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RESUMO

Diodos flúıdicos são dispositivos que inibem o fluxo de fluido de um ambiente para
outro, porém permitindo que em alguns casos ocorra o sentido oposto. Um exemplo
bem conhecido é a válvula Tesla. Existe um tipo particular de diodo flúıdico usado
para minimizar vazamentos em turbinas e compressores chamados selos labirinto, cuja
otimização pode trazer grandes melhorias relacionadas às emissões de CO2 e CH4. A
otimização topológica é uma ferramenta de otimização poderosa, que já foi aplicada para
projetar alguns diodos fluidos planos 2D. Assim, com esta questão ambiental em mente e a
fim de encontrar novos selos labirintos eficientes, o escopo deste trabalho é desenvolver uma
nova formulação de otimização topológica para obter projetos inovadores e não intuitivos
de diodos flúıdicos focado em selos labirintos. Como primeira contribuição, a formulação
de otimização topológica proposta neste trabalho baseia-se na programação linear inteira.
Na atual implementação de otimização de topológica para fluidos considerando métodos
de densidade, existem essencialmente dois problemas. Primeiramente, a escala de cinza
no resultado dificulta a identificação do contorno da malha do fluido, o que pode ser um
problema em algumas aplicações também durante o processo de otimização. Em segundo
lugar, mesmo para problemas de projeto de fluxo de Reynolds baixo, um esquema de
continuação dos parâmetros de penalização do modelo de material é necessário para evitar
a escala de cinza e para obter fronteiras sólido/fluido claras. Este trabalho propõe uma
nova metodologia que resolve esses dois problemas, ou seja, evita a escala de cinza e
obtém fronteiras de sólido e fluido mais claras. Já no projeto do selo labirinto, o mesmo
apresenta partes fixas (estator) e rotacionais (eixo), assim como segunda contribuição,
um algoritmo de classificação é implementado para identificar partes pertencentes ao eixo
e ao sólido e desta forma aplicar condições de contorno rotacionais a cada sólido que
surge durante a otimização topológica. Finalmente, uma função objetivo considerando
alguma interação fluido-estrutura é definida para evitar o surgimento de ilhas, que são
muito comuns neste tipo de projeto, porém não são aceitáveis em projetos axissimétricos
de selos labirinto. Assim a função multiobjetivo definida contém termos de energia de
dissipação, vorticidade e funções estruturais. Com relação à geometria do selo labirinto, o
problema é modelado com um modelo de elemento finito girante 2D. É descrito o cálculo
de sensibilidades e a linearização do problema para otimização em variáveis inteiras. A
implementação numérica é feita em Python com o aux́ılio de bibliotecas de elementos
finitos (FEniCS) para calcular o problema direto e adjunto. A biblioteca de otimização
proprietária da IBM (CPlex) é usada como algoritmo de otimização. Como resultados
são apresentados projetos de selo labirinto otimizados obtidos de acordo com o objetivo
do projeto, variando a rotação, padrões de vazamento e razão de aspecto do domı́nio do
projeto.

Palavras-Chave – Diodos Flúıdicos, Otimização Topológica, Junta Labirinto, TOBS,
método de elementos finitos, Fenics.



ABSTRACT

Fluid diodes are devices that inhibit the fluid to flow from one environment to an-
other and allowing in some cases the opposite direction to occur. A well-known example
is the Tesla valve. There is a particular type of fluid diode used to minimize leakage
in turbines and compressors called labyrinth seals, which optimization can bring major
improvement related to CO2 and CH4 emissions. Topology optimization is a powerful
tool, which has already been applied to design some plane 2D fluid diodes. So, with
this environmental issue in mind and in order to find new efficient labyrinth seals, the
scope of this work is to develop a new formulation of topology optimization to obtain
innovative and non-intuitive designs of fluid diodes focused on labyrinth seals. As a first
contribution, the formulation of topology optimization proposed in this work is based on
the integer linear programming. In the current implementation of topology optimization
for fluids considering density methods, there are essentially two problems. First, the gray
scale in the result makes it difficult to identify the fluid mesh outline, which can be a
problem in some applications and also during the optimization process. Second, even for
low Reynolds flow design problems, a continuation scheme of the material model penalty
parameters is necessary to avoid gray scale and to obtain clear solid/fluid boundaries.
This work proposes a new methodology that solves these two problems, that is, it avoids
gray scale and obtains clearer solid and fluid boundaries. In the labyrinth seal design, on
the other hand, it presents fixed parts (stator) and rotational parts (axis), as well as a sec-
ond contribution, a classification algorithm is implemented to identify parts belonging to
the shaft and, thus, apply rotational boundary conditions to every solid that appears dur-
ing topolgy optimization. Finally, an objective function considering some fluid-structure
interaction is defined to prevent the appearance of islands, which are very common in this
type of project, however, they are not acceptable in axysymmetric designs of labyrinth
seals. Thus the defined multi-objective function contains terms of dissipation energy, vor-
ticity and structural functions. Regarding the geometry of the labyrinth seal, the problem
is modeled with a 2D swirl finite element model. The calculation of sensitivities and the
linearization of the problem for optimization in integer variables is described. Numeri-
cal implementation is done in Python with the aid of finite element libraries (FEniCS)
to calculate the direct and adjoint problem. The IBM proprietary optimization library
(CPlex) is used as an optimization algorithm. As results, optimized labyrinth seal designs
obtained according to the project objective are presented, varying the rotation, leakage
patterns and aspect ratio of the project domain.

Keywords – Fluid Diodes, Topology Optimization, Labyrinth Seal, TOBS, finite element
method, Fenics.
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NOTATION

u Velocity
v Test function similar to velocity
p Pressure field
q Test function similar to pressure
µ Dynamic viscosity
ρ Fluid density
t Time
f External forces
s Position vector
r Horizontal component of the coordinate system
θ Angular component of the coordinate system
z Vertical component of the coordinate system
er Unit vector of r
eθ Unit vector of θ
ez Unit vector of z
uabs Absolute velocity
ur Relative velocity
η Horizontal component of finite element
ε Vertical component of finite element
ω Circumferential velocity
Ω Desing domain
V Vector function space

V̂ Test vector function space
Φ Energy dissipation
κ Absortion coefficient
α Inverse permeability
σ Mechanical stress
ε Strain of structure
J Objective function
L Sensitivity of an objective function
F Forward problem
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1 INTRODUCTION

1.1 Fluid Diodes

Fluid diodes are devices that control fluid flow direction. The application varies,

however, one relevant case study is when it is desirable to keep fluid in one chamber with

open channel to exterior environment.

Fluid diodes can be divided in three categories, the first contains a small sphere able

to block fluid flow (see Figures 1a-1b), the second category has active parts able open

and close the passage (see Figures 1c-1d). However, an interesting third category are

passive devices which uses only the fluid flow to inhibit flow direction. The most common

geometry of the third kind is the famous Tesla Valve where secondary flanges can create a

fluid recirculation (see Figures 1e-1f). It was invented and patented (U.S. Patent 1329559)

by Nikola Tesla in 1916. The resistance can reach 10 to 200 times greater in one direction

compared to the other.
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(a) Sphere blocking the flow from right to

left.

(b) Free flow from left to right

(c) Flexible active structure blocking the

flow from right to left.

(d) Free flow from left to right

(e) Classic Tesla Valve with reduced flow

from left to right

(f) Classic Tesla Valve with free flow from

right to left

Figure 1: Possible fluid diodes devices.

Modern applications of fluid diodes are used in gas turbines (FDX Diode R©), compres-

sors and pulsating heat pipes (PHP). A PHP is illustrated in Figure 2a in which it can

be seen that there is a mixture of liquid and gas that is obligated to flow through small

pipes due to a phase transformation occurred by heat exchange. Figure 2b shows the use

of fluid diodes inside the heat exchangers of a schematic PHP, stabilizing the pulsating

flow and increasing the efficiency of the device.

The PHP are proven to be very effective in heat exchange [KHANDEKAR; DOLLINGER;

GROLL, 2003; CHIEN et al., 2012; KHANDEKAR; GROLL, 2004] and the use of fluid

diodes can considerably enhance its performance [VRIES et al., 2017].
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Condenser

Evaporator

Heat

Heat

Heat

Heat

(a) Traditional pulsating heating pipe (b) Fluid diodes applied to pul-
sating heating pipe

Figure 2: Pulsating heating pipes.

1.1.1 Labyrinth Seals

There is a special type of fluid diode called Labyrinth Seals (LS) (Figure 3a) in which

the reverse flow plays a more important role. LS are mechanical devices which inhibit

the leakage from a chamber to another without closing the passage, i.e. keeping a gap

between parts. In these devices a shaft is rotating and may not touch the stator due to

wear conditions, however, fluid leakage must be avoided.

The application of LS varies a lot, however, it has been often used in turbines and

compressors, mainly because the shaft of these devices reach high temperatures and speeds

and this could cause wearing between rotating and fixed parts.

Figure 3b illustrates a labyrinth seal operation. Two different chambers with different

pressures imply a flow leakage.

(a) Schematic labyrinth seal (b) Application in compressor

Figure 3: Labyrinth Seals in rotating environment.

A representation of a LS mounted in a turbine shaft is illustrated in Figure 4 and

it is important to point out that these seals have been in use for decades in a variety

of turbo-machinery applications [STOCKER, 1975, 1978; WYLER, 1981; MORRISON;
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CHI, 1985]. Labyrinth seals have numerous intrinsic other benefits including low main-

tenance, negligible running torque, simplicity, and reduced particulate contamination.

However, typical labyrinth seals have an innate tendency to leak because there is no me-

chanical seal between the two areas of different pressures. Their leakage losses strongly

affect the overall efficiency of the equipments.

Figure 4: Actual Application of a Labyrinth Seal [LIN et al., 2014].

Labyrinth seals are often seen as suitable for both static and dynamic applications,

having the advantages of being simple, reliable and tolerant to dirty and thermal expansion

with minimal effects on the rotor dynamics [BOYCE, 2011]. An attractive feature of

labyrinth seals is that they do not contact the rotating shaft. This has a direct impact

on the integrity of the rotor and drastically decreases the cost of regular replacement and

maintenance compared to other contacting seals, such as brush seals.

Although other types of contacting seals have been devised that provide better leakage

characteristics, the reliance on contact between a rotating and non-rotating surface with

these devices leads to unacceptable levels of wear. Other seal types include the viscosity

[HEIDRICH, 1996] (for relatively high viscous fluids) and the brush seal [HENDRICKS

et al., 1994] (limited by material properties).
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Figure 5: Brush seals

Recently, brush seals (Figure 5) have received special attention because they can be

quite effective in reducing steam leakage. However, these seals do have certain shortcom-

ings. Brush seals work well in reducing leakage if their clearance relative to the shaft is

small. They are most effective as contact seals, for which life and wear rate are major

concerns. At certain locations along the shaft, the lateral displacement of the shaft at

critical speed during start up exceeds the brush seal limit, and the seal and shaft wear

is quite high. For such situations, if the initial clearances for the seals are too small, the

seal and the shaft may be damaged. The seal clearances after such a rub event are large,

which reduces the seal performance. In addition, bristle loss and debris could lead to

maintenance problems [HENDRICKS et al., 1994].

Advantages derived from the lowered maintenance and replacement costs in the end

have led to renewed efforts in enhancing the performance of the labyrinth seal. The key

design factor restricting leakage is the large total pressure drop produced by flow passing

through multiple labyrinth seals. If not damaged, multiple labyrinth seals are capable of

dropping the leakage stream pressure to a level near that of the exhaust pressure, thus

reducing the leakage flow. The leakage flow through a labyrinth seal can be considered as a

flow through a series of orifice restrictions. Figure 9 depicts a schematic representation of

a labyrinth seal with vertical knives and steps, including the definition of key parameters.

In a global sense, losses caused by individual restrictions and obstacles combine to produce

a net energy loss to the system. The fluid, driven by the total pressure differential between

Pi and Pi+1 (as shown in Figure 6) is forced through a narrow clearance (restriction).

As the fluid passes through the restriction (acting as an orifice), it undergoes an increase

in velocity and a corresponding decrease in pressure with increased turbulence due to

the sharp knife tip. At some point after the orifice, the fluid adjusts to the pressure
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condition in the next chamber. During this process, some of the kinetic energy of the

fluid is recovered as a pressure rise, and some losses are converted to heat. The remaining

total pressure of the fluid provides the pressure difference that forces the fluid to enter the

next stage of the seal. Ideally, the kinetic energy of the fluid resulting from the previous

stage of throttling will be dissipated before the fluid enters the next stage [KEARTON;

KEH, 1952; MORRISON et al., 1983]. In this manner, by the time the fluid has travelled

through all of the stages of the seal, its total pressure difference is greatly reduced, leading

to negligible leakage flow through the seal.

Figure 6: Schematic representation of a generic stepped labyrinth seal, depicting two
cycles of a seal [VAKILI et al., 2006].

The application of labyrinth seals are wide, however, two main applications are very

relevant: wet gas and natural gas. The former refers to the manufacturing of gasoline,

i.e. when it occurs a wet gas stream, which is a gas mixture of saturated hydrocarbons,

where additional condensing may happen in the suction pipes.

Natural Gas Seals are related to the gas transmission by pipeline, which requires a

tremendous compressing capacity and it is the largest segment in the natural gas industry

involving compressors and as a result labyrinth seals are very important to this field.

Pneumatic devices release natural gas to the atmosphere as part of normal operation,

however there are equipment that leak in excess of 4m3 per day (high-bleed devices),

releasing an average of 3,965 m3/year per device [MCGETTIGAN, 2006]. Studies show

that the major emission sources of methane are related to pneumatic devices/pumps and

equipment leaks, accounting to approximately 60% of methane emissions [EPA, 2019]. As

it can be seen in Figure 7, natural gas compression is also needed in the production of oil,

because the so-called gas re-injection which requires the use of turbines and compressors.

When it comes specifically to compressors examples, seals are designed using labyrinth

seals to prevent or restrict the process gas to leak to atmosphere or to mix the sealing

liquid with the process gas stream. Mainly there are three classes of seals: mechanical

(contact) face seal, liquid film seal and dry gas seal.
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Figure 7: Natural Gas Reinjection.

Mechanical Face Seals (MFS) (Figure 8) uses liquid, such as oil, to lubricate, cool and

create a sealing action to the sealing components during normal operation. The leak of

mechanical face seal can be expected to be up to 10 gallons per day [ROSS; BECKINGER

et al., 2003] of gas. The leakage of a MFS is considered dirty and contaminated, because

most of the equipment with these seals drain the leakage to a separated area.

When the pressure is too high to use Mechanical Face Seal, another kind of seal called

Liquid Film Seal (LFS) can be used. The principle of this seal is to maintain a film of

oil between the gas side seals bushing and the shaft sleeve. Figure 9 shows a scheme of a

liquid film seal.

A disadvantage of the LFS is the limitation on the use of hydrogen sulfide or chlorides

as process gas, because there is usually corrosion in the system, increasing the clearance

between the components. As a result, this can bring extremely high leakage rates for the

sweet oil as well as contaminated oil [ROSS; BECKINGER et al., 2003].

Dry Gas Seal (DGS) is the most common kind of seal nowadays and it has been

selling as a standard device, due to its reliability and environmental benefits. Figure 10

illustrates the principle of this seal, i.e. the gap between the rotating seal ring and the

stationary seal ring is controlled by a spring, the process gas is usually used as a sealing

medium and the labyrinth seal is always at the end shaft.

If the process gas is extremely hazardous, toxic or dirty, an external gas must be used

as a sealing medium instead, for example nitrogenous. Besides that, if the process is dirty

or can lead to phase changes, it must work with knockout vessels or mechanical separators
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Figure 8: Mechanical Contact Face Seal (MFS).

in order to keep the dry gas seal operation.

1.1.1.1 Modeling and optimization of labyrinth seals

In a labyrinth seal, the flow locally changes direction often and rapidly speeds up and

down as it negotiates a path through the seal. Total pressure is lost continuously through

the seal, however there may be local rises in static pressure due to area changes, local

stagnation points, and sudden expansions as the fluid flows into a chamber of the seal.

Methods for analyses of labyrinth seal leakage can be classified into two main cat-

egories: global models [KOMOTORI, 1977; TIPTON, 1986] and knife-to-knife models

[MEYER; LOWRIE, 1974; ZHU; HE, 1990].

Global models approximate the labyrinth seal either by evaluating the cumulative

effect due to the series of throttling losses or as a rough pipe model with uniformly dis-

tributed wall friction [NADA, a]. Knife-to-knife models (Figure 6) explicitly characterize

the system geometry and calculate the internal flow through a seal by calculating relevant

physical parameters as they change at various points internal to the seal [HESLER, 2005].

Although computationally intensive, this knife-to-knife method allows changing in flow
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Figure 9: Liquid Film Seal (LFS).

behaviour at each throttling within the seal.

Although either of these approaches can yield good empirical correlations, the rough

pipe model provides few information to the seal designer in terms of physically relevant

design parameters such as knife spacing, shape, and sequence. A series of global models

provide good results, however, encounter difficulty when calculating kinetic energy car-

ryover. Additionally, problems are encountered predicting seal behavior in choked flow

regimes [TIPTON, 1986].

Computational Fluid Dynamics (CFD) has been successfully applied to investigate

selected labyrinth seal configurations [WITTIG et al., 1987; DEMKO; MORRISON;

RHODE, 1989; LESCHZINER; DIMITRIADIS, 1989; RHODE; ADAMS, 2000; SCHRAMM

et al., 2000; DENECKE et al., 2002]. The current available computer performance allows

conducting CFD calculations for a high number of different seal geometries within a tol-

erable computing time. This allows the use of CFD for automated shape optimization

of labyrinth seals, as it is frequently done to determine improved shaped airfoils and dif-

fusers [CHOLASEUK; SRINIVASAN; MODI, 1999; SHAHPAR, 2000]. The effect of the

labyrinth seal flow on rotor dynamics is also an important topic that has been studied ex-

tensively[CHILDS; SCHARRER, 1988; DEMKO; MORRISON; RHODE, 1990; VANCE;

ZIERER; CONWAY, 1993; BASKHARONE; GHALI, 1994; PFAU et al., 2005].

It is important to mention some studies of fluid diodes focused specially in Labyrinth

Seal, due to the wide application. First, there is a study [ABOULAICH et al., 2000]
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Figure 10: Dry Gas Seal (DGS).

which developed an improved shaped domain for a single cavity straight labyrinth seal,

using a finite element code. They found an improved shape for incompressible, laminar

flow conditions with minimal leakage.

Figures 11a and 11b show some possible seal geometry parameters that were improved

by [SCHRAMM et al., 2004], considering for instance the step position SD/KP, the step

height SH/C and so on, obtaining reasonable values for pressure drop.

(a) Stepped labyrinth seal. (b) Straight labyrinth seal.

Figure 11: Possible parameters for generic seals.

Considering for example Figure 11b, the flow passes the gap and hits the step. The

jet is then strongly deflected and forms a stagnation point on the chamber ground below

the step. Inside the labyrinth chamber, the jet separates into vortices. With increasing

step distance KP , the stagnation point moves along the chamber ground to and then up

the downstream fin. If the stagnation point reaches the region near the fin tip respective
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to the next gap, part of the kinetic energy of the jet is directly transferred to the next

chamber. This mechanism is known as the carry-over effect and particularly occurs in

straight-through labyrinth seals (Figure 11b), where it strongly impairs the sealing effi-

ciency [HODKINSON, 1939; VERMES, 1961]. A numerical investigation on the influence

of the teeth arrangement on the leakage fluid flow through the labyrinth seal were also

been made [WANG et al., 2007].

(a) (b)

Figure 12: Possible LS geometries: (a)Interlocking (b)Traditional Stepped.

Figure 12 reveals a simple definition of two possible stepped labyrinth seal geome-

tries: interlocking (Figure 12a) or traditional stepped seal and the traditional stepped

seal (Figure 12b). One interesting result found by [WANG et al., 2007] is that the former

reached a leakage larger than the latter, i.e the traditional stepped seal shows better per-

formance. The numerical modeling of the flow through the labyrinth seals was performed

by solving the Navier-Stokes equations and k–ε turbulence model based on assumption of

the axisymmetric flow.

[KIM; KANG, 2010] investigate the leakage characteristics of two labyrinth seals with

different configurations: straight and stepped, in which the latter has been proved to be

better than the former. In recent researches, [KIM; KANG; MOON, 2009; KIM; CHA,

2009] compare leakage characteristics between the straight and stepped seals, considering

possible influences, such as clearance size between the standard configurations.

Labyrinth seals are widely employed in industry, with several layouts being stud-

ied [HESLER, 2005]. However, the optimization of these shapes is underexploited in

literature, with works limited to parametric, shape optimization and genetic algorithms

[BELLAOUAR; KOPEY; ABDELBAKI, 2013; SCHRAMM et al., 2004; WRÓBLEWSKI

et al., 2010].

There are also studies [SCHRAMM et al., 2004], which applied the simulated an-

nealing method to perform a shape optimization aiming at minimizing the leakage mass

flow rate of a stepped labyrinth seal. Optimization applied to labyrinth seals have also

been performed by [ASOK et al., 2007], however they have performed only parametric

optimization in the labyrinth seals and unfortunately these methods restricts the final

geometry to the initial guess and just few innovation can be achieved as illustrated in
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Figure 15.

[ABOULAICH et al., 2000; SCHRAMM et al., 2004] have performed shape optimiza-

tion, and they highlight the importance of the geometry in a labyrinth seal, concerning its

performance. Based on the same idea, [ASOK et al., 2007], have performed a Neural net-

work and CFD-based optimization of square cavity and curved static labyrinth seals. The

study performed by [ASOK et al., 2007] have the objective of maximizing the pressure

drop of the system, which depends on a turbulent coefficient and the drag between the

flow and the wall. The interesting conclusion of this study is that the intuitive analysis

(see Figure 13) is much better than the neural optimization itself and that is possibly due

the fact that the geometry plays a more important role than its parameter. Thus, it can

be concluded and reinforced that the topology optimization is a promising method to this

field.

Figure 13: Optimization of labyrinth seal based on intuition.

1.1.1.2 The importance of the rotational speed

One important effect that is explored in this work is the influence of the rotation of

the shaft in labyrinth seal design as illustrated in Figure 14. It was reported [WASCHKA

et al., 1993] that the effect of shaft rotation is important only when the rotating speed is

very high (more exactly, when the ratio between the circumferential speed of the seal arm

and the flow speed is very large). There is also a study [SUBRAMANIAN; SEKHAR;

PRASAD, 2015] about leakage characteristics, influenced by centrifugal and thermal radial

growth computing a generic rotating labyrinth seal used in the gas turbine secondary air

system. In this study, the combined influence of seal location and its radial growth on the

leakage performance is also investigated. Three-dimensional Reynolds Averaged Navier-

Stokes compressible equations are solved together with the additional transport equations

for the turbulent kinetic energy and the turbulent dissipation rate. A standard k−ε model,

with enhanced wall treatment, available in ANSYS FLUENT 14, has been incorporated

into the analysis. The conclusion was that the leakage flow rate decreases considerably
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with centrifugal growth and further gets reduced drastically as the thermal growth is also

included, regardless of location. The effect is more pronounced at high temperature and

high pressure ratio, as the radial position of the seal is increased. Besides, the influence

of rotational speed up to 2000rad/s plays important role up to 22% [SUBRAMANIAN;

SEKHAR; PRASAD, 2015].

Figure 14: Illustration of the effect on the flow due to the rotation of an axis.

With the purpose of studying better the rotational speed with respect to the possible

optimized geometries, this work also explores this parameter in optimization results.

1.2 Topology Optimization Method (TO)

Optimization is the search for the best possible solution to a problem with an objective

function, design variables, and constraints. The optimization in Engineering currently has

three forms: the parametric, shape and topology optimization as it can be seen in Figure

15 . The first operates with dimensions or ratio of dimensions, however, there is no change

in the shape of the structure. The second kind modifies the internal or external contours

of the structure by means of polynomials or splines, however, there is no addition of new

gaps in the part. Finally, topology optimization method, here referred to as TO, consists

in distributing the material in the studied area to optimize (maximize or minimize) the

objective function subjected to some constraints. This is accomplished by assigning a

design variable which is usually a pseudo-density ranging from 0 to 1, with 0 being the

absence material 1 and the presence of material.
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Figure 15: Possible types of fluid diodes optimization.

The topology optimization procedure can be seen in Figure 16, where the design

domain can be discretized, optimized and the found solution can be verified and then

manufactured.

With the previous studies of the literature in mind, it is possible to imagine the wide

of possible solutions to the fluid diode design, specially the labyrinth seals.

1.2.1 Bibliography review of topology optimization

The first successful implementation of topology optimization was made by [BENDSØE;

KIKUCHI, 1988] for structural design applications. In their works, the homogenization

method [BENDSØE; KIKUCHI, 1988] and SIMP (Solid Isotropic Material with Penaliza-

tion) method [ROZVANY; ZHOU; BIRKER, 1992; BENDSØE; SIGMUND, 1999] were

developed. The former employs homogenization concept on micro-structure to represent

lay out of the material and void region. The latter uses the relationship between material

properties and element density to be optimized. In SIMP method, the final optimization

problem can be stated as finding the optimized distribution of element densities in the

structure.

SIMP method is easy to implement and efficient due to good harmony with Finite

Element Method (FEM) and thus, it has been widely used in a broad range of Engineer-

ing design problems such as linear elastic, dynamics, fluid mechanics and multi-physics.

The numerous works on the conventional topology optimization can be found in [BEND-

SOE; SIGMUND, 2013] and references therein. Topology Optimization method has its

inherent numerical instabilities such as checkerboard patterns, mesh dependency and min-

imum member size control, although they can be avoided by several techniques and con-
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Figure 16: Topology optimization procedure for a labyrinth seal.

straints such as perimeter control [HABER; JOG; BENDSØE, 1996], density redistribu-

tion [YOUN; PARK, 1997], slope constraint [PETERSSON; SIGMUND, 1998; BOUR-

DIN, 2001; ZHOU; SHYY; THOMAS, 2001] and density or sensitivity filtering [SIG-

MUND; PETERSSON, 1998; BRUNS; TORTORELLI, 2001; BOURDIN, 2001; GUO;

GU, 2004].

Xie and Steven proposed the evolutionary structural optimization (ESO) based on

element-wise stress level [XIE; STEVEN, 1993, 1994; QUERIN; STEVEN; XIE, 1998;

KIM et al., 2002]. In the ESO, optimized topology of a structure can be represented by

adding and/or subtracting elements in a heuristic way. [YOON; KIM, 2005] proposed

a new topology optimization methodology named element connectivity parameterization

(ECP). In the ECP, the elastic links are assumed to exist at vertices of elements and

employed as design variables to determine existence of elements connected by them. The

ECP can provide excellent designs in geometrically nonlinear problems since unrealistic

effect on distortion of low density elements is eliminated. The material cloud (MC)

method was proposed by [CHANG; YOUN, 2006]. In this method, the optimized topology

is expressed by means of the material clouds and the size and/or position of them are

design variables. With this method, the change of design space can be easily achieved

and computational costs can be reduced by introducing the active finite elements.

Since cell-based representations of topology leads irregular and vague boundary lay-

outs, other attempts for smoothing material boundary have been studied. In recent

years, level set based topology optimization which was first proposed by [SETHIAN;

WIEGMANN, 2000] has been extensively investigated. The moving front which express

material boundary is adopted as design variables. The evolution of material boundary
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is governed by Hamilton-Jacobi equation employing the shape velocity computed from

design sensitivity analysis. Several works on level set based shape and topology optimiza-

tion can be found in [WANG; WANG; GUO, 2003; ALLAIRE; JOUVE; TOADER, 2004;

ALLAIRE; JOUVE, 2005; AMSTUTZ; ANDRÄ, 2006; WANG; WANG; GUO, 2004].

Despite the profound investigations on level set based topology optimization, it has a

shortcoming which is concerned with the incapability of creating new inner fronts during

the optimization process. Due to the shortcoming, an initial level set generally includes

a number of inner fronts so that the optimized topology of level set based topology op-

timization is highly dependent on the initial number and positions of inner fronts. In

order to overcome the shortcoming, level set based topology optimization attempts for

free creation of new inner fronts based on the topological derivative [BURGER; HACKL;

RING, 2004; ALLAIRE; JOUVE, 2005; AMSTUTZ; ANDRÄ, 2006] and the strain energy

density [PARK; YOUN, 2008] have been presented. [BELYTSCHKO; XIAO; PARIMI,

2003] proposed a nodal implicit function based topology optimization using level set rep-

resentation and extended finite element method (XFEM). Level set method may be able

to provide clear boundaries during topology optimization process, however, the usual im-

plementation is generally complex and it is not an easy task to setup the optimization

parameters.

There has been several works on spline based topology optimization. The earliest

spline based topology optimization is the bubble method [ESCHENAUER; KOBELEV;

SCHUMACHER, 1994]. In this method, bubbles are inserted based on the characteristic

function and shape optimization of the outer boundaries and inner bubbles which are

represented by splines are sequentially repeated for topology optimization, however, the

conventional FEM with remeshing scheme is used for analysis in the method.

The Topology optimization of binary structures (TOBS) was introduced by [SIVA-

PURAM; PICELLI, 2018; SIVAPURAM; PICELLI; XIE, 2018] and have a reasonable

potential in TO for fluids, since it can eliminate gray scale, which requires some effort

on setting up parameters in density method. Besides, TOBS can keep clear boundaries

between fluid and solid, which is essential for simulations that requires determination of

wall distance. Previous works in the literature reported that solving TO with binary

variables is time consuming [BECKERS, 1999; SVANBERG; WERNE, 2006], however,

literature[NADA, b] shows that the TOBS branch-and-bound implementation is efficient.
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1.2.2 Topology optimization for fluids

The application of the topology optimization method to fluid problems was introduced

by [BORRVALL; PETERSSON, 2003], proposing the optimization of the flow in a 2D

channel in order to minimize energy dissipation. In this case, the flow was modelled

by the Navier-Stokes equation for incompressible low Reynolds numbers and to avoid

intermediate values, they penalized the design variables with a factor, very similar to

the SIMP (”Solid Isotropic Material with Penalization”) method. The main idea is to

discretize a design domain in finite elements, finite volumes or similar methods in order

to solve a problem of finding which regions should be solid (ρ = 0) or fluid (ρ = 1).

This requires relaxing the problem and acceppting temporarily intermediate values to

minimize an objective function, which is usually energy dissipation, subjected to some

constraints. As the optimization proceeds, the intermediate values (gray elements) in the

design domain should disappear and a clear solution of a geometry should be obtained.

The process of implementing topology optimization for fluids can be illustrated in Figure

16.

[GERSBORG-HANSEN; SIGMUND; HABER, 2005; OLESEN; OKKELS; BRUUS,

2006] extended the work of [BORRVALL; PETERSSON, 2003] by studying a wider range

of Reynolds numbers, considering fluid inertial effects, and nonlinearity, through appli-

cation of the Navier-Stokes equation. These implementation allow the design of devices

based on the variation of the velocity of the fluid in the channel, as directional flow selec-

tors, in which, according to the velocity, the fluid follows a different direction through the

channel. [EVGRAFOV, 2005] compares the model applied by [BORRVALL; PETERS-

SON, 2003] with the Brinkman model with an approach that considers fluid viscosity

as one of the problem variables. Afterwards, it is studied the extension of TO to fluids

with quasi-compressibility effect [EVGRAFOV, 2006] and the effects of the application

of topology optimization to non-Newtonian fluids [PINGEN; MAUTE, 2010]. Topology

optimization has been also studied for rotational fluid flow [ALONSO et al., 2018] and

considering non-newtonian fluids [ALONSO; SAENZ; SILVA, 2020]. Topological deriva-

tives applied to fluids has been explored by [SÁ et al., 2016]. [YOON, 2016] applied

topology optimization for turbulent flows modeled by the Spalart-Allmaras model. More

recently, [DILGEN et al., 2018] used the Spalart-Allmares and k − ω models, showing

that optimized designs outperform those optimized under a frozen turbulence assumption

and [SÁ et al., 2021] expanded the topology optimization model of turbulent flows using

Spalart- Allmaras model in rotating fluid domains.
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It is not common to found also articles about topology optimization for Fluid Diodes,

however, [LIN et al., 2015] has published an article which uses topology optimization

method for designing Tesla valves, that is, for designing fixed-geometry fluid diodes that

allow easy passage of fluid flowing in one direction while inhibiting flow in the reverse

direction. Also, an exploration of Pareto frontier of this problem was studied [SATO et

al., 2017] as well as a comparision of 2D and 3D analysis in this context was performed

[GUO et al., 2020]. As for the topology optimization applied to Labyrinth Seals, nothing

was found in the literature.

The Topology Optimization of Binary Structures method in fluid flow problems has

not been largely explored, since most of analysis relies on density method. However,

the TOBS method combining Navier-Stokes equation with Darcy’s law not only can help

eliminating gray scale issues, making it clear where the boundary is located, but also

simplify setting some material model penalization parameters along optimization process,

which are used to avoid gray scale in density method.

This work extends the progress made by [LIN et al., 2015] with the labyrinth seal

approach by using TOBS considering rotational speed of the shaft, influence of structural

parts and implementation of movable rotational boundary condition that can detect if

the parts belongs to stator or shaft.

1.3 Motivation

Uncontrolled methane emissions can have a great influence on climate impacts. The

emission occurs in a variety of ways, such as a second product from crude oil production,

leakage from labyrinth seals on compressors and turbines, fugitive leakage on facilities

with a high number of equipment components, direct emissions from gas burned in pilot

flame on flares and also from pneumatic devices, which are designed to vent gas as part

of operation. Studies show that the major emission sources are related to pneumatic de-

vices/pumps and equipment leaks, accounting to approximately 60% of methane emissions

[EPA, 2019]. Pneumatic devices release natural gas to the atmosphere as part of normal

operation, however there are equipment that leak in excess of 4m3 per day (high-bleed

devices), releasing an average of 3,965 m3/year per device [MCGETTIGAN, 2006].

The leakage rate is dependent on maintenance and design, so typically the solutions

orbit between replacing the high-leaking devices with low-leaking devices with focus on

improved labyrinth seals and maintenance aimed at reducing losses. However, the main-
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tenance has a limited effectiveness, since it involves generally an operational pressure

reduction. Thus, the most effective approach is to redesign labyrinth seals for equipment

in the group of turbines and compressors.

Considering all the topology optimization capabilities, it can perform this redesign by

bringing non-intuitive geometries, avoiding a long cycle of design, simulation and redesign.

Besides, the use of TOBS method can provide clear solid-fluid boundaries and avoids the

need of continuation schemes to eliminate gray scale. It can, thus, bring innovation to

this field, fighting against undesirable emissions, through a systematic methodology to

design such seals.

1.4 Objective

The main objective of this work is the development of a systematic design optimization

method, based on the Topology Optimization Method (TO), applied to the design of fluid

diodes focused on labyrinth seals, in order to reduce fluid leakage, using integer variables

(the Topology Optimization of Binary Structures [NADA, c]). The goals of the project

can be divided in:

• Development of a methodology to design passive dissipative fluid diodes focusing on

labyrinth seal devices using topology optimization method;

• Apply the TOBS method to fluid devices design;

• Development of methods for dealing with moving rotational boundaries conditions

and floating islands elimination in the topology optimization process.

1.5 Scientific Contributions

There are recent studies about fluid diodes and topology optimization, however this

work believes to add the following scientific contributions:

• Development of a TO methodology to design fluid diodes focused on labyrinth seals.

• Extension of the TOBS methods to fluids[SOUZA et al., 2021], applying it to fluid

flow problems, not only helping to eliminate gray scale issues, making it clear where
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the boundary is located, but also simplifying setting some material model penaliza-

tion parameters along optimization process, being a simpler method to deal with

these problems;

• Development of a classification algorithm to recognize geometries during TO, helping

the implementation of a movable rotational boundary conditions;

• Define an objective function based on maximization of vorticity;

• Development of an objective function with structural terms that can eliminate un-

desirable floating islands in the results.
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2 FLUID FLOW MODELING

2.1 Hypothesis

In this section some hypothesis are explored and discussed in order to properly im-

plement the method. Fluid diodes have a variety of application with a wide range of

parameters related to rotation, dimensions and leakage.

In the application of labyrinth seals related to compressors and turbines, it is com-

mon to use turbulence models due to high velocities values, however this work uses low

Reynolds number since it is a pioneer work using topology optimization and several chal-

lenges are faced, such as how to deal with solid parts in the middle of domain (floating

islands) and how to develop a method that does not close the passage (gap) between rotor

and stator.

Permanent regime is also considered in this work in order to simplify the initial models,

letting transient regime analysis as a future work that can be studied.

Incompressibility is adopted in this work for being a resonable option, since compress-

ible flow is the branch of fluid mechanics that deals with flows having significant changes

in fluid density and that is not the case of this work. In order to distinguish between

compressible and incompressible flow, the Mach number (the ratio of the speed of the

flow to the speed of sound) must be greater than about 0.3 (since the density change is

greater than 5% in that case) before significant compressibility occurs as illustrated in

Figure 17. So, although it might be counter-intuitive, in these cases the density can be

considered negligible [FOX; MCDONALD, 1994].

This incompressibility hypothesis may not be the case for higher rotational speed

devices with thicker shaft and high pressure differences than the values used in this work.
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Figure 17: Incompressible flows according to Mach Number.

2.2 The Navier-Stokes Equations

In the next sections, it will be explored the most common equations for fluids, i.e. the

Navier-Stokes equations, in order to apply them into the topology optimization method.

2.2.1 Strong Formulation

In order to simulate the fluid diodes, first it is necessary to write the complete Navier-

Stokes equation considering all hypothesis. The Navier-Stokes equations can be written

generically as Equation 2.1 together with continuity Equation 2.2 [FOX; MCDONALD,

1994].

Du

Dt
− 1

2
µ∇ · (∇u +∇uT ) +∇p = f (2.1)

∇ · u = 0 (2.2)

where
Du

Dt
=
∂u

∂t
+∇u · u

When permanent regime is analyzed, then
Du

Dt
=
�
�
��7

0

∂u

∂t
+∇u · u.

Transient regime can be considered in fluid diodes, however it does not bring too much

value to the proposed analysis. Specially, when the diodes are inserted in equipment such

as turbines and compressors without pulsating flow, the term ∂u
∂t

can be neglected, leading

to Equation 2.3 and 2.4.
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∇u · u− 1

2
µ∇ · (∇u +∇uT ) +∇p = f (2.3)

∇ · u = 0 (2.4)

2.2.2 Weak Formulation in 2D plane model

For the problems where the time dependency is negligible, then in order to obtain the

variational formulation and considering any external force equal to zero and u ∈ V , p ∈ Q
and w = (u, p), the strong formulation should be multiplied by test functions (v, q) ∈ W
as shown in Equation 2.5.

∫
Ω

ρ(∇u · u) · vdΩ +

∫
Ω

∇p · vdΩ− 1

2

∫
Ω

µ∇ · (∇u +∇uT ) · vdΩ = 0 (2.5)

Integrating Equation 2.5 by parts, it results in Equation 2.6. In this last form, the

term in the boundary can be eliminate, beacause the boundary conditions to be applied

considers a Dirichlet condition on the countour.

∫
Ω

ρ(∇u·u)·vdΩ+

∫
Ω

∇p·vdΩ−1

2

∫
Ω

µ(∇u+∇uT )·∇vdΩ+
1

2
��

���
���

���
���

�:0∫
∂Ω

µ(∇u +∇uT ) · nv · ds = 0

(2.6)

Defining the weak form of the momentum equation as R1 (Equation 2.7), continuity

equation as R2 (Equation 2.8) and combining them toghether in Equation 2.9.

R1 =

∫
Ω

ρ(∇u · u) · vdΩ +

∫
Ω

∇p · vdΩ− 1

2

∫
Ω

µ(∇u +∇uT ) · ∇vdΩ (2.7)

R2 =

∫
Ω

∇ · uq · dΩ = 0 (2.8)

R1 +R2 = 0 (2.9)

The resulting system can written as Equation 2.10.

∫
Ω

ρ(∇u · u) · vdΩ +

∫
Ω

∇p · vdΩ− 1

2

∫
Ω

µ(∇u +∇uT ) · ∇vdΩ +

∫
Ω

∇ · uq · dΩ = 0

(2.10)
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2.2.3 Weak formulation in 2D Swirl Model

It is the scope of this work to consider rotational speed in the generation of new

topologies. Thus, a 2D axysimmetric model with swirl is implemented [ALONSO et al.,

2018], which is commonly referred as 2.5D. Thus, the position and velocity vectors should

be rewritten as shown in Equation 2.11 and 2.12.

Position:

s = (r, θ, z) = rer + zez (2.11)

Velocity:

u = (ur, uθ, uz) = urer + uθeθ + uzez (2.12)

Considering axisymmetry, the derivatives in relation to θ becomes zero (∂()
∂θ

=0) With

the system as shown in Figure 18, the velocities and acceleration equations are written as

Figure 18: Coordinates System chosen to model the 2.5D System.

uabs = ur + ω∧s (2.13)

aabs =
Duabs

Dt
= a + 2ω ∧ ur + ω ∧ (ω ∧ s) + ω̂ ∧ s (2.14)

When applying the rotating referential system to the Navier Stokes, the result is

represented in Equation 2.15, which is the equation used in this project when 2D-Swirl is

referred.

ρ∇ur · ur = −∇p+ µ∇2ur + ρf− 2ρω ∧ ur − ρω ∧ (ω ∧ s) (2.15)
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Similar to previous section, the resulting equation is represented in Equation 2.16.

∫
Ω

ρ(∇ur · ur) · vdΩ +

∫
Ω

∇p · vdΩ− 1

2

∫
Ω

µ(∇ur +∇uTr ) · ∇vdΩ

−
∫

Ω

∇ · urq · dΩ

+

∫
Ω

2 · ρω ∧ ur · vdΩ

+

∫
Ω

ρ · ω ∧ (ω ∧ s) · vdΩ = 0

∂()

∂θ
= 0 (2.16)

with dΩ = 2πrdrdz

2.3 Finite Element Method for fluid Modelling

This work uses the Taylor-Hood element, illustrated in Figure 19, for the finite element

analysis, because it has been shown to be fast and easy to converge [TAYLOR; HOOD,

1973]. The idea of this approach is to use a triangular elements approximating the nodal

velocities with 2- degree-polynomial and nodal pressure with 1-degree-polynomial, and the

design variable is defined as one variable per element with discontinous Garlekin element

(order 0).

Pressure

Interpolation

Velocity

Interpolation

Design

Variable

Figure 19: Taylor Hood Element and its interpolation.

The triangular element (same with quadrilateral elements) illustrated in Figure 20

needs an interpolation done in local coordinate frame defined by ε and η with Ω ∈ [0, 1]×
[0, 1] and then a transformation to the global coordinate frame by using the relation with

the vertices (x1, y1), (x2, y2) and (x3, y3).

x = x1 + (x2 − x1)ε+ (x3 − x1)η (2.17)
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v

h

Figure 20: Triangular Element with coordinate frame.

y = y1 + (y2 − y1)ε+ (y3 − y1)η (2.18)

By using the local coordinates, the interpolation for the pressure is given by

x1(ε, η) = 1− ε− η (2.19)

x2(ε, η) = ε (2.20)

x3(ε, η) = η (2.21)

Analogously, the velocity is similar except for the quadratic interpolation

ψ1(ε, η) = (1− ε− η)(1− 2ε− 2η) (2.22)

ψ2(ε, η) = ε(2ε− 1) (2.23)

ψ3(ε, η) = η(2η − 1) (2.24)

ψ4(ε, η) = 4ε(1− ε− η) (2.25)

ψ5(ε, η) = 4εη (2.26)

ψ6(ε, η) = 4η(1− ε− η) (2.27)

After previous analyses it is necessary to perform the partition of the domain Ω into

a finite set of cells such that together these cells form a mesh of the domain Ω.

Then, it is necessary to substitute in the nonlinear variational problem considered in

the analyzed case given by Equation 2.28.

F (u; v) = 0 ∀v ∈ V̂ (2.28)

where now F : V × V̂→ R is a semilinear form, linear in the argument(s) subsequent to
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the semicolon. With the discretization of the variational problem restricted to a pair of

discrete trial and test spaces: find uh ∈ Vh ⊂ V satisfying Equation 2.29.

F (uh; v) = 0 ∀v ∈ V̂h ⊂ V̂ (2.29)

The finite element solution uh =
∑N

j=1 UjΦj may be calculated by solving a nonlinear

system .

b(U) = 0 (2.30)

where b : RN → RN and bi(U) = F (uh, φ̂)

In order to solve the nonlinear system, the Newton method is used by computing the

Jacobian A = b′. If the semilinear form F is differentiable in u, then the entries of the

Jacobian A are given by Equation 2.31.

Aij(uh) =
∂bi(U)

∂Uj

=
∂

∂Uj

F (uh, φ̂) = F ′(uh, φ̂i)
∂uh
∂Uj

= F ′(uh, φ̂i)Φj = F ′(uh,Φj, φ̂i)

(2.31)

At each Newton iteration, it is necessary then to evaluate (assemble) the matrix A

and update the solution vector U by

Uk+1 = Uk − δUk , k = 0, 1, ... (2.32)

with ∂Uk to solve the linear system 2.33.

A(ukh)∂Uk = b(ukh) (2.33)

At each Newton iteration, a linear variational problem of the canonical form is solved

and the discretization of Equation 2.34 recovers the linear system.

F ′(uh; ∂u,v) = F (uh; v) ∀v ∈ V̂h (2.34)
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3 TOPOLOGY OPTIMIZATION METHOD

The traditional topology optimization method used in fluids are based on density

method [BORRVALL; PETERSSON, 2003] , in which design variables from a design

domain can reach values between 0 (solid) and 1 (fluid).

In the current implementation of topology optimization for fluids considering density

methods, there are essentially three problems. First, the gray scale in the result turns

difficult the identification of the contour of the fluid mesh, which may be a problem in some

applications also during the optimization process. Second, even for low Reynolds flow

design problems, a continuation scheme of the material model penalization parameters

is necessary to avoid gray scale and to obtain clear boundaries. Third, in complex fluid

flow optimization problems it is difficult to specify the maximum value of the inverse

permeability in order to avoid the fluid flow inside the solid.

For this reason, this work proposes a novel methodology that tackles the first two

problems, i.e., it avoids gray scale and obtain clear boundaries. The idea is to implement

the Topology Optimization of Binary Structures (TOBS) [NADA, c] for fluid flow design,

which is a novel topology optimization method that has been used in solid mechanics to

generate optimized structural solutions considering only binary {0, 1} design variables.

The main advantage of {0, 1} methods is the clear definition of the interface and the

absence of gray scale. It is a method easy to implement which preserves the material

distribution features.

Thus, this section explains the material model, objective functions and the TOBS

method applied to fluids.

3.1 Material Model for Topology Optimization

In this research, the approach [BORRVALL; PETERSSON, 2003; GERSBORG-HANSEN;

SIGMUND; HABER, 2005] is to adopt a field of porosity to determine the path to be
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covered by the fluid. Regions of low permeability are considered to be solid and regions

of high permeability are considered to be fluid. The variable used in this project is the

inverse permeability (α).

It is important to interpolate the material flow (see Figure 21) in the domain and an

absorption coefficient κ is defined, which in solid regions it has values of κ >> 1 and in

fluid regions it has values of κ = 0. For the optimization algorithm of fluid diodes, the

material model function of Equation 3.1 is used [BORRVALL; PETERSSON, 2003].

κ(α) = κmax + (κmin − κmax)α
1 + q

α + q
(3.1)

where κ ∈ [κmin, κmax] and q is the parameter that controls the linearity of κ. Thus, when

q →∞,κ→ κmax(κmin − κmax) becomes a linear function.

A relevant difference when appliying the TOBS method is that the q factor is set to

be 1 and does not need to change during the optimization. Also, a linear form of material

model interpolation could be used, however, it is kept the traditional form in order to

facilitate comparisons.

Figure 21: Plot of the relationship between the q, α and κ parameters based on [BOR-
RVALL; PETERSSON, 2003].

3.2 Objective Functions

This section start with common used objective functions and then explores properly

different possible alternatives to the fluid diodes design problem.
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3.2.1 Total Pressure Loss

The first idea of an objective function could be the maximization of the pressure drop

between inlet and outlet in a certain design domain. The effectiveness of a particular

seal design or configuration can be represented in terms of the loss of total pressure

across the seal. The pressure loss can be expressed, relative to the inlet total pressure, in

dimensionless form as given by Equation 3.2.

∆P =
Pinlet − Poutlet

Pinlet
(3.2)

This approach could be very useful because it is a direct measure of the relative

energy dissipated in the seal internal flow passages, however, when considered as objective

function this approach did not converge easily and for this reason other objective functions

are explored.

3.2.2 Energy Dissipation

The most common objective function used in topology optimization in fluids is en-

ergy dissipation inside a design domain. [BORRVALL; PETERSSON, 2003] defined in

Equation 3.3.

Φ(u, α) =
1

2
µ

∫
Ω

||∇u+∇uT ||2dΩ +

∫
Ω

κ(α)||u||2dΩ (3.3)

where u is velocity vector, κ(α) the inverse porosity of an element (fluid or structure) and

µ the viscosity.

The first term of Equation 3.3 can be sometimes simplified in a 2D scenario as shown

in Equation 3.4 [LIN et al., 2015].

||∇u+∇uT ||2 = µ(∂iui + ∂juj)∂jui =
∑

µ(∂iui + ∂juj)
2 (3.4)

The problem with this function is that when working with labyrinth seals its maxi-

mization usually brings results blocking the inlet and outlet. That is completely undesir-

able since rotating parts requires a distance from stationary parts. This is illustrated in

Figure 22.
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Figure 22: Result of maximizing energy dissipation in a labyrinth seal (black: solid, white:

fluid).

3.2.3 Diodicity

In order to fix the previous issue, an approach of considering labyrinth seals as fluid

diodes are used. In fluid diodes design the usual adopted objective function is the diodicity.

The diodicity is defined in Equation 3.5 as a relation between the pressure difference

between two flows (forward and reverse). The analysis considers both forward and reverse

flow illustrated in Figure 23.

(a) Forward Flow (b) Reverse Flow

Figure 23: Fluid flow load cases.

Di =
∆preverse
∆pforward

(3.5)

[LIN et al., 2015] shows that the relationship between pressure drop is equivalent of

relationship of energy dissipation (see Equation 3.6).

Di =
∆preverse
∆pforward

=
∆pr ·Qr

∆pf ·Qf

=
Φ(ur, pr)

Φ(uf , pf )
(3.6)

where Q is the fluid flow given by Q =
∫

udS.

When simulating diodicity, the nonlinear optimization problem has a variety of so-

lutions, thus a term F with its weight WF (usually from 0.1 to 3) should be added to

the objective function and configured to avoid undesirable local minima. The idea of F

is to enable the reverse flow to occur, minimizing (κ · ||u||2reverseF low) term, caring not to
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influence very much the main objective function (diodicity).

F =
1

L2

∫
Ω

κ · ||u||2reverseF low
κmaxUreverseAverage

dΩ (3.7)

where L represents the inlet size.

Thus, the problem of a fluid diode can be set as Equation 3.8. However, this proposed

optimization problem does not solve two common problems, which are velocity through

solid parts (see Fig. 24a) and floating islands in the design domain (see Fig. 24b).

min

α

Φ(uf , pf )

Φ(ur, pr)
+WF · F

s.t. (u · ∇)u− µ∇2u +∇p+ α · u = 0 in Ω

∇ · u = 0 in Ω

Vdown ≤
∫
αdΩ ≤ Vup

0 ≤ α ≤ 1 (3.8)

(a) Fluid flowing through solids. (b) Undesirable floating islands.

Figure 24: Issues with the proposed problem with simple diodicity.

In a 2D plane fluid diode such geometries are acceptable, however, labyrinth seals

with rotational conditions having floating islands may not be wanted, thus to solve pre-

vious problems, structural terms under forces from fluid are considered. It introduces an

additional term in the objective function similar to fluid-solid interaction problems, trying

to minimize the compliance of structures (solid parts) as described in Section 3.2.5.
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3.2.4 Vorticity

A novel proposed approach to design fluid diodes is to consider the vorticity squared

(defined in Equation 3.9) of the flow which is desirable to raise inside the cavity in order

to recirculate fluid and inhibit flow in a certain direction.

Such approach is necessary because diodicity alone may not bring interesting and

complex geometries to the results. Vorticity induces rotational flow in the labyrinth seal

and, consequently, more complex and efficient geometry are generated.

V or(u, p) =

∫
Ω

(∇× u) : (∇× u)dΩ (3.9)

The optimization problem considering vorticity could be described by Equation 3.10.

max

α
V orr(ur, pr) =

∫
Ω

(∇× ur) : (∇× ur)dΩ

s.t. (u · ∇)u− µ∇2u +∇p+ α · u = 0 in Ω

∇ · u = 0 in Ω

Vdown ≤
∫
αdΩ ≤ Vup

0 ≤ α ≤ 1 (3.10)

The main goal of this work is to raise the vorticity in the real flow direction in order

to generate complex and interesting geometries. Thus, this term is added to the full

optimization problem, considering the reverse flow (from right to left), however with a

minus signal since the original optimization problem is minimization. Thus, the complete

problem of a fluid diode can be described in Equation 3.11.

min

α

Φ(uf , pf )

Φ(ur, pr)
+WF · F −WV · V orr

s.t. (u · ∇)u− µ∇2u +∇p+ α · u = 0 in Ω

∇ · u = 0 in Ω

Vdown ≤
∫
αdΩ ≤ Vup

0 ≤ α ≤ 1 (3.11)
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3.2.5 Fluid-Structure interaction (FSI)

As explained in previous section undesirable islands in some cases may remain in

the final solution. For this reason, a compliance term of the solid parts is added to the

objective function and the forces can come from the fluid flow simulation.

The main idea is illustrated in Figure 25 showing that the pressure field obtained from

a CFD simulation is transformed into forces on structures (solid parts) with a boundary

condition of no displacements on the boundaries and this tends to eliminate floating islands

since the deformation is high when not attached to wall. One additional hypothesis in

this simulation is that the deformation of the structure is too small to interfere in the

fluid flow simulation.

Figure 25: Scheme showing how forces and boundary conditions are applied on structures

with u as velocity with parabolic profile on inlet with magnitude according to a Reynods

number value.

After applying properly the forces on solids, the structural term must be introduced

in the objective function as minimization of the compliance (strain energy), defined in

Equation 3.12. The structure analysis in this work is performed, considering isotropic

material with Young’s Moduls of 200GPa and Poisson’s ratio of 0.3.

E =

∫
1

2
σ : εdΩ (3.12)

where σ is mechanical stress tensor and ε is symmetric strain-rate tensor of structure.

To solve the forward problem of structural problem in the variation formulation, the

Equation 3.13 is necessary to be solved.

∫
σ(x) : ε(v)dΩ = 0 (3.13)
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with x as displacement, and v as test function

The structural term is added in the full optimization problem in Equation 3.14, with

a term WE to properly scale to a similar order of magnitude of Di.

min

α

Φ(uf , pf )

Φ(ur, pr)
+WF · F −WV · V orr +WE · E

s.t. (u · ∇)u− µ∇2u +∇p+ α · u = 0 in Ω

∇ · u = 0 in Ω∫
σ(x) : ε(v)dΩ = 0

Vdown ≤
∫
αdΩ ≤ Vup

0 ≤ α ≤ 1 (3.14)

(a) Labyrinth seal with undesirable islands. (b) FSI term added to the objective func-

tion.

Figure 26: Results when considering structural terms or not.

The benefits of adding such term is illustrated in Figure 26 a-b, where floating islands

disappear and the geometry becomes clean.

3.2.6 Filtering in topology optimization

Fluid flow simulation usually does not require the use of filter in the topology opti-

mization, because it usually does not present checkerboard patterns or mesh dependency.

However, the maximization of energy dissipation or the use of diodicity bring results with

some challenges, such as small width channels which require some kind of complexity

control for minimum size.

The filter employed in this work is the same of [GUEST; GENUT, 2010], since the

idea is to separate the design variable discretization from the mesh. For that, a Heaviside

projection scheme can be defined in Equation 3.15.
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φ(α) =


0 if

∑
i∈Ne

αi > 0

1 if
∑
i∈Ne

αi = 0
(3.15)

i ∈ N e if ||xi − xe|| < rmin

where φ(α) is filtered design variable, xi and xe are the position of an element from the

mesh to an element of design variable, respectively, and the distance between them should

be inside a distance rmin (see Figure 27).

Figure 27: Elements i of a Neighboorhood (N e) inside a distance of rmin to an element e.

3.3 The TOBS Method

In the TOBS methodology [NADA, c, d], a set of binary variables αj ∈ {0, 1} is

defined to indicate the absence or the presence of material and in this work it is related

to the permeability of the fluid. A generic binary optimization problem with inequality

constraints is given by Equation 3.16.

Minimize
α

f(α)

Subject to gi(α) ≤ gi, i ∈ [1, Ng]

αj ∈ {0, 1}, j ∈ [1, Nd]

(3.16)

where α is the vector of design variables (usually called densities in the case of structural

Topology Optimization) of size Nd, f is the objective function, gi is the ith inequality
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constraint with gi being its associated upper bound and Ng is the number of inequality

constraints.

In the TOBS method the optimization problem is approximated by Equation 3.17, a

sequential linearization of the objective and constraint functions. Thus, the approximated

linearized optimization problem at an iteration k is represented by

Minimize
∆αk

∂f(αk)

∂α
·∆αk

Subject to
∂gi(α

k)

∂α
·∆αk ≤ gi − g

(
αk
)

= ∆gki , i ∈ [1, Ng]∣∣∣∣∆αk∣∣∣∣
1
≤ βNd

∆αkj ∈ {−αkj , 1− αkj}, j ∈ [1, Nd]

(3.17)

where (·)k indicates the quantity (·) at iteration k, ∆αk is the update values of design

variables and ∆gki is the upper bound of constraint i. To avoid drastic changes of the

design, an extra-constraint based on the 1-norm of design variables is added to restrict

the number of flips from 0 to 1 and vice-versa. A parameter β defines a percentage of the

total number Nd of design variables that is allowed to flip variables. By using small values

of β ensures that the number of flips remains low at each iteration k, thereby keeping

the truncation error O(
∣∣∣∣∆αk∣∣∣∣2

2
) of the linearization approximation small. Such tool is

very important in structural problems, however, not very useful to fluid flow problems, as

shown in the results. Since this study can work in both fields the β stands in Equation

3.17.

The volume constraint in TOBS method uses ε value that restricts big changes in the

design variables over optimization iterations. This is discussed in numerical examples,

however what matters in practice in fluids is how fast the optimization goes to a local

minimum, because the range of the limits in the linearized optimization is higher. This

behaviour can be seen as example in Figure 52 of result section. The constraint bounds

are modified by using Equation 3.18.

∆gki =


−ε1gi

(
αk
)

: gi < (1− ε1)gi
(
αk
)

gi − gi
(
αk
)

: gi ∈ [(1− ε1)g
(
αk
)
, (1 + ε2)g

(
αk
)
]

ε2gi
(
αk
)

: gi > (1 + ε2)gi
(
αk
) (3.18)

The integer optimization problem comes from sequential linearization that can be
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solved via Integer Linear Programming (ILP). In this work, the ILP problem is solved

by using the branch-and-bound solver present in CPLEX c© optimization package from

IBM c©. Other libraries have been also tested, such as Mixed-integer linear programming

(MILP) from Matlab c© and glpk from Octave, however, they all lack of efficiency.

The branch-and-bound method is an algorithm based on the heap data structure. The

ILP is first solved without any integer constraints using some linear optimization tech-

niques. Then branches of the problem are created with additional inequality constraints

on the design variables in order to find integer solutions. This process repeats until the

first integer solution is obtained.

3.4 Movable rotation boundary condition (MRBC)

In some design application, it is desirable to have solid regions attached to the

shaft
(
ω =

uθ
r

)
rather than the stator(ω = 0) (see Figure 28).

(a) Solid (red) attached to the
shaft.

(b) Solid (red) attached to the
stator.

Figure 28: Solid position and rotational speed.

Thus, a movable rotation boundary condiction (MRBC) has to be implemented, how-

ever, the difficult of the MRBC relies on how to determine where each solid part belongs

to, along the optimization process. It could be set, for example, a parameter as the dis-

tance from the centroid of the solid parts to the shaft or stator, however this would have

a problem with solids in the middle of the design domain.

For this reason, it is implemented an algorithm able to transform a generic 2D point

cloud into polygons that can be extracted and meshed. The main idea is to use 2D

Delaunay triangulation and then to extract geometries. The goal is to maximize the

smaller angle of a triangle using the point cloud and then determine a mesh that can
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define a surface. Figure 29 shows an example to determine if D belongs to the circle or

not, and then select the points of the mesh. This determination can be done by using the

determinant of Equation 3.19.

Figure 29: Delaunay algorithm to determine if a point belongs to a circle.

∣∣∣∣∣∣∣∣
Ax −Dx Ay −Dy (Ax −Dx)

2 + (Ay −Dy)2

Bx −Dx By −Dy (Bx −Dx)
2 + (By −Dy)2

Cx −Dx Cy −Dy (Cx −Dx)
2 + (Cy −Dy)2

∣∣∣∣∣∣∣∣ > 0⇔ D ∈ Circle (3.19)

where indexes x and y indicate the coordinate of each point.

Figure 30 shows the process, starting with a point cloud,that is obtained after a

topology optimization step, followed by a delaunay triangulation, determining the correct

triangles to be considered. Finally, it is determined two different polygon (green or blue)

and also a hole in each surface when appropriate.

Figure 30: Classification algorithm detecting geometries.

Now, to properly implement the MRBC, the points on the surface of the shaft are
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forced to exist and when some design variables are turned into solid and they are near the

shaft, the classification algorithm will determine these points as an unique geometry and

as a shaft. After this step, the boundary condition with rotational velocity is applied. All

solids considered far by the triangulation algorithm from the shaft will receive a different

polygon and will receive a zero velocity boundary condition. All the process is illustrated

in Figure 31.

Figure 31: Rotation selection using classification for new geometries during TO process.

Figure 32 shows that the algorithm can detect properly new geometries attached to

shaft during optimization process.

(a) Generic geometry obtained with topology optimization in a 2D swirl
model.

(b) Rotational velocity applied to the red region since it may be easily
attached to the shaft

Figure 32: Classification algorithm used to design fluid diodes.

Fluid flow simulation usually requires the exactly determination of the contour of the

fluid domain to correctly discretize, however it is not elementary to do it when having gray

scale in the topology optimization result and classic topology optimization methods re-

quires gray scale. For this reason the Topology Optmization of Binary Structures (TOBS)



57

[SIVAPURAM; PICELLI, 2018; SIVAPURAM; PICELLI; XIE, 2018] was extended to be

used with fluids and applied to this work.

3.5 Sensitivity Analysis

In this work, the objective function can have several sensitivity terms: diodicity, fluid

vorticity and also structural compliance. The full sensitivity is validated in Appendix C

to check if the optimization has the correct gradient.

Therefore, for each term of the objective function, the following analysis can be done,

considering a functional J(α,u). The final optimization problem can be represented in

Equation 3.20.

min

α
J(α,u) (3.20)

s.t. (u · ∇)u− µ∇2u +∇p+ α · u = 0 in Ω (3.21)

∇ · u = 0 in Ω (3.22)

u = u(z) on[∂Ωinlet] (3.23)

u = 0 on[∂Ωwall] (3.24)

The gradients of the problem plays an important role in the optimization, therefore

it is now written the adjoint system of the Navier Stokes Equation. The definition of

the lagrangian is in Equation 3.25 with the terms that will be calculate separately later

(L1, L2, ...) in Equation 3.26.

dJ

dα
=
∂J

∂u

∂F−1

∂u︸ ︷︷ ︸
λ

∂F

∂α
+
∂J

∂α
(3.25)

where F represents Equation 3.21 and 3.22.

L :=
∂J

∂α
−
∫

Ω

λ ·

 L1︷ ︸︸ ︷
(u · ∇)u

L2︷ ︸︸ ︷
−µ∇2u +

L3︷︸︸︷
∇p +

L4︷︸︸︷
α · u

 dΩ

−
∫

Ω

β

L5︷ ︸︸ ︷
∇ · u dΩ−

∫
∂Ωinlet

γ · (u−m)dΩ−
∫
∂Ωwall

ρ · (u)dΩ

(3.26)

with λ, β, γ, ρ as lagrangian multipliers
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Using the Frechet derivatives, it is possible to derive all the terms L1, L2, L3, L4, L5,

as:

L′1 = lim
ε→0+

1

ε

∫
Ω

([(u + εv) · ∇](u + εv)− (u · ∇)u) dΩ

lim
ε→0+

1

Aε

∫
Ω

(
��

���(u · ∇)u + (Aεv · ∇)u + (u · ∇)Aεv���
��

��:0
+(εA2v · ∇)v���

���−(u · ∇)u

)
dΩ

=

∫
Ω

((v · ∇)u + (u · ∇)v) dΩ

(3.27)

L′2 = − lim
ε→0+

µ

ε

∫
Ω

(
∇2(u + εv)−∇2(u)

)
dΩ = −

∫
Ω

µ∇2vdΩ (3.28)

L′3 = − lim
ε→0+

µ

ε

∫
Ω

(∇(p+ εq)−∇p) dΩ =

∫
Ω

∇qdΩ (3.29)

L′4 = lim
ε→0+

1

Aε

∫
Ω

(α(�u + Aεv)−��αu) dΩ =

∫
Ω

αvdΩ (3.30)

L′5 = lim
ε→0+

1

2Aε

∫
∂Ω

∇ · (u + εv)−∇ · (u)dΩ =

∫
∂Ω

∇ · vdΩ (3.31)

It is possible to write the necessary condition for optimality (L′ = 0) in the weak

form:

L′ =

∫
Ω

(2αu · v + µ∇u : ∇v) dΩ−
∫

Ω

(λ · (v · ∇)u + λ · (u · ∇)v +

−µλ · ∇2v + λ · ∇q + αλ · v
)
dΩ−

∫
Ω

β∇ · vdΩ−
∫
∂Ωinlet

γ · vdΩ−
∫
∂Ωwall

ρ · vdΩ

(3.32)

If it is desired to implement Equation 3.32, it is wanted to eliminate the ∇2 by integration

by parts in order to make the problem well-posed. This way:

L′ =

∫
Ω

(αu · v + µ∇u : ∇v) dΩ−
∫

Ω

(λ · (v · ∇)u + λ · (u · ∇)v +

+µ∇λ : ∇v + λ · ∇q + αλ · v) dΩ−
∫

Ω

β∇ · vdΩ +

∫
∂Ω

µλ · ∇v · ndS

−
∫
∂Ωinlet

γ · vdΩ−
∫
∂Ωwall

ρ · vdΩ

(3.33)

Converting Equation 3.33 to the strong form of the adjoint system, integrating by

parts, it is possible to obtain Equation 3.37 since the equation is true for all v and q in

Ω:
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−(∇u)λ+ (∇λ)Tu− µ∇2λ+∇β − αλ =
∂J

∂α
in Ω (3.34)

∇ · λ = 0 in Ω (3.35)

γ = 0 on ∂Ωinlet (3.36)

ρ = 0 on ∂Ωwall (3.37)

with ∂Ω = ∂Ωinlet + ∂Ωwall

The adjoint problem now can be solved in the same way the forward problem due to

its similarity in form. With the adjoint variables in hand the sensitivity of the problem,

which is essential to the work, can now be determined by Equation 3.38.

L =
∂J

∂α
− λ∂F

∂α
(3.38)

The sensitivity of of the complete optimization problem can be divided in diodicity,

vorticity and structural parts. The following analysis shows the calculation for diodicity

and vorticity, while the structural term due to its simplicity is calculated direct from the

library Dolfin-Adjoint[FUNKE, 2013] that uses an automatic differentiator.

The optimization problem of diodicity can be divided in two problems as shown in

Equation 3.39 according to energy dissipation.

min

α
JΦ =

Φ(uf , pf )

Φ(ur, pr)
⇒ J ′ =

Φ′(uf ,pf )

Φ(ur, pr)
−

Φ(uf , pf )Φ
′
(ur,pr)

Φ(ur, pr)2
(3.39)

Now the energy dissipation can be calculated using the Frechet derivative, since the

derivative of the objective function is related to energy dissipation (see Equation 3.42).

∂JΦ

∂α
= lim

ε→0+

J(u + εv)− J(u)

ε
= lim

ε→0+

1

2ε

∫
Ω

(α(u + εv) · (u + εv)− αu · u

+µ∇(u + εv) : ∇(u + εv)− µ∇(u) : (u)) dΩ

(3.40)

∂JΦ

∂α
= lim

ε→0+

1

2Aε

∫
Ω

(
α(���u · u + 2Aεv · u +

��
��
�*0

εA2v · v)−((((αu · u

µ(((((
(∇u : ∇u + 2Aε∇v · ∇u +���

��
��:0

εA2∇v · ∇v)−����
��

µ∇u : ∇u

)
dΩ

(3.41)
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∂JΦ

∂α
=

∫
Ω

(2αu · v + µ∇u : ∇v) dΩ (3.42)

The vorticity optimization problem can be described in Equation 3.43.

min

α
JV or = −V or(u, p) = −

∫
Ω

(∇× u) : (∇× u)dΩ

(3.43)

Now using the Frechet derivative, it is possible to determine the gradient of vorticity

term (see Equation 3.45).

∂JV or
∂α

= lim
ε→0+

J(u + εv)− J(u)

ε
= lim

ε→0+

1

ε

∫
Ω

∇× (u + εv) : ∇× (u + εv)dΩ (3.44)

∂JV or
∂α

=

∫
Ω

−2(∇× u) : (∇× v)dΩ (3.45)

Finally, the gradient of diodicity and vorticity can be added to the output of the Dolfin-

Adjoint, multiplying each term with each weight parameter WF , WV and WE, respectively,

and, this way, it can be determined the sensitivity of the complete optimization problem

(Equation 3.14). All this implementation is checked by finite difference and it can be

found in Appendix C.
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4 NUMERICAL IMPLEMENTATION

4.1 Programming environment

All the implementation is written in Python with the help of FEniCS, which is a high

level open-source C++ and Python framework that solves partial differential equations,

offering powerful capabilities, specially when parallel simulations are needed.

The Fenics library is a collection open source software components with the common

goal to enable automated solution of differential equations. The components provide sci-

entific computing tools for working with computational meshes, finite element variational

formulations of ordinary and partial differential equations, and numerical linear algebra.

In order to provide a simple and consistent user interface, FEniCS wraps the function-

ality of other components and external software, and handles the communication between

these components. Figure 33 shows an overview of the relationships between the compo-

nents of FEniCS and external software. The main library called DOLFIN holds functions

as both user interface and core component of FEniCS. All communication between an

user program, other core components of FEniCS and external software is routed through

wrapper layers that are implemented as part of the DOLFIN user interface. Variational

forms expressed in the UFL form language are passed to the form compiler FFC to gener-

ate UFC code, which can then be used by DOLFIN to assemble linear systems. Then, this

code generation depends on the finite element backend FIAT and the just-in-time compi-

lation utility Instant that can be optimized by the FErari backend. Finally, the plotting

capabilities provided by DOLFIN are implemented by Viper. Some of this communication

is exposed to users of the DOLFIN C++ interface, which requires an user to explicitly

generate UFC code from a UFL form file by calling a form compiler on the command-line.

DOLFIN also relies on external software for important functionality such as the linear

algebra libraries PETSc, Trilinos, uBLAS and MTL4, and the mesh partitioning libraries

ParMETIS and SCOTCH.
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Figure 33: Overview of Fenics application.

For the optimization part, the minimization of compliance is easily calculated by

another library called Dolfin-Adjoint. This tool can automatically calculate the sensitivity

of many problems without additional implementation and that is the reason it is used in

the structural simulation.

Figure 34 shows two approaches used in this work. For the fluid flow problem, the

continuous adjoint equation is deduced and implemented in discrete form using Unified

Form-Assembly Code (UFC) and the Fenics Form Compiler (FFC). In the structural

analysis, the Dolfin-Adjoint can deduce the adjoint equations from the forward problem,

using UFL and FFC and returning the necessary sensitivity values. The both values are

combined in a class based Python program.

In order to check all the implementation exposed before, the sensitivity of the full

problem is checked and can be found in Appendix C.
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Figure 34: Programming scheme used in this work.

4.2 Optimization procedure

In the classic topology optimization, the initial values and boundary conditions must

set first, then the finite element analysis gives the solution of the primal system. After

this, the adjoint system is calculated to obtain the sensitivity of the problem. All these

data are sent to the optimizer to obtain the new values of the design variables. The

forward problem is recalculated and this whole process is repeated until a convergence

criteria is achieved and the solution does not change significantly (see Figure 35).

The TOBS method[NADA, c] requires linearization of the optimization and that is

done using the Octave (open source alternative to Matlab). The third part is the optimiza-

tion and it occurs with the help of CPLEX c© optimizer (the most efficient algorithm for

binary variables found). This process run all over until a convergence criteria is achieved.

All the process is illustrated in Figure 35.

In problem with solid-fluid interaction, the full optimization problem (Equation 3.11)

requires more effort, thus the dark blue box in Figure 35 is actually more complex. This is

represented in Figure 36, where both forward and reverse flow are simulated to obtain the

primal solution of {u, p} to then simulate the structural analysis and, thus, the objective

function with all terms can be calculated. After this, the adjoint system is simulated

to obtain the adjoint variable values of flow analysis to calculate the sensitivity. This is

added in the end by the derivative calculated by Dolfin-Adjoint of structural analysis, and
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Figure 35: Flowchart of the Topology Optimization procedure with the TOBS Method.

then the correct gradient of the problem is determined.

Figure 36: Detailed implementation of both forward and adjoint problem of Fenics block

in Figure 35.
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5 RESULTS

In this chapter the results are presented, starting with the validation of the TOBS

method in Fluid, followed by analysis of fluid diodes. Then, an approach of designing

fluid diodes and labyrinth seals is developed.

The results presented in the following sections are computed with an Intel(R) Core(TM)

i7-6700K CPU (4.00GHz) machine with an Arch Linux distribution and 24 Gb of RAM

memory.

5.1 Fluid topology optimization with TOBS

The first contribution of this work is to implement TOBS method into the fluid flow

optimization. Thus, the purpose of this section is to validate the method with classical

problems such as double pipe stokes problem [BORRVALL; PETERSSON, 2003] and

Navier-Stokes varying Reynolds(Re) number.

5.1.1 Classical Stokes problem

In this section the classical Stokes problem is presented as illustrated in Figure 37,

which represents two inlets at the left border of the domain Ω and two outlets on the

right. The considered objective function is the minimization of the energy dissipation.

The volume constraint of 1/3 of domain occupied by fluid is employed.

The boundary conditions used in this section has a parabolic velocity profile with

maximum value of 1 [m/s] (which corresponds to a Reynolds Number Re = 0.1 defined in

Equation 5.1 used for all numerical examples) on both inlets and outlets, and walls with

no-slip condition. These conditions are illustrated in Figure 37.

Re =
ρuavD

µ
= uavD (5.1)
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where ρ is fluid density, uav is magnitude of average inlet velocity, D is inlet length, and

µ is dynamic viscosity of fluid.

The TOBS parameters used are ε = 0.1 and flip limits β = 0.2. The employed mesh

in this example is shown in Figure 38. The result considering δ = 1.5m [BORRVALL;

PETERSSON, 2003] is illustrated in Figure 39.

Figure 37: Design domain for the classic Stokes problem with u according to Re value

(spatial dimensions in m).

Figure 38: Mesh of the Stokes Problem with regular 9600 elements.

Figure 39: Topology optimization Stokes results for δ = 1.5.
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The convergence plot of the objective function for this case is presented in Figure

40 and the volume constraint value. The increase of the objective function in the ini-

tial iterations can be addressed to the volume constraint not being satisfied. After the

constraint value is achieved, the optimization proceeds normally with decrease of the

objective function value.

Figure 40: Objective function convergence for Stokes classic problem (δ = 1.5).

The evolution of the optimization is shown in Figure 41, in which can be seen that

its interface with a clear contour and intermediate values are absent (no grayscale). The

comparison of results with proposed and traditional method [BORRVALL; PETERSSON,

2003] can be seen in Figure 42.

Figure 43 presents iteration number 10 of the double pipe problem on both traditional

and TOBS methods. The large gray area makes hard to determine distance to the wall and

this can be problematic in more complex problems where the wall position is important.
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(a) Iteration number:

0

(b) Iteration number:

1

(c) Iteration number:

2

(d) Iteration number:

5

(e) Iteration number:

30

(f) Iteration number:

160

Figure 41: Topology optimization results evolution during optimization.

(a) Traditional method. (b) TOBS method.

Figure 42: Comparison between methods.

(a) Traditional method in iteration 10. (b) TOBS method in iteration 10.

Figure 43: Comparison between methods during optimization process.

Table 2 shows the comparison of the achieved objective function from literature

[CHALLIS; GUEST, 2009], with objective function G(u)) defined in Equation 5.2.
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G(u,α) =
µ

2

∫
Ω

||∇u||2dΩ (5.2)

Table 2: Functional value G comparison [CHALLIS; GUEST, 2009] for resulting topolo-

gies of double channel problem (mesh: 135000 elements(δ = 1.5) and 14400 elements with

δ = 1.0m and κmax = 2.5 · 106)

Case δ = 1.0m δ = 1.5m

Analytical 32.00 -

Proposed method 31.28 32.92

Challis & Guest 31.68 32.86

Borrvall & Petersson 25.67 27.64

With δ = 1.5m, due to the jagged solution (see Figure 44) that brings the proposed

method, it indicates that smoothing methods may be necessary depending on the case

study.

Figure 44: Jagged contour caused by the proposed method in some case studies.

5.1.1.1 Mesh independence

This subsection studies the behavior of the TOBS in the classical Stokes problem with

a mesh independence test. The meshes used are described in Table 3, with N1 being the

coarsest mesh and N3 the finest. The final topology of each mesh is shown in Fig 45.
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Table 3: Mesh size used in mesh independence test

n mesh elements

N1 15000

N2 60000

N3 135000

(a) Mesh N1 (b) Mesh N2

(c) Mesh N3

Figure 45: Results of the mesh independence test.

The increase in the number of elements has not changed the local minimum, which

indicates that the optimization can be performed in coarser meshes when optimizing the

Stokes model.

The convergence history of the objective function value for the mesh independence

test can be visualized in Fig. 46. The finer mesh presented the lower objective function,

although all the meshes tested reached the same local minimum.
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Figure 46: Objective function convergence of the mesh independence test.

Besides the absence of filter in these examples, another difference of the implementa-

tion in this work and the implementation performed by [NADA, c, d] is the absence of a

stabilization method between successive optimization iterations.

5.1.1.2 Influence of κmax parameter

This subsection studies the influence of the κmax (described in Section 3.1) value with

a domain with shorter length (δ = 1).

When the δ value is set to 1.0, while maintaining the discretization 80x80 (Fig. 38),

it is expected that the optimized topology is two straight lines, as shown in [BORRVALL;

PETERSSON, 2003]. However, if no change in the κmax value is made it is harder to

achieve the corresponding minimum, which is two horizontal straight lines in the design

domain. The results achieved with 160 iterations and with different κmax values are shown

in Figure 47.
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(a) κmax = 2.5 · 102 (b) κmax = 2.5 · 103 (c) κmax = 2.5 · 104

(d) κmax = 2.5 · 105 (e) κmax = 2.5 · 106

Figure 47: Results with different κmax values at iteration 160.

Figure 47a-b shows an undesirable islands problem. They occur due to small values

of κ, which implies fluid flow inside solid parts. This causes the islands because it makes

the presence of fluid or solid less clear for the algorithm. In Figures 47(a) and 47(b), κmax

has relatively small values, 2.5 ·102 and 2.5 ·103, respectively, bringing island in the design

domain since fluid can flow through solid parts. As the κmax increases (Figs. 47(c-e)),

this problem disappears, however, the straight-channels minimum is more difficult to be

reached. This indicates that a continuation in the κmax value should be performed as the

optimization proceeds. Thus, starting the algorithm with κmax = 2.5 ·101 and multiplying

its value by 10 every 10 iterations until it reaches κmax = 2.5 · 104, the straight-channel

topology is achieved, as shown in Figure 48. The impact of changing κmax on the objective

function value can be seen in Figure 49.

Figure 48: Topology optimization Stokes results for δ = 1.0.
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Figure 49: Objective function convergence for Stokes classic problem (δ = 1.0) with

continuation of κmax.

5.1.1.3 Influence of the penalization term (q)

The penalization term q of the material model interpolation is very important in the

traditional topology optimization in fluids, given that depending on its value a different

topology can be reached. The literature indicates that in order to avoid a local minimum

a continuation should be performed in the q value [BORRVALL; PETERSSON, 2003].

However, with the methodology proposed in this work it can be set to 1.0 and no gray-scale

appear.

A more complete analysis can be seen in Figure 50. A smaller value of q brings the

island problem on the topology contour. More over, when the value decreases to q = 0.01

the solution is trapped into an undesirable local minimum (see Figure 50 (c)).
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(a) q = 1.0 (b) q = 0.1

(c) q = 0.01

Figure 50: Results of the influence of q values in the binary optimization.

5.1.1.4 Influence of ε parameter

All results in this work are presented for ε = 0.1. Hence, in this section, aiming to

evaluate the ε influence, two cases are explored: ε = 0.15 and ε = 0.01. Both cases reach

the expected minimum, however, the path each one has taken is relatively different, as it

can be seen in Figure 51.

It can be seen in Figure 52 that the bigger the ε value is, the sooner the optimization

reaches the local minimum due to larger steps. When using large ε values, it would result

in a small overshoot effect in the objective function when the volume constraint is reached.
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(a) Iteration number: 5 with ε = 0.15 (b) Iteration number: 5 with ε = 0.01

(c) Iteration number: 15 with ε =

0.15

(d) Iteration number: 15 with ε =

0.01

(e) Iteration number: 50 with ε =

0.15

(f) Iteration number: 50 with ε =

0.01

(g) Iteration number: 160 with ε =

0.15

(h) Iteration number: 160 with ε =

0.01

Figure 51: Results evolution during optimization for different ε values.
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Figure 52: Objective function convergence curves for different ε values.

5.1.1.5 Influence of β parameter

The investigation on the truncation error constraint defined by the β value is per-

formed in this subsection. The use of TOBS methodology in structural problems usually

present some challenges regarding, for example, structural members breaking during op-

timization and leading to drastic changes in the topology with a high number of elements

flips [NADA, c]. The parameter β restricts such changes. The present fluid problem does

not face these challenges and, therefore, changing the β value did not change the final

solution. On the other hand, it is beneficial to keep β in the optimization formulation as

it keeps the truncation error small and as it may be important for other yet unexplored

fluid problems.

From the results presented in this section, the authors advise to explore different

values of the optimization parameters and initial guesses, in order to try to reach different

solutions if the TOBS is intended to be used in other applications.

5.1.2 Navier-Stokes problem

Besides the first verification of the topology optimization implementation, it is impor-

tant to check the behaviour of the optimization when the incompressible Navier-Stokes

equations are considered. First, a low Reynolds number case is explored, then some cases

with higher Reynolds numbers are analyzed.

Two bend pipe domains are defined: one shown in Figure 53(a) with the corresponding

boundary conditions, and other shown Figure 53(b), which describes the same problem

with a squared hole in the center. The corresponding meshes are shown in Figures 54(a)
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and 54(b), respectively.

(a) Bending pipe domain. (b) Bending pipe domain with a hole.

Figure 53: Design domain for a Navier-Stokes problem with u according to Re value

(spatial dimensions in m).

(a) Finite element mesh of bending pipe

domain (25600 elements).

(b) Finite element mesh of bending pipe

domain with a hole (22960 elements).

Figure 54: Finite element meshes for the Navier-Stokes problem.

5.1.2.1 Low Reynolds number

The first set of results are analyzed with low Reynolds Number (Re=1) with ε = 0.1

and flip limits β = 0.2 for this problem. A wide range of Reynolds number is analyzed

for this problem in the subsection 5.1.2.2.
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(a) Bending pipe domain. (b) Bending pipe domain with a

hole.

Figure 55: Topology optimization for Navier-Stokes example.

The results of this optimization problem are presented in Figure 55 (a-b) and they

are very similar to the literature [SÁ et al., 2016]. In order to illustrate the optimization

process, Figure 56 shows how the {0, 1} optimization step goes by iteration in the more

complex design domain. The convergence curve of the objective function is illustrated in

Figure 57, which presents a similar behaviour as the convergence curve shown in Section

5.1.1.

(a) Iteration number: 0 (b) Iteration number: 1 (c) Iteration number: 3

(d) Iteration number: 6 (e) Iteration number: 20 (f) Iteration number: 47

Figure 56: Results evolution during optimization.



79

Figure 57: Objective function convergence for the Navier-Stokes problem considering the

design domain with a central squared hole (δ = 1.5).

The reason that the convergence curve (Fig. 57) rises strongly in the beginning and

then falls is due to the volume constraint, since the initial domain is fluid full.

5.1.2.2 Wide range of Reynolds numbers

To explore the algorithm behavior under the Navier-Stokes modelling, other Reynolds

numbers are chosen among Re = {1, 5, 10, 50, 100}, and results are presented in Figure

58. The results for the bend pipe without obstacle (Fig. 55(a)) are very similar for all

cases. Thus, only results obtained for the domain with a squared hole in the center (Fig.

55(b)) are shown, since it is easier to observe the differences among the final topologies.

The results can be seen in Figure 58.
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(a) Reynolds number: 1 (b) Reynolds number: 5 (c) Reynolds number: 10

(d) Reynolds number: 50 (e) Reynolds number: 100

Figure 58: Topology optimization results for different Re number.

As the Reynolds number increases, the algorithm tends to change the channel position,

from the bottom of the obstacle to the top. The result from Figure 58(a) represents a very

low Reynolds number and it could be achieved just by neglecting the convection term in

the Navier-Stokes model, i.e., with the Stokes model.

Figures 58(b) and (c) present similar behaviours, with medium Reynolds number. The

highest Reynolds number analyzed shows that the curvature intensifies with the velocity

increase (Figures 58(d) and (e)). Higher inlet velocities than presented here, have not

been analyzed here due to the complexity of solving Navier-Stokes for high Reynolds

numbers which does not belong to the scope of this work.

5.1.3 3D fluid problem

To show that the methodology can be easily expanded to 3D problems, the problem

illustrated in Figure 59 is analyzed. The problem presents a tri-dimensional simulation

of four channels, with boundary conditions considering parabolic velocity profile on both

inlets and outlets, with Re = 1, ε = 0.1 β = 0.2 and applying a volume constraint of

1/6 of total volume. The dimensions are similar to the 2D previous problem, keeping the

entrance with a diameter of 0.2m and a parallelepiped with dimensions 1.0m×1.0m×1.5m.

The regular discretization of the 3D problem is shown in Figure 60, which shows an
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unstructured mesh. The corresponding results of the topology optimization can be seen

in Figure 61.

Figure 59: 3d design domain with u according to Re value.

Figure 60: Mesh discretization of the 3D problem (243000 elements).

The intermediary topologies of the problem are shown in Figure 61, which starts with

a fully fluid domain and proceed to merge the channels, similarly to the behavior of the

double-channel example. It is interesting to see how a more complex geometry behave

with the technique presented in this work. In this case, the four inlets merge into a unique
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pipe in the middle of the design domain, thus the energy dissipation is reduced due to

smaller surface area inside pipes.

(a) Iteration number: 0 (b) Iteration number: 10

(c) Iteration number: 25 (d) Iteration number: 50

(e) Iteration number: 100 (f) Iteration number: 240

Figure 61: Results evolution during optimization in the 3D design domain.

The convergence plot is shown in Figure 62.
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Figure 62: Convergence plot of the objective function in the 3D design domain.

5.2 Fluid diodes

The previous examples solve dissipation minimization problems as benchmarks. This

subsection now introduces the diodicity problem illustrated in Figure 63. The main idea is

to facilitate the flow in one direction and to inhibit the fluid flow in the reverse direction.

The applied objection function (Eq.3.8 ) and the boundary condition (including pressure

on outlet) represents the diodicity and it is the same used in literature [LIN et al., 2015].

The finite elements are illustrated in Figure 64 with 7200 elements considering the applied

symmetry.

(a) Main Flow (b) Reverse Flow

Figure 63: Design domain of the fluid diode problem with u according to Re value.



84

Figure 64: Mesh discretization of the fluid diode problem (7200 elements).

To show one advantage of the method, which is elimination of gray scale, the fluid

diode optimization is performed by using the traditional density method with standard

properties described in Table 4 including the usual continuation in the q factor. Figure

65 shows the evolution of the topology optimization using the traditional method (with

Interior Point Optimizer) and also the undesirable gray scale. The literature [LIN et al.,

2015] had to change this default values and also to insert a filter to obtain a reasonable

0-1 solution. However, depending on the problem, these settings can be hard to obtain

with many trial and errors.

Table 4: Parameters used in the fluid diode optimization

Property Value

Re 300 (inlet)

q 0.01− > 0.10

κmax 2.5 · 104

κmin 0
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(a) Iteration number: 0 (b) Iteration number: 25

(c) Iteration number: 100 (d) Iteration number: 240

Figure 65: Results evolution during optimization using traditional density method.

On the other hand, the proposed binary method can create only 0-1 solutions and

the results are illustrated in Figure 66. Since this problem is complex to understand its

behaviour, Figure 67 shows the velocity magnitude of both (a) main and (b) reverse flow,

indicating greater dissipation in the second case. In such simulation, it is easy to find

small portions of fluid flowing through solid parts (see original work of [LIN et al., 2015])

and the extracted geometry can check if the diodicity actually occurs or not. For this

reason, the velocity field of extracted geometry is plot in Figure 68 showing very similitude

to the Figure 67 and the calculated diodicity is 1.16 and 1.13, respectively.

In the TOBS method, q factor is set to 1, κmax is set to 8 · 103 and all remaining

values are kept the same. The κmax value can be changed and other local minima can be

achieved.
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(a) Iteration number: 0 (b) Iteration number: 25

(c) Iteration number: 50 (d) Iteration number: 75

(e) Iteration number: 100 (f) Iteration number: 240

Figure 66: Results evolution during optimization using binary approach.

(a) Main flow (b) Reverse flow

Figure 67: Fluid flow simulation of the optimized result with material model.
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(a) Main flow (b) Reverse flow

Figure 68: Fluid flow simulation of extracted geometry.

Also, larger fluid diodes are also shown in Figure 69a-b in order to explore different

aspect ratios. The velocity plots can clearly show the difference of forward flow (Figure

70a and 71a) and reverse flow (Figure 70b and 71b).

(a) Aspect ratio of 4:3 (b) Aspect ratio of 6:3

Figure 69: Fluid flow simulation.

(a) Main flow (b) Reverse flow

Figure 70: Fluid flow simulation for ratio aspect of 4:3.

(a) Main flow (b) Reverse flow

Figure 71: Fluid flow simulation.for ratio aspect of 6:3.
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The effectiveness of presented geometries can be seen as diodicity in Table 5, according

to the aspect ratio.

Table 5: Diodicity Values for optimized geometries.

Aspect ratio Diodicity

2:3 1.13

4:3 1.22

6:3 1.33

5.2.1 2D swirl fluid diodes design considering diodicity

From this section onwards, the approach is related to labyrinth seals. When facing

special fluid diodes such as labyrinth seals, it is important to model a 2D swirl space and

also force the energy dissipation in one direction, which in this work is defined as right to

left. The results shown in next sections uses the design domain and boundary conditions

illustrated in Figure 72.

Figure 72: Labyrinth Seal design domain and boundary conditions with u based on Re

number.

The parameters of this simulation can be seen in Table 6, with a initial guess full of

fluid in the design domain.
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Table 6: Optimization parameters in the 2D swirl model

parameters value

d 40 mm

Re 200

n 100 rpm

rmin 0.10 mm

κmax 109

WF 0.1

WE 0

WV 0

Vup 80%

Vdown 50%

The topology optimization results of an approach considering only diodicity can be

seen in Figure 73. The velocity plot in this work focuses on the 2D plot, since the

perpendicular velocity is very high and can be hard to understand the full behaviour.

With this in mind, looking Figure 74, it is possible to see a microchannel almost closing

the passage, which is not acceptable for labyrinth seals, because the fixed parts may not

touch the shaft. Figure 75 shows the circumferential velocity evidencing parts attached

to shaft and Figure 76 shows the pressure plot. The convergence plot of this simulation

is shown in Figure 77.

Figure 73: Geometry of a labyrinth seal using only diodicity.
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Figure 74: Modulus of plane velocity (flow from right to left) of geometry obtained with

diodicity approach.

Figure 75: Circumferential velocity plot of geometry obtained with diodicity approach.

Figure 76: Pressure field of geometry obtained with diodicity approach.
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Figure 77: Objective function of diodes in a 2Dswirl system.

For this reason, the parameter WF is raised to 3 and the result is shown in Figure 78.

Despite the problem with closing passage is now solved, the geometry and effectiveness

of the seal is not plausible (see Figure 79). Figures 79 and 80 shows the plane and

circumferential velocity, respectively, and Figure 81 shows the pressure plot.

Figure 78: Geometry with raised WF value.

Figure 79: Modulus of plane velocity of geometry with high WF value.
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Figure 80: Circumferential velocity plot of geometry with high WF value.

Figure 81: Pressure field of geometry with high WF value.

One good approach to solve this issue, it is to keep low WF value and to restrain the

design domain on both left and right side with the size of the gap length (see Figure 82).

Thus, the obtained geometry can be seen in Figure 83 with velocity plot in Figure 84.

Figure 82: Restricted design domain of labyrinth seals.

Figure 83: Geometry of a labyrinth seal with a smaller design domain.
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Figure 84: Modulus of plane velocity of a labyrinth seal with smaller design domain.

Figure 85: Circumferential velocity of a labyrinth seal with smaller design domain.

Figure 86: Pressure field of a labyrinth seal with smaller design domain.

Figure 83 also shows the undesirable floating islands in the middle of the design

domain, which is very hard to implement, since it does not have any support from stator

or the shaft. Figures 84 and 85 shows the plane and circumferential velocity, respectively

and Figure 86 shows the pressure plot.

To explore more possible geometries, another simulation is performed with a filter

radius of rmin = 0.05 and interesting geometries are shown in Figure 87 with plane and

perpendicular velocities plot in Figures 88 and 89, respectively. Pressure field is shown in

Figure 90.
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Figure 87: Modified design domain with rmin = 0.05.

Figure 88: Modulus of plane velocity of design domain with rmin = 0.05.

Figure 89: Circumferential velocity of design domain with rmin = 0.05.

Figure 90: Pressure field of design domain with rmin = 0.05.

Besides, the κmax is changed to 1010 and a different geometry is shown in Figure 91.

The plane and circumferential velocity plot in Figures 92 and 93, respectively show also
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that there are some spots that have no significant plane velocity, in other words that

region could be eliminated. Pressure field is plot in Figure 94

Figure 91: Modified design domain with kmax = 1010.

Figure 92: Modulus of plane velocity with kmax = 1010.

Figure 93: Circumferential velocity plot with kmax = 1010.

Figure 94: Pressure field with kmax = 1010.
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In the same analysis, the filter radius is raised to 0.20 and a reasonable solution is

shown in Figure 95 with velocity plot in Figure 98.

Figure 95: Modified design domain with kmax = 1010 and rmin = 0.20.

Figure 96: Modulus of plane velocity of modified design domain with kmax = 1010 and

rmin = 0.20.

Figure 97: Circumferential velocity plot of modified design domain with kmax = 1010 and

rmin = 0.20.
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Figure 98: Pressure field of modified design domain with kmax = 1010 and rmin = 0.20.

In order to explain and explore how the labyrinth seal would look like, Figure 99

shows a 3D perspective of previous simulation.

Figure 99: 3D apperance of labyrinth seal considering diodicity.

As it could be seen the diodicity are satisfatory when designing 2D swirl results and

brings complex geometries that are not intuitive to a labyrinth seal, however it is still far

from a reasonable solution, since it generates lots of solution with floating islands. Besides,

WFF term is not enough to adjust a solution to clear the gap flow with satisfatory diodicity

efficiency.

All diodicity values of previous simulation are shown in Table 7, however it can be

seen that in a 2D swirl system, the diodicity values are near 1.0, because circumferential
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velocity plays an important role on the computation of pressure and diodicity.

Table 7: Diodicity values in 2D swirl system.

Labyrinth seal Di

Figure 73 1.01

Figure 78 1.0

Figure 83 1.02

Figure 87 1.04

Figure 91 1.05

Figure 95 1.01

5.2.2 2D swirl fluid diodes design considering vorticity

Diodicity brings complex optimized geometry, however the challenge of blocking en-

trance is not completely solved and despite changing the factor WF can solve the problem,

the solution can also be degenerated as shown in Figure 78.

For this reason the vorticity term is added to the objective function and considering

the values in Table 8, with a initial guess full of fluid in the design domain. The result

can be seen in Figure 100 and plane and circumferential velocity plot in Figures 101 and

102, respectively. Pressure field is shown in Figure 103.

Table 8: Optimization parameters considering vorticity

parameters value

d 40 mm

Re 200

n 100 rpm

rmin 0.20 mm

κmax 1010

WF 0.1

WE 0

WV 2 · 10−7

Vup 80%

Vdown 50%
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Figure 100: Vorticity with kmax = 1010 and rmin = 0.20.

Figure 101: Modulus of plane velocity of modified design domain with vorticity.

Figure 102: Circumferential velocity plot of modified design domain with vorticity.

Figure 103: Pressure field of modified design domain with vorticity.

To explore shortly the influence of the WV factor in the objective function (Equation

3.11), it is raised to 2 · 10−6 and the result is shown in Figure 104 with plane and cir-
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cumferential velocity plot in Figures 105 and 105, respectively. Pressure field is shown in

Figure 107.

Figure 104: WV raised to 2 · 10−6.

Figure 105: Modulus of plane velocity with WV = 2 · 10−6.

Figure 106: Circumferential velocity plot with WV = 2 · 10−6.

Figure 107: Pressure field with WV = 2 · 10−6.
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The repeated found pattern, which looks like a spring,is very interesting to the prob-

lem, since it creates a tortous path, which is the main idea of a labyrinth seal. This kind of

repeated pattern is not commonly obtained by topology optimization problems, however

the proposed method has succeeded.

Besides, it raises the question if the restricted design domain would be necessary at

this point. Figure 108 shows that full domain can also be optimized, however for the sake

of finding reasonable solution, from this point on, the design domain is kept with the gap.

Plane and circumferential velocity plot are shown in Figure 109 and 110, respectively.

Pressure field is shown in Figure 111.

Figure 108: Full domain with WV = 2 · 10−6.

Figure 109: Modulus of plane velocity of full domain with WV = 2 · 10−6.

Figure 110: Circumferential velocity of full domain with WV = 2 · 10−6.
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Figure 111: Pressure field of full domain with WV = 2 · 10−6.

From this point on, the performance of labyrinth seals is measured based on its fluid

impedance (
√

∆p/Q), which is related to pressure difference and it is the inverse of the

constant of valves usually called as Kv found in manufactures’ handbooks. This is usefull

to enable comparison with valves on the market.

Table 9: Performance of optimized labyrinth seal including vorticity terms (units:SI).

Labyrinth seal
√

∆p/Q× 105

Figure 100 6.33

Figure 104 5.86

Figure 108 4.96

In order to explain and explore how the labyrinth seal would look like, Figure 112

shows a 3D perspective of previous simulation.
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Figure 112: 3D apperance of labyrinth seal considering vorticity.

5.3 Complete optimization problem considering Fluid-

Structure interaction in fluid diodes

Previous results is almost enough for implementing a satisfatory method for designing

labyrinth seals, however, sometimes small islands can appear without any support from

upper or lower parts, just like Figure 100. The analysis in this section proposes a method

able to eliminate floating islands from the design domain, in other words, the design

variables that corresponds to solid must be attached either to stator or to shaft.

From this section on, the model is complete with all objective function terms with

initial guess full of fluid in the design domain, and for this reason, the next results of

optimized labyrinth seal are compared to a similar called baseline with same fluid volume.

It is defined in Figure 113 and it is created to compare with a common interlaced labyrinth

seal, V0 is the volume constraint of each case and d0 is a value defined based on V0 choice.
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Figure 113: Baseline for labyrinth seals comparison, respecting the same volume con-

straint.

As boundary conditions, Figure 114 illustrates that it is used a prescribed inlet ve-

locity, a stress free condition on outlet and a selective rotation condition depending on

the position of the solid. The velocity field on inlet in this work considers a parabolic

velocity profile with a corresponding Reynolds Number defined in Equation 5.3 used for

all numerical examples. All parameter values are listed in Table 10.

Figure 114: Boundary conditions of a rotating labyrinth seal.

Re =
ρuavD

µ
= uavD (5.3)

where ρ is fluid density, uav is magnitude of average inlet velocity, D is inlet length, and

µ is dynamic viscosity of fluid.

The results can be seen in Figure 115 with interesting geometry, because the unde-

sirable floating islands has disappeared. For the purpose of understanding the labyrinth

seal behaviour the plane and circumferential velocity plot is shown in Figures 116 and

117, respectively. Pressure field is shown in Figure 118.

The deformation of optimized geometry are shown in all results only to illustrate the
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analysis, since the goal of the proposed method is to eliminate floating islands. However,

it opens a possibility in future to work with materials that allow high deformation values

and its impact in labyrinth seal efficiency. The convergence plot is shown in Figure 119,

showing high oscillation until final solution achieved. That may occur due to the number

of local minima. All deformation values in the plots are increased by 5000 times to be

visual. In this case, it can be seen in Figure 120 and its efficiency is greater than the

traditional (see Table 11).

In this simulation, it is possible to see that a tortous path is also found, however with

a non elementary solution. The solids attached to shaft increase in the middle of the

domain and the edges are slightly inclined to the right in an attempt to obstruct the flow

from right to left.

Table 10: Optimization parameters in a FSI problem

parameters value

d 40 mm

Re 200

n 100 rpm

rmin 0.20 mm

κmax 1010

WF 0.1

WE 10−20

WV 2 · 10−7

Vup 80%

Vdown 50%

Figure 115: Labyrinth seal using fluid structure interaction algorithm.
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Figure 116: Modulus of plane velocity in the Labyrinth seal using fluid structure interac-

tion algorithm.

Figure 117: Circumferential velocity plot in the Labyrinth seal using fluid structure in-

teraction algorithm.

Figure 118: Pressure field in the Labyrinth seal using fluid structure interaction algorithm.
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Figure 119: Objective Function in a full optimization problem considering FSI.

Table 11: Performance of optimized labyrinth seal using FSI (units:SI).

Labyrinth seal
√

∆p/Q× 104

Baseline 1.15

Optimized 2.28

Figure 120: Displacement in red due to flow in Labyrinth seal.

In order to explain and explore how the labyrinth seal would look like, Figure 121

shows a 3d perspective of previous simulation.
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Figure 121: 3D apperance of labyrinth seal of a full optimization problem.

5.3.1 Aspect ratio influence

The problem studied in this work has several local minima, thus it is complicated to

compare different aspect ratio. However, this section shows that a large labyrinth seal

can also be modeled as a sequential of small optimized unit cells.

The solution found for different unit cell geometries can be seen in Figure 122 and

how this could be implemented in Figure 123. The advantage of this method would be

low computational cost due to the low number of design variables.

(a) Aspect ratio of 1:1 (b) Aspect ratio of 2:1

Figure 122: Aspect ratio influence
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(a) Aspect ratio of 1:1

(b) Aspect ratio of 2:1

Figure 123: Aspect ratio influence

Figures 124 and 125 show the plane and perpendicular velocity plot, respectively,

Figure 126 shows the pressure field of found results and Table 12 shows the disadvantages

of using such aspect ratios, showing the proximity with the baseline efficiency. To illustrate

how the geometry would suffer deformation from the fluid flow, it is shown in Figure 127.

The smaller aspect ratio seal has much more more deformation in the same scale, thus

if the designer is not worried with deformation and does not want complex geometry, it

may be more beneficial to choose it.

(a) Aspect ratio of 1:1 (b) Aspect ratio of 2:1

Figure 124: Modulus of plane velocity of unit cell for different aspect ratio.

(a) Aspect ratio of 1:1 (b) Aspect ratio of 2:1

Figure 125: Circumferential velocity plot of unit cell for different aspect ratio.
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(a) Aspect ratio of 1:1 (b) Aspect ratio of 2:1

Figure 126: Pressure field of unit cell for different aspect ratio.

Table 12: Performance of optimized labyrinth seal using FSI with different aspect ratio

considering only one cell.

Labyrinth seal
√

∆p/Q× 104

Baseline aspect ratio 1:1 1.60

Optimized aspect ratio 1:1 1.60

Baseline aspect ratio 2:1 1.11

Optimized aspect ratio 2:1 1.12

(a) Aspect ratio of 1:1 (b) Aspect ratio of 2:1

Figure 127: Deformation of geometries from different aspect ratio influence

5.3.2 Diameter influence

This section studies how it should be the change in the optimized geometry for a

labyrinth seal with different shaft diameters.

The results of the proposed method with different diameter values shows that in

smaller shaft diameter (Figure 128a), the solution tends to increase the size of solid parts

attached to the shaft. On the other hand, Figure 128b shows a different type of solution,

with a simpler tortous path solution.

The plane and circumferential velocity plots can be found in Figures 129 and 130,

respectively, with efficiency values in Table 13. Pressure field is shown in Figure 131.
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The deformation (see Figure 132) shows that the result of high diameter values achieves

smaller deformation in the analysis.

(a) Diameter of 20mm

(b) Diameter of 40mm

(c) Diameter of 60mm

Figure 128: Topology optimization results for different shaft diameters.
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(a) Diameter of 20mm

(b) Diameter of 40mm

(c) Diameter of 60mm

Figure 129: Modulus of plane velocity for different shaft diameters.
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(a) Diameter of 20mm

(b) Diameter of 40mm

(c) Diameter of 60mm

Figure 130: Circumferential velocity plot for different shaft diameters.
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(a) Diameter of 20mm

(b) Diameter of 40mm

(c) Diameter of 60mm

Figure 131: Pressure field for different shaft diameters.

Table 13: Performance of optimized labyrinth seal using FSI with different shaft diameters.

Labyrinth seal
√

∆p/Q× 104

Baseline aspect d = 20mm 1.17

Optimized aspect d = 20mm 2.54

Baseline aspect d = 40mm 1.15

Optimized aspect d = 40mm 2.28

Baseline aspect d = 60mm 1.11

Optimized aspect d = 60mm 1.14
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(a) Diameter of 20mm

(b) Diameter of 40mm

(c) Diameter of 60mm

Figure 132: Deformation of topology results for different shaft diameters.

5.3.3 Rotational speed influence

This section explores the rotational speed of the shaft in the optimized geometry

for a labyrinth seal with a range of values from 50 to 300 rpm. Higher values requires

stabilization techniques that are not scope of this work.

The results of the proposed method are shown in Figure 133, in which can be seen

that in smaller rotational values, simpler tortous path is obtained with edges inclined to

the left. On the other hand, with higher rotational values, complex tortous path is created

with hollow structures.

Figure 134 and 135 show the plane and circumferential velocity plot, respectively for

all cases, evidencing spots without significant velocity magnitude in the high rotational

speed case. Pressure field is shown in Figure 136.

Table 14 shows the performance of each device, with results presenting better efficiency

than the baseline.

The idea of previous section continues here where higher rotational velocity can cause

higher displacement, eliminating small structures on the shaft, which is illustrated in

Figure 137.
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(a) Rotation of 50 rpm

(b) Rotation of 100 rpm

(c) Rotation of 300 rpm

Figure 133: Topology optimization results for different rotational values.
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(a) Rotation of 50 rpm

(b) Rotation of 100 rpm

(c) Rotation of 300 rpm

Figure 134: Velocity field of topology results for different rotational values.
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(a) Rotation of 50 rpm

(b) Rotation of 100 rpm

(c) Rotation of 300 rpm

Figure 135: Circumferential velocity field of topology results for different rotational values.
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(a) Rotation of 50 rpm

(b) Rotation of 100 rpm

(c) Rotation of 300 rpm

Figure 136: Pressure field of topology results for different rotational values.

Table 14: Performance of optimized labyrinth seal using FSI for different rotational values.

Labyrinth seal
√

∆p/Q× 104

Baseline aspect n = 50rpm 1.19

Optimized aspect n = 50rpm 2.64

Baseline aspect n = 100rpm 1.15

Optimized aspect n = 100rpm 2.28

Baseline aspect n = 300rpm 0.96

Optimized aspect n = 300rpm 1.79
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(a) Rotation of 50 rpm

(b) Rotation of 100 rpm

(c) Rotation of 300 rpm

Figure 137: Deformation of topology results for different rotational values.

The case of rotation equals to zero may be interesting to analyse, however structural

parameter has to be changed to WE = 10−30, because in this case structural terms plays

an important role in the objective function and the solution seems similar to a truss and

closes the flow passage. Thus, the result of a non-rotating seal can be seen in Figure

138. Since circumferential velocity is null, only the plane velocity is shown in Figure

139. Pressure field is shown in Figure 140 and displacement is shown in Figure 141. The

performance values of this simulation are shown in Table 15.

Figure 138: Labyrinth seal with null circumferential velocity.
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Figure 139: Modulus of plane velocity in the Labyrinth seal with null circumferential

velocity.

Figure 140: Pressure field in the Labyrinth seal with null circumferential velocity.

Figure 141: Displacement in red due to flow in Labyrinth seal with null circumferential

velocity.

Table 15: Performance of optimized labyrinth seal using FSI for different rotational values.

Labyrinth seal
√

∆p/Q× 104

Baseline aspect n = 0rpm 1.20

Optimized aspect n = 0rpm 3.39

5.3.4 Volume Constraint influence

The optimization problem have worked with a volume constraint between 50% and

80% with the problem tending to keep the 50% of the full design domain. This choice is
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made based on several simulations and it is noticed that when the fluid volume contraint

has lower values, it is easy for the optimizer to close the passage, bringing more issues to

be solved during optimization process. On the other hand, high fluid volume constraint

values makes the efficiency of the seal to be limited.

In order to illustrate this process, Figure 142 shows a different volume constraint

(70%), keeping circumferential velocity of 100 rpm. Interesting in this case is the solid

concentrating near the inlet of the flow, trying to cause energy dissipation when the

velocity is still high. For a wider range of volume constraints, it would be necessary to

recalibrate the terms on structural and vorticity terms and this would be an unreasonable

comparison.

Plane and circumferential velocity plots are shown in Figure 143 and 144, respectively,

with comparison values in Table 16. Pressure plot is shown in Figure 145. The geometry

deformation caused by the fluid flow is shown in Figure 146.

(a) Volume constraint of 70% at 100 rpm.

(b) Volume constraint of 50% at 100 rpm.

Figure 142: Topology results for different volume constraints.
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(a) Volume constraint of 70%

(b) Volume constraint of 50%

Figure 143: Modulus of plane velocity for different topology results with different volume

constraints.

(a) Volume constraint of 70%

(b) Volume constraint of 50%

Figure 144: Modulus of plane velocity for different topology results with different volume

constraints.
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(a) Volume constraint of 70%

(b) Volume constraint of 50%

Figure 145: Modulus of plane velocity for different topology results with different volume

constraints.

Table 16: Performance of optimized labyrinth seal using FSI for different volume con-

straints.

Labyrinth seal
√

∆p/Q× 104

Baseline aspect V = 70% 0.99

Optimized aspect V = 70% 1.82

Baseline aspect V = 50% 1.15

Optimized aspect V = 50% 2.28
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(a) Volume constraint of 70%

(b) Volume constraint of 50%

Figure 146: Deformation of topology results for different volume constraints.
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6 CONCLUSIONS

This work have applied integer linear programming to design fluid diodes and labyrinth

seals, using the topology optimization method with the help of open softwares, such as

Fenics and Dolfin-Adjoint, together with commercial application, such as CPLEX, to

deliver innovative geometries to contribute with emissions reduction challenge.

This is a pioneer work that explores how fluid diodes, more specially labyrinth seals,

can be designed with the help of topology optimization method, specially with the TOBS

approach. The proposed method not only helps on setting material model parameters,

but also allows the design domain to have clear boundaries between fluid and solid. This

behaviour during optimization process can contribute in future to more complex design

optimization problem where the wall distance have to be calculated in the forward prob-

lem.

This work has expanded the application of TOBS to fluids by using sequential linear

approximation of the original optimization problem in a coupled environment of FEniCS,

which allows solving partial differential equations (Navier-Stokes), Dolfin-Adjoint, which

allows calculating the gradient of the optimization problem, Octave which allows calcu-

lating the sensitivity vector of linearized problem, and CPlex c©, which is a proprietary

software with a large capacity of optimizing binary variables efficiently.

Standard problems of topology optimization in fluids are studied as benchmarks to

validate TOBS for fluids, such as the double pipe problem in Stokes flow, where the exact

value of the objetive function is calculated, showing the proposed method is near the

analytical solution and the literature. Navier-Stokes equation as forward problem is also

studied and compared to literature present satisfatory results. Also, a 3D problem is

simulated in order to demonstrate the easiness of expanding the proposed method.

A movable boundary condition is implemented based on a classification algorithm

that uses 2D Delaunay segmentation able to detect which solid part belongs to stator

or shaft. This condition allows applying the corresponding tangential velocity boundary
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condition for each case. This process can run at each optimization step automatically

applying the correct boundary condition. This feature is specially beneficial to labyrinth

seals, since they are divided in parts which must be attached to the shaft and parts which

should be fixed with the stator.

The proposed objective function is innovative, since brings diodicity terms, recently

explored in literature, influencing the fluid to flow in a certain direction, in addition

to vorticity, which is not an usual term in the field of fluid optimization until this mo-

ment. Vorticity not only generates tortous fluid path, which is the primary objective of a

labyrinth seal, but also brings interesting ”spring” patterns in the results, which are very

uncommon to topology optimization results.

Structural terms are also considered in the full optimization problem, considering the

interaction caused by the pressure field into structural parts. This problem is faced as

minimization of compliance of the structures and such implementation not only makes

the labyrinth seal stiffer, but also eliminates the undesirable floating islands, making the

devices much more feasible to manufacture.

The aspect ratio of labyrinth seals is studied and compared to a defined baseline,

considering the possibility of designing only one cell, however it is shown that the shorter

is the design domain, the harder is to have complex satisfatory results. The comparison

of ∆p/
√
Q with the baseline confirms such difficulty.

The proposed optimization problem with all terms in objective function has a lot of

local minima, making comparison with different parameters hard, however, it is possible

to detect some influence according to the size of diameter (from 20 mm to 60 mm) and

rotational speed (from 50 rpm to 300 rpm), possibly relating high tangential velocity with

more solid material attached to the shaft. All values of pressure drop between optimized

geometry and the baseline present advantages to the proposed method. Influence of

volume constraint is also evaluated, showing that the algorithm tends to fill the inlet of

the flow, because it may try to dissipate energy the soonest possible.

Finally, complex and efficient geometries of fluid diodes are presented using topology

optimization, exploring wide range of parameters to compare to baseline devices proving

the viability of the methodology used. The contribution of this work can help design

engineers not only on designing non-intuitive fluid diodes, but also improving current

available labyrinth seals, widely used in turbines and compressors. This improvement

has high impact in equipment efficiency and also in the environment emissions, since

international reports point leakage in industrial devices as one of the main causes of
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undesirable emissions.

6.1 Future work

As future work, the author recomends the exploration of a labyrinth seal operation

with high velocity values, bringing the need of implementing turbulence models, improving

the algorithm of presented work with the possibility to calculate wall distance during

optimization process.

High pressure difference between two chambers can also be explored, considering

compressibility analysis in flow with Mach number higher than 0.3.

Mechanical stress in labyrinth seals can also be studied, extending the structural

analysis made so far in this work.

Vibration analysis is also an interesting topic when designing labyrinth seals, since

vibration caused by fluid flow can influence shaft stability when reaching its ressonance

values.
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APPENDIX A – FILTER OF THE

DESIGN VARIABLES

Section 3.2.6 highlights the filtering method used in this work and more details of it

is discussed here. In order to use a continous equation of filtering method, the Heavi-

side equation is regularized. First a weight function is defined in Equation A.1, then a

proximity-based weighted average of active elements is calculated in Equation A.2. Fi-

nally, the Heaviside equation is regularized in Equation A.3.

w(xi − xe) =


rmin − ||xi − xe||

rmin
if i ∈ N e

0 otherwise

(A.1)

µe(α) =

∑
i∈Ne

αiw(xi − xe)∑
i∈Ne

w(xi − xe)
(A.2)

φ(α) = 1− e−βµe(α) + µe(α)e−β (A.3)

Also, the sensitivities of the problem should be adjusted, so the derivative of phi with

respect to a single active design variable is calculated first in Equation A.4. Thus, the

sensitivities of the topology optimization can be adjusted in Equation A.5.

∂φ

∂αi
= (βe−βµ

e(α) + e−β)
w(xi − xe)∑

i∈Ne

w(xi − xe)
(A.4)

with β as an weight factor usually from 1 to 10 (1 is used in this work except when

exposed its value).
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∂f

∂αi
=
∑
e∈Ω

∂f

∂φ

∂φ

∂αi
(A.5)

with f as a generic objective function.
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APPENDIX B – FLUID FLOW

VERIFICATION

In order to check if the implemented CFD corresponds to a correct solution, it is now

compared with comercial software COMSOL 5.4.

The chosen problem is similar to the more complex analysis made in this work with a

2D swirl system. Properties used in both simulations are illustrated in Table 17, the ve-

locity magnitude plot considering all three directions is shown in Figure 147, and pressure

field in Figure 149. The analysis presents very similar values.

Table 17: Parameters used to CFD simulation

parameters value

d 40 mm

n 100 rpm

µ 1.0

Reinlet 200

aspect ratio 1:4
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(a) Comsol (b) Implemented code

Figure 147: Comparison in velocity plot.

In order to have a more clear comparison of velocity magnitude, the values from both

solvers are performed in Figure 148. It is possible to see reasonable values even with a

small distance in the middle of the design domain.

Figure 148: Velocity magnitude over line.
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(a) Comsol (b) Implemented code

Figure 149: Comparison in pressure plot.

There is some difference found in some details of the plots, however this occurs due

to different mesh, tolerance and methods of non-linear solvers and color plot that are not

from the same program.
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APPENDIX C – GRADIENT

VERIFICATION

In order to check if the sensitivity is correctly calculated in this work, it is compared

with a finite difference by changing 10−10 each design variable in the more complete prob-

lem (see parameters in Table 18) that takes diodicity, vorticity and fsi into consideration

(Equation 3.11). Such comparision can be seen in Figure 150a-b.

Table 18: Optimization parameters used to check gradient

parameters value

d 40 mm

n 100 rpm

rmin 0.20 mm

κmax 1010

WF 0.1

WE 10−20

WV 2 · 10−7

Vup 80%

Vdown 50%

A random choice of cells is performed and they are illustrated in Figure 151 with the

more detailed values in Table 19.

(a) Finite Difference (b) Calculated Sensitivity

Figure 150: Difference of calculated sensitivity and finite difference
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Figure 151: Identification of cell in the calculated sensitivity field.

Table 19: Parameters used in the fluid diode optimization

Point Number Finite Difference Calculated Sensitivity Relative Error(%)

ID:37 -4,088E-03 -4,092E-03 -0,09%

ID:66 -2,214E-03 -2,213E-03 0,04%

ID:152 -1,097E-03 -1,096E-03 0,05%

ID:202 -3,775E-04 -3,759E-04 0,42%

ID:358 -1,998E-05 -1,908E-05 4,74%

ID:438 -2,220E-06 -2,255E-06 -1,52%

ID:584 -3,402E-03 -3,403E-03 -0,04%

ID:616 -2,229E-03 -2,229E-03 0,00%

All the points have resoable values with error bellow 5%.


