• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.3.2020.tde-18032021-095114
Document
Author
Full name
Ana Francisca de Paiva Affonso Moreno
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2020
Supervisor
Committee
Martins, Flavius Portella Ribas (President)
Carrion, Ronaldo
Delijaicov, Sergio
Title in Portuguese
Modelagem e simulação de escoamento granular em silos de armazenamento de granalhas de máquinas de shot peening.
Keywords in Portuguese
Dinâmica molecular
Escoamento granular
Escoamento multifásico
Simulação
Abstract in Portuguese
Neste trabalho foi utilizada a abordagem da dinâmica molecular para se estudar o fluxo de granalhas que ocorre no interior do reservatório de uma máquina de shot peening com sucção por indução. Com o auxílio do software LAMMPS, foram feitas oito simulações, variando o diâmetro das granalhas, o diâmetro da seção de saída do reservatório e o ângulo de inclinação das paredes da sua seção cônica. As forças entre as partículas foram modeladas de acordo com a teoria de Hertz-Mindlin e Coulomb. Utilizando-se o ensemble microcanônico granular, foram calculadas as coordenadas das partículas, que aliadas a considerações sobre as condições de contorno estabelecidas, eram utilizadas para estimar o fluxo de saída para cada conjunto de parâmetros. O cálculo foi realizado por um algoritmo implementado em Matlab, e seus resultados foram confrontados com aqueles obtidos através da aplicação da correlação de Beverloo. Para se estimar os efeitos da inclinação das paredes, dois coeficientes foram avaliados, o de Rose e Tanaka e o de Brown e Richards. Enquanto o erro máximo obtido através da aplicação do coeficiente de Rose e Tanaka foi igual a 13,07%, frente a 8,17% encontrados através da aplicação do coeficiente de Brown e Richards, os erros médios de ambas foram equivalentes (6,75% e 6,68%, respectivamente).
Title in English
Modeling and simulation of the granular flow of shots inside the reservoir of a shot peening machine.
Keywords in English
Granular flow
Molecular dynamics
Multiphase flow
Simulation
Abstract in English
In this work the molecular dynamics approach was used to study the flow of particles occuring inside the reservoir of a shot peening machine with suction by induction. With the aid of LAMMPS software, eight simulations were performed, varying the diameter of the shot, the diameter of the reservoir outlet section and the angle of inclination of the walls of its conical section. The forces between particles were modeled according to the theory of Hertz-Mindlin and Coulomb. Using the granular microcanonic ensemble, the particle coordinates were calculated, that combined with considerations about the boundary conditions established, were used to estimate the outflow for each set of parameters. The calculation was performed by an algorithm implemented in Matlab, and its results were compared with those obtained by applying the Beverloo correlation. To estimate the effects of wall angle, two coefficients were evaluated, Rose and Tanaka, and Brown and Richards. While the maximum error encoutered with the application of the Rose and Tanaka coefficient was 13.07%, compared to 8.17% found by applying the Brown and Richards coefficient, the average errors of both approaches were equivalent (6.75 % and 6.68%, respectively).
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-03-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.