advantage over the CDV optimizer, 

therefore, it should be studied in the compressible turbulent subsonic regime. Another 

development to be performed is the inclusion of fluid-structure interaction in the rotor design 

could improve the presented optimization as the resonance frequencies should be avoided at the 

optimized rotor. Finally, it is suggested to couple large eddy simulations (LES) and direct 

numerical studies (DNS) in the analysis of turbulence phenomenon influence of topology 

optimization, as the resolution of the vortexes scales could locate splitters or fluid directors in 

regions where the vortexes have been averaged only. 
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7. APPENDIX 
 

7.1. Sensitivity Validation of the Continuous Adjoint 

Approach 
 

In T.O., the sensitivity analysis must be validated to guarantee that the design variables are 

updated correctly. Thus, the sensitivity analysis is validated by comparing the results with the 

finite difference method, which is a well-established validation method used in T.O. (Dilgen et 

al. 2018a). The nozzle example presented by (Yoon 2016) is considered here, where boundary 

conditions and fluid properties are: |uinlet̅̅ ̅̅ ̅̅ ̅| = 3 [m/s], 𝑣 = 1 × 10−3 [m2/s], 𝑅𝑒𝑖𝑛𝑙𝑒𝑡 =

3 × 103. For this case, the velocity streamlines and the sensitivity field are shown at Figure 94. 

Figure 94. Sensitivity analysis of the nozzle case: (a) Velocity streamlines and (b) Sensitivity field 

 
(a) 

 
(b) 

Six random cells of the domain are chosen (Figure 94b) and compared to finite-difference 

calculation. By letting the primal and adjoint systems converge, an initial function value 𝐽𝑜 is 

obtained. A small perturbation value of the design variable Δ𝛼 = 0.00001 is introduced, and a 

new perturbated function value 𝐽  is obtained. Both parameters are used to calculate an 

approximation of the derivative of the objective function considering a finite difference 

analysis. 

𝐽 − 𝐽0
 Δ𝛼

≅
𝜕𝐽

𝜕𝛼
 (109) 
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The objective function calculated without any perturbance is equal to J0 = 311.15. The 

derivative values of the points shown in Figure 94b, can be seen in Table 24. 

Table 24. Sensitivity analysis of the continuous adjoint approach 

Design 

Variable 

𝛼 

Continuous Adjoint 

𝜕𝐿𝑎𝑢𝑔

𝜕𝛼
 

Perturbed Objective 

function 

𝐽 

Finite difference 

𝐽 − 𝐽0
 Δ𝛾

 

Difference 

% 

56 −13.8360 311.150575146041 −13.1471 4.98 

60 −13.1358 311.150576200357 −13.0416 0.72 

411 −0.5238 311.150701383527 −0.5233 0.10 

489 −5.2027 311.150658704926 −4.7912 7.91 

504 −0.07360 311.150705819222 −0.07976 7.76 

1595 −0.6320 311.150700290584 −0.6326 0.10 

 

Figure 95. Sensitivity validation graph of continuous adjoint approach 

 

 

In Figure 95, the values of the second and fourth columns from Table 24  are plotted. 

Derivatives obtained by the continuous adjoint method implemented in this work are very close 

to those obtained by the finite difference method. 
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7.2. Sensitivity Validation Of The Discrete Adjoint 

Approach  

The sensitivity analysis is performed by comparing the results with the finite difference method, 

which is commonly used in T.O. (Dilgen et al. 2018a). The converging nozzle case under 

turbulent compressible subsonic conditions (section 4.2.1) is analysed. The initial fluid design 

variable distribution is considered, and different points along the domain are chosen. The 

simulation is performed until the SIMPLE algorithm reaches 1 × 104 iterations. 

Figure 96. Analysis of the converging nozzle case: (a) sensitivity and (b) velocity gradient field. 

 
 

(a) [W/m] (b) [1/s] 

 

After the primal systems converge, an initial function value 𝐹0 is obtained. A small perturbation 

value of the design variable is introduced (Δ𝛼 = 1× 10−5), and a new perturbated function 

value 𝐹  is obtained. Both parameters are compared via the backward difference scheme, which 

gives an approximation of the objective function derivative. 

𝑑𝐹

𝑑𝛼
≅
𝐹(𝛼) − 𝐹(𝛼 − Δ𝛼)

Δ𝛼
 (110) 

 

The derivative values in the points shown in Figure 96b, calculated by the adjoint method, can 

be seen in Table 25. 

Table 25. Sensitivity analysis – fluid domain 

 
Coordinates (x y)  

dolfin-adjoint 
d𝐹

d𝛼
  

[W/m] 

Finite differences 
𝐹(𝛼)−𝐹(𝛼−Δ𝛼)

Δ𝛼
 

[W/m] 

Difference  

% 

1 (0.3 0.25) −112.23 −113.45 1.093 

2 (0.3 0.3) −112.26 −113.46 1.065 

3 (0.3 0.5) −112.77 −113.69 0.815 

4 (0.5 0.5) −130.49 −132.12 1.253 

5 (0.7 0.4) −178.76 −180.83 1.15 

6 (0.9 0.5) −529.99 −533.51 0.664 
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The derivatives obtained by the discrete adjoint method are close to those obtained by the finite 

difference method. The difference increases as the points move to the outlet region, where the 

fluid flow accelerates, and larger velocity gradients appear (Figure 96c). 

 

7.2.1. Sensitivity validation considering real gas 

modelling 
 

In this case, the converging nozzle case of section 4.3.1 is analysed. The initial solid design 

variable distribution is considered as the initial fluid design fluid flow modelling is sensitive to 

diverging at the first iterations. The sensitivity field is shown in Figure 97, and the simulation 

is performed until the SIMPLE algorithm reaches 1 × 104 iterations. The system considers the 

forward scheme approach and the perturbation value Δ𝛼 = 1 × 10−5. 

𝑑𝐹

𝑑𝛼
=
𝐹(𝛼 + Δ𝛼) − 𝐹(𝛼)

 Δ𝛼
≅
𝐹 − 𝐹0

 Δ𝛼
 

(111) 

Figure 97. Converging nozzle sensitivity field under the real gas assumption 

 

Table 26. Converging nozzle sensitivity validation under compressible turbulent subsonic regime and 

real gas behaviour 

Sensitivity analysis – solid domain 

 
Coordinates (x y)  

dolfin-adjoint 
d𝐹

d𝛼
  

[W/m] 

Finite differences 
𝐹(𝛼+Δ𝛼)−𝐹(𝛼)

 Δ𝛼
 

[W/m] 

Difference  

% 

1 (0.3 0.25) −42336.17 −40337.637 4.72 

3 (0.3 0.5) −44139.03 −42093.45 4.63 

4 (0.5 0.5) −47657.53 −45224.88 5.1 

5 (0.5 0.3) −44097.76 −41598.01 5.67 

5 (0.7 0.4) −59758.19 −54803.76 8.29 

6 (0.9 0.5) −13184.88 −120374.88 8.70 
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The derivative values of the random points are plotted in Table 26, which are compared and 

validated by the finite differences approach. As seen, the values are relatively close between 

the finite difference approach and the adjoint calculation, validating the real-gas 

implementation. 

 

7.3. Derivation Of Weak Form Equations Used At The 

Discrete Adjoint Approach 

Momentum equation: 

𝑅w
𝑢 = ∫ [

𝜕

𝜕𝑥𝑗
(�̅�𝑢�̃�𝑢�̃�) +

𝜕

𝜕𝑥𝑖
�̅� +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖

′′𝑢𝑗
′′̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜎𝑖𝑗̅̅̅̅ ) + 𝑘𝑢𝑢�̃�]𝑤𝑢𝑗  𝑑Ω

 

Ω
  

= ∫ [
𝜕

𝜕𝑥𝑗
(�̅�𝑢�̃�𝑢�̃�)]𝑤𝑢 𝑑Ω

 

Ω
+ ∫ [

𝜕

𝜕𝑥𝑖
�̅�] 𝑤𝑢𝑗  𝑑Ω

 

Ω
+ ∫ [

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖

′′𝑢𝑗
′′̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜎𝑖𝑗̅̅̅̅ )] 𝑤𝑢𝑗  𝑑Ω

 

Ω
 + ∫ [𝑘𝑢𝑢�̃�]𝑤𝑢𝑗  𝑑Ω

 

Ω
  

= ∫ [
𝜕

𝜕𝑥𝑗
(�̅�𝑢�̃�𝑢�̃�)]𝑤𝑢𝑗  𝑑Ω

 

Ω
+ ∫ [

𝜕

𝜕𝑥𝑖
�̅�] 𝑤𝑢𝑖  𝑑Ω

 

Ω
+ ∫ {

𝜕

𝜕𝑥𝑗
[(𝜇 − 𝜇𝑡) (

𝜕𝑢�̃�

𝜕𝑥𝑗
−
2

3
𝛿𝑖𝑗

𝜕

𝜕𝑥𝑘
𝑢�̃�)]}𝑤𝑢𝑗  𝑑Ω

 

Ω
 +

∫ [𝑘𝑢𝑢�̃�]𝑤𝑢𝑗  𝑑Ω
 

Ω
  

= ∫ [
𝜕

𝜕𝑥𝑗
(�̅�𝑢�̃�𝑢�̃�)]𝑤𝑢𝑗  𝑑Ω

 

Ω
+ ∫ [

𝜕

𝜕𝑥𝑖
�̅�] 𝑤𝑢𝑖  𝑑Ω

 

Ω
+ ∫ {(𝜇 − 𝜇𝑡)

𝜕

𝜕𝑥𝑗
[(
𝜕𝑢�̃�

𝜕𝑥𝑗
−
2

3
𝛿𝑖𝑗

𝜕

𝜕𝑥𝑘
𝑢�̃�)]}𝑤𝑢𝑗  𝑑Ω

 

Ω
 +

∫ [𝑘𝑢𝑢�̃�]𝑤𝑢𝑗  𝑑Ω
 

Ω
  

= ∫ [
𝜕

𝜕𝑥𝑗
(�̅�𝑢�̃�𝑢�̃�)]𝑤𝑢𝑗  𝑑Ω

 

Ω
+ ∫ [

𝜕

𝜕𝑥𝑖
�̅�] 𝑤𝑢𝑖  𝑑Ω

 

Ω
+ ∫ {(𝜇 − 𝜇𝑡)

𝜕

𝜕𝑥𝑗
(
𝜕𝑢�̃�

𝜕𝑥𝑗
)}𝑤𝑢𝑗  𝑑Ω

 

Ω
− ∫ {(𝜇 −

 

Ω

𝜇𝑡)
𝜕

𝜕𝑥𝑗
(
2

3
𝛿𝑖𝑗

𝜕

𝜕𝑥𝑘
𝑢�̃�)}𝑤𝑢𝑗  𝑑Ω + ∫ [𝑘𝑢𝑢�̃�]𝑤𝑢𝑗  𝑑Ω

 

Ω
  

= ∫ [
𝜕

𝜕𝑥𝑗
(�̅�𝑢�̃�𝑢�̃�)]𝑤𝑢𝑗  𝑑Ω

 

Ω
+ ∫ [

𝜕

𝜕𝑥𝑖
�̅�] 𝑤𝑢𝑖  𝑑Ω

 

Ω
− ∫ {(

𝜕𝑢�̃�

𝜕𝑥𝑗
)

𝜕

𝜕𝑥𝑗
𝑤𝑢𝑗(𝜇 − 𝜇𝑡)}  dΩ

 

Ω
+ ∫ {𝑤𝑢𝑗(𝜇 −

 

Γ

𝜇𝑡)
𝜕𝑢�̃�

𝜕𝑥𝑗
𝑛𝑗}  dΓ + ∫ {

𝜕

𝜕𝑥𝑘
𝑢�̃�

𝜕

𝜕𝑥𝑘
[
2

3
𝛿𝑖𝑗(𝜇 − 𝜇𝑡)𝑤𝑢𝑗]}  𝑑Ω

 

Ω
− ∫ {[

2

3
𝛿𝑖𝑗(𝜇 − 𝜇𝑡)𝑤𝑢𝑗]

𝜕

𝜕𝑥𝑘
𝑢�̃�𝑛𝑘} dΓ

 

Γ
 +

∫ [𝑘𝑢𝑢�̃�]𝑤𝑢𝑗  𝑑Ω
 

Ω
= 0  

 

Turbulence Model 

𝑅w
�̂� = ∫ (𝜌𝑢𝑗

𝜕

𝜕𝑥𝑗
𝑣 − 𝜌𝑐𝑏1�̂��̂� + 𝜌𝑐𝑤1𝑓𝑤 (

𝑣

𝛥
)
2

−
1

𝜎
[
𝜕

𝜕𝑥𝑗
(𝜌(𝑣 + 𝑣)

𝜕

𝜕𝑥𝑗
𝑣) − 𝜌𝑐𝑏2

𝜕2𝑣

𝜕𝑥𝑖
2 ] + 𝑘�̂�𝑣)𝑤�̂�𝑑Ω

 

Ω

 

= ∫ (𝜌𝑢𝑗
𝜕

𝜕𝑥𝑗
𝑣 − 𝜌𝑐𝑏1�̂��̂� + 𝜌𝑐𝑤1𝑓𝑤 (

�̂�

𝛥
)
2
)𝑤�̂�𝑑Ω

 

Ω
− ∫ (

1

𝜎
[
𝜕

𝜕𝑥𝑗
(𝜌(𝑣 + 𝑣)

𝜕

𝜕𝑥𝑗
𝑣) − 𝜌𝑐𝑏2

𝜕2�̂�

𝜕𝑥𝑖
])𝑤�̂�𝑑Ω

 

Ω
+

∫ (𝑘�̂��̂�)𝑤�̂�𝑑Ω
 

Ω
  

= ∫ (𝜌𝑢𝑗
𝜕

𝜕𝑥𝑗
𝑣 − 𝜌𝑐𝑏1�̂��̂� + 𝜌𝑐𝑤1𝑓𝑤 (

�̂�

𝛥
)
2
)𝑤�̂�𝑑Ω

 

Ω
− ∫ (

1

𝜎

𝜕

𝜕𝑥𝑗
(𝜌(𝑣 + 𝑣)

𝜕

𝜕𝑥𝑗
𝑣))𝑤�̂�𝑑Ω

 

Ω
+

∫ (
1

𝜎
𝜌𝑐𝑏2

𝜕2�̂�

𝜕𝑥𝑖
)𝑤�̂�𝑑Ω

 

Ω
+ ∫ (𝑘�̂��̂�)𝑤�̂�𝑑Ω

 

Ω
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= ∫ (𝜌𝑢𝑗
𝜕

𝜕𝑥𝑗
𝑣 − 𝜌𝑐𝑏1�̂��̂� + 𝜌𝑐𝑤1𝑓𝑤 (

�̂�

𝛥
)
2
)𝑤�̂�𝑑Ω

 

Ω
− ∫ (

1

𝜎

𝜕

𝜕𝑥𝑗
(𝜌(𝑣 + 𝑣)

𝜕�̂�

𝜕𝑥𝑗
))𝑤�̂�𝑑Ω

 

Ω
+

1

𝜎
𝜌𝑐𝑏2 [−∫ (

𝜕

𝜕𝑥𝑖
𝑣)

𝜕

𝜕𝑥𝑖
𝑤�̂�𝑑Ω

 

Ω
+ ∫ 𝑤�̂�

𝜕

𝜕𝑥𝑖
𝑣𝑛𝑖𝑑Γ

 

Γ
] + ∫ (𝑘�̂��̂�)𝑤�̂�𝑑Ω

 

Ω
= 0  

 

Eikonal Equation 

𝑅w
∆ = ∫ [

𝜕2𝐺

𝜕𝑥𝑖
2 + 𝜎𝑤𝐺 (

𝜕2𝐺

𝜕𝑥𝑖
2) − (1 + 2𝜎𝑤)𝐺

4 − 𝑘𝛥(𝐺 − 𝐺0)]
 

Ω
𝑤ΔdΩ  

= ∫ [
𝜕2𝐺

𝜕𝑥𝑖
2 (1 + 𝜎𝑤𝐺)]

 

Ω
𝑤ΔdΩ + ∫ [−(1 + 2𝜎𝑤)𝐺

4 − 𝑘𝛥(𝐺 − 𝐺0)]
 

Ω
𝑤ΔdΩ  

= ∫ [−
𝜕𝐺

𝜕𝑥𝑖
(1 + 𝜎𝑤𝐺)]

 

Ω

𝜕

𝜕𝑥𝑖
𝑤ΔdΩ + ∫ 𝑤Δ

𝜕

𝜕𝑥𝑖
[𝐺(1 + 𝜎𝑤𝐺)]

 

Γ
𝑛𝑖 dΓ − ∫ [(1 + 2𝜎𝑤)𝐺

4]
 

Ω
𝑤ΔdΩ −

∫ [𝑘𝛥(𝐺 − 𝐺0)]
 

Ω
𝑤ΔdΩ = 0  

 

Energy equation 

𝑅w
𝑇 = ∫ [

𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�) −

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗̅̅̅̅ 𝑢�̃� − 𝑢�̃�𝜌𝑢𝑖

′′𝜌𝑢𝑗
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) −

𝜕

𝜕𝑥𝑗
[−𝑞𝑙 − 𝑞𝑡 + (𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕

𝜕𝑥𝑗
𝑘] + 𝑘𝑇 (

ℎ̃

𝑐𝑝
−

 

Ω

ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇  𝑑Ω  

= ∫ [
𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�) −

𝜕

𝜕𝑥𝑗
(2𝑆𝑖𝑗(𝑢�̃�𝜇 − 𝑢�̃�𝜇𝑡) −

𝜕

𝜕𝑥𝑗
[𝑐𝑝

𝜕

𝜕𝑥𝑗
�̃� (

𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
) + (𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕

𝜕𝑥𝑗
𝑘] +

 

Ω

𝑘𝑇 (
ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇  𝑑Ω  

= ∫ [
𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�) −

𝜕

𝜕𝑥𝑗
{2 [(

𝜕𝑢�̃�

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗

𝜕

𝜕𝑥𝑘
𝑢�̃�] (𝑢�̃�𝜇 − 𝑢�̃�𝜇𝑡)} −

𝜕

𝜕𝑥𝑗
[𝑐𝑝

𝜕�̃�

𝜕𝑥𝑗
(
𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
) + (𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕

𝜕𝑥𝑗
𝑘] +

 

Ω

𝑘𝑇 (
ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇  𝑑Ω  

= ∫ [
𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�)]𝑤𝑇

 

Ω
 𝑑Ω − ∫ [

𝜕

𝜕𝑥𝑗
{2 [(

𝜕𝑢�̃�

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗

𝜕

𝜕𝑥𝑘
𝑢�̃�] (𝑢�̃�𝜇 − 𝑢�̃�𝜇𝑡)}]𝑤𝑇

 

Ω
 𝑑Ω −

∫ {−
𝜕

𝜕𝑥𝑗
[𝑐𝑝

𝜕�̃�

𝜕𝑥𝑗
(
𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
) + (𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕

𝜕𝑥𝑗
𝑘]}𝑤𝑇 

 

Ω
𝑑Ω + ∫ [𝑘𝑇 (

ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇

 

Ω
 𝑑Ω  

 

As the Spalart-Allmaras turbulence model is being considered, 
𝜕

𝜕𝑥𝑗
𝑘 = 0 

 

𝑅w
𝑇 = ∫ [

𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�)]𝑤𝑇

 

Ω
 𝑑Ω − ∫ {

𝜕

𝜕𝑥𝑗
(𝑢�̃�𝜇 − 𝑢�̃�𝜇𝑡)

𝜕

𝜕𝑥𝑗
[(
𝜕𝑢�̃�

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗

𝜕

𝜕𝑥𝑘
𝑢�̃�]} 2𝑤𝑇

 

Ω
 𝑑Ω +

∫ {
𝜕

𝜕𝑥𝑗
[
𝜕�̃�

𝜕𝑥𝑗
(
𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
)]} 𝑐𝑝𝑤𝑇 

 

Ω
𝑑Ω + ∫ [𝑘𝑇 (

ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇

 

Ω
 𝑑Ω  

= ∫ [
𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�)]𝑤𝑇

 

Ω
 𝑑Ω − ∫ {

𝜕

𝜕𝑥𝑗
(𝑢�̃�𝜇 − 𝑢�̃�𝜇𝑡)} 2𝑤𝑇

 

Ω
 𝑑Ω − ∫ {

𝜕

𝜕𝑥𝑗
[(
𝜕𝑢�̃�

𝜕𝑥𝑗
)]} 2𝑤𝑇

 

Ω
 𝑑Ω +

∫ {
𝜕

𝜕𝑥𝑗
[
𝜕

𝜕𝑥𝑘
𝑢�̃�]}

4

3
𝛿𝑖𝑗𝑤𝑇

 

Ω
 𝑑Ω + ∫ (

𝜕2�̃�

𝜕𝑥𝑗
2) 𝑐𝑝𝑤𝑇 (

𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
)

 

Ω
𝑑Ω + ∫ [𝑘𝑇 (

ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇

 

Ω
 𝑑Ω  
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= ∫ [
𝜕

𝜕𝑥𝑗
(𝑢�̃��̅��̃�)]𝑤𝑇

 

Ω
 𝑑Ω − ∫ {

𝜕

𝜕𝑥𝑗
(𝑢�̃�𝜇 − 𝑢�̃�𝜇𝑡)} 2𝑤𝑇

 

Ω
 𝑑Ω + ∫

𝜕𝑢�̃�

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
(2𝑤𝑇)

 

Ω
 𝑑Ω − ∫ 2𝑤𝑇

𝜕𝑢�̃�

𝜕𝑥𝑗
𝑛𝑗

 

Γ
 𝑑Γ −

∫
𝜕

𝜕𝑥𝑘
𝑢�̃�

𝜕

𝜕𝑥𝑘
(
4

3
𝛿𝑖𝑗𝑤𝑇)

 

Ω
 𝑑Ω + ∫

4

3
𝛿𝑖𝑗𝑤𝑇

𝜕

𝜕𝑥𝑘
𝑢�̃�𝑛𝑘

 

Γ
 𝑑Γ − ∫ (

𝜕�̃�

𝜕𝑥𝑗
)

𝜕

𝜕𝑥𝑗
[𝑐𝑝𝑤𝑇 (

𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
)]

 

Ω
𝑑Ω +

∫ 𝑐𝑝𝑤𝑇 (
𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
) (

𝜕�̃�

𝜕𝑥𝑗
)𝑛𝑗

 

Γ
𝑑Γ + ∫ [𝑘𝑇 (

ℎ̃

𝑐𝑝
−
ℎ̃𝑤𝑎𝑙𝑙

𝑐𝑝
)]𝑤𝑇

 

Ω
 𝑑Ω = 0  


