Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.3.2012.tde-23032012-114741
Documento
Autor
Nome completo
Fábio Doro Zanoni
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2012
Orientador
Banca examinadora
Barros, Ettore Apolônio de (Presidente)
González Lima, Raúl
Kuga, Hélio Koiti
Título em português
Modelagem e implementação do sistema de navegação para um AUV.
Palavras-chave em português
AUV (Veículo Submarino Autônomo)
Filtros de Kalman
Navegação em tempo real
Unidade de medição inercial
Resumo em português
Este trabalho apresenta o estudo e a implementação de um sistema de navegação em tempo-real utilizado para estimar a posição, a velocidade e a atitude de um veículo submarino autônomo. O algoritmo investigado é o do Filtro de Kalman Estendido. Este filtro é freqüentemente usado para realizar a fusão de dados obtidos de diferentes sensores, em uma estimativa estatisticamente ótima, quando se respeita algumas condições. Neste trabalho, fez se a fusão entre os seguintes sensores: unidade de navegação inercial do tipo strapdown, sensor acústico de posicionamento, profundímetro, sensor de velocidade de efeito Doppler e uma bússola. Para a aplicação embarcada do Filtro de Kalman, faz-se necessário o seu desenvolvimento em tempo real. Conseqüentemente, este trabalho apresenta o estudo das principais características de um sistema de tempo real. Para desenvolver o código em C utilizou-se de algumas funções do Matlab com a finalidade de se tentar minimizar os erros de implementação do filtro. Além disto, para facilitar a implementação e respeitar os critérios de sistemas de tempo real utilizou-se de um sistema operacional, C/OS-II que possibilita aplicar sistemas com multiprocessos e utilizar semáforos para o gerenciamento do EKF, além disto, foram utilizadas normas de programação, MISRAC, para padronizar o código e aumentar a sua confiabilidade. São apresentadas também a modelagem cinemática, a metodologia e as ferramentas computacionais utilizadas para o filtro. Com base nas simulações e nos ensaios de campo executados on-line, observou-se que os filtros projetados para se estimar a atitude e a posição do veículo obtiveram bons desempenhos, além disto, foi possível verificar a convergência dos EKFs. Para estas simulações e ensaios, foram também estudados casos de situações adversas como, por exemplo, uma falha no sensor de referência de posição, sendo que para esta situação, o EKF de posição e velocidade obteve resultados satisfatórios.
Título em inglês
Modeling and implementation of navigation system for an AUV.
Palavras-chave em inglês
Inertial measurement unit
Kalman filter
Real-time navigation system
Resumo em inglês
This paper presents the study and implementation of a real-time navigation system used to estimate the position, velocity and attitude of an autonomous underwater vehicle. The Extended Kalman Filter, EKF, was adopted. This filter is often used to perform the data fusion from different sensors, in generating a statistically optimal estimate when some required conditions are fulfilled. The algorithm implements the fusion of the following sensors: an inertial navigation unit sensor (strapdown type), an acoustic positioning, a depth gauge, a Doppler velocity log sensor and a magnetic compass. This work presents the kinematic modelling, the methodology and computational tools used for developing the EKF algorithm. In order to integrate the EKF into an embedded system, it is necessary to develop it in real time. It was adopted the C / OS-II operational system, which allows to implement multithreaded systems and use traffic lights to manage the EKF. Furthermore, programming standards, such as MISRA C, was chosen to standardize the code and increase its reliability. The C code implementation took advantage of some Matlab functions to minimize implementation errors. Based on simulations and field tests carried out online, it was concluded that the filters designed to estimate the attitude and position of the vehicle provided good performances, in addition, it was possible to verify the EKFs convergence. The filters were tested in same adverse situations, e.g., a fault in the position reference sensor, providing satisfactory results as well.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2012-04-12