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RESUMO

Selos labirinto são dispositivos mecânicos utilizados para selar máquinas rotativas em
aplicações envolvendo compressão de metano (CH4) e gás carbônico (CO2). Portanto,
a otimização de selos labirintos é crucial para controlar o aumento da temperatura
atmosférica, uma vez que o CH4 e o CO2 são gases de efeito estufa. Neste contexto, o
objetivo deste trabalho é desenvolver algoritmos de otimização topológica considerando
escoamento turbulento e interação fluido-estrutura e aplicar estes algoritmos para projetar
selos labirinto eficientes, reduzindo a emissão de CH4 e CO2. Os principais desafios
da otimização topológica de selos labirinto são evitar o fechamento do canal, atribuir
velocidades diferentes ao rotor e ao estator e evitar ilhas de sólido desconectadas das paredes.
Este trabalho propõe duas abordagens que atendem a esses três requisitos e compara
as duas. A primeira abordagem envolve variáveis de projeto binárias e uma extensão do
método TOBS (Topology Optimization of Binary Structures) que evita distribuições de
material indesejadas. A segunda abordagem é baseada em variáveis de projeto contínuas e
um método que considera o canal como a interface entre o rotor e o estator. Esta última
abordagem exige restrições de conectividade para evitar ilhas de sólido. Duas restrições
de conectividade são exploradas, uma baseada em interação fluido-estrutura e outra em
um problema virtual de transferência de calor. As abordagens binária e contínua são
comparadas para escoamento laminar e turbulento. Como alguns projetos apresentam
distribuições de material que não podem ser montadas diretamente devido à interferência
entre o rotor e estator, este trabalho também investiga a combinação dos conceitos de
selos labirinto e selos infláveis, que são selos que se deformam quando pressurizados. Esta
característica pode ser utilizada, por exemplo, para ajustar o vão entre o rotor e o estator
após a montagem e atingir configurações de montagem complexas. A modelagem do selo
labirinto considera escoamento turbulento, que afeta o desempenho de selo labirinto. O
escoamento na cavidade do selo labirinto é modelado pelas equações de Navier-Stokes
médias (RANS) acopladas com o modelo de Spalart-Allmaras. Já o projeto dos selos
infláveis considera o equilíbrio estático de estruturas sujeitas a carregamentos de pressão e
grandes deformações. O método dos elementos finitos (FEM) é utilizado para resolver as
equações de equilíbrio. A análise de sensibilidades é feita com diferenciação automática. O
problema de otimização é resolvido com as bibliotecas CPLEX® e MMA (Method of Moving
Asymptotes). Três arranjos de selos labirinto são otimizados: eixo liso, eixo escalonado e
eixo escalonado com entrada e saída não alinhadas. Os selos infláveis são projetados por
otimização topológica com carregamento de pressão e grandes deslocamentos.

Palavras-chave: otimização topológica, selo labirinto, escoamento turbulento,
escoamento incompressível, interação fluido-estrutura, grandes deformações,
método dos elementos finitos



ABSTRACT

Labyrinth seals are mechanical devices used for sealing turbomachinery equipment in
applications such as methane (CH4) and carbon dioxide (CO2) compression. Therefore,
the optimization of labyrinth seals is crucial for controlling the increase in temperature
of the atmosphere because CH4 and CO2 are greenhouse gases (GHGs). In this context,
this work aims to develop topology optimization formulations by considering turbulent
flow and fluid-structure interaction (FSI) and to apply these formulations to the design of
efficient labyrinth seals, reducing GHGs emissions. The main challenges of labyrinth seal
topology optimization are avoiding the channel closure, assigning different velocities for
the rotor and stator, and avoiding solid islands disconnected from the walls. This work
proposes two topology optimization algorithms that attend to these requirements and
compare them. The first algorithm is based on binary design variables and one extension
of the TOBS method (Topology Optimization of Binary Structures) that avoids undesired
material distributions. The second algorithm is based on continuous design variables and
one method that considers the fluid channel as the interface between the rotor and stator.
This last algorithm requires the use of connectivity constraints to avoid solid islands. Two
connectivity constraints are investigated, one based on fluid-structure interaction and
the other on a virtual heat transfer problem. The binary and continuous approaches are
compared for laminar and turbulent flows. As some designs present material distributions
that cannot be assembled directly due to interference between the rotor and stator, this
work also investigates the combination of the concepts of labyrinth seals and inflatable
seals, which are seals that deform when pressurized. This characteristic may be used
to adjust the clearance between the assembled parts and to reach complex assemblies,
for example. The labyrinth seal model considers turbulence, which influences labyrinth
seal performance. The Reynolds Averaged Navier-Stokes (RANS) equations closed with
the Spalart-Allmaras turbulence model are used to model the flow in the labyrinth seal
cavity. The inflatable seal design considers the static equilibrium of structures subjected
to pressure loads and large deformations. The finite element method (FEM) is used to
solve the equilibrium equations. The sensitivity analysis is carried out with automatic
differentiation. The optimization problem is solved with the CPLEX® and MMA (Method
of Moving Asymptotes) optimizers. Three labyrinth seal configurations are optimized:
straight-through, staggered and stepped. The inflatable seals are designed by topology
optimization with pressure loads and large deformations.

Keywords: topology optimization, labyrinth seal, turbulent flow, incompressible
flow, fluid-structure interaction, large deformations, finite element method
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1 INTRODUCTION

Labyrinth seals are commonly used for sealing turbomachinery equipment in applications
involving greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2). As
the number of turbines and compressors used in the industry worldwide is large, optimizing
labyrinth seals is important for controlling the increase in atmospheric temperature. For
example, the primary source of GHGs emissions during natural gas processing is fugitive
CH4 from compressors, accounting for about 8% of total CH4 emissions in natural gas
systems according to EPA (2011) page 3-44, with natural gas systems representing around
32% of total CH4 emissions according to Table ES-2 from EPA (2011). However, improving
the performance of labyrinth seals is not trivial because many geometric parameters are
involved, and it is hard to select a group to analyze. Thus, the topology optimization method
is a promising approach to enhance labyrinth seal performance due to its independence on
predefined parameters.

This chapter introduces the concepts of labyrinth seals, inflatable seals, and topology
optimization for turbulent flow, fluid-structure interaction, and large deformations. Then,
the motivation, objectives, and scientific contributions are presented. Finally, the outline
of other chapters is described.

1.1 Labyrinth Seals

Centrifugal compressors are actuated by motors or turbines, and seals are applied
between the actuating axis and the compressor housing to avoid leakage. Seals are
mechanical components designed to help join system parts while reducing leakage, containing
pressure, avoiding a mixture of sealing liquid and process gas, and preventing environmental
contamination. One of the leading technologies used for centrifugal compressors is the
labyrinth seal, as illustrated in Fig. 1.1.

Labyrinth seals are non-contacting seals that impose a contorted path to inhibit
the leakage (FLITNEY, 2014). Therefore, these seals do not provide a complete barrier
to leakage. They are used because they provide low wear, especially when used with
high-speed gas. There are two main applications for labyrinth seals: bearing protection
and pressure sealing in turbomachinery. As this work concerns GHGs compressors, the
interest is in pressure sealing seals.

According to Sneck (1974), the development of labyrinth seals started at the beginning
of the twentieth century to reduce the leakage in steam turbines. Since then, the development
of analytical models and experiments to understand the flow inside a labyrinth seal has



Chapter 1. INTRODUCTION 27

Figure 1.1 – Illustration of labyrinth seals applied to a multi-stage centrifugal compressor.

been of scientific and industrial interest. For example, Egli (1935) provided a theoretical
treatment of the fluid flow inside labyrinth seals with sharp-edged orifices. The author
introduces an analytical expression for the mass leakage by applying the Saint-Venant’s
equation with adiabatic assumption. Ehrich (1968) studies the aeroelastic instability in
labyrinth seals through a model that relates pressure perturbations to vibrations of the
rotor or stator. The model also relate these vibrations to pressure perturbations. As
the pressure perturbations and vibrations excite each other, there is a potential positive
feedback leading to instability. The author also proposes a stability parameter in terms of
the supply pressures, seal geometry, and elastic properties of the rotor and stator. Stocker
(1975) design, fabricate, and test unique labyrinth seal concepts to reduce leakage in gas
turbines. First, the author tested several seal configurations in a water tunnel capable
of providing flow visualizations. Then, he fabricated the most promising configurations
and tested them in a static air rig. The labyrinth seals that presented higher leakage
reductions with respect to a baseline configuration were tested with rotation. Nowadays,
the trend shifted to the development of numerical methods and computer simulations
to support the analysis and optimization of labyrinth seals. In this context, Schramm et
al. (2004) apply the simulated annealing method to perform parametric optimization of
stepped labyrinth seals. The design variables are the position and height of trapezoidal
labyrinth steps, and the objective function is the discharge coefficient based on an isentropic
expansion mass flow rate. The fluid flow analysis runs in 2D without rotation. Hirano,
Guo and Kirk (2005) compare the rotordynamic force of a labyrinth seal calculated by
Computational Fluid Dynamics (CFD) with results from simplified models that were used
by machinery manufacturers. The authors conclude that the simplified models give a
pessimistic prediction of the destabilizing forces. Bellaouar, Kopey and Abdelbaki (2013)
optimized a labyrinth seal operating on CH4 by applying parametric optimization. The
goal is to minimize the average pressure in the last gap of a labyrinth seal. Yoon et al.
(2013) optimized the labyrinth seal of block-type VHTR (Very-High-Temperature Reactor)
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through response surface approximation (RSA), which is a shape optimization technique.
The flow resistance coefficient in the bypass gapis the objective function. Wein et al. (2020)
applied particle image velocimetry to validate RANS turbulence models for labyrinth
seals. The authors show that the choice of turbulence model has great impact in the
performance parameters. They identified that all models are not accurate to predict the
size of separations and the swirl imposed by viscous effects at the rotor surface. Tyacke
et al. (2021) combine genetic algorithms and Large Eddy Simulation (LES) to reduce
the leakage in labyrinth seals. Although LES is an expensive analysis method, it enables
more accurate modelling than RANS. The authors use parallel programming to obtain
results in a reasonable time. Zhao and Wang (2021) runned parametric optimization for a
straight-through labyrinth by considering a chaotic optimization algorithm with the seal
clearance, fin width, fin height, fin pitch, fin backward, and forward expansion angle as
design variables. The work of Souza (2020) is the first to apply topology optimization
to design labyrinth seals. The author models labyrinth seals as a fluidic diodes by using
the diodicity as objective function, which avoids the channel closure during optimization.
Later, Sá et al. (2021b) extends the idea of modeling labyrinth seal as fluidic diodes by
introducing a continuous boundary propagation method capable of assigning different
velocities for the rotor and stator.

In turbomachinery applications, labyrinth seals typically comprise a series of teeth that
provide a small gap between the rotor and the stator, according to Figure 1.2. At each tooth,
the pressure head is converted into kinetic energy to be dissipated in the next chamber
(SNECK, 1974). The labyrinth seal may be arranged in a straight-through configuration
(Fig. 1.2a), in a staggered configuration (Fig. 1.2b), or in a stepped configuration (Fig.
1.2c). The pressure reduction for the staggered and stepped configurations is superior
because the grooves on the shaft prevent the fluid from bypassing the expansion volumes
between the teeth, i.e., there are no straight flow lines. For equivalent dimensions, the
leakage on a straight-through seal is 20-30% higher than on a stepped seal (FLITNEY,
2014). However, stepped designs are harder to manufacture and assemble. One of the ideas
of this work to tackle this problem is to facilitate the manufacturing of stepped labyrinth
seals by deforming the teeth after the assemblage.

For the last 20 years, researchers and engineers have been studying and applying
polymeric materials to design labyrinth seals (WHALEN et al., 2013). The motivation is
to reduce the clearance in order to improve efficiency, which is possible because polymeric
seals can rub against the rotor without damaging it. Also, polymeric seals return to their
original form after rubs, which can occur during start-up and at critical speeds. This work
is interested in another opportunity open by the use of polymeric materials: to use seal
deformation to reduce leakage.
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(a) Straight-through (b) Staggered
(c) Stepped

Figure 1.2 – Schematic representation of labyrinth seals with the stator in dashed dark gray and the
rotor in solid light gray.

1.1.1 Inflatable Seals

Inflatable seals consist of hyperelastic chambers that expand when pressurized to
reduce the clearance size or to close it. Figure 1.3 presents an example of an inflatable seal
cross-section in undeformed and deformed configurations. This work studies the application
of inflatable seals to CH4 and CO2 compressors. The idea is to combine the principle of
inflatable seals with labyrinth seals for an adapting seal behavior. One of the advantages
of designing inflatable labyrinth seals is to create a seal that can be assembled in the
undeformed state and that can obtain minimum leakage in the deformed state according to
the concept presented in Fig. 1.4, which could help contain fluid at low velocities. Another
possibility would be to use lower gaps during steady-state operation of the rotating machine
than during transient conditions, such as start-up.

(a) Undeformed (b) Deformed

Figure 1.3 – Example of an inflatable seal cross-section in undeformed and deformed configurations.

(a) Undeformed (b) Deformed

Figure 1.4 – Concept of an inflatable labyrinth seal. The undeformed state can be assembled and the
deformed state offers higher leakage reduction.
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(a) Parametric optimization (b) Shape optimization (c) Topology optimization

Figure 1.5 – Illustration of optimization approaches for the design of labyrinth seals.

1.1.2 Labyrinth Seal Optimization

Labyrinth seals are applied to turbomachines operating on high pressures and velocities.
Therefore, the fluid flow inside these machines presents turbulent effects that must be
accounted for when designing labyrinth seals. Also, as the pressure drop within the
labyrinth seal is high, it is important to evaluate the mechanical response of the seal in
the presence of the flow by considering fluid-structure interaction (FSI). In order to obtain
actuated labyrinth seals inspired by inflatable seals, the present work also investigates
the possibilities of teeth deformation during assemblage and operation, which could be
modeled by considering finite deformation and static pressure loads.

Another characteristic of labyrinth seals is the high number of geometric parameters
involved in their design, such as the width and height of each tooth, the number of teeth,
the maximum gap between rotor and stator, the angle of each tooth, and others. Therefore,
topology optimization is indicated as it is independent of predefined parameters (SOUZA,
2020). Also, it is the most general optimization approach because it does not specify
predefined parameters and can potentially obtain the most efficient results. Thus, topology
optimization, turbulent flow, finite deformation, and FSI are the main subjects of this
research to improve labyrinth seal performance.

1.2 Topology Optimization

The optimization of an engineering component is the process of searching for a design
that maximizes its performance given a set of operating conditions. There are different
approaches to the optimization process, and they are grouped according to their capabilities
of changing the initial design of the component. Figure 1.5 illustrates the approaches for
optimizing a labyrinth seal.

The less general approach is parametric optimization, which consists of defining a
small set of parameters (such as dimensions or rate of dimensions) as design variables for
the optimization algorithm. For example, it is possible to optimize the geometry of the
teeth of a labyrinth seal by using each tooth’s height and thickness as design variables
according to what is presented in Fig. 1.5a.

Shape optimization is a more general approach in which curves or surfaces explicitly
parameterize the shape of the component and the coefficients of the parameterization are
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Figure 1.6 – Illustration of the topology optimization process from design to fabrication

used as design variables for the optimization algorithm. For the labyrinth seal example,
the teeth can be parameterized by splines and the control points position can be used as
design variables according to what is presented in Fig. 1.5b.

The most general approach is topology optimization, which consists of choosing a
design domain, dividing it into elements (pixels in 2D and voxels in 3D), and calculating
the material of each element. Topology optimization does not impose a predefined topology
so that holes can be added or removed during the process. Only the design domain is
predefined. The seminal paper of Bendsøe and Kikuchi (1988) introduces the technique
and Fig. 1.5c illustrates the approach for the labyrinth seal problem.

The complete topology optimization design cycle involves selecting a design domain in
an initial geometry, discretizing the design domain, running the topology optimization
algorithm, post-processing the result, verifying the post-processed design, and manufacturing
it, as shown in Fig. 1.6. The post-processing step is the translation of the topology
optimization result into a physical representation, such as a CAD file. The verification
step evaluates the physical representation without the additional topology optimization
models. The manufacturing step consists of devising a process to fabricate the design.
Additive manufacturing (AM) is commonly used to manufacture topology optimization
results because it can achieve complex material distributions.

There are multiple approaches to solving topology optimization problems. The work of
Bendsøe and Kikuchi (1988) employed homogenization techniques to model the constitutive
behavior of the material (macroscopic properties) in terms of the design variables (microscopic
properties). Then, Bendsøe (1989) presented the density-based approach, which consists
of assigning a pseudo-density design variable to each element of the discretized design
domain and calculating constitutive parameters based on these pseudo-densities. Wang,
Wang and Guo (2003) proposed using level-set methods (LSM) in topology optimization.
A level set is a set of points where a function has a constant value. Level sets are used to
perform computations on curves without having to parameterize them. In Bourdin and
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Chambolle (2003), a phase-field approach is introduced to solve design-dependent loads
problems. In Xie and Steven (1993), authors propose an evolutionary approach for the
topology optimization of structures.

Recently, Sivapuram and Picelli (2018) proposed a new binary approach for topology
optimization named “Topology Optimization of Binary Structures” (TOBS). The technique
solves a sequence of linearized optimization subproblems based on Taylor’s first-order
approximation of the objective function and constraints. The key idea of TOBS is using the
pseudo-density change as the design variable of the subproblems. The TOBS approach has
been chosen for this project’s initial approach because it is well-suited for fluid problems
(SOUZA et al., 2021), as binary design variables make the interface between solid and fluid
well-defined. Also, a well-defined interface helps model the boundary layer in turbulent
flows. Then, the continuous design variable approach was also investigated for comparison
purposes.

1.2.1 Fluid Flow and Turbulence

Topology optimization applied to fluid flow problems has received considerable attention
from the research community and an extensive review on fluid flow and fluid-based problems
is provided by Alexandersen and Andreasen (2020). The contributions have considered
steady laminar flow, unsteady flow, turbulent flow, and porous media.

Steven, Li and Xie (2000) published the first work addressing fluid flow topology
optimization, in which they solve the pipe bend problem by using the Evolutionary
Structural Optimization (ESO) approach for an inviscid incompressible flow. Then, in
the seminal paper of Borrvall and Petersson (2003), authors introduce an additional term
in the momentum equation to account for solid elements, and they minimize the power
dissipation in Stokes flow. The material properties parameterization considers two parallel
plates and their frictional resistance according to the distance between them. In this model,
solid elements are approximated by elements with vanishing distances between plates.
Later, Gersborg-Hansen, Sigmund and Haber (2005) extend the work of Borrvall and
Petersson (2003) by considering low-to-moderate Reynolds numbers, i.e., the Navier-Stokes
equations. The authors investigate the whole of inertia in channel flow optimization. Both
Borrvall and Petersson (2003) and Gersborg-Hansen, Sigmund and Haber (2005) recognize
the similarities between the obtained equations and the Brinkman-type model of Darcy’s
law. Also, Guest and Prévost (2006) propose a new formulation that models solid as a
porous medium governed by Darcy’s flow and fluid with Stokes flow. Authors argue that
Darcy’s flow can effectively simulate the no-slip condition while the formulation proposed
by Borrvall and Petersson (2003) only simulates the no-slip condition.

The work of Othmer (2008) is the first in topology optimization of turbulent flows. The
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author derives the continuous adjoint of Navier-Stokes equations and does not consider
the influence of turbulence in the sensitivity analysis by invoking the “frozen turbulence”
assumption. However, as shown by Zymaris et al. (2009), neglecting the influence of the
turbulence variables during the adjoint analysis may result in considerable errors, such
as sensitivities with the wrong sign. Then, Kontoleontos et al. (2013) are the first to
include turbulence in the sensitivity analysis of topology optimization by introducing
penalization terms in the turbulence model equations and following the continuous adjoint
approach. They consider the density-based topology optimization with the one-equation
Spalart-Allmaras model and corroborate that the “frozen turbulence” assumption may
result in incorrect sensitivities. Later, Papoutsis-Kiachagias and Giannakoglou (2014)
introduce the wall distance dependence in the sensitivity analysis of Spalart-Allmaras
turbulence model through the solution of the Eikonal equation. In Yoon (2016), the
author also considers the Spalart-Allmaras turbulence model with a discrete adjoint
approach to calculate the sensitivities. In Dilgen et al. (2018), authors use the one-equation
Spalart-Allmaras model and the two-equation k − ω model in the density-based topology
optimization of 2D and 3D flow problems. A penalization term similar to the Brinkman
model is added to the transport equations to penalize solid regions. They use automatic
differentiation to compute the exact sensitivities of the model and also show that the
“frozen turbulence” assumption produces inexact sensitivities. In Yoon (2020), the author
uses the k-ε model in density-based topology optimization to solve 2D problems using
commercial software. The transport equations are also penalized with a term similar to
the Brinkman-type model added to the momentum equation.

More recently, Sá et al. (2021a) use the Spalart-Allmaras model with rotation/curvature
correction to optimize the impeller of flow machines. The authors also propose using a
different Eikonal equation to calculate the wall distance. Then, Picelli et al. (2022) propose
trimming the design domain to extract the fluid elements and executing the turbulent fluid
flow analysis in a smoothed version of the trimmed fluid domain. The method’s advantages
are a more accurate prediction of the boundary layer using a mesh based on the physical
problem and a reduced computational cost as the fluid volume fraction is reduced. In
Alonso et al. (2022), the authors explore the Wray-Agarwal turbulence model for topology
optimization. The advantages of this model are related to computational efficiency because
it uses a single equation to model turbulence and this equation is independent of the
wall distance. For other turbulence closure models, the wall distance calculation would
require the solution of a partial differential equation in the best case. In Kubo et al. (2021),
the authors propose a level-set-based topology optimization algorithm for turbulent flow
using the immersed boundary method. The topological derivative is used for sensitivity
analysis and a reaction-diffusion equation is used to update the level-set function. Only
two-dimensional problems are solved and the “frozen turbulence” assumption is invoked.
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This work considers the topology optimization of labyrinth seals operating with CO2

under turbulent incompressible flow, that is, low Mach numbers (less than 0.3) and
small pressure changes. The incompressibility hypothesis is reasonable for many operation
conditions of labyrinth seals.

1.2.2 Finite Deformation of Solids

Most works in structural topology optimization consider small displacement and linear
constitutive behavior. Nevertheless, considerable progress has been made in using nonlinear
kinematics and material models. The first work to address these nonlinearities in topology
optimization is presented by Jog (1996), where the author applies the perimeter method
to nonlinear thermoelasticity problems. However, the interfaces and holes of his results
are not clearly defined. Then, Bruns and Tortorelli (1998) perform topology optimization
using nonlinear kinematics and the St. Venant-Kirchhoff constitutive model. Still, their
results present intermediate densities and are equivalent to results obtained for small
displacements and linear constitutive behavior.

Buhl, Pedersen and Sigmund (2000) are the first to present truly nonlinear results
in topology optimization with finite deformation. Although the constitutive behavior is
assumed to be linear (small strains), the kinematics is nonlinear, and the authors show
that the results are different from pure linear analysis after a certain load magnitude.
They describe the instabilities associated with low-density elements and the fragile designs
that may be obtained using end-compliance as the objective function. Also, they propose
a relaxation to the convergence criterion of the equilibrium iterations in which nodes
surrounded by void elements are not considered in the convergence criterion of Newton’s
method iterations. Then, Pedersen, Buhl and Sigmund (2001) extend the approach to
design compliant mechanisms under large displacements and small strains. They introduce
two objective functions appropriate for nonlinear analysis. One objective function transfers
the motion from the input to the output port, and the other is devised for path generation.
Later, Bruns and Tortorelli (2001) present nonlinear topology optimization results using the
St.Venant-Kirchhoff constitutive model and introduce the idea of applying the power-law
material interpolation to the strain energy density function. The formulation is still limited
to small strains because the St.Venant-Kirchhoff material model has little practical use
beyond small strains (BONET; WOOD, 2008).

Bruns and Tortorelli (2003) propose a method for removing and reintroducing low-density
elements to avoid their instabilities. The idea is to remove and reintroduce elements whose
pseudo-density is below or above a predefined threshold. The reintroduction is enabled by
the density filter, which allows pseudo-density changes of removed elements by increasing
the design variable of other elements in the filter’s kernel. Removing the elements reduces
the overall computation time, which is interesting when solving 3D problems. Later, the
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element removal and reintroduction approach is used by Bruns and Sigmund (2004) to
design mechanisms exhibiting snap-through behavior, although topology optimization only
partially automates the design process.

Yoon and Kim (2005) propose a new topology optimization approach to avoid the
instabilities of low-density elements in finite deformation. All the domain is kept solid
during the topology optimization process, and an element connectivity parameterization
based on zero-length links is introduced. The design variables control the stiffness of the
links, with high stiffness indicating connection and low stiffness indicating disconnection.
Only geometrical nonlinearities are addressed.

The work of Kemmler, Lipka and Ramm (2005) highlights that the concept of the
stiffest structure loses its uniqueness when considering nonlinear kinematics. Therefore,
using different objective functions such as strain energy, end compliance, and end stiffness
produces different results.

Klarbring and Strömberg (2012) consider non-zero prescribed displacements during
topology optimization for nonlinear stiffness. The authors emphasize the importance of
using the potential energy as the objective function for obtaining stiffness when considering
geometrical and material nonlinearities and non-zero prescribed displacements. They
explore seven hyperelastic strain energy functions and highlight the bad performance of St.
Venant-Kirchhoff material model in topology optimization due to its unphysical behavior
under compression.

The work of Lahuerta et al. (2013) applies a polyconvex material model to stabilize the
low-density elements. The authors also propose a relaxation function to solve the problems
associated with excessive distortion of the finite elements. Combining the polyconvex
material model and the relaxation function enables topology optimization without removing
low-density finite elements and the associated internal forces. A Neo-Hookean material
model is used and substantial differences are observed in relation to results obtained with
the St.Venant-Kirchhoff model.

Wang et al. (2014) propose a new energy interpolation scheme to stabilize low-density
elements. The idea is to interpolate the strain energy function between the desired nonlinear
model and the linear strain function. Also, a smooth Heaviside projection with a low
threshold and high steepness separates regions modeled by nonlinear and linear analysis.
The formulation is applied to minimum compliance and compliant mechanisms problems.

More recently, more complex formulations have been reported in the context of topology
optimization with finite deformation. De Leon, Gonçalves and Souza (2020) use a stress
constraint in density-based topology optimization considering geometrical and material
nonlinearities. The stress constraint successfully avoids the appearance of hinges and the
nonlinear material model helps stabilize low-density regions, besides improving the accuracy
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of stress calculation. In Silva, Beck and Sigmund (2020), authors consider stress constraint
and manufacturing uncertainty in topology optimization involving finite deformation. Two
objective functions are studied under this framework: maximum output displacement and
path following displacement. Silva et al. (2020) optimize the fiber orientation of composite
material by considering geometrical and material nonlinearities. The constitutive behavior
is described with a Neo-Hookean model and the Normal Distribution of Fiber Optimization
method is applied. Zhang, Chi and Zhao (2021) design hyperelastic structures reinforced
by nonlinear-anisotropic fibers under large deformation. A material interpolation scheme
is proposed to incorporate the contributions of the matrix and fiber phases into the stored
energy density function.

1.2.3 Fluid-Structure Interaction

Fluid-structure interaction is the coupling of fluid and solid equations when there is
interdependence between the fluid flow and the structural motion. The coupling occurs at
the interface between the fluid and solid domains, and it is classified as weak or strong,
depending on the characteristics of the interaction. If the solid deformations and the fluid
loads are large, it is necessary to account for both the solid deformations when solving the
fluid flow equations and the fluid loads when solving the structural equations. In this case,
the FSI is strongly coupled (or two-way coupled). However, if the solid deformations are
small and the fluid loads are large, the fluid flow equations may be solved independently of
the solid equations and the velocity and pressure are used to calculate the input loads to
the structural equations. In this case, the FSI is classified as weak (or one-way) coupling.
Also, if there is finite deformation, and the fluid loads are negligible (e.g., low Reynolds
flow), the solid equations may be solved without taking into account the fluid loads and
the displacements obtained are used as input to solve the fluid equations, which is another
example of weak (or one-way) coupling.

There are two strategies for solving the system of fluid and solid equations. The first
strategy is to solve the fluid and solid equations sequentially, which is known as the
partitioned or staggered approach. The second strategy is to solve the fluid and solid
equations simultaneously, which is known as the monolithic or simultaneous approach.
The staggered approach enables the use of existing solvers and it is naturally applied to
weakly coupled problems. The staggered approach may also be used for strongly coupled
problems at the cost of stability. The monolithic approach is more stable and accurate;
however, it requires the development of a new solver.

When optimizing multi-physics problems involving FSI, the problem can be classified
according to which parts are allowed to change during the optimization (JENKINS;
MAUTE, 2015). If only the interface between the solid and the fluid changes, the problem
is classified as a “wet” optimization problem. If only the internal part of the structure is
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Figure 1.7 – Classification of topology optimization approaches according to Jenkins and Maute (2015).

allowed to change during the optimization, the problem is classified as a “dry” optimization
problem. If both the interface and the topology of the structure are allowed to change,
the optimization problem is classified as a “dry+wet” problem. Figure 1.7 illustrates and
summarizes this classification.

In density-based topology optimization, the interface between solid and fluid is not
clearly defined and changes during optimization. To address this problem, Yoon (2010)
developed a formulation based on a unified domain for solid and fluid. The solid and
fluid equations are written with respect to the reference configuration by using a change
of coordinates based on the deformation gradient. The unified approach introduces an
extra computational effort because the solid and fluid equations are solved over the whole
fixed domain. Later, Yoon (2014) extended his work by considering stress-based topology
optimization to minimize the volume. A qp-relaxation is proposed to solve the problem.
The final stress constraint used is a global p-norm stress constraint due to instabilities
with local constraints.

Kreissl et al. (2010) designed microfluidic devices through an approach that includes
topology optimization with FSI and large deformations. The fluid loads on the structure
are neglected due to the low velocities, leading to a one-way FSI coupling. The fluid
flow equations are solved with the Lattice Boltzmann method (LBM) and the structure
equations are solved with nonlinear finite element method (FEM). Other design variables
are used to optimize the thickness of the structural layers, the support locations, and the
layout of the active material.

One idea explored to avoid unclear interfaces is to employ discrete design variables. In
this context, Picelli, Vicente and Pavanello (2015) extended the bi-directional evolutionary
structural optimization (BESO) method to handle design-dependent pressure loads by
coupling Laplace and Cauchy equations for fluid and solid elements, respectively. The
pressure loads are transmitted to the structure surfaces; however, the structure motion
does not affect Laplace’s equation, leading to a one-way coupling. Later, Picelli, Vicente
and Pavanello (2017) extended the work to include the steady-state incompressible
Navier-Stokes equations in their BESO formulation.
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Jenkins and Maute (2015) use the level-set method (LSM) to address “dry” topology
optimization of FSI problems. The authors use a monolithic solver based on the extended
finite element method (XFEM) for linear elasticity equations and a stabilized finite element
method for incompressible Navier-Stokes equations. Then, in Jenkins and Maute (2016),
the authors extend their method to dry and wet topology optimization. They optimize a
bio-prosthetic valve and solve the wall example of Yoon (2010).

Lundgaard et al. (2018) revisit the unified density-based topology optimization
formulation proposed by Yoon (2010). Their work also introduces two new flow mechanism
problems that can be used as benchmark problems in future research on topology
optimization of FSI problems.

Silva et al. (2022) extended the TOBS-GT method to FSI problems with large
deformations. The Arbitrary Lagrangian Eulerian (ALE) approach is used to couple the
fluid and structural equations, which are described by the steady-state incompressible
Navier-Stokes and the Cauchy equation. The St.Venant-Kirchhoff constitutive behavior
is considered with SIMP interpolation to the Young modulus. A linear interpolation is
applied to the stress coupling.

Høghøj et al. (2023) combine shape and topology optimization to design the external
shape and the internal topology of wings. The design goal is to minimize drag while
constraining the maximum lift and the minimum compliance. The authors use it to
calculate the aerodynamic response and linear elastic equations for the structural response
in a one-way coupling.

Yoon (2023) reports transient FSI topology optimization results by adding inertial
terms to the formulation described in Yoon (2010). The inlet velocity is varied in time.

1.3 Motivation

Improving labyrinth seal performance reduces global warming and improves industrial
efficiency by reducing the leakage in compressors operating on GHGs. Although the
emission for a single turbomachine is low, studies show that around 8% of CH4 emission
during the processing of natural gas comes from machinery leakage (EPA, 2011). This
expressive contribution of turbomachines to GHGs emissions is caused by the large
number of compressors and turbines used in the industry. Therefore, optimized labyrinth
seals are of great interest, and methodologies to design them must be investigated. As
topology optimization is the most general optimization approach, it must be studied for
labyrinth seals. However, the topology optimization of labyrinth seals presents additional
requirements, such as the simultaneous design of solids with different velocities, the control
of the minimum gap size, and the avoidance of free-floating solid islands.



Chapter 1. INTRODUCTION 39

There are also practical motivations for developing this work. According to Flitney
(2014), developments in material science and design techniques are extending the performance
of seals in most application areas. As this work is inserted in the context of design techniques
for labyrinth seals, it can improve the performance of these components. However, this
task presents considerable challenges because the optimization of dynamic seals must seek
minimum leakage and minimum friction/wear, which are exclusive objectives (FLITNEY,
2014). One of the current approaches to obtain a better compromise between these exclusive
objectives is to use polymeric materials, and this work encompasses the study of these
materials in topology optimization.

The scientific motivations behind this work are the challenges and open research
opportunities presented in the investigated fields. According to Deaton and Grandhi (2013),
multiphysics design is one of the trending topics in topology optimization. Also, according
to the review of Alexandersen and Andreasen (2020), section 4.9, the works reviewed
by authors on wet topology optimization of FSI remain restricted to small deformation
despite the high potential of large deformations in contexts such as biomechanical. Even
further, few papers on topology optimization consider turbulence according to Alexandersen
and Andreasen (2020). Therefore, there is great scientific interest in investigating large
deformations in the context of fluid-structure interaction with turbulence in topology
optimization. This scientific interest is also justified by the potential application of these
models to the optimized design of pumps and fluidic diodes.

1.4 Objectives

The general objective of this thesis is to use topology optimization to design labyrinth
seals. The specific objectives of this research are:

• To design labyrinth seals with topology optimization by considering turbulent flow;
• To develop topology optimization algorithms for straight-through, staggered and

stepped labyrinth seal configurations. The staggered and stepped arrangements
require:

– the simultaneous design of the stator and rotor parts (i.e., solids with different
velocities);

– the control of the minimum gap size;
– the avoidance of free-floating solid islands;

• To explore the use of binary design variables in the topology optimization of labyrinth
seals through the TOBS approach;

• To include FSI during topology optimization of labyrinth seals;
• To explore the combination of the concepts of labyrinth seals and inflatable seals;
• To develop topology optimization algorithms with large displacement and design-dependent
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loads.

1.5 Scientific Contributions

The scientific contributions of this work are:

• The development of topology optimization formulations for the simultaneous design
of the stator and rotor of labyrinth seals;

• The development of techniques to control the minimum gap size during the topology
optimization of labyrinth seals;

• The investigation of two constraints to avoid free-floating islands of solid elements
during the topology optimization of labyrinth seals:

– Virtual temperature method (VTM);
– Virtual fluid-structure interaction (VFSI);

• The inclusion of turbulent flow during the topology optimization of labyrinth seals;
• The development of topology optimization formulations with design-dependent

pressure loads and large deformations.

Six journal articles have been published:

1. “Topology optimization of turbulent fluid flow via the TOBS method and a geometry
trimming procedure” (PICELLI et al., 2022);

2. “Topology optimisation for rotor-stator fluid flow devices” (MOSCATELLI et al.,
2022);

3. “Hybrid geometry trimming algorithm based on Integer Linear Programming for
fluid flow topology optimization” (MOSCATELLI et al., 2022);

4. “Integer programming topology optimization for subsonic compressible flows with
geometry trimming” (MAFFEI et al., 2023);

5. “Pure-displacement formulation and bulk modulus propagation for topology optimization
with pressure loads” (MOSCATELLI et al., 2023);

6. “Topology optimization of labyrinth seals using interface identification techniques”
(MOSCATELLI et al., 2024).

The first and third publications of the list above are not addressed directly in this
thesis. The third publication is briefly presented in Appendix A. Also, this work builds
upon previous research developed in our laboratory, and it is important to clarify the
novelties presented in this thesis. Alonso et al. (2018) introduced the 2D swirl flow model
in topology optimization, which is extended here to the simultaneous optimization of the
rotor and stator components. Souza et al. (2021) adapted the TOBS approach to fluid
flow problems and designed labyrinth seals using the diodicity objective function (SOUZA,
2020). This work proposes new techniques to impose a minimum gap between rotating
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and stationary parts, which allows the use of the head loss objective function instead
of the diodicity. Sá et al. (2021b) introduced a continuous boundary propagation model
capable of assigning different velocities to rotor and stator elements. Here, the differences
in velocity are modeled with two Brinkman penalization terms. These differences are
discussed in detail in Chapter 2.

1.6 Document Outline

This thesis is organized as follows: Chapter 2 presents the theory of fluid flow modeling,
nonlinear solid modeling, FSI, and topology optimization. First, the Navier-Stokes equations
are discussed, and the Reynolds average is applied to obtain the formulation for turbulent
flow analysis. The solid modeling encompasses the motion of linear elastic and hyperelastic
mediums. Then, the approaches for solving FSI problems are discussed, and a formulation
suitable for density-based topology optimization is presented. Finally, the TOBS and
continuous approaches for topology optimization are described with the modifications to
design labyrinth seals. Chapter 3 describes the algorithms and tools used for the numerical
solution of the topology optimization problems. A flowchart illustrates the optimization
algorithm, and each optimization step is discussed in detail. The main software components
are described, and a rationale for their utilization is provided. Chapter 4 presents the
topology optimization results of labyrinth and inflatable seals. The labyrinth seal results
are grouped according to the flow regime (laminar or turbulent) and the design variable
type (discrete or continuous). All labyrinth seal arrangements (Fig. 1.2) are explored.
The inflatable seal section begins with the solution of benchmark problems of structural
optimization to verify the consistency of the proposed formulations for pressure loads with
finite deformation. Then, the inflatable seals are optimized by prescribing movements to
the seal. Chapter 5 summarizes the discussions and conclusions of this work, and presents
opportunities for future work.
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2 THEORETICAL FORMULATION

The topology optimization of labyrinth seals requires the analysis of the flow in the
cavity of the seals, which is generally turbulent. Also, the fluid interacts with walls at
different velocities because the labyrinth seal is partly mounted on the stator and rotor,
which have different velocities. In addition, the solid walls must resist the fluid forces
without large deformations or instabilities during operation. Therefore, the FSI analysis
must also be part of the topology optimization of labyrinth seals. Also, the combination
of the concepts of labyrinth seals and inflatable seals demands FSI and the analysis of
inflatable seals requires modeling solid with finite strain theory as the seal undergoes large
deformation from the initial configuration to the actuated configuration.

In this work, two topology optimization approaches are proposed to design labyrinth
seals with walls at different velocities (i.e., the stator and rotor of the labyrinth seals are
designed simultaneously). These approaches are investigated for laminar and turbulent flows.
In the latter case, the Reynolds Averaged Navier-Stokes (RANS) equations are solved with
the Spalart-Allmaras closure model. An initial investigation of the topology optimization
of labyrinth seals with FSI is presented by defining a connectivity constraint based on
structural compliance due to FSI loads. The effectiveness of this constraint is compared
to the virtual temperature method (VTM) of Liu et al. (2015). The finite deformation
formulation is used to solve topology optimization problems with large deformations and
pressure loads, which is an initial step toward designing inflatable labyrinth seals with
topology optimization.

Then, this section presents the modeling of incompressible fluid flow in laminar and
turbulent regimes with the additional Darcy terms necessary for the topology optimization
of labyrinth seals. Then, the solid equations with nonlinear geometric and material behavior
are presented, and the coupling between fluid and solid equations is discussed. The topology
optimization problem is stated, and the TOBS and continuous approaches are presented.
Finally, the proposed topology optimization approaches to design labyrinth seals are
presented. Regarding the analysis, the focus is to present the weak form of the equations
because they are the starting point for obtaining finite element equations, and they are the
input of the FEniCS library, which is used for numerical implementation and described in
Section 3.
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2.1 Fluid Flow Modeling

2.1.1 Incompressible Navier-Stokes Equations

The fluid flow equations are stated with an Eulerian description in the reference
configuration 0Ω, assuming that the steady-state flow is incompressible and Newtonian.
The solid bodies are modeled as a porous medium through a Darcy term. Then, the
complete description of the fluid flow problem is given by

(v · ∇) v = ∇ · σf (ν, v, p)−κ(m) v︸ ︷︷ ︸
Darcy term

in 0Ω

∇ · v = 0 in 0Ω
v = v∗ on 0Γv

σf (ν, v, p) n = t∗ on 0Γn

(2.1)

where v is the velocity, p is the kinematic pressure, ν is the kinematic viscosity, κ is the
inverse permeability function of the Darcy term (BORRVALL; PETERSSON, 2003), t∗

are the surfaces loads, v∗ are the prescribed velocities, and n is the outward normal vector.
The Cauchy stress tensor for a Newtonian fluid is given by

σf (ν, v, p) = ν
(
∇v +∇vT

)
− p I (2.2)

where I is the identity tensor. The behavior of the fluid flow may be inferred by the
Reynolds number (Re), which is a dimensionless quantity calculated as follows

Re = VC LC

ν
(2.3)

with VC and LC denoting the characteristic velocity and length scales of the problem,
respectively. In this work, LC is taken as half of the inlet size and VC as the maximum
inlet velocity.

The fluid flow problem described by Eq. 2.1 is general and abstract. Therefore, it is
convenient to specialize it for the labyrinth seal problem studied in this work. In general,
labyrinth seals present axisymmetry to reduce the instabilities associated with high angular
velocities. The axisymmetry may be used to model the labyrinth seal in a 2D cylindrical
reference frame, as shown in Fig. 2.1a, allowing the representation of three velocity fields
(radial, tangential, and axial) in a 2D domain.

The boundaries of the labyrinth seal are divided into inlet, outlet, rotor and stator,
with the velocity being known at the inlet, stator and rotor surfaces. Then, the Dirichlet
surface 0Γv of Eq. 2.1 is divided in 0Γinlet,

0Γstator, and 0Γrotor. A velocity profile vin is
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(a) Cylindrical coordinate system
(b) Fluid flow problem

Figure 2.1 – Illustration of the labyrinth seal modeling in a 2D axisymmetric reference frame.

prescribed to the inlet surface 0Γinlet, the no-slip condition is imposed to the stator surface
0Γstator, and a velocity proportional to the radial coordinate r and to the shaft angular
velocity ωr is assigned to the rotor surface 0Γrotor. The traction surface 0Γn of Eq. 2.1
comprises only the outlet surface 0Γoutlet, which is associated with a free stress condition
(t∗ = 0). The Neumann boundary condition involving the normal component of the stress
tensor is the correct way of applying pressure boundary conditions according to Gresho
and Sani (1987). Therefore, the Navier-Stokes equations for the labyrinth seal are given by

(v · ∇) v −∇ · σf + κ(ms)v︸ ︷︷ ︸
stator

+ κ(mr)(v − ωr r eθ)︸ ︷︷ ︸
rotor

= 0 in 0Ω

∇ · v = 0 in 0Ω
v = vin on 0Γinlet

v = 0 on 0Γstator

v = ωr r eθ on 0Γrotor

σfn = 0 on 0Γoutlet

(2.4)

where ms and mr describe the stator and rotor material distributions, respectively. Two
Darcy terms are necessary because the velocities of the stator and rotor are different
(MOSCATELLI et al., 2022). Note that ms and mr must not overlap for the consistency
of Eq. 2.4. Therefore, any topology optimization algorithm that uses Eq. 2.4 must satisfy
the condition that ms and mr are not overlapping during the optimization.

2.1.2 Reynolds-Averaged Navier-Stokes (RANS) Equations

Turbulent flow is challenging to simulate because it presents unsteady and non-periodic
motion, strong dependence on initial and boundary conditions (chaotic behavior), and
contains a wide range of scales (size of the eddies) according to Pope (2000). There are
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three main approaches to simulate turbulent flow: direct numerical simulation (DNS),
large eddy simulation (LES), and Reynolds-Averaged Navier-Stokes (RANS). In many
applications, the details provided by DNS or even LES are not required for design purposes,
and time-averaged quantities are appropriate for engineering practice. Therefore, this work
employs the RANS approach due to its computational cost advantages.

The RANS approach to simulate turbulent fluid flow solves the transport equations to
find the time-averaged values of the state variables. The Reynolds average applied to an
arbitrary scalar field ϕ is given by

ϕ(x) = lim
T →∞

∫ T

0
ϕ(x, t) dt (2.5)

The Reynolds average separates flow variables in average ϕ and fluctuating components
ϕ′. This separation is known as Reynolds decomposition, and its application to velocity
and pressure fields gives

v(x, t) = v(x) + v′(x, t)
p(x, t) = p(x) + p′(x, t)

(2.6)

By taking the mean of problem 2.1 and substituting the Reynolds decomposition of
velocity and pressure, the RANS equations are obtained

(v · ∇) v = ∇ ·
[
σf(ν, v, p)− v′ ⊗ v′

]
− κ(m) v in 0Ω

∇ · v = 0 in 0Ω
v = v∗ on 0Γv

σf(ν, v, p) n = t∗ on 0Γn

(2.7)

2.1.3 Turbulence Modeling

The problem 2.7 is open because the tensor v′ ⊗ v′, known as the Reynolds stress,
depends on the fluctuating components of the velocity. There are multiple ways of closing
the problem, such as the Boussinesq hypothesis or Reynolds stress transport models. This
work uses the Boussinesq hypothesis because it is less computationally expensive.

The first step to define the Boussinesq hypothesis is to separate the Reynolds stress
into isotropic and deviatoric components. In fact, only the deviatoric stress components
effectively transport momentum (POPE, 2000). By defining the turbulent kinetic energy
k as

k = v′ · v′ (2.8)

the Reynolds stress may be decomposed into isotropic and deviatoric parts. According
to the Boussinesq hypothesis, the deviatoric part may be written as the product of a
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turbulent viscosity νT by the strain rate of the mean velocity. Therefore

v′ ⊗ v′ = 2
3kI︸ ︷︷ ︸

isotropic
part

+ νT
(
∇v +∇vT

)
︸ ︷︷ ︸
deviatoric part with

Boussinesq hypothesis

(2.9)

By incorporating the isotropic part of the stress tensor in the pressure and by
considering an effective viscosity defined as νeff = ν + νT, the RANS equations may
be written as

(v · ∇) v = ∇ · σf(νeff, v, p)− κ(m) v in 0Ω
∇ · v = 0 in 0Ω
v = v∗ on 0Γv

σf(νeff, v, p) n = t∗ on 0Γn

(2.10)

The problem 2.10 is still open because there are three unknowns (the mean velocity, the
mean pressure, and the turbulent viscosity) and two equations (the momentum equation
and the continuity equation). This issue may be solved with the introduction of turbulence
closure models. Also, problem 2.10 may be adapted to the labyrinth seal design following
the same procedure to obtain problem 2.4.

2.1.4 Spalart-Allmaras Turbulence Model

The Spalart-Allmaras model is a one-equation turbulence closure model based on
empiricism and dimensional analysis (SPALART; ALLMARAS, 1992). The model was
designed for aerodynamic flows, such as transonic flow over airfoils with boundary layer
separation (POPE, 2000). The model is computationally simpler than two-equation models,
presenting cost and ease of use advantages. Also, according to Bardina, Huang and Coakley
(1997), the Spalart-Allmaras model is even more accurate than the k − ω and k − ε

for coarser meshes near the wall, what is attractive for topology optimization when no
remeshing is applied.

There are variations of Spalart-Allmaras turbulence model and the version used in
this work introduces a transport equation for an auxiliary kinematic turbulent viscosity
ν̃ (YOON, 2016; ALONSO; RODRIGUEZ; SILVA, 2021), which is related to the actual
kinematic turbulent viscosity νT by the following equation

νT = fv1ν̃ (2.11)

in which the damping function fv1 is given by

fv1 = χ3

χ3 + cv13 , χ = ν̃

ν
, cv1 = 7.1 (2.12)
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Then, the steady-state and incompressible transport equation for the Spalart-Allmaras
model considered in this work is

v · ∇ν̃︸ ︷︷ ︸
Convection

= ∇ ·
(

ν + ν̃

σν̃

∇ν̃
)

︸ ︷︷ ︸
Conservative

diffusion

+ cb2

σν̃

∇ν̃ · ∇ν̃︸ ︷︷ ︸
Non-conservative

diffusion

+ cb1W̃ ν̃︸ ︷︷ ︸
Production

− cw1fw

(
ν̃

lw

)2

︸ ︷︷ ︸
Destruction

− λν̃κν̃(m)ν̃︸ ︷︷ ︸
Absorption in

the solid

(2.13)

in which the parameters are

W = 1
2
(
∇v −∇vT

)
, Wm =

√
W : W , W̃ = max

[
Wm + ν̃

κvk2 lw
2 fv2, fΩWm

]
,

(2.14)

fv2 = 1− χ

1 + χfv1
, fw = gν̃

(
1 + cw3

6

gν̃
6 + cw36

)
, gν̃ = ri + cw2

(
ri

6 − ri
)

, (2.15)

ri = min
[

ν̃

W̃r κvk2 lw
2 , 10

]
, W̃r = max

[
W̃ , 10−6

]
(2.16)

and the turbulence constants are

cb1 = 0.1355, cb2 = 0.6220, σν̃ = 2
3 , fΩ = 0.3, κvk = 0.41 (2.17)

cw1 = cb1

κvk2 + 1 + cb2

σν̃

, cw2 = 0.3, cw3 = 2 (2.18)

The destruction term of the Spalart-Allmaras model depends on the distance to the
wall, which changes during topology optimization as the material distribution is modified.
This work calculates the wall distance by solving a modified Eikonal equation including
absorption term to model the solid (YOON, 2016). The corresponding boundary value
problem is given by

∇G · ∇G + σw G
(
∇2G

)
= (1 + 2σw)G4 + κG(m)(G − G0) in 0Ω

∇G · n = 0 on 0Γinlet ∩
0Γoutlet

G = G0 on 0Γstator ∩
0Γrotor

(2.19)

where G is the reciprocal wall distance, G0 is a reference value for the reciprocal wall
distance, and σw is a relaxation factor. In this work, G0 is the inverse of the maximum
mesh element size and σw = 0.1. Then, the wall distance is given by

lw = 1
G
− 1
G0

(2.20)
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(a) Inlet illustration (b) Laminar flow (Eq. 2.21) (c) Turbulent flow (Eq. 2.22)

Figure 2.2 – Inlet illustration and velocity profile functions.

2.1.5 Fluid Flow Boundary Conditions

The inlet flow is assumed to have a fully-developed velocity profile, so a parabolic
function is used to describe the inlet velocity for laminar flow (Eq. 2.21) and a near-constant
profile is imposed for turbulent flow (Eq. 2.22). The definition of the functions from Eqs.
2.21 and 2.22 involves the maximum centerline velocity vin, the inlet length eH, and the
coordinate of the inlet lower edge x0. Also, the turbulent velocity profile definition uses
an auxiliary coordinate xc to simplify the equation. The graphs of Eqs. 2.21 and 2.22 are
illustrated in Fig. 2.2.

v(x) = 4 vin

e2
H

(x− x0)(eH + x0 − x) (2.21)

xc(x) = 2(x− x0)
eH

v(xc) =


vin
(
1− e−18(xc+0.0495)

)
, 0 ≤ xc ≤ 1

vin
(
1− e−18(2−xc+0.0495)

)
, 1 < xc ≤ 2

(2.22)

2.2 Solid Modeling

The static equilibrium of an elastic body may be obtained from the linear momentum
equations or from variational principles. In this section, the linear elasticity equations are
derived from the linear momentum equations, while the nonlinear equations are obtained
from the minimization of the total potential energy. In both cases, the objective is to find
the displacement field u of the body, which is used to define other quantities of interest.
The equations are initially stated in the current configuration tΩ (Lagrangian approach).

2.2.1 Linear Elasticity

The static equilibrium of a solid body must also satisfy the momentum equations given
the boundary conditions. One difference from the fluid flow problem is that the reference
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and deformed configurations are different for the solid, with the equilibrium occurring in
the deformed configuration tΩ. Then, the static equilibrium problem is given by

t∇ · σs (u) + b = 0 in tΩ
u = u∗ on tΓu

σs(u) n = t∗ on tΓn

(2.23)

where b are the body forces, u∗ are the prescribed displacements, and t∗ are the traction
loads. For a linearly elastic solid (or Hookean elastic solid), the relation between loading and
deformation is linear, and, for an isotropic solid, the material properties are independent
of the direction. The Cauchy tensor for a linear and isotropic solid expressed in terms of
the Lamé’s parameters λ1st and µ2nd is

σs (u) = λ1st tr (ε(u)) I + 2 µ2nd ε (u) (2.24)

where ε is the linear strain tensor

ε(u) = 1
2
(
∇u +∇uT

)
(2.25)

For linear elasticity, the current configuration tΩ may be approximated by the reference
configuration 0Ω because the displacements are small. Also, the gradient operations may
be considered equivalent (t∇ ≈ ∇). Then, the weak form of problem 2.23 is

∫
0Ω

σs (u) : ε (wu) dΩ =
∫

0Ω
b ·wu dΩ +

∫
0Γn

t∗ ·wu dΓ (2.26)

where wu is the displacement field test function.

2.2.2 Hyperelasticity

The solid is modeled as a hyperelastic material for the nonlinear analysis, so its
constitutive behavior is described by a strain energy density function Ψ, which can be
used to obtain the total potential energy Π of the body as follows

Π (u) =
∫

0Ω
Ψ(u) dΩ−

∫
0Ω

b · u dΩ−
∫

0Γn

t∗ · u dΓ (2.27)

The equilibrium of a continuum body is the configuration in which the total potential
energy of the body is minimal. Therefore, the problem of finding the equilibrium configuration
can be stated as finding the displacement u, which minimizes the total potential energy
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according to Equation 2.28.
min
u∈U

Π(u) (2.28)

At a point of minimum, the directional derivative (Fréchet’s derivative) of the total
potential energy Π with respect to u in an arbitrary direction wu must be zero for all
feasible directions, according to Eq. 2.29.

D Π(u)[wu] =
∫

0Ω
D Π(u)[wu] dΩ−

∫
0Ω

b ·wu dΩ−
∫

0Γn

t∗ ·wu dΓ = 0 ∀wu ∈ U (2.29)

2.2.2.1 Isotropic Linearly Elastic Solid

The strain energy density function for an isotropic linearly elastic solid is given by

Π (u) = Π (ε (u)) = λ1st

2 tr (ε (u))2 + µ2nd ε (u) : ε (u) (2.30)

where it is seen that the strain energy is a function of the linear strain tensor. When the
displacement changes by wu, the linear strain changes by ε (wu). Therefore, the directional
derivative may be calculated with respect to ε (u) in the direction of ε (wu) as follows

D Π (u) [wu] = D Π(ε (u)) [ε (wu)] =

= ∂Π(ε (u))
∂ε

: ε (wu) = λ1st tr (ε (u)) I : ε (wu) + 2µ2nd ε (u) : ε (wu)

= λ1st (∇ · u) (∇ ·wu) + µ2nd

2
(
∇u +∇uT

)
:
(
∇wu +∇wu

T
)

(2.31)

The directional derivative of the strain energy density function is a bilinear form for
the isotropic linearly elastic solid. Therefore, the equilibrium may be stated as the solution
of the following linear variational problem

au(u, wu) = Lu(wu) ∀wu ∈ U

au(u, wu) =
∫

0Ω

µ2nd

2
(
∇u +∇uT

)
:
(
∇wu +∇wu

T
)

dΩ +
∫

0Ω
λ1st (∇ · u) (∇ ·wu) dΩ

Lu(wu) =
∫

0Ω
b ·wu dΩ +

∫
0Γn

t∗ ·wu dΓ

(2.32)

which is equivalent to Eq. 2.29.

2.2.2.2 Neo-Hookean Solid

The strain energy density function of a Neo-Hookean solid can be written according
to Eq. 2.33 where F = I +∇u is the deformation gradient.

Π(F ) = λ1st

2 (ln(det(F )))2 + µ2nd

2
(
tr(F T F )− 2− 2 ln(det(F ))

)
(2.33)
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The directional derivative of Π(F ) with respect to F in an arbitrary direction G is
presented in Equation 2.34.

D Π(F )[G] = ∂Π(F )
∂F

: G =
(
µ2ndF − µ2ndF −T + λ1st ln (det (F )) F −T

)
: G (2.34)

For a virtual displacement of wu, the deformation gradient changes ∇wu. Therefore,
G = ∇wu when writing the residual form of the equilibrium of a Neo-Hookean solid.

2.3 Fluid-Structure Interaction

The basic idea for implementing the coupling in a FSI solver is to use the displacement
obtained with the solid solver to define the geometry for the fluid solver and to use
the velocity and pressure obtained with the fluid solver to calculate the loads over the
solid. The loads over the structure are calculated by the continuity in traction (dynamic
condition) in the interface tΓfsi according to

σsns = σfnf on tΓfsi (2.35)

Also, at the fluid-structure interface tΓfsi, the fluid velocity must equal the solid velocity
to preserve the velocity continuity (kinematic condition), which is achieved by imposing

vs = vf on tΓfsi (2.36)

There are two approaches to solving FSI problems: staggered and monolithic. In the
staggered approach (Fig 2.3a), the equations of fluid mechanics, solid mechanics, and mesh
update are solved sequentially in an uncoupled fashion. The advantage of the staggered
approach is the possibility of using existing fluid and solid solvers. However, the staggered
approach may present convergence issues in some applications, such as light structures
interacting with heavy fluids and incompressible flows enclosed by solids, such as the
labyrinth seal problem studied in this work.

In the monolithic approach (Fig. 2.3b), the equations of fluid mechanics, solid mechanics,
and mesh moving are solved synchronously. Therefore, there are no independent solvers
for the fluid and solid equations, and there is no possibility of using existing solvers. The
advantage of solving the equations simultaneously is robustness.

This work applies the FSI formulation proposed by Yoon (2010) for density-based
topology optimization, which consists of applying the divergence theorem to obtain a
system of equations that approximates the coupling between the solid and the fluid. The
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(a) Staggered (b) Monolithic

.

Figure 2.3 – Architecture of staggered and monolithic FSI solvers

formulation is valid for small displacements, and it is given by∫
0Ω

(
v · F −T∇v

)
·wv|JF| dΩ +

∫
0Ω

σf : F −T∇wv|JF| dΩ

+
∫

0Ω
κ(m)v ·wv|JF| dΩ =

∫
0Γn

t∗ ·wv dΩ∫
0Ω

(∇ · v) wp|JF| dΩ = 0∫
0Ω

σs : ε (wu) dΩ =
∫

0Ω
ζ
(
F −T∇p

)
wu|JF| dΩ

(2.37)

where ζ is a function that identifies solid and fluid, and JF = det(F ). Yoon (2010) solves
Eq. 2.37 following a monolithic approach, which is costly. As the objective here is to
develop a connectivity constraint based on FSI, the accuracy of the displacement field
may be sacrificed to reduce the computational time. Therefore, the system of equations is
solved in a segregated approach with one-way coupling from fluid to solid. First, the fluid
equations are solved without considering the mesh displacement (F = I and JF = 1) as
follows∫

0Ω
(v · ∇v) ·wv dΩ +

∫
0Ω

σf : ∇wv dΩ +
∫

0Ω
κ(m)v ·wv dΩ =

∫
0Γn

t∗ ·wv dΩ∫
0Ω

(∇ · v) wp dΩ = 0
(2.38)

which is equivalent to solving the fluid flow problem alone. Then, the structure equilibrium
is solved for the pressure of the flow field as follows∫

0Ω
σs : ε (wu) dΩ =

∫
0Ω

ζ
(
F −T∇p

)
wu|JF| dΩ (2.39)

2.4 Topology Optimization Method

The mathematical statement of the topology optimization problem is presented in 2.40,
in which C is the objective function, F is the weak statement of the physical equations,
Gj are the constraints, NG is the number of constraints, α is the design variable field, and
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s are the state variables of the physical equations.

min
α

C(α, s)

s.t. F (α, s) = 0
Gj(α, s) ≤ Gj, j ∈ [1, NG]
α ∈ {0, 1}

(2.40)

As the objective function and constraints are generally nonlinear, and the discretization
of α results in many design variables, the direct solution of problem 2.40 is computationally
expensive. There are various alternatives for solving problem 2.40 in the context of fluid
flow problems. This work explores the TOBS approach (SIVAPURAM; PICELLI, 2018)
and the classical continuous variable approach (BORRVALL; PETERSSON, 2003). Some
advantages of the TOBS approach are a clear interface between fluid and solid, and
avoiding the continuation of parameters (SOUZA et al., 2021).

2.4.1 Topology Optimization of Binary Structures (TOBS)

The TOBS approach consists of the iterative solution of problem 2.40 by a sequence of
linearized versions of the same problem (SIVAPURAM; PICELLI, 2018). At each iteration
k, the design variable change ∆α(k) is calculated and the design variable is updated α(k+1)

= α(k) + ∆α(k). The linear problems are obtained by applying Taylor’s series expansions
to the objective function and constraints. The expansion about the current design variable
α(k) is given by

C
(
α(k) + ∆α(k), s(k)

)
= C

(
α(k), s(k)

)
︸ ︷︷ ︸

constant

+ ∂C

∂α

(
α(k), s(k)

)
∆α(k)︸ ︷︷ ︸

first-order term

+O
((

∆α(k)
)2
)

(2.41)

As the term C
(
α(k), s(k)

)
is known (it is a constant in Taylor’s series), the minimization

of the left-hand side of equation 2.41 is approximately the minimization of the first order
term if the step ∆α(k) is small. The step size

∥∥∥∆α(k)
∥∥∥

1
may be controlled by a linear

constraint that can be obtained by using the fact that α is either 0 or 1.

α ∈ {0, 1} ⇒
∥∥∥∆α(k)

∥∥∥
1

=
Nα∑
i=1

(
1− α

(k)
i

)
∆α

(k)
i ≤ βflNα (2.42)

The linearized constraints impose that the product of the constraint sensitivity ∂Gj

∂α

and the step ∆α(k) must be lower than the difference Gj −Gj

(
α(k), s(k)

)
. However, the

flip limits constraint limits the step size, and the direct use of the linearized constraint may
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lead to unfeasible problems. Therefore, the linearized constraints are relaxed as follows

∆Gj

(
α(k), s(k)

)
=


− ϵjGj

(
α(k), s(k)

)
, Gj < (1− ϵj)Gj

Gj −Gj

(
α(k), s(k)

)
, Gj ∈ [(1− ϵj)Gj, (1 + ϵj)Gj]

ϵjGj

(
α(k), s(k)

)
, Gj > (1 + ϵj)Gj

(2.43)

Then, each step of the TOBS algorithm corresponds to the solution of the following
integer linear optimization problem

min
∆α(k)

∂C

∂α

(
α(k), s(k)

)
∆α(k)

s.t. F
(
α(k), s(k)

)
= 0

∂Gj

∂α

(
α(k), s(k)

)
∆α(k) ≤ ∆Gj

(
α(k), s(k)

)
, j ∈ [1, NG]∥∥∥∆α(k)

∥∥∥
1
≤ βflNα

∆α(k) ∈
{
−α(k), 1− α(k)

}
(2.44)

2.4.2 Continuous Variable Approach

The continuous approach relaxes the binary condition of the topology optimization
problem (α ∈ {0, 1}) by allowing the design variables to be continuous (α ∈ [0, 1]), as
shown in Eq. 2.45. Then, it applies techniques such as penalization and projection to avoid
intermediate pseudo-densities in the optimization result. In this work, the continuous
design variables are denoted as m.

min
m

C(m, s)

s.t. F (m, s) = 0
Gj(m, s) ≤ Gj, j ∈ [1, NG]
m ∈ [0, 1]

(2.45)

Directly using the design variable field in the material interpolation functions may
render the topology optimization problem mesh-dependent. One way of regularizing the
problem is to use density filters (BRUNS; TORTORELLI, 2001; BOURDIN, 2001). In
this work, two forms of density filters are investigated. The first is the PDE filter proposed
by Lazarov and Sigmund (2010), which consists of solving the following boundary value
problem to obtain the filtered field mf

−Rf
2∇2mf + mf = m on Ωm (2.46a)

mf = mf
∗ in Γm

d (2.46b)
∇mf · n = 0 in Γm

n (2.46c)
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where Rf is a length scale related to the physical radius rmin by the equation rmin = 2
√

3 Rf.
The field mf

∗ may impose desired values of mf on the boundary of the design domain. The
notation Ωm is introduced to define the design domain and to highlight that it may not
match the physical domain Ω (i.e., there may be non-optimizable regions in the physical
domain).

The second density filter has a discrete form and compact support (GUEST; PRÉVOST;
BELYTSCHKO, 2004). The filtered value of each element is computed as a weighted sum
of the design variables of the neighbors inside the ball Ne, which is the circle in 2D or the
sphere in 3D of radius rmin centered in the element. Therefore, the set Ne is defined as
follows

Ne = {i : ||xe − xi||2 < rmin} (2.47)

and the filtered degrees of freedom mf, e are given by

mf, e =

∑
i∈Ne

we (xi) V– imi∑
i∈Ne

we (xi) V– i

we (xi) = rmin − ||xe − xi||2

(2.48)

where V– i is the volume or area of the element.

The density filters introduce intermediate pseudo-densities which are undesired in
the final solution. This problem may be circumvented using smooth Heaviside projection
(WANG; LAZAROV; SIGMUND, 2010).

mp = tanh (βthηth) + tanh (βth(mf − ηth))
tanh (βthηth) + tanh (βth(1− ηth)) (2.49)

where ηth is the projection threshold, i.e., the value of mf where the transition from
0 to 1. The parameter βth controls the transition slope, going from an almost linear
behavior for βth = 1 and approaching the Heaviside function for βth → ∞. Figure 2.4
shows the behavior of the smooth Heaviside projection for different values of ηth and βth.
Generally, the threshold ηth is kept constant during the optimization, and βth is increased
(continuation) until a satisfactory reduction of intermediate pseudo-densities is obtained.

2.4.3 Material Model for Fluid Flow Equations

This work considers continuous and binary design variables, with zero indicating fluid
elements and one indicating solid elements. The inverse permeability terms are interpolated
by the convex function introduced by Borrvall and Petersson (2003) modified to obtain
κ(0) = κmin and κ(1) = κmax according to Eq. 2.50. A linear material model is also a
valid choice for the TOBS approach for fluid flows (SOUZA et al., 2021). However, the



Chapter 2. THEORETICAL FORMULATION 56

Figure 2.4 – Smooth Heaviside projection (Eq. 2.49) for different values of η and β. The parameter
ηth is the threshold of the projection and βth controls the slope of the curve.

convex model of Eq. 2.50 is selected because it is more general as it can reproduce an
almost linear behavior for qc ≥ 10 as illustrated in Fig. 2.5. Also, the minimum inverse
permeability is considered zero for all cases: κmin = 0.

κ(α) = κmaxκ1(α) = κmax
qcα

1− α + qc
(2.50)

Figure 2.5 – Material model for the normalized inverse permeability κ1.

2.4.4 Material Model for Solid Equations

This work considers the topology optimization of structures subjected to pressure
loads, which are one type of design-dependent load because they are always normal to the
structure’s surface, changing during the optimization. The topic has received considerable
attention from the scientific community, and several approaches are available in the
literature to model pressure loads during density-based topology optimization (CHEN;
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KIKUCHI, 2001; DU; OLHOFF, 2004; LEE; MARTINS, 2012; KUMAR; FROUWS;
LANGELAAR, 2020). This work follows the ideas introduced by Sigmund and Clausen
(2007) of transmitting the pressure load through a hydrostatic stress state in the non-solid
(fluid or void) phase. However, instead of using a mixed displacement-pressure formulation,
a pure displacement formulation is used (MOSCATELLI et al., 2023). For linear elasticity,
the Cauchy stress tensor expressed in terms of the shear Gshear and bulk Kbulk modulus is
given by

σs(α, u) = 2 Gshear(α)e(u)︸ ︷︷ ︸
Deviatoric

+ Kbulk(α) (∇ · u) I︸ ︷︷ ︸
Hydrostatic

(2.51)

where e is the deviatoric strain tensor defined as

e(u) =


ε(u)− 1

2 (∇ · u) I, for 2D

ε(u)− 1
3 (∇ · u) I, for 3D

(2.52)

The shear and bulk modulus are interpolated by the SIMP (Solid Isotropic Material
with Penalization) function as follows

Gshear (α) = Gmin + (Gmax −Gmin) αPsimp

Kbulk (α) = Kmin + (Kmax −Kmin) αPsimp
(2.53)

where Psimp is the SIMP penalization exponent.

For nonlinear elasticity, the approach proposed by Wang et al. (2014) of using linear
strain energy for low-density elements is adapted to transmit pressure loads through the
decomposition of the strain energy density function in deviatoric and hydrostatic parts as
follows

Ψ (u) = Ψd (u)︸ ︷︷ ︸
Deviatoric

+ Ψh (u)︸ ︷︷ ︸
Hydrostatic

(2.54)

which is an extension of the idea introduced by Sigmund and Clausen (2007) to nonlinear
elasticity. The strain energy is evaluated element-wise (through the use of DG0 design
variables) to reduce the influence of intermediate values, increasing the stability of the
numerical solution of the structural equilibrium. The notation used for the element-wise
strain energy functions is given by

Ψe (u) = Ψd,e (u) + Ψh,e (u) (2.55)

Then, the deviatoric and hydrostatic components of the element strain energy are
interpolated in the same way the full strain energy is interpolated in the work of Wang et
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al. (2014), which gives

Ψd,e =
(
ΨN

d (γue)−ΨL
d (γue) + ΨL

d (ue)
)

Gshear
(
mp,e

)
Ψh,e =

(
ΨN

h (γue)−ΨL
h (γue) + ΨL

h (ue)
)

Kbulk
(
mp,e

) (2.56)

where γ is an indicator function obtained through a smooth Heaviside projection with a
low threshold ηγ and a high steepness βγ to better control for which level of density the
linear strain energy function is used

γ = tanh (βγηγ) + tanh (βγ(mp − ηγ))
tanh (βγηγ) + tanh (βγ(1− ηγ)) (2.57)

The functions ΨN
d , ΨL

d , ΨN
h and ΨL

h are normalized strain energy density functions
describing deviatoric and hydrostatic components of hyperelastic models. The linear
constitutive model of Eq. 2.51 may also be described by the following linear strain energy
function

ΨL (u) = Gshear

(
ε (u) : ε (u)− 1

3tr (ε (u))2
)

︸ ︷︷ ︸
ΨL

d(u)

+Kbulk

(1
2tr (ε (u))2

)
︸ ︷︷ ︸

ΨL
h(u)

(2.58)

and the Neo-Hookean model of Eq. 2.33 may be rewritten in terms of Gshear and Kbulk as
follows

ΨN (IC, JF) = Gshear

(1
2(IC − 3)− Vd (JF)

)
︸ ︷︷ ︸

ΨN
d

+Kbulk

(1
2V (JF)

)
︸ ︷︷ ︸

ΨN
h (JF)

(2.59)

where IC is the first invariant of the Green tensor, JF is the volumetric change (JF =
det (F )), V is a function related to the volume change which may have different forms
such as

VSC (JF) = 1
2
(
JF

2 − 1
)
− ln(JF) from Simo-Ciarlet (LAHUERTA et al., 2013)

VBW (JF) = ln(JF)2 from Bonet and Wood (2008)
V (JF) = (JF − 1)2

V (JF) = (JF − ln(JF)− 1)2

(2.60)

and Vd is a function depending on V through the relation

Vd (JF) = ln(JF) + 1
3V (JF) (2.61)
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2.4.5 Topology Optimization of Labyrinth Seals

This work is concerned with the leakage reduction in labyrinth seals, which can be
expressed by the following functional for incompressible flows

Qv (v) =
∫

Γoutlet
n · v dΓ (2.62)

However, using leakage as the objective function is difficult for incompressible flows as
it requires the use of pressure boundary conditions at inlet and outlet simultaneously. One
alternative to minimizing the leakage is maximizing the head loss, which is given by

J(v, p) = − 1
Qv (v)

∫
Γ

(
p

g
+ v · v

2g

)
(n · v) dΓ (2.63)

The loss coefficient concept may draw an equivalence between leakage minimization
and head loss maximization. According to White (2011), the loss coefficient of a component
may be calculated as the ratio of pressure head loss ∆p/g by velocity head v · v/(2g) as
follows

KL = 2 ∆p

v · v
(2.64)

Then, by taking the simplified flow model of a one-dimensional component with one
inlet, one outlet, and a fully developed velocity profile as an example, the simplified loss
coefficient is given by

KS = 2 pout − pin

vavg2 (2.65)

where pout, pin, and vavg are the mean outlet pressure, mean inlet pressure, and mean
velocity, respectively. For fixed pressure conditions in the inlet and outlet, the numerator
of Eq. (2.65) is constant. Therefore, the loss coefficient of the simplified flow model is
increased by lowering the velocity vavg, i.e., by minimizing the leakage. On the other hand,
if the velocity vavg is fixed, the denominator of Eq. (2.64) is constant. Therefore, the loss
coefficient is increased if the head loss of the simplified model is increased. From this
analysis, the leakage minimization with the inlet pressure boundary condition is equivalent
to the head loss maximization with the inlet velocity boundary condition.

During this work, the diodicity objective function (LIU et al., 2012; LIN et al., 2015;
LIM et al., 2019) has also been explored to reduce leakage while avoiding the contact of
rotor and stator parts (SOUZA, 2020; SÁ et al., 2021b). The approach was to combine
geometry trimming proposed by Picelli et al. (2022) with diodicity (MOSCATELLI et
al., 2022). However, the diodicity requires solving the physical problem twice, which
considerably increases the computational cost for turbulent flows. Also, the diodicity
involves two conflicting objectives, so the additional tuning of optimization parameters
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is necessary to obtain interesting results. In fact, minimizing energy dissipation in the
reverse direction is not important for labyrinth seal design and limits the actual objective
of reducing leakage. Appendix A provides more details regarding the diodicity objective
function.

For staggered and stepped labyrinth seals, the simultaneous optimization of the rotor
and the stator may harness the interaction of these parts to generate improved designs.
However, for conducing this simultaneous optimization, it is necessary to describe solid
elements with different rotations. In this work, we propose to describe the different rotations
with two Darcy terms. Two approaches are proposed to ensure a minimum gap size between
stator and rotor, and avoid free-floating islands (Fig. 2.6), which may not be interesting in
labyrinth seal design (due to manufacturing difficulties) and are problematic for topology
optimization with FSI (JENKINS; MAUTE, 2016). The first approach is based on two
discrete design variable fields and TOBS (MOSCATELLI et al., 2022). The second is based
on one continuous design variable and interface identification method (MOSCATELLI et
al., 2024).

Figure 2.6 – Illustration of floating islands of solid material (highlighted with yellow frames) during
the topology optimization of rotor-stator devices.

2.4.5.1 Rotor-Stator Algorithm

The rotor-stator algorithm proposed in Moscatelli et al. (2022) starts by dividing the
solid domain Ωs into stationary Ωs

s and rotating Ωr
s subdomains. This division is modeled

with the aid of an additional design variable field β and the mapping of Table 2.1. As α

= 1 and β = 1 are mutually exclusive conditions, if the undesired phase is avoided, it is
possible to introduce an additional Darcy term to the momentum equation to account for
rotating solids as follows

(v · ∇)v −∇ · σf + κ(α)v + κ(β)(v − ωr r eθ) = 0 in 0Ω (2.66)

Table 2.1 – Mapping between design variables and element phases for the rotor-stator algorithm.

Subdomain α β Element phase
Ωs

s 1 0 Stator (solid)
Ωf 0 0 Fluid
Ωr

s 0 1 Rotor (solid)
- 1 1 Undesired phase
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The undesired phase in which α = 1 and β = 1 may be avoided by selecting the upper
and lower bounds of ∆α and ∆β. The procedure followed in Moscatelli et al. (2022) for
labyrinth seal design is to select ∆α and ∆β such that the minimum gap is satisfied and
that no floating islands (Fig. 2.6) of solid are introduced.

By considering the neighborhood Vd of an element E as the set of elements whose the
ℓ1-distance is equal to d (Fig. 2.7), it is possible to avoid floating islands by checking the
state of V1 and to impose a minimum gap gmin by checking Vd, where d is given by

d = ceil
(

gmin

h

)
(2.67)

where h is the element size and the ceil function returns the least integer that is greater
than the argument.

Figure 2.7 – Schematic representation of the neighborhoods Vd of element E for d = 1, 2, 3.

The solid islands are avoided by allowing only the following phase changes: 1) fluid
elements close to rotor can change to rotor; 2) fluid elements close to stator can change
to stator; 3) stator elements close to fluid can change to fluid; 4) rotor elements close to
fluid can change to fluid. An illustration of the allowed changes for labyrinth seal design
is presented in Fig. 2.8 where the elements that are allowed to change are marked with
numbers.

Figure 2.8 – Illustration of active elements during the optimization of a labyrinth seal. (1) Fluid
elements that can change to rotor; (2) fluid elements that can change to stator; (3) stator
elements that can change to fluid; (4) rotor elements that can change to fluid. Elements
with black numbers are active during stator expansion/rotor contraction and elements
with red numbers are active during rotor expansion/stator contraction.

The allowed changes described in Fig. 2.8 require the definition of the phases in the
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boundary. This can be done by extending the domain on all sides by one element and
by defining the phases of the introduced elements. Figure 2.9 presents an example of
initialization for the boundaries. It is important to notice that the extended boundary
elements are not part of the analysis and optimization. They are only used to complete
the V1 neighbourhood of elements at the border of the domain.

Figure 2.9 – Example of a possible boundary initialization for the labyrinth seal problem.

However, it is still possible to obtain solid islands if all elements of the design domain
are allowed to change in each call to the integer linear optimization routine because adjacent
elements can change simultaneously as Fig. 2.6 shows. As the logic to determine the allowed
changes is based on the current state (i.e., there is no information about the next state),
it is necessary to break the iteration into two steps to avoid adjacent elements of different
phases changing at the same time. Therefore, each iteration of the labyrinth seal design is
divided into two steps: stator expansion/rotor contraction and stator contraction/rotor
expansion. During stator expansion/rotor contraction, fluid elements close to stator and
rotor elements close to fluid elements are allowed to change. This corresponds to the black
numbers in Fig. 2.8. During stator contraction/rotor expansion, fluid elements close to
rotor elements are allowed to change to rotor and stator elements close to fluid elements
are allowed to change to fluid. This corresponds to red numbers in Fig. 2.8. Then, each
iteration of the TOBS for the rotor-stator algorithm is stated as

min
∆α, ∆β

∂C

∂α
∆α + ∂C

∂β
∆β

s.t. F (α, β, s) = 0
∂Gj

∂α
∆α + ∂Gj

∂β
∆β ≤ ∆Gj(α, β, s), j ∈ [1, NG]∥∥∥∆α(k)

∥∥∥
1
≤ βflNα∥∥∥∆β(k)

∥∥∥
1
≤ βflNβ

∆α ∈ Sα

∆β ∈ Sβ

(2.68)

where the sets Sα and Sβ indicate the allowed changes for the design variables. They are
defined based on a combination of Table 2.2 and the logic discussed for Fig. 2.8.
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Table 2.2 – Mapping between design variables, element phases and allowed changes for the rotor-stator
algorithm.

Subdomain α β Element phase Sα Sβ

Ωs
s 1 0 Stator (solid) {-1, 0} {0, 1}

Ωf 0 0 Fluid {0, 1} {0, 1}
Ωr

s 0 1 Rotor (solid) {0, 1} {-1, 0}

2.4.5.2 Interface Identification Method

The work of Høghøj et al. (2020) proposes an interface identification technique for the
design of heat exchangers by density-based topology optimization. The technique is based
on erosion and dilation morphology operations and assures a solid interface between the
coolant and the cooled fluids. Also, it controls the minimum size of the solid interface.
This interface identification technique can also be extended to labyrinth seal design if the
fluid channel is interpreted as an interface between the stator and rotor (MOSCATELLI
et al., 2024).

The interface identification method is composed of a series of density filters (Eq.
2.46) and smooth Heaviside projections (Eq. 2.49) that can be grouped in two distinct
steps: regularization and actual interface identification. The regularization step follows the
three-field topology optimization approach (GUEST; PRÉVOST; BELYTSCHKO, 2004;
SIGMUND, 2007; WANG; LAZAROV; SIGMUND, 2010), which consists of applying a
density filter and a smooth Heaviside projection to design variable field m. In this work,
the PDE-filter proposed by Lazarov and Sigmund (2010) and given by Eq. 2.46 is used
with Dirichlet boundary conditions to obtain the filtered field mf as follows

−Rf
2∇2mf + mf = m in Ωm (2.69a)

mf = mf
∗ on Γm (2.69b)

The field mf
∗ must be consistent with the locations of the stator, the rotor, and the

channel. In this work, the convention is to set mf
∗ = 0 in the parts of Γm that are closer to

the stator and to set mf
∗ = 1 in the parts of Γm that are closer to the rotor as shown in Fig.

2.10b. The design domain Ωm may not occupy the whole fluid flow domain as described
in Fig. 2.10, allowing the designer to select fixed fluid regions. The second operation of
the regularization step is the smooth Heaviside projection of Eq. 2.49. The regularization
produces a smooth interface for the interface identification step, as shown in the example
of Fig. 2.11.

The objective of the interface identification step is to create a region with a minimum
size around the transition from 0 to 1 in the projected field mp. This minimum size is
achieved by applying dilation and erosion morphology operations to mp. These operations
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(a) Fluid flow problem (b) Filtering problem (c) Blurring problem

Figure 2.10 – Schematic representation of the boundary conditions involved in the interface
identification method.

Figure 2.11 – Illustration of the regularization of a design variable field for the interface identification
method.

also involve density filters and smooth Heaviside projections. The field mp is filtered with
radius rb = 2

√
3Rb as follows

−Rb
2∇2mb + mb = mp in Ωm (2.70a)

mb = mb
∗ on Γm (2.70b)

where mb
∗ is the input of the Dirichlet boundary condition, which must be chosen consistent

with mf
∗. In this work, the field mb

∗ is set to 0 in the regions Γm that are over the stator,
and equal to 1 where Γm is over the rotor. The parts of Γm that are not over the stator or
over the rotor are set to 0.5 as illustrated in Fig. 2.10c.

The erosion operation consists of applying a smooth Heaviside projection to mb with a
threshold ηh in order to obtain the eroded field me. The new threshold ηh must be greater
than ηth to make the transition to me = 1 occur at larger values of mb, causing a shrinkage
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of the areas of mb that are closer to 1. The erosion projection is given by

me = tanh (βthηh) + tanh (βth (mb − ηh))
tanh (βthηh) + tanh (βth(1− ηh)) (2.71)

Similarly, the dilation operation consists of another smooth Heaviside projection to mb

to obtain md. This time, the threshold ηl must be lower than ηth to make the transition to
md = 1 occur at lower values of mb, enlarging the areas of mb that are closer to 1. The
dilation projection is given by

md = tanh (βthηl) + tanh (βth (mb − ηl))
tanh (βthηl) + tanh (βth (1− ηl))

(2.72)

For assuring the conditions ηh > ηth and ηl < ηth, a positive parameter ∆η is selected,
and the erosion and dilation threshold are calculated as follows

ηh = ηth + ∆η

ηl = ηth −∆η
(2.73)

such that the condition 0 ≤ ηl < ηth < ηh ≤ 1 is satisfied. Finally, the stator and rotor
fields are defined as

ms = 1−md (2.74a)
mr = me (2.74b)

An example of the interface identification step is presented in Fig. 2.12, which continues
the example from Fig. 2.11. The blurring of mp produces intermediate values of mb around
the interface of mp. Then, the dilation process enlarges the black areas while the dilation
process shrinks them. The rotor field is taken as the eroded field itself, and the stator
field is the complement of the dilated field (the black and white regions are inverted).
These steps produce a fluid channel with the desired minimum thickness (gap) around the
interface of mp.

According to Høghøj et al. (2020), the minimum interface thickness is double the
expression derived by Luo, Li and Liu (2019) for the infill structures. The multiplication by
two arises because the method combines erosion and dilation, while the method proposed
by Luo, Li and Liu (2019) applied only erosion. The minimum gap is given by

gmin = −2 Rb ln (1− 2∆η)

= − rb√
3

ln (1− 2∆η)
(2.75)

This work considers ∆η = 0.45, which yields rb ≈ 0.75 gmin. Also, the physical filter
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Figure 2.12 – Illustration of the operations involved in the actual interface identification step.

radius of Eq. (2.69) must be larger than the minimum gap size (rmin > gmin), and the
relation rmin = 1.5 gmin is adopted in this work.

2.4.5.3 VFSI Connectivity Constraint

The interface identification method does not avoid free-floating islands (Fig. 2.6) as
the rotor-stator algorithm. Therefore, connectivity constraints are necessary when using
the interface identification method. One possibility is to devise a connectivity constraint
based on FSI loads (SOUZA, 2020) because free-floating islands offer lower resistance than
structural parts attached to walls. Here, the FSI formulation of Yoon (2010) is adapted
to run as a staggered solver to reduce the computational cost. Also, one-way coupling
from fluid to solid is considered because there are no advantages of using the monolithic
approach or two-way coupling, as the accuracy of the displacement field is not important
for the connectivity constraint. Actually, the monolithic approach and two-way coupling
have disadvantages, which are increased computational costs and instabilities during the
solution of the equilibrium equations.

For greater flexibility in tuning the constraint, fictitious parameters are used for the
static equilibrium, such that the constraint will be named virtual fluid-structure constraint
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(VFSI). The equilibrium equations for the VFSI are given by∫
0Ω

σs(uf ) : ε(wu) dΩ = −
∫

0Ω
ζ (∇p ·wu) dΩ (2.76)

where uf is a fictitious displacement field to be used in the VFSI constraint and wu is
the test function. As a one-way staggered solver will be used, it is easy to include the FSI
loads due to the velocity fields. Therefore, the equilibrium equations, including the velocity
loads, will also be investigated for the VFSI constraint. In this case, the equilibrium is
given by∫

0Ω
σs(uf ) : ε(wu) dΩ = −

∫
0Ω

ζ (∇p ·wu) dΩ−
∫

0Ω
ζ ν

(
∇2v ·wu

)
dΩ (2.77)

Structural compliance is the most studied measure of mechanical resistance in topology
optimization. Therefore, it is chosen to define the VFSI constraint, and the fictitious
compliance Cf is given by

Cf =
∫

0Ω
σs(uf ) : ε(uf ) dΩ (2.78)

The actual VFSI constraint Gf is a normalized version of the fictitious compliance
given by

Gf = Cf

Cf

− 1 ≤ 0 (2.79)

where Cf is the admissible value of Cf that is used to normalize the virtual compliance. In
this work, the value of Cf for the initial guess is used for Cf , corresponding to a compliance
value for a material distribution without free-floating islands.

The behavior of the VFSI constraint may be studied by analyzing two bodies immersed
in a fluid flow: a free-floating circle (Fig. 2.13) and a bar attached to the wall (Fig. 2.14).
The velocity and pressure magnitudes are similar in both cases; however, the virtual
displacement is considerably larger for the free-floating circle, as seen in Figs. 2.13d and
2.14d. The displacement gradients are also larger, making the virtual compliance value
larger for the free-floating circle (Cf = 26) than for the supported bar (Cf = 1.3× 10−13).
This remarkable difference instigates testing if the VFSI constraint can control the arise
of free-floating islands during optimization.
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(a) Physical field (b) Velocity field (c) Pressure field

(d) Displacement field (e) Strain energy field (f) Sensitivities field

Figure 2.13 – Fields involved in the VFSI connectivity constraint for a circle inside a fluid flow channel.
The virtual compliance is Cf = 26.

(a) Physical field (b) Velocity field (c) Pressure field

(d) Displacement field (e) Strain energy field (f) Sensitivities field

Figure 2.14 – Fields involved in the VFSI connectivity constraint for a cantilever inside a fluid flow
channel. The virtual compliance is Cf = 1.3× 10−13.

2.4.5.4 Virtual Temperature Method

The virtual temperature method (VTM) proposed by Liu et al. (2015) is explored in
this work as an alternative connectivity constraint to avoid free-floating solid islands in
the labyrinth seal design. The method consists of obtaining a virtual temperature field
Tv from the solution of a thermal problem in which solid elements are heat sources, fluid
elements are insulators, and the boundaries are heat sinks. This thermal problem may be
written as follows

∇ · (kt (mt)∇Tv) + Q (mt) = 0 in Ωm (2.80a)
Tv = 0 on Γm (2.80b)

where kt is the virtual thermal conductivity, Q is the virtual thermal heat source, and mt
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Figure 2.15 – Virtual heat generation for Q0 = 1.

is the input of the VTM, which are given by

mt = ms + mr (2.81a)
kt (mt) = k0 mt

qt (2.81b)

Q (mt) = Q0
mt (1 + qq)

mt + qq
(2.81c)

where k0 and Q0 are the conductivity and heat generation of the solid parts, and qt and
qq are penalization factors. The material interpolation for the virtual thermal conductivity
kt used in this work is the same of Liu et al. (2015). However, the material interpolation
function for the virtual thermal heat source Q is modified from linear to concave to penalize
free-floating islands with intermediate densities. The modification of Q interpolation is
shown in Fig. 2.15.

The idea of the VTM is to limit the maximum value of Tv by an admissible temperature
T v because the higher values would occur at floating solid islands (insulated heat sources).
As the maximum function is not differentiable, a p-mean measure is used to approximate
the max operator as follows

Gt = max (Tv)− T v

≈
(

1
M

M∑
i=1

(
Tv

i
)p
) 1

p

− T v ≤ 0
(2.82)

where it is noted that tuning T v is necessary to ensure the desired effect.

2.4.6 Topology Optimization of Inflatable Seals

Before designing inflatable seals, it is necessary to verify the consistency of the material
models presented in Section 2.4.4 to handle pressure loads with structures undergoing large
deformations. The verification considers compliance minimization under volume constraint
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for literature benchmark problems. The structural compliance is given by

Cs (u) =
∫

0Γn

t∗ · u dΓ (2.83)

while the volume constraint is

GV– =
∫

0Ω mp dΩ∫
0Ω dΩ − V– ≤ 0 (2.84)

This work approaches the design of inflatable seals by modeling them as compliant
mechanisms. Then, the objective function selected for the design of the inflatable seals
is the output port displacement (PEDERSEN; BUHL; SIGMUND, 2001), which may be
written as

O (u) =
∫

0Γoutput
lO · u dΓ∫

0Γoutput
dΓ (2.85)

where lO gives the output port movement direction.

2.5 Finite Element Method

The finite element method (FEM) is a numerical approach to the solution of partial
differential equations. It consists of dividing the computational domain into a mesh of
elements and approximating the fields by a linear combination of shape functions with
compact support over the elements. The linear system of the FEM is obtained from a weak
formulation of the problem and is solved for the degrees of freedom of the shape functions.
Then, to obtain the finite element equations, it is necessary to derive the problem’s
weak formulation and apply the finite element discretization. This section presents the
application of the FEM to the PDE filter (Eq. 2.46), VTM (Eq. 2.80), Navier-Stokes
equations (Eq. 2.1), and RANS equations (Eq. 2.7) for illustrative purposes. As the input
of FEniCS is the weak forms, Equations 2.29 and 2.77 are ready to use. The finite element
formulations of the linear equations (PDE filter and VTM) are presented first because
their solution is simpler than the solution of the nonlinear equations (Navier-Stokes and
RANS).

2.5.1 PDE Filter

The PDE filter discretization starts by obtaining the weak form of Eq. 2.46. The first
step is multiplying Eq. 2.46a by a test function wm and integrating it over an element K

of the mesh as follows

−Rf
2
∫

K
∇2mf wm dΩ +

∫
K

mf wm dΩ =
∫

K
m wm dΩ (2.86)
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Then, integration by parts and the divergence theorem are applied to the first term of
Eq. 2.86 to avoid second-order derivatives∫

K
∇2mf wm dΩ =

∫
K
∇ · (∇mf wm) dΩ−

∫
K
∇mf · ∇wm dΩ

=
∫

∂K
n · (∇mf wm) dΓ−

∫
K
∇mf · ∇wm dΩ

(2.87)

and the weak form of the PDE filter for an element K is obtained

Rf
2
∫

K
∇mf · ∇wm dΩ−Rf

2
∫

∂K
(∇mf · n) wm dΓ +

∫
K

mf wm dΩ =
∫

K
m wm dΩ (2.88)

The next step is to sum the contribution of all the elements in the mesh

Rf
2
∫

Ωm
∇mf · ∇wm dΩ−Rf

2
∫

Γm
d

(∇mf · n) wm dΓ

−Rf
2
∫

Γm
n

(∇mf · n) wm dΓ +
∫

Ωm
mf wm dΩ =

∫
Ωm

m wm dΩ
(2.89)

The integral over Γm
n vanishes when the Neumann boundary condition (Eq. 2.46c) is

applied

Rf
2
∫

Ωm
∇mf · ∇wm dΩ−Rf

2
∫

Γm
d

(∇mf · n) wm dΓ +
∫

Ωm
mf wm dΩ =

∫
Ωm

m wm dΩ

(2.90)

The Dirichlet boundary condition (Eq. 2.46b) is imposed by the proper selection of
the function spaces for the trial and test functions as follows

M = {m ∈ H1(Ωm) : m = mf
∗ on Γm

d }

M0 = {m ∈ H1(Ωm) : m = 0 on Γm
d }

(2.91)

Then, the solution of the density filter becomes: find mf ∈M such that

Rf
2
∫

Ωm
∇mf · ∇wm dΩ +

∫
Ωm

mf wm dΩ =
∫

Ωm
m wm dΩ, wm ∈M0 (2.92)

The actual discretization starts by approximating the design and filtered fields by a
linear combination of shape functions as follows

m (x) ≈
Nm∑
i=1

ξi (x) Mi = ξT m

mf (x) ≈
Nm∑
i=1

ξi (x) Mf,i = ξT mf

(2.93)

The substitution of the finite element discretization into Eq. 2.92 for all shape functions
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involved in the approximation of m and mf results in the following system of equations

Rf
2
∫

Ωm
∇

Nm∑
i=1

ξiMf,i · ∇ξj dΩ +
∫

Ωm

Nm∑
i=1

ξiMf,iξj dΩ

=
∫

Ωm

Nm∑
i=1

ξiMiξj dΩ, j = 1, . . . , Nm

(2.94)

The matrix form of the linear system is easily seen by rearranging the equations as
follows

Nm∑
i=1

(∫
Ωm

Rf
2∇ξi · ∇ξj + ξiξj dΩ

)
Mf,i =

Nm∑
i=1

(∫
Ωm

ξiξj dΩ
)

Mi, j = 1, . . . , Nm (2.95)

where it is possible to define the matrix Kf and vector bf to simplify the equation

Kf, ij =
Nm∑
i=1

(∫
Ωm

Rf
2∇ξi · ∇ξj + ξiξj dΩ

)

bf, j =
Nm∑
i=1

(∫
Ωm

ξiξj dΩ
)

Mi

(2.96)

Finally, the density filter operation with PDE filter may be written as the solution of
the following linear system

Kf mf = bf (2.97)

2.5.2 Virtual Temperature Method

The same procedure used to obtain the weak form for the PDE filter is used for the
VTM: Eq. 2.80a is multiplied by a test function wt, integrated over the design domain Ωm,
and the divergence theorem is applied as follows∫

Ωm
∇ · (kt (mt)∇Tv) wt dΩ +

∫
Ωm

Q (mt) wt dΩ = 0∫
Γm

(kt (mt) n · ∇Tv) wt dΓ−
∫

Ωm
kt (mt)∇Tv · ∇wt dΩ +

∫
Ωm

Q (mt) wt dΩ = 0
(2.98)

As in the previous section, the Dirichlet boundary condition (Eq. 2.80b) is imposed by
properly selecting the function spaces. As the Dirichlet boundary condition is homogeneous,
only one function space definition is necessary

T = {Tv ∈ H1(Ωm) : Tv = 0 on Ωm} (2.99)

Then, the virtual temperature is found by solving the following variational problem:
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find Tv ∈ T such that∫
Ωm

kt (mt)∇Tv · ∇wt dΩ =
∫

Ωm
Q (mt) wt dΩ, wt ∈ T (2.100)

The numerical solution of Eq. 2.100 requires the discretization of the virtual temperature
field, which is given by

Tv (x) ≈
Nt∑
i=1

ξi (x) Tv, i = ξT Tv (2.101)

with ξi ∈ T , i = 1, · · · , Nt. The substitution of Eq. 2.101 into Eq. 2.100 gives

∫
Ωm

kt (mt)∇
Nt∑
i=1

ξiTv, i · ∇ξj dΩ =
∫

Ωm
Q (mt) ξj dΩ, j = 1, . . . , Nt

Nt∑
i=1

(∫
Ωm

kt (mt)∇ξi · ∇ξj dΩ
)

Tv, i =
∫

Ωm
Q (mt) ξj dΩ, j = 1, . . . , Nt

(2.102)

where it is possible to identify and define the “stiffness” matrix Kt and the “load” vector
qt of the FEM as follows

Kt, ij =
Nt∑
i=1

(∫
Ωm

kt (mt)∇ξi · ∇ξj dΩ
)

qt, j =
∫

Ωm
Q (mt) ξj dΩ

(2.103)

Then, the degrees of freedom of the virtual temperature field are found by solving the
following linear system

Kt Tv = qt (2.104)

2.5.3 Incompressible Navier-Stokes Equations

This work investigated two finite element approaches for solving the incompressible
Navier-Stokes equations: the Continuous Galerkin (CG-FEM) and the Discontinuous
Galerkin (DG-FEM). The idea was to explore which approach is better suited for receiving
the solution from the finite volume method (FVM). As discussed in Appendix B, the
DG-FEM formulation did not present advantages when interfacing with the finite volume
method, so the CG-FEM formulation is used in this work with Taylor-Hood elements
(TAYLOR; HOOD, 1973), i.e., quadratic and linear shape functions for velocity and pressure
fields, respectively. Still, the DG-FEM formulation is presented here for completeness and
to enable reproduction from the study of Appendix B.

In the CG-FEM approach, adjacent elements share some degrees of freedom, so the
primal variables of the problem are C0-continuous across internal facets. Also, applying
strong boundary conditions for the velocity is usual when using CG-FEM. Therefore, the
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velocity test functions wv must be zero at 0Γv. By defining the following function spaces

V = [H(0Ω)]nd

V0 = {v ∈ [H(0Ω)]nd : v = 0 on 0Γv}

Q = L2(0Ω)

(2.105)

the CG-FEM formulation for problem 2.1 is

a(ν; v, wv) + c(v; v, wv) + b(wv, p) = l(wv) ∀wv ∈ V0

b(v, wp) = 0 ∀wp ∈ Q
(2.106)

where the forms are given by

a(ν; v, wv) =
∫

0Ω

ν

2(∇v +∇vT ) : (∇wv +∇wv
T ) dΩ

b(v, p) = −
∫

0Ω
p (∇ · v) dΩ

c(vc; v, wv) =
∫

0Ω
((vc · ∇) v) ·wv dΩ

l(wv) =
∫

0Γn

t∗ ·wv dΓ

(2.107)

The fluid flow equations in weak form may also be written in mixed form by summing
the linear momentum and continuity equations as follows

Fns (ν; v, p, wv, wp) = a(ν; v, wv) + c(v; v, wv) + b(wv, p)
+ b(v, wp)− l(wv) = 0, ∀ (wv, wp) ∈ (V0, Q)

(2.108)

In the DG-FEM approach, adjacent elements do not share degrees of freedom, so the
primal variables are discontinuous across internal facets. As the degrees of freedom are
not located at the boundary of the computational domain, it is necessary to apply the
boundary conditions in a weak sense. By applying the Nitsche’s method, the DG-FEM
formulation for problem 2.1 is

aIP (ν; v, wv) + c(v; v, wv) + bw(wv, p) = lIP (ν; wv) ∀wv ∈ V

bw(v, wp) = lC(wp) ∀wp ∈ Q
(2.109)
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where the forms are

aIP (ν; v, wv) = a(ν; v, wv)

−
∫

0Γv∪0Γi

{
ν
(
∇v +∇vT

)}
: [[n⊗wv]] dΩ

−
∫

0Γv∪0Γi

{
ν
(
∇wv +∇wv

T
)}

: [[n⊗ v]] dΩ

+
∫

0Γv∪0Γi

γip[[n⊗ v]] : [[n⊗wv]] dΓ

(2.110)

bw(v, p) = b(v, p)

+
∫

0Γv∪0Γi

{p} [[n · v]] dΓ
(2.111)

cw(vc; v, wv) =
∫

0Γn

(n · vc)(v ·wv) dΓ

+
∫

0Γv∪0Γi

HF (vc, v) · [[wv]] dΓ

−
∫

0Ω
((vc · ∇)v) ·wv dΩ

(2.112)

lIP (ν; wv) = l(wv)

+
∫

0Γv

γip (v∗ ·wv) dΓ

−
∫

0Γv

{
ν
(
∇wv +∇wv

T
)}

: [[n⊗ v∗]] dΩ

(2.113)

lC(wp) =
∫

0Γv

wp (n · v∗) dΓ (2.114)

and γip is a large constant, and 0Γi are the internal edges of the mesh. The Navier-Stokes
equations are nonlinear and require an iterative solution algorithm. In this work, the
Newton-Raphson method is used.

2.5.4 Reynolds-Averaged Navier-Stokes (RANS) Equations

The weak forms of the RANS equations are the same as the incompressible Navier-Stokes
equations with the substitution of the instantaneous variables v and p by the time-averaged
variables v and p, and the substitution of the molecular viscosity ν by the effective viscosity
νeff as follows

a(νeff; v, wv) + c(v; v, wv) + b(wv, p) = l(wv) ∀wv ∈ V0

b(v, wp) = 0 ∀wp ∈ Q
(2.115)

Similarly, the mixed forms of the RANS equations are obtained by substituting v, p,
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and νeff into the mixed form of the Navier-Stokes equations

Frans = Fns (νeff; v, p, wv, wp) (2.116)

The problem above is not closed because the turbulence model is not included. The
weak form of the Spalart-Allmaras model may be written as follows

Fsa (ν, v; ν̃, wν̃) =
∫

0Ω
(v · ∇ν̃) wν̃ dΩ−

∫
0Ω

cb1W̃ ν̃wν̃ dΩ

+
∫

0Ω

(
ν + ν̃

σν̃

)
∇ν̃ · ∇wν̃ dΩ−

∫
0Ω

cb2

σν̃

∇ν̃ · ∇wν̃ dΩ

+
∫

0Ω
cw1fw

(
ν̃

lw

)2
wν̃ dΩ +

∫
0Ω

λν̃κν̃ (α) ν̃wν̃ dΩ = 0

(2.117)

Then, the closed RANS equations in mixed form are

F sa
rans = Frans + Fsa = 0, ∀ (wv, wp, wν̃) ∈ (V , Q, N ) (2.118)

where N = L2(0Ω).
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3 NUMERICAL IMPLEMENTATION

3.1 Topology Optimization Implementation

The numerical implementation of the topology optimization algorithm follows the
flowchart presented in Fig. 3.1. The first step is selecting an initial guess for the design
variables, which is an important step as most problems have a myriad of local minima
and different results are obtained by starting with different initial guesses. Then, the
forward problem (physics) is solved and the state variables are used to compute the
objective function. Next, the sensitivity analysis is performed to obtain the derivatives
for gradient-based optimization (SIGMUND, 2011). Here, the sensitivities are calculated
following the discrete-adjoint approach using automatic differentiation. Then, the design
variables are updated by a gradient-based optimization algorithm and the convergence
(stopping criteria) is checked. In this work, the flowchart logic is implemented in Python
due to its flexibility, extensive availability of scientific libraries, and open-source license,
while the most computationally intensive parts of the method run in native libraries
through just-in-time compilation or Python bindings.

The most common initial guess in fluid flow topology optimization is a domain
composed of only fluid elements (which will be called pure fluid domain for brevity). At the
same time, it is common to start from a solid domain in structural topology optimization.
In this work, the pure fluid domain initial guess is mostly used. However, designs starting
with features, such as teeth on rotor and/or stator, are also explored. The initial guesses
are imposed by setting the values of the degrees of freedom of the design variable field

Figure 3.1 – Flowchart illustrating the topology optimization procedure used in this work
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before the optimization starts. These values are kept constant until the optimization
algorithm routine is called to update the design variable field. This process is repeated in
each iteration until convergence is reached. The forward problem solution, the sensitivity
analysis and the optimization are implemented with the theory presented in Chapter 2
and the tools described in Section 3.2. Two optimization algorithms are used depending
on the characteristics of the design variables, with TOBS being used for discrete variables
and MMA being used for continuous variables.

3.1.1 TOBS

Two optimization stopping criteria are commonly used in the TOBS approach. The
first is the minimum change of objective function ϵC required to continue the optimization,
which is proposed by Huang and Xie (2007) and calculated based on the last iterations.
The second is the maximum number of iterations nmax. However, the selection of ϵC is
not trivial for challenging problems, such as the design of fluidic diodes and compliant
mechanisms, because the first condition may be satisfied prematurely if the selected value
of ϵC is “high”, precluding further optimization, or may never be satisfied if ϵC is “low”
and the optimization enters in a cycle of the same designs, as illustrated in Fig. 3.2.
In this case, the optimization runs without improvements until the maximum number
of iterations is reached, wasting computational resources. Therefore, selecting ϵC may
become a time-consuming process. In fact, according to Sigmund and Maute (2013),
selecting the convergence criteria is challenging in discrete density approaches of topology
optimization. Therefore, it is important to investigate new convergence criteria for discrete
design variables. The problems described above (stopping the optimization prematurely or
never stopping the optimization) are circumvented with the stopping criteria proposed
in Moscatelli et al. (2022), which consists of comparing the current design with the last
wS iterations and stopping the optimization in case of repetition. The window size wS is
restricted to avoid a high computational cost in the stopping criteria verification.

Figure 3.2 – Diagram showing a cycle between the same designs inside a topology optimization routine

3.1.2 MMA

The topology optimization with continuous design variables uses the MMA algorithm
with two stopping criteria. The first criterion is that the change of at least one design
variable must be larger than a tolerance ϵm for continuing the optimization. This stopping
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criteria may be written as follows
∥∥∥m(i+1) −m(i)

∥∥∥
∞

= max
{
m(i+1) −m(i)

}
≤ ϵm (3.1)

where the superscript of the design variable array indicates the iteration number. The
second stopping criterion is the maximum number of iterations nmax.

3.2 Software Stack

Implementing the topology optimization algorithm of Fig. 3.1 requires simulating
the physics, calculating the objective function and constraints, solving the sensitivities
analysis, and running gradient-based mathematical optimization. This section describes
the software stack used in this work to perform each task.

3.2.1 FEniCS

FEniCS is a framework for the solution of partial differential equations by the finite
element method, allowing the simulation of arbitrary physical models that may be stated
as a variational problem. Simulating arbitrary physics is possible because FEniCS provides
a domain-specific language, named UFL (Unified Form Language), for defining discrete
variational forms and functionals (ALNÆS et al., 2014). The UFL has a high-level notation
close to mathematical description, providing flexibility for solving different equations and
functionality for automatic differentiation (which is useful for obtaining Jacobians and
functional sensitivities). The forms defined in UFL notation are converted to efficient C++
code in UFC (Unified Form-assembly Code) convention (ALNÆS et al., 2008) by the
FEniCS form compiler (FFC). The FFC provides just-in-time automatic code generation,
creating flexibility during scientific investigations.

The primary user interface of FEniCS is the DOLFIN module (LOGG; WELLS, 2010),
which handles the finite element assembly and the communication of other components.
DOLFIN also implements data structures and interfaces to third-party linear algebra
back-ends, such as PETSc (BALAY et al., 2021b; BALAY et al., 2021a), providing a
complete problem-solving environment.

The motivation for using FEniCS in this work is its interface to pyadjoint library
through dolfin-adjoint framework (FARRELL et al., 2013; MITUSCH; FUNKE; DOKKEN,
2019), which eases the implementation of sensitivity analysis for complex models.



Chapter 3. NUMERICAL IMPLEMENTATION 80

3.2.2 pyadjoint/dolfin-adjoint

The derivation of adjoint models from forward models is challenging for complex
problems, such as the simulation of turbulent flows with RANS equations and turbulence
closure models. One technique that facilitates this process is to obtain the discrete adjoint
by algorithmic differentiation (AD). Still, the standard AD approach operates on the
elementary instruction level, where instructions are typically native operations of the
programming language, and the AD implementation must concern memory allocations,
pointer analysis, I/O, and parallel communication. To avoid these difficulties, Farrell et
al. (2013) proposed using AD on a higher level of abstraction, with the forward model
described by a sequence of equation solves. They implemented this idea in the libadjoint
library and integrated it into the FEniCS platform through the dolfin-adjoint framework,
where the forward model was described as a sequence of variational problems solutions.
Then, Mitusch, Funke and Dokken (2019) improved the abstraction by considering the
forward model as a sequence of operations that are not necessarily in variational form.
They call these operations blocks and this block abstraction allows users to implement the
derivatives of parts of the forward model manually. A new software named pyadjoint has
been introduced to replace the libadjoint library. The pyadjoint module builds a graph
of blocks and apply the chain rule to compute the gradients. For example, this improved
abstraction allows the implementation of the smooth Heaviside projection given by Eq. 2.49
(WANG; LAZAROV; SIGMUND, 2010), which is a local (non-integral) explicit operation.
The version of dolfin-adjoint used in this work is 2019.1.2, which follows the approach of
(MITUSCH; FUNKE; DOKKEN, 2019).

3.2.3 FEniCS TopOpt Foam

Although FEniCS provides flexibility for implementing the finite element method,
some problems, such as the simulation of incompressible fluid flow, require specialized
algorithms for their solution, as the direct use of Krylov methods for linear problems or
variants of Newton’s method for nonlinear problems may not be sufficient for obtaining a
solution. Implementing these specialized algorithms is not trivial, while they are already
available in open-source codes such as OpenFoam. However, these codes do not provide
automatic differentiation in general. Therefore, combining existing implementations of
specialized algorithms for challenging physical problems with dolfin-adjoint would be
interesting.

The FEniCS TopOpt Foam (ALONSO; RODRIGUEZ; SILVA, 2021) provides an
interface between FEniCS and OpenFoam and gives access to OpenFoam through a
Python API. The forward problem is solved in OpenFoam, while the adjoint problem
is solved in FEniCS, allowing the combination of specialized algorithms for fluid flow
simulation and flexible automatic differentiation by the discrete adjoint method. This work
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attempted to use FEniCS TopOpt Foam for the topology optimization of labyrinth seals
with turbulent flow without success. The objective function oscillations during optimization
led the design process to poor-performing results. Consequently, the results of Chapter 4
use FEniCS without OpenFoam. Some investigations regarding the attempt to use FEniCS
TopOpt Foam in this work are presented in Appendix B.

3.2.4 CPLEX®

CPLEX® is a suite of high-performance implementations of mathematical programming
algorithms, such as simplex and barrier interior point methods, for solving linear (LP),
mixed-integer (MIP), and quadratic programming (QP) problems. In this work, the
branch-and-bound (or branch-and-cut) search algorithm of CPLEX® is used for solving
each TOBS iteration by integer linear programming (ILP) as recommended by Picelli,
Sivapuram and Xie (2020) for efficiency and robustness. A branch-and-bound algorithm
creates a search tree of continuous LP or QP nodes, which are solved and checked for
integer solutions. If the integrality condition is not satisfied, two additional nodes may be
created with additional constraints, known as bounds, that try to induce the integer design
variables. This process is called a branch. The creation of branches and bounds continues
until there are nodes to be investigated, i.e., nodes with optimal objective function values
that do not satisfy the integer design variables requirement. This work uses the version
12.10 of CPLEX®.

3.2.5 Software Environment/Reproduction of Results

Executing the algorithm presented in the flowchart of Fig. 3.1 with the software
described in previous sections requires an operating system and a set of dependency
libraries. The installation and configuration of all these software components is complex
and time-consuming, as it is for most scientific computing projects. Therefore, it is
imperative to adopt a strategy that facilitates the setup of the software environment
and consequently facilitates the reproduction of results. In this work, Docker containers
technology is used as already suggested by (BOETTIGER, 2014).

Containers are a virtualization technology that shares the kernel of the host operating
system between isolated instances of the software environment. Therefore, this virtualization
approach makes containers lightweight, and some authors have shown that there are no
performance penalties for running scientific software on containers (HALE et al., 2017). In
this work, the Docker runtime is used to run the containers. Docker provides a utility to
record the instructions necessary to build and configure the software environment through
configuration files known as Dockerfiles. These configuration files are plain text files, so
their evolution can be easily tracked with version control technologies, leveraging scientific
reproduction.
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3.3 Algorithms

The numerical solution of nonlinear problems is challenging and requires specialized
algorithms because the sole use of numerical methods (such as Newton’s method) may not
be enough. This work uses continuation methods inspired by the physics of each problem
and implementations of Newton’s method provided in the PETSc library (BALAY et al.,
2021b; BALAY et al., 2021a) to obtain solutions to nonlinear problems under non-trivial
conditions.

3.3.1 Continuation for Navier-Stokes Equations

Solving the Navier-Stokes with a zero initial guess may be difficult, even for a moderate
Reynolds number. One alternative to circumvent this problem is to use a better initial
guess. In many cases, the solution of the same problem for lower Reynolds numbers is an
appropriate initial guess, and it is easier to solve the Navier-Stokes equations for lower
Reynolds numbers. For incompressible flows, the Reynolds number is given by Vc Lc/ν

(Eq. 2.3), where Lc is a geometric parameter of the problem. As Lc can not be altered, the
alternatives for reducing the Reynolds number are increasing ν or reducing Vc.

The algorithm used in this work does a continuation of the kinematic viscosity ν.
It comprises an initial attempt to solve the Navier-Stokes equations and two nested
continuation loops that are only run if the initial attempt fails. The objective of trying
to solve directly with ν is to avoid wasting computational time with continuation if it
is possible to obtain a solution starting from ν. However, if the initial attempt fails, the
algorithm enters the first continuation loop, which consists of multiplying ν by a factor in
the base of 10 and attempting to solve the problem again with ν1st = (10 pν ) ν, where pν is
an integer greater than 0. If the attempt succeeds, ν1st is divided by 10 and the problem is
solved again with the solution of the previous step taken as the initial guess. The reduction
of ν1st continues while the solution attempts succeeds until the target kinematic viscosity
ν is reached. The second continuation loop is only used if the solution fails inside the first
continuation loop. In this case, the current kinematic viscosity ν1st is multiplied by a factor
in the base of 2 to obtain ν2nd = (2 qν ) ν1st, where qν is an integer greater than 0. Then,
the problem is solved with ν2nd sequentially, with ν2nd being divided by two at each step.
The second loop continues until ν2nd reaches ν1st. If the solution fails inside the second
loop, the algorithm fails. This procedure is described as pseudo-code in Algorithm 1.

The inputs of the algorithm are the initial guess s0 for the state variables s (velocity
and pressure fields), the target kinematic viscosity ν, and two configurable parameters K1st

cont

and K2nd
cont for adjusting the number of continuation steps in each loop. These parameters

are integers and must satisfy the following conditions: K1st
cont > 0 and 0 < K2nd

cont ≤ 3. In
this work, three steps are allowed for each continuation loop (K1st

cont = K2nd
cont = 3), and
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Fig. 3.3 illustrates one example of a solution where the initial attempt and the attempt
for νtry = 100 ν failed for three steps at each loop. The red arrows indicate unsuccessful
solution attempts and the black arrows indicate successful ones.

The initial guess s0 is 0 for the first optimization iteration, and the solution for the
previous material distribution is used as the initial guess in subsequent iterations. This
approach is generally more robust and faster than starting from zero at each optimization
iteration, according to numerical tests performed during this research.
Algorithm 1 Solution of the incompressible Navier-Stokes equations with continuation of
kinematic viscosity ν.
Input: s0, ν, K1st

cont, K2nd
cont

Ensure: K1st
cont > 0 and 0 < K2nd

cont ≤ 3
Output: s, err

1: s← s0
2: err← solve(s, ν)
3: if err then
4: s← 0
5: pν ← K1st

cont
6: while pν ≥ 0 do
7: ν1st ← (10 pν ) ν
8: slast ← s
9: err← solve(s, ν1st)

10: if err then
11: s← slast
12: qν ← K2nd

cont
13: while qν ≥ 0 do
14: ν2nd ← (2 qν ) ν1st
15: err← solve(s, ν2nd)
16: if err then
17: exit
18: qν ← qν − 1
19: pν ← pν − 1

According to the tests performed in this work, the continuation of viscosity is faster
than running pseudo-transient algorithms such as SIMPLE.

3.3.2 Load Increment for Nonlinear Solid Mechanics

This work applies Newton’s method to solve the nonlinear solid mechanics equations.
As in the case of the Navier-Stokes equations, it is necessary to use a continuation scheme
if the problem’s solution is not achieved within a single run of Newton’s method. The
strategy used here is to apply load continuation with fixed increments. First, the code
attempts to solve the structural equilibrium with the full load to avoid wasting time
with continuation if the solution may be achieved directly. If Newton’s method does not
converge, the algorithm starts to solve the problem with fractions lfrac of the total load,
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Figure 3.3 – Diagram showing one example of the continuation of the kinematic viscosity ν. Each white
rectangle indicates a solution attempt with the corresponding kinematic viscosity value.
The red arrows indicate unsuccessful solution attempts and the black arrows indicate
successful ones. The sequence of kinematic viscosity values is obtained by following
Algorithm 1 with K1st

cont = K2nd
cont = 3.

which is equivalent to solving the following modified version of Eq. 2.29∫
Ω

D Ψ(u)[wu] dΩ−
∫

Ω
lfrac s ·wu dΩ−

∫
Γ

lfrac t ·wu dΓ = 0 ∀wu ∈ U (3.2)

The initial guess of the displacement field is always set to zero at the beginning of the
algorithm. Differently from the solution of Navier-Stokes described in Section 3.3.1, using
the forward problem solution from the previous optimization iteration as an initial guess
in the current iteration makes the solver less robust.
Algorithm 2 Solution of the structural equilibrium equations with continuation of the
load for nonlinear solid mechanics.
Output: s, err

1: s← 0
2: err← solve (s, 1)
3: if err then
4: s← 0
5: lfrac = 0.05
6: while lfrac ≤ 1 do
7: err← solve (s, lfrac)
8: if err then
9: exit

10: lfrac = lfrac + 0.05
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4 RESULTS

This section presents the topology optimization results of labyrinth seals, encompassing
all the arrangements discussed in Section 1.1 and illustrated in Fig. 1.2. Each arrangement’s
boundary conditions and design domains are presented in Fig. 4.1. The analysis and
optimization are carried out in a 2D axisymmetric domain with the geometrical parameters
of Table 4.1. The equations are solved in a cylindrical coordinate system with an inertial
reference frame (i.e., the reference frame is not rotating). The parameters of CO2 at
25°C are considered for simulation (ν = 0.773 x 10-6 m2/s). The other parameters, such
as the maximum inlet axial velocity and the rotor angular velocity, may differ for each
arrangement because the problems with a high rotor radius (staggered and stepped) are
more difficult to solve due to the higher tangential velocities.

Table 4.1 – Geometrical parameters common to all the labyrinth seal problems.

Parameter Value Unit Description
D 4 mm Shaft diameter
L 16 mm Design domain length
H 10 mm Design domain height
eL 3.2 mm Inlet/outlet channel length
eH 2 mm Inlet/outlet channel height

The objective of this chapter is to present the advantages and disadvantages of the
rotor-stator and interface identification method approaches without a direct comparison of
the results. This comparison would require body-fitted extraction and analysis. However,
the author did not find a unified body-fitted extraction technique suitable for both
approaches. For example, the body-fitted techniques reported in (MOSCATELLI et al.,

(a) Straight-through (b) Staggered (c) Stepped

Figure 4.1 – Boundary conditions and design domains for the topology optimization of different
arrangements of labyrinth seals.
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2022) and (MOSCATELLI et al., 2024) are different. These differences may affect the
comparison, leading to wrong conclusions.

4.1 TOBS

The presentation of results starts with the designs obtained with the TOBS approach.
The design of straight-through labyrinth seals is carried out with the standard TOBS
approach adapted to fluid flows (SOUZA et al., 2021), while the staggered and stepped
configurations require the modified approach described in Section 2.4.5.1 (MOSCATELLI
et al., 2022). The results are also grouped into laminar and turbulent, with the laminar
results being presented first.

4.1.1 Straight-through Labyrinth Seal in Laminar Flow

The design domain for the straight-through labyrinth seal (Fig. 4.1a) presents a
non-design domain close to the rotor to keep a minimum distance between the rotor and
the stator. The standard TOBS algorithm is applied with one design variable field because
only the stator is optimized. The head loss is maximized subjected to the Navier-Stokes
equations. Then, the linearized optimization problem solved at each iteration is written as
follows

max
∆α(k)

∂J

∂α

(
v(k), p(k)

)
∆α(k) (with J from Eq. 2.63)

s.t. Fns (ν; v, p, wv, wp) = 0, ∀ (wv, wp) ∈ (V , Q)∥∥∥∆α(k)
∥∥∥

1
≤ βflNα

∆α(k) ∈
{
−α(k), 1− α(k)

}
(4.1)

The result for laminar flow considers a parabolic inlet profile (Eq. 2.21 and Fig. 2.2b)
with a maximum axial velocity of 0.77 m/s (Re = 100) and a rotation of 4000 rpm, which
are around the maximum conditions that can be simulated during the optimization with
the solver developed in this work for Navier-Stokes equations (see Section 3.3.1). The
optimized design is a straight channel narrowed to the minimum gap size as shown in
Fig. 4.2a for a flip limits of βfl = 10%. According to the convergence history (Fig. 4.2b),
the head loss increases significantly in the first iteration and remains almost constant in
the subsequent iterations. If the convergence history is zoomed after the first iteration,
as shown in Fig. 4.2c, it is possible to see a small change in the head loss that makes
the optimizer continue the optimization. Actually, these small changes are not relevant in
practice as they only exist in the presence of the material model (Eq. 2.50). The Darcy
number used in this section is Da = 10−5 (κmax = 7.7× 105 1/s).

According to the design history presented in Fig. 4.3, the optimizer places elements at
the left edge of the design domain to prevent the flow from entering the chamber in the
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(a) Solution (b) Convergence history (c) Convergence history zoom

Figure 4.2 – Straight-through labyrinth seal design in laminar regime with βfl = 10% (Re = 100 and
ωr = 4000 rpm).

(a) Iter. 1 (b) Iter. 2 (c) Iter. 3 (d) Iter. 4 (e) Iter. 5

(f) Iter. 6 (g) Iter. 7 (h) Iter. 8 (i) Iter. 9 (j) Iter. 10

Figure 4.3 – Design history of the straight-through labyrinth seal optimized with TOBS for laminar
flow (Re = 100 and 4000 rpm).

first iteration. Then, it fills the hole in the stator until there are only solid elements in the
design domain. Again, the filling of the chamber only occurs because the material model
indicates a small increase in head loss by adding solid material to the chamber.

One question that may arise is if the flip limit used to obtain the result of Fig. 4.2 is
not large, leading to local minima. The answer to this question is “no” as the same result is
obtained when βfl is reduced to 1%, as shown in Fig. 4.4. The only difference is that more
iterations are necessary. Also, some parts of the design domain are not filled because the
expected objective function change becomes too small, as the number of allowed changes
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(a) Solution (b) Convergence history

Figure 4.4 – Straight-through labyrinth seal design in laminar regime with βfl = 1% (Re = 100 and
ωr = 4000 rpm).

(a) Solution (b) Velocity (c) Plane velocity (d) Tangential
velocity

(e) Pressure

Figure 4.5 – Straight-through labyrinth seal design in laminar regime (Re = 100 and ωr = 4000 rpm).

is reduced.

The velocity and pressure fields for the labyrinth seal of Fig. 4.2a are presented in
Fig. 4.5. The tangential velocity of the shaft plays an important role in the flow along the
straight channel, as the velocity magnitude close to the shaft is close to the velocity at the
centerline. The pressure drop occurs along the straight channel and there is some pressure
drop in solid elements. According to the convergence graph (Fig. 4.2b), the straight channel
is indeed more dissipative than other configurations with cavities along the labyrinth seal.
As the fluid has no energy to enter the cavity, no recirculation is created in this region
and the most prominent dissipation effect is associated with velocity gradients. Therefore,
the optimal solution is the narrowest channel because the velocity gradient increases as
the channel width decreases.

4.1.2 Staggered Labyrinth Seal in Laminar Flow

The staggered labyrinth seal is designed with the rotor-stator topology optimization
algorithm (Section 2.4.5.1) with a minimum gap of gmin = eH. The head loss is maximized
subjected to the Navier-Stokes equations. The linearized optimization problem solved at
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each iteration is given by

max
∆α, ∆β

∂J

∂α
∆α + ∂J

∂β
∆β (with J from Eq. 2.63)

s.t. Fns (ν; v, p, wv, wp) = 0, ∀ (wv, wp) ∈ (V , Q)∥∥∥∆α(k)
∥∥∥

1
≤ βflNα∥∥∥∆β(k)

∥∥∥
1
≤ βflNβ

∆α ∈ Sα

∆β ∈ Sβ

(4.2)

Initially, the same centerline velocity of the straight-through labyrinth seal is used (Re
= 100); however, the shaft angular velocity is reduced to 1000 rpm. The result by starting
with a pure fluid initial guess is presented in Fig. 4.6 with the rotor represented in red
and the stator in black. The optimized result (Fig. 4.6a) is a curved channel constricted
up to the minimum-allowed gap. There is a chamber along the channel; however, it does
not improve the head loss. The optimizer does not remove the chamber because it has no
effect on the objective function. The convergence graph presents a smooth convergence
as seen in Fig. 4.6d. The Darcy number used in this section is lower (Da = 10−10) than
in the previous section (Da = 10−5) because the numerical experiments showed that the
solution of Eq. 2.4 with non-zero rotation is facilitated when using binary design variables
and lower Darcy numbers. The flip limits of each optimization substep is βfl = 0.5%.

The velocity field is presented in Fig. 4.6b, where the rotor contour is drawn in white
and the stator contour in black. It is seen that the velocity magnitude of rotor elements
increases with the radial coordinate, while the velocity of stator elements is zero due to
the use of two Darcy terms with different velocities. From Fig. 4.6c, it is noticed that
the pressure drops along the channel, and the higher local drops occur in the connection
of the design domain to the inlet and outlet channels. In fact, the distance between the
rotor and the stator in these regions is lower than the minimal gap due to the way the
neighborhoods are defined in Fig. 2.7 (with the ℓ1-distance). It may be necessary to fix
the neighborhood definition if this minimum gap violation is problematic. On the other
hand, if a lower gap is acceptable in diagonal directions, this can be used to increase the
pressure drop at some regions of the domain and to increase the conversion of pressure
head to velocity head (kinetic energy) at the entrance of cavities, where the generation of
turbulent eddies is desired.

The effect of the inlet velocity in the optimization result is accessed by running the
rotor-stator algorithm for different inlet Reynolds numbers as seen in Fig. 4.7, where the
optimized designs are presented with the streamlines of plane rz. For Re = 1 (Fig. 4.7a),
the result is a channel constricted to the minimum gap size because fluid flows with low
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(a) Result (b) Velocity (c) Pressure (d) Convergence history

Figure 4.6 – Staggered labyrinth seal design in laminar regime with rotor-stator algorithm (Re = 100
and ωr = 1000 rpm).

Reynolds numbers do not form recirculation zones where additional viscous dissipation
would occur. In these flows, the factors that contribute to the increase of the head loss are
the magnitude of the velocity gradients and the length of the streamlines, so the stricter
the passage and the longer the channel, the higher the head loss. As the inlet Reynolds
number increases (Figs. 4.7b and 4.7c), the optimized designs present larger chambers
with recirculation zones, which contribute to head loss by creating fluid motion that is
not related to the leakage. The recirculation zones also constrained the streamlines that
connect the inlet to the outlet of the seal, maintaining the velocity gradient even with the
larger distance between the rotor and stator. Figure 4.7 also presents the 3D representation
of the labyrinth seals for a better visualization of the results.

For low Reynolds numbers, the expected solution is a long channel constricted to the
minimum gap size because the flow does not have recirculation zones. Therefore, it is
possible to create intuitive solutions to benchmark the result from Fig. 4.7a as seen in Fig.
4.8. The designs of Figs. 4.8a and 4.8b have the same gap size (gmin = eH) used to obtain
Fig. 4.7a with the rotor-stator algorithm. It is seen that the head loss of the optimized
result (Fig. 4.7a) is higher than the head loss of the benchmark designs (Figs. 4.8a and
4.8b), what is not expected at first sight. By examining Fig. 4.7a again, it is possible to
observe that the inclined channels have a smaller gap size than the selected minimum gap
(gmin = eH). In fact, the gap size for the inclined channels is equal to

√
2eH/2 ≈ 0.7 due to

the way the element neighborhood is defined (Fig. 2.7). So, the optimizer tries to maximize
the length of the inclined channels for low Reynolds numbers. If the optimized solution is
compared to benchmark designs with gmin =

√
2eH/2, such as the ones presented in Figs.

4.8c and 4.8d, the head loss is lower. This anisotropy of the gap size could be alleviated by
selecting more appropriate element neighborhoods. However, due to the binary nature of
the problem, the gap minimum size will never be exactly uniform, although the anisotropy
will be less pronounced in finer meshes.

The effect of the angular velocity is accessed by running the rotor-stator algorithm for
different values of shaft angular velocities, and the results are presented in Fig. 4.9. The
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(a) Re = 1
J = 0.546 mm

(b) Re = 50
J = 52.5 mm

(c) Re = 100
J = 76.5 mm

Figure 4.7 – Effect of the Reynolds number on the staggered labyrinth seal design using the rotor-stator
algorithm. The angular velocity is ωr = 0 rpm. The streamlines are plotted over the
results.

(a) J = 0.344 mm (b) J = 0.520 mm (c) J = 0.724 mm (d) J = 1.33 mm

Figure 4.8 – Reference designs for the staggered labyrinth seal. The head losses are evaluated at Re =
1 and ωr = 0 rpm.



Chapter 4. RESULTS 92

(a) ωr = 0 rpm
J = 76.5 mm

(b) ωr = 500 rpm
J = 77.3 mm

(c) ωr = 1000 rpm
J = 106 mm

Figure 4.9 – Effect of the shaft angular velocity on the staggered labyrinth seal design using the
rotor-stator algorithm. The inlet Reynolds number is Re = 100.

inlet Reynolds number is fixed as Re = 100. For ωr = 50 rpm (Fig. 4.9b), the optimized
result is almost the same as for the static shaft (ωr = 0 rpm), indicating that the axial and
radial flows are still dominant for head loss. The optimized result is different for ωr = 100
rpm (Fig. 4.9c), indicating that the tangential velocity is also relevant for head loss. The
undesired tendency to create inclined channels is still present. However, the optimizer also
explores the increase of the rotor diameter, as seen in the parts of the channel that are in
the radial direction.

It is interesting to investigate the effect of the initial guess in the rotor-stator algorithm,
so the staggered labyrinth seal is also optimized by starting with one stator tooth, and the
results are presented in Fig. 4.10. The optimizer enlarges the rotor tooth and places stator
elements around it. The enlargement is uneven in the upstream and downstream directions
of the tooth. In the upstream direction (or inlet direction), the fluid channel is constricted
to the minimum gap size. In the downstream direction (or outlet direction), the tooth
is more enlarged at the tip, creating a recirculation zone. However, the streamlines (Fig.
4.10d) show that the flow at the recirculation zone has low velocities because the fluid
does not have enough energy to enter the recirculation zone.

Then, the staggered labyrinth seal is optimized by starting with two teeth, as shown in
Fig. 4.11. The rotor tooth is similar in topology to the result starting with one tooth (Fig.
4.10b), being smaller in the axial direction. The stator tooth presents sharp 45° wedges,
and the wedge at the tip of the tooth constricts the flow and creates a recirculation zone
downstream. This mechanism is interesting in improving head loss in labyrinth seals as it
reduces the actual gap by constraining the streamlines connected to the outlet with the
recirculation zones.

Table 4.2 compares the results obtained for the staggered configuration by presenting
the initial head loss J0, the final head loss J , and the head loss gain. It is seen that the
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(a) Initial guess (b) Result (c) Velocity (d) Streamlines (e) Pressure

Figure 4.10 – Staggered labyrinth seal optimization with rotor-stator algorithm and an initial guess
with one rotor tooth (Re = 100 and ωr = 1000 rpm).

(a) Initial guess (b) Result (c) Velocity (d) Streamlines (e) Pressure

Figure 4.11 – Staggered labyrinth seal optimization with rotor-stator algorithm and an initial guess
with one stator tooth and rotor tooth (Re = 100 and ωr = 1000 rpm).

Table 4.2 – Comparison of staggered labyrinth seal objective function values for different initial guesses.

Initial guess Results J0 (mm) J (mm) J/J0

Pure fluid Fig. 4.6 28.4 106 3.72
1 tooth Fig. 4.10 91.8 159 1.74
2 teeth Fig. 4.11 125 255 2.04

result obtained by starting with two teeth has a higher head loss, so the 45° wedge is
efficient in improving the head loss. Also, the initial guess is relevant to guide the optimizer
towards more optimized designs. The gain is higher when starting from a pure fluid domain
because the initial head loss is low.

4.1.3 Stepped Labyrinth Seal in Laminar Flow

The stepped labyrinth seal is also optimized with the rotor-stator algorithm presented
in Section 2.4.5.1 and the same optimization problem of the staggered case (Eq. 4.2) is
solved. As the outlet has a higher radial coordinate for the stepped configuration, the
problem becomes more challenging to solve, and the maximum angular velocity reached
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(a) Result (b) Velocity (c) Pressure (d) Convergence history

.

Figure 4.12 – Stepped labyrinth seal design in laminar regime with rotor-stator algorithm (Re = 50
and ωr = 50 rpm). The final head loss is J = 33.1 mm.

with the laminar solver is 50 rpm. Also, the maximum centerline velocity of the parabolic
profile is reduced to 0.39 m/s (Re = 50). The other parameters are the same as for the
staggered example. The optimization result is presented in Fig. 4.12 with the velocity
and pressure fields. The rotor constricts the flow entering the design domain, increasing
its velocity. Then, the flow is guided by a thin rotor tooth towards an inclined stator
tooth that splits the flow into streamlines connected to the outlet and recirculation. The
downstream flow encounters other obstacles until reaching the outlet. The optimization
ends after 201 iterations. The velocity field for the stepped labyrinth seal result (Fig.
4.12b) has features that are commonly explored in labyrinth seal design (SNECK, 1974):
restrictions that convert the available pressure head into kinetic energy, which is dissipated
in the intervening chambers. Figure 4.12c shows a significant pressure drop in the second
stator tooth without an increase in velocity, indicating head loss. The convergence curve
grows monotonically.

The influence of the inlet velocity on the optimized design is studied by running
the rotor-stator algorithm with Re equals 1, 25, and 50, and ωr = 0. The results are
presented in Fig. 4.13. For Re = 1, the fluid does not have the necessary energy to develop
recirculation regions, so the result is a channel constricted to the minimum gap size. The
diagonal direction is favored due to the smaller gap size in this direction, as discussed in
the previous section. For Re = 25, the result already presents chambers for recirculation;
however, most of the fluid path is constricted to the minimum gap size. For Re = 50, there
are more recirculation zones and the channel constrictions are concentrated at the inlet and
outlet of the design domain. The effect of the angular velocity was not accessed because
ωr could not be increased beyond 50 rpm. The results of Figs. 4.13c and 4.12a are similar,
indicating that for Re = 50 and ωr = 50 rpm, the effect of the angular velocity is secondary.
Still, the angular velocity increases the head loss as seen by comparing the similar results
of Figs. 4.12a and 4.13c, which have J = 33.1 and J = 28.7 mm, respectively.

Then, the stepped seal is optimized by starting with one rotor tooth, as seen in Fig.
4.14. The result presents a more constricted channel than the result for the pure fluid
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(a) Re = 1
J = 0.418 mm

(b) Re = 25
J = 13.6 mm

(c) Re = 50
J = 28.7 mm

Figure 4.13 – Effect of the Reynolds number on the stepped labyrinth seal design using the rotor-stator
algorithm. The angular velocity is ωr = 0 rpm. The streamlines are plotted over the
results.

(a) Initial guess (b) Result (c) Velocity (d) Streamlines (e) Pressure

Figure 4.14 – Stepped labyrinth seal optimization with rotor-stator algorithm and an initial guess
with one rotor tooth (Re = 50 and ωr = 50 rpm). The final head loss is J = 37.0 mm.

initial guess (Fig. 4.12a), with an increase in head loss from 33.1 to 37.0 mm. The larger
head loss is caused by the longer inclined channel, which has a lower gap size. As the
rotor diameter is larger, the increase of tangential velocity with radial coordinate becomes
clearer. The optimization ends after 167 iterations.

The result obtained by starting with two teeth is presented in Fig. 4.15. The initial
head loss is 25.3 mm, which is more than twice the head loss of the previous initial guesses.
The improvement in the initial head loss occurs because the second tooth deviates the
flow from the outlet. The final head loss is 53.1 mm, which is also high. The optimized
solution presents two small stator teeth, one close to the outlet and the other to the rotor
tooth. These small stator teeth promote additional constriction and split the flow in the
main flow and in recirculation zones, as seen in the streamlines plot (Fig. 4.15d). The
optimization ends after 110 iterations.

Table 4.3 summarizes the comparison of the stepped results for different initial guesses.
As for the staggered labyrinth seal, the result obtained by starting with two teeth presents
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(a) Initial guess (b) Solution (c) Velocity (d) Streamlines (e) Pressure

Figure 4.15 – Stepped labyrinth seal optimization with rotor-stator algorithm and an initial guess
with one stator tooth and rotor tooth (Re = 50 and ωr = 50 rpm). The final head loss
is J = 53.1 mm.

Table 4.3 – Comparison of stepped labyrinth seal objective function values for different initial guesses.

Initial guess Results J0 (mm) J (mm) J/J0

Pure fluid Fig. 4.12 10.9 33.1 3.02
1 tooth Fig. 4.14 12.6 37.0 2.94
2 teeth Fig. 4.15 25.3 53.1 2.10

a higher head loss. The results starting with pure fluid domain and one tooth present
similar values at the initial and final designs, showing that the tooth does not contribute
considerably to the head loss. Although the tooth guides imposes an annular orifice to the
flow, it also guides the fluid towards the outlet.

4.1.4 Straight-through Labyrinth Seal in Turbulent Flow

The first arrangement optimized for turbulent flow is the straight-through (Fig. 4.1a).
The design follows the standard TOBS approach for fluid flow topology optimization, with
the optimization problem written as

max
∆α(k)

∂J

∂α

(
v(k), p(k)

)
∆α(k) (with J from Eq. 2.63)

s.t. Frans (νeff; v, p, ν̃, wv, wp, wν̃) = 0, ∀ (wv, wp, wν̃) ∈ (V , Q, N )∥∥∥∆α(k)
∥∥∥

1
≤ βflNα

∆α(k) ∈
{
−α(k), 1− α(k)

}
(4.3)

The straight-through results in turbulent flow are presented in Fig. 4.16. The inlet
velocity is increased to 3.86 m/s (Re = 500), the rotation is increased to 10000 rpm, and
the RANS equations with Spalart-Allmaras model are used to simulate the fluid flow. For
higher velocities, the turbulent eddies are the main mechanism of energy dissipation and
head loss. Therefore, the optimizer does not constrict the channel to the minimum gap size
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(a) q = 10
J = 2.26 m

(b) q = 1
J = 2.30 m

(c) q = 0.1 (d) q = 0.01
J = 2.45 m

Figure 4.16 – Straight-through labyrinth seal design in turbulent regime with TOBS algorithm (Re =
500 and ωr = 10000 rpm).

as in the result for laminar flow (Fig. 4.2) because the turbulent eddies require a cavity
to develop. The obtained design is in accordance with the literature experience on the
physics of labyrinth seals (SNECK, 1974).

For turbulent flow, the solution of the governing equations is harder than for laminar
flow, increasing the difficulty of obtaining optimization results. In Fig. 4.16c, the optimization
for qc = 0.1 failed at iteration 58 because the solution of the fluid flow equations did not
converge. For the other choices of qc, the optimization ran successfully for 150 iterations,
being stopped because the maximum number of iterations was reached (the maximum
number of iterations is reduced for turbulent flow because the time to solve the fluid flow
equations increases considerably).

The objective function history is oscillatory for the straight-through design in turbulent
flow according to Fig. 4.17, which presents the convergence curves for the valid results
of Fig. 4.16. The oscillations are due to the large steps involved in the TOBS approach
(going from 0 to 1 or from 1 to 0) and the number of elements that are allowed to change
during each optimization step. As the large steps are inherent to the TOBS approach, the
alternative for reducing the oscillations is to reduce the number of elements allowed to flip
during each optimization iteration by lowering βfl.

Figure 4.18 shows the effect of reducing the flip limits to 0.25% for qc = 0.01. It is seen
that the objective function oscillations are reduced in the convergence graph; however,
there are fewer solid elements in the final design when compared to the results of Fig. 4.16.
Again, the maximum number of iterations was reached. By analyzing the iterations (second
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(a) Convergence for Fig. 4.16a (b) Convergence for Fig. 4.16b (c) Convergence for Fig. 4.16d

Figure 4.17 – Objective function history for the TOBS results of straight-through labyrinth seal
optimization in turbulent flow.

row of Fig. 4.18), the optimization oscillated between similar designs with a localized
change in the region highlighted by the red ellipses. Therefore, working with a lower flip
limits parameter is not viable.

Figure 4.19 presents the velocity, pressure, and turbulent kinematic viscosity for the
result of Fig. 4.16d. The higher values of turbulent kinematic viscosity occur in the
chamber of the labyrinth seal, indicating that the turbulent eddies are concentrated in
this region. The maximum value of νT is around 5.8× 10−4 m2/s, which is two orders of
magnitude higher than the molecular kinematic viscosity of CO2 at 15°C (ν = 7.7× 10−6

m2/s), indicating that the turbulent dissipation dominates the head loss for Re = 500 and
ωr = 10000 rpm.

4.1.5 Staggered Labyrinth Seal in Turbulent Flow

The staggered labyrinth seal in turbulent flow is optimized with the rotor-stator
algorithm (Section 2.4.5.1), and the RANS equations closed with the Spalart-Allmaras
turbulence model are used to describe the fluid flow. Then, the optimization problem is
given by

max
∆α, ∆β

∂J

∂α
∆α + ∂J

∂β
∆β (with J from Eq. 2.63)

s.t. Frans (νeff; v, p, ν̃, wv, wp, wν̃) = 0, ∀ (wv, wp, wν̃) ∈ (V , Q, N )∥∥∥∆α(k)
∥∥∥

1
≤ βflNα∥∥∥∆β(k)

∥∥∥
1
≤ βflNβ

∆α ∈ Sα

∆β ∈ Sβ

(4.4)

The FEniCS TopOpt FOAM software is used to solve the fluid flow equations because
the algorithm described in Section 3.3.1 failed even for moderate turbulent conditions. The
SIMPLEC algorithm of OpenFoam is used to solve the fluid flow equations. The maximum
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(a) Solution
(b) Convergence

(c) Iter. 20 (d) Iter. 40 (e) Iter. 60 (f) Iter. 80 (g) Iter. 100 (h) Iter. 120

Figure 4.18 – Effect of reducing the flip limits to 0.25% for q = 0.01 for the straight-through labyrinth
seal design in turbulent flow with TOBS (Re = 500 and ωr = 10000 rpm).

(a) Result (b) Velocity (c) Pressure (d) Turbulent
viscosity

Figure 4.19 – Velocity, pressure, and turbulent kinetic viscosity for the straight-through result in
turbulent regime with TOBS and qc = 0.01 (Re = 500 and ωr = 10000 rpm).
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(a) Result (b) Velocity (c) Pressure (d) Turbulent
viscosity

(e) Convergence
history

Figure 4.20 – Staggered labyrinth seal optimization in turbulent regime with rotor-stator algorithm
(Re = 1000 and ωr = 10000 rpm). The final head loss is J = 27.2 m.

inlet axial velocity is 7.7 m/s (Re = 1000) and the shaft angular velocity is ωr = 10000
rpm. The element size is increased to 0.2 mm in order to reduce the computational cost.
Figure 4.20 presents the optimization result, the flow variables, and the convergence
history. It is seen that the optimized design does not emphasize on narrow channels, as
observed for laminar flow (Fig. 4.6). This is expected because turbulent eddies require
space to develop. The objective function oscillated considerably and the optimization
stopped because the maximum number of iterations was reached. Therefore, the objective
function did not converge. The maximum value of the objective function occurred in an
intermediate iteration and it is 38.7% higher than the final value. The oscillations are
related to the binary nature of the design variables (as in Section 4.1.4) and the projection
from FEniCS to OpenFoam (see Appendix B).

4.1.6 Stepped Labyrinth Seal in Turbulent Flow

The same approach described in the previous section is applied to optimize the
staggered labyrinth seal in turbulent flow. The results are presented in Fig. 4.21 for Re =
1000 and ωr = 10000 rpm. As for the staggered seal in turbulent regime, the convergence
curve is oscillatory and the optimization ended due to the maximum number of iterations.
Again, the objective function did not converge. The final material distribution presents
two chambers and the flow is accelerated at the entrance of the first chamber, where most
of the turbulent dissipation occurs. The final head loss is J = 9.62 m, which is a low value
obtained after an oscillation.

It is also interesting to study the oscillations of Fig. 4.21e from a physical perspective.
This study may be made by analyzing the material distributions at the peaks of Fig.
4.21e, which corresponds to iterations 45, 152 and 248. The material distributions present
differences concerning the chambers size, number of small teeth, and location of teeth.
However, the head loss difference between the peaks is lower than the head loss difference
between the third peak and the last iteration, which presents similar material distributions.
The core difference is one rotor tooth at the entrance of the design domain, which is absent
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(a) Result (b) Velocity (c) Pressure (d) Turbulent
viscosity

(e) Convergence
history

Figure 4.21 – Stepped labyrinth seal optimization in turbulent regime with rotor-stator algorithm (Re
= 1000 and ωr = 10000 rpm). The final head loss is J = 9.62 m.

(a) Iter. 45
J = 20.5 m

(b) Iter. 152
J = 18.8 m

(c) Iter. 248
J = 21.5 m

Figure 4.22 – Material distribution and turbulent kinetic energy of the peaks of the convergence curve
of stepped labyrinth seal optimization in turbulent regime with rotor-stator algorithm
(Re = 1000 and ωr = 10000 rpm).

in the final design. The differences show how sensitive the turbulent flow is regarding design
changes and provide an understanding of the oscillations. As the material distribution
is discrete and there are thin structural members, the flow obstacles may be removed
between iterations, leading to high objective function changes.

4.2 Continuous Design Variables

The labyrinth seal arrangements described in Fig. 4.1 are also optimized with continuous
design variables. Similarly to the discrete approach, the straight-through labyrinth seal may
be approached with standard fluid flow topology optimization algorithms (BORRVALL;
PETERSSON, 2003), while the staggered and stepped arrangements require the specialized
formulation presented in Section 2.4.5.2 (MOSCATELLI et al., 2024). Again, the results
are grouped into laminar and turbulent.
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(a) Solution (b) Velocity (c) Pressure (d) Convergence history zoom

Figure 4.23 – Straight-through labyrinth seal design in laminar regime with MMA (Re = 100 and ωr
= 4000 rpm). The final head loss is 51.5 mm.

4.2.1 Straight-through Labyrinth Seal in Laminar Flow

The straight-through labyrinth seal optimization with continuous design variables and
laminar flow is performed by solving the following optimization problem

max
m

J(v, p) (with J from Eq. 2.63)

s.t. Fns (ν; v, p, wv, wp) = 0, ∀ (wv, wp) ∈ (V , Q)
m ∈ [0, 1]

(4.5)

The inlet velocity and shaft rotation are the same as the optimization with TOBS
(Section 4.1.1), which are 0.77 m/s (Re = 100) and ωr = 4000 rpm. Figure 4.23 shows that
the same straight channel constricted to the minimum gap size is obtained (as in Fig. 4.2).
The convergence curve is smooth, the final head loss is reached in about 5 iterations, and
the optimization converges after 26 iterations. The result from Fig. 4.23 corroborates that
the straight channel is the optimum solution under low and moderate Reynolds numbers.

4.2.2 Staggered Labyrinth Seal in Laminar Flow

For continuous design variables, the staggered labyrinth seal is designed with the
interface identification method presented in Section 2.4.5.2. The first case considers a flow
with low energy (Re = 1 and ωr = 0 rpm), in which the main head loss mechanism is
viscous dissipation due to high-velocity gradients. The expected result is a long channel
constricted to the minimum gap size because a strict flow passage increases the velocity
gradients, and a long path represents more dissipation regions. The optimization problem
of Eq. 4.5 is solved for this first case.

Figure 4.24 presents the optimization result, the velocity and pressure fields, and the
convergence curve. The white and black contours in the velocity and pressure fields are
the isolines for mr = 0.5 and ms = 0.5, respectively. It is seen that the proposed algorithm
produces an expected solution. Regarding the optimization parameters used to obtain this
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(a) Result (b) Velocity (c) Pressure
(d) Convergence

Figure 4.24 – Staggered labyrinth seal optimization with the interface identification method without
additional constraints (Re = 1 and ωr = 0 rpm), resulting in an head loss of 0.590 mm.

result, the material model convexity is qc = 10−4 and the Darcy number is Da = 10−5. The
steepness parameter βth starts at 8, and it is doubled after each continuation step until it
reaches the value of 64. The MMA move limits are 0.2, the minimum iteration change is
ϵm = 0.01 (Eq. 3.1), and the maximum number of iterations per continuation step is 100.

The staggered labyrinth seal is also optimized with the same parameters of Fig. 4.24
and different minimum gaps gmin to show that the interface identification method is capable
of controlling the minimum gap size. The results are presented in Figs. 4.24 and 4.25 for
different ratios of minimum gap gmin to inlet size eH. The optimizer has less freedom to
create complex forms for larger gap sizes, as seen in Figs. 4.25a, 4.25b, and 4.25c. As the
minimum gap is reduced, the optimization result becomes more tortuous, and the head
loss is increased.

Figure 4.26 presents a graphical representation of the head loss trend as the minimum
gap size is reduced. As discussed before, the increase in head loss is due to a combination of
narrower channels and longer fluid flow paths. For stricter passages, the velocity gradient
magnitude is larger, which improves the local viscous dissipation as this dissipation is
related to the square of the velocity gradient. Therefore, the head loss has a trend close to
a quadratic or exponential growth as the minimum gap size is reduced.

Before proceeding to the optimization of staggered and stepped labyrinth seals with
rotation, it is necessary to choose a connectivity constraint for the interface identification
method because free-floating solid islands may appear in the optimization result, as shown
in Fig. 4.27. These islands are undesirable because they may not be realized physically
without the introduction of supporting structures, which are also undesirable because they
may compromise the performance of the optimization result. Figure 4.28 shows the velocity
and streamlines fields for the results with ωr = 100 rpm (first line of Fig. 4.27). It is seen
that the velocity increases with radial direction as desired. However, there may be fluid flow
seepage through the thin structural members. In this case, minimum length constraints
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δ = 2.00
J = 0.19mm

(a)

δ = 1.75
J = 0.21mm

(b)

δ = 1.50
J = 0.24mm

(c)

δ = 1.25
J = 0.35mm

(d)

δ = 1.00
J = 0.59mm

(e)

δ = 0.75
J = 1.24mm

(f)

δ = 0.50
J = 4.25mm

(g)

Figure 4.25 – Minimum gap size control of the staggered labyrinth seal for different ratios gmin and
eH (Re = 1 and ωr = 0 rpm).

Figure 4.26 – Objective function trend for different ratios of minimum gap size gmin to inlet size eH
(Re = 1 and ωr = 0 rpm).

may be added to the optimization problem to circumvent the seepage (MOSCATELLI et
al., 2024).

The following sections present tests regarding the connectivity constraints discussed
in sections 2.4.5.3 (VFSI) and 2.4.5.4 (VTM). The objective is to select one of these
constraints for the rest of the work. The selection will be based on the ability to avoid
free-floating islands, the possibility of not over-constraining the optimization, and the
easiness of calibration.
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Figure 4.27 – Topology optimization of staggered labyrinth seal by interface identification method
without connectivity constraints (Re = 1).

4.2.2.1 Fluid-Structure Interaction (VFSI)

The VFSI constraint is included in the design process by adding the inequality Gf ≤ 0
to the optimization problem of Eq. 4.5, resulting in the following problem

max
m

J(v, p) (with J from Eq. 2.63)

s.t. Fns (ν; v, p, wv, wp) = 0, ∀ (wv, wp) ∈ (V , Q)
Gf ≤ 0
m ∈ [0, 1]

(4.6)

First, the VFSI constraint is tested with pressure loads only (Eq. 2.76) and the results
for ωr = 100 rpm are presented in Fig. 4.29. Each line presents one admissible value Cf

for the constraint, and each column one value of the material model convexity qc. It is
seen that in most cases, the free-floating islands are avoided; however, in some cases (such
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(a) qc = 10−4 (b) qc = 10−3 (c) qc = 10−2 (d) qc = 10−1 (e) qc = 10+0 (f) qc = 10+1

Figure 4.28 – Velocity and streamlines of the staggered labyrinth seals designed by interface
identification method without connectivity constraints (Re = 1 and ωr = 100 rpm).

as in Figs. 4.29h and 4.29n), the islands are still present. Also, when comparing the first
line of Fig. 4.27 with Fig. 4.29, it is noted that the VFSI constraint is over-constraining
the problem as the objective function values of Fig. 4.27 are considerably higher than the
objective function values of Fig. 4.29. Also, it is hard to identify a pattern of the constraint
behavior as Cf is changed. Therefore, the VFSI with pressure loads only does not met
any of the goals of the connectivity constraint.

Figure 4.30 presents the attempt to avoid free-floating islands by including the FSI
velocity loads (Eq. 2.77). For most cases, there are no significant differences from Fig.
4.29 as seen by inspecting the material distributions and objective functions for the same
qc and Cf . Therefore, adding the velocity loads does not improve the behavior of the
VFSI constraint. The bad performance of the VFSI as a connectivity constraint is possibly
related to the dependence on the fluid flow. For a given fluid flow, there may be regions
with high and low FSI loads. The admissible constraint Cf for each region will differ,
making calibration hard. It may also be the case that free-floating islands will never be
avoided in regions with low pressure and velocity gradients. Therefore, an alternative
connectivity constraint is necessary. The inclusion of FSI would only be interesting if other
design criteria beyond maximizing head loss are required, such as increasing resonance
frequency and limiting stress levels.

4.2.2.2 Virtual Temperature Method (VTM)

As the VFSI constraint failed to remove the free-floating islands and hindered the
optimization, it is necessary to test another connectivity constraint. The VTM from (LIU
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Figure 4.29 – Topology optimization of staggered labyrinth seals by interface identification with VFSI
connectivity constraint based on pressure loads only (Re = 1).
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Figure 4.30 – Topology optimization of staggered labyrinth seals by interface identification with VFSI
connectivity constraint based on velocity and pressure loads (Re = 1).
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et al., 2015) was chosen as an alternative and the optimization problem is now given by

max
m

J(v, p) (with J from Eq. 2.63)

s.t. Fns (ν; v, p, wv, wp) = 0, ∀ (wv, wp) ∈ (V , Q)
Gt ≤ 0
m ∈ [0, 1]

(4.7)

Figure 4.31 presents the tests for different values of the calibration constant Tc and
the material model convexity qc. The shaft angular velocity is 100 rpm, as in the previous
section. The first line of Fig. 4.31 shows that the VTM constraint is capable of avoiding
the free-floating islands; however, the constraint limits the optimization if a low admissible
temperature is used (compare the head loss of Figs. 4.27 and 4.31 for the same qc). Then,
the second line of Fig. 4.31 shows that it is possible to find an admissible temperature
value that avoids the islands without limiting the optimization. Finally, the third line of
Fig. 4.31 illustrates that a high value of admissible temperature does not avoid the floating
islands.

The tests presented in Fig. 4.31 also show that the VTM constraint is easier to calibrate
than the VFSI constraint. As the calibration constant Tc is increased, the optimization
results go from over-constrained results without islands to not constrained results with
islands, making it possible to use an intermediary value of Tc that allows optimized results
without islands. The easiness of calibration is possibly related to the linear nature of the
heat transfer problem of Eq. 2.80. As the VTM constraint provided better results, it was
chosen for the optimization of the staggered and stepped labyrinth seals.

4.2.3 Stepped Labyrinth Seal in Laminar Flow

The stepped seal in laminar flow is optimized with the interface identification method
(Section 2.4.5.2) and VTM constraint (Section 2.4.5.4 and Eq. 4.7). First, the influence
of the shaft rotation is evaluated by solving the problem from Fig. 4.1c with different
values of ωr and qc, as seen in Fig. 4.32. The inlet Reynolds number is Re = 1, allowing
the rotation to be the dominant effect during optimization. The results depend on the
material model’s convexity, and high convexity (low qc) is inappropriate for optimization
with rotation, according to Figs. 4.32f, 4.32g, 4.32k, and 4.32l. Low convexity may result
in thin structural parts, as seen in the last column of Fig. 4.32 (qc = 1). The results for
200 rpm show that the interface identification method does not impose a fluid channel
with uniform length, as the lower right part of the design domain presents fluid regions
larger than the minimum gap. The ability to model non-uniform fluid channels is especially
important for turbulent flows because larger chambers may facilitate the development of
turbulent eddies.
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Figure 4.31 – Effect of the VTM calibration factor Tc on the topology optimization of staggered
labyrinth seals (Re = 1).
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Figure 4.32 – Effect of the angular velocity on the topology optimization of stepped labyrinth seals
with interface identification method (Re = 1).
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(a) Result (b) Velocity (c) rz velocity (d) Streamlines (e) Pressure

Figure 4.33 – Stepped labyrinth seal state variables for Re = 1, ωr = 100 rpm, and qc = 0.01.

Figure 4.33 shows the state variables for Re = 1, ωr = 100 rpm, and qc = 0.01, which
produced a result with rotor and stator sizes that enable the visualization of the rotation
effect. The velocity magnitude increases with the radial coordinate according to Fig. 4.33b.
The streamlines that connect the inlet to the outlet are constrained by recirculating zones
along the seal (Fig. 4.33d). The pressure does not decrease continuously along the seal as
in Fig. 4.24c. There is a pressure increase when the flow passes through the inner part of
the hook-shaped rotor (Fig. 4.33e).

Then, the influence of the inlet velocity is studied by keeping the shaft stationary (ωr

= 0) and varying the inlet Reynolds number, as shown in Fig. 4.34. Most results are narrow
channels and the channel length increases as the material model interpolation becomes less
convex (qc increases). The results for qc = 1 present stator and rotor teeth that deviate
the flow several times. Again, the minimum size of the structural parts decreases as qc

increases.

Finally, the effect of moderate rotations and inlet velocities is accessed by running the
optimization with Re = 100 and ωr = 100 rpm, as seen in Fig. 4.35. The results are closer
to the second line of Fig. 4.34 than to the second line of Fig. 4.32, showing a dominance
of the inlet velocity.

4.2.4 Straight-through Labyrinth Seal in Turbulent Flow

Most of the results of previous sections are labyrinth seals constricted to the minimum
gap size because viscous dissipation due to high-velocity gradients is the main mechanism
for obtaining head loss when the fluid does not have enough energy to form turbulent
eddies. This section explores optimization cases with turbulent flow, which is the real
condition for labyrinth seals operating with GHGs. The RANS equations closed with
the Spalart-Allmaras turbulence model are used with ν̃in = 10−4. Then, the optimization
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Figure 4.34 – Effect of the inlet velocity on the topology optimization of stepped labyrinth seals with
interface identification method (ωr = 0 rpm).
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Figure 4.35 – Stepped labyrinth seal optimization with interface identification method (Re = 100 and
ωr = 0 rpm).

problem for the straight-through labyrinth seal in turbulent flow is given by

max
m

J(v, p) (with J from Eq. 2.63)

s.t. Frans (νeff; v, p, ν̃, wv, wp, wν̃) = 0, ∀ (wv, wp, wν̃) ∈ (V , Q, N )
m ∈ [0, 1]

(4.8)

First, a study regarding the influence of the inlet velocity in the magnitude of the
turbulent viscosity is performed, as seen in Fig. 4.36. The shaft is not rotating to simplify
the interpretation of results. It is possible to observe that for Re = 100, which is the
condition of Section 4.2.1, the Spalart-Allmaras turbulence model does not identify the
formation of turbulent eddies inside the design domain. The absence of turbulent eddies
corroborates that the straight channel constricted to the minimum gap size is the optimal
solution for low to moderate Reynolds numbers. For Re = 250 and 500, there is turbulent
dissipation inside the design domain. Therefore, it is possible to use Re = 500 as a starting
point for the labyrinth seal optimization in turbulent flow.

Figure 4.37 presents the state variables and the sensitivities for Re = 500 and ωr =
10000 rpm. The pressure field has maximum and minimum values in the connection of
the chamber to the inlet and outlet tube, respectively. These maximum and minimum
values are high and low compared to the other values inside the design domain, which
may indicate numerical artifacts. Therefore, some experiments chamfering the corners and
using different meshes were performed. After analyzing the results of the experiments, it
was found that the issue is associated with the turbulent velocity profile (Eq. 2.22) as it is
alleviated with the use of a parabolic profile (Eq. 2.21), as seen in Fig. 4.38. However, we
proceed with the “almost constant” profile because it is more appropriate for turbulent
flows.
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(a) Re = 100 (b) Re = 250 (c) Re = 500

Figure 4.36 – Effect of the inlet velocity (through inlet Reynolds number) in the turbulent viscosity of
the straight-through labyrinth seal.

(a) Velocity (b) Pressure (c) Turbulent viscosity (d) Sensitivities

Figure 4.37 – State variables and sensitivities for a fully developed turbulent velocity profile at the
inlet.

(a) Velocity (b) Pressure (c) Turbulent viscosity (d) Sensitivities

Figure 4.38 – State variables and sensitivities for a parabolic velocity profile at the inlet.
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Figure 4.39 presents the influence of the convexity qc and the steepness βth in the
topology optimization of straight-through labyrinth seals in turbulent flow. The parameter
βth is kept constant because continuation did not improve the results, and it increased
the number of iterations. In general, the results present one large chamber followed by
smaller chambers. The big chamber also presents smaller chambers attached to it. It is
concluded that the intermediate densities are not penalized because there are considerable
intermediate densities for the low βth results.

The velocity, pressure, and turbulent viscosity fields of the result from Fig. 4.39r are
presented in Fig. 4.40 with the black contour line indicating the solid frontier. The turbulent
viscosity field helps understand the results from Fig. 4.39. The turbulent dissipation is
concentrated in the chambers, being larger in the first chamber. The size of each chamber
is associated with the remaining energy in the fluid flow because the larger the chamber,
the higher the energy required to enter the chamber and form turbulent eddies. As there
is turbulent energy dissipation in each chamber, the size of the chambers diminishes
downstream.

Another important output to investigate is the objective function history. Figure 4.41
presents the convergence curves for qc = 0.01 and different values of βth, which corresponds
to the study of the last line of Fig. 4.39. It is seen that the oscillations in the objective
function graph increase for higher values of the steepness βth of the smooth Heaviside
projection. Therefore, it may be necessary to use the continuation of βth for higher flow
velocities.

4.2.5 Staggered Labyrinth Seal in Turbulent Flow

The staggered seal in turbulent flow is optimized with the interface identification
method (Section 2.4.5.2) and VTM constraint (Section 2.4.5.4). Then, Equation 4.7 is
modified to include the weak form of the RANS equations with Spalart-Allmaras turbulence
model, as follows

max
m

J(v, p) (with J from Eq. 2.63)

s.t. Frans (νeff; v, p, ν̃, wv, wp, wν̃) = 0, ∀ (wv, wp, wν̃) ∈ (V , Q, N )
Gt ≤ 0
m ∈ [0, 1]

(4.9)

The inlet velocity is 3.86 m/s (Re = 500) as for the straight-through labyrinth seal
because this velocity already provides turbulent eddies in the design domain (Fig. 4.36).
Figure 4.42 presents a study of the influence of the rotation and the material model
convexity on the optimization result. The designs do not present large open chambers as in
the case of the staggered labyrinth seal, and the optimization fails for some combinations
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Figure 4.39 – Influence of qc and βth in the topology optimization of straight-through labyrinth seals
in turbulent flow with MMA (Re = 500 and ωr = 10000 rpm).
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(a) Solution (b) Velocity (c) Pressure (d) Turbulent viscosity

Figure 4.40 – State variables for straight-through labyrinth seal design with qc = 0.01 and βth = 32
(Re = 500 and ωr = 10000 rpm).

of qc and ωr, showing that the design of the staggered seal is more challenging than the
design of the straight-through seal. The failures are related to non-convergence of the
fluid flow simulations, which are probably more associated with hard-to-analyze material
distributions than to the parameters qc and ωr as there is no failure pattern (such as the
optimization is constantly failing for qc = 0.01).

Three designs of Fig. 4.42 are worth inspecting with more attention. First, the results
from Figs. 4.42g and 4.42j are almost identical, although they were obtained with and
without rotation. Also, the material distribution is a long, tortuous channel constricted to
the minimum gap size. However, the result for the straight-through labyrinth seal (Fig.
4.39) indicated that a large chamber is more interesting for developing turbulent eddies.
Second, the result of Fig. 4.42i is similar to the other two results although it presents a
larger chamber close to the inlet.

Figure 4.43 presents the state variables and head loss convergence history for the
result obtained for qc = 0.1 and ωr = 1500 rpm (Fig. 4.42j). The velocity field shows that
the flow is constricted beyond the minimum gap size of the channel in some regions. By
inspecting the turbulent viscosity field, it is possible to see that some constrictions are
associated with the development of turbulent eddies, which are formed in regions where
the flow is deviated by the stator or rotor geometry. Therefore, the turbulent eddies may
also be promoted by deviating the flow in addition to being generated at large chambers.
The convergence history presents oscillations concentrated after the continuation steps,
indicating that a smooth updating strategy may be more appropriate than doubling βth

after each continuation step.

A closer inspection of Fig. 4.43 shows that the isolines at mr = ms = 0.5 are not
compatible with the velocity and turbulent viscosity fields. For higher radial coordinates,
small values of mr affect the flow field considerably due to the convexity of the material
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(a) βth = 1 (b) βth = 2

(c) βth = 4 (d) βth = 8

(e) βth = 16 (f) βth = 32

Figure 4.41 – Objective function history for the straight-through labyrinth seal with qc = 0.01.
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Figure 4.42 – Staggered labyrinth seal design in turbulent regime with interface identification method
and VTM constraint (Re = 500 and different angular velocities).
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(a) Result (b) Velocity (c) Pressure (d) Turbulent
viscosity

(e) Convergence
history

Figure 4.43 – Staggered labyrinth seal optimization in turbulent regime with interface identification
method and qc = 0.1 (Re = 500 and ωr = 1500 rpm). The final head loss is J = 14.2 m.

(a) Velocity (b) Pressure (c) Turbulent
viscosity

Figure 4.44 – Staggered labyrinth seal in turbulent flow with isolines at mr = ms = 0.5 (yellow),
mr = 0.1 (white), and ms = 0.1 (black).

model; however, the isolines at mr = 0.5 do not delimit this influence. Also, for lower radial
coordinates, small values of ms have the same effect. Therefore, it is more appropriate to
use a different isoline level for interpreting the results as shown in Fig. 4.44, where the
isolines at mr = ms = 0.5 are drawn in yellow, and the new isolines at mr = ms = 0.1
are drawn in white and black. The shift from the yellow to the black and white isolines
improves the capture of the material model influence.

Next, the influence of the rotation is accessed by inspecting the state variables of
the result from Fig. 4.42g, which was obtained with ωr = 0. The velocity, pressure, and
kinematic viscosity are presented in Fig. 4.45, with the isolines drawn at mr = ms = 0.1 to
capture the influence of the material model better. The turbulent viscosity is similar to Fig.
4.43d, indicating that the shaft rotation is not the deciding factor for forming turbulent
eddies. Still, the head loss of the result with ωr = 1500 rpm is slightly larger, showing some
contribution of the rotation to increase the head loss. The convergence history presents
the same features of the result with rotation, corroborating that a smoother continuation
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Figure 4.45 – Staggered labyrinth seal optimization in turbulent regime with interface identification
method and qc = 0.1 (Re = 500 and ωr = 0 rpm). The isolines are at mr = ms = 0.1.
The final head loss is J = 13.6 m.

(a) Result (b) Velocity (c) Pressure (d) Turbulent
viscosity

(e) Convergence
history

Figure 4.46 – Staggered labyrinth seal optimization in turbulent regime with interface identification
method and qc = 0.1 (Re = 500 and ωr = 1000 rpm). The isolines are at mr = ms = 0.1.
The final head loss is J = 14.8 m.

strategy should be investigated.

Finally, the influence of the chamber from Fig. 4.42i is studied by inspecting the state
variable fields. The chamber concentrates the larger values of turbulent kinetic viscosity,
and the head loss is greater than in the result for 1500 rpm, although the angular velocity
is lower (1000 rpm), showing the importance of the chambers in improving turbulent
dissipation. The pressure drops in the three cases (Figs. 4.42g, 4.42i, and 4.42j) are
associated with increases in the velocity. Therefore, they are not dissipative because the
pressure head is converted into velocity head.

4.2.6 Stepped Labyrinth Seal in Turbulent Flow

The stepped seal in turbulent flow is also optimized with the interface identification
method (Section 2.4.5.2) and VTM constraint (Section 2.4.5.4). Therefore, Equation 4.9 is
solved to design the stepped seal in turbulent flow. The same study regarding the influence
of material model convexity qc and shaft rotation ωr is performed for the stepped seal, and
the results are presented in Fig. 4.47. As the radial coordinate of the outlet is larger, the
fluid flow with large rotations is more difficult to simulate in the stepped seal than in the
staggered seal. In consequence, the results for 2000 and 2500 rpm failed. For the other
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Figure 4.47 – Stepped labyrinth seal design in turbulent regime with interface identification method
and VTM constraint (Re = 500 and different angular velocities).

angular velocities, most of the results are tortuous paths that deviate the flow multiple
times to form turbulent eddies.

Figure 4.48 shows the velocity, pressure, and turbulent viscosity fields for the result
with qc = 0.1 and ωr = 1500 rpm (Fig. 4.47j). As in the staggered seal, the turbulent
viscosity is higher in the parts of the design domain where the flow is deviated by the
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Figure 4.48 – Stepped labyrinth seal optimization in turbulent regime with interface identification
method and qc = 0.01 (Re = 500 and ωr = 1500 rpm). The final head loss is J = 18.7 m.

rotor or stator geometry. Also, the velocity field shows that the flow towards the outlet is
constricted in regions with high turbulent viscosity. The objective function oscillates less
after the continuation steps than in the staggered seal example. The isolines of mr and
ms are drawn at 0.1 according to the previous section’s discussion. These isolines envelop
the turbulent viscosity field appropriately. However, there is some seepage in parts of the
velocity field, showing the increased difficulty of calibrating the material model parameters
in turbulent flow.

4.3 Inflatable Seals

This section presents topology optimization results with the solid material models
described in Section 2.4.4 for solids with large deformations subjected to pressure loads.
These results are the first step towards designing inflatable seals with topology optimization
and combining the concepts of labyrinth seals with inflatable seals. One critical remark is
that the discrete filter given by Eq. 2.48 is used for density filtering instead of the PDE
filter given by Eq. 2.46. The rationale for this change is presented in Appendix C.

4.3.1 Topology Optimization with Finite Deformation and Pressure Loads

The internally pressurized lid is the first study regarding structural topology optimization
with finite deformation and pressure loads. The idea is to check how including the
geometrical and material nonlinearities affects the optimized result of a well-known
topology optimization benchmark (DU; OLHOFF, 2004; SIGMUND; CLAUSEN, 2007).
The optimization problem consists of minimizing the structural compliance under a volume
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(a) 2D

(b) 3D

Figure 4.49 – Design domain and boundary conditions of the internally pressurized lid benchmark.

constraint, which may written as follows

min
m

Cs (u)

s.t. D Π(u)[wu] = 0 ∀wu ∈ U

GV– ≤ 0
m ∈ [0, 1]

(4.10)

The design domain and boundary conditions of the internally pressurized lid in 2D
and 3D are presented in Fig. 4.49. The geometrical parameters are L = 0.2 m, H = 0.1 m,
and Hf = 0 m (after numerical tests, it was noted that the fixed fluid region at the bottom
of the domain is unnecessary). The pressure load is P = 0.1 GPa and the solid is nylon
with a Young’s modulus of 3 GPa and a Poisson’s ratio of 0.4. The mesh is composed
of 200x100 quadrilateral elements of degree 1, the density filter radius is rmin = 2 mm,
the threshold of the projection is ηth = 0.5, and the volume fraction is 0.25. The slope
of the smooth Heaviside projection βth and SIMP penalization exponent Psimp follow the
update strategy presented by Wang et al. (2014). The slope βth starts at 1 and ends at 32,
while the exponent Psimp starts at 1 and ends at 3. The same problem is optimized with
the linear and nonlinear models for comparison. In fact, the continuation of Psimp is only
important for the nonlinear optimization. The indicator function (Eq. 2.57) is obtained
with ηγ = 0.01 and βγ = 500.

Figure 4.50 presents the result of the linear constitutive model (Eq. 2.51), with
the deformed configuration and the convergence curve. The solid is assumed to be
under plane strain. The optimized result is a round structure in accordance with the
literature on design-dependent pressure loads for small deformations (KUMAR; FROUWS;
LANGELAAR, 2020). However, the deformation is high for the linear analysis to be
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(a) Solution
(b) Deformed

(c) Convergence

Figure 4.50 – Design of an internally pressurized lid with linear constitutive model. The final objective
function value is Cs = 0.42 MJ.

(a) Solution (b) Deformed

(c) Convergence

Figure 4.51 – Design of an internally pressurized lid with Neo-Hookean constitutive model. The final
objective function value is Cs = 0.37 MJ.

accurate. When running the same problem with a nonlinear solver and Neo-Hookean
constitutive model, the optimized result is a flatter structure according to Fig. 4.51. The
convergence of the nonlinear study is more oscillatory than the convergence of the linear
result. Therefore, tuning the MMA optimizer better may be necessary if the oscillations
become problematic.

The same study is performed in 3D and presented in Figs. 4.52 and 4.53. Only
one-quarter of the design domain is used for analysis and optimization to reduce the
computational cost. The mesh is relatively coarser than in the 2D examples, consisting of
25x25x25 hexahedral elements of order 1. Figures 4.52a and 4.53a show the xy view of
the design domain, while Figs. 4.52b and 4.53b present the 3D result with one quarter
trimmed to show the internal part of the structure. Again, the nonlinear result is flatter,
although the difference is more subtle than in the 2D result. Also, the convergence curve
of the nonlinear case (Fig. 4.53) is more oscillatory than the convergence of the linear case
(Fig. 4.52c).

The second study involves the piston head benchmark problem, and the focus
is to evaluate the behavior under compression and traction by running the topology
optimization algorithm with positive and negative pressures. Again, Equation 4.10 provides
the mathematical description of the optimization problem. Figure 4.54 presents the design
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Figure 4.52 – Design of an internally pressurized lid in 3D with linear constitutive model. The final
objective function value is Cs = 8.9 kJ.

(a) 2D view

(b) 3D view

(c) Convergence

Figure 4.53 – Design of an internally pressurized lid in 3D with Neo-Hookean constitutive model. The
final objective function value is Cs = 8.4 kJ.

Figure 4.54 – Design domain and boundary conditions for the piston head optimization case.

domain and boundary conditions of the problem. The geometrical parameters of the
problem are L = 0.12 m, H = 0.04 m, and Hf = 0. The lower support size is L/10. The
mesh is composed of 240x160 quadrilateral elements of order 1. The material is nylon
with the same parameters as the internally pressurized lid design. The density filter radius
is rmin = 2 mm, the projection threshold is ηth = 0.5, and the projection slope starts
at βth = 1 and ends at 8. The SIMP penalization Psimp is constant and equals 3 for the
linear analysis, while it starts at 1 and ends at 3 for the nonlinear analysis. The indicator
function is calculated with ηγ = 0.01 and βγ = 500.

Figure 4.55 presents the piston head designs, with the nonlinear results in the first
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(a) Nonlinear with p = 10 MPa
Cs = 796 J

(b) Nonlinear with p = −10 MPa
Cs = 758 J

(c) Linear with p = 10 MPa
Cs = 766 J

(d) Linear with p = −10 MPa
Cs = 766 J

Figure 4.55 – Design of a piston head with linear and Neo-Hookean constitutive models. The behavior
under compression and traction is evaluated by running the topology optimization
algorithm with positive and negative pressures.

row and the linear results in the second row. It is seen that the topology of the nonlinear
results change when the pressure load is positive (compression) or negative (traction). In
contrast, the same result is obtained for the linear optimization with positive or negative
pressures. All results present the same topology consisting of two arms connecting the
lower support to the lateral rollers and two arcs that connect the arms and form two
chambers. The nonlinear result with positive pressure (Fig. 4.55a) presents the arcs at the
upper part of the design domain and larger chambers. The arcs of the nonlinear result with
negative pressure (Fig. 4.55a) are concentrated at the design domain’s lower part, creating
smaller chambers. The linear results (Figs. 4.55c and 4.55d) are between the nonlinear
results with positive and negative pressures.

4.3.2 Topology Optimization of Inflatable Seals

The design of inflatable seals involves selecting undeformed and actuated configurations
for the seal, with the movement being defined by the flexibility of each part of the seal. This
design process is similar to the design of a compliant mechanism. Therefore, it is possible
to model inflatable seals as compliant mechanisms and to use the topology optimization
formulations developed for compliant mechanisms in the design of the inflatable seals. In
this work, the maximization of the output port displacement is selected as the design goal
and the optimization problem is given by

max
m

O (u)

s.t. D Π(u)[wu] = 0 ∀wu ∈ U

m ∈ [0, 1]

(4.11)

This section explores two movements that are interesting when designing inflatable
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(a) Bending (b) Opening

Figure 4.56 – Design domains of inflatable seals.

labyrinth seals. The first movement is the bending of the seal in a desired direction, which
may be used to incline the teeth according to angles of maximum head loss. The second
movement is the opening of the tip of the tooth, which may be used to reach configurations
that can not be assemble directly, such as illustrated in Fig. 1.4b. The design domains
for the bending and opening inflatable seals are shown in Fig. 4.56. The design domain is
surrounded by fixed solid regions in the right, left, and lower edges. The upper edge is
under the actuation of a pressure of P = 10 kPa. The inflatable seal measures 80x180 mm
and the material is a elastomer with a Young’s modulus of 10 MPa and a Poisson’s ratio
of 0.4. The thickness of the fixed solid region is S = 10 mm. The mesh is discretized in
80x180 elements (including the fixed solid regions). The output direction is lO = (−1, 0).

The bending inflatable seal must move its left lower tip in the left direction. Figure
4.57 presents the optimization result, the deformed configuration, and the convergence
curve for the optimization considering a linear constitutive model. The optimized design
presents a large solid distribution at the left wall, making the right wall deform more than
the left wall, making the inflatable seal bend towards the left direction. The jumps in the
objective function graph are related to the continuation of the parameter βth. Figure 4.58
presents the results with Neo-Hookean constitutive model. The output displacement is
lower in the nonlinear case because the the stiffness increases with the deformation for
nonlinear models.

The opening inflatable seal must move both lower tips of the seal in opposite directions
as shown in Fig. 4.56b. The topology optimization results with linear and Neo-Hookean
constitutive models are presented in Figs. 4.59 and 4.60. Again, the optimized designs
present similar material distributions. It is noted that the output displacement is low in
both cases, showing the difficulty of achieving the specified movement. In future works,
the use of multiple materials or fiber reinforcements could be explored to help achieving
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(a) Solution (b) Deformed
(c) Convergence

Figure 4.57 – Design of a bending inflatable seal with linear constitutive model. The final objective
function value is O = 13.2 mm.

(a) Solution (b) Deformed
(c) Convergence

Figure 4.58 – Design of a bending inflatable seal with Neo-Hookean constitutive model. The final
objective function value is O = 12.1 mm.

the specified movement.
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(a) Solution (b) Deformed
(c) Convergence

Figure 4.59 – Design of a opening inflatable seal with linear constitutive model. The final objective
function value is O = 0.112 mm. The deformed configuration is magnified 10 times.

(a) Solution (b) Deformed
(c) Convergence

Figure 4.60 – Design of a opening inflatable seal with Neo-Hookean constitutive model. The final
objective function value is O = 0.095 mm. The deformed configuration is magnified 10
times.
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5 DISCUSSION & CONCLUSIONS

This work presents the topology optimization of labyrinth seals in straight-through,
staggered, and stepped arrangements. The straight-through optimization is achieved
by designing only the stator and fixing a non-design domain close to the shaft. The
staggered and stepped configurations require specialized formulations capable of imposing
a minimum distance between the stator and rotor (i.e., avoiding the channel closure),
avoiding free-floating islands, and assigning different velocities to stator and rotor elements.
Therefore, two topology optimization algorithms are proposed to design staggered and
stepped labyrinth seals. The optimizations of all arrangements are presented for laminar
and turbulent flows. The laminar flow studies are based on the Navier-Stokes equations,
while the turbulent studies are based on the RANS equations closed with Spalart-Allmaras
model. The wall distance required by the Spalart-Allmaras model is calculated with a
modified Eikonal equation.

The result of the straight-through design in laminar flow is a straight channel constricted
to the minimum gap size. The same result is obtained with discrete and continuous design
variables, which is expected because the constriction of the channel increases the velocity
gradients, and the viscous energy dissipation due to velocity gradients is the dominant
head loss mechanism in laminar flow. The objective function history presents smooth
growth, showing that the design does not result from bad convergence. On the other hand,
the discrete approach suffered from oscillations for turbulent flow. The oscillations are
associated with linearization errors and the number of design variable changes (“step
size”). Reducing the number of allowed design variable changes through the parameter βfl

was not viable because the optimization oscillated among similar designs. The continuous
approach created open chambers with diminishing size in the downstream direction because
the turbulent eddies require space to develop, and the space size depends on the flow’s
energy. As the fluid loses energy within each chamber, the optimal size of the chamber
decreases in the downstream direction. The optimization with low βth values is smooth
and presents intermediate pseudo-densities, while the optimization with high βth values
is oscillatory and produces designs with clear interfaces. One possible improvement is to
use smooth continuation strategies, such as the update schemes applied to the design of
nonlinear structures under pressure loads. These smooth continuation strategies would
not increase the number of iterations substantially. Another possible improvement is
devising penalization strategies for intermediate pseudo-densities, such as the use of SIMP
interpolation in compliance minimization with volume constraints. This last approach
would avoid high βth values.
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The first algorithm for staggered and stepped seal optimization is based on discrete
design variables and consists of an extension of the TOBS method. It was named rotor-stator
algorithm, and it uses two design variable fields to model the stator and rotor separately.
The allowed design changes depend on the neighbors of each element, allowing the control
of the minimum gap size, avoiding free-floating islands, and circumventing the overlapping
of stator and rotor elements. A new Darcy term is added to the momentum equation to
model the rotor angular velocity inside the design domain. The discrete nature of the
formulation produces clear interfaces, which allow modeling and designing sharp features,
which are efficient for inducing recirculation and turbulent eddies. However, this advantage
also introduces difficulties in simulating crisp designs in turbulent flow. The laminar
results are channels constricted to the minimum gap size for low Reynolds numbers and a
combination of constricted channels and chambers for moderate Reynolds. The results
are highly dependent on the initial guess. The convergence is monotonic and smooth
for laminar flows. The turbulent flow optimization demanded using FEniCS TopOpt
FOAM to bridge the OpenFoam simulation with FEniCS sensitivity analysis. However,
the turbulent convergence curves are oscillatory, and the optimization only ends due to the
maximum number of iterations. On the other hand, the discrete nature of the formulation
is well-suited for geometry trimming procedures (PICELLI et al., 2022), which avoids
mixing FEM and FVM. In its current form, the minimum gap is anisotropic because the
ℓ1-distance is used in the definition of the neighborhood.

The second algorithm for staggered and stepped seal optimization uses continuous
design variables and considers the fluid as the interface between the rotor and stator. An
interface identification method developed for the design of heat exchangers is extended
to the design of labyrinth seals. One design variable field goes through a series of filters
and projections to create two non-overlapping fields for the stator and rotor. As in the
first algorithm, a new Darcy term is added to the momentum equation to model the rotor
angular velocity. The interface identification method itself does not avoid solid free-floating
islands, so the virtual temperature method (VTM) is used as a connectivity constraint.
The laminar results are channels constricted to the minimum gap size with longer lengths
than for the discrete algorithm. For turbulent flow, the optimizer explores two mechanisms
for generating turbulence: open chambers of appropriate size and curved geometries to
deviate the flow, inducing recirculation. This last mechanism is more prevalent in the
results, possibly due to the level of turbulence considered in this work. However, the
continuous approach is not capable of creating sharp edges due to the filtering operations.
The results of the continuous approach are dependent on the material model parameters,
such as the convexity qc.

Regarding the differences between the rotor-stator and the interface identification
methods, the first aspect worth mentioning is that the algorithms result in different
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optimization problems. Therefore, they are expected to produce different optimization
results. The rotor-stator algorithm keeps only part of the elements active during each
optimization step, while the interface identification method keeps the whole design domain
active. Another difference between the algorithms is the computational cost. At first glance,
the rotor-stator method requires more computational effort because it solves the forward
and adjoint problem twice at each optimization step. Also, the branch-and-bound algorithm
is slower than MMA. However, the rotor-stator algorithm stops within fewer iterations than
the interface identification algorithm. In this work, the interface identification examples took
more computational time because the maximum number of iterations at each continuation
step was kept high to allow complete exploration of the design. If the stopping criteria of
the interface identification method are changed, then this algorithm becomes faster.

This work also investigated the inclusion of FSI formulations during the topology
optimization of labyrinth seals. The study explored using FSI to avoid free-floating solid
islands as in the work of Souza et al. (2021). However, structural compliance is included
as a constraint instead of as an objective function. The formulation of Yoon (2010) is
adapted to run as a staggered solver in an one-way coupling. This adaption reduces the
computational cost and presents no disadvantages, as the accuracy of the displacement
field is not important. The performance of the VFSI constraint was inferior than the VTM
constraint. Therefore, the author recommends using the VTM as a connectivity constraint.

The design of inflatable seals by topology optimization is initiated by establishing
the necessary models to treat pressure loads with finite deformation. The neo-hookean
constitutive model is decomposed into deviatoric and hydrostatic components to enable
transmitting loads in normal direction. The material model interpolates the strain energy
density function of the deviatoric and hydrostatic parts separately. A smooth convergence
of the parameter βth is used. The formulation is applied to benchmark problems of topology
optimization with pressure loads (internally pressurized lid and piston head). The next
step is to include the desired deformation in the topology optimization algorithm, such as
in the works of Pedersen, Buhl and Sigmund (2001) and Li and Zhang (2023).

Regarding the fluid flow simulations, combining the forward solution from OpenFoam
and the adjoint analysis from FEniCS is successful. However, attention to the level of
artificial seepage in the solid domain is required. The artificial seepage is introduced by
the projection from FVM to FEM. Also, the objective function convergence is less smooth
than using an approach with FEM for forward and adjoint analysis. Iterative algorithms
such as SIMPLE may be more robust for high Reynolds numbers and faster for large
problems. However, in general, these algorithms are slower for low Reynolds numbers,
significantly impacting topology optimization duration as the forward problem is solved
several times.

Analyzing and optimizing labyrinth seals is difficult for turbulent flow because the



Chapter 5. DISCUSSION & CONCLUSIONS 135

number of eddies increases as the optimization evolves. This increase is in contrast to the
problems commonly solved in fluid flow topology optimization literature, which seeks to
minimize energy dissipation and, therefore, reduce the number of turbulent eddies along
the optimization. Therefore, the labyrinth seal design is an important benchmark for future
turbulent flow topology optimization algorithms.

Finally, the proposed approaches successfully optimized straight-through, staggered,
and stepped labyrinth seals in incompressible turbulent flows. The obtained designs
present unconventional features, such as the diminishing chamber size in straight-through
arrangement and the teeth with curves along the radial direction in the staggered and
stepped arrangements. These unconventional features corroborate the importance of
applying topology optimization to design labyrinth seals. Even if physical experiments
show that these features are not optimal, the model’s accuracy may be increased with
other turbulence models and compressible flow to make the optimization results more
physically appealing.

5.1 Future Work

The author suggests that future work should focus on running the proposed formulations
with other turbulence closure models, such as the k − ω SST model, which is accurate for
modeling labyrinth seals according to the experimental validation of Wein et al. (2020)
(if the model parameters are correctly adjusted). Also, the proposed formulations should
be executed with compressible flows to increase the model’s accuracy and allow leakage
minimization as the optimization problem goal. The optimization results should also be
tested experimentally.

For the rotor-stator algorithm, it would be interesting to change the norm of the
neighborhood definition. Also, including minimum length constraints would avoid extremely
thin members, which are not physically feasible and may be the reason for high oscillations
during optimization in turbulent regimes.

For the continuous approach to design staggered and stepped seals, the author suggests
testing smooth continuation strategies to update βth in turbulent flow. Also, including
minimum length geometric constraint is essential as some results may present unfeasible
thin structural members. In Moscatelli et al. (2024), the minimum length geometric
constraint of Zhou et al. (2015) is used; however, this constraint is hard to calibrate
and may only be activated after the optimization is close to the final solution, which is
undesired features. Therefore, there is open room for investigating other minimum length
constraints for the design of labyrinth seals with the interface identification method.

A feature in most staggered and stepped labyrinth seal designs with the discrete
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approach is a 45° ramp close to the inlet and outlet channels. The distance of the rotor and
the stator for these features is lower than the minimal gap due to the use of ℓ1-distance
to define the neighborhoods. Another line of research is to check if the minimum gap in
the diagonal direction may be lower than in radial or axial directions. If the diagonal gap
may be lower, it is possible to introduce ramps close to the teeth to improve labyrinth seal
performance. The gap in the diagonal direction may be reduced by introducing elastomeric
annular rings close to the teeth, as shown in Fig. 5.1. If elastomeric materials are used,
the rings may also act as a safety mechanism against rubs.

Figure 5.1 – Conceptual idea of reducing the labyrinth seal gap in diagonal direction close to the teeth.
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APPENDIX A – DIODICITY OBJECTIVE

FUNCTION

This section presents the main findings of Moscatelli et al. (2022) regarding the design
of fluidic diodes with geometry trimming. This contribution is not part of the main text
because the author decided to follow other approaches that are less computational expensive
than running two fluid flow simulations to compute the diodicity at each optimization
iteration. Fluidic diodes are devices that allow the fluid flow in one direction and prevent
the flow in the opposite direction. Their performance may be measured by the diodicity
function (LIN et al., 2015), which is given by the ratio of the total energy dissipation in
the opposite (reverse) direction by the total energy dissipation in the forward direction as
follows

Di =
∫

0Ω
ν
2

(
∇vrev +∇vrev

T
)

:
(
∇vrev +∇vrev

T
)

dΩ +
∫

0Ω κ (m) vrev · vrev dΩ∫
0Ω

ν
2 (∇vfwd +∇vfwdT ) : (∇vfwd +∇vfwdT ) dΩ +

∫
0Ω κ (m) vfwd · vfwd dΩ (A.1)

where the subscripts “fwd” and “rev” indicate the forward and reverse direction, respectively.
If the diodicity is high, the fluidic diode allows the fluid to flow in the forward direction
while presenting an obstacle for the flow in the reverse direction. According to Lin et al.
(2015), the topology optimization of fluidic diodes also requires penalizing the porous
dissipation in the reverse direction. Then, the objective function is given by

FDi = 1
Di + wrev

LC

∫
0Ω

κ (m) vrev · vrev

κmaxVC
2 dΩ︸ ︷︷ ︸

penalization

(A.2)

with wrev indicating the weight of the penalization factor.

The analysis and design domains for the topology optimization of fluidic diodes is
presented in Fig. A.1. The symmetry of the problem about the centerline of the diode
permits considering only the upper part of the domain during analysis and optimization,
reducing the overall computational cost. For the forward flow problem, the fluid enters
at the left edge and leaves at the right edge. For the reverse flow problem, the inlet and
outlet edges are switched.

Figure A.2 illustrates the effect of the penalization weight in the design of fluidic
diodes. It is seen that low values of wrev make the objective function oscillatory. However,
the results for low values of wrev also present higher diodicity values, indicating superior
performance. When the value of wrev is high, the optimizer does not place solid elements
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(a) Design domain

(b) Forward problem (c) Reverse problem

Figure A.1 – Description of the fluidic diode problem.

(a) wrev = 0.1 / DiT =
3.4 (b) wrev = 1 / DiT = 3.2 (c) wrev = 10 / DiT = 2.9 (d) wrev = 100 / DiT =

1.3

Figure A.2 – Penalization factor (wrev) effect on obtained result illustrated for Re = 100. As the
penalization factor is increased, results with lower diodicity are obtained. Therefore, it is
important to use low wrev values.

at the centerline of the fluidic diode, reducing the capacity of the device to deviate
the flow. The calibration of wrev is necessary due to the multi-objective nature of the
diodicity functional. The multi-objective function nature complicates the convergence
of the objective function and increases the computational cost, as two flow analysis are
required. Therefore, alternative objective functions and topology optimization formulation
have been explored in this work.
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APPENDIX B – FENICS TOPOPT FOAM

FORMULATION

This work attempted to use “FEniCS TopOpt FOAM” for turbulent flow topology
optimization. However, as seen in Sections 4.1.5 and 4.1.6, the convergence history was
oscillatory. This appendix presents an in-depth investigation concerning these oscillations.
First, a discussion regarding the projection from FVM to FEM is presented. An alternative
projection is proposed in an attempt to avoid numerical artifacts introduced by the
projection, such as the numerical seepage in solid domain. Then, the calculation of some
parameters is validated by solving the flow around a cylinder benchmark (SCHäFER et
al., 1996). Finally, the highly-studied pipe bend problem (BORRVALL; PETERSSON,
2003; YOON, 2016; ALONSO; RODRIGUEZ; SILVA, 2021; PICELLI et al., 2022) is
solved following different solution procedures for the forward problem. It is shown that the
projection from FVM to FEM limits the choice of the objective function and introduces
oscillations even for a properly chosen objective function. The alternative projection
proposed in this section reduces seepage; however, it deviates the fluid flow from the
physical solution. Therefore, the alternative projection does not work and it is not used in
results section. It is described here for future reference.

B.1 Other Parameters

The viscous energy dissipation Ed and the porous dissipation Po are commonly used
for fluid flow topology optimization to compute the total energy dissipation. Therefore,
evaluating their behavior when interfacing OpenFoam and FEniCS is important. These
functionals are calculated as follows

Ed (ν, v) =
∫

0Ω

ν

2
(
∇v +∇vT

)
:
(
∇v +∇vT

)
dΩ (B.1)

Po (m, v) =
∫

0Ω
κ (m) v · v dΩ (B.2)

It is important to note that the porous dissipation Po is also a measure of the fluid
seepage in the solid domain. In general, high values of Po indicate that the material model
is not modeling the no-slip condition appropriately.
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B.1.1 Projection from FVM to FEM

The L2-projection of a function u0 ∈ V0 ⊂ [L2]nd to another function space V ⊂ [L2]nd

is the function u that minimizes the quadratic difference ([L2]nd norm) of the functions.
The L2-projection may be stated as the following minimization problem

min
u∈V

A(u) := 1
2∥u− u0∥2

L2
(B.3)

As the functional A is convex, the solution of the problem B.3 is unique and can be
found by solving the optimality condition

DA(u)[v] = 0 ∀v ∈ V (B.4)

Then, the solution u is found by calculating the Fréchet’s derivative of A as follows

DA(u)[v] =
∫

Ω
(u− u0) · v dΩ = 0 ∀v ∈ V (B.5)∫

Ω
u · v dΩ =

∫
Ω

u0 · v dΩ ∀v ∈ V (B.6)

In fluid flow topology optimization with density-based methods, it is important that
the velocity in the solid phase is zero to guarantee that the simulated flow is an accurate
representation of the physical flow. This condition is satisfied by using a sufficiently large
value of κmax. However, an artificial velocity is introduced when projecting the cell-centered
velocity calculated by the FVM to a higher-order function space required by FEM. This
artificial velocity is illustrated in Fig. B.1, in which a cell-centered scalar function is
projected to a first-order finite element function space.

Figure B.1 – L2-projection of a scalar function from a cell-centered to a nodal function space.

This work proposes alleviating this phenomenon with a modified projection that also
minimizes the porosity functional

min
u∈V

A(u) + Po(m, u) (B.7)
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The Fréchet’s derivative of Po is given by

DPo(m, u)[v] =
∫

Ω
κ(m)u · v dΩ (B.8)

Then, the modified projection is given by the solution of the following linear problem∫
Ω
(1 + κ(m))u · v dΩ =

∫
Ω

u0 · v dΩ ∀v ∈ V (B.9)

Another way of interpreting the modified projection given by Eq. B.9 is as the solution
of u = u0 on Ω with a weak imposition of zero velocity on solid elements. Figure B.2
illustrates the application of the modified projection to the same case of Fig. B.1. It is
possible to observe that the modified projection avoids seepage of the function value to
solid elements as desired.

Figure B.2 – Modified projection of a scalar function from a cell-centered to a nodal function space.

B.2 Flow Around a Cylinder Benchmark

The first validation for the solvers used in this work was to run the flow around a
cylinder benchmark (SCHäFER et al., 1996), which provides reference data (computed
with high-order spectral methods) for the drag coefficient CD, the lift coefficient CL, and
the pressure difference ∆p over the cylinder, which is p (0.15, 0.2) − p (0.25, 0.2). The
expected values are presented in Table B.1 and the errors obtained for each formulation
are presented in Table B.2. The drag and lift coefficients are calculated as follows

CD = 1
VCLC

∫
Γo

σfn · lD dΓ (B.10)

CL = 1
VCLC

∫
Γo

σfn · lL dΓ (B.11)

where Γo is the cylinder surface, lD is the direction (-1, 0), and lL is the direction (0, -1).
The characteristic length LC is the cylinder diameter, and the characteristic velocity VC is
the mean velocity of the parabolic profile (2/3 of the maximum velocity).

According to Table B.2, the parameters obtained within FEniCS are closer to the
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Table B.1 – Reference data for the flow around a cylinder benchmark (SCHäFER et al., 1996).

Parameter Symbol Expected value
Drag coefficient CD 5.57953523384
Lift coefficient CL 0.010618948146
Pressure difference ∆p 0.11752016697

reference data (Table B.1) than the parameters obtained by calculating the velocity and
pressure in OpenFoam and projecting these fields to FEniCS. This indicates that the
projection step may introduce high errors in the evaluation of the parameters.

Table B.2 – Validation of the fluid flow solvers developed for this work by solving the flow around a
cylinder benchmark from (SCHäFER et al., 1996).

Case Forward Adjoint ϵCD (%) ϵCL (%) ϵ∆p (%)
1 FEniCS CG P2/P1 0.81 12.45 1.01
2 FEniCS MINI 0.86 50.75 15.20
3 FEniCS DG P2/P1 0.78 12.23 0.94
4 OpenFoam CG P2/P1 44.49 231.38 0.26
5 OpenFoam MINI 32.15 1076.11 0.26
6 OpenFoam DG P2/P1 26.91 855.90 8.28

It is also important to visualize the effect of the projection from OpenFoam to FEniCS
in the velocity and pressure fields. According to Figs. B.3a and B.3c, the differences in the
velocity fields are concentrated at the inlet. However, an inspection of the actual velocity
difference field (Fig. B.3e) shows that there are discrepancies of the order of the maximum
velocity close to the cylinder. For the pressure fields, the differences are even more visible
when comparing the fields of Figs. B.3b and B.3d. The maximum pressure value close to
the cylinder wall is higher when the OpenFoam variables are projected to FEniCS. Also,
the pressure field past the cylinder presents some numerical artifacts.

The high errors observed in Table B.2 for the projection from OpenFoam to FEniCS,
despite the visual similarity of the velocity and pressure fields in Fig. B.3, are due to the
localized differences in the velocity and pressure fields around the cylinder walls (according
to Figs. B.3e and B.3f). As the parameters from Table B.1 are calculated over the cylinder
walls, these localized differences may impact CD, CL, and ∆p more than parameters
calculated over other regions of the domain. For example, the viscous energy dissipation
Ed and the head loss J are parameters that may suffer less from the discrepancies in
velocity and pressure, so they were calculated and the results are summarized in Table
B.3. As there is no reference data for Ed and J in (SCHäFER et al., 1996), the “errors”
are arbitrarily calculated with respect to the FEniCS CG P2/P1 formulation.

According to Table B.3, the parameters Ed and J , which are commonly used in topology
optimization, suffer less from the errors introduced in the projection from OpenFoam
to FEniCS. Therefore, it is still important to evaluate the behavior of the projection
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(a) Velocity for Case 1 (b) Pressure for Case 1

(c) Velocity for Case 4 (d) Pressure for Case 4

(e) Velocity difference (f) Pressure difference

Figure B.3 – Comparison of velocity and pressure fields obtained with FEniCS and OpenFoam projected
to FEniCS.

Table B.3 – Comparison of viscous energy dissipation Ed and head loss J for the solution of the
flow around a cylinder with different numerical approaches. The “errors” are arbitrarily
calculated with respect to the FEniCS CG P2/P1 formulation.

Case Forward Adjoint Ed (×103) J (×103) ϵEd (%) ϵJ (%)
1 FEniCS CG P2/P1 5.883 7.329 - -
2 FEniCS MINI 5.894 7.344 0.18 0.20
3 FEniCS DG P2/P1 6.091 7.346 3.53 0.23
4 OpenFoam CG P2/P1 6.154 7.496 4.61 2.27
5 OpenFoam MINI 7.530 7.497 28.0 2.29
6 OpenFoam DG P2/P1 0 7.496 100 2.27

from OpenFoam to FEniCS in topology optimization problems because in density-based
topology optimization the solid walls are represented by a fictitious porous material, and
also because the objective function is not necessarily a parameter calculated over solid
walls.

B.3 Topology Optimization for Laminar Flow

The highly-studied pipe bend design is selected to benchmark the code developed
in FEniCS and OpenFoam. Two centerline inlet velocities and two objective functions
are tested for laminar flow, resulting in four testing scenarios. For each test, six cases
combining different forward and adjoint solvers are presented. The first case is to use
FEniCS for forward and adjoint analysis with the CG formulation with P2/P1 elements.
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The second case uses FEniCS for forward and adjoint analysis and the DG formulation
with P2/P1 elements. The other cases use the FVM implementation from OpenFoam
for forward analysis and FEniCS for adjoint analysis with: CG P2/P1 elements for the
third case, CG MINI elements for the fourth case, CG P2/P1 elements and the modified
projection (Section B.1.1) for the fifth case, and DG P2/P1 elements for the sixth case.
For all studies conducted in this section, a Darcy number of 10−9 is used to obtain almost
zero seepage in the solid domain.

Figure B.4 – Pipe bend design domain.

The first test considers a parabolic inlet with a centerline velocity of vin = 0.45 mm/s
(Re = 1) and the power dissipation Et = Ed + Po as the objective function. The results
are presented in Table B.4 and Fig. B.5. The first and second rows of Table B.4 show
that the results obtained with a pure FEniCS implementation with CG and DG have
similar functional values. Also, the designs of Figs. B.5a and B.5b are almost identical.
The third row of Table B.4 shows that the porosity functional obtained after projecting
the flow variables from OpenFoam to FEniCS is inaccurate, becoming even higher than
the viscous energy dissipation. This makes the Po part of the objective function dictate
the optimization and the result from Fig. B.5c is different from Figs. B.5a and B.5b. The
fourth row also shows an inaccurate Po value. Additionally, the optimization result of Fig
B.5d presents a non-optimal narrow channel, showing that the inaccuracies compromised
the optimization convergence.

The fifth case represents an attempt to eliminate artificial seepage introduced in the
projection from OpenFoam to FEniCS by also minimizing the Po functional during the
projection (Eq. B.9). In the fifth row of Table B.4, it is seen that the viscous energy
dissipation has the same order of magnitude as Cases 1 and 2; however, the porous energy
dissipation is lower. Also, the topology optimization result from Fig. B.5e is different from
Figs. B.5a and B.5b, indicating that the modified projection deteriorates the fluid flow
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simulation result.

The sixth row of Table B.4 also shows an attempt to eliminate the seepage introduced
in the projection by using a DG formulation for adjoint analysis. Although the Po value
becomes more accurate, the Ed cannot be calculated with Eq. B.1 because the finite
volume velocities are first mapped to a DG0 function space and then projected to the DG2
function space. As DG0 ⊂ DG2, all velocity degrees of freedom of each element become
equal and there is no velocity gradient inside the elements. Therefore, the viscous energy
dissipation is zero for the sixth case, which is completely inaccurate. It would be necessary
to derive a DG0 equation for Ed.

Table B.4 – Pipe bend topology optimization for Re = 1 and total dissipation (Et = Ed + Po) as
objective function. The symbol † indicates the use of the modified projection (Eq. B.2).

Case Forward Adjoint Figure Et (mW) Ed (mW) Po (mW)
1 FEniCS CG P2/P1 B.5a 2.94× 10−8 2.94× 10−8 2.14× 10−14

2 FEniCS DG P2/P1 B.5b 2.96× 10−8 2.96× 10−8 2.17× 10−14

3 OpenFoam CG P2/P1 B.5c 1.94× 10−4 4.40× 10−8 1.94× 10−4

4 OpenFoam CG MINI B.5d 1.18× 10−1 2.28× 10−5 1.18× 10−1

5 OpenFoam CG P2/P1† B.5e 3.36× 10−8 3.36× 10−8 1.99× 10−18

6 OpenFoam DG P1/P1 B.5f 1.24× 10−14 6.66× 10−36 1.24× 10−14

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure B.5 – Pipe bend topology optimization for Re = 1 and total dissipation (Et = Ed + Po) as
objective function.

The same analysis is repeated for an inlet centerline velocity of vin = 89.3 mm/s (Re



APPENDIX B. FEniCS TopOpt FOAM Formulation 158

= 200). The idea is to check if the same behavior is observed for higher velocities. The
results of this analysis are presented in Table B.5 and Fig. B.6. Again, the results of Cases
1 and 2 match, the fourth case presents bad convergence, and the sixth case has zero
viscous energy dissipation. The novelty here is the bad convergence of Case 3. For higher
velocities, the artificial seepage is even larger and the optimization produces a bad design.

Table B.5 – Pipe bend topology optimization for Re = 200 and total dissipation (Et = Ed + Po) as
objective function. The symbol † indicates the use of the modified projection (Eq. B.2).

Case Forward Adjoint Figure Et (mW) Ed (mW) Po (mW)
1 FEniCS CG P2/P1 B.6a 1.71× 10−3 1.71× 10−3 6.95× 10−10

2 FEniCS DG P2/P1 B.6b 1.70× 10−3 1.70× 10−3 6.94× 10−10

3 OpenFoam CG P2/P1 B.6c 9.89× 10+1 9.31× 10−3 9.89× 10+1

4 OpenFoam CG MINI B.6d 6.66× 10+1 1.21× 10−2 6.66× 10+1

5 OpenFoam CG P2/P1† B.6e 1.81× 10−3 1.81× 10−3 9.47× 10−14

6 OpenFoam DG P2/P1 B.6f 4.78× 10−10 6.88× 10−29 4.78× 10−10

(a) Case 1 from Table B.5 (b) Case 2 from Table B.5 (c) Case 3 from Table B.5

(d) Case 4 from Table B.5 (e) Case 5 from Table B.5 (f) Case 6 from Table B.5

Figure B.6 – Pipe bend topology optimization for Re = 200 and total dissipation (Et = Ed + Po) as
objective function.

The convergence problems observed in previous tests are related to the inaccuracy of
velocity and pressure fields inside the design domain. Therefore, it is interesting to test the
behavior of other objective functions that are defined over the boundaries. One candidate
that is directly related to the total energy dissipation is the head loss J . The pipe bend
problem is solved again for vin = 0.45 mm/s (Re = 1) and the results are presented in
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Table B.6 and Fig. B.7. Although the values of Ed and Po differ significantly for certain
cases, all J values have the same order of magnitude. Also, the optimization results of Fig.
B.7 are sufficiently close to each other to argue that the new objective function avoids the
artificial seepage problem for the Re = 1 situation.

Table B.6 – Pipe bend topology optimization for Re = 1 and head loss J objective function. The
symbol † indicates the use of the modified projection (Eq. B.2).

Case Forward Adjoint Figure J (mm) Ed (mW) Po (mW)
1 FEniCS CG P2/P1 B.7a 2.55× 10−4 2.94× 10−8 2.07× 10−14

2 FEniCS DG P2/P1 B.7b 2.54× 10−4 2.93× 10−8 2.07× 10−14

3 OpenFoam CG P2/P1 B.7c 3.16× 10−4 3.32× 10−8 1.36× 10−4

4 OpenFoam CG MINI B.7d 3.20× 10−4 4.35× 10−8 1.10× 10−4

5 OpenFoam CG P2/P1† B.7e 3.16× 10−4 3.15× 10−8 1.68× 10−18

6 OpenFoam DG P1/P1 B.7f 3.16× 10−4 1.18× 10−33 1.25× 10−14

(a) Case 1 from Table B.6 (b) Case 2 from Table B.6 (c) Case 3 from Table B.6

(d) Case 4 from Table B.6 (e) Case 5 from Table B.6 (f) Case 6 from Table B.6

Figure B.7 – Pipe bend topology optimization for Re = 1 and head loss J objective function.

The advantages of changing the objective function are also evident by repeating the
scenario of vin = 89.3 mm/s (Re = 200) for the minimization of the head loss (Table
B.7 and Fig. B.8): the optimization results and J are close despite the divergences in
Ed and Po. Therefore, in this work, minimization/maximization of J is favored over the
minimization/maximization of Ed + Po to obtain better behavior when using FEniCS
TopOpt FOAM.
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Table B.7 – Pipe bend topology optimization for Re = 200 and head loss J objective function. The
symbol † indicates the use of the modified projection (Eq. B.2).

Case Forward Adjoint Figure J (mm) Ed (mW) Po (mW)
1 FEniCS CG P2/P1 B.8a 7.05× 10−2 1.66× 10−3 8.71× 10−10

2 FEniCS DG P2/P1 B.8b 7.05× 10−2 1.66× 10−3 8.70× 10−10

3 OpenFoam CG P2/P1 B.8c 8.20× 10−2 1.84× 10−3 7.06× 10+0

4 OpenFoam CG MINI B.8d 8.39× 10−2 2.24× 10−3 6.08× 10+0

5 OpenFoam CG P2/P1† B.8e 8.13× 10−2 1.69× 10−3 5.78× 10−14

6 OpenFoam DG P2/P1 B.8f 7.82× 10−2 6.77× 10−29 4.05× 10−10

(a) Case 1 from Table B.7 (b) Case 2 from Table B.7 (c) Case 3 from Table B.7

(d) Case 4 from Table B.7 (e) Case 5 from Table B.7 (f) Case 6 from Table B.7

Figure B.8 – Pipe bend topology optimization for Re = 200 and head loss J as objective function.

Another important point to evaluate a topology optimization implementation is to
check the objective function history. Figure B.9 presents the evolution of J for the results
of Table B.7. The objective function curves for the pure FEniCS implementations (Cases
1 and 2) are smooth, while the curves for the FEniCS TopOpt Foam implementations
oscillate (Cases 3 to 6). The most smooth behavior in FEniCS TopOpt Foam is obtained
with the DG formulation. However, this formulation cannot be used directly with RANS
equations in the context of FEniCS TopOpt Foam because all turbulence models depend
on some sort of magnitude of the velocity gradient (for example, the magnitude of the
deformation gradient tensor or magnitude of the spin tensor), which becomes zero for
DG after projecting from OpenFoam to FEniCS. It would be necessary to devise a DG0
formulation accounting for the gradients between the elements. Therefore, in this work,
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the CG P2/P1 formulation will be used for turbulent flow topology optimization with
FEniCS TopOpt Foam.

(a) Case 1 from Table B.7 (b) Case 2 from Table B.7 (c) Case 3 from Table B.7

(d) Case 4 from Table B.7 (e) Case 5 from Table B.7 (f) Case 6 from Table B.7

Figure B.9 – Convergence history for the pipe bend topology optimization for Re = 200 and head loss
J objective function.

The summary of the conclusions regarding the selection of the formulation to use with
FEniCS TopOpt FOAM is:

• The head loss J and total energy dissipation Ed+Po are equivalent objective functions
according to the comparison of Figs. B.5a and B.7a or Figs. B.6a and B.8a, for
example;

• The head loss is a better choice of objective function than the total power dissipation
when combining OpenFOAM and FEniCS/dolfin-adjoint according to Tables B.4,
B.5, B.6, and B.7;

• The modified projection eliminates the artificial seepage introduced by the projection
from OpenFoam variables to FEniCS variables. However, the modified projection
reduces the accuracy of Po (according to Tables B.5, B.6, B.7, and B.8);

• The use of Discontinuous Galerkin formulations also eliminates the artificial seepage
introduced by the projection from OpenFoam variables to FEniCS variables. However,
the projected fields have zero gradient inside the element (according to Tables B.5,
B.6, B.7, and B.8), so it is not possible to calculate Ed without devising a new
equation for Ed based on the gradient between elements. Also, the velocity gradient
is necessary for RANS turbulence closure models, so new equations would also be
necessary for the turbulence models;
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• The CG P2/P1 formulation with J objective function is the best candidate for
turbulent flow topology optimization using the FEniCS TopOpt FOAM approach.

B.4 Topology Optimization for Turbulent Flow

The pipe bend problem is also solved for an inlet Reynolds number of 1000 and ν̃in

= 10−4 by using the RANS equations and the Spalart-Allmaras turbulence model. For
these boundary conditions, the flow inside the pipe bend is turbulent, as observed in
Fig. B.10, where it is possible to see recirculation zones with high turbulent kinematic
viscosity compared to the molecular kinematic viscosity of water ν = 8.9 × 10−6 m2/s.
The optimization is run with βfl = 0.5% and ϵV = 0.5% to assert that the linerization
errors are small and are not responsible for oscillations. Table B.8 summarizes some results
obtained by varying the Darcy number and the coefficient λν̃ .

(a) (b) (c)

Figure B.10 – Pipe bend velocity, pressure, and turbulent kinematic viscosity for Re = 1000.

Table B.8 – Pipe bend topology optimization for Re = 1000 and head loss J objective function.

Case Da λν̃ Fig. J (mm) Ed (mW) Po (mW) Iter. ∆t (h)
1 10−3 1 B.11a 3.74× 10+0 4.05× 10−1 2.71× 10−1 400 96
2 10−4 1 B.11b 4.03× 10+0 6.26× 10−1 1.62× 10−1 310 75
3 10−5 1 B.11c 7.73× 10+1 1.18× 10+1 1.37× 10+1 395 85
4 10−5 0.1 B.12a 5.02× 10+0 7.61× 10−1 5.13× 10−1 400 98
5 10−5 0.01 B.12b 4.54× 10+0 6.94× 10−1 4.06× 10−1 400 98

From Fig. B.11, it is possible to see that the optimization is sensitive to the inverse
permeability parameter and completely wrong results, such as the multiple narrow channels
of Fig. B.11c, may be obtained by an improper selection of the Darcy number. The
artificial seepage introduced by the projection from OpenFoam to FEniCS is more critical
in turbulent regimes due to the higher velocities. Also, the artificial dispersion of fluid
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parameters to the solid phase happens for the ν̃ variable, introducing additional deviations
from the physical behavior.

(a) Case 1 from Table B.8 (b) Case 2 from Table B.8 (c) Case 3 from Table B.8

(d) Case 1 from Table B.8 (e) Case 2 from Table B.8 (f) Case 3 from Table B.8

Figure B.11 – Pipe bend topology optimization for Re = 1000 and head loss J objective function.

One attempt to avoid the convergence problems observed in Fig. B.11c is to select
different inverse permeability values for the ν̃ transport equation by adjusting the parameter
λν̃ . This attempt is illustrated in Cases 4 and 5 of Table B.8 and Fig. B.12, which shows
that the reduction of λν̃ eliminates the problem of multiple channels observed in Fig.
B.11c. However, the issue of solid islands being added and removed close to the inlet is
reintroduced.

It is also instructive to analyze the evolution of the design variable field along the
optimization. Therefore, the design history of Case 2 is selected for analysis (as this is the
case with better convergence), and evenly spaced iterations of Case 2 are presented in Fig.
B.13. Initially, the optimizer places solid elements to suppress the turbulent dissipation
at the upper right and lower left regions. Then, it places more solid until the volume
constraint is reached. This convergence history is not in accordance with the literature
(see Picelli et al. (2022), for example) because a solid island is expected in the lower left
part of the design domain in the first iterations.
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(a) Case 4 from Table B.8 (b) Case 5 from Table B.8

(c) Case 4 from Table B.8 (d) Case 5 from Table B.8

Figure B.12 – Pipe bend topology optimization for Re = 1000, Da = 10−5 and head loss J objective
function. Different values of λν̃ are used.

Figure B.13 – Pipe bend topology optimization history for Case 2 of Table B.8.
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APPENDIX C – DISCONTINUOUS PDE

DENSITY FILTER

This appendix presents a discretization of the PDE density filter (Eq. 2.46) with
discontinuous Galerkin finite elements of order 0 (DG0). The objective of exploring this
discretization was to test the PDE filter with element-wise degrees of freedom, which
were found to be more robust for topology optimization with nonlinear solid mechanics.
For simplicity, the deduction considers a version of Eq. 2.46 with Neumann boundary
conditions only. Then, the strong form of the filtering problem is given by

−Rf
2∇2mf + mf = m on Ωm

∇mf · n = 0 in Γm
(C.1)

and the weak form for an element K is

Rf
2
∫

K
∇mf · ∇wm dΩ−Rf

2
∫

∂K
(∇mf · n) wm dΓ +

∫
K

mf wm dΩ =
∫

K
m wm dΩ (C.2)

where wm is a test function. By calling two elements that share an internal edge as K+

and K−, the sum of the contributions of all the elements of the mesh is given by

Rf
2
∫

Ωm
∇mf︸ ︷︷ ︸

0 in Ωm

for DG0

·∇wm dΩ−Rf
2
∫

Ωm
(∇mf · n)︸ ︷︷ ︸

0 on Γm

wm dΓ

−Rf
2
∫

0Γi

((∇mf · n) wm)+ + ((∇mf · n) wm)− dΓ

+
∫

Ωm
mf wm dΩ =

∫
Ωm

m wm dΩ

(C.3)

where 0Γi denotes the internal edges of the mesh and (·)+ and (·)− denote the quantity for
K+ and K−, respectively. The gradient is not defined on 0Γi due to the discontinuity of
mf on 0Γi. Still, it is possible to define discontinuous Galerkin formulations by choosing
consistent definitions for the derivative term. In this work, the gradient of the filtered field
projected in the normal direction is approximated as follows

(∇mf · n)+ = mf
− −mf

+

h+

(∇mf · n)− = mf
+ −mf

−

h−

(C.4)

where h is the element size. The substitution of the gradient definition in the weak equation
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(a) Cantilever problem

(b) Structured mesh result

(c) Unstructured mesh result

Figure C.1 – Application of the discontinuous density filter (Eq. C.7) to the topology optimization of
a cantilever beam with structured and unstructured meshes.

gives
∫

Ωm
mf wm dΩ−Rf

2
∫

0Γi

(
mf

+ −mf
−

h−

)
wm

− +
(

mf
− −mf

+

h+

)
wm

+ dΓ =
∫

Ωm
m wm dΩ

(C.5)

The term inside the integral over the internal edges may be rearranged as follows(
mf

+ −mf
−

h−

)
wm

− +
(

mf
− −mf

+

h+

)
wm

+ = mf
+
(

wm
−

h− − wm
+

h+

)
+ mf

−
(

wm
+

h+ − wm
−

h−

)

=
(
mf

− −mf
+
)(wm

+

h+ − wm
−

h−

)
(C.6)

Then, the PDE-filter equation for DG0 finite elements is given by
∫

Ωm
mf wm dΩ + Rf

2
∫

0Γi

(
mf

+ −mf
−
)(wm

+

h+ − wm
−

h−

)
dΓ =

∫
Ωm

m wm dΩ (C.7)

Figure C.1 shows the ability of the discontinuous density filter given by Eq. C.7 to
regularize the topology optimization of a cantilever beam with structured and unstructured
meshes. The design domain measures L = 1 m by H = 0.25 m and is composed of nylon
with Young’s modulus of 3 GPa and Poisson’s ratio of 0.4. The magnitude of the applied
load is F = 1 kN and the analysis is linear. The physical filter radius is rmin = H/8 (with
Rf = rmin/

(
2
√

3
)
) and the element size is 0.005. The structured mesh is composed of

quadrilateral elements, while the unstructured mesh is formed by triangular elements, also
showing the generality of the discretization with respect to the element geometry.

The discontinuous version of the PDE density filter (Eq. C.7) is also less stable for
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performing topology optimization in nonlinear solid mechanics than the discrete matrix
filter given by Eq. 2.48. Therefore, the reduced stability is not associated with nodal design
variables, as the PDE filter with cell-centered design variables is also less stable. After
further investigation, the problem is associated with the support of the filtering operation.
The discrete filter (Eq. C.7) may be written as a matrix multiplication as follows

mf = (Hmm)⊘ hs (C.8)

where the matrix Hm is composed of the products we (xi) V– i, and the vector hs is the
sum of the rows of Hm. The symbol ⊘ denotes the point-wise division. As the matrix
Hm is sparse, each design variable only affects the elements inside the filter radius, giving
compact support for the discrete filtering operation. The PDE filter (in continuous or
discontinuous version) may be rewritten as follows

Kfmf = Lfm⇒mf =
(
Kf

−1Lf
)

m (C.9)

Although the matrix Kf is sparse, its inverse is not. Then, the product
(
Kf

−1Lf
)

is
dense, and the PDE filter has no compact support. This feature may be viewed through
a numerical example that considers a square domain of size 3, a mesh of 3x3 elements,
and a physical filter radius of 1.2, as shown in Fig. C.2. The matrix Kf is presented in Eq.
C.10, and its inverse in Eq. C.11. The matrix Lf is the identity matrix for DG0 elements.
Therefore, the PDE filter operation has not compact support because Kf

−1 is dense. On
the other hand, the discrete filter has compact support because Hm is sparse (Eq. C.12).
Therefore, the discrete filter introduces fewer small values in the filtered field than the
PDE filter.

Figure C.2 – Mesh for evaluating the support of the density filters. The black dots are the degrees of
freedom and the red circle indicate the filter radius.
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Kf =



1.170 −0.085 0 −0.085 0 0 0 0 0
−0.085 1.255 −0.085 0 −0.085 0 0 0 0

0 −0.085 1.170 0 0 −0.085 0 0 0
−0.085 0 0 1.255 −0.085 0 −0.085 0 0

0 −0.085 0 −0.085 1.339 −0.085 0 −0.085 0
0 0 −0.085 0 −0.085 1.255 0 0 −0.085
0 0 0 −0.085 0 0 1.170 −0.085 0
0 0 0 0 −0.085 0 −0.085 1.255 −0.085
0 0 0 0 0 −0.085 0 −0.085 1.170


(C.10)

Kf
−1 =



0.8635 0.0592 0.0044 0.0592 0.0076 0.0008 0.0044 0.0008 0.0001
0.0592 0.8086 0.0592 0.0076 0.0524 0.0076 0.0008 0.0037 0.0008
0.0044 0.0592 0.8635 0.0008 0.0076 0.0592 0.0001 0.0008 0.0044
0.0592 0.0076 0.0008 0.8086 0.0524 0.0037 0.0592 0.0076 0.0008
0.0076 0.0524 0.0076 0.0524 0.7599 0.0524 0.0076 0.0524 0.0076
0.0008 0.0076 0.0592 0.0037 0.0524 0.8086 0.0008 0.0076 0.0592
0.0044 0.0008 0.0001 0.0592 0.0076 0.0008 0.8635 0.0592 0.0044
0.0008 0.0037 0.0008 0.0076 0.0524 0.0076 0.0592 0.8086 0.0592
0.0001 0.0008 0.0044 0.0008 0.0076 0.0592 0.0044 0.0592 0.8635



(C.11)

Hm =



1.2 0.2 0 0.2 0 0 0 0 0
0.2 1.2 0.2 0 0.2 0 0 0 0
0 0.2 1.2 0 0 0.2 0 0 0

0.2 0 0 1.2 0.2 0 0.2 0 0
0 0.2 0 0.2 1.2 0.2 0 0.2 0
0 0 0.2 0 0.2 1.2 0 0 0.2
0 0 0 0.2 0 0 1.2 0.2 0
0 0 0 0 0.2 0 0.2 1.2 0.2
0 0 0 0 0 0.2 0 0.2 1.2



(C.12)

hs =
[
1.6 1.8 1.6 1.8 2 1.8 1.6 1.8 1.6

]
(C.13)


