• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Mônica Goes Eboli
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2010
Directeur
Jury
Cozman, Fabio Gagliardi (Président)
Barros, Leliane Nunes de
Miyagi, Paulo Eigi
Titre en portugais
Transformação de redes de Petri coloridas em processos de decisão markovianos com probabilidades imprecisas.
Mots-clés en portugais
Processo de decisão markoviano fatorado
Processos de decisão markovianos
Processos de decisão markovianos com probabilidades imprecisas
Rede de Petri colorida
Resumé en portugais
Este trabalho foi motivado pela necessidade de considerar comportamento estocástico durante o planejamento da produção de sistemas de manufatura, ou seja, o que produzir e em que ordem. Estes sistemas possuem um comportamento estocástico geralmente não considerado no planejamento da produção. O principal objetivo deste trabalho foi obter um método que modelasse sistemas de manufatura e representasse seu comportamento estocástico durante o planejamento de produção destes sistemas. Como os métodos que eram ideais para planejamento não forneciam a modelagem adequada dos sistemas, e os com modelagem adequada não forneciam a capacidade de planejamento necessária, decidiu-se combinar dois métodos para atingir o objetivo desejado. Decidiu-se modelar os sistemas em rede de Petri e convertê-los em processos de decisão markovianos, e então realizar o planejamento com o ultimo. Para que fosse possível modelar as probabilidades envolvidas nos processos, foi proposto um tipo especial de rede de Petri, nomeada rede de Petri fatorada. Utilizando este tipo de rede de Petri, foi desenvolvido o método de conversão em processos de decisão markovianos. A conversão ocorreu com sucesso, conforme testes que mostraram que planos podem ser produzidos utilizando-se algoritmos de ponta para processos de decisão markovianos.
Titre en anglais
Conversion from colored Petri nets into Markov decision processes with imprecise probabilities.
Mots-clés en anglais
Colored Petri nets
Factored Markov decision process
Markov decision process
Markov decision process with imprecise probabilities
Resumé en anglais
The present work was motivated by the need to consider stochastic behavior when planning the production mix in a manufacturing system. These systems are exposed to stochastic behavior that is usually not considered during production planning. The main goal of this work was to obtain a method to model manufacturing systems and to represent their stochastic behavior when planning the production for these systems. Because the methods that were suitable for planning were not adequate for modeling the systems and vice-versa, two methods were combined to achieve the main goal. It was decided to model the systems in Petri nets and to convert them into Markov decision processes, to do the planning with the latter. In order to represent probabilities in the process, a special type of Petri nets, named Factored Petri nets, were proposed. Using this kind of Petri nets, a conversion method into Markov decision processes was developed. The conversion is successful as tests showed that plans can be produced within seconds using state-of-art algorithms for Markov decision processes.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2010-09-01
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.