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RESUMO

Problemas inversos consistem na identificação das caracteŕısticas de um sistema a partir da
resposta a uma determinada excitação, e tem aplicações em diversas disciplinas tais como
imageamento medicinal, detecção de danos, testes não destrutivos, e imageamento geof́ısico.
Na geof́ısica de exploração, a Inversão de Forma de Onda (no inglês, FWI) consiste em
utilizar dados śısmicos de reflexão e refração para reconstruir o campo de velocidades da
subsuperf́ıcie. A inversão é particularmente desafiante para modelos de velocidade com
corpos de sal, cujas interfaces com alto contraste entre propriedades materiais amplifica
erros na estimação do caminho de onda e tempo de trânsito. O problema de identificação do
sal é extremamente relevante devido à sua abundância em importantes śıtios de exploração
de hidrocarbonetos como o golfo do México e a bacia de Santos. Dessa forma, com o
intuito de incorporar a hipótese de interfaces materiais dentro do modelo, assim guiando
a inversão, é proposto utilizar um framework baseado na técnica de projeto estrutural
Otimização Topológica (OT). Mais especificamente, o campo de velocidades é descrito
por uma variável de projeto inteira, e o problema de otimização associado é resolvido
por Programação Linear Inteira Sequencial. A função objetivo mede a diferença entre
dados colhidos de uma enquete śısmica com dados gerados sinteticamente através de um
modelo computacional. O gradiente é calculado pelo método adjunto e dois filtros de
sensibilidade são utilizados. Um filtro baseado em Equação Diferencial Parcial t́ıpico de
OT é aplicado para controlar o surgimento de inclusões espúrias, e um filtro de médias
móveis é aplicado com intuito de estabilizar o processo de inversão. A implementação
da propagação de ondas foi feita utilizado Spyro, um pacote python construido sobre a
biblioteca de elementos finitos Firedrake. A otimização por variável inteira é realizada
através da biblioteca IBM CPLEX. Com objetivo de validar a metodologia, inversão
acústica é aplicada à reconstrução de inclusões simples, e a influência de paramêtros de
filtragem e da configuração do problema são analizados. Por fim, a metodologia é aplicada
a um problema FWI com modelo de velocidades t́ıpico da bacia de Santos. Para esse
modelo, três casos são mostrados, reconstrução do sal, reconstrução do sal e do reservatório,
e reconstrução das camadas abaixo do sal.

Palavras-chave: Otimização Topológica, Programação Linear Inteira, Inversão
de Forma de onda, Modelo de sal



ABSTRACT

Inverse problems usually consist in identifying characteristics of a system based on its
response to a certain input, and have many applications in disciplines such as medical
imaging, damage detection, non-destructive testing, and geophysical imaging. In seismic
exploration, Full Waveform Inversion (FWI) takes the wave equation into account by
incorporating it as one of the constraints of the inverse problem which seeks to identify
properties from the subsurface of the Earth. Hydrocarbon exploration sites in salt basin
areas such as the Gulf of Mexico and in the Brazilian coast deep waters are specially
challenging for velocity model building, since the contrast in material properties between the
salt region and its surroundings amplifies perturbations in the measured data, consequently
making it harder to correctly place the salt interfaces. With the objective of incorporating
the presence of sharp interfaces into the model, this work proposes applying Sequential
Integer Linear Programming to FWI formulated as a Topology Optimization problem.
The identification procedure for the material parameters of the subsurface consist in
minimizing an objective function subject to the acoustic wave equation as a constraint and
with the acoustic velocity described by an integer design variable. The objective function
measures the misfit between data collected from a seismic survey and data coming from
a computational representation of the subsurface. The gradient evaluation is carried out
using the adjoint method. Two sensitivity filters are employed, a spatial filter based on
Partial Differential Equations limits spurious inclusions, while a moving average filter is
used to stabilize the inversion process. Wave propagation is carried out using Spyro, a
Finite Element Method (FEM) software for seismic aplications built on top of Firedrake.
The gradient evaluation employs the adjoint method, and integer linear programming
is carried out with using the IBM CPLEX optimization library. Results are shown for
velocity models with one or more inclusions, as well a velocity model representative of
the Santos basin. Three cases are analyzed with this model, salt reconstruction, salt and
reservoir reconstruction and subsalt reconstruction.

Key words: Topology Optimization, Integer Linear Programming, Full Waveform
Inversion, Salt model
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NOTATION

a Design variable
ai Design variable value for ith material
b Body force per unit mass
ds,r sth synthetic signal recorded at rth receiver
f Objective function
g Objective function gradient
ĝ Objective function gradient filtered by spatial filter
g̃ Objective function gradient filtered by spatial and stability filter
m Stability filter first moment
M Upper bound on update vector
Ns Number of sources
Nr Number of receivers
p0,s sth synthetic wave field
ps sth predicted wave field
r Spatial filtering radius
s Volumetric source
u Displacement field
v Stability filter second moment
vp Acoustic wave speed
∆a Update vector
∆aP Positive contribution to update vector
∆aN Negative contribution to update vector
γm Forgetting factor for first moment
γv Forgetting factor for second moment
ε Strain tensor
η Damping coefficient
κ Bulk modulus
λ First Lamé parameter
λs Adjoint variable to the sth state equation
λ†

s Adjoint variable to the sth state equation reversed in time
µ Second Lamé parameter
ρ Density
ρi Peak model standard deviation for ith material
σ Stress tensor
ωc Central angular frequency of source signal
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1 INTRODUCTION

1.1 Inverse problems

Inverse problems are a rich topic of research in Applied Mathematics, Physics,
Engineering, and constitute the fundamental framework for many applicatons in medical
imaging (LOUIS, 1992), non-destructive testing (ZAOUI et al., 2010), hydrocarbon
exploration (MARCHETTI et al., 2014), geophyisical monitoring (MUNK; WORCESTER,
1988), besides many others (see Figure 1.1). However ubiquitous, inverse problems do not
have a universal definition, and, as indicated by the name, presuppose the existence of a
direct problem. According to the applied mathematician J. B. Keller, two problems are
inverse to one another when the definition of one involves the solution of the other. He
states that the older, more extensively studied problem is deemed as the direct one, while
the inverse one is usually newer and not as well understood (KELLER, 1976).

Several of these are formulated as optimization problems constrained by partial
differential equations. Consider a model represented by the equation:

L(u,m) = f in Ω× (0, T ] , (1.1)

where L is a partial differential equation describing a transient process defined in the
region Ω. L is parameterized by m(x) and subject to the inhomogeneous term f(x, t).
Given initial and boundary conditions, the quantity u(x, t) will evolve in a unique and
determined way. Calculating it corresponds to solving the direct problem, since given a
certain cause (the inhomogeneous term f(x, t), the boundary and the initial conditions)
we are interested in determining the unique effect, in this case, the behaviour of u(x, t).

There are two types of inverse problem commonly associated to such a system
(GROETSCH; GROETSCH, 1993). First, one could be interested in causation, which
means, given the systems law of evolution, determining f(x, t), or initial conditions u(x, 0)
from the current state. Second, one could be interested in the problem of identification,
meaning estimating the parameters m(x) from given input and output information. This
relationship is summarized in Figure 1.2.

One common occurrence for inverse problems is that they are ill-posed (KIRSCH
et al., 2011), i.e., they do not satisfy the Hadamard conditions for the mathematical
representation of a physical system:

1. The solution exists.
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(a) Brain Imaging by acoustic inversion (GUASCH
et al., 2020).

(b) Non destructive testing of reinforced concrete
(AFANASIEV et al., 2019).

(c) Seismic imaging for reservoir
characterization (BARCLAY et
al., 2008).

Figure 1.1 – Inverse problem applications.

2. The solution is unique.

3. The solution depends continuously on the data.

The approach to the problem of ill-posedness varies according to application area. For
instance, in the field of optimal design, which can be seen as a type of inverse problem,
the non-existence issue was addressed by enlarging the solution space (KOHN; STRANG,
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1986). This particular type of relaxation by the introduction of homogenization paved the
way for the later appearance of Topology Optimization (BENDSØE; KIKUCHI, 1988).
Non-uniqueness is typically related to a lack of information, which, if available, should be
incorporated into the model. The third issue is the most critical when solving an inverse
problem by numerical methods. If small variations in the data can lead to arbitrarily large
variations in the solution, the process will not be stable, noise and small numerical errors
will compound and one cannot rely on the solutions obtained.

The lack of stability can be dealt with by introducing regularization methods, which
approximate the ill-posed problem by neighbouring well-posed ones, or by the addition of
a-priori information about the solution (ENGL; HANKE; NEUBAUER, 1996).

1.2 Subsurface salt imaging

Studying the Earth’s subsurface is an important task in several disciplines. In geotechnical
and underground planning, knowledge of burried objects is important in order to mitigate
and control project risks (NGUYEN; NESTOROVIĆ, 2018). In an environmental context,
understanding the subsurface is needed for evaluating the feasibility of sustainability
initiatives such as carbon sequestration and storage. In Geoscience, imaging the Earth’s
interior is fundamental in order to comprehend the nature of hotspots, plate movements
and earthquake activity. In the energy sector, subsurface imaging is the main taks of
geophyisical exploration, targeted at locating mainly hydrocarbon reservoirs (SHERIFF;
GELDART, 1995).

Among several types of formations, the presence of salt structures is particularly
relevant in subsurface imaging applications. These formations appear when thick layers
of evaporite salts are covered by sediments, and over geological timescales deform and
migrate due to their lower density compared to the sediments, resulting in a variety of
structures (HUDEC; JACKSON, 2007). One such structure is the salt dome, where salt
pushes upwards to form a dome-like shape. Salt domes are prevalent in exploration sites
such as the Gulf of Mexico (GoM). In other places, such as the coast of Brazil, extensive
layers of salt remain relatively flat, creating large horizontal salt beds (or layers). These

cause effectModel

Figure 1.2 – Representation of a system y = K(s)x, which could be associated to the inverse problems
of retrieving either x (causation) or s (parameter identification).
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salt layers are made primarily of halite(NaCl), although other evaporites such as gypsum
(CaSO4 - 2 H2O) and anhydrite (CaSO4) may also appear.

The presence of these salt structures has significant implications for hydrocarbon
reservoirs. The impermeability of salt tends to form seals that trap hydrocarbons within
or adjacent to it. Furthermore, the deformation of salt layers can generate structural
traps where hydrocarbons may accumulate (HUDEC; JACKSON, 2007). For instance,
in the case of the pre-salt layer off the Brazilian coast, the salt overlies potentially rich
hydrocarbon reservoirs in the underlying carbonate rocks.

Subsurface imaging involves the estimation of the Earth’s medium properties based on
mechanical or electromagnetic measurements, a process that constitutes an inverse problem.
A specific method employed in this context is seismic imaging, which utilizes active seismic
sources to generate waves. These waves are subsequently recorded at strategically chosen
locations, as schematically represented in Figure 1.3. The ultimate goal of this process is
to reconstruct the properties of the subsurface in such a manner that a simulated signal
aligns as closely as possible with the recorded one. The specific type of seismic inversion
performed is determined by the equations governing wave propagation and the nature of
the data collected.

Travel-time tomography, for instance, evaluates line-integrals along seismic raypaths
in order to determine acoustic parameters of the subsurface. Such an approach relies on a
high frequency approximation of the wave equation, and as a result, assumes that physical
parameters vary slowly over sevel wavelengths. In addition, resulting images have a low
resolution and are insensitive to velocity inversions (GUASCH, 2012). In order to obtain
velocity fields with higher detail, techniques that model the whole wavefield are needed,
instead of methods that employ approximations of the wave equation.

1.3 Full Waveform Inversion

Full Waveform Inversion (FWI) is a technique for identifying parameters in systems
that model wave propagation. Despite having several applications such as medical imaging
(AGUDO et al., 2018), (GUASCH et al., 2020), non-destructive testing (SEIDL; RANK,
2016) and CO2 characterization (ROMDHANE; QUERENDEZ, 2014), FWI was first
proposed in the context of seismic inversion by Santosa et al. (1984), Lailly e Bednar
(1983), Tarantola (1984). FWI marked an advancement over previous methods such as
Traveltime Tomography by incorporating phase information alongside wave transit time.

Using the full wave equation as state equation introduces non-linearity into the inversion
problem, resulting in a computationally challenging task. As seismic imaging application,
FWI can be broken down into the steps described in Section 1.2:
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• The shot records are collected during a seismic survey(Figure 1.3)

• An initial guess, often obtained from another technique such as Traveltime Tomography,
is defined.

• Initial guess and survey description are used to create a numerical wave propagation
model, usually discretized by methods such as Finite Element Method (FEM)
(ROBERTS et al., 2022), Spectral Element Method (SEM) (TRINH et al., 2017) or
Finite Difference Method (FDM) (CHARARA; BARNES; TARANTOLA, 2005).

• The model parameters are updated within a Partial Differential Equation (PDE)
constrained optimization framework.

The first implementation of FWI occurred in the latter half of the 1980s. It took one hour
to perform five iterations of a problem with 40000 Degrees of Freedom (DoF) on a CRAY
1S supercomputer (GAUTHIER; VIRIEUX; TARANTOLA, 1986). The computational
cost of FWI hindered its application, with the forward problem representing the main
computational burden. Originally proposed in the time domain, wave propagation with
explicit time integration may result in strict upper bounds on time step size depending on
parameters such as source frequency, propagation velocity and mesh/grid size (FICHTNER,
2010). Pratt (1999) reformulated the problem in the frequency domain and efficiently
implemented it, which led to successful fault delineation in a crosshole experiment (PRATT;
SHIPP, 1999). One of the main limitations with this approach is the increasingly large
size of matrix operators needed when using direct solvers (GUASCH, 2012).

Models have grown in complexity in tandem with computational power. The works
cited up to this point have employed the acoustic approximation (Section 2.1). However,
the use of the elastic wave equation and the consideration of 3D problems have become
more prevalent following pioneering works. Gélis, Virieux e Grandjean (2007) and Sears,
Singh e Barton (2008) solved FWI for elastic parameters. Regarding 3D modeling Warner,

survey vessel
hydrophone

acoustic source sea bed

recorded data

Figure 1.3 – A seismic survey, which collects phase and amplitude data necessary for FWI.
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Stekl e Umpleby (2007), Sirgue et al. (2009) and Plessix et al. (2010) have used the acoustic
approximation, while Epanomeritakis et al. (2008), Etienne et al. (2010) and Guasch et al.
(2010) used elastic parameters.

Apart from the brodeaning of scope, FWI has several challenges inherent to a data
fitting process with limited, noisy data. The lack of low frequency data has been addressed
by Li e Demanet (2016), who proposes extrapolating low frequency data by separating
events, by Hu et al. (2018), who reviewed existing methods for retrieving low frequency
information, and by Sun e Demanet (2020), who trained a convolutional neural network
to perform the extrapolation in the lower range frequency. Liu et al. (2016) proposed
a modified L2 misfit objective function in order to mitigate the effects of amplitude
discrepancies between recorded and predicted data. In a sense, lack of low frequency data
and amplitude mismatch are both related to the more general problem of cycle skipping,
which is the convergence to local minima when the inversion initial guess is not close
enough to the true model. In that regard, Alkhalifah (2014) suggested a gradient filter
which mutes the low scattering angle contribution. Warner e Guasch (2016), on the other
hand, put forward an objective function formulation that tries to match recorded and
predicted data by the use of Wiener filters, mittigating cycle skipping severely according
to the authors. Yao et al. (2019) proposed using “̀ıntermediary data” between observed
and predicted values, such that nowhere the intermediary values exceeds half a wavelength
from the predicted data. More recently, Li e Alkhalifah (2021) formulated an extended
version of FWI that introduces parameters such as time lapses and scattering angles, while
also adding a matching filter between observed and predicted data. The filter parameters
are also included into the optimization search space.

1.3.1 Full Waveform Inversion in the presence of salt bodies

In hydrocarbon exploration, many sites are located in salt basins regions, such as
the Gulf of Mexico and the Santos basin at east offshore of the brazilian coast. Indeed,
most pre-salt resources there have yet to be produced, with the brazilian site expected to
become one of the top 5 oil producers in the world (PETERSOHN, 2021).

FWI for subsurfaces with salt bodies is specially challenging due some of their
characteristics, such as complex geometry and high impedance at the sediment-salt
interfaces (see Figure 1.4 for synthetic velocity models that mimic this type of subsurface).

In particular, the misidentification of the salt body can lead to large timing errors in
arrival time, and also to significant deviations in simulated wavepaths. The conventional
workflow for dealing with salt bodies in velocity model building has been traditionally
first applying FWI to identify the sediment layer above it. Next, flood migration would be
employed for characterizing the top of salt, then the bottom. Finally, a number of salt
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(a) BP 2004 velocity model. Salt structures are in red (BILLETTE;
BRANDSBERG-DAHL, 2005).

(b) Siegsbee2A velocity model. The salt body is the white structure (IRONS,
2001).

Figure 1.4 – Two synthetic velocity models with presence of salt structures.

scenarios would be tested in order to resolve the geometry (WANG et al., 2019).

Works have been published about salt velocity model building using synthetic velocity
models (GUASCH; WARNER; HERRMANN, 2016; KADU; LEEUWEN; MULDER, 2016).
Breakthroughs in field applications were obtained by Shen et al. (2018), who corrected
misinterpretations for an exploration field in the Gulf of Mexico, and Zhang et al. (2018),
who addressed issues of cycle-skipping and amplitude discrepancy using field data from
areas with complex shallow salt bodies (again in the Gulf of Mexico).

Since salt bodies are problematic for conventional FWI, while also exhibiting characteristic
features, the use of models that incorporate this a-priori information has been employed
by several authors with the use of a Level Set (LS) parametrization (GUO; HOOP,
2012; GUO; HOOP, 2013; KADU; LEEUWEN; MULDER, 2016; DORN; WU, 2021;
ALBUQUERQUE; LAURAIN; YOUSEPT, 2021a). Another way of enforcing “blockiness”
is to use an appropriate regularization scheme such as Total Variation (TV) (ANAGAW;
SACCHI, 2011), or its variations designed specifically for seismic, for instance, the Modified
Total Variation (MTV) from Lin e Huang (2014) or the assymetric TV from Esser et al.
(2016). Lately, higher order regularizations that deal better with complex, noisy data than
TV have been also proposed (GAO; HUANG, 2019).
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(a)

(b)

(c)

(d)

Figure 1.5 – Types of optimization given the same (a) initial domain: (b) Size, (c) shape, and (d)
topology optimization.

1.4 Topology optimization

The objective of Topology Optimization (TO) is to determine the optimal material
distribution on a certain domain. Although this problem is centuries old (M.C.E, 1904), it
was only after the formulation given by Bendsøe and Kikuchi (BENDSØE; KIKUCHI, 1988)
that the discipline of TO experienced substantial growth, both in volume of research and
scope. Originally applied to structures subject to mechanical loads, TO was generalized in
order to solve multiphysics problems considering diverse phenomena such as heat transfer,
aeroelasticity, electromagnetic fields, and many others (DEATON; GRANDHI, 2014). The
TO designation distinguishes it from other design techniques that only alter characteristic
dimensions (parametric optimization) or the boundary definition (shape optimization),
but do not allow the nucleation or closure of holes, see Figure 1.5.

In a single material framework, the design domain Ω is discretized into a set of elements
or nodes, each one associated to a design variable ρi. The region ΩD where ρ = 1 defines the
presence of material, while Ω\ΩD where ρ = 0 defines its absence. The design process then
consists in extremizing some measure such as stiffness, first natural frequency or dissipated
power, for instance. In practice, a näıve TO implementation as described above suffers from
severe numerical instabilities and requires the use of relaxation schemes and regularizations
(SIGMUND; PETERSSON, 1998). In addition, the methodology is not restriced to single
material design, and several multimaterial approaches have been proposed (BENDSØE;
SIGMUND, 1999; YIN; ANANTHASURESH, 2001; ZUO; SAITOU, 2017).

Besides structural design, TO has already been applied to several inverse problems.
The design of metamaterials, for instance, is a type of inverse problem where, instead
of evaluating the material properties from the microstructure, a given microstructure
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is obtained by minimizing a misfit between predicted and given material properties.
In this field, Larsen, Sigmund e Bouwsta (1997) designed and manufactured compliant
micromechanisms with negative Poisson’s ratio, while Sigmund e Torquato (1996) investigated
composites with extremal thermal expansion coefficients. Byun et al. (2000) applied TO to
the permittivity identification problem using the concept of mutual energy in sensitivity
evaluation. Lima et al. (2007) developed a TO formulation for Electrical Impedance
Tomography (EIT) and used experiments to assess its effectiveness. Mello et al. (2008)
expanded the TO EIT approach to 3D and also performed tests with experimental data.
(RYUZONO et al., 2019) employed TO in the problem of Non-Destructive Testing (NDT),
combined with visualization of ultrasonic wave propagation. TO has also been applied in
the context of acoustic parameter identification under different formulations. Lanznaster
et al. (2021) employed a LS based representation of inclusions, Goncalves et al. (2020),
Goncalves e Silva (2021) used continuous variables, and Moreira et al. (2023) applied a
discrete control variable approach. In particular, Gonçalves e Silva (2023) considered the
reconstruction problem in the context of FWI.

TO is pertinent to FWI problems characterized by sharp interfaces, such as salt bodies
or layers. In these cases, the combination of limited sub-salt penetration and significant
wavepath deviation renders the positioning and estimation of regions beneath these
geological formations challenging with conventional methods. Alternative approaches like
level set methods and TV regularization possess inherent limitations. Current implementations
of level set FWI (KADU; LEEUWEN; MULDER, 2016; DORN; WU, 2021; ALBUQUERQUE;
LAURAIN; YOUSEPT, 2021b) are constrained by the topology of initial estimates. On the
other hand, TV regularization produces unwanted inversion artefacts (LIN; HUANG, 2014).
Given these considerations, there is a demand for an inherently discrete TO approach that
offers greater flexibility for topology changes and also effectively mitigates the generation
of spurious artifacts through proper filtering techniques (SIGMUND; PETERSSON, 1998;
GUEST; PRÉVOST; BELYTSCHKO, 2004).

1.4.1 Material models

TO is intrinsically discrete, given that a certain material (or void) is assigned to
each point of the domain. As an ill-posed optimal design problem (KOHN; STRANG,
1986), its first iterations (BENDSØE; KIKUCHI, 1988) regularized the original problem by
employing anisotropic materials with composite microstructures, and evaluated effective
material parameters by applying homogenization techniques. This formulation however
introduces considerable complexity, whilst adding subjectivity if it’s desired to interpret
the resulting composite material distribution as a discrete design.

Bendsøe (1989), Zhou e Rozvany (1991) suggested an alternative approach, now known
as Solid Isotropic Material with Penalization (SIMP), where materials properties are
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interpolated as powers of the control variable. If we are optimizating for a certain property
ϕ as a function of the control variable 0 ≤ a ≤ 1, a possible SIMP interpolation could be:

ϕ = aP ϕ̄, (1.2)

where P is the so called penalization exponent, which is expected to force ϕ either to 0 or
to the maximum value ϕ̄. This approach is mesh dependent, although filtering functions
acting over either the sensitivity or the control variable can limit this problem by enforcing
a minimum design characteristic length (SIGMUND; MAUTE, 2013).

In general, material models act by modyfing the solution space, either enlarging or
restricting it, and as such can be convenient for ”steering” solutions of optimization
problems to a certain behaviour, instead of directly introducing extra constraints in the
optimization problem.

1.4.2 Discrete control variables

In topology optimization, perhaps the most common approach is to use so called
density methods (SIGMUND; MAUTE, 2013), which employ a continuous pseudo density
to assign either the presence of material or a void to a certain region. Albeit appropriate for
many applications, density methods face difficulties in some types of problems. For instance,
continuous variables are innapropriate for accurately representing material interfaces given
the propensity to generate ”transition regions” where intermediate control values map
neither to a certain material nor to its absence.

These and other particular challenges motivated the development of methodologies
that keep clear discrete designs. Level Set and and Bi-directional Evolutionary Structural
Optimization (BESO) can be highlighted as popular approaches within this framework
(DEATON; GRANDHI, 2014). While level set methods utilize a continuous field in order
to implicitly define a discrete characteristic function, BESO uses a discrete control variable
to assign well defined materials (or void) to each point in the domain throughout the
whole optimization process (HUANG; XIE, 2009). Its main drawback is in the heuristics
update criteria, which makes generalization difficult for problems with constraints that
deviate from the classical volume constraint.

Sivapuram, Picelli e Xie (2018a) developed a new methodology for dealing with
discrete designs. Its formulation is straightforward as in the BESO method, however,
the update process employs mathematical programming, making it more general and
capable of handling any type and number of constraints (SIVAPURAM; PICELLI; XIE,
2018b). To the best of the authors knowledge, Topology Optimization of Binary Structures
(TOBS) has only been implemented as a sequential integer linear programming problem
(see 3.2.2). The Integer Linear Programming (ILP) problem solved at each iteration is
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more computationaly complex than a Linear Programming (LP) solve, however, since
the computational bottleneck of PDE-constrained optimization problems is to solve the
forward problem and (possibly) calculating the gradient, this added cost is not significant
to the whole optimization process, as shown in (SIVAPURAM; PICELLI, 2020).

1.5 Acoustic modelling

As closed form solutions for the wave equation are only available for fairly simple
domain geometries and boundary configurations, the application of numerical methods
are a necessity in waveform imaging. In order to solve the wave equation numerically, it is
necessary to discretize it both in space and time.

Time discretization usually consists in approximating time derivatives by low order
finite differences. More sophisticated variants such as multi-step predictor-corrector or
high order Runge-Kutta methods are not common due to empirical studies showing
that i) the improvement in accuracy does not offset the added computational cost, but
mainly that ii) spatial discretization error is dominant over time discretization error
(FICHTNER, 2010). Besides applying finite differences to time derivatives, an alternative
is to formulate the wave equation in the frequency domain. If the bandwidth considered is
relatively narrow, a large number of sources has to be considered, and an efficient solver
is available, a frequency-domain implementation is to be favoured. This is the case since
direct factorization for each frequency can be reutilized for any given source if memory
resources allows it, or when this characteristic can be explored by iterative solvers. For
wider bandwidths a larger number of frequencies has to be solved for, thus an explicit
timestepping scheme may be more cost-efficient (VIRIEUX; CALANDRA; PLESSIX,
2011).

The most significant distinction between numerical methods, however, is in spatial
discretization, that is, how are the spatial derivatives approximated, and what are the
characteristics and properties of the the resulting algebraic system. In the context of
waveform modelling, Virieux, Calandra e Plessix (2011) suggests grouping numerical
methods in three classes: Spectral, strong or weak formulations.

Spectral Methods are formulated in the dual waveform space. There, analytical or
semi-analytical solutions can be constructed by means of Cagniard-De Hoop path integrals
(AKI; RICHARDS, 2002). It is customary to expand the solution using special functions,
and to employ numerical integration techniques for relatively complex geometries. A
considerable hindrance with this approach is the restriction to laterally invariant 3D media.
Even though alternatives such as fast moment methods exist for laterally varying media
(CHAILLAT; BONNET; SEMBLAT, 2008), Spectral methods are not a viable alternative
for rapidly changing lateral variations or when there are abrupt property changes such
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as is the case for velocity models with salt bodies (VIRIEUX; CALANDRA; PLESSIX,
2011).

Strong formulations consist of methods satisfied locally, either over grid points or
finite volumes. The Finite Difference Method is likely to be still the most common method
applied to waveform imaging (AFANASIEV et al., 2019). According to Fichtner (2010),
the viablity of Finite Differences for 3D problems hinges in the use of staggered grids,
which reduces numerical dispersion by decreasing average grid spacing, and its popularity
resides in low computational cost for a given accuracy in the modeling of body waves.
Nevertheless, FDM has several drawbacks such as difficulty in capturing complex material
interfaces, imposing non trivial boundary conditions, as well as representing complex
geometries (AFANASIEV et al., 2019). Indeed, Zhebel et al. (2014) shows that, for a given
accuracy, while for homogeneous material properties FDM is one order of magnitude faster
than FEM, for a complex material distribution with strong topography, FEM is two order
of magnitudes more efficient. In that front, the generalization of rectangular grids by means
of curvilinear coordinate transforms (SHRAGGE, 2016) improve the modeling of complex
geometries. Nevertheless, they still impose the use of continuous smooth surfaces(or curves),
and only complicate further the implementation of boundary conditions. In the Finite
Volume Method, the domain is partitioned into non-overlaping volumes, and an integral
form of the wave equation is solved for each finite volume. The Finite Volume Method
(FVM) introduces meshes, which consideraly improves the modelling of complex geometries
and material interfaces. According to Afanasiev et al. (2019), although there are promising
results with high order approximations, they are not as cost effective as discontinuous finite
elements. Optimal operators are a method in which operators are specifically designed
to minimize the discretization error near the eigenfrequencies of the model (FICHTNER,
2010). This is done by minimizing the inner product between the modes of the solution
and the PDE residual (TAKEUCHI; GELLER, 2000).

Weak formulations are variational statements equivalent to the original PDE. Restricting
our focus to Finite Element Galerkin Methods, the domain is partitioned into non-overlaping
sub-domains, while test and trial functions are approximated using the same finite
dimensional function space. Although more precise at characterizing irregular topographies
and material interfaces, low order formulations have comparatively higher numerical
dispersion when compared to other methods, and the use of explicit methods is difficultated
by the fact that non-diagonal mass matrices demand the solution of a whole linear system
at each time step, instead of matrix vector multiplications (AFANASIEV et al., 2019). The
Spectral Finite Element Method (KOMATITSCH; VILOTTE, 1998) utilizes high order
polynomials as basis functions and Gauss-Lobato-Legendre (GLL) techniques in order to
obtain diagonal mass matrices and spectral converge in space (VIRIEUX; CALANDRA;
PLESSIX, 2011). Discontinuous Galerkin methods are an approach to Finite Elements
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which does not impose continuity between elements. While discontinuous elements can
better capture discontinuous interfaces, they introduce fluxes between elements, which
increases computational cost (FICHTNER, 2010), in addition to a more restrictive stability
condition (AFANASIEV et al., 2019).

1.6 Motivation

Some inverse problems deal with imaging inherently discontinuous fields. For instance,
NDT for crack detenction (SEIDL; RANK, 2016) and P-wave velocity reconstruction in
the presence of salt bodies (WANG et al., 2019) seek to identify high constrast material
interfaces. For these types of problems it seems fit to apply integer variable TO, which better
represents the distribution of acoustic properties. Furthermore, using a TO framework
also allows bringing methods from that field for dealing with ill-posedness while at the
same time respecting the interface contrast throughout the imaging process.

In addition, sharp interfaces models are being researched as a viable tool for velocity
model building in seismic in the presence of salt bodies. Integer Linear Programming
applied to material distribution in problems with sharp interfaces has a growing field of
applications (SIVAPURAM; PICELLI; XIE, 2018a; PICELLI et al., 2020; SIVAPURAM;
PICELLI, 2020), including wave propagation (MOREIRA et al., 2023).

1.7 Objectives

The main objective of this work are the development and implementation of a
seismologically relevant procedure for inverse problems subject to wave propagation,
with the imposition of a-priori information about the presence of sharp interfaces by
the use of Integer Programming. The implementation was carried using the open source
wave-propagation simulation tool Spyro (ROBERTS et al., 2022), built on top of Firedrake
(RATHGEBER et al., 2016a). The optimizer IBM-ILOG CPLEX was used to solve the
Integer Linear Programming (ILP) updating sub problems (MANUAL, 1987). The goals
of this work can be subdivided into:

• Implementation of an inversion procedure for discrete velocity models with a single
type of inclusion.

• Verification of implementation by comparison with cases from the Literature.

• Implementation of a multimaterial inversion procedure for discrete velocity models,
allowing for more than one type of inclusion.

• Application of multimaterial model to subsalt reconstruction case.
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1.8 Scientific Contributions

The expected scientific contributions are the following:

• Assessment of Integer Programming to velocity model building in the presence of
sharp interfaces.

• Extention of Integer Linear Programming to material distribution problems subject
to wave propagation.

Four works have been produced:

• Presentation about Acoustic Tomography by Topology Optimization given on the
14th World Congress on Computational Mechanics (WCCM).

• Published paper on Acoustic Inversion by Topology Optimization in the frequency
domain (GONCALVES et al., 2020).

• Published paper on Acoustic Inversion by Topology Optimization in the time domain
(MOREIRA et al., 2023).

• Submitted paper on Acoustic Wave Propagation Modeling (SOUZA et al., 2022).
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2 WAVE MODELING

This chapter introduces the wave equation formulation chosen for performing seismic
inversion. The acoustic approximation of a linear elastic medium is discussed, as well as the
choice of Absorbing Boundary Layers (ABL) and Absorbing Boundary Conditions (ABC)
for modeling semi-infinite mediums. The time signature chosen to model a point source is
displayed, and since this work uses the Finite Element Method (FEM), the variational
formulation of the wave equation is presented.

2.1 P-wave propagation in elastic media

The governing equations of motion for a linear elastic isotropic medium Ω during an
interval (0, T ) are given as:

ρ∂ttu−∇ · σ = ρb in Ω× (0, T ], (2.1a)
σ = λTr(ε)I + 2µε, (2.1b)

ε = 1
2
[
∇u + (∇u)T

]
, (2.1c)

where the displacement u, the stress σ and the strain ε may all depend on space and time.
The Lamé parameters λ and µ, however, may vary only in space since expression (2.1b)
hinges on the assumption of no viscoelastic effects (SPENCER, 2004). In order to arrive
at the scalar wave equation we will further assume a homogeneous medium, with λ and µ
being constants, and also that relative variations of the density ρ are negligible. b is the
body force per unit mass.

A homogeneous isotropic medium supports two deformation modes, one associated
with changes in volume without changes in shape (P waves), and another where changes in
shape manifest without changes in volume (S waves) (CARCIONE, 2007). In geophysics
exploration, computational costs associated with solving (2.1) leads practitioners to adopt
the acoustic approximation, which albeit not as realistic as the full linear elasticity equations
still models wave propagation to a degree deemed acceptable for applications that restrict
data analysis to first-arriving P waves and model sources with explosive radiation patterns
(FICHTNER, 2010).

Different paths can be taken to arrive at the acoustic approximation:

(i) Simply ignoring the constitutive parameter associated to shear µ (FICHTNER,
2010).
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(ii) Describing u in terms of Lamé potentials, separating P and S waves into two
uncoupled equations (ATKIN; FOX, 2005).

(iii) Applying the divergence operator to (2.1a), thus discarding information about shear
strain.

In this work, route (iii) is taken. First, equations (2.1) are combined into a single
expression in terms of the displacements:

ρ∂ttu−∇ ·
{
λ (∇ · u) I + µ

[
∇u + (∇u)T

]}
= ρb. (2.2)

Expanding the expression under the divergent operator and applying the vectorial identity
∇×∇u = ∇(∇ · u)−∆u leads to:

ρ∂ttu− (λ+ 2µ) ∆u− (µ+ λ)∇×∇× u = ρb. (2.3)

The application of the divergent, use of the identity ∇ · (∇× •) = 0 and division by ρ

results in a variable density wave equation:

∇ρ
ρ
· ∂ttu + ∂ttp−

(λ+ 2µ)
ρ

∆p = ∇ρ
ρ
· b +∇ · b, (2.4)

in terms of the volume strain p = ∇ · u (for linear elasticity).

If it is assumed that the magnitude of the relative density variation |∇ρ|/ρ is negligible
with respect to second order variations of p in both space and time, then one can simplify
further (ATKIN; FOX, 2005), arriving at the acoustic wave equation:

∂ttp− v2
p∆p = s, (2.5)

where vp =
√

(λ+ 2µ)/ρ is the speed with which the wavefront travels and s = ∇ · b is a
volumetric source term.

It is worth nothing that, while leading to the same equation, route (i) would imply
in a wave speed vp =

√
(λ+ 2

3µ)/ρ =
√
κ/ρ, which does not coincide with our derivation.

An acoustic velocity given in terms of the bulk modulus κ is consistent with a derivation
from the Euler equations for fluid media (COHEN, 2001). In that case p would not be the
volume strain, it would be a mean stress value proportional to it, such that p = −κ∇ · u.
In any case, if we are to apply velocity model building with only vp as design variable this
distinction does not lead to divergent results.
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2.2 Boundary conditions and source term

2.2.1 Boundary conditions

In applications where a finite solid body Ω is considered, such as non-destructive
testing or medical imaging, the boundary ∂Ω is modeled as a rigid surface (COHEN, 2001).
Mathematically, this means p is subject to Neumman boundary conditions:

n · ∇p = 0 on ∂Ω× (0, T ], (2.6)

where n is the unit vector normal to ∂Ω.

For seismic applications on the other hand, the domain possibly has to be modeled as
a semi-infite medium. Let ∂Ω = ΓD ∪ ΓA be the boundary of the computational domain Ω,
where the non-intersecting ΓD and ΓA are illustrated in Figure 2.1.

Figure 2.1 – Semi infinite domain typical of geophysics exploration.
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The boundary ΓD is a contact surface between air and ground, or air and water. In
any of these cases, the most appropriate conditions are homogeneous Dirichlet boundary
conditions (COHEN, 2001):

p = 0 on ∂Ω× (0, T ]. (2.7)

Unbounded domains in finite computational grids (or meshes) can be approximated to
varying levels of efficiency. One can introduce a damping layer ΩABC around the original
boundary such that the computational domain is augmented as Ωext = Ω ∪ ΩABC . In the
extended region, a dissipative term is added to the wave equation in order to dampen
reflective waves (CERJAN et al., 1985). Another approach is to use Absorbing Boundary
Conditions (ABC). They impose a transparency condition (ENGQUIST; MAJDA, 1977),
a global constraint which can be enforced locally to different orders of approximation. At
last, there are Perfectly Matched Layers (PML), damping layers constructed in such a way
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Figure 2.2 – Source signal corresponding to a Ricker Wavelet.

that no reflection occurs (BERENGER, 1994; GROTE; SIM, 2010), and Convolutional
Perfectly Matched Layers (CPML) (KUZUOGLU; MITTRA, 1996), which solve some
numerical problems introduced by the original PML formulation (COHEN; PERNET,
2017). In this work, a 0th order transparency condition (ENGQUIST; MAJDA, 1977) is
used:

1
vp

∂p

∂t
+ n · ∇p = 0 on ΓA × (0, T ]. (2.8)

In a few examples where comparisons to the literature are made, ABCs are used for
consistency sake. In that case, the wave equation from 2.5 becomes:

∂ttp+ η∂tp− v2
p∆p = s, (2.9)

where η is an artificial damping coefficient which is different from zero only in ΩABC and
has the sole purpose of dissipating reflected waves.

2.2.2 Source term

The Ricker wavelet is applicable to the simulation of mechanical wave propagation
through homogeneous viscoelastic media emanating from a point source (WANG, 2015).
In particular, it is applicable to wave simulation in elastic media. Since this work considers
only the reconstruction of synthetic velocity models, the point source time signal is chosen
to be a Ricker wavelet. Considering a source at xs ∈ Ω, we may expand the right hand
side of (2.5) as:

s(x, t) =
(

1− 1
2ω

2
c (t− t0)2

)
exp− 1

4 ω2
c (t−t0)2

δxs , (2.10)

where ωc is the central angular frequency of the excitation signal, t0 is some delay time and
δxs is a Dirac’s delta distribution centered on xs. Figure 2.2 displays the time dependence
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of the wavelet applied at some point xs. In real seismic imaging applications, it may be
necessary to estimate the source time signal (VIRIEUX et al., 2017).

2.3 Variational formulation

In order to apply the Finite Element Method, the wave equation (2.5) is recast into
an equivalent integral formulation (HUGHES, 2012). We search for a solution p belonging
to V ⊂ H1(Ω) such that, for any q in V̂ ⊂ H1

0 (Ω), we have:∫
Ω
∂ttp q dΩ +

∫
Ω
η∂tp q dΩ +

∫
Ω
v2

p∇p · ∇q dΩ =
∫

ΓA

gq dΓ +
∫

Ω
sq dΩ, (2.11)

obtained by multiplying the original PDE by a test function q and integrating by parts. V
is the subset of H1(Ω) of all functions satisfying appropriate essential boundary conditions
for the problem at hand, while V̂ is restricted to functions satisfying homogeneous essential
boundary conditions, hence H1

0 (Ω) (HUGHES, 2012). The surface integral on the right
hand side comes from the transparency condition in (2.8), with g corresponding to:

v2
p n · ∇p = −vp

∂p

∂t
= g on ΓA × (0, T ]. (2.12)

In order to simplify notation and ease manipulation of the variational problem, the
following linear and bilinear forms are defined:

(u, v) :=
∫

Ω
u v dΩ,

(u, v)η :=
∫

Ω
η u v dΩ,

a(u, v) :=
∫

Ω
v2

p∇u · ∇v dΩ,

l(v) :=
∫

Ω
s v dΩ +

∫
ΓA

g v dΓ.

(2.13)

If in addition we denote ∂t() = (̇), then (2.11) can be rewritten as:

(p̈, q) + (ṗ, q)η + a(p, q) = l(q) ∀q ∈ V̂ . (2.14)

The convenient dismissal of ṗ from the linear term l(q) is allowed due to choosing a
backward finite difference discretization for the boundary term as described in 4.1. In that
case, at any given time s and g from 2.13 are known functions.
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3 TOPOLOGY OPTIMIZATION APPLIED

TO ACOUSTIC INVERSION

3.1 Acoustic Inverse Problem

Under adequate assumptions the scalar wave equation may describe propagation of
mechanical waves in fluids or solids, being employed in the modeling of distinct phenomena
such as vibrations, sound generation, seismic activity, ultrasound, among others.

The problem of identification, which relies on minimizing the discrepancy between
simulated and experimental data, can exhibit considerable variations among applications.
These variations may include aspects such as the boundedness of the domain, constraints on
observability arising from the quantity and placement of sensors, and resolution dependent
on characteristic dimensions, wave velocities, and frequencies employed. Nevertheless, the
acoustic parameter identification problem may be written somewhat generally (SEIDL;
RANK, 2017; VIRIEUX et al., 2017) as stated in (3.1) and ilustrated in Fig 3.1.

Let vp be the parameter field and s be a point source at xs from which excitations
propagate throughout the domain Ω. During a time span of T , the amplitudes p0,s at xr are
recorded as the experimental values ds,r(t) = p0,s(xr, t). The boundary ∂Ω = ΓD ∩ΓN ∩ΓA

may be split in sections which obey Dirichlet, Neumann or Robin type Absorbing boundary
conditions as hinted by the subindices. The domain may be extended such that Ωext =
Ω∪ΩABC . For a system subject to (2.5), one seeks vp that minimizes the difference between
ds,r(t) and ps(xr, t) for every source s at every receiver r.

In general, for the inversion procedure up to Ns sources and Nr receivers are employed
instead of a single pair. The parameter identification problem can then be formulated as
an optimization problem:

minimize
vp

f =
Ns∑
s

Nr∑
r

∫ T

0

∫
Ω

(ps(x, t)δxr − ds,r(t))2 dΩdt

subject to ∂ttps + η∂tps − v2
p∆ps = s(xs, t), s = 1, . . . , Ns

ps(x, t) = 0 on ΓD

∂nps(x, t) = 0 on ΓN

1
vp

∂p

∂t
+ n · ∇p = 0 on ΓA

ps(x, 0) = 0 in Ωext

∂tps(x, 0) = 0 in Ωext

(3.1)
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Figure 3.1 – Acoustic system for a single source-receiver pair.

3.2 Topology Optimization Problem Formulation

A generic TO problem may be stated as follows: a certain variable of interest must
be extremized, and an equation of state describing a certain physical process has to be
satisfied. A minimization problem, for instance, becomes:

minimize
ρρρ

f(ρρρ,S) Objective Function

subject to R(ρρρ,S) = 0 in Ω State Equation
0 ≤ ρρρ ≤ 1 in Ω Box Constraints

(3.2)

Here ρρρ describes the material distribution in the domain Ω, and each component of
ρρρ is restricted to values between 0 and 1. We want to minimize the value of f while
simultaneously keeping the residuals R of the state equations zero. The vector S designates
the state variables of interest.

A category of TO problems known as density methods (SIGMUND; MAUTE, 2013)
introduces the concept of a material model, where a pseudo-density that penalizes
intermediary values for ρρρ is used. The material model concept can be explored by the
choice of the interpolating function that connects the design variable ρρρ to the material
parameter being interpolated, be it mass density, porosity or constitutive parameters such
as Young’s modulus and Poisson’s ratio.

Material interpolation schemes affect the feasible space to which ρρρ belongs in different
ways. The RAMP approach (STOLPE; SVANBERG, 2001) manipulates the convexity of
the objective function so as to increase the probability of binary solutions. The interpolating
material model introduced in (YIN; ANANTHASURESH, 2001) uses weighted Gaussian
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distributions so as to coalesce the design around chosen mean values. This configuration
allows for multimaterial modeling, since each Gaussian can be selected to correspond to a
certain material.

In this work three material models are used, one that allows for a binary description
of the model, and two other that allow multimaterial modelling. Multimaterial models
describe material parameters as piecewise constant fields with possibly more than two
different values.

3.2.1 Material models

The SIMP material model (BENDSØE, 1989) is used to approximately represent a
binary field. In the context of acoustic imaging, it is useful for describing an obstacle
embedded within a fixed background. In that case, the acoustic velocity is given as follows:

vp(a(x)) = vmin
p + (vmax

p − vmin
p )a(x)p, (3.3)

here a(x) is the design variable, vmax
p and vmin

p are upper and lower bounds for vp and p is
a positive integer that penalizes intermediate values of a. In particular, vp(a = 0) = vmin

p

and vp(a = 1) = vmax
p . The exponent p affects the gradient with respect to the optimization

variable a, however, its impact is much smaller than that of sensitivity filter parameters
introduced in Section 3.4. Thus, In this work p is set to unity unless explicitly stated
otherwise.

If it is desirable to identify more than just inclusion and background, a multimaterial
model can be used. Let Nm be the number of acoustic values present in the model. For
instance, Nm = 3 for a model with fixed background and inclusions with two distinct
acoustic velocities. The design variable values {ai}Nm

i=1 may be mapped to the allowed
acoustic values {vp,i}Nm

i=1 using Lagrange interpolating polynomials as follow:

vp(a(x)) =
Nm∑
i=1

vp,i

Nm∏
j=1
j ̸=i

a(x)− aj

ai − aj

. (3.4)

Another interpolation scheme possible is the peak function material model used in
(GONCALVES et al., 2020). In this approach the acoustic velocity is written as a sum of
normalized gaussian curves:

vp(a(x)) = 1∑Nm
j=1 exp

[
(a(x)−aj)2

2σ2
j

] Nm∑
i=1

vp,i exp
[

(a(x)− ai)2

2σ2
i

]
(3.5)

This interpolation introduces the standard deviation σi associated with the acoustic velocity
vp,i as a free parameter. In this work, σj = 0.3 unless explicitly stated otherwise.
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A plot of the peak model curve 3.5 for different values of σi and of the lagrange
interpolation model 3.4 is shown in Figure 3.2. As can be seen there, the parameter σj

allows manipulating the magnitude of the gradient of the material model with respect to
the design variable at the allowed integer values, in this instance, a ∈ {0, 1, 2}. This in
turn can be useful for amplifying or suppressing the magnitude of the gradient at selected
value ranges of the design variable.
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Figure 3.2 – Lagrange and peak function interpolating models. The peak function model is plotted
with three different σj values to illustrate the influence of the parameter on the slope of
the curve.

In this work, we propose formulating the acoustic imaging problem in the framework of
TO, introducing the concept of material models and regularization through filtering of the
sensitivities. The design variable is modeled as an integer field so as to better characterize
sharp interfaces. In order to do so, the TOBS methodology from TO is employed. The
parameter identification problem given in (3.1) is reframed into the TO formulation (3.2)
via (3.3), (3.4) and (3.5), linking the acoustic velocity vp with the design variable a.

3.2.2 TOBS method

For certain parameter identification problems such as damage detection and geophysical
exploration, the correct positioning of material interfaces is crucial (WANG et al., 2019;
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SEIDL; RANK, 2016). The TOBS method (SIVAPURAM; PICELLI, 2018), which
incorporates discrete control variable values, seems fitting when tackling these problems
via a TO based approach.

Let the design variable be a ∈ RNdim instead of ρρρ, where Ndim is the dimension of
vector a representing the optimization variable after spatial discretization by some method
such as FDM or FEM. Each component ai ∈ {0, 1, . . . , Nm}, Nm being a positive integer.
This formulation restricts the design variable to a piecewise constant field. The generic
TO problem (3.2) can be rewritten in reduced form by noting that the state variable is
implicitly defined by the design variable through the state equation. With these changes,
the TO problem becomes:

minimize
a

f(a)

subject to ai ∈ {0, 1, . . . , Nm}, i = 1, . . . , Ndim

(3.6)

The optimization problem is then solved in a sequential fashion as shown in Algorithm 1.
Algorithm 1 Sequential Integer Linear Programming

1: k ← 0
2: ak ← design variable initial guess
3: Linearize f(a) = f(ak + ∆ak) ≈ f(ak) +∇af(ak) ·∆ak

4: while stopping criteria not met do

5: Solve linearized problem for integer ∆ak

(
▷

)
Eq. 3.8

6: ak ← ak + ∆ak

7: k ← k + 1

Equation (3.6) is linearized around a certain ak and truncated up to first order. The
sub-problem seeking to minimize this linear approximation is:

minimize
∆ak

f(ak) +∇af(ak) ·∆ak

subject to ai ∈ {0, 1, . . . , Nm}, i = 1, . . . , Ndim

(3.7)

The solution ∆ak updates the design variable as ak+1 = ak + ∆ak, which in turn generates
a new sub-optimization problem for ∆ak+1. This procedure is repeated until a stopping
criteria is met.

A bound M on the norm 1 of ∆ak is introduced to sub-problem (3.7). The objective
is to limit the second order error in ∆ak, thus ensuring that the linearization of f stays a
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reasonable approximation (PICELLI et al., 2020). Equation (3.7) then becomes:

minimize
∆ak

∇af ·∆ak

subject to ||∆ak||1 ≤M

ai ∈ {0, 1, . . . , Nm}, i = 1, . . . , Ndim

(3.8)

The constant f(ak) term was discarded from the objective function.

In order to actually implement the norm 1 bound as a linear constraint it is necessary
to know the sign of ∆ak

i before (3.8) is solved. When Nm = 1 this is done by acknowledging
that
Deltaak

i ∈ {0, 1} for ai = 0 and ∆ak
i ∈ {−1, 0} for ai = 1. Hence, the norm constraint can

be written as:
||∆ak||1 =

Ndim∑
i=1

(1− 2ak
i )∆ak

i ≤M (3.9)

However, for Nm ≥ 2 the sign of ∆ak
i is undetermined when 1 < ai < Nm. In order to

keep the norm 1 constraint, the variation ∆ak is divided into a positive and a negative
contribution such that ∆ak = ∆ak

P + ∆ak
N . Thus, Equation (3.8) can be rewritten as:

minimize
∆ak

∇af ·∆ak

subject to ∆ak = ∆ak
P + ∆ak

N

||∆ak
P ||1 ≤M/2

||∆ak
N ||1 ≤M/2

∆ak
i,P ∈ {0, 1− 2H(ak

i −Nm)}
∆ak

i,N ∈ {1− 2H(ak
i ), 0}

(3.10)

where H(·) denotes the Heaviside step function. The signs of ∆ak
i,P and ∆ak

i,N are known
beforehand, allowing us to write the discretized version of (5.9) as an Integer Linear
Problem (ILP).

Applying the TOBS formulation to the acoustic inverse problem (3.1), the optimization
problem can be stated as:

minimize
a

f =
Ns∑
s

Nr∑
r

∫ T

0

∫
Ω

(ps(x, t)δxr − ds,r(t))2

subject to ∂ttps + η∂tps − vp(a)2∆ps = s(xs, t), s = 1, . . . , Ns,

ai ∈ {0, 1, . . . , Nm}, i = 1, . . . , Ndim

(3.11)

It should be noted that the SIMP material model from Section 3.2.1 is restricted to
binary configurations, that is, Nm = 1.
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3.3 Sensitivity Analysis

In this section, the expression for the gradient of the objective function in 3.11 with
respect to the control variable is obtained by the adjoint method (HINZE et al., 2008).
Before that, a few useful properties from the Gateaux derivative are remembered.

3.3.1 Notation and properties

Consider an element a ∈ V , where V is some function space. For the mapping
vp = vp(a), the Gateaux derivative of vp with respect to a in the direction δa is defined as:

Dvp(a)[δa] := lim
ϵ→0

1
ϵ
[vp(a+ ϵδa)− vp(a)] (3.12)

Now say there is some composite mapping p = p(vp(a)). The Gateaux derivative of p
in the direction δa is:

Dp(a)[δa] = lim
ϵ→0

1
ϵ
[p(vp(a+ ϵδa))− p(vp(a))], (3.13)

which from (3.12) equals:

Dp(a)[δa] = lim
ϵ→0

1
ϵ
[p(vp(a) + ϵ

δvp︷ ︸︸ ︷
Dvp(a)[δa])− p(vp(a))] = Dp(vp)[δvp], (3.14)

so the chain rule is valid. Besides, expanding (3.12) around ϵ = 0 yields:

Dvp(a)[δa] = lim
ϵ→0

1
ϵ
[vp(a) + ϵ∂avp(a)δa+O(ϵ2)− vp(a)] = ∂avp(a)δa, (3.15)

which shows that Dvp(a)[δa] is linear with respect to the differentiation direction δa.
Lastly, if vp is linear, then:

Dvp(a)[δa] = lim
ϵ→0

1
ϵ
[vp(a) + ϵvp(δa)− vp(a)] = vp(δa). (3.16)

3.3.2 Gradient by the adjoint method

The objective function from (3.11) is rewritten as:

f =
Ns∑
s=1

Nr∑
r=1

∫ T

0

∫
Ω

(ps(x, t)δxr − ds,r(t))2

=
Ns∑
s=1

∫ T

0

∫
Ω

Nr∑
r=1

(ps(x, t)δxr − ds,r(t))2

︸ ︷︷ ︸
gs(ps)

=
Ns∑
s=1
⟨1, gs(ps)⟩,

(3.17)
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where ⟨·, ·⟩ is a compact way of expressing the integral over Ω× (0, T ]. The acoustic wave
equation is represented by the differential operator:

L(a, p) = ∂ttp+ η∂tp− vp(a)2∆p. (3.18)

In order to evaluate the gradient, the Lagrangian corresponding to the optimization
problem is formed. Since the box constraints are handled by the optimizer, only the PDE
constraint is considered:

L(p1, . . . , pNs , a, ψ1, . . . , ψNs) =
Ns∑
s=1
⟨1, gs(ps)⟩ −

Ns∑
s=1
⟨λs, L(a, ps)− s(xs, t)⟩. (3.19)

Taking the variation of the Lagrangian with respect to the control variable we obtain:

DaL[δa] =
Ns∑
s=1
⟨1, Dags(ps(a))[δa]⟩ −

Ns∑
s=1
⟨λs, DaL(a, ps)[δa]⟩

=
Ns∑
s=1
⟨1, Dpsgs(ps)[δps]⟩ −

Ns∑
s=1
⟨λs, ∂aL(a, ps)[δa] + ∂psL(a, ps)[δps]⟩

=
Ns∑
s=1
⟨δps, ∂psgs⟩ −

Ns∑
s=1
⟨λs, ∂aL(a, ps)[δa]⟩ −

Ns∑
s=1
⟨λs, ∂psL(a, ps)[δps]⟩,

(3.20)

where δps = Daps[δa]. In particular, the evaluation of δps is computationaly expensive,
and it would be preferable to avoid it altogether. Assuming the existence of an operator
L† such that:

⟨δps, ∂psL
†(a, p)[λs]⟩ = ⟨λs, ∂psL(a, p)[δps]⟩, (3.21)

then (3.20) can be written as:

DaL[δa] =
Ns∑
s=1
⟨δps, ∂psgs⟩ −

Ns∑
s=1
⟨λs, ∂aL(a, ps)[δa]⟩ −

Ns∑
s=1
⟨δps, ∂psL

†(a, p)[λs]⟩

= −
Ns∑
s=1
⟨λs, ∂aL(a, ps)[δa]⟩ −

Ns∑
s=1
⟨δps, ∂psL

†(a, p)[λs]− ∂psgs⟩.
(3.22)

Furthermore, if we can find λs such that:

∂psL
†(a, p)[λs]− ∂psgs, s = 1, . . . , Ns, (3.23)

then the expression for the gradient becomes:

DaL[δa] = −
Ns∑
s=1
⟨λs, ∂aL(a, ps)[δa]⟩ (3.24)

The expression ∂aL(a, ps), while general, obfuscates the dependence of the gradient on
the selected material model. As detailed in Section 3.2.1 and illustrated in Figure 3.2,
varying the material model and parameter selections alters the interpolation curve’s slope,
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consequently affecting the gradient concentration around sharp interfaces.

3.3.2.1 Adjoint equation

In order to solve (3.23) it is necessary first to derive appropriate boundary and initial
conditions. Since L is linear in ps, the right hand side of (3.21) can be rewritten as:

⟨λs, ∂psL(a, p)[δps]⟩ = ⟨λs, L(a, δps)⟩ = ⟨λs, ∂ttδps⟩+ ⟨λs, η∂tδps⟩+ ⟨λs, v
2
p ∆δps⟩. (3.25)

Integrating by parts, the terms containing the time derivatives can be expanded as:

⟨λs, ∂ttδps⟩ =
∫

Ω
λs∂tδps

∣∣∣∣T
0
−
∫

Ω
∂tλsδps

∣∣∣∣T
0

+ ⟨δps, ∂ttλs⟩

=
∫

Ω
λs(·, T )∂tδps(·, T )−

∫
Ω
∂tλs(·, T )δps(·, T )

−
∫

Ω
λs(·, 0)∂tδps(·, 0) +

∫
Ω
∂tλs(·, 0)δps(·, 0) + ⟨δps, ∂ttλs⟩

=
∫

Ω
λs(·, T )∂tδps(·, T )−

∫
Ω
∂tλs(·, T )δps(·, T ) + ⟨δps, ∂ttλs⟩

= ⟨δps, ∂ttλs⟩,

(3.26)

⟨λs, η∂tδps⟩ =
∫

Ω
λsηδps

∣∣∣∣T
0
− ⟨ηδps, ∂tλs⟩ = −⟨ηδps, ∂tλs⟩ (3.27)

if λ satisfy quiescent terminal conditions λs(·, T ) = ∂tλs(·, T ) = 0.

Similarly, the term containing the laplacian can be extended as:

⟨λs, v
2
p ∆δps⟩ =

∫ T

0

∫
∂Ω
λsv

2
p∂nδps −

∫ T

0

∫
∂Ω
∂nλsv

2
pδps + ⟨δps, v

2
p ∆λs⟩

=
∫ T

0

∫
ΓD

λsv
2
p∂nδps −

∫ T

0

∫
ΓD

∂nλsv
2
pδps

+
∫ T

0

∫
ΓN

λsv
2
p∂nδps −

∫ T

0

∫
ΓN

∂nλsv
2
pδps

+
∫ T

0

∫
ΓA

λsv
2
p∂nδps −

∫ T

0

∫
ΓA

∂nλsv
2
pδps + ⟨δps, v

2
p ∆λs⟩.

(3.28)

The boundary terms where Dirichlet conditions are imposed vanish if λs(ΓD, ·) = 0.
Likewise, Neumann terms vanish if ∂nλs(ΓN , ·) = 0. On ΓA, where the transparency
boundary conditions (2.8) are imposed, we have:
∫ T

0

∫
ΓA

λsv
2
p∂nδps −

∫ T

0

∫
ΓA

∂nλsv
2
pδps = −

∫ T

0

∫
ΓA

λsvpδṗs −
∫ T

0

∫
ΓA

∂nλsv
2
pδps

= −
∫

ΓA

λsvpδps

∣∣∣∣T
0

+
∫ T

0

∫
ΓA

λ̇svpδps

−
∫ T

0

∫
ΓA

∂nλsv
2
pδps

=
∫ T

0

∫
ΓA

( 1
vp

λ̇s − ∂nλs)v2
pδps,

(3.29)
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which equals zero if the transformed adjoint variable λ†
s(·, t) = λs(·,−t) also satisfies (2.8).

This is the case since λs needs to be subjected to a reflection in the time axis t → −t
in order to transform terminal conditions into initial ones. As a consequence, the first
derivative is also transformed as λ̇s → −λ̇†

s. Note that this transforms the sign of the
adjoint damping.

The adjoint condition can then be recast as:

⟨λs, L(a, δps)⟩ = ⟨λs, ∂ttδps + η∂tδps − v2
p ∆δps⟩

= ⟨δps, ∂ttλs − η∂tλs − v2
p ∆λs⟩ = ⟨δps, L(a, λs)⟩,

(3.30)

which holds if λ†
s satisfies the adjoint problem:

∂ttλ
†
s + ∂tλ

†
s − v2

p∆λ†
s = s(xs, t), s = 1, . . . , Ns

λ†
s(x, t) = 0 on ΓD

∂nλ
†
s(x, t) = 0 on ΓN

1
vp

∂λ†
s

∂t
+ n · ∇λ†

s = 0 on ΓA

λ†
s(x, 0) = 0 in Ωext

∂tλ
†
s(x, 0) = 0 in Ωext

(3.31)

3.4 Regularization

3.4.1 Spatial filter

As an ill-posed problem, the inversion procedure can present numerical instabilities
when tackled directly. In order to deal with those we utilize filtering applied to the
sensitivity (SIGMUND; PETERSSON, 1998). In particular, we apply a Helmholtz-like
PDE filter (LAZAROV; SIGMUND, 2011). Given a sensitivity field g, its filtered version
ĝ is computed as:

−r2∆ĝ + ĝ = g,

∂n ĝ = 0
(3.32)

where r is related to the degree of smoothness of the filtered field, see Figure 3.3.

3.4.2 Stability filter

As a highly sensitive identification problem with scarcity of information, the proposed
sequential integer linear programming approach frequently results in objective funtions
which oscilate wildly during the optimization process, see Figure 3.4a. This often leads to
numerical instabilities that grow until the optimization result diverges. Seeking inspiration
from methods that utilize only subsets of data such as Stochastic Gradient Descent
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Figure 3.3 – Illustration of the smoothing filter.

(RUDER, 2016), an Adam (KINGMA; BA, 2014) based damping filter which incorporates
the whole history of sensitivities up to iteration k, instead of just the evaluation for the
current control variable a is used. The process consists mainly in taking exponentially
weighted averages of both the gradient, the element-wise product of the gradient with
itself, and combining those using the average of the squares as a normalization factor for
the average of the gradients.

After taking the filtered sensitivity ĝk at iteration k, the moving average m of the
gradients, also called first moment, is evaluated as:

mk = γmmk−1 + (1− γm)ĝ, (3.33)

where γm is the so called forgetting factor. The second moment v at iteration k, which is
the moving average of the Hadamard product of the gradient g by itself, is taken as:

vk = γvvk−1 + (1− γv)ĝ ⊙ ĝ, (3.34)
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Figure 3.4 – Illustrative example of the Adam based damping filter. A generic noisy signal is shown in
Figure (a). The effect of the exponentially weighted averaging for different weight factors
γm and γv is shown in Figure (b).

where γv is the forgetting factor for the ”squared” gradient. Finally, the damped gradient
is calculated as:

g̃k = mk√
vk + ε

, (3.35)

where ε is a small number such as 10−6 so as to avoid singular divisions. Figure 3.4b shows
the result of this averaging over a noisy signal.
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4 NUMERICAL IMPLEMENTATION

In order to solve the wave propagation problem it is necessary to discretize the
variational problem stated in a continuous setting. We do so by first chosing a time
discretization in terms of finite differences in 4.1. Next, a spatial discretization convenient
to wave propagation is presented in 4.2. This discretization is implemented through the
spyro software, which is built on top of Firedrake (RATHGEBER et al., 2016b). The core
concept of Firedrake is presented in 4.3. The IBM ILOG CPLEX software, through which
the optimization is carried out, is briefly introduced in 4.4. The integration of spyro with
CPLEX is discussed, and the whole procedure is summarized in 4.5.

4.1 Time discretization

The variational problem (2.14) can be solved either in the time or in the frequency
domain, each more or less adequate depending on the problem at hand (VIRIEUX;
OPERTO, 2009). A second order time-domain explicit discretization is chosen, mostly
because of memory requirements of the frequency domain approach, and also because
numerical errors are usually dominated by spatial discretization, rendering more elaborate
schemes not worth the extra computational effort (FICHTNER, 2010).

Discretizing the time domain with N + 1 samples ∆t apart, p(x, t) becomes p(x, tn) ,
or pn for short. Employing a second order finite difference approximation leads to:

p̈n = pn+1 − 2pn + pn−1

∆t2 . (4.1)

Substitution on equation (2.14) at instant t = n∆t leads to:

(pn+1, q) = 2(pn, q)− (pn−1, q)
−∆t(pn, q)η + ∆t(pn−1, q)η

−∆t2a(pn, q) + ∆t2l(q)

(4.2)

4.2 Spatial discretization

The Finite Element Method is used to discretize the N + 1 variational problems in
(4.1). Approximating V and V̂ with the same finite dimensional space V h of dimension Nd

and basis ϕi, i = 1, . . . , Nd, the finite element approximations of pk becomes ph
k = ∑

j P
j
kϕj .

Since q is arbitrary, we let its approximation qh be qh = ϕi. Dropping the subindex in
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pn+1, one can write the system (4.1) as:

Nd∑
j

(ϕi, ϕj)P j = ∆t2
l(ϕi)−

Nd∑
j

a(ϕi, ϕj)P j
n

+
Nd∑
j

2(ϕi, ϕj)P j
n −

Nd∑
j

(ϕi, ϕj)P j
n−1, (4.3)

valid for some integer i up to Nd. One can go further and use the fact that these
basis functions have compact support to define the components of elementar and global
matrices, cover reference elements, quadratures for evaluating the resulting integrals
and so on (HUGHES, 2012). Since this work employs Firedrake, which automates these
implementation steps, this discussion is skipped.

System (4.3) can be rewritten as:

Mpn+1 = M
(
2pn − pn−1

)
+ ∆tC

(
2pn−1 − pn

)
+ ∆t2 (f −Kpn) ,

(4.4)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, f is the
force vector and pk is the pressure at instant k. Their components can be identified from
(4.3) as:

Mi,j = (ϕi, ϕj)
Ci,j = (ϕi, ϕj)η

Ki,j = a(ϕi, ϕj)
fi = l(ϕi)

(4.5)

As can be seen from (4.4), p can be obtained at once by inverting the mass matrix M.
The problem with most choices of basis functions is that they do not generate diagonal
mass matrices, or do render them diagonal, but only under certain circunstances, such
as Lagrangian basis functions in hexahedral meshes with nodes collocated at so called
GLL points (KOMATITSCH; VILOTTE, 1998). For unstructured triangular meshes, it
is possible to utilize higher order bubble basis functions (CHIN-JOE-KONG; MULDER;
VELDHUIZEN, 1999) in order to achieve diagonal mass matrices. These mass lumped
elements were implemented in Firedrake (ROBERTS; OLENDER; FRANCESCHINI,
2021), and are utilized in this work.

4.3 Firedrake

The solution of (4.4) at each time step is implemented in Firedrake (RATHGEBER et
al., 2016b). Firedrake is an automated system for the solution of partial differential equation
using the Finite Element Method. It is an offshoot of FEniCS (ALNÆS et al., 2015), both
software stacks which utilize Domain Specific Languages (DSL) to automatically generate
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optimized C/C++ code from high level languages embedded in python.

The DSL embeded in python is Unified Form Language (UFL) (ALNÆS et al., 2014),
which is used to write variatonal forms for FEM implementations. With the aid of the
finite element library FinAT (HAM et al., ), the information about the variational problem
and its FEM discretization is taken by a dedicated compiler that generates optimized C
code (HOMOLYA et al., 2018). The solution of the discretized problem is achieved through
integration with the linear algebra backend provided by PETSc (BALAY et al., 1997).

4.4 CPLEX

The IBM ILOG CPLEX Optimizer is used for solving optimization problems with
continuous variables such as Linear Programming and Quadratic Programming, and most
importantly for this work, it also allows modelling Mixed Integer Programming (MIP)
problems, where some or all variables assume only integer values.

The ILP problem (3.8) is solved with CPLEX by a Branch & Bound algorithm
(WOLSEY, 2020). After relaxation as an LP problem, the resulting feasible set is divided.
This leads to the generation of new LP (Linear Programming) sub-problems. Solving these
sub-problems helps to narrow down the feasible space and subsequently partition it more
effectively, which guides the process towards finding the desired integer solution.

4.5 Procedure

The inversion procedure is carried out using spyro (ROBERTS; OLENDER; FRANCESCHINI,
2021), an acoustic wave modelling library built on top of Firedrake. The acoustic wave
modelling for both the forward and adjoint problems is carried out in spyro, while the
model updated is performed with CPLEX. The corresponding workflow is displayed in
Figure 4.1.

The convergence criteria stipulate that the optimization should be carried out until
either the objective function variation between two consecutive iterations or the norm 2 of
the gradient becomes smaller than certain thresholds:

J i+1 − J i ≤ τJ (4.6)
||∇J ||2 ≤ τG (4.7)

where i is the iteration index, τJ and τG are the convergence thresholds related to objective
function J and gradient norm ||∇J ||, respectively. In addition, the optimization halts if a
predetermined maximum number of iterations Nmax is reached.
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Figure 4.1 – Flowchart of the inversion procedure with integer variable.
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5 RESULTS

In this chapter the proposed approach is applied to several numerical examples in
order to showcase different characteristics from both the problem considered and method
proposed.

In section 5.1 three examples of acoustic inverse problems are presented. First, the
viablity and impact of parameters related to the method are evaluated. Then, the
introduction of a multiscale approach is motivated and the influence of the inverse crime
is discussed. Finally, a simple 3D case is presented.

In section 5.2, two cases in the context of FWI are presented. First, a velocity model
with salt bodies embedded in a homogeneous medium is reconstructed. This example
allows comparing the ILP approach to alternatives such as the Level Set method, assessing
the impact of the initial guess and exploring the influence of physical parameters on the
result. The last example studies a velocity model representative of the Santos Basin. This
model in particular is caracterized by the presence of a thick salt layer. At first, the
possibility of locating the salt is investigated. Then, the possibility of locating both the
salt and a hydrocarbon reservoir ie explored. Finally, a more realistic example is explored,
with a known top of salt, but unknown velocity distribution beneath it.

5.1 Acoustic Inverse Problem

5.1.1 Viability

To investigate the viability of the procedure, a single obstacle identification problem
from Lanznaster et al. (2021) is chosen. Velocity model and geometry acquisition are shown
in Figure 5.1. Parameters that describe the problem such as background and inclusion
velocities, dimensions, signal from the source and acquisition configuration are displayed
in Table 5.1. We refer to this example as case I.

In order to perform the identification procedure, reference data corresponding to the
Problem parameters

background velocity 1 km/s Number of sources Ns 3
inclusion velocity 3.5 km/s Number of receivers Nr 42
length 2 km source distance from surface 0.05 km
depth 2 km receiver distance from surface 0.05 km
source central frequency 2 Hz source offset 0.95 km
event duration 2.6 s receiver offset 0.095 km

Table 5.1 – Parameters that describe the inversion problem case I.
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Inversion parameters
1-norm constraint M 0.02 objective function threshold τJ 1× 10−16

Maximum number of iterations Nmax 500 gradient threshold τG 1× 10−14

Table 5.2 – Inversion parameters used in case I.

0 2
0

2

(1.2, 0.875)

0.250

0.250

receiver source

Figure 5.1 – Inclusion position and dimensions for case I.

target model is artificially generated. Each source is simulated individually and generates
a “shot record”, pressure disturbances that are measured at the receivers. The sources
emit a pulse like signal corresponding to a Ricker wavelet (WANG, 2015).

The domain is discretized with a uniform triangular mesh of 14400 elements, and
the timestep employed is ∆t = 0.001 s. In this example the same mesh is used both for
generating the synthetic signal and performing the inversion. The 1-norm constraint M
from Equation 3.8 and the the stopping criteria parameters from Equation 4.6 are shown
in Table 5.2. The inversion begins with a homogeneous velocity model corresponding to
the background velocity vp = 1 km/s.

Results at different points of the procedure can be seen in Figure 5.2. From the
beginning several spurious inclusions appear, and only proliferate as the inversion goes
on. This amplification of high frequency errors is typical of ill-posed problems (ENGL;
HANKE; NEUBAUER, 1996), and serves as motivation for borrowing filtering techniques
from other fields that deal with ill-posedness such as topology optimization (BOURDIN,
2001).
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(a) At update 1. (b) At update 4.

(c) At update 8. (d) At update 19.

Figure 5.2 – Imaging evolution without sensitivity filtering.

Figure 5.3 shows the inversion procedure with the spatial sensitivity filter from Section
3.4.1 applied, here with filtering radius r = 0.2. In Topology Optimization, filters are
known not only for alleviating ill-possedness but also for promoting some sort of length
scale control (SIGMUND; MAUTE, 2012). A similar phenomenom can be seen here, as
the appearance of spurious inclusions is delayed and, up to the first 50 iterations the scale
of the obstacle being imaged is controlled.

The inversion is repeated once more, now with the combination of spatial and
stabilization filter. The later, based on the Adam method (KINGMA; BA, 2014) popular in
Machine Learning, is appropriate for problems which are very noisy or have sparse gradients.
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(a) At update 8. (b) At update 52.

(c) At update 69. (d) At update 123.

Figure 5.3 – Imaging evolution with Helmholtz sensitivity filtering.

As a problem with restricted information, acoustic inversion seems like an appropriate fit
for that methodology. The weighting parameters (From Equations (3.33),(3.34)) used here
are γm = γv = 0.999. Results can be seen in Figure 5.4. The smoothing from the spatial
filter is initially able to damp the propagation of spurious information from the gradient,
thus restricting the scale of the inclusion being imaged until approximately iteration 52,
when small artifacts start to appear and the optimization process diverges. The compound
spatial filter with Adam-based averaging achieves results much closer to the true model.
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Figure 5.4 – Effect of the filters over the solution.
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5.1.2 Frequency content

The timestep ∆t = 0.001 s used in Section 5.1.1 was given without mention of stability
or degree of accuracy. A brief justification for both is given in this Section. The same
arguments apply for all remaining examples in this work.

The maximum timestep size is affected by the mesh size and acoustic velocity through
the Courant-Friedrichs-Lewy (CFL) condition (FICHTNER, 2010). The wave propagator
Spyro allows checking the stability condition for a mesh with triangular elements using
Gershgoring disk theorem (ROBERTS et al., 2022). According to that criterion, the
maximum timestep size is ∆tmax = 0.0055 s. Furthermore, the timestep corresponds to
the Nyquist sampling rate of a signal with frequency content up to 1/(2∆t) = 500 Hz
(BRIGHAM, 1988). Figure 5.5 and 5.6 show the shot record generated from the source at
the center of the right boundary and its Fourier transform, respectively. As can be seen,
the stability condition is far stricter than the sampling rate associated with the highest
frequency present in the signal, and in general it is safe to assume that no content is being
lost due the timestep being used.
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Figure 5.5 – Normalized signal in the time domain.

5.1.3 Parameter sweeping

The influence of the free parameters r (Helmholtz), γm, γv (Adam) introduced by the
regularization and from the bound M over the || · ||1 constraint (TOBS) are analyzed
by solving a set of variants of (case I) with different source/receiver positioning as
shown in Figure 5.7. All cases begin the inversion with an homogeneous acoustic velocity
corresponding to the background value of vp =1 km/s. Most parameters are the same
as those shown in Tables 5.1 and 5.2, with the exception of the maximum number of
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Figure 5.6 – Normalized signal in the frequency domain.

iterations allowed being set to Nmax = 200, 1-norm constraint M and number of sources
and receivers that now vary.

(a) case I.(i). (b) case I.(ii).

(c) case I.(iii). (d) case I.(iv).

Figure 5.7 – Source/Receiver configurations considered.

For each of these configurations, the following combination of parameters is considered:

• r ∈ {0.1, 0.2, 0.3, 0.4, 0.7, 1.0},

• γm, γv ∈ {0.5, 0.9, 0.99, 0.999, 0.9999},
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• M ∈ {0.001, 0.005, 0.01, 0.02, 0.04},

In total, 112 distinct cases are analyzed, with γv = γm in all instances. Results are shown
from Figures 5.8 to 5.11.

The symbols in the scatter plots are related to the optimization parameters used as
indicated in the labels. The symbol shape indicates the Adam-based weighting parameters
γm, γv. The area of each symbol is proportional to the filtering radius r from the spatial
filter. The size of the 1-norm constraint is indicated by the colorbar to the right, so cooler
colors indicate tight constraints and warmer colors correspond to more lenient values.
The vertical axis shows the objective function values normalized by the value of the first
iteration, while the dahsed line simply indicates the initial unitary value. The horizontal
axis corresponds to the quality measure, defined as:

Q =
√
|vp(a)− v̄p|2dΩ, (5.1)

where vp is the acoustic velocity recovered from the inversion and v̄p is the reference
acoustic velocity field. Hence, smaller values of Q indicate better agreement with the true
model.

In case I.(i) (Figure 5.8), very few simulation were able to considerably reduce the
values of the objective function. This case can be regarded as the hardest one to image,
since a single source is used in the acquisition scheme. The successful configurations have
large damping weights (γ ≥ 0.999), while the bound M is still the lowest one considered.

Case I.(ii) had an improved acquisition, with two extra sources with respect to case
I.(i). It can be noted from Figure 5.9 that a larger number of cases were able to considerably
reduce the objective function while also achieving a smaller quality measure. It can also
be noted that large filtering radius r are mostly associated with a low quality measure.

Case I.(iii) had an acquisition associated with wave transmission instead of reflection,
since sources and receivers are located at opposing ends. Similarly to case I.(ii), larger
filtering radius result mostly in early stopping of the optimization process. The most
striking differences with respect to the former examples is that only a mild damping
weight of γ = 0.9 is able to reduce the objective function while also maintaining a low
quality measure, and also that the associated M = 0.04 is in the mid range of the bound
constraints considered. Interestingly, some configurations resulted in reductions larger than
one order of magnitude in the objective function, although with a poor quality measure.

Case I.(iv) was the case with most favorable acquisition, having receivers positioned
at both ends. This fact is reflected in Figure 5.11, where many configurations were able to
significantly reduce the initial value of the objective function and also keep low quality
measure values. It can be seen that lower values of M achieved the greatest reductions,
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Figure 5.8 – Sweeping for case I.(i).
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Figure 5.9 – Sweeping for case I.(ii).
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Figure 5.10 – Sweeping for case I.(iii).

Quality measure Q
ILP LS

Case I.(i) 0.3030 0.4357
Case I.(ii) 0.3296 0.2946
Case I.(iii) 0.4756 0.6863
Case I.(iv) 1.26× 10−17 1.33× 10−17

Table 5.3 – Quality measures for case I both with Integer Linear Programming and Level Set.

while all configurations below the threshold of 1× 10−4 had a damping weight γ larger
than 0.999.

The best results obtained for each case are compared qualitatively to those of Lanznaster
et al. (2021) as shown in Fig 5.12. For both methods results are dependent of the acquisition
configuration. In general the models obtained with Integer Linear Programming are at
least capable of identifying location and approximating the shape of the obstacle, although
delineation of the boundary not facing the receptors is still faulty as can be seen in Figures
5.12a, 5.12b. In particular, for case I.(iii) (Figure 5.12c) the ILP approach located more
precisely the inclusion in comparison to the Level Set result. The optimization for the
receiver abundant case I.(iv) was fairly successfully in both cases, although ILP lead to a
closer fitting of interfaces.

In Table 5.3 the quality measure Q for both approaches is compared. By that criterion
ILP is better in cases I.(i) and I.(iii), while LS is slightly better for case I.(ii). In the well
iluminated case I.(iv) both approaches recover the target model up to machine precision.
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Figure 5.11 – Sweeping for case I.(iv).

ILP LS

(a) case I.(i).

ILP LS

(b) case I.(ii).

ILP LS

(c) case I.(iii).

ILP LS

(d) case I.(iv).

Figure 5.12 – Comparisons of results obtained by Integer Linear Programming (ILP) and those
obtained through Level Set (LS).
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Inversion parameters
Maximum number of iterations Nmax 200
objective function threshold τJ 1× 10−16

gradient threshold τG 1× 10−14

Table 5.4 – Inversion parameters used in case II.

5.1.4 Two inclusions

The current numerical example explores the velocity model shown in Figure 5.13, and
was also taken from Lanznaster et al. (2021). In order to investigate the effectiveness of the
ILP approach, five different geometry acquisitions are used, and their results are compared
to those obtained in the reference from the literature. The configurations are shown in
Figure 5.14, and are refered to collectively as case II.

The problem parameters are the same as those in Table 5.1, with obvious exception to
the number of sources and receivers, which vary according to the configuration. Inversion
parameters are shown in Table 5.4. The domain is once again discretized with a uniform
triangular mesh of 14400 elements and timestep ∆t = 0.001s. The same mesh is used for
creating the reference data and executing the forward problem during the inversion. A
homogeneous velocity model with the background velocity vp = 1 km/s is used as initial
guess.

0 2
0

2

(1.095, 0.600)

0.250

0.
25

0

0.100

1.000

(1.400, 0.500)

Figure 5.13 – Example with two inclusions.

A sweeping exploration of the inversion parameters γm, γv, r and M is carried out,
similarly to Section 5.1.3. All configurations are optimized for r values between 0.1 and
0.4, γm, γv between 0.99 and 0.9999, and M bounds ranging from 0.0001 up to 0.05.
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(a) case (i). (b) case (ii).

(c) case (iii). (d) case (iv). (e) case (v).

Figure 5.14 – Source/Receiver configurations considered.

The best results for each configuration are shown next to level set results in Figure
5.15.

Once again, result quality depends on configuration. ILP for cases II.(i) and II.(ii)
in Figures 5.15a and 5.15b,respectively, struggled with identifying the smaller square
inclusion, which is partially obstructed by the bigger rectangular inclusion with respect to
the receivers. This created a pattern where, instead of finding small floating islands as of
the LS method, ILP lead to the proliferation of spurious inclusion either ”behind” or next
to the identified rectangular obstacle. Case II.(iii) was poorly identified in both methods.
The more favorable case II.(iv) led to partial identification with both methodologies. In
particular, while ILP captured more of the obstructed square inclusion, it also lead to
spurious inclusions in the upper region of the domain. As for case II.(v), it can be seen
that both methods had a very close fit for the rectangular inclusion, and while Level
Set missed the fit slightly on the top region, ILP overestimated its size near the square
inclusion. For the smaller inclusion, while ILP in general overestimated its size, Level Set
underestimated its location, while creating a small spurious inclusion even for the case
with most sources and receivers.

A quantitative comparison can be made using the measure Q (Eq. (5.1)). Table 5.5
shows the quality measure obtained with the ILP and the LS method. It can be seen
that the proliferation of spurious inclusion for cases II.(i) and II.(ii) led the ILP approach
to considerably worse Q values when compared to the LS results. For case II.(iii) the
inversion results are similarly bad in terms of the quality measure. The LS method obtained
slightly better values for cases II.(iv) and II.(v), in most part due to spurious inclusions or
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ILP LS

(a) case (i).

ILP LS

(b) case (ii).

ILP LS

(c) case (iii).

ILP LS

(d) case (iv).

ILP LS

(e) case (v).

Figure 5.15 – Comparisons of results obtained by Integer Linear Programming (ILP) and those
obtained through Level Set (LS).

overestimation of the obstacle boundaries by the ILP approach.
Quality measure Q

ILP LS
Case II.(i) 1.1219 0.6356
Case II.(ii) 1.1579 0.5853
Case II.(iii) 1.1579 1.1863
Case II.(iv) 0.9310 0.8172
Case II.(v) 0.3801 0.2887

Table 5.5 – Quality measures for case II both with Integer Linear Programming and Level Set.



Chapter 5. RESULTS 66

(a) Geometry acquisition for case III. (b) Inversion result. Q=0.4575993.

Figure 5.16 – Geometry acquisition and inversion result for case III.

Inversion parameters
1-norm constraint M 0.005 objective function threshold τJ 1× 10−16

Filtering radius r 0.1 gradient threshold τG 1× 10−14

Damping weights γm, γv 0.999 Maximum number of iterations Nmax 600
Table 5.6 – Inversion parameters used in case III.

5.1.5 Multiscale

In previous sections the acquisition geometry proved to have significant impact over the
success of the inversion procedure. In order to focus on the evaluation of the optimization
procedure and to minimize the inherent observability problem, a new example with a more
favourable setup is considered. The velocity model is the same considered in Section 5.1.4.
We refer to this example as case III.

The problem parameters are the same as those in Table 5.1 except for the number of
sources and receivers. The geometry acquisition with Ns = 8, and Nr = 80 is shown in
Figure 5.16a. Meshing, timestep size and initial guess choice are the same as in Section
5.1.4. The inversion parameters are shown in Table 5.6.

The inversion result is shown in Figure 5.16b. Despite the better illumination, from
Table 5.5 it can be seen that the quality measure Q is worse than case II.(v). In order
to evaluate if the linearized nature of the ILP procedure impairs improvements over
observability conditions, the experiment is repeated considering a multiscale approach
(BUNKS et al., 1995).

In the multiscale approach, instead of considering all frequencies in the data, a bandpass
filter is applied so that the inversion procedure only takes into account a certain frequency
band at a time. More specifically, a low-pass filter that cuts the higher frequency content
of the experimental data is applied, and the cutting frequency is repeatedly raised at
every 100 iterations. The cutting frequencies are successively 1Hz, 2Hz, 3Hz, 4Hz, 5HZ
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(a) Low-passed signal in the time domain.
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(b) Low-passed signal in the frequency domain.

Figure 5.17 – Reference data generated from source point located at (1, 1.95). Receiver at (0.145, 0.05),
source and receiver positioning corresponding to case III.

and 6Hz. The choice of cutting values can be justified by looking at the frequency content
of the data. Figure 5.17 shows the filtered signal collected at a single receiver, both in
time and frequency. It can be seen that the signal filtered up to 6 Hz is very close to the
unfiltered signal, meaning that the whole data frequency range is represented during the
optimization.

The results with multiscale are shown in Figure 5.18b. The plots of the evolution
history of both the objective function and the quality measure are shown in Figure 5.19.

The velocity model obtained with multiscale is improved, and as can be seen by the
plots from Figure 5.19, each successive step where the cutting frequency is increased leads
to lower levels for both misfit and quality measure. This experiment highlights how, even
at favourable observability conditions, particular modelling considerations for the inversion
still have a considerable impact over the quality of results.
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(a) Inversion result without multiscale. (b) Inversion result with multiscale.

Figure 5.18 – Case III: Inversion result with and without multiscale.
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Figure 5.19 – Evolution of objective function and quality measure for case III.

5.1.5.1 Multiscale without inverse crime

All examples shown so far were tested under ”inverse crime” conditions, that is, the
same forward operator was employed both for generating the reference data and for
performing the inversion procedure. This is deemed problematic for inverse problems, and
methods for either generating the data with a different method or adding noise to it are
warranted (COLTON; KRESS; KRESS, 1998).

In the multiscale case, we change the forward operator by changing the discretization
of the mesh used for generating the data, now with 28800 elements. Apart from that, case
III is repeated with exactly the same problem and inversion parameters.

Figure 5.20 shows the inversion results when inverse crime is taken into account, both
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(a) Inversion result without multiscale (no
inverse crime).

(b) Inversion result with multiscale (no inverse
crime).

Figure 5.20 – Case III: Inversion result with and without multiscale, no inverse crime.

with and without multiscale. Shape innacuracies appear in both cases, however, when the
multiscale approach is not used the result also contains small spurious inclusions. Figure
5.21 shows the evolution of the quality measure and objective function. Contrasting it
with the results with inverse crime (Figure 5.19) it can be seen that the objective function
achieves a considerably higher final value, nevertheless, the measure Q behaves similarly
in both cases. Table 5.7 aggregates the quality measure for case III with and without
multiscale, taking the inverse crime into account or ignoring it.
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Figure 5.21 – Evolution of objective function and quality measure for the continuation in frequency
case without inverse crime.
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Quality measure Q
without multiescale with multiescale

with inverse crime 0.4575993 0.2819640
without inverse crime 0.3048622 0.2306276

Table 5.7 – Quality measures for case III.

5.1.6 3D example

All examples studied so far are two-dimensional. Albeit this formulation is relevant in
many instances, several complex applications in medical imaging (LUCKA et al., 2021),
NDT (AFANASIEV et al., 2019) and FWI are intrinsically three-dimensional. A few
sharp-interface methods, cut element Level Set (ANDREASEN; ELINGAARD; AAGE,
2020) for instance, introduce ambiguities in boundary definition when translated from 2D to
3D. It is therefore important to investigate whether any complication appears when space
dimensionality is increased. Towards this objective of establishing the ILP optimization
framework as robust and versatile, a three dimensional case is solved. No conceptual
change or special consideration is needed for applying the proposed optimization procedure
in a setting with an extra space dimension. Indeed, the main challenge associated with
this generalization is the computational cost of simulating 3D wave propagation. With
respect to inverse crime, three scenarios are considered

• commit inverse crime by generating reference data and performing the inversion with
the same operator.

• avoid inverse crime by generating reference data with a finer mesh.

• avoid inverse crime by generating reference data with higher order elements.

The velocity model considered can be seen in Figure 5.22. It consists of a cubic domain
of side 1 km with homogeneous background acoustic velocity of 2 km/s, and a spherical
inclusion with velocity of 3 km/s. In all three scenarios the initial guess is a velocity model
consisting only of the 2 km/s acoustic velocity background and no inclusion. We refer to
this example as case IV.

The acquisition geometry consists of Ns = 9 sources distributed regularly over one
surface, and of and Nr = 2601 receivers regularly placed at the opposite side, as depicted
in Figure 5.23. Both sources and receivers are at a distance of 20m from the closest
surface. A transmission setup (with sources and receivers at opposing ends) with a large
number of receivers was chosen in order to guarantee a well illuminated problem. The
problem parameters describing geometry acquisition, velocity model and source signal
are summarized in Table 5.8, while the inversion parameters related to the filters, update
procedure and stopping criteria are displayed in Table 5.9.
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Figure 5.22 – Reference model for three dimensional case.
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Figure 5.23 – Placement of sources and receivers for the 3D case.

A time step size of ∆t = 0.001 s is employed, while the space discretization uses linear
polynomials over a tetrahedral mesh with 750000 elements.

Snapshots of the velocity model together with the final result are shown in Figure
5.24. The evolution of the objective function and quality measure can be seen in Figure
5.25. While both of these measure increase in the first iteration of the inversion, Figure
5.24a shows that the central inclusion is correctly located. Indeed, Figure 5.24b indicates
that at the 5th iteration the recovered model already matches the true model quite closely.
During the rest of the optimization procedure, objective function and quality measure
decrease orders of magnitude as recovered body and true body come to almost coincide
(Figure 5.24d).

Similarly to Section 5.1.5.1, the impact of adding perturbations to the reference data
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Problem parameters
background velocity 2 km/s Number of sources Ns 9
inclusion velocity 3 km/s Number of receivers Nr 42
length 1 km source distance from surface 0.02 km
depth 1 km receiver distance from surface 0.02 km
width 1 km source offset 0.5 km
source central frequency 4 Hz receiver offset 0.02 km
event duration 2.0 s

Table 5.8 – Parameters that describe the inversion problem case IV.

Inversion parameters
1-norm constraint M 0.1 objective function threshold τJ 1× 10−16

Filtering radius r 0.1 gradient threshold τG 1× 10−14

Damping weights γm, γv 0.999 Maximum number of iterations Nmax 100
Table 5.9 – Inversion parameters used in case IV.

(a) 1st iteration. (b) 5st iteration.

(c) 15st iteration. (d) Result(54 iterations).

Figure 5.24 – Results for 3D case with inverse crime.

in order to avoid the inverse crime is assessed for the 3D case. In this example, however, in
addition to using different meshes for data generation and inversion, a strategy employing



Chapter 5. RESULTS 73

0 10 20 30 40 50

10 1

101

103 objective function
Iterations 1, 5, 15, 54

0 10 20 30 40 50
iteration

10 2

10 1
quality measure

Figure 5.25 – Objective function and quality measure for 3D case.

higher order element for creating the reference data was also employed. All parameters
from tables 5.8 and 5.9 were kept the same, except for the 1-norm constraint, which had
to be reduced to M = 0.005.

The mesh used to generate the new reference results consisted of 6 million regular
tetrahedral linear elements, while the mesh used for the inversion was the same as before.
Figure 5.26 shows that the spherical inclusion was recovered, albeit also with the appearance
of spurious artifact near the surface where the sources are located. Figure 5.27 show the
objective function and quality measure now decreasing considerably less. The lower bound
for both values is most likely due to the spurious artifacts, making these two measures
less meaningfull regarding the ability of the procedure in recovering the central body,
successful in this instance.

In the alternative method of avoiding the inverse crime the mesh still has 750000
elements, however, while the problem for running the forward problem during the inversion
uses linear elements and has 132641 Degrees of Freedom (DoF), second order elements
result in a model with 3295301 DoF for generating the reference data. The inversion results
from Figure 5.28 show patterns similar to those in Figure 5.24. Although artifacts appear
in the final result as well, they are more spread out, and not as concentrated near the
sources. The evolution of the objective function and quality measure in Figure 5.29 show
the same behaviour as that of Figure 5.27.
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(a) 4st iteration. (b) 10st iteration.

(c) 24st iteration. (d) Result(100 iterations).

Figure 5.26 – Results for 3D case without inverse crime (different meshes).

5.2 Full Waveform Inversion

In this section, two Full Waveform Inversion cases are considered. Although FWI is an
application of acoustic inversion, the following examples are qualitatively different from
those in Section 5.1 with regards to the boundary conditions. Since in FWI the domain is
unbounded, either a transparency condition (Eq. (2.8)) or an absorbing layer (Eq. (2.9))
must be used to attenuate the reflections coming from the boundaries of the computational
domain.

5.2.1 Three salt inclusions

The first FWI example is taken from Albuquerque, Laurain e Yousept (2021b), who
used a Hamilton-Jacobi based Level Set method. The velocity model consists of three
irregular salt inclusions embedded into a homogeneous medium. In particular, the acoustic
velocity of the inclusions is representative of salt structures. Furthermore, the rectangular
domain consists of a free surface along which sources and receivers are distributed, and
three boundaries extended by absorbing layers in order to emulate an infinite medium.
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Figure 5.27 – Objective function and quality measure for 3D case avoiding the inverse crime by using
different meshes.

Problem parameters
background velocity 1.95 km/s Number of sources Ns 10
inclusion velocity 4.12 km/s Number of receivers Nr 80
length 1 km source distance from surface 0.05 km
depth 0.65 km receiver distance from surface 0 km
source central frequency 5 Hz source offset 0.11 km
event duration 2.0 s receiver offset 0.0225 km

Table 5.10 – Parameters that describe the inversion problem with salt inclusions.

Velocity model and geometry acquisition are shown in Figure 5.30, while the parameters
describing the problem are grouped in Table 5.10. A multiscale approach was employed,
with cutting frequency ranging from 2 Hz to 6 Hz by steps of 1 Hz. In order to have a
model as close as possible to the original work from the literature, the inverse crime was
avoided by adding gaussian noise to the reference signal.

The absorbing layer starts from a distance of 0.1 km from the outer boundary, as
displayed in Figure 5.31a. The width was chosen so as to coincide with the referenced
work. Figure 5.31b shows that the damping layer η (Equation (2.1)) varies quadraticaly
with distance. The profile was adapted from Sochacki et al. (1987). The maximum allowed
value of ηmax = 1 was defined by inspecting boundary reflections for different ηmax.

The gaussian noise added to the reference signal has mean equal to zero and standard
deviation proportional to the maximum measured amplitude. By denoting the amplitude
of the signal at point xr, instant t = tn due to an excitation from point xr as dr,s,n and
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(a) 4st iteration. (b) 10st iteration.

(c) 24st iteration. (d) Result(100 iterations).

Figure 5.28 – Results for 3D case without inverse crime (different element polynomial order).

the corresponding reference signal as d̄r,s,n, the Mean Noise Level (MNL) is written as:

1
Ns

Ns∑
s=1

√∑Nr
r=1

∑Nt
n=1 |dr,s,n − d̄r,s,n|2√∑Nr

r=1
∑Nt

n=1 |dr,s,n|2
(5.2)

The time step used was ∆t = 0.000485 s, while the domain was discretized by a
mesh of 52000 triangular elements. Two different initial guess choices were considered,
one with a homogeneous background acoustic velocity and no inclusion, and the other
with three circular inclusions located closed to the obstacles to be imaged, as was done in
(ALBUQUERQUE; LAURAIN; YOUSEPT, 2021b) (see Figure 5.32). The MNL level was
9.57% and 9.56% for the homogeneous and circular inclusion guess, respectively. Inversion
parameters are displayed in Table 5.11.

Figure 5.33 show the inversion results. It can be seen that the inclusions were recovered
regardless of the initial guess chosen, and that spurious inclusions appeared in both
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Figure 5.29 – Objective function and quality measure for 3D case avoiding the inverse crime by using
different meshes.
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Figure 5.30 – Position of inclusions, domain dimensions and geometry acquisition.

cases. The biggest difference is the boundary pointing “protuberance” in the left most
inclusion, which appears only for the homogeneous guess. It can be said that, while the
Hamilton-Jacobi based Level Set approach led to more precise results (see Table 5.12),
a more favourable initial guess with three circular inclusions was used. The ILP results,
although less precise, also correctly placed the inclusions even without prior knowledge of
their precise number or location. Hence, there seems to be a compromise where the proposed
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(a) Value of the damping function η.

(b) η(x) profile at depth z = 0.325.

Figure 5.31 – Absorbing boundary layer η. At a distance of 0.1 km from the boundary η grows
quadratically from 0 to 1.

methodology yields rougher results, however, it eliminates the need for an initialization
guess, which is required in Level Set approaches that utilize the Hamilton-Jacobi equation
to control the model’s evolution. Hence, these results also suggest a workflow where ILP
could be a first step in the reconstruction, with a Hamilton-Jacobi based Level Set approach
such as from Albuquerque, Laurain e Yousept (2021b) being used to refine the results
obtained.
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Figure 5.32 – Non-homogeneous initial guess. The number of inclusions is the same as that of the
reference model.

Inversion parameters
1-norm constraint M 0.00175 objective function threshold τJ 1× 10−16

Filtering radius r 0.05 gradient threshold τG 1× 10−14

Damping weights γm, γv 0.999 Maximum number of iterations Nmax 500
Table 5.11 – Inversion parameters used in case with three inclusions.

Quality measure Q
Level Set, three circular inclusions as initial guess 0.062173

ILP, three circular inclusions as initial guess 0.091188
ILP, homogeneous initial guess 0.099987

Table 5.12 – Quality measures for case with three inclusions.

5.2.2 Sharpness influence

Full-Waveform Inversion (FWI) is known to be more challenging when there is strong
contrast in material parameters, as opposed to when they are smoothly varying with small
perturbations (KADU; LEEUWEN; MULDER, 2016). In order to assess how our approach
handles different contrast levels, the impact of the ratio vp,ratio between the maximum and
minimum acoustic velocities vp,max and vp,min was evaluated by simulating the case from
Section 5.2.1 with ratios of 1.2, 2.11, 3, 4, 5 and 6. While vp,min was fixed to 1.95 km/s,
the inclusion velocity vp,max varied from 2.34 to 11.7 km/s.

All problem and inversion parameters were the same, except for the timestep ∆t,
which had to be changed for inclusions with higher velocities in order to still satisfy the
stability condition. Their values are shown in Table 5.13.

A frequency content analysis is shown in Figure 5.34. Figure 5.34a illustrates the effect
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(a) Inversion result for homogeneous initial guess.

(b) Inversion result for initial guess with three circular
inclusions.

(c) Result obtained through Level Set (ALBUQUERQUE;
LAURAIN; YOUSEPT, 2021b).

Figure 5.33 – Figures (a) and (b) show a comparison between inversions with and without circular
inclusions as initial guess. Figure (c) shows the result obtained in the referenced article.
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vpratio time step ∆t [s] maximum time step ∆tmax [s]
1.2 0.000485 0.002094
2.11 0.000485 0.001214

3 0.000485 0.000868
4 0.000242 0.000651
5 0.000242 0.000521
6 0.000242 0.000434

Table 5.13 – Time step used for each simulation in Section 5.2.2, and the maximum value allowed
according to the stability criterion from ??).

the added noise has over the signal. Figure 5.34b shows the frequency content of the same
signals, which are all concentrated around the 5Hz central frequency of the source, with
significant contributions up to 10 Hz. As pointed in previous sections, time steps as low as
0.000485 s and 0.000242 s comfortably cover that frequency range.
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(a) Signal at receiver for different vpmax/vpmin ratios in the time domain.
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(b) Signal at receiver for different vpmax/vpmin ratios in the frequency domain.

Figure 5.34 – Reference data generated from source point located at (0.65, 0.26). Receiver at (0.65, 0.45),
source and receiver positioning corresponding to case IV.

In table 5.14 the drop in value of the Q measure with respect to its value at the start
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vp,ratio 1.2 2.11 3 4 5 6
Q/Q0 51% 61% 59% 26% 55% 47%

Table 5.14 – Drop in value of the Q measure for each vp,ratio..

of the inversion procedure Q0 is shown. It can be seen that, for the most part, all cases
had a drop between 47% to 61%, and did not show dependency on the contrast value. The
only exception was for vp,ratio = 4, which had a drop of only 25%. Inversion results are
shown in Figure 5.35, except for vp,ratio = 2.11, the case covered in the previous Section.
The most prominent feature is that the contrast ratio does not strongly correlate with
the quality of the result. The poorer results for vp,ratio = 4 (Figure 5.35c ) highlight how
the acoustic inversion problem is highly dependent on problem characteristics such as
source/receiver position, dimensions and, in this case, acoustic velocities.

5.2.3 Santos Basin velocity field

In this section, the problem of inverting an acoustic velocity model representative of
the Santos Basin is considered. In particular, the model features a thick salt layer with
a thin reservoir underneath, as shown in Figure 5.36. There are five geological units in
the model. The seawater, post salt, salt layer, pre salt (reservoir) and basement have
corresponding acoustic velocities of 1.5 km/s, 2.5 km/s, 4.5 km/s, 5.5 km/s and 7.0 km/s.
The two-dimensional model has 14.5 km in length and depth of 5 km.

In order to fully explore the capability of the proposed method, two geometry
acquisitions are used. Figure 5.36a shows a setup with 8 sources placed on the top boundary,
and 73 receivers at a depth of 900 meters, which is representative of an Ocean Bottom Node
(OBN) seismic survey. Figure 5.36b, on the other hand, displays a reflection-transmission
setup which, albeit not realistic, is useful in later analyses. It features an extra row of
73 receivers at a depth of 4.5 km. The parameters describing domain dimensions, source
signal, experiment duration and acquisition configuration are summarized in Table 5.15.
Furthermore, a transparency condition (Eq A) is imposed on all computational boundaries
except the top one in order to emulate a semi infinite medium.

Problem parameters
Number of sources 8 Number of receivers Ns 73
length 14.5 km source distance from surface 0 km
depth 5 km receiver distance from surface 0.9 km
source central frequency 2 Hz source offset 2.07 km
event duration 5 s receiver offset 0.199 km

Table 5.15 – Parameters that describe the salt basin inversion problem.

Time was discretized with a timestep of 0.001 seconds, and the domain was discretized
with a triangular mesh of 58000 elements for all examples, unless explicitly stated otherwise.

Since the water layer location is given, the gradient information in that region is muted
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(a) vp,max/vp,min = 1.2. (b) vp,max/vp,min = 3.

(c) vp,max/vp,min = 4. (d) vp,max/vp,min = 5.

(e) vp,max/vp,min = 6.

Figure 5.35 – Reference data generated from source point located at (0.65, 0.26). Receiver at (0.65, 0.45),
source and receiver positioning corresponding to case IV.

for all cases. The inversion parameters are presented together with each example, as well
as the initial velocity model being used.
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(a) “Poorly” illuminated case.
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(b) “Well” illuminated case.

Figure 5.36 – The two geometry acquisitions considered for the Santos Basin model.

5.2.4 Regular FWI

In order to motivate the integer variable approach, “traditional” FWI was applied to
the salt basin case, i.e., the continuous acoustic velocity field was taken as the control
variable. The gradient was evaluated by the adjoint method and the velocity was updated
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (NOCEDAL; WRIGHT,
1999). At first the spatial and stabilization filters were not employed.
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(a) Initial guess used. (b) Inversion result.

(c) Gradient at iteration 2. (d) Gradient ploted over the velocity model. The
gradient follows a linear transparency scale,
so values close to zero are transparent.

Figure 5.37 – FWI applied to salt basin velocity model.

Figure 5.37 shows the initial guess, final result, and the gradient information for one
of the first few iterations. The velocity model changes during the inversion are so subtle
that they are not visible in the original scale going from 1.5 km/s to 7 km/s. In addition,
the gradient is ploted by itself in Figure 5.37c and superimposed over the velocity model
in Figure 5.37d. It can be seen that the information is concentraded over the salt layer,
and that the signal is much weaker underneath, which aligns with the results that fail to
adjust for salt and subsalt regions.

In salt imaging it is often the case that the top of the salt is reasonably known, and
the target area to be imaged is imediately underneath it. In that context, FWI for the
salt and subsalt region was carried out by disregarding the gradient information above
the known top of salt. In addition, the problem was facilitated by using the geometry
acquisition with two lines of receivers, see Figure 5.36b. Four cases were considered, using
the spatial filter, stabilization filter, both or nome of them, as displayed in Figure 5.38.

While fixing the top of salt and adding receivers did help in advancing the algorithm,
Figure 5.38a shows that no significant improvement was achieved. From Figure 5.38b it
can also be seen that the spatial filter had negligible impact on the inversion, contrary to
the stabilization filter (5.38c), which moved most of the salt and subsalt region towards
higher velocity values. The combination of both filters, shown in Figure 5.38d, did not
yield better results, stopping the optimization after a few iterations due being unable of
improving the misfit value.



Chapter 5. RESULTS 86

(a) Regular FWI. (b) FWI and spatial filter.

(c) FWI and stabilization filter. (d) FWI combined with spatial and stabilization
filter.

Figure 5.38 – FWI applied to salt basin velocity model. The top of salt is fixed and and an extra line
of receivers was added to the bottom region of the domain.

5.2.5 Salt delineation

In order to study the viability of an integer control variable method to image the salt
and subsalt region, an incremental approach was taken. In this section, the challenge of
imaging the salt layer is considered. The problem parameters, as well as the discretization
were the same as in Section 5.2.4, while the acquisition geometry employed was the
reflective one (Figure 5.36a).

All the models so far inverted by ILP have only considered homogeneous background
velocities. From the material model (3.3) it can be seen that there is no restriction over
whether the background value vmin

p may vary spatially. That expression is slightly rearanged
as follow, with spatial dependency made explicit, and a notation adapted to the FWI
problem applied to salt imaging:

vp(a(x)) = vp,back(x)(1− ap(x)) + vp,salta
p(x) (5.3)

where vp,back is the spatially varying acoustic velocity background, and vp,salt is the scalar
acoustic velocity value within the salt body. The background velocity model and the
control variable a corresponding to the reference model are shown in Figure 5.39.

The inversion parameters used regarding sensitivity weights, step size and stopping
criteria can be seen in Table 5.16.

The ILP approach was then applied to the problem of delineating the salt layer.
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(a) Background velocity model vp,back(x).
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(b) Optimization variable a(x).
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(c) Acoustic velocity field vp(x).

Figure 5.39 – Background and optimization field which combined result in the field vp(x).

Figure 5.40 shows the initial guess and the obtained velocity model, both for optimization
variable and velocity model. It can be seen that the true salt model is well approximated,
except for a spurious inclusion in the bottom left of velocity model, a region which is not
well illuminated by the acquisition geometry being used. In a more general sense, this
result validates the posibility of imaging salt bodies embedded within non-homogeneous
background mediums. In this particular case, background acoustic velocities can be either
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Inversion parameters
1-norm constraint M 0.01 objective function threshold τJ 1× 10−16

Filtering radius r 0.1 gradient threshold τG 1× 10−14

Damping weights γm, γv 0.99 Maximum number of iterations Nmax 200
Table 5.16 – Inversion parameters used in the salt delineation case.

lower or higher than that of the salt layer.

(a) Initial guess for optimization variable. (b) Ininitial guess for velocity model.

(c) Result for optimization variable. (d) Result for velocity model.

Figure 5.40 – ILP FWI applied to the salt basin velocity model. Both control variable and velocity
model are shown.

The velocity model obtained in 5.40 raises the question if the relatively good fit can
be attributed to a favourable initial guess. In order to investigate this possibility, the
inversion is repeated with a totally homogeneous initial guess for the optimization variable,
i.e, a(x) = 0 everywhere. Beside initial guess, the only change in parameters was the
maximum number of iterations Nmax, raised to 300. Results are shown in Figure 5.41.

(a) Result for optimization variable. (b) Result for velocity model.

Figure 5.41 – ILP FWI applied to the salt basin velocity model with a homogeneous initial guess.

The quality of the recovered salt in the upper portion of the layer is similar, which is
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a1(x) a2(x) vp(x)
0 0 vp,back

1 0 vp,salt

1 1 vp,res

Table 5.17 – Relationship between optimization variables and velocity values following Sivapuram et
al. (2021).

to be expected since that is the most well illuminated region. The bottom of the layer also
track relatively well with respect to the true body, except for the areas near the left and
right border. In particular, the bottom corners, poorly illuminated regions in a reflective
acquisition setup, display spurious salt inclusions. Nevertheless, similarly to the behaviour
observed in Section 5.2.1, here it can be seen that the ILP approach was able to recovered
the salt layer despite the unfavourable homogeneous initial guess.

5.2.5.1 Multimaterial

In hydrocarbon exploration, seismic imaging of saline structures is relevant mainly
due to the presence of hydrocarbon reservoirs underneath them or in their vicinity. It is
therefore natural to extend the inversion procedure in order to locate the reservoirs in
addition to the salt region. In this section, we tackle this problem by allowing the integer
control variable to assume three values, thus identifying each point in the domain either
as background, salt or reservoir. The reflective geometry acquisition scheme from Figure
5.36a was used. The problem parameters, inversion parameters and discretization were
the same as in previous sections.

In order to use non-binary integer variables, the generalized material models from
Section 3.2.1 were employed. In the case considered, they map the integer values {0, 1, 2} to
{vp,back, vp,salt, vp,res}, where vsalt = 4.5 km/s, vres = 5.5 km/s, and vp,back varies throughout
the domain. Figure 5.42 shows the optimization variable a(x) and inhomogeneous background
vp,back(x) that combined generate the reference velocity model.

In addition to those, the material interpolation law from Sivapuram et al. (2021) was
used. In the generalized SIMP interpolation, instead of a single optimization variable a(x)
which may assume several integer values, several optimization binary fields a1(x), . . . , aN (x)
corresponding to each material are used. In the current case there would be two optimization
variables, a1(x) and a2(x), associated with the salt structures and reservoir, respectively.
The interpolation law read as follow:

vp = (1− a1)vp,back + a1 [(1− a2)vp,salt + a2vp,res] (5.4)

Table 5.17 shows the relationship between the optimization variables and the resulting
velocity model vp(x), while Figure 5.43 displays it visually. The background is the same as
in Figure 5.42a.
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(a) Background velocity model vp,back(x).
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(b) Optimization variable a(x).

Figure 5.42 – Background and optimization field for the generalized material models.
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(a) Variable a1(x) indicates the presence of salt
or reservoir.

0 2 4 6 8 10 12 14
Distance [km]

0

1

2

3

4

5

De
pt

h 
[k

m
]

0 1

(b) Variable a2(x) indicates the presence of a
reservoir.

Figure 5.43 – Optimization variables that generate the reference model. Note how a1 and a2 overlap
in the reservoir region, in accordance with Table 5.17.

The inversion was carried out with the single field approaches using the polynomial and
the peak interpolation model, as well as the many fields approach. Initial guess and results
are shown in Figure 5.44. It can be seen that the recovered velocity values steer towards
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either the background or the reservoir, with barely any salt presence. Salt corresponds
to the intermediate optimization variable value a = 1 in the single field approach, and
to a1 = 1, a2 = 0 for the extended SIMP case. Indeed, the oscilation of the optimization
variables between extreme values, irrespective of material model or number of fields used,
is a consequence of the stabilization filter.

(a) Initial guess. (b) Result obtained with polynomial model.

(c) Result obtained with peak model. (d) Result obtained with generalized SIMP
interpolation (SIVAPURAM et al., 2021).

Figure 5.44 – ILP FWI applied to the problem of locating both salt and reservoir, with different
material interpolation laws.

Figure 5.45 shows the gradient value at depth = 1 km, distance = 7 km for the inversion
using the peak material model for different stabilization filter weights. When the filter is
not active (γ = 0), an unstable, oscilatory behaviour similar to that described in Section
5.1.1 appears. As the weight grows, this pattern dampens. This phenomenon is generally
present in unfiltered integer variable TO (HUANG; XIE, 2007), so its manifestation in this
application is not unexpected. In fact, the weight γ = 0.5 corresponds to the arithmetic
average of the gradient from the two last iterations, which is the most common stabilization
technique for integer TO (XIA et al., 2018; SIVAPURAM; PICELLI; XIE, 2018a). For
acoustic inversion however, the weight γ has to be closer to unity as shown in Section
5.1.3. This in turn causes the gradient to vary smoothly, with no steep variation from one
iteration to the next. Consequently, when a DoF associated with the background (a = 0)
is updated to salt (a = 1), in the very next iteration the gradient will still mostly point
towards the same direction, leading to a further update to reservoir (a = 2). The same
holds true when the gradient points in the oposite direction, hence the tendency of the
optimization variable to get ”stuck” in upper or lower bound values.

Concerning the generalized SIMP approach, from the gradient expression 3.24 and
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Figure 5.45 – Gradient evaluation at depth = 1 km, distance = 7 km.

from the derivatives of (5.4) it can be seen that, for each point in the domain, the gradients
with respect to a1 and a2 are the same apart from a multiplicative constant. Therefore, in
general, if the gradient leads a1 to switch from 0 to 1, it will induce the same change to a2.
The same happens in the opposite direction, resulting in a state where the optimization
variables are sinchronized at either the lower or upper bound, as exemplified in Figure
5.44d.

In fact, the stabilization filter limits the range of gradient variation from one iteration
to the next. This can be highlighted by looking at how the gradient varies from one
iteration to the next with and without filter, and how these two quantities are related.
The stabilization filter equations are repeated here for clarity sake:

mk = γmmk−1 + (1− γm)gk
bef

vk = γvvk−1 + (1− γv)gk
bef ⊙ gk

bef

gk
aft = mk√

vk + ε

(5.5)

where gk
bef and gk

aft are the gradient at the kth iteration before and after passing through
the stabilization filter, respectively. Combining the three equations from Eq. (5.5) (and
assuming γm = γv = γ, ε = 0) allows us to write:

gk
aft = mk√

vk

=
γmk−1 + (1− γ)gk

bef√
γvk−1 + (1− γ)gk

bef ⊙ gk
bef

(5.6)

The gradient variation between iterations ∆ is introduced, leading to:

gk
aft = gk−1

aft + ∆k
aft =

γmk−1 + (1− γ)(gk−1
bef + ∆k

bef )√
γvk−1 + (1− γ)(gk−1

bef + ∆k
bef )⊙ (gk−1

bef + ∆k
bef )

(5.7)

Using Eq. (5.5) to express gk−1
aft ,mk−1 and vk−1 in terms of gk−1

bef , it is possible to write the
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Figure 5.46 – Relationship between filtered and unfiltered gradient variation at iteration k.

variation ∆k
aft as a function of ∆k

bef as follows:

∆k
aft =

γ2mk−2 + γ(1− γ)gk−1
bef + (1− γ)(gk−1

bef + ∆k
bef )√

γ2vk−2 + γ(1− γ)gk−1
bef ⊙ gk−1

bef + (1− γ)(gk−1
bef + ∆k

bef )⊙ (gk−1
bef + ∆k

bef )

−
γmk−2 + (1− γ)gk−1

bef√
γvk−2 + (1− γ)gk−1

bef ⊙ gk−1
bef

(5.8)

In order to visualize the relationship γ is set to 0.999, a value used in several examples
in this work. The quantities mk−2, vk−2 and gk−1 are arbitrarily set to 1, however, different
values for any of them do not change the behaviour of the curve shown in Figure 5.46. It can
be seen that gradient variations with large magnitude |∆k

bef | are dampened considerably. In
addition, the slope of the curve decreases as |∆k

bef | increases, meaning that the magnitude
of the filtered values |∆k

aft| is limited and the difference between their values decreases as
|∆k

bef | grows.

The implication is that the multimaterial interpolation scheme investigated above is
unlikely to succeed. In particular, consider a problem where the allowed design variables
are {0, 1, 2}. A DoF in which the design variable shifted from 0 to 1 at iteration k may
need a big variation |∆k+1

aft | in the gradient at iteration k + 1 so that the design value
remains at 1 instead of going from 1 to 2. However, if this larger variation is simply not
possible, the design values will change and the “locking” phenomenom will appear.

5.2.5.2 Sequential Multimaterial

In order to combine a non-binary integer design variable with the stabilization filter, a
sequential approach is proposed. The interpolation laws from Section 3.2.1 are still used,
however, the ILP problem is adapted to allow only a binary subset of design variables to
change at a time. For a given problem with a ∈ {0, . . . , Nm}, a lower bound 0 ≤ L < Nm
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Inversion parameters
1-norm constraint M 0.005 objective function threshold τJ 1× 10−16

Filtering radius r 0.15 gradient threshold τG 1× 10−14

Damping weights γm, γv 0.999 Maximum number of iterations Nmax 1000
Table 5.18 – Inversion parameters used in pseudomultimaterial case.

and a upper bound 0 < U ≤ Nm are defined such that L and U are neighboring integers.
By modifying the bound constraints in the ILP problem it is possible to allow only design
variable changes when a ∈ {L,U}, which is a binary approach. By shifting L and U it is
possible to switch the target material properties, sweeping all materials from 0 to Nm,
thus resulting in a pseudo multimaterial scheme.

Figure 5.47 illustrates two choices of bounds L, U for the salt basin problem. Figure 5.47a
shows the velocity model composed of water layer (vp = 1.5 mk/s), sediment (vp = 2.5 mk/s),
salt layer (vp = 4.5 mk/s), reservoir (vp = 5.5 mk/s) and basement (vp = 7 mk/s). Figure 5.47b
shows the design values associated to the reference model, which can assume the values
{0, 1, 2}. There are two possible choices of inner bounds, either (0, 1) or (1, 2). The first
case is displayed in Figure 5.47c, where only the active regions appear, and the subdomain
where a = 2, which stays fixed, is transparent. On the same vein, Figure 5.47d shows the
active regions when the design variable bounds are (1, 2). In that case, the background
corresponding to a = 0 stays fixed.

The pseudo multimaterial sub-optimization ILP problem can be written as:

minimize
∆ak

∇af ·∆ak

subject to ∆ak = ∆ak
P + ∆ak

N

||∆ak
P ||1 ≤M/2

||∆ak
N ||1 ≤M/2

∆ak
P ∈ {0, δ(a− Lk)}

∆ak
N ∈ {−δ(a− Uk), 0}

Lk, UK ∈ {0, . . . , Nm} ∧ Uk = Lk + 1

(5.9)

This approach is applied to the problem of salt and reservoir identification presented
in Section 5.2.5.1. The problem parameters and discretization used were kept the same.
Inversion parameters are presented in Table 5.18.

Since the multimaterial interpolation law is retained, the reference model for the design
variables remains as shown in Figure 5.42, with a ∈ {0, 1, 2}mapping to {vp,back, vp,salt, vp,res}.
The initial guess features only a central salt layer, without assigning a reservoir region
anywhere, as depicted in Figure 5.48. The first example considers the favourable geometry
acquisition depicted in Figure 5.36b. The polynomial interpolation law is chosen for material
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(a) Reference velocity model.

0 1 2

(b) Design variable. a = 1 corresponds to salt,
a = 2 to the reservoir. When a = 0 the
acoustic velocity corresponds to the fixed
background.

0 1

(c) Active region when the bounds (L, U) of a
are L = 0, U = 1. Salt (red) is distributed
within the fixed background (blue).

1 2

(d) Active region when the bounds (L, U) of
a are L = 1, U = 2. Reservoir (green) is
distributed within the salt layer (red).

Figure 5.47 – Illustration of the pseudomultimaterial approach.

modelling. The binary inversion problem switch bounds L and U at every Nswitch = 200
iterations.

Figure 5.49 show the evolution of the process at different points of the inversion. At
first the bounds are (0, 1), and the region corresponding to 2 is fixed. Since the reservoir
(a = 2) is not present in the initial guess, there is only salt (a = 1) being distributed
within the fixed background (a = 0). In Figure 5.49a, at iteration 51, salt is still being
distributed, with the right portion mostly unresolved. In Figure 5.49b, at iteration 151,
the salt is already mostly defined. At iteration 200 the design variable bounds are switched
to (1, 2). The fixed background (a = 0) is now fixed, and reservoir (a = 2) is distributed
within the salt layer (a = 1). In Figure 5.49c, at iteration 201, a small clear spot appears
inside the salt, which corresponds to reservoir. At iteration 216, as shown in Figure 5.49d,
the reservoir layer is already taking form. At iteration 301 (5.49e), the layer is mostly
defined and changes little up to the 400th iteration, when there is a new bound switch. At
this point the process starts over again, halting when the stopping criteria for the inversion
is met.

The history of the objective function during inversion, in addition to selected snapshots
of the velocity model, are shown in Figure 5.50. It can be seen that approximatedly 100
iterations are needed to correctly locate the salt layer, and no abrupt variations occur
thereafter. At iteration 200 there is a sudden drop associated with the switch in upper and
lower design variable bounds. Once again, the value of the objective function mostly settles
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(a) Initial guess for a(x).
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(b) Initial guess for vp(x).

Figure 5.48 – Initial guess for salt and reservoir reconstruction.

until a new switch is introduced at iteration 400. From that point until iteration 600 the
behaviour is mostly chaotic since the salt region is already well defined. Nevertheless, the
value of the objective function still decreases slightly until the procedure stops.

Quality measure Q
material model peak function polynomial interpolation
well illuminated 4.289× 102 5.5304× 102

poorly illuminated 7.9207× 102 8.5034× 102

Table 5.19 – Quality measures in the pseudomultimaterial case.

The next inversion example draws a comparison between the two interpolation laws
being considered. In addition, both geometry acquisitions from Figure 5.36 were employed.
With regard to illumination, it can be seen that, once more, the ILP approach ends up with
artifacts in the shadow regions when the regular reflective acquisition setup was used. With
respect to material model, Figure 5.36 and Table 5.19 suggest that both interpolations
perform similarly. Albeit that being the case here, the peak model is still more flexible
given the free parameter σj associated to each acoustic velocity vp,back, vp,salt and vp,res ,
which allows controlling the slope at material transitions (see Equation (3.5) and Figure
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(a) 51th iteration: salt within fixed background.(b) 151th iteration: Salt mostly defined. Reservoir
(a = 2) out of the bounds (0, 1).

(c) 201th iteration: Bounds switched to (1, 2).
Reservoir region appears.

(d) 216th iteration: Reservoir layer taking form
within salt layer. Background (a = 0) fixed.

(e) 301th iteration: Reservoir layer reasonably well
defined.

Figure 5.49 – Sequential approach at various points of the inversion.

3.2). Most importantly, the experiments with the pseudo multimaterial approach have
shown to be relatively successfull in recovering both salt and reservoir.

5.2.5.3 Fixed Top of Salt

FWI reconstruction of velocity models in the presence of salt bodies is challenging
because of the sensitivity of subsalt images with respect to the salt model. One approach
used in the industry is to build the sediment velocity model, followed by top-of-salt (ToS)
identification, base-of-salt (BoS) interpretation and finally salt scenario testing (WANG
et al., 2019). The salt interface contrast combined with the high acoustic velocity makes
it harder to estimate the BoS in comparison to the ToS. Therefore, in this section we
consider the scenario where the ToS is known, and the objective is to correctly reconstruct
the reservoir and basement regions beneath it.

In order to highlight the need of incorporating the salt body restriction in such a
scenario, FWI with a continous variable was applied to the salt basin case with a known
ToS. The ToS geometry was imposed by muting the gradient information above it, thus
avoiding any model update in that region. The continuous acoustic velocity field was taken
as the control variable, and the velocity was updated using the BFGS method (NOCEDAL;
WRIGHT, 1999). In addition, neither spatial nor stabilization filters were employed.
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Figure 5.50 – Optimization history and snapshots at iterations 100, 220, 399 and 599.

(a) peak function material model, well
illuminated.

(b) polynomial interpolation material model,
well illuminated.

(c) peak function material model, poorly
illuminated.

(d) polynomial interpolation material model,
poorly illuminated.

Figure 5.51 – Inversion result for well and poorly illuminated geometry acquisitions, considering both
peak function and polynomial interpolation material models .

Figure 5.52 presents the inversion results. Figure 5.52a shows the initial guess, which
assumes just the presence of reservoir and basement layers below the salt. In Figure
5.52b, it’s difficult to discern a clear separation between the basement (colored in yellow),
reservoir (light green), and salt (darker green). In the subsequent Figure 5.52c, the gradient
at the fourth iteration of the inversion process is displayed. There is a narrow region
below the Top of Salt (ToS) where the gradient is more pronounced, as indicated by
higher absolute values. Figure 5.52d overlays these higher values on the inversion results,
highlighting that in the target area encompassing the reservoir and basement, the gradient
values are relatively lower, complicating the reconstruction in this region. This observation
emphasizes the importance of integrating prior information about the distinct nature of
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(a) Initial guess. (b) Result obtained.

(c) Gradient at 4th iteration. (d) Gradient ploted over the obtained velocity
model.

Figure 5.52 – Inversion result for fixed ToS and continous design variable.

the acoustic velocity distribution to effectively guide the inversion.

To implement the discretized scheme in this case, the multimaterial mapping used for
vp(x) is:

vp(x) =


vp,back(x) if a(x) = 0

vp,res if a(x) = 1

vp,base if a(x) = 2

(5.10)

where vp,res = 5.5 km/s and vp,base = 7.0 km/s. The fields vp,back and a(x), which combined
reconstruct the reference velocity model, are shown in Figure 5.53. In particular, the peak
function interpolation law from Equation 3.5 was chosen to connect a and vp.

The reflective acquisition geometry acquisition from Figure 5.36a is applied to the
subsalt identification problem. Problem parameters and discretization are the same as
in Section 5.2.5.3. For all problems considered, the initial guess consists of horizontal
layers of the two material parameters expected to be found beneath the salt, reservoir and
basement, as shown in Figure 5.53c.

In this example, the peak function interpolation law is used. The inversion algorithm
follows the same sequential approach, with Nswitch set to 150. The updating schemes
starts with U=0, L=1, meaning that the reservoir region is distributed within the fixed
background region. At the 151th iteration, the bounds switch to U=1, L=2, setting the
basement structure to be distributed within the reservoir region. After 150 iterations the
bounds U and L switch back and the procedure starts again.
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(a) Background velocity model vp,back(x).
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(c) Initial guess for optimization variable a(x).

Figure 5.53 – The background and optimization fields which combined result in the field vp(x) for
fixed top of salt are displayed in Figure (a) and (b). Figure (c) shows the control variable
initial guess used in this Section .

While the current approach located somewhat sucessfully the salt layer in Section
5.2.5.3, it also suffered from artifacts in the poorly illuminated bottom corner regions.
In order to investigate the influence of the spatial and stabilization filter parameters
on the reconstruction, a sweeping experiment was performed. Based on what has been
observed to be an “effective range”, the inversion was carried out considering radii r ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25} for the spatial filter and weights γ ∈ {0.25, 0.5, 0.75, 0.9, 0.99, 0.999}
for the stabilization filters. The result for all these inversions was put together and shown



Chapter 5. RESULTS 101

in Figure 5.54.
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Figure 5.54 – Final result for inversion with fixed top of salt considering several choices for the spatial
filter parameter r and weight γ for the stabilization filter.

From the plot it can be seen that weights γ up to 0.75 control very poorly for the
appearance of artifacts, irrespective of the radius r used. Considering results with γ ≥ 0.9,
small artifacts are less present as r increases (top to bottom). For r ≥ 0.2, γ ≥ 0.9, the
velocity models obtained have a clearly defined salt layer and diminished corner artifacts.
Although the result for γ = 0.9, r = 0.25 may seem the best one given the absence of
artifacts at the bottom, a qualitative analysis shows that may not be the case.
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Figure 5.55 – Quality measure (a) and final value of the objective function (b) for all cases.

Figure 5.55 shows heat maps for both quality measure Q (Equation 5.1) and objective
function value for the cases considered. It can be seen that, while the case r = 0.25, γ = 0.9
has a low Q score and no corner artifacts, it is not the result with biggest agreement
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to the reference model. The velocity models obtained in the range 0.05 ≤ r ≤ 0.1,
0.9 ≤ γ ≤ 0.999 achieve similar or lower Q measures despiste the artifacts due to a
better salt layer reconstruction. This difference is highlighted in Figure 5.56, where the
interfaces for case r = 0.25, γ = 0.999 and r = 0.05, γ = 0.9 are superimposed. There,
it can be seen that the result with higher γ, but lower r (in black), fits much closer the
reference model salt layer (in red) than the lower γ, higher r case, despite having more
regions corresponding to artifacts. This relationship illustrates the main impact of the r
parameter, since higher values are more effective in reducing artifacts, while at the same
time sacrificing precision in the salt layer reconstruction. Therefore, in these circumstances
the radius r used depends on the priority being interface definition in the upper portion of
the model, or freedom from artifacts in the shadow regions of the domain.

Figure 5.56 – Contour lines of the salt layer obtained for i) case r = 0.05, γ = 0.999 (black), ii) case
r = 0.25, γ = 0.9 (green), iii) reference model (red) .

The best results in Figure 5.55a still display artifacts, mostly in the bottom corner
regions. This is to be expected, and these so-called shadow regions are bound to have
poorer recontruction (KADU; LEEUWEN; MULDER, 2016). To eliminate the influece
from these artifacts the analysis is repeated without taking these corners into account. If
before Q was calculated considering the whole computational domain Ω, now the integral
from (5.1) is calculated excluding the shadow zone Ωs (See Figure 5.57a). The reassessment
was done for circular regions with radius ranging from 1 to 3 km. Their impact on the Q
values grew in tandem with the size of the area excluded. Nevertheless, the results did
not qualitatively change, regardless of the circle size. This can be seen in Figure 5.57b,
wich considers the case with the largest exclusion zone. The order relation between cases
with regards to Q values did not change, indicating that the measure adequately evaluated
the quality of the inversion, and did not get “contaminated” by the discrepancies at the
shadow corner regions.

5.2.5.4 Fixed ToS: no inverse crime

In the last examples that considered the salt layer model, the existence of inverse crime
was ignored. In this section this problem is addressed as was done in Section 5.2.1, by
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(a) Reference velocity model with shadow region Ωs marked. The corners are
occupied by quarter circles with 3 km radius.
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(b) Inversion quality measure when shadow zone is ignored.

Figure 5.57 – Quality measure for several choices of parameters r, γ when the poorly illuminated
region, shown in Figure (a), is excluded.

adding gaussian noise to the reference signal. Inversions were carried out for four different
filter parameter configurations with low Q scores:

• r = 0.05, γ = 0.999

• r = 0.1 , γ = 0.99

• r = 0.05, γ = 0.99

• r = 0.25, γ = 0.9

The configuration was kept the same, a reflective geometry acquisition setup in
conjunction with the peak function material model using the sequential pseudo-multimaterial
approach, switching between distributing reervoir or basement material at everyNswitch = 150
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iterations was used. Figure 5.58 presents the results for these cases, and a side-by-side
comparison to the original inversion with crime. The MNL used was 9,5% for all examples.

(a) r = 0.05, γ = 0.999, no inverse crime. (b) r = 0.05, γ = 0.999, with inverse crime.

(c) r = 0.1, γ = 0.99, no inverse crime. (d) r = 0.1, γ = 0.99, with inverse crime.

(e) r = 0.05, γ = 0.99, no inverse crime. (f) r = 0.05, γ = 0.99, with inverse crime.

(g) r = 0.25, γ = 0.9, no inverse crime. (h) r = 0.25, γ = 0.9, with inverse crime.

Figure 5.58 – Fixed ToS taking inverse crime into account on the right column, and ignoring it on the
left.

In general, the expected trend of more artifacts when the inverse crime is avoided
can be observed. In particular, in Figures 5.58d and 5.58f reservoir artifacts appear more
frequently on the otherwise well defined salt layer, besides the spurious inclusions at the
depper layers, more visible in Figures 5.58b and 5.58f. Most notably, Figures 5.58d and
5.58h indicates that higher spatial filter weights r can dampen the impact of noise, while
the same effect cannot be observed for the stabilization filter weight ranging from 0.9 to
0.999.

Figure 5.59 presents the comparative plots of the objective function both under inverse
crime condition (in blue) and with addition of gaussian white noise (in red) for the four
cases considered. In general, the values are at aleast one order of magnitude higher when
white noise is added. Furthermore, when there is a switch in lower and upper bounds L
and U at iteration 750, while there is a change in the value of the objective function for
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(b) r = 0.1, γ = 0.99.
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(c) r = 0.05, γ = 0.99.
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(d) r = 0.25, γ = 0.9.

Figure 5.59 – Comparison of objective function with and without taking inverse crime into account.

the cases with inverse crime, the crimeless cases remain at the same level, indicating a
possible threshold related to the amount of noise present. It is also of notice that oscilations
in value are bigger when L = 0 and U = 1, that is, when the reservoir region is being
distributed within the fixed background. This is reasonable since when L = 1 and U = 2
the basement is distributed within the reservoir while the background, which occupies a
lerger portion of the domain, remains locked out of the inversion.

It can also be observed that higher values of γ dampen considerably the oscilation
amplitude. On the other hand, the effect of varying r is not as evident on the behaviour of
the objective function.
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6 CONCLUSIONS

In this work, a discrete design variable approach to acoustic inversion in the presence of
sharp interfaces was investigated. In particular, the velocity model update was performed
by solving an Integer Linear Programming problem. Several cases with varying complexity
were studied, and the design variable employed varied accordingly. For single material
obstacles a binary field described their location, while in cases corresponding to subsurfaces,
a multivalued field associated one integer to each structure of interest. The wave propagation
was modeled in the time domain, time stepping was performed with an explicit scheme,
and the spatial discretization chosen was the finite element method. The adjoint method
was used in the sensitivity analysis formulated through a differentiate-then-discretize
approach. Two filters were applied to the sensitivities in order to mitigate the appearance
of artifacts, and shown to improve the inversion process.

Regarding the numerical examples, first a generic acoust inverse problem was considered.
For a few cases taken from the literature, the proposed methodology was as effective
as the Level Set method updated by a reaction-diffusion equation, thus indicating its
feasibility. At first, a single obstacle case was studied. The parameter sweeping experiment
showed the considerable effect that the spatial and stabilization filters have and how the
choice of weights is decisive in the sucess of the inversion. In particular, these results
demonstrated how the spatial filter is useful in improving reconstruction quality by
alleviating the appearance of spurious inclusions. The stabilization filter, on the other
hand, was shown to be an essential component to the ILP based approach. The frequency
content analysis showed that the whole spectrum was being taken into account because of
the restrictiveness of the stability condition over the time step selection, and the sharpness
evaluation indicated that the presence of a velocity discontinuity is more impactful than
how large the discontinuity is. The case with two obstacles had poor results, showcasing
the high dependency of the reconstruction on the source/receiver illumination, which is to
be expected. The inversion then was improved by a continuation approach that limited
the frequency content of the data with low-pass filters. Next, a 3D example was presented
as evidence of the feasibility of applying the methodology to three dimensional problems.

Subsequently, cases pertaining to Full Waveform were studied. A salt identification
problem highlighted differences with respect to a Level Set method that employs the
Hamilton–Jacobi equation for the curve update. Thereafter, a subsurface velocity model
representative of the Santos basin was inverted with different approaches. After showing
the limitations with a “regular” continuous FWI approach, the salt layer was located
using the binary design variable used throughout the work. Afterwards, the multimaterial
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approach with multivalued integer design variables was shown to be incompatible with the
stabilization filter, a fundamental component in the proposed integer variable procedure.
This prompted the introduction of a multimaterial sequential approach still compatible with
the Adam based suavization scheme. The sequential strategy was shown to be reasonably
successfull in identifying the salt layer and reservoir, and also in locating the reservoir
when the top of salt region is known. The impact of the weights of the stabilization and
spatial filters were evaluated for the fixed top of salt case, and the impact of the inverse
crime on the results obtained was discussed.

In summary, the work showed the reasonability of the Integer Linear Programming
approach if combined with appropriate filters, in this instance taken from Topology
Optimization and Machine Learning. Furthermore, the strategy was able to recover
obstacles and structures in a more generic acoustic medium setting, and additionally in the
specific context of Full Waveform Inversion. In this application, the proposed methodology
succeeded in locating not only the salt layer, it also identified the reservoir region where
the top of salt is known. In particular, the fixed top of salt represents a more realistic
scenario for FWI in a subsurface imaging workflow.

Nevertheless, there are limitations to the current methodology. In the same way that
information below the salt layer is amplified with the introduction of the integer approach,
so is the noise. The artifacts which appear in the bottom corner regions are present in
almost all cases, and currently can only be suppressed by increasing the spatial filter. Since
this filter also harms the identification of the reservoir interface, a compromise between
artifact suppression and interface detection has to be made. In that regard, delineating
the reservoir while avoiding artifacts remains a challenge.

In face of these challenges and considering the scope of the current work, one possible
next step would be exploring artifact mitigation strategies. Perhaps morphologic operations
like erosion (SIGMUND, 2007) to eliminate small inclusions, or maybe higher order
local approximation to improve the direction search. In addition, more realistic physics
models could be taken into account, such as elastic wave propagation and orthotropic
constitutive models. Another improvement would be to do the explicit time stepping wave
propagation with GPUs, since this type of architecture is ideal for the repeated matrix
vector multiplications typical of the time domain approach.
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EPANOMERITAKIS, I.; AKÇELIK, V.; GHATTAS, O.; BIELAK, J. A newton-cg
method for large-scale three-dimensional elastic full-waveform seismic inversion. Inverse
Problems, IOP Publishing, v. 24, n. 3, p. 034015, 2008. Cited in page 22.

ESSER, E.; GUASCH, L.; HERRMANN, F. J.; WARNER, M. Constrained waveform
inversion for automatic salt flooding. The Leading Edge, Society of Exploration
Geophysicists, v. 35, n. 3, p. 235–239, 2016. Cited in page 23.

ETIENNE, V.; OPERTO, S.; VIRIEUX, J.; JIA, Y. Computational issues and strategies
related to full waveform inversion in 3d elastic media: Methodological developments. In:
SEG Technical Program Expanded Abstracts 2010. [S.l.]: Society of Exploration
Geophysicists, 2010. p. 1050–1054. Cited in page 22.

FICHTNER, A. Full seismic waveform modelling and inversion. [S.l.]: Springer
Science & Business Media, 2010. Cited 7 times in pages 21, 27, 28, 29, 31, 48, and 57.



References 111

GAO, K.; HUANG, L. Acoustic-and elastic-waveform inversion with total generalized
p-variation regularization. Geophysical Journal International, Oxford University
Press, v. 218, n. 2, p. 933–957, 2019. Cited in page 23.

GAUTHIER, O.; VIRIEUX, J.; TARANTOLA, A. Two-dimensional nonlinear inversion of
seismic waveforms: Numerical results. Geophysics, Society of Exploration Geophysicists,
v. 51, n. 7, p. 1387–1403, 1986. Cited in page 21.
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Dispońıvel em: ⟨https://doi.org/10.5281/zenodo.5164113⟩. Cited 2 times in pages 49
and 50.

ROBERTS, K. J.; OLENDER, A.; FRANCESCHINI, L.; KIRBY, R. C.; GIORIA, R. S.;
CARMO, B. S. spyro: a firedrake-based wave propagation and full-waveform-inversion
finite-element solver. Geoscientific Model Development, Copernicus GmbH, v. 15,
n. 23, p. 8639–8667, 2022. Cited 3 times in pages 21, 29, and 57.

ROMDHANE, A.; QUERENDEZ, E. Co2 characterization at the sleipner field with full
waveform inversion: Application to synthetic and real data. Energy procedia, Elsevier,
v. 63, p. 4358–4365, 2014. Cited in page 20.

RUDER, S. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016. Cited in page 46.

https://www.earthdoc.org/content/papers/10.3997/2214-4609.202183026
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.5281/zenodo.5164113


References 116

RYUZONO, K.; YASHIRO, S.; NAGAI, H.; TOYAMA, N. Topology optimization-based
damage identification using visualized ultrasonic wave propagation. Materials, MDPI,
v. 13, n. 1, p. 33, 2019. Cited in page 25.

SANTOSA, F. et al. Inverse problems of acoustic and elastic waves. [S.l.]: Siam,
1984. v. 14. Cited in page 20.

SEARS, T.; SINGH, S.; BARTON, P. Elastic full waveform inversion of multi-component
obc seismic data. Geophysical Prospecting, European Association of Geoscientists
and; Engineers, v. 56, n. 6, p. 843–862, 2008. ISSN 1365-2478. Dispońıvel em:
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