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ABSTRACT 

de Melo, G. C. Electroencephalogram signal analysis for brain-computer 

interface aiming at motor Rehabilitation application. 2023. 144p. Ph.D. 

Thesis. 

The neural pathway between the brain and the rest of the body might be 

compromised at different levels. For instance, after a stroke a person may not be 

able to control his/her own arm. In such cases, a motor rehabilitation therapy 

might enable the patient to recover complete or partial control over the paralyzed 

limb. However, when there is no residual control of the affected limb, rehabilitation 

is extremely difficult. Brain-Computer Interface is a system that records brain 

signals and translates them into commands to a computer or a machine. Mainly 

in the past 10 years, BCIs became a promising solution for these rehabilitation 

cases, by using auxiliary devices, such as exoskeletons, to execute a movement 

with the paralyzed limb once the intention to move it is detected by processing in 

real-time the brain signals. Non-invasive BCIs, i.e. ones that does not require 

surgery to implant electrodes, are usually preferred because of safety issues. In 

these BCIs, the electroencephalographic (EEG) technique is the most widely 

adopted procedure to record brain signals. EEG-based BCIs for motor 

rehabilitation is the focus of this work. The major challenge to develop such 

systems is the variability of EEG signals. This means that recording brain activity 

of the same person executing the same task repeatedly, the signals from different 

trials present considerable differences. The head volume conduction and the 

impossibility of recording the signals referenced to an electrically neutral point are 

two of the main reasons for such variability. This work aims at developing a 

strategy to improve the movement intention identification in pseudo real-time. 

First, a study concerning motor signals is conducted. Then, a method to 

personalize the BCI algorithm to each individual is proposed to reduce the signal 

variability, thus improving the accuracy of movement detection. It was seen that 

the proposed method was effective, reaching an average accuracy of 95% across 

15 subjects. 

Keywords: Brain-Computer Interface (BCI), Electroencephalogram (EEG), 

Reference electrode, Motor rehabilitation.   



 
 

RESUMO 

de Melo, G. C. Análise de sinais de eletroencefalograma para Interface 

Cérebro-Computador visando aplicação em reabilitação motora. 2023. 

144p. Ph.D. Thesis. 

Há casos em que o caminho do sistema nervoso que conecta o cérebro aos 

membros do corpo fica comprometido. Depois de um acidente vascular cerebral 

(AVC), por exemplo, uma pessoa pode perder a capacidade de controlar seu 

braço. Nesses casos, a terapia de reabilitação motora pode devolver o controle 

total ou parcial sobre o membro afetado. Todavia, quando não há movimento 

residual no membro afetado, a reabilitação é extremamente difícil. Uma Interface 

Cérebro-Computador (ICC) registra sinais cerebrais e os transforma em 

comandos para uma máquina. As ICCs tornaram-se uma alternativa promissora 

para a reabilitação desses casos mais difíceis. Isso ocorre por meio de um 

dispositivo auxiliar, como um exoesqueleto, que movimenta o membro 

paralisado do paciente ao detectar essa intenção por meio de processamento 

em tempo real dos sinais cerebrais. ICCs não invasivas são preferíveis em 

função de sua segurança. Nas ICCs, a eletroencefalografia (EEG) é a técnica 

mais empregada para registrar os sinais cerebrais. ICC baseada em EEG é o 

foco deste trabalho. O maior desafio desses sistemas é a variabilidade dos 

sinais. Isso significa que os sinais cerebrais de uma pessoa em uma dada tarefa 

repetida várias vezes serão diferentes em cada repetição. O volume condutor 

entre o cérebro e o couro cabeludo e a impossibilidade de se registrar os sinais 

utilizando uma referência eletricamente neutra são duas das principais razões 

para a variabilidade do EEG. Este trabalho tem por objetivo desenvolver uma 

estratégia para melhorar a identificação do movimento em pseudo tempo real. 

Um estudo sobre sinais motores de membros superiores é realizado. Na 

sequência, é proposto um método para personalizar o algoritmo de uma ICC a 

cada indivíduo, visando reduzir a variabilidade do EEG e, assim, melhorar a 

identificação pretendida. Foi visto que o método proposto foi eficaz, 

proporcionando uma acurácia média de 95% entre 15 sujeitos. 

Palavras-chaves: Interface Cérebro-Computador (ICC); Eletroencefalograma 

(EEG); Eletrodo de referência; Reabilitação Motora.  
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1. INTRODUCTION 

Rehabilitation is crucial to recover the quality of life for people who suffer any 

neuromotor impairment. There are cases in which the natural pathway between 

the brain and a limb becomes non-functional, making it impossible for the person 

to control his/her own body. In these cases, it is extremely difficult to provide 

assistance or rehabilitation (ORBAN et al., 2022). During the past decades, Brain-

Computer Interfaces (BCIs) have become a potential solution to this problem. 

BCIs interpret the intention of the person and execute a certain task. It uses the 

neuroplasticity of the central nervous system (CNS) induced by the sense of 

agency to restore motor function (DALY; WOLPAW, 2008). The sense of agency 

is the sense that a certain action is self-generated. Figure 1 illustrates the role of 

a BCI in a motor rehabilitation therapy using an upper limb exoskeleton. 

Figure 1 - Motor rehabilitation with a BCI. 

 

Source: Own authorship. 

Since the 1970’s, when the concept of a BCI was first presented in the scientific 

community (VIDAL, 1973), research groups around the world have been working 

towards BCI’s for daily living. However, this goal has not yet been accomplished, 

despite of the time and resources invested to reach this goal (ORBAN et al., 

2022). 

BCIs can be invasive (sensors implanted inside the head) or non-invasive 

(sensors on the scalp). The most popular type of BCI is non-invasive based on 

electroencephalography (EEG) signals, for practical and safety reasons 

(LEBEDEV; NICOLELIS, 2017). However, EEG poses an important challenge for 

BCI development, which is the difficulty to design algorithms that accurately 
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classifies mental activities. The main reason is the inter and intra-subject signal 

variability (LÓPEZ-LARRAZ et al., 2018; VIDAL, 1973). 

Signal variability is still an unsolved issue in the BCI field and at the same time it 

is a critical step of a BCI system development and perhaps the most challenging 

obstacle in the way of functional BCIs (SAHA; BAUMERT, 2020). The present 

work addresses the signal variability problem aiming to improve an EEG-based 

BCI classification. In this work, the BCI performance is simulated offline. The 

major goal of this work is to build an algorithm to identify the start of the upper 

limb movement. The minor goal is to define a strategy to find EEG features with 

low intra-subject variability, which will help to achieve the major goal. 

The approach is divided into two major parts, see Figure 2. The first is to perform 

offline analysis to find subject-specific channels with relevant information about 

movement intention and low intra-subject variability. The second part consists in 

using single trials (no averaging, so it can simulate a BCI) and proposing feature 

extraction, channel selection and classification techniques for the BCI algorithm. 

A publicly available EEG dataset recorded during the execution of motor tasks is 

used in this work. As a practical contribution, an experimental setup for EEG data 

acquisition is proposed for future work. 

The rest of this thesis is organized as follows: section 2 is the literature review; 

section 3 presents the methodology; section 4 presents the results; section 5 

presents the discussion; section 6 is the conclusion. 
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Figure 2 - Schematic overview of the methodology. 

 

Source: Own authorship.  
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2. LITERATURE REVIEW 

This section is divided into topics. They provide a literature review about the BCI 

field; BCIs for motor rehabilitation; EEG signals related to motor tasks; EEG 

technique and its challenges. 

2.1. Brain-Computer Interface (BCI) 

The term Brain Computer Interface (BCI) can be described as a system that 

acquires signals from the brain and translates them into commands to a computer 

or a machine in a way that the user can control part of the environment external 

to himself using only mental activity, as illustrated in Figure 3. Thus, a BCI system 

must perform a few basic tasks continuously, namely: 1) record the brain signals; 

2) extract information from the signals; 3) distinguish the user’s intent using the 

information; 4) transform the intent into commands to the machine; 5) make the 

machine execute the action properly. Another task that could open new scenarios 

is to provide adequate feedback to the user about the action, prior to the 

execution itself to allow for corrections. 

Figure 3 - Schematic overview of a BCI system. 

 

Source: Adapted from (MCFARLAND; WOLPAW, 2011). 

There are multiple ways in which we can classify BCIs and one of them is as 

invasive or non-invasive BCI. The invasive type records brain signals with 
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implanted electrodes, which means that surgery is required to place the 

electrodes. The major problems are the surgery and post-surgery risks and long-

term decrease in signal quality because of the possibility of electrodes changing 

their position with time and because of physiological reactions to the electrode. 

The main advantage is the signal quality once the electrodes are placed. Its high 

spatial and temporal resolution and signal-to-noise ratio are key for BCI 

performance. Such systems have already achieved great results towards the 

control of robotic devices only with brain activity. (NICOLAS-ALONSO; GOMEZ-

GIL, 2012; RAMADAN; VASILAKOS, 2017). 

The non-invasive type records brain signals with electrodes or other sensors 

placed on the scalp. The most used methods for non-invasive signal recording in 

BCI systems are electroencephalography (EEG) and functional Near Infrared 

Spectroscopy (fNIRS). Both of them are safe, portable and low-cost methods 

(WOLPAW; WOLPAW, 2012). EEG measures electric fields generated by the 

cortex and fNIRS measures oxygen concentration in the brain. Both phenomena 

reflect brain activation. EEG is the most widely used method and the main reason 

for that is its greater temporal resolution (in the order of milliseconds). Although 

the fNIRS can achieve a temporal resolution in the order of hundreds or tens of 

milliseconds, the phenomenon itself that is being measured (oxygen 

concentration) might take up to 1 or 2 s to show significant changes reflecting the 

cortical activation. Other techniques for non-invasive brain signal recording that 

are worth being mentioned, but mainly used for other applications, are 

magnetoencephalography (MEG), functional Magnetic Resonance Imaging 

(fMRI), and Positron Emission Tomography (PET) (LEBEDEV; NICOLELIS, 

2017). These methods require bigger and more expensive equipment, as well as 

a prepared environment, thus they are not portable. PET also requires the use of 

tracers in the patient’s body. 

A remarkable point in the history of BCIs is the investigation of “EEG 

biofeedback”, which consists in providing some type of feedback to the subject 

about their own neuronal activity (LEBEDEV; NICOLELIS, 2017). This approach 

made it possible for the subjects to achieve volitional control of their own EEG 

activity at some level. As clarified by the authors in (LEBEDEV; NICOLELIS, 

2017), this type of research became very popular in the 1960’s and 1970’s. In 
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1973, Vidal (VIDAL, 1973) authored an article concerning what seems to be one 

of the first so called Brain-Computer Interface systems. In this work, Vidal says 

that EEG signals might be capable of being used for man-computer 

communication or for controlling prosthetic devices or even spaceships, and that 

one may suggest that such a feat could be potentially around the corner. It is 

interesting to note that this optimistic feeling remained present in the scientific 

literature over a few decades despite the very modest development throughout 

the years. However, Vidal remains cautious in the text towards what is to be 

expected in terms of the scientific development of the field, given that he exposed 

the fact that there was no consensus at all in many aspects of EEG signals theory 

and processing at the time. Perhaps the major challenge pointed out in the article 

is the variability of EEG signals, which represents a big obstacle for deciphering 

the signals and performing online analysis. Thus, Vidal advocates strongly 

towards the operant conditioning approach, in which the subjects are trained to 

provide more reliable and stable EEG patterns instead of having a complex 

algorithm attempting to decipher their highly non-stable patterns. 

Farwell and Donchin (FARWELL; DONCHIN, 1988), 15 years after Vidal’s BCI 

article, presented a BCI to enable communication through typing. The approach 

consists in using a well-known EEG evoked signal, the P300, as a label to identify 

which command the subject wants to select on the computer screen. This 

approach commonly referred to as P300 speller does not rely on the 

comprehension of EEG signals related to the task itself, nor on volitional control 

of EEG signals. Rather than that, it uses the cortical automatic response to a 

certain type of stimulus in order to check the subject’s choice among a few 

presented options on the screen. Hence, although useful, this approach is limited 

in its applications. 

Lebedev and Nicolelis (LEBEDEV; NICOLELIS, 2017) report that between the 

1970’s and the 1990’s the BCI/BMI field did not experience much evolution mainly 

because of the lack of technological development in the area. However, the 

authors say that advances towards implantable electrodes gave new strength to 

the field in the 1990’s, especially for invasive systems. Nevertheless, non-

invasive approaches also benefit from research using invasive recordings. In 

1990, in (NEAT et al., 1990) the authors described a system in which subjects 
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could gain some level of control over their 8-12 Hz EEG amplitude recorded in 

the motor cortex (Mu rhythm) by receiving a 1-dimensional cursor movement on 

the computer screen as a feedback. However, the system required an active 

operator with expertise to adjust the best time length to be analyzed for executing 

a command and to set the relation between Mu rhythms amplitude and cursor 

movement. This adaptive decoding device (ADD), as the authors named it, is 

used in the BCI presented by Wolpaw and colleagues (WOLPAW et al., 1991) to 

control a cursor with up and down movements. The authors in 

(PFURTSCHELLER; FLOTZINGER; KALCHER, 1993) presented a BCI system 

in which a classifier algorithm learned to decode whether the subject is planning 

to move its right or left finger in order to provide commands for a cursor control. 

These two BCI systems, from Wolpaw et al. (WOLPAW et al., 1991) and from 

Pfurtscheller et al. (1993) (PFURTSCHELLER; FLOTZINGER; KALCHER, 

1993), illustrate two important approaches towards the relation between subjects 

and BCI systems. In the first one the subject adapts to the system’s criteria for 

transforming EEG features into commands, while in the second one, the system 

adapts itself to the subject’s EEG patterns for discriminating commands. 

The development of robotic prosthesis and orthosis, data acquisition devices, 

microcontrollers, and computer software in the past three decades and these 

promising works in the early 1990’s (among others) provided a major stimulus to 

the BMI field. This scenario opened a variety of possibilities for BMI applications, 

but till the present the transformation of EEG signals into commands by the BMI 

system itself has not achieved enough reliability to enable its use in the daily life 

of impaired individuals. As McFarland and Wolpaw (MCFARLAND; WOLPAW, 

2017) state, BMIs for critical communication and control applications need to 

have near-perfect performance. Nevertheless, the authors highlight the 

reasonably novel application for these systems that does not require such 

perfection in order to be effective, which is neuro-rehabilitation procedures (or 

motor rehabilitation). It is clarified that the BMI/BCI only needs to enhance 

recovery of function beyond that achieved by standard rehabilitation therapies 

alone. Therefore, the possibility to obtain practical achievements with BCIs gain 

a new perspective. This might be a key factor to boost BCI development, that for 
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decades have seemed to be near to practical applications, but still hasn’t been 

able to find its place outside laboratories walls. 

2.2. BCI for motor rehabilitation 

BCIs for motor rehabilitation purposes began to attract interest of the scientific 

community at the end of the first decade of this century (DALY; WOLPAW, 2008; 

LÓPEZ-LARRAZ et al., 2018). The most credible framework for effective motor 

re-learning intervention post brain injury is based on the activity-dependent 

central nervous system (CNS) plasticity (DALY; WOLPAW, 2008). BCI-based 

approaches use EEG signals to stimulate and guide CNS plasticity to improve 

motor function (DALY; WOLPAW, 2008). In (DALY; WOLPAW, 2008), the 

authors highlight two BCI-based motor learning strategies. The first is to train 

patients to produce more normal brain signals, which would be assessed by 

measured EEG features. More normal brain signals, carried out by CNS plasticity, 

would lead to more normal motor functions. The second strategy is to use 

assistive devices actuated by BCI. The improvement of motor function would 

produce sensory inputs that induces CNS plasticity towards normal motor control. 

López-Larraz and colleagues (LÓPEZ-LARRAZ et al., 2018) also suggest that 

the learning from both sides – human and machine – might constitute a 

breakthrough towards optimized motor function plasticity. This means that the 

BCI system should also act as an adaptive mechanism to provide an optimal and 

synergistic combination along with the patient. 

The BCI-based rehabilitation, commonly assessed with post-stroke patients, has 

been shown to be safe and promising in terms of its effectiveness, in both short 

and long-term (BAI et al., 2020; CERVERA et al., 2018; MANSOUR et al., 2022). 

However, there are still a number of challenges to be addressed in the field 

(ORBAN et al., 2022). The neurophysiological basis to understand how BCI 

rehabilitation protocols contributes towards neurological improvements is still 

unknown and it is key to understand the correlations between BCI performances, 

neurophysiological changes, and functional clinical scores (GUGER et al., 2018; 

LÓPEZ-LARRAZ et al., 2018). There is still little consensus concerning important 

elements of BCI clinical trials, such as signal processing, feedback, experimental 

protocols and subject instructions, additional devices (e.g. exoskeletons and 
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others) (BAI et al., 2020; LÓPEZ-LARRAZ et al., 2018). This is a relevant 

problem, because many factors, such as the ones mentioned and a few others, 

are known to influence EEG recordings (GUGER et al., 2018). In addition, a key 

aspect to be mentioned is the well-known inter-subject variability concerning 

brain signals (specially with non-invasive recordings) and how this can be 

enhanced by the unique way that the stroke (or other cause) damages the brain 

in each subject. This reinforces the idea of BCI systems and therapies being 

thought as something to be personalized to each patient (LÓPEZ-LARRAZ et al., 

2018). 

In general, review articles highlight the inefficiency of conventional rehabilitation 

strategies towards motor rehabilitation for patients with severe neurological 

impairments, despite its cause. Also, the large number of patients in such 

conditions nowadays is commonly mentioned in these studies. The major 

motivations for investing in BCI research are of two natures: (1) practical aspects 

and (2) future perspectives. For the practical aspects, we can point out the 

growing accessibility in terms of cost, availability, portability, and easiness to use 

of the required hardware and fast development of new digital signal processing 

techniques combined with the easiness to try out different methods. In terms of 

future perspectives, the motivation is directly related to the promising results that 

has been presented in the scientific community and the lack of other promising 

alternatives towards the motor rehabilitation of people with severe neurological 

impairments. (BAI et al., 2020; CERVERA et al., 2018; DALY; WOLPAW, 2008; 

GUGER et al., 2018; LÓPEZ-LARRAZ et al., 2018). 

2.3. EEG signals related to motor tasks 

This section is divided into sub-sections addressing different signatures from 

EEG signals, namely: contingent negative variation (CNV), readiness potential 

(RP), event-related desynchronization and synchronization (ERD/ERS), event-

related potentials (ERP), and error-related potentials (ErrP). These signatures 

are likely to be present in tasks protocol with motor activity involved. 

2.3.1. Contingent Negative Variation (CNV) 

This EEG signature is a slow potential (< 4 Hz) that appears as a negative shift 

between a warning stimulus and an imperative “go” stimulus usually no longer 
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than 2 s apart from each other (see Figure 4). Because of the dependency of the 

warning-imperative stimuli relation, the negative prolonged wave was designated 

as contingent negative variation (CNV) by Walter and colleagues (WALTER et 

al., 1964), who first reported this signal in 1964 by analyzing the vertico-mastoid 

EEG channel, i.e. one electrode at the vertex (Cz) and the other (reference 

electrode) at the mastoid. If either the warning or imperative stimulus is presented 

alone, or if both are presented without the need of an action by the subject, the 

contingent negative variation cannot be detected (WALTER et al., 1964). 

Figure 4 - The CNV. The vertical red dashed line is when the movement occurred. 

 

Source: Adapted from (WALTER et al., 1964) 

Inter-stimuli intervals greater than 2 s can also elicit the CNV. In such cases, two 

components can be detected: initial and late CNV, designated as iCNV and lCNV, 

respectively (KROPP et al., 2000). The iCNV reaches its maximum amplitude 

between 550 ms and 750 ms after the first stimulus, while the lCNV reaches its 

maximum 200 ms preceding the second stimulus. A post imperative negative 

variation (PINV) can also be detected as a prolongation of the CNV in the interval 

0-2 s after the second stimulus when analyzing CNV in intervals greater than 2 s 

and in the electrode Cz referenced to linked-mastoids (KROPP et al., 2000). 

Variations of the warning-go paradigm has also been reported to elicit the CNV 

at electrodes all over the midline (nose to forehead direction) on the scalp, using 

the average reference over 128 electrodes (MASAKI; SOMMER, 2012). In 

(MASAKI; SOMMER, 2012), Masaki and colleagues presented an experiment in 

which S1 (first stimulus), presented as the appearance of a light blue circle (with 

a pointer at 12 o’clock position), was 2 s apart from S2. After these 2 s, the pointer 

initiated a clockwise movement “painting” the circle white. The onset of this 
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movement was considered as S2. However, subjects were instructed to press a 

force sensor with their finger and to achieve the peak force at the same time the 

pointer completed one cycle (that could take 420 or 570 ms in two experimental 

variations). The interval from force onset and force peak was previously defined: 

100 or 200 ms, in also two experimental variations. This means that the exact 

movement onset by subjects were not to happen coincidently with S2, but rather 

be relative to it, despite the small possible time differences (220-470 ms delay). 

However, one can note that this paradigm maintains the subject’s attention and 

engagement to the task, which is essential to elicit the CNV (WALTER et al., 

1964). 

2.3.2. Readiness Potential (RP) 

The readiness potential, EEG signature originally designated as 

bereitschaftspotential (in an article written in German) in 1965 is a slow negative 

potential preceding self-paced movements in approximately 1.5 s, as shown in 

Figure 5 (KORNHUBER; DEECKE, 1965). In EEG analysis, this signal is very 

similar to the CNV, but has some particularities (other than its neurological 

meaning). For instance, when using linked-ears as reference, it is reported to rise 

bilaterally, widespread, and maximum over the midline at precentral and parietal 

region. Within 500 ms and 90 ms prior to movement onset, the slow negativity 

rapidly and asymmetrically increases its gradient towards the contralateral 

hemisphere, although it continues at the ipsilateral hemisphere until it culminates 

in a negative peak (SHIBASAKI et al., 1980). These two phases of BP are 

commonly designated as early BP and late BP, or sometimes as BP and negative 

slope (NS’), respectively (TARKKA; HALLETT, 1991). Shibasaki and Hallett 

(SHIBASAKI; HALLETT, 2006), in their review article, clarify that although BP 

usually starts not before 2 s preceding the movement, it may initiate “much earlier 

as compared to the movement executed in more natural conditions” depending 

on the experimental paradigm. The late BP, however, maintain its timing 

characteristics even in such cases. Authors lists many factors that are known to 

influence early and late BP. Among others, they include level of attention (larger 

early BP), preparatory state (earlier onset), learning (larger early BP), speed (later 

onset), and precision (larger late BP). 
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Figure 5 - The RP. The vertical red dashed line is when the movement occurred. 

 

Source: Adapted from (KORNHUBER; DEECKE, 1965). 

2.3.3. Event-related Desynchronization and Synchronization (ERD and ERS) 

This phenomenon refers to the rhythmicity of EEG signals. As stated by 

Pfurtscheller and Lopes da Silva (PFURTSCHELLER; LOPES DA SILVA, 1999), 

it may be viewed as an event-related phase desynchronization or synchronization 

of neural networks oscillations within a specified frequency band. The ERD is 

associated with an increased activation of cortical neurons (PFURTSCHELLER, 

2001). Hence, visual information processing will be characterized by ERD within 

the alpha band (8-12 Hz) measured over occipital region. In the same manner, 

motor behavior or sensorimotor activation will be characterized by ERD within the 

alpha band over the motor cortex, also known as Rolandic Mu rhythm, or simply 

Mu band. On the other hand, reduced information processing with little motor 

behavior will be characterized by large amplitudes of synchronized alpha band 

activity (PFURTSCHELLER, 2001). The ERD and ERS are seen in the EEG 

signals as band-specific power decrease or increase, respectively. See Figure 6 

for an example of ERD. 
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Figure 6 - The ERD. The vertical red dashed line is when the movement occurred. 

 

Source: Adapted from (PFURTSCHELLER; ARANIBAR, 1979). 

2.3.3.1. Motor ERD 

When it comes to ERD related to motor activities, Shibasaki and Hallett 

(SHIBASAKI; HALLETT, 2006) provide a succinct review of other works 

regarding lateralization evolution of ERD. With certain level of uncertainty due to 

the non-generalizable results throughout literature, they highlight the pre-

movement contralateral occurrence of ERD within the alpha (8-12 Hz) and beta 

(12-25 Hz) bands, growing into a bilateral ERD over motor cortex for right hand 

movement by right-handed subjects. For left hand movement of right-handed 

subjects, ERD starts and remains bilateral. Regarding temporal aspects, motor 

ERD is known to be observable within the alpha and beta bands as early as 2 s 

prior to movement onset. This was reported by (PFURTSCHELLER; ARANIBAR, 

1979) for the alpha band and in other works throughout the years. Pfurtscheller 

and Lopes da Silva (PFURTSCHELLER; LOPES DA SILVA, 1999) mention what 

is known as beta rebound within the first second after movement offset, which is 

characterized by a beta band ERS (i.e. increased beta band energy), while alpha 

band is still presenting a desynchronized behavior. 

In (PFURTSCHELLER; LOPES DA SILVA, 1999), the authors draw attention to 

the frequency specificity concerning ERD. The alpha band, for instance, in some 

cases should be divided into lower (7-10 Hz) and upper (10-12 Hz) alpha bands. 

They explain that lower alpha ERD usually occurs in response to any type of task 

and is topographically widespread, whereas upper alpha ERD is usually 

topographically restricted. Moreover, despite commonly adopted frequency 

intervals for alpha and beta bands, subject-specificities must be considered in 
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order to define adequate frequency ranges associated with these rhythmicity 

activities. In this case, authors suggest the use of wavelet transform previous to 

ERD calculation. 

2.3.3.2. ERD quantification 

There are several ways to quantify ERD/ERS. Three of them are considered in 

the following paragraphs and they all require multiple trials of the same task, 

which means that they are only suitable for offline analysis. It is important to 

mention that ERD quantification only makes sense if there is a clear peak in the 

reference period (interval used as baseline) in the power spectrum 

(PFURTSCHELLER; LOPES DA SILVA, 1999). The ERS is only meaningful if 

there is also a clear peak in the power spectrum that was initially not detectable. 

2.3.3.2.1. Overlapping power spectrum density (PSD) 

In (PFURTSCHELLER; ARANIBAR, 1977), Pfurtscheller and Aranibar analyzed 

the time course of EEG power in the so called rhythmic activity within the alpha 

band (RAAB) with an experimental paradigm involving auditory and visual stimuli. 

To do so, they performed spectral analysis by means of periodograms calculated 

for every 1 s interval of the task with an overlap of 0.5 s. This means they first 

used the interval from 0 to 1 s from all trials to estimate the power spectrum 

density (PSD) for that particular interval of the task and obtain the energy inside 

it. Then they used the interval from 0.5 to 1.5 s from all trials and so on until the 

entire task interval was considered. The electrodes analyzed were C3 and O1 

referenced to A1 (left earlobe), and C4 and O2 referenced to A2 (right earlobe). 

2.3.3.2.2. Band power method 

One of the most often adopted procedures was first proposed in 

(PFURTSCHELLER, 1977) to analyze power changes related to sensorial 

stimuli. It was first applied to detect power changes related to motor activities in 

(PFURTSCHELLER; ARANIBAR, 1979), using a bipolar reference scheme to 

record EEG. The scheme was a transverse electrode chain: T’4-C4-C’4-Cz-C’3-

C3-T’3 (the superscript indicates a position midway between original position and 

the adjacent towards the vertex). However, it was slightly changed afterwards. A 

very clear step-by-step procedure is presented in (PFURTSCHELLER; LOPES 
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DA SILVA, 1999), commonly referred to as the band power method, showing how 

it should be applied. It consists of band-pass filtering EEG data within the 

frequency band of interest, followed by squaring every sample to obtain power 

information. The average over trials must be calculated and the resultant mean 

power smoothed by averaging over time. Finally, percentage values are obtained 

for each point in time relative to a baseline value. The baseline value is calculated 

as the mean power in an interval a few seconds before the event occurs. The 

difference between this procedure and the one proposed in (PFURTSCHELLER, 

1977) is that the latter smooths the power values before averaging over trials. 

2.3.3.2.3. Inter-trial variance method 

The third method, presented in (KALCHER; PFURTSCHELLER, 1995), 

addresses a limitation of the band power method. This is the impossibility of 

discriminating phase-locked and non-phase-locked EEG activities when both 

types of activity are within the same frequency band. Thus, if a different EEG 

activity takes place simultaneously to motor ERD and with overlapping frequency 

bands, the EEG activity energy can mask EEG desynchronization or 

synchronization. The alternative procedure proposed by the authors consists in 

calculating the inter-trial variance of filtered EEG for every instant of the task, 

which gives the power changes over time of only non-phase-locked activities. 

Therefore, both methods provide power changes over time by using 

synchronized data from multiple trials. The difference is that the band power 

method calculates the mean value of power samples, and the inter-trial variance 

method calculates the variance of EEG samples. The former gives the total power 

associated with the frequency band analyzed, the latter gives the power 

associated only with non-phase-locked activities. 

2.3.4. Event-related Potentials (ERP) 

Voltage fluctuations in EEG associated with physical or mental occurrence are 

designated as ERPs (PICTON et al., 2000). They can be extracted from raw EEG 

recordings by adequately filtering and averaging. The term is usually applied to 

signals in time domain and characterized by negative and positive peaks related 

to the timing of the event. Therefore, all previously mentioned EEG signals, 

except for ERD/ERS can be considered to be specific types of ERPs. There are 
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three categories that are worth being mentioned here and do not include the 

previous topics: visual ERP, auditory ERP, and P300. Table 2 shows a summary 

regarding these three types of ERP. 

Visual ERPs are expected to be larger at posterior midline regions and lateral 

occipital regions (LUCK, 2014). They are characterized by a positive peak with 

its maximum near 100 ms after the stimulus and reflect two components: C1 (with 

varying polarity, predominant over posterior midline, with maximum before 

100 ms post stimulus) and P1 (positive peak predominant over lateral occipital 

areas, with maximum after 100 ms post stimulus). C1 and P1 may sum to one 

another if C1 is positive, or in case of C1 being negative, it will be seen as a 

negative peak slightly before P1 appears.  

Auditory ERPs are mainly characterized by a small peak with 50 ms latency 

(P50), a negative peak with 100 ms latency (N100) and a larger positive peak 

with 160 ms latency (P160) (LUCK, 2014). Some auditory components can be 

recorded all over the scalp, but usually reach their maximum in specific electrode-

reference montages, e.g. mastoid to mastoid or vertex to neck montage 

(PICTON, 2013). 

The P300, or P3, was identified in 1965 as a peak at about 300 ms after visual or 

auditory stimuli with an electrode placed one-third of the distance along a line 

from the vertex to the external auditory meatus and the reference being attached 

to the earlobes (SUTTON et al., 1965). P3 has been related to the uncertainty of 

the subject with respect to the type of stimuli and its incorrect prediction. Duncan-

Johnson and Donchin (DUNCAN‐JOHNSON; DONCHIN, 1977) corroborated 

these findings with an experiment with two types of auditory stimuli. The P3 

amplitude measured over the midline from frontal to occipital regions was directly 

related to the rarity of the stimuli and most prominent at Pz location. All EEG 

recordings were referenced to linked mastoids. P3 has been shown to be actually 

a result from two different components, P3a and P3b larger in frontal and parietal 

regions, respectively (SQUIRES; SQUIRES; HILLYARD, 1975). P3a was shown 

to be probability-dependent, but unrelated to the task itself. P3b on the other 

hand, although also probability-dependent, occurred only when the stimulus was 

important for the task. EEG recordings were made at frontal, vertex, and parietal 
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sites, always referenced to the right mastoid. When the designation P300 or P3 

is used in literature, authors are usually referring to P3b (LUCK, 2014). 

2.3.5. Error-related Potentials (ErrP) 

In the BCI field many ERP components measured in response to errors are 

designated with the umbrella term error-related potentials (ErrP) (SPÜLER; 

NIETHAMMER, 2015).  

Perhaps the first to be reported is the error-related negativity (ERN), in 1993 

(GEHRING et al., 1993). However, what seems to be the same component had 

been presented two years earlier in (FALKENSTEIN et al., 1991), who referred 

to it as error-negativity (Ne). This component is observed when computing the 

difference between ERPs after incorrect and correct performances (the first 

minus the second). The authors in (FALKENSTEIN et al., 1991) showed, in a 

choice reaction task, that ERPs following correct performances present a large 

positive peak within -50 to 150 ms (relative to the reaction offset) in between both 

hemispheres. On the other hand, ERPs following incorrect performances present 

amplitudes severely attenuated in the same time range. A positive wave complex 

without a distinct peak can be detected in the range of 150 to 350 ms for ERPs 

following incorrect trials, meanwhile ERP after correct performance is decreasing 

after reaching its peak. When computing difference curves (i.e. ERP following 

errors – ERP following correct trials), a negative peak within 100 ms after reaction 

offset by the subject can be seen, followed by a positive peak at approximately 

200 ms after reaction offset. In general, these effects are more clear at frontal 

regions. 

In tasks that the subjects cannot know for themselves of their performance, thus 

requiring a feedback, a wave similar to the ERN, but with larger latency, can be 

detected (MILTNER; BRAUN; COLES, 1997). In midline electrodes referenced 

to linked-ears, a negative peak in the ERP after incorrect feedback at 

approximately 250 ms post-feedback can be detected, whereas ERP after 

“correct” feedback presents a positive peak. After this peak, ERP after “incorrect” 

feedback presents what might be the same positive peak seen previously 

following “correct” feedback. Therefore, the difference wave presents a large 

negativity (250 ms following incorrect feedback) and a positivity in its sequence 
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(MILTNER; BRAUN; COLES, 1997). Hoyrold and colleagues (HOLROYD et al., 

2003) showed that the wrong prediction concerning the feedback has impact on 

the ERN. Authors showed that after negative feedback the ERN has greater 

amplitude when the subject expects a positive feedback when compared to when 

he expects a negative feedback. 

The study concerning ErrPs allows the development of theories concerning error 

processing by the human brain. Krigolson and Hoyrold (KRIGOLSON; 

HOLROYD, 2006) proposed a hierarchical model for error processing. The model 

considers that high-level errors (goal attainment) and low-level errors (e.g. 

trajectory deviations during motor control) are assessed by frontal and posterior 

error systems, respectively. The former is the typical response ERN observed in 

earlier studies (after subject’s response at a choice reaction task), and the latter 

was found to also present a negative peak in the difference curve, but with a 

larger latency, with its peak in the 100-150 ms interval (meanwhile the former 

case presented the negative peak before 100 ms). Moreover, high-level ERN was 

shown to be more evident at frontal region and low-level ERN at posterior region. 

When it comes to BCIs, it is possible to explore ErrPs to understand the 

particularities of error processing in this scenario. Usually, related works analyzes 

error potentials associated with wrong outcomes by the BCI, i.e. the subject 

delivers the correct command, but the algorithm processes the wrong command 

(FERREZ; MILLÁN, 2008; SCHALK et al., 2000; SPÜLER; NIETHAMMER, 

2015). For instance, Ferrez and Millán (FERREZ; MILLÁN, 2008) revealed 

different components in the difference wave calculated at FCz with EEG 

recordings referenced to the average of 64 electrodes. They called this new ErrP 

as “interaction ErrP”. It was mainly characterized by a sequence of four peaks 

relative to the feedback: small positive (200 ms), big negative (250 ms), big 

positive (320 ms), and a broader negative (450 ms).  

The major significance of ErrP towards BCI consists on improving the algorithms 

by enabling adaptive procedures to re-calibrate the algorithm or to enhance the 

sense of agency effect. This would be achieved by updating in real-time their 

EEG pattern recognition, adapting to the user and by stopping a wrong outcome 

once the user is informed about it. However, this approach is still not well 
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established in the field. Main reasons might be the difficulty to detect ErrP in real-

time. 

2.3.6. Summary 

Tables 1, 2, and 3 show a summary of the main features concerning spatio-

temporal aspects of ERD, CNV, and RP (Table 1), ERPs (Table 2), and ErrPs 

(Table 3). As already seen in the present literature review, it is hard to generalize 

these features, reason why the content in these tables should be considered 

cautiously. The intent is to provide a succinct and superficial comparison between 

the mentioned EEG signals, rather than providing robust information individually 

for each signal type. 

Table 1 - Comparison between main spatio-temporal properties of ERD, CNV, and RP. 

 
ERD (alpha 

band) 
CNV RP 

When Prior (<2 s) and 

(2) during the 

movement 

Between 

warning-go 

stimuli (<2 s) 

Before self-paced 

movement: (1) 

early (<2 s) and 

(2) late RP 

(<0.5 s) 

 

Where Motor cortex (1) 

contralateral and 

(2) bilateral 

z-line, most 

prominent over 

the central region 

Central region 

close to z-line (1) 

Bilateral and (2) 

contralateral 

 

How it looks Energy decrease 

in frequency 

bands 

Slow decrease in 

amplitude 

Slow decrease in 

amplitude and (2) 

abrupt decrease 

Source: Own authorship. 
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Table 2 - Comparison between main spatio-temporal properties of previously discussed 
ERPs. 

 Auditory  Visual P300 (3b) 

When Approximately (1) 

50 ms, (2) 

100 ms, and (3) 

160 ms post-

stimulus 

 

Approximately 

100 ms post 

stimulus 

Approximately 

300 ms post 

stimulus 

Where Mainly at 

mastoids 

Lateral occipital 

regions 

 

Most prominent 

at Pz location 

How it looks Small positive 

peak, (2) 

negative peak, 

and (3) a final 

positive peak 

Positive peak Positive peak 

Source: Own authorship. 

Table 3 - Comparison between main spatio-temporal properties between different 
ErrPs. The “r”, “f”, and “i” preceding “ErrP” refers to “response”, 

“feedback”, and “interaction”. Although the first two were previously 
referred as ERN instead of ErrP, the latter is an umbrella term that 

includes all error-related potentials. 

 rErrP fErrP iErrP 
Low-level 

rErrP 

When Post-

reaction: (1) 

prior to 

100 ms and 

(2) 200 ms 

Post-

feedback: (1) 

250 ms and 

(2) prior to 

500 ms 

Post-

feedback: (1) 

200 ms, (2) 

250 ms, (3) 

320 ms, and 

(4) 450 ms 

 

Post-error: 

between 100 

and 150 ms 
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Where Frontal 

regions, z-

line 

Frontal 

regions, z-

line 

Frontal 

regions, z-

line 

 

Posterior 

regions, z-

line 

How it looks (1) Negative 

and (2) 

positive 

peaks 

(1) Large 

negative 

peak and (2) 

positive peak 

(1) Small 

positive, (2) 

big negative, 

(3) big 

positive, (4) 

broad 

negative 

peaks 

Negative 

peaks 

Source: Own authorship. 

2.4. EEG technique and its challenges 

This section is divided into three sub-topics addressing, each one of them, brain 

signals, the reference electrode, and spatial resolution. 

2.4.1. Brain signals 

The electric field of a neuron is a result of the summation of multiple post-synaptic 

potentials in its axons, which can be excitatory or inhibitory. When a large number 

of neurons (up to 109) is displayed in layers aligned perpendicular to the cortical 

surface and has similar electric field orientation, they actuate as a dipole capable 

of having its electric field measured by electrodes on the scalp. These neurons 

that together generate EEG signals are called pyramidal cells because of their 

morphology. Between the cortex and the scalp there is a conductive medium in 

which the electric field generated by different dipole layers spreads and mixes 

into each other. Therefore, what reaches the scalp to be recorded by the EEG 

electrodes is a space average of the activities from different cortical areas whose 

electric field has superimposed each other. Moreover, because of different 

tissues with different resistivity properties, the conductive medium also actuates 

as a low-pass filter, thus EEG content is usually under 40 Hz. Important to note 

that in this work EEG always refers to the non-invasive EEG. Electrocorticogram 

(ECoG), on the other hand, which uses electrodes placed invasively on the 
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cortex, has a frequency spectrum up to 200 Hz. (WOLPAW; WOLPAW, 2012). 

Figure 7 illustrates schematically different signals that are generated by the brain 

and the techniques that can be used to measure them. 

Figure 7 - Brain signals: origin and recording techniques. 

 

Source: Own authorship. 

In the case of EEG, the basic in terms of signal recording consists of at least three 

electrodes and an amplifier and analog-to-digital converter (ADC), see Figure 8. 

In this minimum configuration, one electrode is needed to actuate as the ground, 

so that the body surface and the amplifier are at the same potential level. The 

ground electrode can be placed anywhere on the body, but is usually placed on 

the scalp among the other electrodes. The EEG signal itself is recorded as the 

potential difference between the other two electrodes placed on the scalp. If there 

are multiple electrodes and only one of them is used as a reference for calculating 

the potential difference, the EEG measurement is said to be monopolar. On the 

other hand, if EEG is recorded from different pairs, it is said to be a bipolar 

measurement. There are cases in which the amplifier amplifies the signals 

referenced to the analog average from all the electrodes. The reference can 

always be changed digitally just by simple subtraction if the signals were initially 

referenced to the same value. 
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Figure 8 - Basic scheme for EEG data acquisition and digitalization. 

 

Source: Own authorship. 

2.4.2. Electrodes positioning 

To place the electrodes on the scalp, the international 10-20 system is commonly 

used to define their location (JASPER, 1958). This system was based on 

anatomical landmarks, allowing reasonable correspondence between electrode 

positions and brain structures (BÖCKER; VAN AVERMAETE; VAN DEN BERG-

LENSSEN, 1994). To define the positions, two reference points are used, the 

nasion, located at the top of the nose, and the inion, in the bony lump at the base 

of the skull (NICOLAS-ALONSO; GOMEZ-GIL, 2012). Intermediate points are 

marked using 10% and 20% of the entire distance between the reference points, 

see Figure 9. The letters used to name the positions are related to the cortical 

region underneath (brain lobes), such as frontal, parietal, temporal, and occipital. 

However, the letter C is used to indicate the central region that crosses the vertex 

side-to-side on the scalp. The numbers increase as they move away from the 

middle-line between hemispheres, with odd numbers on the left and even 

numbers on the right. The midline is indicated by the letter z. 
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Figure 9 - The 10-20 positioning system. 

 

Source: Adapted from (OOSTENVELD; PRAAMSTRA, 2001). 

With the evolution of the field, researchers begun to use larger number of 

electrodes to perform EEG measurements. Hence, extended systems were 

proposed, such as the 10-10 and 10-5 systems, according to the percentage 

values used to define the positions (OOSTENVELD; PRAAMSTRA, 2001). To 

name the new locations in the nasion-inion direction, the letters are combined 

similarly to the wind rose. Intermediate locations in the left-right direction are 

indicated with the letter h, meaning they are half way to the next position towards 

the midline. See Figure 10 for the 10-10 system. 
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Figure 10 - The 10-10 positioning system. 

 

Source: Adapted from (OOSTENVELD; PRAAMSTRA, 2001). 

2.4.3. Signal variability – inter and intra-subject variability 

Early works in the BCI field have shown that dealing with signal variability is a 

critical step of a BCI system development and perhaps the most challenging 

obstacle in the way of functional BCIs (VIDAL, 1973; WOLPAW et al., 1991). Still 

nowadays it is an important and unsolved issue in the BCI field (SAHA; 

BAUMERT, 2020). This variability implies in unstable signal’s features when 

executing a certain task repeatedly. Thus, it becomes difficult to decode the 

mental activity using those features. An alternative to this problem is the operant 

conditioning approach, in which the subjects are trained to provide more reliable 

and stable EEG features (VIDAL, 1973). However, this is a complex approach 
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and it has been shown that it does not work for all subjects (NEAT et al., 1990; 

WOLPAW et al., 1991). The other approach is to develop algorithms to extract 

multiple features from the signals and use pattern recognition algorithms to 

decode the brain activity (PFURTSCHELLER; FLOTZINGER; KALCHER, 1993). 

Part of the EEG signal variability comes from hardware issues such as the 

analog-to-digital converter (quantization noise), electrodes/skin impedance and 

environmental electrical fields. This can be sufficiently minimized by adequate 

preparation of the environment, proper technique to collect the data, and high 

quality equipment. Also, some level of variability is intrinsic to the natural brain 

functioning under certain circumstances (GARRETT et al., 2013). Other causes 

of variability, perhaps the most important ones, are the reference electrode and 

the poor spatial resolution (head volume conduction). They will include, in any 

EEG recording, a variety of ongoing brain activity taking place at the moment. 

Some of these brain activities might be directly related to the ongoing task being 

analyzed and others might have no relation to it at all. Hence, the activities 

unrelated to the task can be different over successive trials of the same task, 

despite being executed by the same person. Figure 11 shows EEG recordings 

from the same subject performing the same task repeatedly and all of them are 

different from each other. A more complete explanation of this problem is 

presented in sections 2.4.4 and 2.4.5. 
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Figure 11 - EEG recordings over five trials of the same task performed by the same 
subject. 

 

Source: Own authorship. 

2.4.4. Reference electrode 

In (NUNEZ; SRINIVASAN, 2006), the authors provide a didactic explanation 

concerning the reference electrode in EEG recordings. The main topics 

addressed by the authors are clarified in the following. The EEG equipment 

measures the electrical potential difference between two sites by means of a 

current passing through a parallel circuit which starts at one electrode and 

finishes at the other. The goal in terms of brain signal recording would be to 

measure the potential of certain spot of the brain with respect to an electrically 

neutral point that works as a perfect reference, often designated as quiet 

reference. However, given what has been exposed about EEG equipment, the 

reference electrode must actuate as an extremity of a parallel circuit that uses a 

very small current to infer the potential difference that originates this current. 

Hence, some arbitrary electrically neutral point not located on the body surface 

would not work if it does not allow a current to pass through, because in such 

case the potential measured would be null. Even if it was possible to measure 
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scalp potential referenced to a neutral site, it would also not be useful, in this 

case, because the human body is always under influence of environmental 

electrical fields from multiple sources (electric equipment, power line, etc.), and 

the voltages are often considerably higher than brain potentials, see Figure 12. 

This means that measuring the potential of a certain site on the scalp with respect 

to a neutral point would provide voltages that include all electrical fields 

influencing the body. 

Figure 12 - Illustration of different electrophysiological signals’ amplitudes and 
interference from external environment on the human body. 

 

Source: Own authorship. 

Finally, it is important to mention that even without external electric fields 

influencing the human body, there is no neutral point on its surface 

(GESELOWITZ, 1998), and the brain potentials acquired at the scalp are usually 

much smaller than other electrophysiological potentials recorded with electrodes 

placed on the skin, such as electromyography (EMG) and electrocardiography 

(ECG) (URIGÜEN; GARCIA-ZAPIRAIN, 2015). Thus, to properly acquire EEG 

signals the so called reference electrode must be placed on the scalp so as to 

avoid masking brain potentials with non-brain potentials. Moreover, given that it 

is not possible to know in advance where exactly every active EEG source is 

located on the cortex during an activity, every EEG recording must be seen as 
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bipolar, which means it measures the potential difference between two active 

transient sites. Figure 13 shows the EEG recordings from eight active electrodes 

referenced to three different electrodes (the dataset is from (BLANKERTZ et al., 

2007)). The differences are notable, although they all represent the same interval 

of cortical activation. The head volume conduction, later discussed in the present 

work, also contributes to this problem. 

Figure 13 - EEG recordings from the same eight active electrodes (CCP8 to CCP7) 
referenced to three different electrodes (O2, Cz, and Fz ). 

 

Source: Own authorship. 

The main alternatives found in literature to deal with the impossibility of obtaining 

real monopolar EEG recordings are the average reference (AR) and reference 

electrode standardization technique (REST). Historically, linked-mastoids were 

used in many early EEG studies as a non-official standard. 

The AR has a physical background that consists in the nullity of the surface 

integral of the potential created by dipoles in a sphere (BERTRAND; PERRIN; 

PERNIER, 1985). However, it also assumes a spherical head geometry and 

requires a large number of electrodes to cover equally the entire head’s surface 

to be consistent, which is impossible because of the neck.  

The REST is an algorithm proposed in (YAO, 2001) with the intention of 

transforming a scalp point to a reference point at infinity (infinity in this context 

means electrically neutral). The technique is sensitive to the electrode density, 

electrode coverage (both limitations shared with AR and CSD technique), and to 

the head model uncertainties, given that the method requires a head model 

(NUNEZ, 2010). 
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The evaluation of reference choice in EEG recordings has been a research topic 

for a long time and remains an important topic nowadays. Five articles addressing 

this issue are briefly commented on the following.  

In (JUNGHÖFER et al., 1999), the authors demonstrated by means of simulation 

the polar average reference effect (PARE), as they called it. It was seen that 

electrodes in the center of the electrode array had smaller potential amplitudes 

than those located at the edge. This effect was non-negligible even when the 

head was covered by an electrode net extending across 270o. In (QIN; XU; YAO, 

2010), the authors compared the AR, REST, linked-mastoids, and left mastoid as 

reference options for real and simulated data. In their analyses, they found that 

REST provided less relative error than the others with simulated data, and that 

the three other reference alternatives introduced significant changes to spectral 

analysis. In (LIU et al., 2015), the authors also assessed the effect of AR, REST, 

and linked mastoids. They report that both AR and REST outperforms linked-

mastoids. They also show that AR is more sensitive to the number of electrodes 

used than REST, but REST is more sensitive to uncertainties relative to 

electrode’s location. In (CHELLA; PIZZELLA; ZAPPASODI, 2016) it was 

compared the AR, REST, linked-mastoids, and Cz as references in view of EEG 

functional connectivity. Their results showed descendent distortions to the 

connectivity patterns for references Cz, linked-mastoids, AR, and REST, 

respectively. They also report a high degree of dependency of REST relative to 

realistic head models and high density electrode arrays. In the work of (HU et al., 

2018), the authors included four other monopolar references to their comparison 

with simulated data relative to (CHELLA; PIZZELLA; ZAPPASODI, 2016): left ear 

lobe, Fz, Pz, and Oz. Neither of the monopolar references are recommended by 

the authors due to the large distortions it puts on the EEG. In agreement with 

results from the other articles, they report the best results for REST and the worst 

for linked-mastoids, with AR in between. AR in this case showed significant 

dependency relative to head coverage, but was not sensitive to the number of 

electrodes. 

Besides these attempts to re-reference EEG data in order to approximate 

recorded signals to ideal potentials relative to infinity there is another alternative 

commonly adopted to avoid arbitrary reference choices: surface Laplacian (SL) 
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for current source density (CSD) estimation. This technique is taken as a spatial 

filter and eliminates the reference from the signals, reason why it is not 

considered a referencing or re-referencing technique such as the others, 

although it constitutes an alternative for the reference electrode issue. 

The CSD via Laplace, originally proposed by (HJORTH, 1975), in fact eliminates 

the reference electrode effect, but assumes that the scalp surface is flat for 

nearby electrodes. However, for the addition of an electrode to be significant, it 

may sometimes require more than 5 cm separation from its neighbors, which may 

cause the approximation of real head surface into a flat surface somewhat 

arbitrary (NUNEZ et al., 1994). Perrin and colleagues (PERRIN et al., 1989) used 

spherical splines interpolation to estimate a continuous potential surface and 

calculate the SL. In this case the head geometry is assumed to be spherical and 

it requires a large number of electrodes (e.g. 64 or more) to provide a theoretically 

meaningful result  (SRINIVASAN et al., 1996). Mathematical approximation 

inherent to the interpolation process demonstrated in (PERRIN et al., 1989) and 

inherent to the discretization applied by (HJORTH, 1975) also represents sources 

of uncertainty to the CSD estimation via SL. This approach is also discussed in 

the spatial resolution section. 

One can see that in fact there is no definite solution to the problem of the active 

reference in EEG recordings. The supposedly best options (AR, REST, and SL) 

require large numbers of electrodes (more than 64), and they also include 

uncertainties due to head geometry assumptions and electrodes placement. 

Table 4 summarizes sources of uncertainties in the most common solutions 

throughout literature. 
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Table 4 - Sources of uncertainties in the solutions to the reference electrode problem. 
The * indicates that the assumption involved in the SL solution concerning 

the head electrical properties is not usually considered to be an issue. 

 
Head 

geometry 

Head 

electrical 

properties 

Source 

distribution 

Number of 

electrodes 

Electrodes 

distribution 

Mathematical 

uncertainties 

Surface 

Laplacian 

 

Yes No* No Yes Yes Yes 

Average 

reference 

 

Yes No No Yes Yes Yes 

REST 

 

Yes Yes Yes Yes Yes No 

Source: Own authorship. 

The large number of electrodes implies significant practical difficulties for 

executing experiments and even more for continuous use of a BCI. Moreover, the 

incorrect assumption of head geometry and the non-precise electrodes 

placement introduces quantitative distortions in the solutions. On the other hand, 

choosing a specific monopolar reference, although commonly adopted in EEG 

analysis, has poor or none technical/physiological justification. Hence, this is an 

unsolved issue in EEG analysis, especially towards BCI applications, given that 

the system is highly affected by EEG variability. 

2.4.5. Spatial resolution 

EEG is a technique known to provide poor spatial resolution. The poor spatial 

resolution can be understood by the following statement: the minimal distance 

that separates two notably different EEG recorded signals is greater than the 

minimal distance that separates two EEG sources in the cortex. EEG has poor 

spatial resolution because of three factors, namely (1) limited spatial sampling, 

(2) head volume conductor, and (3) reference electrode (NUNEZ et al., 1994). 

The limited spatial sampling is explained by the 10-20 positioning system, in 

which electrodes spacing is 6 cm in average. Moreover, the addition of extra 

electrodes doesn’t add information content to raw EEG, unless further pre-

processing takes place (NUNEZ et al., 1994). However, the head volume 

conductor and reference electrode are the main problem. The reference 
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electrode issue was already exposed, thus in the following it is discussed with 

more details the head volume conductor and the most common alternatives for 

overcoming its undesired effects. 

The volume conduction is the name given to the manner in which the electric 

current spreads from brain sources through brain, CSF, skull, and scalp tissue 

(WOLPAW; WOLPAW, 2012). The geometric and electric characteristics of the 

different medium are said to determine the volume conduction. Authors explain 

that the skull tissue has high resistivity, which causes the local cortical current to 

spread widely, and they also draw attention to the spacing between the cortex 

and the scalp, which increases this spreading effect, causing a space-averaging 

in EEG signals. An active dipole, by means of postsynaptic potentials in a set of 

neurons, creates an essentially instantaneous voltage field throughout the head 

with no meaningful delay (LUCK, 2014). Also, the electricity does not just run 

from one pole to another of a dipole in a conductive medium, but spreads across 

the conductor. This is the reason why a signal generated by a certain dipole is 

not recorded only by the electrode placed directly above it, but also by other 

electrodes distributed over the scalp (LUCK, 2014).  

Thus, one can see that there is a problem to be addressed, which is characterized 

by multiple cortical sources generating different signals that will spread through 

the volume conductor, mix into each other, and only then will be recorded by EEG 

electrodes on the scalp. The problem is well stated: how can one obtain the 

original signals by analyzing their mixture? Many approaches have been 

presented in literature and the most remarkable ones are introduced here: 

principal component analysis (PCA) and independent component analysis (ICA), 

common spatial patterns (CSP), current source density (CSD) estimation via 

surface Laplacian, and inverse problem solutions. PCA and CSP does not 

actually attempt to find supposedly original cortical signals, but rather provides 

statistical approaches to help towards improved spatial analysis of EEG signals. 

Each one of these approaches is introduced in the following paragraphs. 

2.4.5.1. Common Spatial Patterns 

CSP was presented by (FUKUNAGA, 1972) in his book and first applied to EEG 

by (KOLES; LAZAR; ZHOU, 1990) to differentiate between two classes of EEG 
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signals. The method is based on the diagonalization of a combined covariance 

matrix obtained from EEG signals from each class. It is a statistical method that 

creates a projection matrix that linearly transforms raw EEG data so it can be 

further processed towards better results. The raw EEG is projected onto a space 

in which the variance of EEG from one class is maximum when the variance from 

the other class is minimal, hence providing class-discriminable signals. It is worth 

noting that this approach does not intend to properly obtain original cortical 

signals, nor lays on any neurophysiological assumption. Moreover, it is only 

applied towards two-classes problems. It has been widely adopted in EEG 

analysis with great success in the BCI field. For instance, a search in Scopus 

database (www.scopus.com, accessed in September/2020) with the words 

“EEG” and “common spatial patterns”, limited to articles and limited to the articles 

that contain these words in their keywords list, found 401 items. It is worth to 

mention that maybe even a greater amount of papers uses the CSP technique 

with EEG as a tool to address something else, and in such cases the words 

referring to CSP would not appear in their title or in their keywords list. 

2.4.5.2. Surface Laplacian 

The Hjorth’s method, as it is sometimes referred to, estimates the current source 

density with surface Laplacian (HJORTH, 1975). It is based on the physics of 

electrical current being radially dispersed along the surface of a conductive 

volume. This current will generate convex and concave curvatures in the potential 

field that will perfectly balance each other in perpendicular directions (x and y) in 

areas where no source is active. This balance is described by Laplace’s equation. 

Hence, when there is no balance it means that there is an orthogonal current 

entering the corresponding area (along z-axis), and the density of this current can 

be estimated by using the Laplacian operator. Although it is originally applied to 

continuous surfaces, the central difference operator (finite difference) can be 

used to estimate the current density in a discrete potential surface provided by 

the electrodes (HJORTH, 1975). The method has a few important assumptions, 

namely: conductive properties as a function of depth are the same for any area 

of the scalp; the distances between electrodes are constant and the grid is 

homogeneous; and the individual group formed by neighbor electrodes used to 

estimate CSD at one point is geometrically small enough to be considered plane. 
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An important drawback is the estimation at the edges, since some neighbor 

electrodes will be missing. The major advantages of this method are the physical 

basis and the independence regarding the reference electrode, which is a 

consequence of the second derivative of Laplace’s equation. The transformation 

can be done in real-time by linearly transforming the raw-EEG signal matrix, all 

channels at once, for each time instant, just like the CSP method. 

As an alternative for the finite difference approach, it was proposed the 

application of the spherical spline interpolation, presented in (WAHBA, 1981), to 

EEG signals in order to obtain a continuous potential distribution over the scalp, 

then the surface Laplacian can be used to estimate the CSD (PERRIN et al., 

1989). The current density can be estimated on any point of the sphere that 

represents the scalp. Although this method requires more complex mathematics 

when compared to Hjorth’s method, it may also generate a transformation matrix 

to linearly transform data in real-time for the places where there are electrodes. 

One new challenge that comes along with this approach is the uncertainty of a 

few parameters during the calculation process, e.g. a couple of series truncation, 

uncertainty towards the spline flexibility value and the regularization parameter. 

It is also worth to mention that the interpolation is sensitive to the number of 

electrodes used to record the data. Both methods, finite difference and spherical 

interpolation are widely adopted techniques in the problem of estimating the 

current density of EEG sources. For the mathematical details of the SL, see 

Appendix C. 

2.4.5.4. Principal Components Analysis and Independent Component 

Analysis 

Some techniques rely on statistical properties of EEG signals. PCA, for instance, 

is a multivariate statistic technique commonly applied to EEG signals for 

dimensionality reduction. One of the first works (if not the first) to present a 

scientific article using PCA to study EEG (specifically average evoked potentials) 

was (DONCHIN, 1966). PCA is an orthogonal transformation that decomposes 

the original n-dimensional data into a m-dimensional set of uncorrelated 

components, where 𝑚 ≤ 𝑛 (ZENG; LI, 2016). The uncorrelated components are 

called principal components. The first component contains the signal’s largest 
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variance, which is understood as the largest amount of information. The second 

component contains the second largest variance, and so on. In this way it is 

possible to obtain only a few uncorrelated components that represent, for 

instance, 90% of total variance of the raw multi-channel EEG. ICA extracts 

statistical sources, called independent components, from the raw multivariate 

recordings (ZENG; LI, 2016). It is a blind source separation (BSS) technique. It 

consists in creating an unmixing matrix that will linearly transform raw data, just 

like the other methods already described. There are many different algorithms to 

create the unmixing matrix. Although PCA and ICA are both quite similar 

approaches, there are substantial differences in what they provide as results. A 

simple analogy may help to understand. If a set of images with human faces is 

provided for the application of PCA and ICA separately, the first few principal 

components will provide something related to an average face. On the other 

hand, one independent component might be related to the eyes, another one to 

the nose, to the mouth, and so on. These two approaches and their many 

variations are extensively found in the scientific literature for EEG signal analysis 

to overcome issues inherent to the volume conduction. 

2.4.5.5. Inverse Problem 

A different approach towards the problem consists in developing EEG source 

models. This is designated as the forward problem. Electric and geometric 

properties of the head and volume conductor are estimated to produce these 

source models and generate signals that would be recorded on the scalp due to 

these sources. This makes it feasible, for instance, to generate artificial EEG 

signals. On the other hand, with actual EEG recordings and with these sources 

already modeled, one can estimate multiple dipoles position, orientation, and 

magnitude, i.e. perform a source localization procedure. This approach is 

designated as the inverse problem. 

In the 1950’s there was already a published paper concerning source modeling 

for electrophysiological signals (FRANK, 1952). The author assessed electrical 

potential produced by a dipole in a homogeneous conducting sphere for 

electrocardiographic applications. Later, many papers were published assessing 

the inverse problem in EEG analysis. For instance, (HENDERSON; BUTLER; 

GLASS, 1975) and (ARY; KLEIN; FENDER, 1981) presented strategies to 
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identify a single dipole (position, magnitude and orientation) by means of EEG 

signals and a multilayer conductive sphere model, already considering in some 

level the anisotropy of the human head volume conductor. In (STOK, 1987), the 

author analyzed in which way some model parameters would influence the 

inverse problem solution, also using a multilayer sphere model and a single 

dipole. (MUNCK; DIJK; SPEKREIJSE, 1988) investigated if a mathematical 

dipole description would properly suit the source modeling in the analyses of 

visual evoked potentials in EEG, rather than other approaches that better 

represents cortical sources in terms of extension. In their scenario, the authors 

found that even when the source is large and the electrode grid does not cover 

entirely the source area this would not result in large errors. Pascual-Marqui and 

colleagues (PASCUAL-MARQUI; MICHEL; LEHMANN, 1994) proposed a new 

approach towards the source localization problem. Their method does not 

assume a specific number of dipoles nor a distribution on a known surface. The 

neurophysiological assumption in which the procedure relies is that neighboring 

neurons are simultaneously and synchronously activated. The method is called 

Low Resolution Electromagnetic Tomography, referred to as LORETA. This 

strategy for solving the inverse problem, in which the dipoles are distributed in 

the whole brain volume or cortical surface, with no previous restrictions in terms 

of number of sources and their distribution is called the non-parametric approach 

or Distributed Source Models (GRECH et al., 2008). There are a number of other 

non-parametric methods that are explained by (GRECH et al., 2008). The authors 

also mention that the former approach, in which the number of dipoles is assumed 

and a head model (that could be spherical or even realistic, for instance) is used 

is called parametric approach or Equivalent Current Dipole methods. 

2.5. State-of-the-art and work justification 

The BCI field has existed in the scientific literature for about 50 years. In the first 

four decades, very often the works claim to be on the edge of some breakthrough 

that could lead to BCIs capable of being used in daily life activities. However, 

BCIs are still mainly restricted to laboratories and other very simple applications. 

On the other hand, the increasing number of people with severe neurological 

impairments and the lack of successful neurological rehabilitation therapies for 

such cases opened a new perspective to the BCI field. BCIs for 
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motor/neurological rehabilitation do not require the same level of accuracy when 

compared to BCIs for other purposes (e.g. for controlling a robotic prosthesis or 

a wheelchair). Therefore, motor rehabilitation became a strong motivation for BCI 

research, especially in the past 10 years. Hence, this work focuses on this type 

of BCI. 

EEG is the most commonly used brain signal recording technique for BCIs. It has 

major practical strengths, such as: low-cost, portability, safeness, easiness to 

use, and high temporal resolution. EEG attends to almost every requisite for an 

ideal BCI system, but with the current state-of-the-art on EEG signal processing 

and recording, it still lacks a key feature: reliability. The low reliability from EEG 

towards BCI systems comes from the inter and intra-subject variability of the 

signals. 

One of the reasons for this variability is because EEG signals have very low 

magnitudes compared to other electrophysiological signals (or other electrical 

signals in general), so a high signal-to-noise ratio (SNR) is a natural challenge. 

Besides hardware issues, two major causes of such variability are the head 

volume conduction and the reference electrode that must be placed on the scalp 

among the other electrodes. These problems cannot be avoided, because they 

are natural characteristics of the human body and of the EEG measurement. For 

neither of these problems the scientific community has achieved a minimum 

consensus towards alternatives to minimize their impact. Among the most 

commonly adopted pre-processing techniques to address these issues one can 

cite the CSP, SL, PCA, ICA, inverse problem, AR and REST. All of them have 

important limitations, which includes the necessity of a large number of electrodes 

for EEG recordings. 

The BCI systems may be of two categories, one in which the system adapts to 

the user, and another in which the user adapts to the system. The first is highly 

affected by the signal variability, usually requiring complex algorithms to pre-

process, extract features and perform patter recognition. The latter is highly 

dependent on the person’s capacity to learn to provide the correct signals and on 

the strategy for teaching this ability to the user. Figure 14 summarizes 

schematically this scenario. 
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Figure 14 - Context of this work within the EEG-based BCI field. 

 

Source: Own authorship. 

The methodology of this work is of the first type, in which the system adapts to 

the user. However, to minimize the necessity of complex algorithms, often highly 

unstable over time, in this work a strategy to reduce signal variability with offline 

processing prior to the development of the BCI is proposed. The goal is to find 

subject-specific sub-set of channels and signal features that are stable over 

different trials of the same task. This knowledge is then used to configure the 

online signal processing algorithms to achieve the major goal of this work, which 

is to operate a BCI in real-time aiming at a motor rehabilitation activity. The 

methodology is developed to overcome the signal variability relying on the 

following hypothesis: for a particular task and person there must be specific 

regions of the scalp with low inter-trial variability relative to EEG signals. 

These regions will likely be reflecting specific regions of the cortex involved in the 

task in different ways. Therefore, by an adequate strategy to select pairs of 

electrodes (i.e. EEG channels), it is possible to find these regions and reduce the 

intra-subject variability. As for the inter-subject variability, it is assumed to be a 

natural phenomenon, thus requiring the strategy to be applied individually for 

each person. This becomes highly significant if one considers the application 

towards people with brain damage. 
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It is known that many EEG features are subject-specific, and even when a feature 

is common to different subjects (e.g. the ERD), they have their own specificities 

for each individual (e.g. the timing relative to movement onset and the frequency 

range). The brain morphology, head shape and, likely, the volume conduction 

properties are highly individualized as well. Given this scenario, using an arbitrary 

reference electrode for processing multiple subject’s signals (which is a widely 

adopted strategy) might increase the challenges for the EEG analysis. 

Besides the goals accomplishment, two intended contributions of this work are: 

1)  To develop a methodology that avoids relying on assumptions that could 

be inaccurate, such as: the lack of activity in the reference electrode, the 

shape of the head, the number of dipoles generating the signals and the 

electrical properties of the volume conductor modelling the head. 

2) To enable the use of a BCI with a low number of electrodes, which is 

crucial for practical applications.   
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3. METHODOLOGY 

The methodology is divided into two major parts that are executed sequentially 

(see Figure 2).  

Part 1 of the methodology evaluates EEG motor signals by two approaches to 

gather important knowledge to guide the second part (Part 2). Because Part 1 

does not directly aim at real-time performances signal processing, the use of trial 

averaging is considered. The first approach (Approach 1) of part 1 considers well-

known EEG motor signatures and assumes that the scalp location of the 

electrodes to best detect these signatures are subject-specific and cannot be 

precisely known a priori. This holds for the main electrode and for the reference 

electrode in a channel. The second approach (Approach 2) of Part 1 looks for 

transformations in the EEG signals that provides lower intra-subject variability. In 

this case, not only the best channels are considered to be subject-specific and 

previously unknown, but also the features that most likely provide movement 

related information. 

In Part 2, the aim is at real-time movement intention detection. Therefore, it 

considers only single trial signals. The method considers a pseudo-online 

processing. The implementation of the methods of Part 1 and its result analysis 

guided the proposal of the methods for Part 2. 

Prior to presenting Part 1 and Part 2, the procedures that are common to both of 

them are presented, such as the public EEG dataset that is used in the analysis. 

3.2. Publicly available dataset 

The publicly available dataset (OFNER et al., 2017), from the Graz BCI group, 

contains EEG signals from 15 subjects related to elbow flexion and extension, 

forearm supination and pronation, wrist closing and opening, and resting, which 

totalizes seven classes. The movements were executed with a passive 

exoskeleton. In all movement cases, there are imagined and real executions. 

Each subject executed 10 runs of the experiment (different experiments for real 

and imagined movements). Each run consisted of 42 trials, with six trials for each 

class, randomly distributed. Thus, there are 60 trials of each class per subject. 

Each trial consists of 2 s with a blank screen with a cross in the middle, 3 s with 
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the movement cue indicating what should be executed, and finally 2 to 3 s of a 

completely blank screen before a new trial starts. The beginning of the new trial 

is indicated by a short beep and also by the cross in the middle of the blank 

screen, see Figure 15. The dataset contains movement data, such as the elbow 

angle of the exoskeleton and movement data of the fingers. It also provides cue 

information, so it is possible to know exactly when each activity was supposed to 

take place. The EEG was recorded in 61 positions according to the 10-20 

extended system (see Figure 16). The ground electrode was placed at the AFz, 

and the reference electrode at the right mastoid. Signals were acquired at a 

512 Hz rate and filtered with an 8th order Chebyshev band-pass filter from 0.01 

to 200 Hz. A notch-filter at 50 Hz was used to suppress power line interference. 

Figure 15 - Sequence of one trial of the public dataset.  

 

Source: Adapted from (OFNER et al., 2017). 
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Figure 16 - The 61 electrodes positions used in the EEG dataset from the Graz BCI 
group (OFNER et al., 2017). 

 

Source: Own authorship. 

3.3. Part 1  

Two approaches (Approach 1 and Approach 2) are considered for executing part 

1. Both of them are executed offline. The pre-processing the is common to both 

approaches is presented in the following. 

3.3.1. Data pre-processing for part 1  

All the signal processing was done using the MATLAB software (R2015a The 

Mathworks, Inc., Natick, Massachusetts, United States). The EEG data was first 

separated into trials. For the public dataset from Graz BCI group, the trials of 

interest consisted in the ones with elbow movement (flexion and extension). The 

trials last for 8 s, starting with 1 s of blank screen followed by a short beep and 

the appearance of a cross in the screen. Two seconds later (𝑡 = 3 𝑠) the 

movement cue appears. They are synchronized by the time instant that the cross 

appeared on the screen. This means that after 3 s of each trial the cue indicating 

the movement was presented. 

To eliminate trials contaminated with EOG artifacts, the procedure described by 

(SANNELLI et al., 2019) was applied. It consists of eliminating trials with standard 
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deviation greater than two times the average standard deviation in an iterative 

procedure, i.e. after eliminating the first trials, the procedure is repeated with the 

new set of trials, until no more trials are eliminated. 

Afterwards, a re-referencing procedure was conducted. The original EEG signal 

was transformed into all possible channel combination. So, if the dataset is 

acquired with 𝑁 electrodes, the number of possible channels results from the 

combination 2-by-2 of 𝑁. 

An important part of the analysis is to detect the movement onset during the 

tasks. For the current analysis, only elbow flexion and extension were considered. 

The dataset informs the cue’s onset instants and type. However, there is an 

unavoidable delay from the cue appearance to the movement initiation. To detect 

the movement onset, the signal with the elbow joint angle is used. In general, the 

neutral position corresponds to approximately 45o, although there are significant 

variations of this value over time. During the flexion movement the angle value of 

the sensor reduced and during the extension it increased. In both cases the total 

variation regarding the entire movement showed to be very similar after a visual 

inspection.  

The procedure to detect the onset for each trial followed eight steps: (a) The 

signal corresponding to the elbow joint angle is segmented in the same way the 

EEG signals are for each trial; (b) the trials with elbow extension had their signals 

inverted, i.e. multiplied by -1, so in both, flexion and extension, the angle should 

decrease to indicate the movement execution; (c) the sensor signal is set to have 

its lowest value in the trial equal to zero, so all trials are approximately in the 

same range of values; (d) Because of the variations in the neutral angle during 

the experiment, a reference value for the neutral position is determined by the 

mean value in the interval corresponding to the 0.5 s prior to the cue appearance; 

(e) the total range in the angle values (difference between maximum and 

minimum values) in the interval corresponding to 0.5 s prior to the cue and 2 s 

after the cue is determined and 10% of this angle variation is used as tolerance; 

(f) the trial interval is inspected point-by-point starting at the cue appearance, and 

once the angle value is lower than the reference value minus four times the 

tolerance, it is considered that the current point is already past the onset; (g) 
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starting from this point, the interval is inspected moving backwards point-by-point 

until the angle value is closer to the reference by a distance smaller than the 

tolerance, this is then defined as the movement onset point of the trial; (h) the 

average over all onset (time) points is calculated and used as the onset for the 

average EEG signal over all trials. For the analysis of the grand averages, the 

onset instant is calculated as the average over all subjects as well. 

Further steps of the signal processing depend on the features to be extracted. 

Therefore, they are presented in the following subsections. 

3.3.2. Approach 1 – searching for channels 

Given well-known EEG features that are likely present during the motor task, a 

search to detect the channels that contain these features is executed. 

Assumptions: 

a) Task-related EEG activity is known; 

b) The best pair of electrodes to detect these activities is not known. 

Procedures: 

- Define criteria for detecting known signals; 

- Find best channels to detect these features; 

Major challenge: 

- Specify the timing of the EEG activities related to the movement. 

3.3.3. Approach 2 – searching for channels and features 

A search to find features and channels that present high stability over trials was 

performed. In other words, the search intent is to find features among every 

channel with the lowest inter-trial variability for each subject. 

Assumptions: 

a) Task-related EEG activity is not known; 

b) The best pair of electrodes to detect these activities is not known; 

c) There are features that characterizes task-related EEG activity. 

Procedures: 
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- Use a sliding window in time domain; 

- Extract multiple features for every window; 

Major challenges: 

- Choose a large initial set of parameters/features; 

- Quantify inter-trial variability. 

3.3.4. Signal processing 

The signal processing is specific to each of the two approaches; thus, they are 

presented separately. 

3.3.4.1. Part 1 – Approach 1 

Prior to presenting the processing procedures for the first approach, it is important 

to define the hypothesis regarding what is expected to be found in the data to be 

analyzed.  

For the Graz dataset, the beep/cross associated with the movement cue to be 

performed 2 s later can be seen as a warning-go paradigm, which is known to 

elicit a CNV. Nevertheless, there is no need for the subject to respond fast to the 

cue, which may attenuate the CNV by requiring less engagement within the inter-

stimuli interval. Moreover, the subject’s response lacks any feedback, which 

differs from usual CNV paradigms. This might also attenuate the subject’s 

engagement, which increases the possibility of an unidentifiable CNV. On the 

other hand, although the task is not self-paced (which would elicit the RP), the 

lack of these important aspects related to the CNV paradigm approximates the 

activity to a self-paced type. Therefore, in some level the RP might be present as 

well. Before the movement cue appears on the screen, it would usually be 

possible to identify ERD related to motor planning. However, the subject does not 

know which motor action will be performed within a small repertoire, thus it is 

reasonable to think that the subject is unable to plan specifically the movement. 

Hence, ERD might not happen prior to the cue appearance. 

Signal processing procedures 

The processing consists of highlighting the main features of the delta and alpha 

bands oscillations, and then quantifying the presence of these features in the 
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signals. For each EEG channel, two separate procedures were performed, one 

for the delta band (CNV and RP) and another for the alpha band (ERD). All 

procedures are executed separately for each subject, unless explicitly informed 

otherwise. 

Delta band signals (CNV/RP) 

For the delta band, the signals are first band-pass filtered between 0.1 and 4 Hz. 

Then, the average of all trials is calculated. For each channel, the maximum EEG 

value within the 2 s interval with the cross on the screen is detected, then the first 

negative peak after the movement onset is detected. The difference between 

them is calculated and is used as a score to quantify the negative shift of the delta 

band, as illustrated in Figure 17. The channel with the largest negative shift is 

thus selected. 

Alpha band signal (ERD) 

For the ERD, also for each channel, signals are band-pass filtered in the 

7 – 13 Hz band, then the samples are squared, and the average of all trials is 

calculated, providing the average power. The average power is smoothed with a 

sliding window of 12 samples (approximately 0.1 s). The mean energy in the 2 s 

interval with the cross on the screen is calculated, the mean energy in the first 

2 s after the movement onset is calculated, then the difference between them is 

used as the score to quantify the ERD, see Figure 17. In this case, the channel 

with the largest energy difference is selected. 

Once the channels are selected for each frequency band and subject (one 

channel for each case), the signals for each channel of a given subject are 

averaged among all trials. Then, the average signals are individually normalized 

by setting the highest value within the 8 s interval corresponding to one trial as 1 

and the lowest value as 0. This is done by subtracting from the entire signal its 

lowest value, then dividing the entire signal by its highest value. For the alpha 

band energy average signals, the instant in which the energy reaches a 75% 

decay compared to any past instant is defined, and for the delta band signals the 

first valley (negative peak) after the movement onset is defined. 
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The average (over subjects) among all individual averages for each frequency 

band is calculated and referred to as the grand average. The grand averages are 

calculated for the selected channels (even if these are different for every subject) 

and also for other channels, depending on the frequency band, for adequate 

comparison. For the delta band signals, the other channels are Cz referenced to 

the average reference (AR) and Cz referenced to the right mastoid (RM). For the 

alpha band energy signals the channels are C3 (contra-lateral to the moving 

hand) referenced to AR and RM. These channels are frequently used to assess 

signals such as CNV, RP and motor ERD. The mean time instant of the 

movement onset among all trials is determined, as well as the instant in which 

the subjects reach the maximum amplitude of the movement and start to move 

back to the initial position. The movement offset is not explicitly determined, but 

in general it is approximately at t=8 s, which coincides with the end of the trial 

interval considered in the analysis. 

To compare the subjects’ signals with each other for the two frequency bands 

separately, the Pearson correlation coefficient was calculated between every pair 

of signals of each band. 

Figure 17 - Time intervals of the task that were used to quantify the ERD and CNV in 
the signals. The red lines indicate the value that is considered. For the 

ERD case, the value is the average of the colored intervals, for the CNV it 
is the maximum in the blue interval and the first negative peak in the 

green interval. 

 

Source: Own authorship. 
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3.3.4.2. Part 1 – Approach 2 

Given what is presented in the literature review about EEG signals in motor tasks 

(section 2.3), several features were chosen to be calculated from a sliding 

window, as explained in section 3.3.3. The features are intended mainly to 

represent a few important things about the signals, such as band-specific energy 

and its change across time, negative or positive shifts, and slope. The original 

signal is then substituted by a new set of transformed signals, according to the 

features calculated at every time interval defined by the sliding window. This 

window is always used entirely, i.e. if its 0.5 s long, the first 0.5 s of the original 

signal will be lost (substituted by zeros) when transformed. The sliding window 

moves one sample at a time till the final 0.5 s interval of the trial. It is important to 

mention that for different features there are different down-sample processes, so 

moving the sliding window one sample at a time does not necessarily means 

moving the same time interval for all features. See Figure 18 for an illustration of 

the transformation with the sliding window process. However, in one specific case 

the transformation did not require a sliding window, as it is explained in the 

following paragraphs. 

Figure 18 - Sliding window process to transform the signals. 

 

Source: Own authorship. 

The features calculated with the samples from each sliding window contain 

different information about energy, variance, and slope. They are divided into two 

groups considering their frequency content. Group 1 seeks information on 

frequencies related to motor cortex activation (6 – 25 Hz) and group 2 extracts 

data from frequencies lower than 1 Hz, usually related to cortical activities prior 

to movement execution or movement information (KOBLER; SBURLEA; 

MÜLLER-PUTZ, 2018).  
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In both groups, when the terms short window and long window are mentioned, 

they refer to 0.5 s and 1.0 s length windows. When the relation between two 

windows is described as adjacent windows it means that the windows share one 

sample (the last sample from one of them is the first sample from the other one); 

when it is described as separated windows it means that there is exactly one 

short window (0.5 s length) in between them and both windows are necessarily 

short windows. 

Group 1 down-samples the signal to 128 Hz (1 sample every 7.8 ms). It uses only 

short windows and is divided into six sub-bands: 6 – 8 Hz, 8 – 10 Hz, 10 – 12 Hz, 

8 – 12 Hz, 12 – 15 Hz, and 15 – 25 Hz. For each sub-band, also six features are 

calculated: 1) total energy; 2) variance; 3) energy difference between adjacent 

windows; 4) variance difference between adjacent windows; 5) energy difference 

between separated windows; and 6) variance difference between adjacent 

windows. Thus, group 1 transforms the original signal into 36 new signals. See 

Figure 19 for a visual representation. 

Group 2 always uses the 0.01 – 0.625 Hz frequency band. To enable proper 

filtering and avoid numerical errors due to the low cut-off frequencies, the signal 

is downsampled to 16 samples per second. Five transformations are executed: 

1) raw EEG signal; 2) summation of the derivatives in short windows; 3) 

summation of the derivatives in long windows; 4) number of samples with positive 

derivative minus the quantity with negative derivatives in short windows; and 5) 

number samples with positive derivative minus the quantity with negative 

derivatives in long windows. Thus, group 2 transforms the original signal into five 

new signals. Both groups together generate 41 new transformed signals. See 

Figure 19 for a visual representation. 

 

 

 

 

 



65 
 

Figure 19 - Visual representation of the 41 transformations separated in two groups. 
Group 1 concentrates on motor-related frequency sub-bands and consists 

in six transformations for each sub-band. Group 2 concentrates in very 
low frequencies and consists in five transformations in the corresponding 

frequency band. 

 

Source: Own authorship. 

All these transformations are applied to average signals of every possible 

channel. For each channel, three sets of trials randomly picked (and without 

sharing any trial) are used to calculate three average signals. These three 

average signals are transformed each one into 41 new signals. For a specific 

signal transformation, the Pearson correlation coefficient 𝜌 (see Equation 1, 

where 𝑥 and 𝑦 are the two signals for which the coefficient is being calculated 

and 𝑛 is the number of samples in the signals) is calculated in pairs between the 

three transformed signals for one specific channel. The coefficients are summed 

and provides the score for that one transformation in that one specific channel. 

By doing so, it is expected to find features (which includes the channels) with 

lower inter-trial variability. See Figure 20 for a graphical explanation of these 

steps. 

 

 

𝜌 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 (1) 
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Figure 20 - Steps executed for offline analysis in part 1 - approach 2, using EEG 
averages. 

 

Source: Own authorship. 

The procedure described in the previous paragraph is executed three times, 

which we refer to as rounds. The intention is to check the similarity between 

round’s results as another strategy to guarantee that results are in fact 

overcoming intra-subject variability. The entire procedure is executed for different 

numbers of trials used to calculate the average signals. To define the number of 

trials to be considered, a preliminary test was performed. An algorithm was 

designed to calculate average signals starting with two trials and increasing the 

number of trials until the Pearson correlation coefficient between two consecutive 

averages (i.e. using only one trial more than the other) was higher than 0.9. This 

led to the number of 15 trials. Therefore, the first execution of the procedures 

uses 15 trials to calculate an average signal, then in the following execution it 

uses 7 trials (because it is an intermediate number between 15 and a single trial). 

Finally, an execution is performed without using average signals. For each 

electrode pair, all transformations are applied to every single trial separately and 

an inter-trial variability index is determined for each transformation and for the 

original EEG signal (see Figure 21). The inter-trial variability index 𝑣 (Equation 2) 

is calculated as described: the inter-trial standard deviation is calculated for each 

time instant and it is divided by the maximum amplitude difference in the entire 
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trial interval of the average signal. Then, the mean value of this ratio across the 

entire interval is calculated. This procedure is used instead of using the standard 

deviation alone because the transformations applied to the signals generate new 

signals with different units and scales. A natural alternative would be the 

coefficient of variation (ratio between standard deviation and mean), but it could 

be problematic because in some cases the mean would be very close to zero. 

Moreover, the mean value in some cases does not represent cortical activities, 

but some basal potential influencing the EEG oscillations or even might be scalp-

electrode impedance artifacts, therefore it is not relevant at all. 

 

 

𝑣 =
1

𝑛
∑

𝜎𝑖

max(𝑥̅) − min(𝑥̅)

𝑛

𝑖=1

 (2) 

 

Figure 21 - Steps executed for offline analysis of part 1 - approach 2, using single trials. 

 

Source: Own authorship. 

3.4. Part 2 

The methodology allows to find a subject-specific sub-set of channels and signal 

features that are stable over different trials of the same task, i.e. that have low 

inter-trial variability. The channels and their respective features are later tested in 

a pseudo-online classification algorithm.  
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The methods for Part 2 were proposed after analyzing Part 1 results. Also the 

implementation of the algorithms was considered for defining the strategies for 

Part 2, given that real-time (or pseudo-real time) signal processing cannot benefit 

from offline strategies in some cases. 

3.4.1. Finding channels with low variability 

All channels are considered, which means that every pair of electrodes is 

analyzed. All the procedures are executed separately for each subject. The 

variability (or its inverse, reproducibility) is evaluated by means of the Pearson 

correlation coefficient between two signals corresponding to different trials of the 

same task. Not only the raw EEG signal is analyzed, but also band-specific 

energy signals and a low-frequency subsampled EEG as well. These different 

signals are referred to as transformed EEG. Each transformed EEG signal and 

raw EEG signal of a single channel is analyzed and associated to a 

corresponding variability score to enter a ranking. The procedures executed are: 

1) all the trials of a given channel are stored in a matrix where each row is a 

different trial; 2) all the transformations are applied to the EEG matrix, generating 

new matrices, one for each transformed signal and one for the original signal; 3) 

the Pearson correlation coefficients (CC) are calculated for all combinations two-

by-two of the trials, separately for each matrix; 4) the inverse of the mean of all 

coefficients gives the variability score of the corresponding matrix (i.e. lower 

scores indicate low variability); 5) all the variability scores from the different 

matrices, with the corresponding transformations, are organized in a new matrix 

that will generate the final ranking. This procedure is repeated until all channels 

are analyzed. When step 5 is repeated, the new information is always 

concatenated in the same matrix, generating new lines. Figure 22 shows 

schematically the procedures for one channel from one subject. 
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Figure 22 - Procedures to rank the channels according to their inter-trial variability. 
Step 1 is segmenting the signal into task trials and storing them as lines in 
a matrix. Step 2 is transforming this matrix into 7 new matrices, each one 

representing a signal transformation. Step 3 is calculating the CC for 
every pair of trials separately for each matrix. Step 4 is calculating the 

variability score for each matrix (the inverse of the mean CC value). Step 
5 is storing the information in a matrix that will later become the variability 
ranking after being ordered according to the scores. When a new channel 
is considered, step 5 allocates the information as new lines in the same 

matrix. 

 

Source: Own authorship. 

After all channels have been analyzed, the matrix is complete and then sorted to 

put the variability scores in ascending order, originating the final ranking. Each 

line of the ranking for each subject is associated to one channel, one 

transformation, and the corresponding variability score. 

The transformations are:  

1) energy signal in the 0.1-4 Hz band;  

2) energy signal in the 4-8 Hz band; 

3) energy signal in the 8-10 Hz band; 

4) energy signal in the 10-12 Hz band; 

5) energy signal in the 8-12 Hz band; 
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6) energy signal in the 12-25 Hz band;  

7) EEG signal in 0-0.625 Hz band and subsampled to 16 samples per 

second.  

Prior to the transformations being applied, the original raw EEG signal was 

subsampled to 128 Hz. Oscillating signals, even after being transformed into 

energy signals by squaring every sample, might lead to low CC values due to 

phase differences even if they have the same amplitude and frequency. Because 

the focus of this analysis is on the energy, the amplitude is more important than 

the phase. To attenuate misleading CC values due to phase differences, the 

energy signals are smoothed with a 0.5 s window prior to the CC calculation. 

3.4.2. Classification  

After building the ranking for each subject, the pseudo-online classification takes 

place to simulate an experiment with the intent to identify when the movement 

intention occurs during the trial. All the procedures are executed separately for 

each subject. Data from the elbow movement (flexion and extension) is used for 

calibration, and data from the hand (opening and closing) is used for testing the 

classifier. The reasons for using different movements for calibrating and for 

testing are: 1) both are executed with the same limb and same side (right); 2) it 

increases the number of points to be tested; 3) supposedly, this scenario should 

be more difficult than using data from the same movement. The interval within a 

trial that is considered to have movement intention starts 0.5 s after the 

movement instruction appears and finishes 0.5 s after the movement initiates. 

The reasons for considering a 0.5 s delay after the cue is that it was seem in a 

preliminary analysis that the subject usually does not start the movement before 

1.0 s after the cue and the subject does not know in advance which movement 

will be indicated. The non-movement interval is immediately before the 

movement interval and selected so both classes have the same size (Figure 23).  
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Figure 23 - Task intervals used for each class: non-movement and movement intention. 
The interval that is considered to have movement intention starts 0.5 s 

after the movement instruction appears and finishes 0.5 s after the 
movement actually initiates. The non-movement interval is immediately 

before the movement interval and it is selected so both classes have the 
same size. 

 

Source: Own authorship. 

The feature vectors are simply the transformed signals in a 1 s length window. 

This window slides forward in time with a step equal to 0.0625 s (which is 

equivalent to 8 samples in the original EEG or only 1 sample in the subsampled 

EEG) to generate a new feature vector. This will lead to more than 2000 feature 

vector per class in most cases. 

To execute the classification procedure there are some possibilities to be 

considered, such as neural networks, linear discriminants, linear regression, etc. 

Nevertheless, when only two categories are to be distinguished, a linear 

discriminant is the most suitable option. First, because its efficacy has been 

largely demonstrated in EEG classification. Second, because it is very simple to 

implement. Moreover, the intended contribution of this work is not in the 

classification procedure itself, but in the procedures that anticipate this step. 

Therefore, demonstrating the efficacy of the strategies proposed in this work 

using a simple classifier becomes more relevant. It is expected that a better 

performance can be achieved with other classification algorithms, such as 

artificial neural networks, for instance. In this work there are only two categories 

of EEG signals: movement intention or not. The Fisher’s Linear Discriminant 

(FLD) is the technique selected for classifying the signals. The FLD and threshold 

calculation are explained in the following topic. 
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3.4.3. Fisher’s Linear Discriminant 

The FLD is a linear classifier that separates the input data into two classes. It 

consists in finding a projection vector 𝒘 that maximizes the distance between the 

class average of the projected points and minimizes the intra-class variance. A 

threshold value must be defined to separate the two classes of the projected 

points. See Figure 24. 

Figure 24 - Representation of the FLD calculation. Blue and red dots are two-
dimensional inputs. Each color corresponds to a different class and each 

dot corresponds to an input vector. The FLD calculation consists of finding 
the vector 𝒘 that gives the direction (dashed line) in which the inputs 

projections are best separated in their classes. The thin lines orthogonal 
to the thicker dashed line are examples of threshold values. The lateral 

lines are thresholds that puts all inputs in the same class, and the central 
line is the optimized threshold for this case. 

 

Source: Own authorship. 

In practical terms, we define 𝒘, then we multiply 𝒘 with the input vector (same 

dimensionality) to obtain a single scalar value. This value is compared to the 

threshold to see in which class it belongs. 

The vector 𝒘 can be calculated as described by (DUDA, RICHARD O. AND 

HART, PETER E. AND STORK, 2000). Only the main procedures to obtain the 

projection vector are described in this topic. For more details concerning the FLD 

calculation, see Appendix A. The calculation of the threshold of the discriminant 

is described in this topic as well.  

First, the mean feature vector (𝒎𝑖) of each class (𝑖) is calculated by (eq. 3)  
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𝒎𝑖 =
1

𝑁𝑖
∑ 𝜹𝜂

𝑁𝑖

𝜂=1

 (3) 

where 𝑖 = 1 or 𝑖 = 2, 𝜹𝜂 is the feature vector and 𝑁𝑖 is the total number of feature 

vectors from class 𝑖. 

The, the dispersion matrices  𝑺𝑖 from each class and the matrix 𝑺𝑊 should be 

defined as: 

  

𝑺𝑖 = ∑(𝜹𝜂 − 𝒎𝑖)(𝜹𝜂 − 𝒎𝑖)
𝑇

𝑁𝑖

𝜂=1

 (4) 

and 

 𝑺𝑊 = 𝑺1 + 𝑺2 (5) 

 

respectively. The projection vector 𝒘 is calculated by (eq. 6) 

 𝒘 = 𝑺𝑊
−1(𝒎1 − 𝒎2) (6) 

 

Finally, we have to define the threshold. To do so, the Receiver Operator 

Characteristic (ROC) curve is used with the calibration data. The ROC curve is 

obtained by defining extreme threshold values that puts all projected points in the 

same class (one value for each class), as shown in Figure 24. Then, many 

different thresholds within these two values are tested. The ROC curve 

corresponds to all these threshold values (see Figure 25). The curve is plotted 

with the x-axis representing the false positive rate and the y-axis representing the 

true positive rate. ‘Positive’ in this case refers to a specific class. In this work, 

‘positive’ would be when the movement intention is occurring. In this work, 50 

different threshold values between the two extreme values were used. The 

threshold that provides the minor distance to the perfect result (100% true positive 

rate and 0% false positive rate) is chosen. 
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Figure 25 - ROC curve with eight threshold values (indicated by the stars). Vertical and 
horizontal axes are true positive rates and false positive rates, 
respectively. The gray stars are the extreme threshold values 

(represented by the lateral thin lines in Figure 24). The green star 
indicates the threshold value that would be chosen (represented by the 
central thin line in Figure 24), because it is the closest to the yellow star 

representing the perfect ideal threshold (this ideal threshold does not exist 
in Figure 24). 

 

Source: Own authorship. 

The classification is first performed using only the first channel of the ranking. 

Then, the number of channels is increased one-by-one until the first 10 channels 

of the ranking are used. Hence, there are 10 cases to be analyzed. When only 

one channel is used, there is only one FLD in the process (see Figure 26). When 

multiple channels are used, there is one FLD specific to each channel (in this 

case they are referred to as intermediate FLDs) and their outputs at a certain 

instant are used as the feature vector for one final FLD (see Figure 27). For the 

final FLD, the receiver operator characteristic (ROC) curve is built to define the 

threshold. 
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Figure 26 - Classification when only one channel is used. 

 

Source: Own authorship. 

Figure 27 - Classification when multiple channels are used. In this illustration, three 
channels are considered. 

 

Source: Own authorship. 

3.4.4. Scenarios for comparison 

To enable a more complete analysis, three other scenarios are considered for 

comparison purposes. They are described in topics a) through c). All scenarios 

are summarized in Table 5. 

a) Identical to the proposed method, except by the fact that only raw EEG is 

considered (no transformations are used). In Figure 22 it would be 

represented by skipping step 2, by having only one line for channel X-Y in 

step 5.  

 

b) Twelve electrodes are selected to provide the signals for the classifier 

(FC1, FC3, FC2, FC4, C1, C3, C2, C4, CP1, CP3, CP2, CP4). These 12 

electrodes are also used in three separated cases: 1) using the right 

mastoid (RM) as a monopolar reference; 2) with the SL filter (with all 61 
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electrodes); and 3) with the AR (with all 61 electrodes). Thus, there are 3 

cases within this scenario. Each channel has their signals transformed to 

whatever transformation that provides the smallest variability. In Figure 22, 

it would correspond to executing all 5 steps separately for each of the 12 

channels and selecting the transformation with the smallest variability for 

each channel. 

 

c) The same as scenario b), but only raw EEG is considered (no 

transformations). 

Overall, there are 26 scenarios for each subject, with 10 being for the proposed 

method, other 10 for scenario a), three for scenario b) and other three for scenario 

c). They are referred to as: transformed ranked channels (TRC), raw ranked 

channels (RRC), transformed literature channels (TLC), raw literature channels 

(RLT), respectively. See Table 5. 

Table 5 - The four different scenarios analyzed in the present work. 

Scenario Abreviation 
Channels 

considered 
Reference 

scheme 

Number of 
transformations 

considered 

Channels 
used for 

classification 

Results 
per 

subject 

Transformed 
Ranked 

Channels 
TRC 

All channel 
pairs 

combinations 
Bipolar 7 

All quantities 
from 1 to 10 

10 

Raw 
Ranked 

Channels 
RRC 

All channel 
pairs 

combinations 
Bipolar None 

All quantities 
from 1 to 10 

10 

Transformed 
Literature 
Channels 

TLC 
61 (original 

dataset) 

SL 

7 12 3 
AR 
RM 

 

Raw 
Literature 
Channels 

RLC 
61 (original 

dataset) 

SL 

None 12 3 AR 

RM 
Source: Own authorship. 



77 
 

3.4.5. Surface Laplacian and Average reference 

The calculation of AR and SL are briefly presented in this topic. For more details, 

see Appendix B and C. The AR is executed by simply subtracting from the raw 

EEG, at every instant of the recorded signal, the average potential across all 

channels. See (eq. 7).  

 𝑉′𝑡,𝑖 = 𝑉𝑡,𝑖 −
1

𝑁
∑ 𝑉𝑡,𝑖

𝑁

𝑖=1

 (7) 

where 𝑁 is the number of channels, 𝑉𝑡,𝑖 is the electrical potential at instant 𝑡, 

channel 𝑖, and 𝑉′𝑡,𝑖 is the new potential with the AR scheme. For the complete 

mathematical explanation about the AR, see Appendix B. 

The SL, on the other hand, involves more mathematical procedures. In this work, 

the SL is applied as proposed by (PERRIN et al., 1989). In this case, splines are 

used for estimating a continuous spherical surface from discrete electric 

potentials measured with EEG electrodes, then the Laplacian operator is applied 

to the surface. 

The full mathematical explanation is shown in Appendix C. In this section, only 

the essential steps for implementing the algorithm is shown. 

To smooth the signals with splines, it is necessary to find a solution to minimize 

a function. After a few steps, we come to a linear system (WAHBA, 1981): 

 (
𝑲 + 𝑁𝜆𝑰 𝑻

𝑻′ 0
) (

𝒄
𝒅

) = (
𝑽
𝟎

) (8) 

Where 𝑁 is the number of EEG channels, 𝑽 is a vector 𝑁x1 with the EEG 

potentials at a certain instant in all 𝑁 channels, and 𝜆 is the spline regularization 

parameter. The other variables are later explained. The first equation of the 

system gives the smoothed potentials 𝑽𝜆: 

 𝑲𝒄 + 𝑁𝜆𝑰𝒄 + 𝑻𝒅 = 𝑽 (9) 

 𝑽𝜆 = 𝑽 − 𝑁𝜆𝑰𝒄 = 𝑲𝒄 + 𝑻𝒅 (10) 

We can now apply the Laplacian to the smoothed signals. The transformed 

variables are indicated with the ~: 
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 𝐿𝑎𝑝𝑆(𝑽𝜆) =  𝑲̃𝒄 + 𝑻̃𝒅 (11) 

For geodesic distances and spherical coordinates in spherical splines (WAHBA, 

1990), we have: 

 (𝐓)i = 1 (12) 

 (𝑻̃)
i

= 0 (13) 

Then (eq. 11) becomes 

 𝐿𝑎𝑝𝑆(𝑽𝜆) =  𝑲̃𝒄 (14) 

The vector 𝒄 is defined as 𝒄 = 𝑪𝑽. Re-writing Equation 14, we have 

 𝐿𝑎𝑝𝑆(𝑽𝜆) =  𝑲̃𝑪𝑽 (15) 

By defining 𝑳 = 𝑲̃𝑪, the transformation of raw EEG signals 𝑽 into the new signals 

𝐿𝑎𝑝𝑆(𝑽𝜆) can be done with a linear transformation: 

 𝐿𝑎𝑝𝑆(𝑽𝜆) = 𝑳𝑽 (16) 

Therefore, it is necessary to find 𝑪 and 𝑲̃ to obtain 𝑳.  

According to (WAHBA, 1990) (for spherical splines and spherical coordinates), 

 𝑪 = 𝑸𝟐[𝑸𝟐
𝑇(𝑲 + 𝑁𝜆 𝑰)𝑸𝟐]−1𝑸𝟐

𝑇 (17) 

And 

 (𝑲̃)
𝑖𝑗

= −
 𝑔𝑚(𝒓𝒋 , 𝒓𝒊)

𝑟2
 (18) 

where 𝑸𝟏𝑁xM
, 𝑸𝟐𝑁x(𝑁−𝑀) and 𝑹𝑀x𝑀 are matrices obtained with the QR 

decomposition of 𝑻𝑁𝑥𝑀, which also includes the null matrix 𝑶(𝑁−𝑀)𝑥𝑀. The 𝑟 is the 

head’s radius, 𝒓𝒊 and  𝒓𝒊 are channel location vectors, and 𝑚 is the spline 

flexibility. Also, 

  𝑔𝑚(𝒓, 𝒓𝒊) =
1

4𝜋
∑

2𝑙 + 1

𝑙𝑚(𝑙 + 1)𝑚
𝑃𝑙(𝒓̂. 𝒓̂𝒊)

∞

𝑙=1

    𝑚 > 1 (19) 

where 𝑃𝑙(. ) are Legendre Polynomials with one variable and degree 𝑙. It is 

obtained with 
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 𝑃𝑙(𝑎) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑎𝑙
[(𝑎2 − 1)𝑙] (20) 

Due to a singularity, it is defined that 𝑃𝑙(1) = 1. To calculate the other values of 

the polynomial, Eq. (21) can be used (MEZIANI, 2016): 

 

𝑃𝑙(𝑎) =
1

2𝑙
∑

−1𝑙0(2𝑙 − 𝑙0)!

𝑙0! (𝑙 − 𝑙0)! (𝑙 − 2𝑙0)!
𝑎𝑙−2𝑙0

𝑙/2

𝑙0=0

 (21) 

The parameters 𝑚, 𝑟, 𝑙, and 𝜆 must be defined. As recommended by (KAYSER; 

TENKE, 2015), it is defined 𝜆 = 10−5 and 𝑚 = 4. The radius is 𝑟 = 0.15 and, after 

preliminary tests, it was set 𝑙 = 15. 
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4. RESULTS 

This chapter is divided into two major parts corresponding to Part 1 and Part 2 of 

the methodology. 

4.1. Part 1 – Approach 1 

4.1.1. Grand averages 

In Figures 28 and 29, the grand average signals corresponding to the task interval 

are presented. In these figures, the two solid vertical black lines indicate the 

instant in which the cross appears on the screen (t=1 s) and the instant in which 

the movement cue appears (t=3 s). The two solid vertical red lines indicate the 

average-over-subjects instants when the movement starts (first line) and when 

the movement reaches its maximum amplitude, immediately before initiating the 

returning movement. In general, the end of the movement was approximately at 

t=8 s, that is why it is not indicated in the figures. To generate the presented 

signals, the individual average signal of each subject was normalized between 

zero and 1. Then, the grand average was calculated across all subjects. 

Figure 28 shows the grand average of the delta band signals obtained with the 

channels selected individually for each subject, and with the signals at Cz-AR, 

and Cz-RM channels, respectively (see Table 1). Prior to the grand average 

calculation, the individual signals were normalized between 0 and 1.  

A few similarities among the three grand averages were noted. In every signal 

there is a negative peak after the movement onset (varying approximately 

between 0.40 s to 0.50 s post-onset), which marks what would be the end of the 

negative shift that characterizes the CNV or the RP. The signals then begin to 

increase at least until the second red line, which indicates the instant when the 

maximum movement amplitude occurs. Between this instant and the end of the 

trial window, a significant decrease in the signal takes place. With the grand 

average of the selected channels, the negativity occurs in one stage, starting 

approximately at t=1.50 s (0.50 s after the cross) and finishing approximately at 

t=4.80 s (0.50 s after the onset). The normalized potential decay is 0.60. In the 

grand average with Cz-AR, the negativity occurs in three stages, each of them 

starts and finishes at instants t=2.12 s and t=2.62 s (with 0.22 normalized 
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potential decay), t=3.00 s and t=3.87 s (with 0.10 normalized potential decay), 

t=4.05 s and t=4.70 s (with 0.51 normalized potential decay). In the grand 

average with Cz-RM, the negativity starts at t=0 s, but at approximately t=1.50 s 

it ends (with a 0.24 normalized potential decay), then the signal presents a very 

notable peak, followed by a slight increase until t=4.00 s, when another notable 

peak occurs immediately followed by a steep valley. This peak is at t=4.25 s (0.05 

s prior to the movement onset), and the valley that follows is at t=4.75 s (0.45 s 

after the onset). The decay between the peak and the valley is approximately 

0.67. 

Figure 28 - The average signals are calculated with subject-specific selected channel, 
with channel Cz-AR and Cz-RM. Black lines indicate the instant in which 

the cross appears on the screen (t=1 s) and the instant in which the 
movement cue appears (t=3 s). Red lines indicate when the movement 
actually starts (first line) and when the movement reaches its maximum 

amplitude, immediately before initiating the return movement. 

 

Source: Own authorship. 

Figure 29 shows the grand averages of the alpha band energy signals obtained 

with the channels selected individually for each subject and the signals at C3-AR, 

and C3-RM channels, respectively (see Table 1). Prior to the grand average 

calculation, the individual signals were normalized between 0 and 1. 

In all cases, within the 2 s interval with the cross on the screen, the energy rises, 

falls, and begins to increase again prior to the appearance of the movement cue. 

It then starts to decay significantly a little before half the interval between the cue 
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appearance and the movement onset. By the time it reaches the movement 

onset, the ERD is very clear. The energy remains considerably low until the 

subject’s movement reaches its maximum amplitude (indicated by the second red 

line, see Fig. 29), then an increase in the energy level becomes notable. 

Figure 29 - The average signals are calculated with subject-specific selected channel, 
with channel C3-AR and C3-RM. Black and red lines are as for Figure 28. 

 

Source: Own authorship. 

4.1.2. Individual averages 

Figures 30-33 show the individual trial average for each subject from the 

individually selected channels using the proposed method and from the channels 

commonly used in the literature (Cz-RM and Cz-AR for the delta band – Figures 

30 and 31; C3-RM and C3-AR for the alpha band – Figures 32 and 33). Before 

averaging the trials in each case, the signals were normalized between 0 and 1. 

The solid vertical red line indicates the movement onset. 

In Figures 32 and 33, the largest anticipation of the ERD (considering the energy 

reduction of 75%) relative to the movement onset is 2.89 s (subject 6); the 

shortest anticipation is actually a delay, since it happened 0.07 s after the onset 

(subject 5). Analyzing the mean value, the average anticipation is approximately 

1 s, in agreement with results reported in other works (e.g. (PFURTSCHELLER; 

ARANIBAR, 1979)). For the delta band averages (Figures 30 and 31), the valley 

after the movement onset has a mean delay of 0.38 s. The smallest delay is 
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approximately coincident with the onset (0.01 s, subjects 6, 11, and 13), while the 

largest is 0.67 s (subject 7). When analyzing the Pearson coefficient (R) in the 

delta band signals, there is no high correlation (>0.90) between the signals in the 

selected channels and in Cz-RM and five for Cz-AR. In the alpha band signals, 

there are eight for the channel C3-RM and nine for C3-AR. 
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Figure 30 - Individual averages in the delta band with the selected channels (in blue) 
and Cz-RM (in orange). Letter S followed by 1 to 15 indicates the subjects 

and R is the Pearson correlation between the presented signals. 

 

Source: Own authorship. 



85 
 

Figure 31 - Individual averages in the delta band with the selected channels (in blue) 
and Cz-AR (in orange). Letter S followed by 1 to 15 indicates the subjects 

and R is the Pearson correlation between the presented signals. 

 

Source: Own authorship. 
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Figure 32 - Individual averages in the alpha band with the selected channels (in green) 
and C3-RM (in orange). Letter S followed by 1 to 15 indicates the subjects 

and R is the Pearson correlation between the presented signals. 

 

Source: Own authorship. 
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Figure 33 - Individual averages in the alpha band with the selected channels (in green) 
and C3-AR (in orange). Letter S followed by 1 to 15 indicates the subjects 

and R is the Pearson correlation between the presented signals. 

 

Source: Own authorship. 
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4.1.3. Correlation between subjects 

The Pearson correlation coefficients for every pair of the individual trial average 

signals were calculated separately for the energy signal in the alpha band and for 

the signal in the delta band of the selected channels. In Table 6, the bottom 

triangle values are the correlation results for the energy on the alpha band; in the 

upper triangle of the table are the values for the delta band signals. Numbers 

from 1 to 15 refer to the subjects. The orange cells correspond to very high 

positive correlation values (from 0.90 to 1.00), yellow cells correspond to high 

positive correlation values (from 0.70 to 0.90), and not colored correspond to 

moderate, weak or negligible values (lower than 0.70). Numbers in red represent 

negative values. The coefficients indicate how similar are two signals compared 

to each other. If they are identical, the correlation coefficient is 1 (maximum 

value), if they are the exact opposite, the coefficient is -1 (minimum value), and if 

they share no similarities at all, the coefficient is 0. In Table 6, there isn’t any 

negative value out of the moderate, weak or negligible category. 
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Table 6 - All correlation values calculated between the signals of delta and alpha bands 
separately. Each value refers to a pair of subjects in a given frequency 

band. The bottom triangle values are the correlation results for the energy 
on the alpha band; in the upper triangle of the table are the values for the 

delta band signals. Numbers from 1 to 15 refer to the subjects. The 
orange cells correspond to very high positive correlation values (from 0.90 
to 1.00), yellow cells correspond to high positive correlation values (from 

0.70 to 0.90), and not colored corresponds to moderate, weak or 
negligible values (lower than 0.70). Numbers in red indicate negative 

values. 

   

A
lp

h
a 

w
av

es
 

Sub. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

D
elta w

aves 

1   0.87 0.73 0.77 0.60 0.76 0.56 0.82 0.62 0.80 0.43 0.01 0.43 0.67 0.78 

2 0.18   0.84 0.84 0.79 0.86 0.41 0.79 0.66 0.96 0.70 0.12 0.30 0.72 0.81 

3 0.77 0.22   0.85 0.79 0.92 0.58 0.81 0.78 0.90 0.48 0.06 0.23 0.79 0.79 

4 0.51 0.83 0.50   0.90 0.84 0.49 0.80 0.63 0.84 0.55 0.13 0.33 0.75 0.78 

5 0.77 0.48 0.89 0.66   0.75 0.25 0.58 0.46 0.83 0.69 0.30 0.40 0.60 0.68 

6 0.06 0.79 0.08 0.49 0.23   0.45 0.79 0.84 0.93 0.54 0.02 0.18 0.74 0.70 

7 0.84 0.02 0.89 0.39 0.78 0.30   0.74 0.56 0.36 0.25 0.56 0.12 0.80 0.68 

8 0.41 0.68 0.56 0.58 0.77 0.48 0.37   0.71 0.74 0.30 0.24 0.27 0.82 0.81 

9 0.79 0.10 0.78 0.27 0.60 0.38 0.88 0.19   0.73 0.29 0.39 0.05 0.79 0.48 

10 0.51 0.65 0.47 0.66 0.64 0.42 0.40 0.66 0.41   0.71 0.13 0.27 0.70 0.75 

11 0.61 0.16 0.76 0.00 0.60 0.27 0.74 0.36 0.78 0.32   0.46 0.15 0.18 0.31 

12 0.67 0.41 0.79 0.59 0.89 0.08 0.75 0.74 0.55 0.60 0.52   0.02 0.41 0.07 

13 0.32 0.85 0.44 0.82 0.66 0.55 0.27 0.80 0.14 0.77 0.08 0.66   0.10 0.32 

14 0.08 0.92 0.05 0.74 0.35 0.89 0.13 0.53 0.24 0.52 0.31 0.22 0.71   0.71 

15 0.78 0.09 0.87 0.39 0.79 0.22 0.83 0.44 0.69 0.30 0.63 0.76 0.33 0.10   

   
Source: Own authorship. 

Table 7 presents the selected channels for each subject separated by the two 

frequency bands (delta and alpha), and Figure 34 shows the spatial distribution 

(with a view from the top) of the selected channels named in Table 6. The circles 

represent the available electrodes and the filled circles connected with a solid line 

(blue for delta band and green for alpha band) represent the channels. 
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Table 7 - Selected channels for each subject and each frequency band (delta and 
alpha). 

Sub. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Delta 

PPO2 PPO1 P2 P4 P4 TTP8h P1 CPP3h PPO2 FTT7h FC5 FCC1h FTT7h CPz PPO1 

F3 F3 FCz CPP1h F3 F3 F3 F4 F4 F4 PPO2 FC5 PPO1 F4 F3 

Alpha 
CPz FC3 C3 P1 CCP4h FC3 CPz FC1 CP1 TTP8h C4 C3 C4 P4 CP1 

FCC3h F3 FFC5h CPP2h FCC2h F3 CCP4h F3 CCP4h FC6 FC4 F3 F4 CCP4h CCP1h 

Source: Own authorship. 

Figure 34 - Spatial representation of the selected channels for each subject and each 
frequency band. The blue circles are the electrodes that form the channel 
selected for the delta band, the green circles are the electrodes that form 
the channel selected for the alpha band. The lines connecting the filled 

circles represent the channels. 

 

Source: Own authorship. 

In the case of delta waves, there are five correlation values with very high positive 

coefficients (i.e. greater than or equal to 0.90). In general, they occurred between 

channels with notable spatial differences between them. Subjects 4 and 5 (P4-

CPP1h and P4-F3): both share the first electrode, but the references are very far 

from each other. Subjects 6 and 3 (TTP8h-F3 and P2-FCz): the similarities are 

that both connect the posterior to the anterior parts (relative to the coronal plane), 
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the first electrode is in the right hemisphere and the reference is dislocated to the 

left. However, for subject 3 the channel is very close to the midline and closer to 

the inion, while for subject 6 it is in the extremities left-right and closer to the 

nasion. Subjects 10 and 2 (FTT7h-F4 and PPO1-F3): the references are in the 

same cortical line, but opposite to each other. First electrodes are in anterior and 

posterior parts, both in the left hemisphere, with one in the extremity and the other 

close to the midline. Subjects 10 and 3 (FTT7h-F4 and P2-FCz): one channel is 

in the anterior part with electrodes separated by two cortical lines in the left-right 

extremities, the other connects the posterior to the anterior part and is very close 

to the midline. Subjects 10 and 6 (FTT7h-F4 and TTP8h-F3): the references are 

in the same cortical line, but opposite to each other; first electrodes are close to 

the central cortical line (deviated one line towards the nasion and one line towards 

the inion) in the extremity of opposite hemispheres. They are almost perfectly 

inverted from each other in the left-right direction. Channels with notable spatial 

similarities, such as the ones for subjects 1, 2, and 15 (PPO2-F3, PPO1-F3, and 

PPO1-F3 again), presented lower correlation coefficients, but still in the ‘high’ 

range (0.87 for S1 and S2, 0.78 for S1 and S15, and 0.81 for S2 and S15). This 

also happened for S8 (CPP3h-F4) and S14 (CPz-F4) with 0.82 correlation, and 

for S5 (P4-F3) and S6 (TTP8h-F3) with 0.75 correlation.  

When it comes to the alpha waves, only subjects 2 and 14 generated a very high 

correlation value. The channels are FC3-F3 and P4-CCP4h. Although both 

channels have electrodes very close to each other (which is the case for most 

channels), they have almost every other spatial characteristic different from one 

another: one is oriented in the inion-nasion direction and is located at front-left; 

the other is oriented in the right-left direction and is located at back-right. 

Subjects 2 and 6 have the same channel (FC3-F3) and a high correlation value 

between their signals, but still lower than 0.80. Subject 8 relative to subjects 2 

and 6 has correlation coefficients lower than 0.70, although subject 8’s channel 

is very close (FC1-F3). Subjects 12 and 13 have channels with mirrored location 

in opposite hemispheres (C3-F3 and C4-F4), which could indicate the possibility 

of similar signals, since the ERD is very often seen bilaterally. Nevertheless, the 

correlation value is lower than 0.70. 
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4.2. Part 1 – Approach 2 

A first attempt for part 1 – approach 2 is executed with the publicly available 

dataset from the Graz BCI group (Ofner et al., 2017) with EEG signals in an elbow 

flexion/extension activity performed by 15 subjects. Tables 4 and 5 shows the 

occurrence of each feature in the top 100 correlation results, all together for all 

subjects in the three rounds for the case with 15 trials generating averages and 

7 trials generating averages respectively. Results from tab. 4 shows the first two 

transformations corresponding to motor-frequency bands (#3 and #6) with 

relatively close values of occurrence (21% and 18%). The following two have also 

relatively close values with each other and with the first two (18% and 15%), but 

in this case they are both low-frequency transformations (#39 and #41). They are 

followed by five other transformations related to motor-frequencies and one 

related to low-frequency. In tab. 5, the raw down-sampled EEG (#37) has 52% of 

occurrence, while the other nine greatest occurrences are all with 10% or less 

and correspond to seven motor-frequencies transformations and two low-

frequency. In tab. 6 the results using single trials instead of averages are 

presented. Only two results among the highest 10 values are related to low-

frequency transformations, one of them using 0.5 s windows (#38) and the other 

using 1.0 s windows (#39). Every other result uses motor-frequencies 

transformations and two 0.5 s windows with a gap in between, i.e. 1.5 s intervals 

to execute the transformation. 

Table 8 - Most recurrent transformation among all rounds and subjects using 15 trials 
to calculate the average signal. 

Transformation Code Occurrence 

(0.5 s) 10-12 Hz energy #3 21% 
(0.5 s) 15-25 Hz energy #6 18% 
(1.0 s) ups & downs #39 18% 
(1.0 s) slope #41 15% 
(0.5 s) 6-8 Hz energy #1 7% 
(0.5 s) 6-8 Hz energy difference with 0.5 s 
gap 

#25 5% 

(0.5 s) 8-12 Hz energy #4 4% 
(0.5 s) down-sampled EEG #37 3% 
(0.5 s) 8-10 Hz energy #2 3% 
(0.5 s) 10-12 Hz energy difference with 0.5 s 
gap 

#27 2% 

Source: Own authorship. 
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Table 9 - Most recurrent transformation among all rounds and subjects using 7 trials to 
calculate the average signal. 

Transformation Code Occurrence 

(0.5 s) down-sampled EEG #37 52% 
(0.5 s) 10-12 Hz energy #3 10% 
(1.0 s) slope #41 7% 
(0.5 s) 6-8 Hz energy difference with 0.5 s 
gap 

#25 6% 

(1.0 s) ups & downs #39 6% 
(0.5 s) 15-25 Hz energy #6 4% 
(0.5 s) 6-8 Hz energy #1 4% 
(0.5 s) 8-10 Hz energy #2 2% 
(0.5 s) 10-12 Hz energy difference with 0.5 s 
gap 

#27 2% 

(0.5 s) 8-12 Hz energy #4 1% 
Source: Own authorship. 

Table 10 - Most recurrent transformation using single trials. 

Transformation Code Occurrence 

(0.5 s) 6-8 Hz energy difference with 0.5 s gap #25 27% 
(0.5 s) 15-25 Hz energy difference with 0.5 s 
gap 

#30 21% 

(0.5 s) 10-12 Hz energy difference with 0.5 s 
gap 

#27 15% 

(1.0 s) ups & downs #39 10% 
(0.5 s) ups & downs #38 6% 
(0.5 s) 10-12 Hz variance difference with 0.5 s 
gap 

#33 6% 

(0.5 s) 12-15 Hz energy difference with 0.5 s 
gap 

#29 5% 

(0.5 s) 8-12 Hz energy difference with 0.5 s 
gap 

#28 4% 

(0.5 s) 6-8 Hz variance difference with 0.5 s 
gap 

#31 3% 

(0.5 s) 12-15 Hz variance difference with 0.5 s 
gap 

#35 1% 

Source: Own authorship. 

In Figure 35 the single most recurrent transformation in the top 100 results 

separated by subjects and rounds are shown for the cases with 15 and 7 trials 

being used to calculate the average signals. The cases in which the result for all 

three rounds is not the same are: subjects 12 (15 trials) and 15 (7 and 15 trials). 

They represent 10% (3 in 30). The case in which single trials are used and only 

one round is performed is also shown in Figure 35. The most recurrent 

transformation varies from #25 to #39 across all subjects. For subjects 3, 10, and 
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15 the transformations are related to low-frequency EEG (#39, #39, and #38, 

respectively). All the others use two 0.5 s windows with a gap in between. 

Figure 35 - Most recurrent transformation separated by subjects and rounds. Blue dots 
refer to results using 15 trials to calculate the average, orange dots to 7 

trials, and green dots to single trials. 

 

Source: Own authorship. 

In Figure 36, Figure 37, and Figure 38, the colored channels are within the 3-

dimensional space defined by the average of the electrodes positions summed 

with its standard deviation in all three directions. The electrodes are the ones in 

the top 100 results for round 1 when using 15 trials (blue circles) and using 7 trials 

(orange circles) to calculate the average signal, and the case where single trials 

are used (green circles). Two regions were calculated for each subject in each 
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figure, although they are not distinguished, one for the first electrode in the pair 

and the other for the second electrode. 

For almost every subject there is a lot of similarity between the electrodes 

obtained with 15 trials and with 7 trials to calculate the averages. In general, it 

seems that electrodes corresponding to the central, parietal and occipital regions 

are more present. Frontal electrodes appear also, but in a minor number. A 

qualitative analysis seems to show that frontal-central regions, especially near 

the midline, are absent in most subjects. The single trials case usually differs from 

the others results. However, some similarity can be seen in S4, S6, S13, and 

S14. 

Figure 36 - Scalp regions (10-20 system) in the 100 best results of round 1 separated 
by subjects. Subjects 1 to 5. The nasion is on the left and the inion is on 

the right. 

 

Source: Own authorship. 
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Figure 37 - Scalp regions (10-20 system) in the 100 best results of round 1 separated 
by subjects. Subjects 6 to 10. 

 

Source: Own authorship. 
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Figure 38 - Scalp regions (10-20 system) in the 100 best results of round 1 separated 
by subjects. Subjects 11 to 15. 

 

Source: Own authorship. 

4.3. Part 2 

Figure 39 shows all the accuracy results for the four scenarios analyzed with 

every variation within them (see Table 5) and for every subject. The left side of 

Figure 39 shows a 3-dimensional view of the results, and the right side shows the 

top view of the same object. The TRC and TLC scenarios contain the highest 

accuracy for all subjects (marked with an X in the figure to the right). The 

individual best result for each subject is with the TRC for 12 subjects, while the 

remaining three subjects (subjects 1, 3, and 11) have their best result with TLC. 

The minimum overall accuracy is 52%, for subject 1, RLC scenario, using SL; the 

highest accuracy is 98%, it occurred for subjects 4, 6, 12, 13, and 14, TRC 

scenario, using 10, 1, 2, 10, and 10 channels, respectively. 
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Figure 39 - Individual performances for each subject in all 26 scenarios. The box in the 
left shows the results 3-dimensionally, on the right it is the top view of the 
same figure. The best accuracy result of each subject is marked with a 

capital X in white. TRC: transformed ranked channels; RRC: raw ranked 
channels; TLC: transformed literature channels; RLT: raw literature 

channels. 

 

Source: Own authorship. 

Figure 40 shows the average accuracy across the subjects for each case. The 

lowest mean value is for RRC using 1 channel, and the best is for TRC using 9 

channels. For the TRC, only when using 1 and 2 channels the mean value was 

not higher than 90%. Moreover, in no other scenario (i.e. RRC, TLC, RLC) the 

average achieved 90%. In the scenarios without transforming the signals (RRC 

and RLC), the average accuracies are always lower than 75%. 
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Figure 40 - Mean accuracy values over subjects for each case. TRC: transformed 
ranked channels; RRC: raw ranked channels; TLC: transformed literature 

channels; RLC: raw literature channels. 

 

Source: Own authorship. 

In Table 10 the best accuracy result with the proposed method (TRC) is 

presented for each subject, along with the corresponding number of electrodes 

and channels. Also, the best overall result (i.e. regardless of the scenario) is also 

presented for the three subjects that had their best accuracy in other scenarios 

(subjects 1, 3, and 11, all with TLC). The corresponding sensibility, specificity and 

precision are presented as well. The mean values and standard deviations (S.D.) 

of every parameter is presented at the bottom, always calculated considering the 

results with the proposed method, TRC. The best individual accuracy was 98% 

and occurred for five subjects (4, 6, 12, 13, 14). The lowest individual accuracy 

was for subject 3, 80%. The average number of electrodes and channels with 

TRC were 10 and 7, respectively, while the mean accuracy was 95%. For the 

subjects with the best result in TLC scenario, the reference choices were the RM 

(subject 1) and the AR (subjects 3 and 11). Thus, the total number of electrodes 

were 13 for subject 1, and 61 for subjects 3 and 11. When considering only the 

TRC scenario, the minimum number of electrodes and channels occurred for 

subject 6, with the lowest possible number: 2 electrodes and 1 channel. The 

maximum number of electrodes was 16, for subject 10, and the maximum number 

of channels was 10 (the highest possible), for subjects 1, 3, 4, 13.  
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Considering only the best results in TRC scenario, the accuracy was higher than 

or equal to 94% whenever the quantity of electrodes was higher than 11. With 

lower number of electrodes, there were three cases in which the accuracy was 

lower than 94%. These were using 11, 6, and 8 electrodes, for subjects 1, 3, and 

11, respectively. These three subjects had accuracies lower than 90% with TRC 

and their best individual result occurred when using TLC. The number of 

channels, on the other hand, does not seem to be related in any means to the 

best accuracy for each subject. For instance, the best and worst individual 

accuracies using TRC happened both with 10 channels (subjects 3 and 4). Also, 

the lowest numbers of channels (1 and 2, for subjects 6 and 12, respectively) 

yielded the highest overall accuracy, 98%. 

Table 11 - Best result for each subject. The * indicates that the average considers only 
the results in the TRC. The letters and numbers in italic refer to results in 

any scenario other than TRC. 

Subject Electrodes Channels Accuracy Sensibility Specificity Precision 

1 
11 

13 (RM) 
10 
12 

89% 
96% 

92% 
96% 

86% 
95% 

87% 
95% 

2 9 6 97% 98% 95% 96% 

3 
6 

61 (AR) 
10 
12 

80% 
89% 

93% 
89% 

68% 
89% 

74% 
89% 

4 18 10 98% 98% 97% 97% 

5 7 6 97% 98% 96% 96% 

6 2 1 98% 98% 99% 99% 

7 13 9 97% 97% 96% 96% 

8 13 8 94% 93% 94% 94% 

9 5 3 95% 94% 96% 96% 

10 16 9 95% 97% 93% 94% 

11 
8 

61 (AR) 
4 
12 

87% 
91% 

90% 
88% 

84% 
94% 

85% 
94% 

12 4 2 98% 98% 98% 98% 

13 14 10 98% 99% 97% 97% 

14 13 10 98% 99% 97% 97% 

15 12 6 97% 97% 96% 96% 

Average* 10 7 95% 96% 93% 93% 

S.D.* 4,3 3,2 5% 3% 8% 7% 
Source: Own authorship. 

Figure 41 shows the accuracy and its respective reproducibility value (the inverse 

of the variability) obtained in each scenario and in its internal variation for every 

subject. Therefore, every circle in Figure 41 corresponds to a bar shown in Figure 

40. Because the reproducibility is channel-specific, in cases with more than one 
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channel, the reproducibility considered here is the mean value across the 

channels. Most of the circles are concentrated in two reproducibility intervals, 0-

0.25 and 0.60-1.00. Most of them are also concentrated mainly in two accuracy 

intervals, 0.70-0.80 and 0.90-1.00. The lower accuracy region corresponds to the 

lower reproducibility region, and the higher accuracy region corresponds to the 

higher reproducibility region as well. 

Figure 41 - The mean reproducibility value for each case and the corresponding 
accuracy. All subjects are included. Each circle represents a specific case 

and a specific subject (26 cases per subject). 

 

Source: Own authorship. 

Figure 42 compares the effect of the transformations on the reproducibility, 

separated by the electrode’s position. The rankings of all subjects were analyzed 

together for every electrode. For a given transformation, whenever a certain 

electrode appeared in a channel, its reproducibility score was summed. The 

reproducibility for the raw EEG was also included in the figure. The transformation 

1, which is the energy of the delta band, outstands all the others, including the 

raw EEG, for every scalp location. Also, it is possible to note an oscillating 

behavior of almost every graphic, with higher reproducibility near the midline 

positions in each cortical line, instead of positions close to the hemispheres’ 

extremity. 
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Figure 42 - Total reproducibility scores for each electrode position and each 
transformation, including raw EEG. T1 to T7 are the different 

transformations. The letters in the figure indicate the cortical line 
associated to the corresponding electrodes. For each line, the number of 
the x-axis represents the electrode position moving from the extreme left 

to the extreme right. 

 

Source: Own authorship. 

Figure 43 shows the delta band energy (T1) reproducibility alone with more 

details. It is the same result presented in Figure 42. In this figure, the oscillating 

behavior is more evident. The reproducibility scores are always greater when the 

electrode position is far from the hemispheres’ extremity in every cortical line. The 

general behavior of the graphic shows that higher reproducibility scores are 

associated to the CCP line. The other cortical lines seem to have reproducibility 

scores gradually lower as they become further away from CCP. In fact, a visual 

inspection suggests that the values are symmetrical relative to the CCP line. 

Thus, it does not matter if the region is closer to the nasion or to the inion, but 

rather how distant they are from CCP. 
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Figure 43 - Same as Fig. 42, but zoomed in to the delta band energy information. 
Instead of a continuous line to represent the values, in this figure stems 
are used for a better view of the different electrode positions. The values 

in the y-axis correspond to the maximum of each cortical line. 

 

Source: Own authorship. 

The total reproducibility of each transformation disregarding the scalp positions 

is shown in Figure 44. The delta band total reproducibility score (16246) is more 

than eight times the second-best score (1996 - very low frequencies of sub-

sampled EEG). The lowest score was for beta band energy, with 1143. When 

considering only the energy signals in the traditional EEG frequency bands, an 

inverse relation is observed between the frequency and the reproducibility. 

Ascendant frequency bands, delta (>4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and 

beta (12-25 Hz), have descendent reproducibility scores (16246, 1986, 1386, and 

1144, respectively). However, the alpha sub-bands did not follow the same rule. 

Low alpha (8-10 Hz) has less reproducibility than high alpha (10-12 Hz), 1470 

and 1686, respectively. 
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Figure 44 - Total reproducibility score separated by transformation and raw EEG. 

 

Source: Own authorship. 

Figure 45 shows the first 10 channels ranked for each subject (TRC). By visual 

inspection, one can see that the spatial distribution differs considerably across 

different subjects. However, channels with electrodes relatively close to each 

other seem to be the general pattern, with a few exceptions. For instance, only 

29 of the 150 channels (19.3%) connect cortical lines that are not adjacent to 

each other (according to the extended 10-20 system). Also, only 6 channels 

connect a left or right extremity to the opposite hemisphere, with 4 of them being 

in subject 9’s ranking, 1 in subject 7’s ranking and 1 in subject’s 11 ranking. 
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Figure 45 - The top 10 channels using transformed EEG (TRC) and separated by 
subject. The channels are represented by the connection between two 
electrodes. In all scalp maps, the nasion is to the left and the inion is to 

the right. 

 

Source: Own authorship. 

A visual representation of the incidence of each electrode in the top 10 channels 

from all subjects together is shown in Figure 46. Each electrode position could 

appear up to 150 times (10 times for each of the 15 subjects). The electrode that 

appeared most is CCP1h, with 14 appearances. Only three electrode positions 

did not appear at all, all of them in frontal regions (F3, FFC2h, and FCC1h). 

Overall, there is a predominance of the colors representing more than 8 

appearances in the central and central-parietal regions (lines C, CCP, CP, and 

CPP). 
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Figure 46 - Visual representation of the incidence of each electrode position in the top 
10 channels of all subjects together. The number of times the electrode 

appeared is indicated by its color in the scalp map, according to the 
colorbar in the figure. 

 

Source: Own authorship.  
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5. DISCUSSION  

Part 1 aims to obtain robust information (features and channels) about EEG 

signals related to specific motor tasks and specific for each subject. So far, the 

EEG data analyzed is the publicly available dataset provided by the Graz BCI 

group. Part 1 is divided into two approaches. Approach 1 attempts to detect the 

CNV and the ERD phenomena by searching every channel with re-referencing 

procedure. Approach 2 also applies the re-referencing procedure and in each 

case transforms raw re-referenced EEG into 41 new signals and attempts to 

identify the transformation that leads to a more stable signal across different trials 

of the same task, and to which channels it should be applied. Part 2 aims to 

improve classification accuracy in a simulated BCI by reducing EEG intra-subject 

variability. 

5.1. Part 1 – approach 1 

In this work we tested the identification of EEG motor signatures across different 

electrodes and references. We found the motor signatures of CNV/RP and ERD 

with some electrode location patterns across subjects. However, it became 

apparent that subject-specific electrode choice could improve the motor 

signatures detection. 

5.1.1. Delta band grand averages, the RP and the CNV 

The grand average using the channels selected individually for each subject for 

the delta band shows a negative shift that begins 2.75 s before the movement 

onset and reaches its peak approximately 0.50 s after the movement onset. This 

timing, although it has some differences compared to the RP reported by 

Kornhuber and Deecke (KORNHUBER; DEECKE, 1965), it agrees with other RP 

works, as shown in Table 11. When it comes to the CNV, our results also show 

agreement with other related works, as shown in Table 12. Therefore, the 

temporal marks observed using the channel selection method we presented 

seems to agree with important timing characteristics of both EEG signatures, the 

CNV and the RP. 
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Table 12 - Timing features of the RP. The minus sign indicates that it refers to the 
interval before the movement onset. 

Negative shift with 

respect to movement 

onset 

Our 

results 

(KORNHUBER; 

DEECKE, 

1965) 

(SHIBASAKI; 

HALLETT, 

2006) 

(LEW et al., 

2012) 

Start -2.75 s -1.50 s < -2.00 s  

Negative peak 0.50 s 0.09 s  > 1.00 s 

Source: Own authorship. 

Table 13 - Timing features of the CNV. Where it says, “prior to movement onset”, the 
movement had a delay of less than 0.50 s relative to the second stimulus. 

 Our results 
(WALTER 

et al., 

1964) 

(KROPP et 

al., 2000) 

(MASAKI et 

al., 2012) 

Peak after 

movement onset 

1.75 s after 

the second 

stimulus 

Prior to 

movement 

onset 

2.00 s after 

the second 

stimulus 

Prior to 

movement 

onset 

Source: Own authorship. 

In terms of the spatial distribution, the channels selected in the present work show 

a tendency to connect posterior and anterior scalp positions. This agrees with the 

RP presented in (KORNHUBER; DEECKE, 1965), in which the negativity is more 

evident when using channels with electrodes parallel to the sagittal plane. 

The other grand averages presented here using other reference schemes (Cz-

AR and Cz-RM) show similar timing for the negative peak compared to the grand 

average using the selected channels.  

It is important to note that the experimental protocol that generated the current 

dataset is a combination of a self-paced movement type (typical for RP) and a 

warning-go type (typical for CNV). As there was a cue to start a new trial (beep 

sound and blank screen) along with the freedom to start the movement, we 

considered that the task involved some of the same cortical processes. The 

neurophysiological origin of the CNV and RP patterns are still not well established 

and there is discussion even about the possibility of one being part of the other 

(KONONOWICZ; PENNEY, 2016; SHIBASAKI; HALLETT, 2006). Nevertheless, 

despite of the difficulties to categorize the EEG delta band motor signatures found 
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in this work (Figure 28), the evidence indicates that they are indeed the CNV 

and/or RP. Thus, guaranteeing that the procedure presented here was useful to 

identify these EEG movement-related parameters. 

5.1.2. Alpha band grand averages and the ERD 

The ERD in the grand average signals (Figure 29) are very similar to the ERD 

presented Pfurtscheller and Aranibar (PFURTSCHELLER; ARANIBAR, 1979) in 

the C4-Cz and C3-Cz channels. They reported the ERD occurs in two stages 

(first the energy decays, then rises, and finally decays again) prior to the 

movement onset. In the grand average using the selected channels, the first and 

second waves start approximately 2.30 s and 0.80 s prior to the movement onset, 

respectively. The ERD has also been reported to occur significantly only during 

movement execution (RAMOS-MURGUIALDAY; BIRBAUMER, 2015). However, 

the differences with our results could be explained by experimental protocol 

differences as they used a BCI system with a hand orthosis and analyzed the 

band between 6 and 14 Hz. 

The grand average using the channels selected individually for each subject is 

very similar to the other grand averages we found when using “traditional” ERD 

channels for motor tasks. Therefore, it can be concluded that the selected 

channels for each subject do, in fact, account for the motor ERD. 

5.1.3. Spatial differences with timing similarities across subjects 

With respect to the delta waves found for each subject it can be concluded that 

similar channels in different subjects do not imply similar signals. The reverse 

also holds, similar signals between different subjects (correlation greater than 

0.90) does not imply similar channels. 

These findings provide strong evidence of subject-specificities concerning the 

head volume conduction and the cortical electrical activity for a certain task. 

In the alpha waves found for each subject with the channel selection procedure, 

the signals are converted to energy by squaring all samples. Therefore, two 

electrodes forming a channel provides the same signal regardless which one of 

them is the reference electrode. 
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 In Figure 32 (or Figure 33), three ERD patterns can be observed: 1) two stages; 

2) early; 3) late. The first category is when there are two energy peaks prior to 

the movement onset (similar to what was reported in (PFURTSCHELLER; 

ARANIBAR, 1979)), approximately at t=2 s and in between t=3 s and t=3.5 s. This 

pattern was found in subjects 1, 4, 7, 9, 10. The second is when the 75% energy 

decay occurs more than 1 s prior to the movement onset and it was found in 

subjects 2, 6, 8, 13, 14. The third was found in subjects 3, 5, 11, 12, 15. The 

subject’s individual energy signals are equally divided among the three 

categories. 

5.1.4. Spatial characteristics of the selected channels 

For 80% of the subjects, the channels selected for the delta band have electrodes 

far from each other and usually in opposite sides of the coronal plane. The 

reference electrode is usually in the frontal region and the main electrode a little 

behind the central line. Only three subjects (4, 10 and 12) did not show this spatial 

characteristic, but they showed different patterns.  

For 67% of the subjects (10 out of 15) the reference electrodes were either F3 

(six cases) or F4 (four cases). Thus, it is reasonable to hypothesize that this 

region has an important role in slow potentials related to the task. It can be 

responsible for a positive shift as a consequence of some cognitive/behavioral 

process, or it can have an approximately null inter-trial average signal, acting as 

a good reference option for EEG analysis. 

The channels selected for the alpha band signals are well distributed over the 

scalp. In most cases both electrodes within a channel are very close to each 

other. The subjects with electrodes that are most separated are subjects 1, 12, 

and 13, but even in these cases they are not too far (compared, e.g., to the delta 

band channels). Perhaps, the major finding here is that the channels must be 

chosen with electrodes very close to each other to properly analyze ERD in the 

alpha band. This might be a consequence of the small amplitudes of these 

oscillations compared to other EEG signatures that could be detected along the 

scalp. It also allows to hypothesize that the ERD is highly localized. 
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5.1.5. Temporal marks on the grand averages of the selected channels 

In the delta band signals there are important similarities between the grand 

averages of the selected channels and the channels Cz-AR and Cz-RM (Figure 

28). In all cases there are two notable bumps, the first is close to t=2.12 s and the 

second is in the final 0.20 s interval prior to the movement onset. In the channel 

selection case, however, these bumps are not statistically significant. Therefore, 

one can attribute these marks to an activity inherent to the Cz site. For the second 

bump, this agrees with the so called P-50 reported in (SHIBASAKI et al., 1980), 

which is a positive peak 0.05 s prior to the onset on Cz site referenced to linked-

ears. There is a delay of approximately 0.15 s, but it is important to note that the 

mentioned work (SHIBASAKI et al., 1980) uses the electromyogram (EMG) signal 

to set temporal marks related to the movement. In the present work an 

exoskeleton with an angle sensor to detect the movement is used, which might 

lead to timing differences. 

The negative shift of the delta band grand averages of the selected channels and 

Cz-AR starts near 0.50 s after the cross appearance. For Cz-RM it starts earlier, 

prior to the appearance of the cross on the screen. All three cases share the 

negative peak near t=4.75 s, which is approximately 0.50 s after the movement 

onset. In Cz-AR and Cz-RM grand averages, the signal increases after the 

negative peak until the movement reaches its maximum amplitude. In the grand 

average of the selected channels, the signal increases a little further, 

approximately until half of the interval of the final phase of the movement (when 

the arm is returning to its initial position). At this final phase of the movement, the 

grand averages of the selected channels and Cz-AR show a very clear negative 

peak almost coincident with each other. The same is not seen with statistical 

significance in the Cz-RM grand average. This final negative peak draws 

particular attention because the signal forms a ‘w’ shape connecting the 

beginning and the end of the movement. 

In the alpha energy grand average signals, the energy level is higher before the 

movement and starts to decay significantly as the movement onset gets closer. 

The lowest energy value occurs little after the movement onset. However, at the 

final phase of the movement, there is a notable increase in the energy. In the 

selected channels case and C3-RM, the energy keeps increasing till the end of 
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the movement. For the other cases, the energy increases, maintains a higher 

level for an interval between 0.50 s and 1.00 s and then decays again. Because 

the movement is still occurring, although it has already reached its maximum 

amplitude and is returning to the final/start position, one would expect that the 

energy level would remain low. In the literature it is reported that the alpha ERD 

may even last longer than the movement itself (PFURTSCHELLER; LOPES, 

1999). Given that the ERD expresses a local cortical activation, this may suggest 

that, at the final part of the movement, the corresponding cortical region is not 

fully involved with the task. During the experiment, the task was repeated multiple 

times by each subject and there was no performance requirement or feedback. 

Thus, it is possible that the movement became automatic after the first few 

repetitions, requiring less activity from the cortex. 

5.1.6. Application to BCI 

The goal of a BCI is to detect temporal events in brain signals that can be used 

to identify the users’ intention or to control a device. Therefore, with the results 

presented here, we can propose three recommendations to improve BCIs. First, 

the channels should be chosen individually for each person, even when the BCI 

is designed to detect well-known EEG signatures such as the ones explored in 

this paper. Second, although many BCI-based protocols usually focus on the 

movement initiation intention, it was found that the end of the movement is 

preceded by some specific features as well. In the delta band the ‘w’ wave 

anticipates the end of the movement by the detection of the second valley. The 

small energy increase in the alpha band can also do the same. Third, it is 

necessary to characterize the pattern of the ERD for a specific subject before 

defining the feature extraction procedure. 

5.1.7. Summary 

This part of the project (Part 1 – Approach 1) aimed at improving the robustness 

of the identification of two known EEG motor-related signatures in a widely 

adopted experimental paradigm. The key was to search the electrode 

combinations that provided the more robust CNV or RP and alpha ERD detection. 

To accomplish this goal, two criteria were proposed to quantify the presence of 

the mentioned signals in the EEG recordings. With these criteria all possible 
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channels (pairs of electrodes) were analyzed computationally to detect these 

signals.  

The results showed that the channels selected with the proposed method 

presented the intended motor signatures. It was shown that the alpha band ERD 

can occur in different ways (two stages, early and late ERD). The channels that 

best presents the motor signatures are highly subject-specific, although there are 

some spatial patterns specific to the frequency band. In the delta band, the 

channels usually connect electrodes distant from each other and placed in 

opposite sides of the coronal plane. The reference is usually in the anterior part, 

most likely in F3 or F4 locations. In the alpha band the channels can be widely 

distributed over the scalp with electrodes very close to each other. The end of the 

movement can be anticipated by specific events in the signals, such as the ‘w’ 

shape in the delta band and the energy increase in the alpha band. Evidence 

suggesting a reduced participation of the cortex at the final phase of a cyclic 

movement was presented with the alpha band signals. These findings can help 

to understand EEG signals during motor tasks, and they also provide spatial-

temporal information of the signals for BCI development. 

To improve the analysis, it would be interesting to analyze not only the best 

channel for each case, but a number of channels to see if the findings are 

consistent among these other locations. Moreover, conclusions regarding the 

meaning of the signatures must be considered very carefully. For instance, in 

many cases the location of the signature is a factor considered together with its 

temporal features for its proper identification. 

5.2. Part 1 – approach 2 

When analyzing results for all subjects together, it is seen that a few signal 

transformations dominate the best results. When using 15 trials to calculate 

averages, the energy in short windows in the 10 – 12 Hz and 15 – 25 Hz are 

responsible for 39% of the 4500 best results (100 results per round and per 

subject). The transformations called ups and downs, and slope comes next, 

summing 33%. When using seven trials to calculate averages, the down-sampled 

EEG is 52% of the best results. With single trials, energy difference between 

separated windows in the 6 – 8 Hz, 15 – 25 Hz, and 10 – 12 Hz frequency bands 
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are responsible for 63% of the results. Ups and downs come next with 10%. 

Interesting to note that results were considerably different between the three 

cases when considering the highest occurrences in each case (e.g. the first 

values to sum up to 50%). However, only 17 of the 41 transformations appeared 

in Tables 7-9, and all ten transformations of Table 7 are repeated in Table 8. In 

Table 9 there are seven new transformations. Some similarity between the first 

two cases were expected, because both involved averaging to enhance the SNR 

and used the same procedure.  

Figure 35 shows the single most frequent transformation in the top 100 of each 

subject and separated by rounds, i.e. if one is to select a single transformation to 

apply to the signals, this one could be it. All rounds follow the same procedure, 

but the trials used to calculate the averages are probably different, as they are 

selected randomly out of almost 120 trials. Except for S12 and S15, all other 

subjects have the same result in all three rounds, which shows consistency within 

each case. S12 when using 15 trials has a different result in one round, and S15 

has a different result in one round using 15 trials and one using 7 trials. This is 

evidence of the robustness of the method. It can be seen that when using 15 

trials, the single most frequent transformation uses total motor frequency energy 

in short windows for 11 out of 15 subjects (73%). For two subjects the most 

frequent transformation uses motor frequency energy difference between 

separated windows, and for the other two it was low frequency transformation. 

Although in this case the results are dominated by motor frequencies 

transformation, the fact that two subjects have a low frequency transformation as 

their most frequent result highlights the importance of working with different 

possibilities to account properly for the subject-specificities. Analyzing the case 

with seven trials being used to calculate the averages, the down-sampled EEG 

dominates the results (9 out of 15 subjects), as seen previously. In five cases 

(S3, S4, S6, S8, and S14) the results completely match the ones using 15 trials, 

which shows consistency in the sense that averaging 15 trials and seven trials 

should lead to similar results. On the other hand, results using single trials are 

somehow similar to each other, but considerably different from the other cases. 

S3, S10, and S15 have low frequency transformations as the most frequent, and 

all the other subjects (12 out of 15: 80%) have transformations involving two 
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separated windows. These transformations use 1.5 s of the original signal, which 

is a longer interval compared to the other transformations. It could be that using 

a longer window helps to compensate the variability of single trials in some level. 

Figures 36-38 show, in the electrode space, the main regions involved in the top 

100 results of each subject in each case (using 15 trials, seven trials, and single 

trials). The results using 15 and seven trials shows some strong resemblance for 

the same subjects, and once again the subject specificity can be seen. 

Nevertheless, still analyzing the cases with averages and analyzing all subjects 

together it is possible to see that peripheral electrodes and frontal-central 

electrodes close to the midline are almost never included in the marked regions. 

In the case using single trials the results are considerably different, but still shows 

a tendency to avoid peripheral and frontal-central regions close to the midline. 

Subject 4 and subject 15, in the single trial case, have similarities with results 

from the other two cases. In terms of differences and similarities between the 

three cases these results are in accordance with the previous results concerning 

the transformations. 

A few more analyses that can be done includes checking if there is a significant 

occurrence of particular electrodes in the reference position for each subject and 

check the spatial relation in the electrodes pairs (channels), e.g. if the electrodes 

are usually close to each other, or in different hemispheres, etc. Also, regarding 

the transformations it is interesting to analyze the supposedly best signals to see 

if there is any remarkable characteristic that allows to identify the timing of the 

movement onset. The inter-subject variability concerning the transformed signals 

can also be assessed. Moreover, because many of the proposed transformations 

seems not to be relevant, they can be ignored in a further attempt and substituted 

by other transformations relative to the features that seems to be more 

meaningful. 

5.3. Part 2 

In Part 2 it was proposed a procedure to reduce the EEG variability that selects 

the channels individually for each subject and transforms the EEG signals to 

improve a pseudo-online movement intention detection. The goal was to reduce 

the inter-trial variability of the signals. For a comparison, the classification 
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procedure (movement intention detection) was also tested without applying 

transformations to the signals and with channels selected by means of literature 

information. This led to the four scenarios shown in Table 5: TRC, RRC, TLC, 

RLC. 

In Figure 39, the level difference in the accuracy results across all subjects and 

scenarios shows the effectiveness of the channel selection and transformation 

procedures. TRC and TLC are both dominated by accuracies above 80%, 

opposed to the other scenarios without transformations. In Figure 40, with the 

averages across subjects, the advantage of the channel selection procedure over 

the literature channels becomes clearer. The latter did not achieve 90% of 

average accuracy in any case, while the TRC always had above 90% average 

accuracy when using three or more channels. The single best result of each 

subject (Table 6) confirms that transforming the channels and analyzing their 

variability is key for a better performance. Even when the subject had their best 

result with literature channels instead of with the proposed method (20% of the 

cases), the best result was still using the transformations. For all the other 

subjects, the best result was using the proposed method for selecting channels 

and transformations. 

The proposed method not only showed to be effective for improving the accuracy, 

but also for enabling a small number of electrodes and channels in signal 

acquisition and classification. The mean number of electrodes (10), channels (7) 

and accuracy (95%) sets a satisfying global performance by the proposed method 

(TRC scenario). The minimum and maximum over the best individual results were 

80% and 98%, respectively. In recent works from the literature, satisfying 

accuracy results have been reported when classifying between rest and 

movement, but usually with mean accuracy lower than what was obtained with 

the method proposed in the present work. For instance, the work of Duan and 

colleagues (DUAN et al., 2021) used the same public dataset that was used in 

the present work. The authors classified between trials with movement execution 

and trials with rest, obtaining the best accuracy for elbow flexion vs rest 

classification, with an average across subjects of 90%. They also present an 

interesting search for more stable signals by using a technique designated as 

Task-Related Component Analysis, with either the SL or AR as reference 
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schemes. In (MASCOLINI; KHAN; MESIN, 2022), Mascolini and colleagues 

detected movement intention using 9 and 6 electrodes referenced to the right ear 

lobe. Both motor execution and motor imagery were analyzed for 16 subjects, 

with the best individual accuracy result being 100%, but with an average across 

all subjects of 85%. In (ALIAKBARYHOSSEINABADI et al., 2021), the authors 

performed a classification procedure to distinguish between trials with hand 

movement and trials without movement. The EEG data was recorded from 30 

amyotrophic lateral sclerosis patients in 9 electrodes referenced to the right ear 

lobe. The authors performed a subject-specific channel, feature and classifier 

selection. Only one channel was selected per subject. The best accuracy result 

was 91% and the average across subjects was 81%. The authors reported that 

the individual configuration for each subject varied significantly. Thus, the 

comparison of the present work’s results to other recent work in the literature 

reveals that the proposed method is promising. 

The method was developed on the hypothesis that it is possible to find specific 

scalp locations that provide signals with low variability. Such signals would enable 

a better classification accuracy. Figure 41 validates this hypothesis by showing 

that lower variability (indicated by its inverse, the reproducibility) corresponds to 

higher accuracy and vice-versa. Therefore, transforming the signals and 

selecting the adequate channels was an effective strategy for providing more 

stable signals and for highlighting movement intention information. 

It is important to note that the proposed method and the calibration of the 

classifier were executed with data corresponding to the elbow movement, while 

the classification performance is evaluated with hand movement. This suggests 

a certain level of robustness. On the other hand, the method should be further 

validated with an online classification experiment. It would also be interesting to 

apply the method to data collected in different days, which might provide even 

more robustness to the results. 

Analyzing the effect of the transformations in the reproducibility of the signals, 

Figure 44 shows that the energy in the delta band is alone the most effective. All 

the other cases seem very close to each other, compared to the delta band total 

score. The correlation coefficient is sensitive to phase differences between 

signals with equal oscillating power and frequency. To minimize this effect, the 
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energy signals were always smoothed prior to the correlation coefficient 

calculation. In this case, slow frequencies could lead to higher correlation 

coefficient compared to high frequencies with the same phase difference. 

However, due to the major difference in the total reproducibility scores of the delta 

band energy and all the others, it is reasonable to consider that a possible bias 

would not be significant. Figure 42 shows the same effect separated by electrode 

positions. The discrepancy between delta band energy and the others occurs 

regardless of the electrode position. Motor related EEG signatures in the delta 

band, such as CNV and RP, can justify its effectiveness. The same was expected 

for the alpha band, due to the ERD, but the results showed otherwise. This 

becomes even more interesting because the CNV and RP are elicited in specific 

task scenarios that do not match the one used to generate the signals analyzed 

in the present work. The alpha band ERD, on the other hand, is expected in any 

task involving conscious movement. A hypothesis that can explain this result is 

the existence of other cortical activities unrelated to the movement in the 

analyzed frequency bands. In this case, there would be more of these activities 

in the alpha band than in the delta band, causing this difference in the 

reproducibility scores. These activities are usually properly eliminated with trial 

averaging, which is not possible in realistic BCI scenarios. Thus, for BCI 

purposes, delta band features are better suited for movement intention detection. 

In Figure 43, a closer look to the delta band results shows that the CCP line is 

the one with higher reproducibility. Also, the reproducibility in different cortical 

lines (according to the positioning system) seems to be higher as they 

approximate CCP. In Figure 46, with only the first 10 channels of each subject, 

the prevalence of the CCP line is also evident. The electrode position with most 

appearances is CCP1h. It appeared 14 times, which shows that the distribution 

of the electrode across the top 10 of all subjects was relatively dispersed. This is 

confirmed by Figure 45, because the top 10 channels across different subjects 

do not seem to share any pattern other than the prevalence of central-parietal 

regions. This region is above the motor cortex, so its importance is expected. 

Given that the delta band energy was the most used transformation, it suggests 

that slow potentials in this scalp region provide important task-related information. 

Further investigation towards this hypothesis considering neurophysiological 
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aspects is encouraged. The frontal region is more affected by eye artifacts 

(URIGÜEN; GARCIA-ZAPIRAIN, 2015), which can explain the lower 

reproducibility of its signals. In Figure 43, within each cortical line, the 

reproducibility is higher in positions close to the midline and lower near the left or 

right extremities. This is an interesting result that also encourages further 

investigation. Nevertheless, the proximity to the CCP line is more significant than 

the proximity to the midline between hemispheres. In practical terms for BCIs, 

these results suggest that opting for delta band signals in electrodes placed at 

the central-parietal region might be a good choice in order to have more stable 

signals across different trials. 

5.3.1. Summary 

In this work we proposed a method to reduce the EEG variability by selecting 

subject-specific channels and channel-specific transformations that provide more 

stable signals across different trials of a motor task. The goal was to improve the 

movement intention detection in a pseudo-online classification procedure. The 

stability of the signals was measured with the Pearson correlation coefficient. The 

transformations were all band-specific. The results showed that the proposed 

method succeeded in providing high accuracy values (95% average across 

subjects). Also, the results showed that lower inter-trial variability did provide 

better classification performances. Signals in the delta band provided the lowest 

inter-trial variability for all subjects and scalp positions. The electrodes in the CCP 

line associated to the delta band energy were, in general, the best choices 

according to the proposed method. However, the best channels were highly 

subject-specific. Also, the reproducibility of the delta band signals shows that the 

scalp positions close to the midline outstand the others close to the extremities 

within each cortical line in the 10-20 system. 

The fact that the data used for each subject was acquired all in one day is a 

limitation of the presented analysis. This is due to the intra-subject variability that 

occurs between different days and might differ from the inter-trial variability in one 

single experiment. Moreover, the classification using a real system that interacts 

with the subject is expected to be different, especially because it introduces new 

cortical activities originated from this interaction. An also important point to 
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consider is the use of signals from real patients, given that the signals might 

present different spatio-temporal features.  
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6. CONCLUSION  

In this work, the main challenge for BCI development that is addressed is the 

intra-subject variability of EEG signals. Inappropriate hypothesis concerning the 

reference electrode’s best location and the possibility of a neutral reference are 

considered to be important reasons for the difficulty when dealing with the signal 

variability. In section 2, literature review, these issues were consistently 

presented along with other related topics. To define the approach, this work relied 

on the following statements: 

 All EEG recordings are bipolar; 

 The correct choice of pairs of electrodes and signal transformations can 

reduce intra-subject variability; 

 Lower variability can lead to higher BCI accuracy; 

 Inter-subject variability cannot be avoided, thus solutions are always 

subject-specific. 

The work was divided into two parts. Part 1 consisted in studying EEG signals 

related to motor activities and signal variability, both cases using trial average 

signals. Two different approaches were adopted in Part 1. The goal was to gather 

information and improve the knowledge towards the dataset that was selected for 

this work. Part 2 consisted in a strategy to improve a pseudo-online movement 

intention detection by finding channels and transformations that provided signals 

with lower intra-subject variability. The dataset used in this work is publicly 

available and contains data from motor tasks with the upper limb from 15 healthy 

subjects. 

In Part 1, Approach 1, it was shown that well-known motor signals, namely the 

ERD and CNV or RP, were better detected in different channels for each subject. 

Some similarities were found in the channels for each EEG signature. For 

instance, in the ERD case, channels were usually with electrodes placed very 

close to each other, although the pair location varied significantly among subjects. 

In the delta band signatures (CNV and RP), channels were usually with 

electrodes distant from each other and connecting the two sides of the coronal 

plane. Approach 2 of Part 1 showed that, in general, band-specific energy 

features have less variability and the bands varies across subjects. It also showed 
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that the signals varied significantly when averaged across 15 and 7 trials, and 

even more when using single trials. 

In Part 2, it was proposed a method for selecting channels (pairs of electrodes) 

and channel-specific transformation based on band-specific energy to find 

signals with low intra-subject variability. The aim was to achieve a high-level 

accuracy for movement intention detection in a pseudo-online classification task. 

Results showed that the method was effective compared to other state-of-the-art 

work. Delta band features outperformed all the others. Also, the variability-based 

channel selection procedure showed that solutions must be subject-specific. 

Moreover, it showed that it is important to consider channel options beyond the 

ones commonly related to the motor cortex, such as the C and FC lines in the 10-

20 system. Overall, the channels were highly subject-specific, but mainly placed 

in the central-parietal line. 

This work contributes to the BCI field in different ways. In Part 1, the identification 

of motor signatures across different pairs of electrodes and the identification of 

novel features suggesting the anticipation of the end of a cyclic movement 

contributes to the study of EEG-related signatures. In Part 2, the good 

classification results per itself is a valuable contribution. Also, drawing attention 

to the unsolvable problem (so far) of the active reference electrode and the 

relevance of not neglecting it allowed an efficient strategy to be developed to 

overcome the limitations that it causes. Moreover, the method proposed in this 

work can incorporate other transformation, more channels and different variability 

measures. 

For future works, especially for Part 2, it is encouraged to boost the methodology 

by inserting more channels and other variability criteria. More signal 

transformation is also suggested. The use of more sophisticated classification 

algorithms can lead to even better results as well. Finally, the use of data acquired 

in different days to find more robust subject-specific configuration and testing the 

methodology with a real BCI system are the natural next steps to be taken. After 

these steps, the applicability of the system to assist a motor rehabilitation therapy 

should be investigated. 
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APPENDIX A (Fisher’s Linear Discriminant) 

Fisher’s Linear Discriminant – (DUDA, RICHARD O. AND HART, PETER E. 

AND STORK, 2000) 

Let us consider a set of 𝜂  𝑑-dimensional samples 𝜹1, 𝜹2, … , 𝜹𝜂 (i.e. each 𝜹 is a 

vector column with d elements), where 𝑁1 is the number of samples of the sub-

set 𝐷1 corresponding to class 𝝉1 and 𝑁2 is the same for sub-set 𝐷2 from class 𝝉2. 

A linear combination of the elements of 𝜹 gives us 

 𝑦 = 𝒘𝑇𝜹 (1) 

Doing this for all samples 𝜹1, 𝜹2, … , 𝜹𝜂, we will have a corresponding set with 𝜂 

samples 𝑦1, 𝑦2, … , 𝑦𝜂 in which each 𝑦 is a scalar. This set can be divided into two 

sub-sets 𝑌1 e 𝑌2, each of them corresponding to a specific class. Geometrically, 

if ‖𝒘‖ = 1, each 𝑦𝑖 is the projection of 𝜹𝑖 in a line with the same direction as 𝒘. 

The goal of the FLD is to make the projections on this line separable according 

to their classes 𝝉1 e 𝝉2. 

The separability of the projected points can be measured by the distance between 

their class-average position. If 𝒎𝑖 is the mean sample vector of class 𝑖 given by 

 𝒎𝑖 =
1

𝑁𝑖
∑ 𝜹𝑝

𝑁𝑖

𝑝=1

 (2) 

then the mean projected position 𝑚̃𝑖 can be written as 

 𝑚̃𝑖 =
1

𝑁𝑖
∑ 𝑦

𝑦∈𝑌𝑖

=
1

𝑁𝑖
∑ 𝒘𝑇𝜹

𝑦∈𝑌𝑖

= 𝒘𝑇𝒎𝑖 (3) 

Therefore, the distance between the average position of the projected points from 

each class is 

 |𝑚̃1 − 𝑚̃2| = |𝒘𝑇(𝒎1 − 𝒎2)| (4) 

To obtain a good separability of the points, the distance between their class-

average must be big compared to the standard deviation of the classes. The 

dispersion of each class is the measure used to quantify this. It is given by 
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 𝑠̃𝑖
2 = ∑ (𝑦 − 𝑚̃𝑖)

2

𝑦∈𝑌𝑖

 (5) 

Hence, 
1

𝜂
(𝑠̃1

2 + 𝑠̃2
2) is an estimate of the combined variance and 𝑠̃1

2 + 𝑠̃2
2 is called 

intra-class dispersion of the projected points. The FLD technique uses the linear 

function 𝒘𝑇𝜹 for which 

 𝐽(𝒘) =
|𝑚̃1 − 𝑚̃2|2

𝑠̃1
2 + 𝑠̃2

2  (6) 

Is maximum and independent from ‖𝒘‖. While 𝒘 that maximizes 𝐽(. ) provides 

the best class separability, it is necessary to also define a threshold to delimit 

each class space. 

To obtain 𝐽(. ) As na explicit function of 𝒘, the dispersion matrices 𝑺𝑖 e 𝑺𝑊 must 

be defined as 

 𝑺𝑖 = ∑ (𝜹 − 𝒎𝑖)(𝜹 − 𝒎𝑖)
𝑇

𝜹∈𝐷𝑖

 (7) 

 𝑺𝑊 = 𝑺1 + 𝑺2 (8) 

Thus, 

 𝑠̃𝑖
2 = ∑ (𝒘𝑇𝜹 − 𝒘𝑇𝒎𝑖)

2

𝜹∈𝐷𝑖

  

 = ∑ 𝒘𝑇

𝜹∈𝐷𝑖

(𝜹 − 𝒎𝑖)(𝜹 − 𝒎𝑖)
𝑇𝒘 (9) 

 = 𝒘𝑇𝑺𝑖𝒘  

Hence, the summation of these dispersion can be written as 

 𝑠̃1
2 + 𝑠̃2

2 = 𝒘𝑇𝑺𝑊𝒘 (10) 

In a similar way, for the separation of the average projected points 

 (𝑚̃1 − 𝑚̃2)2 = (𝒘𝑇𝒎1 − 𝒘𝑇𝒎2)2  

 = 𝒘𝑇(𝒎1 − 𝒎2)(𝒎1 − 𝒎2)𝑇𝒘 (11) 
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 = 𝒘𝑇𝑺𝐵𝒘  

where  

 𝑺𝐵 = (𝒎1 − 𝒎2)(𝒎1 − 𝒎2)𝑇 (12) 

Matrix 𝑺𝑊 is named as intra-class dispersion matrix. It is proportional to the 

covariance of the grouped 𝑑-dimensional samples. Matrix 𝑺𝐵 is called inter-class 

dispersion matrix. We can write 𝐽(. ) as a function of these matrices: 

 𝐽(𝒘) =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘
 (13) 

This expression is known as Rayleigh ratio. By using Lagrange multipliers, it can 

be demonstrated that the vector that maximizes 𝐽(. ) Must satisfy 

 𝑺𝐵𝒘 = 𝜆𝑺𝑊𝒘 (14) 

For a constant λ, which is an eigenvalue problem. If 𝑺𝑾 is not singular, the 

conventional eigenvalue problem can be obtained by 

 𝑺𝑊
−1𝑺𝐵𝒘 = 𝜆𝒘 (15) 

Because 𝑺𝐵𝒘 will always be in the direction of 𝒎1 − 𝒎2, it is not necessary to 

solve the eigenvalue problem. Because 𝒘 does not depend on its localization in 

space, the solution for 𝒘 that optimizes 𝐽(. )  Can be written as 

 𝒘 = 𝑺𝑊
−1(𝒎1 − 𝒎2) (16) 
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APPENDIX B (Average Reference) 

 

This appendix is referenced to (BERTRAND; PERRIN; PERNIER, 1985) 

For dipoles inside a sphere:  

The surface integral of electric potentials ∅(𝒓) on the sphere with surface 𝑆 is null: 

 ∮ ∅(𝒓)𝑑𝑆 = 0
𝑆

 (17) 

where ∅(𝒓) is the “true” potential at position 𝒓 referenced to “infinity”.  The integral 

can be approximated by a summation for discrete measurements in positions 

indicated by 𝑛 =  (1, … , 𝑁): 

 ∑ ∅(𝒓𝑛) = 0

𝑁

𝑛=1

 (18) 

In the case of EEG measurements, the potential 𝑉𝑛 is always recorded as the 

difference between the true electrical potential ∅(𝒓𝑛) and the true potential at a 

reference location ∅(𝒓𝑅): 

 𝑉𝑛 = ∅(𝒓𝑛) − ∅(𝒓𝑅) (19) 

Calculating the average of both sides of eq. (19), we have 

 
1

𝑁
∑ 𝑉𝑛

𝑁

𝑛=1

=
1

𝑁
∑[∅(𝒓𝑛) − ∅(𝒓𝑅)]

𝑁

𝑛=1

 (20) 

The left side is the average potential 𝑉𝐴𝑉𝐺 across all EEG channels. The right side 

can be separated into two summations. The potential at the reference position 

does not depend on the location of the other electrode, so eq. (20) can be re-

written as 

 𝑉𝐴𝑉𝐺 = (
1

𝑁
∑ ∅(𝒓𝑛)

𝑁

𝑛=1

) − (
1

𝑁
× 𝑁 × ∅(𝒓𝑅)) (21) 

than as 
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 𝑉𝐴𝑉𝐺 = (
1

𝑁
∑ ∅(𝒓𝑛)

𝑁

𝑛=1

) − ∅(𝒓𝑹) (22) 

The first term of the right side vanishes, according to eq. (18). Thus, 

 𝑉𝐴𝑉𝐺 = −∅(𝒓𝑅) (23) 

Substituting eq. (23) in eq. (19) and isolating the true electrical potential 

referenced to infinity, we obtain 

 𝑉𝑛 − 𝑉𝐴𝑉𝐺 = ∅(𝒓𝑛) (24) 

Therefore, the true potential ∅(𝒓𝑛) at position 𝒓𝑛 can be estimated by subtracting 

the average over all measurements from the potential 𝑉𝑛 recorded at 𝒓𝑛 

referenced to any arbitrary electrode. 
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APPENDIX C (Surface Laplacian) 

a. Physical meaning of the Surface Laplacian (CARVALHAES; 

DE BARROS, 2015) 

All the content of this appendix is referenced to (CARVALHAES; DE BARROS, 

2015). 

The electric field can be quantified as the negative of the gradient of the electric 

potential: 

 𝑬(𝒓) = −𝛻𝑉(𝒓) = −
𝜕𝑉

𝜕𝑥
𝑖 −

𝜕𝑉

𝜕𝑦
𝑗 −

𝜕𝑉

𝜕𝑧
𝑘 (25) 

The divergent of the electric field is defined as the negative of the Laplacian 

surface of the electric field. Thus, 

 𝐷𝑖𝑣(𝑬) ≡ −𝐿𝑎𝑝(𝑉) (26) 

 𝐷𝑖𝑣(𝑬) = 𝐷𝑖𝑣(−𝛻𝑉) = −
𝜕2𝑉

𝜕𝑥2
−

𝜕2𝑉

𝜕𝑦2
−

𝜕2𝑉

𝜕𝑧2
 (27) 

 𝐷𝑖𝑣(−𝑬) ≡ 𝐿𝑎𝑝(𝑉) =
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
 (28) 

 

For EEG measurements, the scalp is the surface to be analyzed and the cortex 

is the place where the sources are at. Hence, there are no sources at the surface, 

which gives us 

 𝐿𝑎𝑝(𝑉) = 0     ⇒      
𝜕2𝑉

𝜕 2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
= 0 (29) 

From (1), we know that  

 𝐸𝑧 = −
𝜕𝑉

𝜕𝑧
    ⇒      

𝜕𝐸𝑧

𝜕𝑧
= −

𝜕2𝑉

𝜕𝑧2
     ⇒      −

𝜕𝐸𝑧

𝜕𝑧
=

𝜕2𝑉

𝜕𝑧2
 (30) 

 

Substituting (5) in (4), we have 
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𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
−

𝜕𝐸𝑧

𝜕𝑧
= 0    ⇒      

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
=

𝜕𝐸𝑧

𝜕𝑧
 (31) 

The electric field in a volume conductor can also be defined as 𝑬 = 𝜌𝑱, where 𝜌 

is the resistivity (constant) and 𝑱 is the current density. Thus, 𝑬𝒛 = 𝜌𝑱𝒛. This gives 

us 

 
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 𝜌

𝜕𝑱𝒛

𝜕𝑧
 (32) 

The left side of (7) is defined as the Laplacian surface of V: 

 𝐿𝑎𝑝𝑆(𝑉) =
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
 (33) 

Then  

 𝐿𝑎𝑝𝑆(𝑉) = 𝜌
𝜕𝑱𝒛

𝜕𝑧
 (34) 

This means that 𝐿𝑎𝑝𝑆(𝑉) is proportional to the variation of the current density 

perpendicular to the surface (radial direction in a spherical geometry). Therefore, 

if 𝐿𝑎𝑝𝑆(𝑉) ≠ 0, then there is current flowing from underneath the scalp, which is 

associated to the presence of an electrical source inside the head (in this case, 

on the cortex). 

b. Calculation of the Surface Laplacian – (CARVALHAES; DE 

BARROS, 2015; CARVALHAES; SUPPES, 2011) 

The spline function is the unique solution for the problem of finding a function 𝑓 

that minimizes the equation 

 𝑆𝑆(𝑓, 𝜆) =
1

𝑁
∑(𝑉𝑖 − 𝑓(𝒓𝒊))

2
+ 𝜆 𝐽𝑚[𝑓(𝒓)] (35) 

where 𝑁 is the number of channels, 𝑉𝑖 is the EEG potential recorded at electrode 

𝑖, 𝒓𝒊 is the position vector of electrode 𝑖, 𝜆 is the spline regularization parameter, 

𝐽𝑚[𝑓] is a measure of the roughness of 𝑓 in terms of its partial derivative of 𝑚-th 

order (WAHBA, 1990) and 𝑚 is the flexibility of the adjustment. If 𝜆 = 0, then it 

occurs an interpolation (𝑓(𝒓𝒊) = 𝑉𝑖), if 𝜆 > 0 the data is smoothed instead. 

The function that minimizes 𝑆𝑆(𝑓, 𝜆) is 
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 𝑓(𝒓) = ∑ 𝑐𝑖

𝑁

𝑖=1

‖𝒓 − 𝒓𝒊‖
2𝑚−3 + ∑ 𝑑𝑙𝜙𝑙(𝒓)

𝑀

𝑙=1

 (36) 

where 𝑚 e 𝑀 are integers that satisfies the conditions  

 2𝑚 > 3  

 𝑀 = (
𝑚 + 2

3
) (37) 

 𝑀 < 𝑁  

 

and 𝜙𝑙(𝒓) is given by 

 𝜙𝑙(𝒓) = 𝑥𝑖−𝑗𝑦𝑗−𝑘𝑧𝑘 (38) 

where 

 𝑙 = 𝑖 + 𝑗 + 𝑘 + 1  

 0 ≤ 𝑖 ≤ 𝑚 − 1 (39) 

 0 ≤ 𝑗 ≤ 𝑖  

 0 ≤ 𝑘 ≤ 𝑗  

 

 

 

 

To use a matrix notation, we can define 

 𝑽 = (𝑓(𝒓1), … , 𝑓(𝒓𝑁))𝑇 (40) 

 𝒄 = (𝑐1, … , 𝑐𝑁)𝑇 (41) 

 𝒅 = (𝑑1, … , 𝑑𝑀)𝑇 (42) 

 𝐾𝑖𝑗 = ‖𝒓𝒊 − 𝒓𝒋‖
2𝑚−3

 (43) 
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 𝑇𝑖𝑗 = 𝜙𝑗(𝒓𝒊) (44) 

We can write the system: 

 (
𝑲 + 𝑁𝜆𝑰 𝑻

𝑻𝑇 0
) (

𝒄
𝒅

) = (
𝑽
0

) (45) 

Column vector 𝒄 with 𝑁 elements and 𝒅 with 𝑀 elements are the coefficients that 

expands the function 𝑓(𝒓). 𝑽 is the column vector with the 𝑁 instantaneous EEG 

potentials in positions 𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵. Matrices 𝑲 and 𝑻 have dimensions of 𝑁x𝑁 

and 𝑁x𝑀, respectively. 

The formal solution of the system is given by (WAHBA, 1990): 

 𝒄 = 𝑸𝟐[𝑸𝟐
𝑇(𝑲 + 𝑁𝜆 𝑰)𝑸𝟐]−1𝑸𝟐

𝑇 𝑽 (46) 

 𝑹𝒅 = 𝑸𝟏
𝑇(𝑽 − 𝑲𝒄 − 𝑁𝜆𝒄) (47) 

where 𝑸𝟏𝑁xM
, 𝑸𝟐𝑁x(𝑁−𝑀) and 𝑹𝑀x𝑀 are matrices obtained by the QR 

decomposition of 𝑻𝑁𝑥𝑀, eq. (48), which also includes the null matrix 𝑶(𝑁−𝑀)𝑥𝑀. 

 𝑻 = (𝑸𝟏 𝑸𝟐) (
𝑹
𝑶

) (48) 

By defining the smoothed potentials as 𝑽𝜆 = 𝑽 − 𝑁𝜆𝑰𝒄 and rearranging the terms 

of the first line of the system in eq. (45), we have 

 𝑽𝜆 = 𝑲𝒄 + 𝑻𝒅 (49) 

Defining 𝐾̃𝑖𝑗 = 𝐿𝑎𝑝𝑠(𝐾𝑖𝑗) and 𝑇̃𝑖𝑗 = 𝐿𝑎𝑝𝑠(𝑇𝑖𝑗), we have 

 𝐿𝑎𝑝𝑠(𝑽𝜆) = 𝑲̃𝒄 + 𝑻̃ (50) 

However, when applied to a quadratic surface, such as the sphere, this approach 

faces some problems. When 𝑚 > 2, matrix 𝑻 will have columns expanded by the 

terms 𝑥2, 𝑦2 e 𝑧2 (𝜙𝑙(𝒓) = 𝑥𝑖−𝑗𝑦𝑗−𝑘𝑧𝑘), that are linearly dependent due to the 

restriction 𝑥2 + 𝑦2 + 𝑧2 = 1, inherent to the surface geometry. 

To avoid this problem, (WAHBA, 1990) propose the use of geodesic distances 

for spherical surfaces instead of Euclidean distances. This gives us: 
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 𝑓(𝒓) = ∑ 𝑐𝑖 𝑔𝑚(𝒓, 𝒓𝒊)

𝑁

𝑖=1

+ 𝒅 (51) 

where 𝒄 e 𝒅 are still obtained with eq. (46) e (47). In this new scenario, we have 

 𝐾𝑖𝑗 =  𝑔𝑚(𝒓𝒊 , 𝒓𝒋) (52) 

 𝑇i = 1 (53) 

where 

  𝑔𝑚(𝒓, 𝒓𝒊) =
1

4𝜋
∑

2𝑙 + 1

𝑙𝑚(𝑙 + 1)𝑚
𝑃𝑙(𝒓̂. 𝒓̂𝒊)

∞

𝑙=1

    𝑚 > 1 (54) 

and 𝑃𝑙 are Legendre polynomial functions with one variable and degree 𝑙 (the 

symbol ^ indicates unit vectors), given by 

 𝑃𝑙(𝑎) =
1

2𝑙𝑙!

𝑑𝑙

𝑑𝑎𝑙
[(𝑎2 − 1)𝑙] (55) 

Due to a singularity, it is defined 𝑃𝑙(1) = 1.  

Using spherical coordinates with the convention illustrated in Figure 47 (where 

𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋]), and applying the Laplacian surface to 𝑓(𝒓), we have 

 𝐿𝑎𝑝𝑠(𝑓) =
1

𝑟2 sin 𝜃
[

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑓

𝜕𝜃
) +

1

sin 𝜃

𝜕2𝑓

𝜕𝜑2
] (56) 
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Figure 47 - Spherical coordinate system. 

According to Jackson (1999), p.110 apud (CARVALHAES; DE BARROS, 2015), 

Legendre polynomials satisfies the relation 

 𝐿𝑎𝑝𝑠(𝑃𝑙(𝒓̂ . 𝒓̂𝒊)) = −
𝑙(𝑙 + 1)

𝑟2
𝑃𝑙(𝒓̂ . 𝒓̂𝒊) (57) 

Thus, the solution for the Laplacian surface of 𝑓(𝒓) is given by 

 
𝐿𝑎𝑝𝑠(𝑓(𝒓)) = −

1

𝑟2
∑ 𝑐𝑖𝑔𝑚−1(𝒓, 𝒓𝒊)

𝑁

𝑖=1

,              𝑚

> 1 

(58) 

The eq. (58) is known as the spherical Laplacian surface of 𝑓(𝒓). For the geodesic 

distances and spherical coordinates, it follows that 𝑻̃𝑁𝑥1, e 𝑲̃𝑁𝑥𝑁 are: 

 𝑇̃i = 0 (59) 

 𝐾̃𝑖𝑗 = −
 𝑔𝑚(𝒓𝒋 , 𝒓𝒊)

𝑟2
 (60) 

Now, the transformed smoothed potential 𝐿𝑎𝑝𝑠(𝑓(𝒓)) at an arbitrary point 𝒓  can 

be calculated.  

To be able to linearly transform the EEG data in the electrode locations, 

(CARVALHAES; SUPPES, 2011) define matrices 𝑪 and 𝑫 as 

 𝒄 = 𝑪𝑽 (62) 
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 𝒅 = 𝑫𝑽 (63) 

From eq. 46 and 47, we obtain 

 𝑪 = 𝑸𝟐[𝑸𝟐
𝑇(𝑲 + 𝑁𝜆 𝑰)𝑸𝟐]−𝟏𝑸𝟐

𝑇 (64) 

 𝑫 = 𝑹+𝑸𝟏
𝑇(𝟏 − 𝑲𝑪 − 𝑁𝜆𝑪) (65) 

where  𝑹+ the pseudo-inverse of 𝑹. Thus, from eq. (58), eq. (60) e eq. (62), we 

have 

 𝐿𝑎𝑝𝑠(𝑽𝜆) = 𝑲̃𝑪𝑽 (66) 

𝑲̃𝑪 does not depend on the measured potentials and linearly transforms 𝑽. 

Hence, we can define the transformation matrix 𝑳 that will act as the Laplacian 

filter: 

 𝑳 = 𝑲̃𝑪 (67) 

Finally, we can represent the smoothed transformed potentials by the linear 

transformation 

 𝐿𝑎𝑝𝑆(𝑽𝜆) = 𝑳𝑽 (68) 

Therefore, 𝑳  has to be defined once, then it can be continuously used to 

transform the signals using eq. (68). 
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