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ABSTRACT

This work presents an algorithm for ultrasound tomography (UST), applied to the
human breast. The aim is a way for early and portable screening of tumors. Each tissue
is characterized by its acoustic properties.

The acoustic tomograph will have a series of transducers around the perimeter of a
water filled vat where the breast is immersed. Each of the transducers will, one by one,
excite the system, meanwhile all transducers will capture sound signals. After all the
excitation patterns, the set of readings is processed in order to determine the properties
of what was put inside the vat.

An experimental setup is not yet ready, therefore the system of transducers, water
and breast, is numerically simulated by a finite element model, frequently called “direct
problem”.

The tomography algorithm is based on a finite element model (FEM), with a coarser
mesh than the one used as reference, and on an optimization process via sequential
quadratic programming. The sound speed propagation on each voxel is adjusted in order
to match the read signals from the optimization model to that of the reference or physical
experiment, when available. Sound dissipation properties are considered in this work, for
simplicity, as uniform properties inside the domain of analysis.

Propagation of sound is a dynamic process. The model states are propagated in time
via the central difference integration scheme. For each time step the FEM optimization
model has to be solved, and this is the most time consuming step of this algorithm:
for each change of properties of each voxel, all the transducers have to fire, and all the
numerically simulated readings are then compared to the reference readings. The FE
(finite element) model is used thousands of times. The breast numerical phantom is a
small cylinder of a few centimeters in diameter and in height, the “tumor” is an even
smaller cylinder placed inside it, and the ultrasound frequency is low, 25 kHz, therefore
the FE elements can be bigger, reducing the number of elements in the model, while
concomitantly having enough elements per wavelength, allowing for faster running times
with good representation of sound pressure in the media. Eight and latter twelve elements
per wavelength are used.

Sound waves traversing a media will reflected at the borders, therefore the region
of interest needs to be surrounded by layers of absorbing elements to attenuate echoes;
this adds extra size and complexity to the complete model, and penalties to a faster
optimization.

Initial coarse images were obtained using Bayes’ Inference and a sampled anatomical
atlas, representing mean values from 100,000 drawings with uniform variation in sizes and
position of tumor and breast. Therefore, the 3D finite element method is a viable platform
to represent the acoustic partial differential equation for the development of Ultrasound
Tomography image algorithms.



Keywords: Ultrasound. Tomography. Finite element method. Mathematical optimiza-
tion. Mammography. Sequential quadratic programming.



RESUMO

Este trabalho apresenta um algoritmo para tomografia por ultrassom aplicada a uma
mama, visando uso em equipamento portátil para a triagem precoce de tumores. Cada
tecido é caracterizado por suas propriedades acústicas.

Um tomógrafo para esta aplicação terá uma série de transdutores ao redor de uma
cuba com água, na qual a mama será imersa. Cada um dos transdutores emite uma
excitação, enquanto os demais capturam as respostas. Ao fim dos padrões de excitação
as leituras são processadas para gerar a tomografia.

Um protótipo de tal equipamento não está pronto, portanto o conjunto dos transduto-
res, água e mama será representado numericamente por um modelo de elementos finitos,
comumente chamado de “problema direto”.

O algoritmo de tomografia é baseado num modelo de elementos finitos com uma malha
mais grosseira que a de simulação, e em otimização por programação quadrática sequen-
cial. A velocidade de propagação do som em cada voxel será ajustada (otimizada) para
fazer corresponder as leituras do modelo de otimização com as do modelo de simulação ou
experimento f́ısico, quando dispońıvel. Para simplificar o problema, as propriedades de
dissipação do som nos diferentes elementos dentro do domı́nio de análise são consideradas
uniformes e iguais.

A propagação de onda é um fenômeno dinâmico. Os estados dos modelos são propa-
gados usando uma integração por diferenças centrais. Para cada passo no tempo o modelo
de otimização deve ser resolvido, e é este processo de simulação por elementos finitos o que
mais exige tempo de processamento. Para cada variação no valor de uma propriedade, em
cada voxel, cada transdutor emite a excitação, as leituras são numericamente simuladas
integrando os passos no tempo com a malha de otimização, e estas leituras comparadas
com as de referência. O modelo de elementos finitos será usado milhares de vezes. O
fantoma da mama é um cilindro de poucos cent́ımetros de diâmetro e de altura, e o tumor
é um cilindro ainda menor em seu interior. O ultrassom é de baixa frequência, 25 kHz,
assim os elementos finitos são maiores, reduzindo o número de elementos no modelo mas
preservando uma adequada relação de elementos por comprimento de onda. Assim têm-se
um modelo rápido com boa representação dos fenômenos acústicos. São usados 8 e depois
12 elementos por comprimento de onda.

Ondas sonoras atravessando um meio qualquer são refletidas com a máxima intensi-
dade nas suas fronteiras externas, e por isso a região de interesse deve ser revestida com
elementos extras, cujas propriedades atenuem os ecos. Isto acrescenta complexidade e
número de elementos ao modelo completo, comprometendo a velocidade de simulação e
de otimização.

Imagens iniciais de baixa resolução foram geradas com inferência bayesiana e um
atlas anatômico elaborado com amostras da população, com 100000 sorteios supondo
distribuição uniforme nas variações de tamanho e posição de mama e tumor. Portanto, um
modelo 3D de elementos finitos é uma plataforma viável para representar as equações de
derivadas parciais acústicas, e isto permite o desenvolvimento de algoritmos para geração



de imagens de tomografia por ultrassom.

Palavras-chave: Ultrassom. Tomografia. Método dos elementos finitos. Otimização
matemática. Mamografia. Programação sequencial quadrática.
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ρ material’s density

ω angular frequency

ϕ(·) value, corresponding to ϕm, obtained with the voxel

values of the tomography

ϕ⃗ vector field of ϕ

ϕm measured values (X-ray intensity, sound pressure sig-

nal, etc) used for the tomography



CONTENTS

1 Introduction 21

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Revision – basic concepts 24

2.1 Acoustic waves – equations and finite elements modeling . . . . . . . . . . 24

2.1.1 Plane wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Acoustic dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2.1 Dissipation with an imaginary wavenumber . . . . . . . . 27

2.1.2.2 Some remarks on acoustical dissipation . . . . . . . . . . . 28

2.1.3 Acoustic PDE in 3 dimensions . . . . . . . . . . . . . . . . . . . . . 28

2.1.4 Definition of the problem in 3 dimensions . . . . . . . . . . . . . . . 32

2.1.5 Finite elements for acoustics . . . . . . . . . . . . . . . . . . . . . . 33

2.1.5.1 Finite elements with viscous losses . . . . . . . . . . . . . 34

2.2 The central difference method . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Program parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Ultrasound tomography in modern practice . . . . . . . . . . . . . . . . . . 36

3 Method 38

3.1 Direct problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 General description of the simulation program . . . . . . . . . . . . 39

3.1.2 Boundary conditions: the penalty method . . . . . . . . . . . . . . 43

3.1.3 Echo absorbing layer . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Mesh development . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4.1 Meshes for ultrasound inside the thorax . . . . . . . . . . 47



3.1.4.2 Meshes for the breast with a tumor . . . . . . . . . . . . . 50

Realistic human breast: . . . . . . . . . . . . . . . . . . . . . 51

Simplified human breast: . . . . . . . . . . . . . . . . . . . 51

3.1.5 Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.5.1 Parallelism using OpenMP . . . . . . . . . . . . . . . . . . 55

3.2 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Initial guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1.1 How voxels and finite elements are correlated . . . . . . . 56

3.2.2 Regularization: sample based prior . . . . . . . . . . . . . . . . . . 56

3.2.3 Search for the maximum a posteriori probality . . . . . . . . . . . . 59

3.2.3.1 Selection of algorithms . . . . . . . . . . . . . . . . . . . . 60

Optimization problem statement. . . . . . . . . . . . . . . . 60

4 Results 62

4.1 Development of an ALID model . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 ALID equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 ALID sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Use of parallelism in the program . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Influence of the number of threads . . . . . . . . . . . . . . . . . . 64

4.2.2 Parallelization for very small problems? . . . . . . . . . . . . . . . . 65

4.2.3 Parallelism using the GPU . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Simulation results for the thorax model . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Effectiveness of the ALID layer . . . . . . . . . . . . . . . . . . . . 73

4.4 Realistic breast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Simulations and experimental data . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1 Numerical comparison . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Tomography grids for faster results . . . . . . . . . . . . . . . . . . . . . . 82



4.7 Tomography results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Analysis and discussion 91

6 Conclusions and continuity of the work 97

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Continuity of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 102

Appendix A – Acoustic finite elements with dissipation 112

Appendix B – Execution times: OpenMP versus number of threads 115

Appendix C – Echoes in the upper and lower surfaces of the thorax slice 118

Annex A – Ultrasound in medicine: the beginning 120

Annex B – Finite Element formulation for sound waves 125

B.1 Basic equation and boundary conditions . . . . . . . . . . . . . . . . . . . 125

B.2 Weighted residual formulation of the Helmholtz equation . . . . . . . . . . 126

B.3 Approximation of the field variables . . . . . . . . . . . . . . . . . . . . . . 128

B.4 Uncoupled finite element model for acoustic problems . . . . . . . . . . . . 129

B.4.1 Acoustical stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . 130

B.4.2 Acoustical mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.4.3 Acoustical excitation vectors . . . . . . . . . . . . . . . . . . . . . . 132

B.4.4 Acoustical damping matrix . . . . . . . . . . . . . . . . . . . . . . . 134

B.4.5 Acoustical model by finite elements . . . . . . . . . . . . . . . . . . 135

Annex C – The central difference method 137

Annex D – Mathematical details about SLSQP, TOMP’s optimizer 139



D.1 Sequential quadratic programming . . . . . . . . . . . . . . . . . . . . . . 139

D.1.1 Iteractive optimization . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.1.2 Search direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.1.3 Step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D.1.4 Update of the Matrix B . . . . . . . . . . . . . . . . . . . . . . . . 142

D.1.5 Least Squares Subproblems . . . . . . . . . . . . . . . . . . . . . . 143

D.1.6 Motivation of SQP Methods . . . . . . . . . . . . . . . . . . . . . . 143

D.1.6.1 Optimality Conditions. . . . . . . . . . . . . . . . . . . . . 143

D.1.6.2 Nonlinear Equations and Quadratic Programming. . . . . 145

D.1.7 Active Set Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.2 Quadratic programming algorithm . . . . . . . . . . . . . . . . . . . . . . . 147

D.2.1 Problem Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.2.2 Problem Transformation . . . . . . . . . . . . . . . . . . . . . . . . 148

Annex E – Facts about breast cancer 151

E.1 What is cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E.2 The human breast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E.2.1 Types of breast carcinoma . . . . . . . . . . . . . . . . . . . . . . . 153



21

1 INTRODUCTION

The generation of a medical image by tomography is a problem in the mathematical

category of inverse problems, those where, by means of an adequate set of measurements,

one can assess, for a known set of excitations, what is the distribution of physical properties

inside a subject which, with said excitations, best approximates the taken measurements.

Many groups study to date the subject of ultrasound tomography, for breast examina-

tion ([1, 2, 3]) and in many other fields, medical or not ([4, 5]), besides the characterization

of ultrasound properties in the concerned tissues or media ([6, 7, 8]).

Ultrasound is already established as an valuable mean for many medical diagnostic

equipments. It is safe, equipments are small and even portable, and not too expensive. An

ultrasound tomography (UST) of the breast may screen early tumors, before calcification1,

therefore before they begin to show up in conventional mammography exams by means of

X-rays. And it is well known that early treatments are of utmost relevance for a successful

outcome. Breast cancer is, still today, one of the biggest health problems for women, and

one of the main causes of deaths that could be avoided. An UST will distinguish tissues

by their sound properties, allowing to distinguish between tumor and health tissue. Note

that a conventional US exam can give an contour image, however based purely on echoes.

The ultrasound tomography software uses data representative of the real problem: the

complete sound signal captured by a transducer. The data is obtained by measurements,

or else simulated by means of a direct problem, with an adequate and precise model in

terms of its formulation, equations and parameters. With the desired excitation, it gives

the surrogate measures that would be given by the real system. The measurements, simu-

lated or real, are the inputs for the inverse model, where the parameters are adjusted until

the measurements obtained by the inverse model match the measurements obtained by

the direct model. When this match succeeds, in a certain sense, the properties correspond

to the maximum a posteriori probability conditioned to the measurements of pressure,

and will be considered the best distribution of sound speed in the domain. The direct

1See annex E.
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problem is a finite element method (FEM) model.

In this work are presented the basics of sound propagation and its equations, a review

of the finite element method (applied to sound problems), the sequential quadratic pro-

gramming used to solve the optimization problem (generate a tomography), the program

developed, results and conclusions about this process.

It is worth to emphasize that ultrasound is absolutely safe for use with the human

body. This enables, if necessary, to submit someone to a great number of US readings to

elaborate a high-definition tomography; on the contrary, X-rays and computed tomogra-

phy pose a risk because of the ionizing radiations employed.

Next chapters will cover:

� a review of equations for acoustic waves, the modeling of the problem via the finite

elements method and the ultrasound tomography,

� creation of the finite element (FE) meshes for simulation (reference or “real prob-

lem”) and for optimization (generation of the tomography),

� optimization using sequential quadratic programming, and how it is used in the

tomography optimization,

� results obtained,

� analysis, discussion, and

� conclusions.

1.1 Objectives

The main goal is to verify the feasibility of an ultrasound tomography algorithm using

the Finite Element Method (FEM) models. If this kind of tomography reveals viable, it

will allow a broad range of subjects to undergo UST, as the FE method is extremely

powerful and with it geometries of any complexity can be modeled, and many less trivial

physical phenomena can be included in the problem: sound interaction with structures

(outside of the human body) in a device or experimental set-up; viscous, relaxation,

multiple relaxation viscoelastic losses, Voigt or Maxwell wave equations (see [9, chap. 4]),

thermal effects, realistic transducer to skin modeling with gel layers, etc.

Additional objectives are:
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� to develop appropriate FEM meshes for the refined model and the inversion model;

� to develop and numerically test a regularization procedure;

Note: figures and tables without reference to other sources were created by the author.
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2 REVISION – BASIC CONCEPTS

In this chapter some basic concepts which allow the development of the simulation

and ultrasound tomography algorithm are presented. Equations for sound propagation

in one dimension and in three dimensions are developed, and the strategy of parallel

computations, OpenMP are explained.

The partial differential equation (PDE) of the acoustic wave relates sound pressure in

time and space and propagation speed of the wave in tissues. The ultrasound tomography

aims to estimate the distribution of sound speeds in a domain of interest. Sound speed is

the principal property of clinical interest, because it is associated with the tissue: bones,

fat, healthy tissue, tumors, each one has its own sound speed. Based on the acoustic PDE

equation, the Finite Elements Method will be applied to model the breast and define the

direct problem, including the boundary conditions.

Ultrasound Tomography may be clinically relevant if the estimation of an image hap-

pens within hours. In order to speed up the computer calculations, one strategy is to use

parallelization techniques . OpenMP is a relatively recent technology for parallelization

that has an easy and effective way to use the multiple cores modern CPUs have, even in

today’s personal computers and notebooks.

2.1 Acoustic waves – equations and finite elements

modeling

The problem must have its domain properly described by physical equations that

adequately represent all the phenomena of interest. The propagation of sound is governed

by partial differential equations (PDEs), and analytical solution of PDEs are possible only

for simple geometries, included simple configurations for the forcing terms, for instance,

in the center of the geometry. For more general situations a numerical solution must be

sought using finite elements.
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2.1.1 Plane wave equation

The grounds for the most basic equations of sound wave propagation in solids, that

is, plane waves, can be seen e. g. in [10, chap. 1.7], [11, chap. 5.1.3], [12]. For the finite

element method, the equations in the actual program are from a more basic and general

nature, based mainly in [13], [14] and [15]. In Annex B there is a brief introduction to the

FE method and the development of equations of finite elements for sound waves, based

on material from a seminar given by Desmet and Vandepitte [16].

A sound wave is a mechanical vibration that propagates through some material

medium, causing displacements of particles1 and stresses due to the elasticity of this

medium. In what follows it is assumed no heat transfer and very small displacements.

Therefore, linear models are valid.

Let us develop the equation for the plane longitudinal wave, where all the particles

of an homogeneous and isotropic material have the same displacement in time in a given

geometric plane of the continuum and tridimensional medium.

Aligning the z axis of the coordinate system with the propagation direction, that

is, perpendicular to the wave plane, and taking an elementary volume of the medium,

shown in figure 1, where u is the particle displacement, ρ the medium density and T the

mechanical stress due to the displacement, applying the second Newton law we get:

∂T

∂z
= ρ

∂2u

∂t2
, (2.1)

and, by the elasticity properties of the medium, stress is related to the strain that the

particle displacement causes,

T = (λ + 2µ)
∂u

∂z
, (2.2)

where λ and µ are respectively the first and the second Lamé parameters from the con-

stitutive equations of the material.

Substituting (2.2) in (2.1) we get the equation of a longitudinal plane wave,

∂2u

∂z2
=

1

cℓ2
∂2u

∂t2
, (2.3)

where the propagation velocity cℓ of a longitudinal sound wave is

cℓ =

√
λ + 2µ

ρ
. (2.4)

1Or small amounts of a continuous medium.
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Figure 1 – Mass element and mechanical stresses of a plane wave in the z direction.

Figure modified from ([17], class 1)

Harmonic solutions for (2.3) can be obtained by separation of variables, with a solution

u function of position z and time t such as

u(z, t) = u(z).eiωt , (2.5)

where ω is the angular frequency of the phenomenom and i =
√
−1 is the imaginary

number.

Substituting (2.5) in the wave equation (2.3) we can write

d2u(z)

dz2
eiωt =

1

c2
(
−ω2u(z)eiωt

)
=⇒

d2u

dz2
+ k2u = 0

(2.6)

that is the Helmholtz equation. The parameter k = ω/c = 2π/λ is the wave number,

where λ is the wavelength.

One solution for this equation is the exponential u(z) = er.z, which, applied to equa-

tion 2.6, allows us to write the following equation and its roots,

r2er.z + k2er.z = 0 =⇒ r2 + k2 = 0 =⇒
r = ±ik .

(2.7)

One solution in the frequency domain is

u(z) = Ae−ik.z + Beik.z (2.8)

and in the time domain it is

u(z, t) = Ae−ik.zeiωt + Beik.zeiωt

= Ae−ik(z−ct) + Beik(z+ct)
(2.9)
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The term Ae−ik(z−ct) is a wave going in the positive z direction and Beik(z+ct) a wave

in the opposite direction.

2.1.2 Acoustic dissipation

When an ultrasound propagates in the human body it looses energy as it travels.

Many types of losses exist, being the more important in this case the effects of viscosity

and effects of relaxation.

Dissipation can be included in the acoustic equations. This is demonstrated here for

viscosity of the media.

2.1.2.1 Dissipation with an imaginary wavenumber

Ultrasound energy may be dissipated when the waves reach a boundary (an abrupt

change in acoustic impedance) by effects of scattering and absorption. In real fluids it

also occurs due to internal losses, e. g. by viscosity.

A general procedure2 for development of wave equations with dissipation is to include

the effect of this dissipation in the conservation equations, which are combined to obtain

a wave equation, and this wave equation is then solved by assuming a time-harmonic

solution:

u = u0e
i(ωt−k′x) . (2.10)

Doing this the wave equation is transformed into a dispersion relation, that is, an

algebraic equation in the wave number k′, now with real and imaginary parts:

k′ = β − iα . (2.11)

Substituting equation 2.11 in equation 2.10 yields

u = u0e
−αxei(ωt−βx) = u0e

−αxeiω(t−
x

ω/β
) , (2.12)

and this evidences that α is the absorption coefficient and β is related to the phase speed

by cps = ω/β.

2See e. g. [18].
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2.1.2.2 Some remarks on acoustical dissipation

For simplicity the development above deals with a simple plane wave. A more general

analysis of dissipation entails the solution of the Navier-Stokes equations for a compress-

ible fluid (according to [19]) therefore here only one-dimensional waves in the frequency

domain are examined. This reduces the problem to an ordinary differential equation.

Another simplification comes from the fact that dissipation effects are relatively weak for

most fluids of everyday interest. This property simplifies accounting for the combined

effects of the various dissipation mechanisms.

The book of Pierce ([10]) details the complete derivation of the field equation and

extends the concepts to more general types of signals and dissipations.

The parameter β is the propagation wavenumber and corresponds to a wavelength

λβ = 2π/β. The wave is rigorously not periodic anymore in space because of attenuation,

but π/β is the distance between zeros.

When α in nonzero, the pressure decays exponentially. After n wavelengths the ampli-

tude reduces by a factor of e(−2πnα/β). If n > (2β)/(πα) this factor is less than e−4 ≈ 0.0183

for one wavelength. Attenuation is usually weak, in which case α ≪ β3.

The absorption coefficient α is frequency dependent and proportional to the square of

the sound frequency (f 2) for dissipation by effects of viscosity or heat conduction, propor-

tional to f 2/(f 2 + f 2
r ) for dissipation by relaxation (with fr the “relaxation frequency”,

depends on the composition of material the sound traverses), and proportional to
√
f for

dissipation by boundary layer effects (see [18, chap. 9]).

The derivations are done here with plane waves, however the expressions for α and

cps are also valid for spherical and other unidirectional waves.

2.1.3 Acoustic PDE in 3 dimensions

Now let us develop the acoustic equation in three dimensions. Assume a fluid, where

no shear forces exist, and the waves are longitudinal; this means that the particle move-

ments are in the same direction the waves travel in space. There is an initial ambient state

s0 (where s is a placeholder for the state variables) and small perturbations to the state,

s′. The inviscid medium is fully described by three state variables that are functions of

3However α and β are not independent, they must obey to the Kramers-Kronig relations to ensure
the principles of causality and linearity.
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the position in space and functions of time: pressure p, mass density ρ and velocity v:

p(x, y, z, t) = p0(x, y, z, t) + p′(x, y, z, t) , (2.13a)

ρ(x, y, z, t) = ρ0(x, y, z, t) + ρ′(x, y, z, t) , (2.13b)

v⃗(x, y, z, t) = v⃗0(x, y, z, t) + v⃗′(x, y, z, t) . (2.13c)

Being the fluid homogeneous, and initially at rest, the initial states can be written as

p0(x, y, z, t) ≡ p0 , (2.14a)

ρ0(x, y, z, t) ≡ ρ0 , (2.14b)

v⃗0(x, y, z, t) ≡ 0⃗ . (2.14c)

The acoustic equation is developed applying the law of mass conservation, momentum

conservation and the constitutive pressure-density relation to an infinitesimal volume

dx.dy.dz of the fluid. For the sake of simplicity, no acoustical sources are assumed in the

elemental volume.

Figure 2 – Mass flow in an elemental fluid volume.

The conservation of mass implies that the net accumulation of mass in the element

equals the balance of mass that flows through the element faces. The mass flows are
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shown in figure 2, and the mass conservation equation in the x axis is

∂ρx
∂t

dx.dy.dz = (ρvx)dy.dz −
(
ρvx +

∂(ρvx)

∂x
dx

)
dy.dz

= − ∂ρvx
∂x

dx.dy.dz ,

(2.15)

where ∂ρx/∂t is the density variation in time due to the x axis flow alone; adding the

equations of the x, y and z axes,

∂ρ

∂t
dx.dy.dz = −

(
∂(ρvx)

∂x
+

∂(ρvy)

∂y
+

∂(ρvz)

∂z

)
dx.dy.dz =⇒

∂ρ

∂t
= −∇⃗. (ρv⃗) ,

(2.16)

where ρ is the density of the elemental volume.

The conservation of momentum gives an equation for the acceleration of the elemental

volume; this acceleration is imparted by the balance of the forces on the element.

Figure 3 – Conservation of momentum for the x axis in an elemental fluid volume.

With the forces and acceleration for the x axis in figure 3 the equation is

ρdx.dy.dz
dvx
dt

= −
(
∂p

∂x
dx

)
.dy.dz . (2.17)

The total time derivative of vx can be written in terms of partial derivatives,

dvx
dt

=
∂vx
∂t

+
∂vx
∂x

· dx
dt

+
∂vx
∂y

· dy
dt

+
∂vx
∂z

· dz
dt

=
∂vx
∂t

+
∂vx
∂x

· vx +
∂vx
∂y

· vy +
∂vx
∂z

· vz .
(2.18)
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Adding the force balance in the three directions, x, y and z,

ρ.

(
∂

∂t
+ v⃗.∇⃗

)
v⃗ = −∇⃗p . (2.19)

The constitutive pressure-density relation, for an adiabatic condition, is

p = f(ρ) = K.ργ , (2.20)

where K is a constant, ρ is density and γ is the relation between specific heat at constant

pressure cp and the specific heat at constant volume cv. The initial state allows us to

write K as

K =
p0
ργ0

. (2.21)

Equation 2.20 can be expanded as a Taylor series,

p = f |ρ0+

(
df

dρ

∣∣∣∣
ρ0

)
.(ρ−ρ0)+

(
1

2

d2f

dρ2

∣∣∣∣
ρ0

)
.(ρ−ρ0)

2+

(
1

3!

d3f

dρ3

∣∣∣∣
ρ0

)
.(ρ−ρ0)

3+. . . . (2.22)

For a first order approximation, this equation reduces to

p = f |ρ0 +

(
df

dρ

∣∣∣∣
ρ0

)
.(ρ− ρ0) = p0 + K.(γ.ρ0

γ−1).(ρ− ρ0)

= p0 +
γp0

ρ0ρ0γ−1
.ρ0

γ−1.(ρ− ρ0) =⇒ p = p0 +
γp0
ρ0

.(ρ− ρ0) .

(2.23)

Now equations 2.13 and 2.14 are applied to equations 2.16, 2.19 and 2.23; if the effects

of a small perturbation over another small perturbation are neglected, that is, only the

first order terms are kept, then

∂ρ′

∂t
= − ρ0∇⃗.v⃗′ , (2.24a)

ρ0
∂v⃗′

∂t
= − ∇⃗p′ , (2.24b)

p′ =
γp0
ρ0

.ρ′ . (2.24c)

Applying time derivation to equation 2.24a and substitution of equations 2.24b and

2.24c in it yields the acoustic partial differential equation, in three dimensions, for longi-

tudinal sound waves, in a adiabatic condition and with no sources of mass in the medium,

∇2p′ − 1

c2
∂2p′

∂t2
= 0 , (2.25)
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where ∇2 is the Laplace operator,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.26)

and c is the sound wave propagation speed,

c =

√
γp0
ρ0

; (2.27)

if there is no chance to misinterpret the pressure p′ as a small perturbation relative to the

static pressure value, the prime ′ can be dropped,

∇2p− 1

c2
∂2p

∂t2
= 0 . (2.28)

Again, an harmonic expression for the pressure p can be sought by separation of

variables,

p(s, t) = p(s).eiωt , (2.29)

with s = (x, y, z) a position in three dimensional space, ω the angular frequency and i

the imaginary number.

Substituting equation 2.29 in equation 2.28, the Helmholtz equation in three dimen-

sional space for pressure is obtained:

∇2p(s) + k2p(s) = 0 (2.30)

with the wave number k = ω/c, and no mass sources in the space.

2.1.4 Definition of the problem in 3 dimensions

The pressure field p in any point (x, y, z) in a limited domain V , closed by a surface

Ω, generated by an external and distributed volume source q with frequency ω = 2πf , in

an adiabatic situation (no energy dissipation) is governed by the second order Helmholtz

equation:

∇2p(x, y, z) + k2.p(x, y, z) = −iρ0ω.q(x, y, z) , (2.31)

where k = ω/c = 2πf/c is the wave number, c the sound wave propagation speed, and ρ0

the mass density of the propagation medium.

In order to define the pressure field in V , one boundary condition must be specified in

each subarea of the closed boundary Ω. This border can be subdivided in regions Ωp, Ωv

and ΩZ where respectively the constraints of pressure p, normal velocity vn and acoustical
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impedance Z (or its inverse, the admittance A) are applied, Ω = Ωp ∪ Ωv ∪ ΩZ :

� imposed pressure p:

p = p in Ωp , (2.32)

� imposed normal velocity vn:

vn =
i

ρ0ω

∂p

∂n
= vn in Ωv , (2.33)

� imposed acoustic impedance Z:

p = Zvn =
vn

A
=

iZ

ρ0ω

∂p

∂n
=

i

ρ0ωA

∂p

∂n
in ΩZ , with i =

√
−1 . (2.34)

For the problem addressed in this thesis, the entire closed boundary Ω is maintained

at ambient static pressure (p = 0). This is justifiable whenever the media around and

outside of the model is of a much lower acoustical impedance than the inside, as air or

vacuum against water or steel; in this situation the exterior media material can not offer

any significative resistance to the waves propagating inside the model region, therefore

the pressure (or tension, for solids) is 0. The inconvenience is wave reflection with full

intensity4. This is typical of boundaries free of tension or pressure, where the outside has

a impedance Zo much lower than the inside impedance Zi, that is, Zi ≫ Zo.

As pressure source p̄ there are the FE nodes corresponding to the transducers5; the

values are applied to these nodes via the penalty method [20]. Alternatively, those nodes –

with known pressures – can be removed from the unknowns and the system of rearranged

equations solved only for the remaining nodes with unknown values. In the UST problem

there is no volume source, q(x, y, z) ≡ 0.

2.1.5 Finite elements for acoustics

The method of weighted residuals informs that a set of scalar products can be used

to state an equivalent mathematical formulation for equation 2.31,∫
V

p̃
(
∇2p + k2p + iρ0ωq

)
dV = 0 (2.35)

where p̃ is a weighting or test function, p is a trial function and V is the domain.

4But in opposition of phase.
5Each transducer is defined by approximately 12 nodes in the smaller dimensions models, to approxi-

mately 24 nodes in the bigger models, and also according to the number of elements per wavelength.
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The FEM method divides the domain in small subdomains, the so called finite ele-

ments, where the field variable – in our problem, acoustic pressure p – is approximated

by functions, valid only inside the FE, which interpolates the values of the nodes (points)

which defines the geometry of the elements. These interpolations are done by “shape

functions” N e
i of each element e and node i of the element. This way the pressure p̂ is

approximated by the sum of the values in all elements,

p̂(x, y, z) =

nf∑
i=1

Ni(x, y, z){p̂i} = [N ]{p̂i} (x, y, z) ∈ V , (2.36)

where nf is the total of nodes in the discretization of the domain, [N ] is a vector (1×nf )

of global shape functions and{p̂i} a vector (nf × 1) of unknown nodal pressure values.

Annex B provides additional details and steps for deriving the FE equation of the

acoustical problem without internal losses for a harmonic excitation of frequency ω,(
[K] + iω [C] − ω2 [M ]

)
{p̂i} = {Qi} + {Vni} + {Pi} . (2.37)

where [K], [C] and [M ] denotes the acoustic stiffness, damping and mass matrices6 of the

FE model, and {Qi}, {Vni} and {Pi} are vectors of internal volume sources at the nodes

(or, considering density, internal mass sources) and imposed conditions of velocity and

pressure to the nodes at the boundary surface of the model. In annex B the damping

matrix C conveys the imposed acoustical impedance at the boundary, in appendix A is

derived the equation to incorporate the viscous dissipation in the domain.

2.1.5.1 Finite elements with viscous losses

Derivation of acoustical FEM equations for viscous loss is presented in appendix A.

Equation 2.37 can be easily applied to problems with viscous losses with an dissipation

α; the only change is in the factor that multiplies the term with the second derivative in

time, which becomes

c2α2 + 2i.c.αω − ω2 , (2.38)

and the FEM equation with viscous loss is(
[K] +

(
c2α2 + 2i.c.αω − ω2

)
[M ] + iω [C]

)
{p̂i} = {Vni} + {Pi} , (2.39)

without volume sources {Qi} – which can be easily added – where c is the sound wave

propagation speed, i =
√
−1, and [K], [M ], [C], {Vni} and {Pi} are respectively the

6These names are used by analogy with the mechanical structural problem.
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stiffness, mass and damping matrices, and the loading is the vector of imposed normal

velocities and imposed pressure at nodes of the boundary, in the same way they were

calculated for equation 2.37.

2.2 The central difference method

The dynamic of the pressure distribution in the domain is propagated in time with

use of the central difference method. The values are calculated at regular time intervals

∆t. This is an explicit method, which means that the updated value depends on the

previous ones.

The recurrence equation is

[Meff]{X}t+∆t = {Feff}t , (2.40)

where {X}t+∆t is the vector of variables at the next time interval. The “effective mass”

matrix [Meff] is a combination of the real mass and damping matrices of the problem, and

the “effective force” vector {Feff} is a combination of the forcing term at the instant t and

of the mass, damping and stiffness matrices of the problem and the values of the variables

at the current instant t and the previous instant t− ∆t.

In our problem, the variables in the vector {X} are the pressure values at the nodes of

the FE mesh. The system of equations in 2.40 is solved by the preconditioned conjugate

gradient algorithm.

Deduction of the equations of the central difference method are in annex C.

2.3 Program parallelization

It is very important to perform the lengthy simulations in the shortest possible time.

Current computers employ multi-core central processing units (CPUs), and they should be

used whenever possible. This is known as parallel computing, where program instructions

run in many or all of the available cores simultaneously.

One modern technology to implement parallelization in a program is OpenMP.

OpenMP ([21]) is an “application programming interface” that allows use of mul-

tiprocessing in computer programs written in C, C++ and Fortran. Some advantages

of OpenMP are the possibility of its implementation in just a few parts of the original
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program at a time, and no big changes to the original program must be done; indeed,

OpenMP instructions or “directives” will appear to be program comments to a compiler

which is not OpenMP capable, therefore the same code can be compiled on different ma-

chines with older compilers without problems. The current versions of OpenMP allows

also for execution in GPUs ([22]).

It is easy to parallelize for loops in a C source code, or, in the case of Fortran

code, a DO loop, but also different program functions or code regions can be executed

concomitantly (using the sections construct). Some conditions must be meet, but the

necessary changes to the original (serial) program, if any, are not difficult to implement.

The finite element program comprises multiple variables in the form of vectors and

matrices. As a result, computations using these variables necessitate for loops that

operate on a considerably large number of elements. Parallelizing these loops significantly

accelerates the program.

2.4 Ultrasound tomography in modern practice

For a few historical aspects of ultrasound in general and its applications in medicine

see [9, chap. 1] and annex A.

Articles about ultrasound tomography published in recent years show that many are

based on stacking of two-dimensional slices of a subject in order to obtain a 3D tomography

of it, as is done with X-ray tomography; however, in general effects of diffraction, refraction

and reflection of ultrasound are disregarded in the methods used, albeit they are not

negligible. This creates artifacts in such tomographies.

The idea of stacking slices of the object, or layer by layer tomography, is the method

used, for instance, in [23, 24, 25, 26, 27, 28], published around ten years ago, and also in the

very recent [29, 30] and [31] which, albeit using transducers located in a circular ring that

moves perpendicularly to the slice plane, started to account for 3D effects using transducer

focusing. Each of the transducers are arranged in a low height strip, approximately 2 cm

high, and can emit a pulse in other directions than the slice plane using an acoustical lens

in front of rigid flat transducers and time delays. According to [29],

“... artifacts may appear in the reconstructed images due to scattering and

diffraction from out-of-plane structures. Such effects are not accounted for in

the 2D imaging model, where point-like transducers are typically assumed and
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the spatial impulse responses (SIRs) of transducers are not modeled. More-

over, there are also significant differences in the way acoustic waves propagate

in 2D compared to 3D. To reduce artifact levels and improve image quality in

ring-array-based USCT [ultrasound computed tomography], there remains an

important need to develop reconstruction methods based on 3D wave physics

models that can incorporate the elevational focusing properties of the trans-

ducers.”

Note that the above cited works use transducers positioned around a plane ring. They

can improve the results of purely plane slice by slice tomographies accounting for sound

scattering from structures out of the transducer plane [29, 30]. For a tomograph to be

considered truly 3D, it should take into account the waves emitted from a transducer

at one height and captured at another. Therefore, the transducers must be distributed

across the entire surface of the vat, that is, they must be spread circumferentially and

along the height. Such equipments and prototypes already exist, as in [32, 33].

Many of these studies use full wave inversion and the BIM (Born iterative method)

or DBIM (distorted Born iterative method) methods to generate a tomography. No other

ultrasound tomography studies were found using finite elements to model and solve the

physics of acoustical propagation.

In this thesis, through the use of tetrahedral finite elements, consideration of 3D

physics phenomena is implied, even with transducers at a single plane7, as they clearly

can generate echoes at the upper and lower surfaces of the domain – that must be avoided

with the ALID (see also appendix C). Of course, transducers can be distributed at different

heights in more elaborated models when desired.

7As our transducers are a circular flat disc, they already have most of their active nodes above and
below the nominal transducer height in our simulations.
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3 METHOD

The objective of the present work is to show that the Finite Element Method is

suitable to solve the inverse problem associated to the the Ultrasound Tomography.

To effectively solve an inverse problem, such as the ultrasound tomography, it is

beneficial to have an accurate direct problem, together with the meshes, which support and

constitute the FE the program used to solve the acoustic equation. It is necessary a scheme

to apply into the FE model, iteratively, the tentative sound properties and adjust these

properties adequately until a criterion is met and, as result, a spatial distribution of sound

properties inside the domain is considered optimal. The sound properties are specific to

each tissue in the breast, and this specificity allows for the screening for neoplasms.

Through a multivariable optimization process, the distribution of sound properties is

modified, maximizing an a posteriori conditional probability density function. Therefore,

some methodological tasks seem necessary:

� for the direct problem development:

– boundary conditions imposition,

– echo absorbing layer,

– mesh development, and

– parallel computing;

� and for the inverse problem development:

– initial properties,

– regularization strategy, and

– multivariate optimization strategy.
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3.1 Direct problem

The direct problem is the simulation of the propagation of an ultrasound wave in the

breast. This simulation includes the water around the breast and the firing patterns of the

transducers, creating a virtual ultrasound tomograph apparatus for breast examination.

In this kind of breast UST the patient will lie down and her breast will hang down and

be immersed in a vat with water (see figures 11a and 11b1 and note the hole in the

stretcher: it is the vat opening). As surrogate for real physical measurements in an US

tomography examination, a more elaborated and higher precision direct problem is used,

the “reference model”, and for faster computer processing, and to avoid inversion crime,

in the tomography algorithm a less elaborated direct problem is employed. The models

in these direct problems are finite element numerical models. The reference model has

smaller finite elements, for a higher elements per wavelength relation, and a stronger

dissipation wrapping around the domain (water and breast), to avoid echoes from the

boundary of the whole FE model; the tomography model has (potentially) less and bigger

elements, and a smaller echo dissipation layer.

3.1.1 General description of the simulation program

The program for ultrasound simulation by finite elements used in this work is based

on Logan [15], [13] and implements an equation in the form of 2.39.

The physical hipothesis implicit by using 2.39 are that the damping model is vis-

cous and linear, the overall model is non dispersive and, since the model is linear, the

superposition principle is valid.

The finite element meshes can be created, for instance, using programs such as Gmsh

([34]), and this is described in the following section. Only elements of the linear tetrahe-

dron type, that is, 4-nodes tetrahedrons, are considered in the calculations, with equations

according to, for instance, [15, chap. 11.2].

The programming language is C. Some functions, as the ones used to solve systems

of linear equations, were based on algorithms described in “Numerical Recipes” ([35]),

modified for sparse matrices when needed2,3.

1Although this is not a tomograph, but a device for breast measurements.
2Dedicated mathematical libraries could be used, however we prefer to have comprehensive control of

how the program works, being able to modify the code as needed, streamlining the code and avoiding
overheads.

3The storage structure for sparse matrices is the compressed row storage (CRS), according to [36].
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A file with the final values at the nodes of the mesh was created, for visualization with

Gmsh. The nodes of the transducers had to be know beforehand and given to the FEM

program as input; to discover the number of such nodes the mesh had to be scrutinized

using Gmsh.

The numerical simulation program, which represents the direct problem, has the fol-

lowing features: a) it has the capacity to read the plain mesh file that Gmsh creates – the

file contains elements other than hexahedrons, such as the 2D triangular elements for the

faces of any geometry we wanted to create a 3D mesh for – dismissing the need to edit and

remove the “invalid” elements beforehand, b) it has the definition of transducers by means

of a file with the respective nodes, c) it has a simplified assignment of each transducer

role, which can be an emitter only, a receiver, or both, d) for the emitters, individual

excitation amplitudes can be specified (however, by now, with the same frequency and

phase), e) many excitation patterns (“excitation cycles”) can be defined, in succession, in

a single simulation, f) definition of an echo absorbing/reducing layer, of ALID type (ab-

sorbing layer using increasing damping), g) creation of a detailed simulation report and

saving of backup files with initial data and parameters of the simulation, h) data files and

results have their own folders, reducing clutter and keeping an organized environment,

i) capability to resume any interrupted simulation (due to power interruptions, full disk,

etc) from a state close to the interruption4, j) refinement of the visualization output file.

This visualization file has a certain number of “time frames” of the nodal values, at equal

time intervals from the start to the end of a complete simulation, and because it has values

for all the nodes this can be a big file. If more details are needed, a previous and “coarser”

(only in terms of visualization time frames in the file) simulation can be re-started near a

desired point in time, for a shorter simulation, however with more time frames around the

time range of interest, for instance when a sound wave presumably reaches some organ

or tumor, k) records the transducers’ readings at each time step, l) the visualization file,

when desired, can have a specified number of equally spaced time frames.

The program creates a file with the results in a format which allow visualization of

the pressures inside the domain, as can be seen in figure 4. For the visualization it is used

the Gmsh program, the same used to create the finite element mesh.

The program now automatically ignores any elements that were not linear tetrahe-

4This resume capability, for a specific simulation, which sometimes can be lengthy, was later removed
when the program became much faster, and especially because this capability introduced a great level of
complexity to the code, making the development of the tomography algorithm, which requires numerous
simulations, much harder. When the tomography algorithm started to work, a new resume capability
was introduced, this time for the optimization process, because the number of simulations increases with
the number of voxels and number of transducers and the total run time became lengthy again.
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Figure 4 – Sample of a result from the simulation program, depicting the object contours (a
thorax slice with lungs, heart and spine), and some acoustic pressure waves. Pres-
sure in Pa.

drons, telling about any unexpected element found in the file. Therefore the mesh file

created by Gmsh can be used as is.

The desired number of transducers can be defined with ease, item b): an auxiliary

program reads the mesh file – which for this functionality must have been exported in the

inp file format by Gmsh, a file type used by the Abaqus FEA5 program – and extracts a

list of transducer nodes; this list, modified with some identification headers and the the

nodes of each transducer (quantity and their numbers), is one of the input data files for the

simulation program. Another data file indicates how each transducer will work, item c),

where a sequence of those indications allows a single run of the direct problem numerical

simulator to change which transducers acts as emitters, (item e)); in an analogous way,

a discrete time series of amplitudes (item d)) allows modulation of the excitation in each

5https://www.3ds.com/products-services/simulia/products/abaqus/.
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transducer, with the remark that (at the current state) a single frequency is used for all

the transducers.

Itens g) and h) are not essential for the simulations, but help to keep the results

tidied up and with greater control of how each result was generated. The simulation

report identifies all data files (mesh, excitation cycles and amplitudes, etc.), size of the

problem (number of tetrahedrons), total of time steps, frequency and maximal amplitude

of the excitation, among other informations. All the files the program creates6 have

identification headers; also, as will be explained in section 3.1.4, the geometry file is fully

commented, and all other data files have identification headers and an organized internal

structure, therefore the program can catch some data errors or inconsistencies, and the

management of research data, for instance as required by FAPESP7 [37], could be met8.

The simulations can be affected by echo provenient from the artificially finite borders

of the numerical simulation domain, avoided when using layers of ALID, item f). ALID

layers (absorbing layer using increasing damping) is a solution for echoes which is easy to

implement in the program [38]9.

Item i) is useful in the event of any interruption of the program, as at restart it will

identify the presence of a recovery file with the “state” of the simulation at a point close

to the interruption. The user has the option to load this state and proceed with the

simulation, without restarting from the first time step. Another improvement, item l),

fixes the inconvenience of having only the final step to see the obtained pressure field;

since acoustics is a propagation phenomenon it is useful the capability to see the process

over time, with a specified number of time frames selected at the start of the simulation.

As those time frames could not be enough to “capture” and show a particular instant,

say, when the wavefront reaches one tissue of interest, item j) was created. With this

functionality, and a few recover files (copies of the ones used to proceed an interrupted

simulation), a new simulation can begin close to the desired time interval, creating a

supplementary visualization file with more frames for a detailed visualization; those files

have information about all the nodes of the model.

As just stated, the readings of each transducer are recorded in a file, at each time

6transducer readings, complete excitation signal in time at each time step, even when the excitation
is read and interpolated from a given file, etc.

7FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo – The São Paulo Research
Foundation.

8This is not required with this work.
9It is worthy to remark that in [38] (e. g. equation (3·15)) Drozdz uses Rayleigh damping, a com-

bination of the finite elements matrices of mass and stiffness. The use of Rayleigh damping is usual for
structures; in the numerical simulation program, it is used a damping or absorptivity parameter.
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step of the simulation. Those readings are the mean of pressure values of all transducer

interface nodes. Therefore, there are files for visualization inside the domain, as in figure 4

and it is possible to plot the measured values in the model, as in figure 19 on page 73.

3.1.2 Boundary conditions: the penalty method

The finite element formulation shown in equation 2.37 assumes that the excitations,

pressure, normal velocity and impedance, given by equations 2.32–2.34, are applied (or

imposed) at the boundaries of the model, and are considered external sources.

Some of the first simulations with the finite elements program were made using a very

simplistic model, with the transducers placed at its border, as seen in figure 5. One of

the 3D meshes is shown in figure 6. At the time, there was no ALID around the model.

Figure 5 – Some of the first finite element models used with the simulation program.

(a) One of the first models (wireframe shown),
with 4 transducers.

(b) Other of the first models (wireframe shown),
with 12 transducers.
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Figure 6 – 3D mesh with tetrahedral elements for the model in figure 5a. Generated using
Gmsh, with Netgen optimization algorithm.

Looking at the results one could soon realize that an echo is generated when a sound

wave reaches the model border, as shown in figure 7. This echo is strong.

Figure 7 – The first models were susceptible to echoes at the borders, because of the lack of an
ALID layer. One emitter active at the right position. This figure shows the pressure
wave inside a cylindrical domain. Pressure in Pa.

(a) Sound waves propagating through the model
and creating echoes at the borders.

(b) Same picture, notice the echoes marked here
for clarity.
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Therefore the ALID10 layer was introduced in the model to avoid the echoes. The

ALID covers all sides of the original model, but then groups of nodes of the transducers

became internal to the model, while in the equations they are considered at the boundary

of the model, the imposed pressure {Pi} at the right of equation 2.37. In this situation,

internal nodes with known or imposed values, it is usual to exclude the respective variables

from the system of equations – as these nodes values are no longer unknowns – so the

remaining system of equations is determined and can be solved. However, in the actual

direct problem numerical simulator and tomography program, an alternative method is

used, the penalty method. This method is presented in [20]. Besides boundary conditions

it applies also to constraints, and the nodes that represent the transducer impose the

excitation pressure.

Let pi be the excitation pressure at the node i – the rationale applies to more than a

single node as well. If a large number ω is taken, a modified functional Π∗ of the problem

(see equation An-B.40) can be written:

Π∗ =
1

2
{p̂}T [Ẑ]{p̂} − {p̂}T{f̂} +

ω

2
(p̂i − pi)

2 , (3.1)

where {p̂}T is the transpose of {p̂}.

The functional will be minimized when equation 3.1 is stationary,

δΠ∗ = {δp̂}T
(

[Ẑ]{p̂} − {f̂}
)

+ ωδp̂i(p̂i − pi) = 0 . (3.2)

The pressure at node i can be written in terms of the vector of nodal pressures and a

“localization vector” {ei} of the same dimension of {p} and defined such as

p̂i = {ei}T{p̂} ; {ei}T = (0, . . . , 1, . . . 0) , (3.3)

with the value 1 in the position matching the node i. Substitution of 3.3 in 3.2 wields

δΠ∗ = {δp̂}T
(

[Ẑ]{p̂} − {f̂}
)

+ ω{δp̂}T{ei}{ei}T{p̂} − ω{δp̂}T{ei}pi = 0 . (3.4)

The vector {δp̂} is not a null vector; the equation can be divided by it and the terms

of equation 3.4 regrouped to obtain(
[Ẑ] + ω{ei}{ei}T

)
{p̂} = {f̂} + ω{ei}pi . (3.5)

10Absorbing layer using increasing damping.
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If the matrix and vectors in equation 3.5 were expanded, we get

Ẑ1,1 Ẑ1,2 · · · Ẑ1,neq

. . .

Ẑi,i + ω
...

(symmetry)
. . .

Ẑneq ,neq





p̂1
...

p̂i
...

p̂neq


=



f̂1
...

f̂i + ω pi
...

f̂neq


(3.6)

The equation which corresponds to the i row of 3.6 is

neq∑
j=1
j ̸=i

Ẑi,j p̂j + Ẑi,ip̂i + ω p̂i = f̂i + ω pi . (3.7)

For a sufficiently large value of ω we get ω p̂i ≈ ω pi, and therefore the constraint

p̂i = pi is practically satisfied. Generalizing for constraints at many nodes, it suffices to

add ω to the diagonal of the i-th element and at the same time add ω pi to the load vector

at the right hand side, at the positions affected, in the system of equations.

One caveat is that a really big value for ω can lead to a ill-conditioned system of

equations. An adequate value for this parameter can be established through tests. For

the finite elements problem in this thesis the values of 3 × 1010, 5 × 109, 2.5 × 104 and

1 × 104 were evaluated, and for the latest meshes (for a very simplified “breast” model)

the value ω = 200 was used. For the biggest values there was a very close approximation

p̂i ≈ pi, but the pressures appeared to concentrate and remain around the emitters instead

of being propagated to the neighboring finite elements. The value chosen, 200, gives a

still good approximation for the imposed pressures, and had no concentration of nodes

with persistent high pressures in the region of the emitters.

3.1.3 Echo absorbing layer

It is know that a sound wave can be reflected as echo when it reaches a obstacle.

In our models, one obstacle to be aware of are the model boundaries. According to

imposed conditions at these boundaries, the wave can be attenuated or may reflect with

full intensity.

After a few initial tests with the simulator program, it was evident that some kind of

echo attenuation was required at the boundaries. Two common solutions exist: PML, for

perfectly matching layer, and ALID, absorbing layer using increasing damping. The best
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solution is the PML, however its mathematical perfection does not exist in approximate

solutions, as is the case with FEM, and its implementation is more complex than the use

of ALIDs. For the simulator, a simpler ALID was implemented. The main drawback is

the use of a ticker layer, with more finite elements than in the case of a PML layer.

It is very important that any increase in the attenuation of the absorbing layer be

smooth, otherwise the wave starts to reflect as it encounters a material (or a finite element)

with different physical properties.

3.1.4 Mesh development

During initial development of the simulation program there was the opportunity to

model and simulate a correlated problem, the direct problem of the thorax and lungs. The

thorax problem was used to see how FE meshes could be generated and what functionali-

ties the ultrasound simulator must have in order to be adequate for UST. This know-how

was later used for the breast UST.

3.1.4.1 Meshes for ultrasound inside the thorax

During testing stages of the direct problem simulation program, the model used was

a 2D thorax slice, with the vertebral spine, heart and lungs in it. The thorax section was

centered inside a water filled rectangle. The solutions to the requirements and problems

addressed with this model would later apply to a breast model, as multiple transducers

around the region of interest, definition of internal boundaries for different materials, and

definition of an ALID layer because of the echoes.

The contour of the organs was given by Cárdenas [39] and is the same used in his

PhD thesis and in other works from researchers from his group, therefore, some results

comparisons could be made later on. Cárdenas solves the ultrasound problem using the

k-Wave software ([40]).

In this model the positions of the transducers are defined by the angle between a

vertical line and the center of the transducer considered, as depicted in figure 8. The first

transducer is the bottom one, and numbering is clockwise. The x axis points to the right,

the y to the top.

The excitation pattern uses a single frequency for all the transducers, in phase, with

amplitude varying according to the position of the transducer. For the inverse problem by

the D-bar method, a series of excitation patterns are used where the amplitudes follows
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Figure 8 – Angular position θℓ of a transducer “ℓ” (here shown the tenth) for the D-bar prob-
lem.

the equation

T n
X(ℓ) =

MTr cos
(
nθℓ
)

for n = 1, 2, . . . , L/2

MTr sin
(
(n− L/2)θℓ

)
for n = L/2 + 1, L/2 + 2, . . . , L

(3.8)

where the transducers’ total number L must be even and MTr is the maximum amplitude

(energy) used in the excitations. The number of excitation patterns is equal to the number

of transducers.

In the finite element model the transducers are, like in [39], over an ellipse and without

direct contact with the thorax, but the space in between is filled with water, as shown

in figures 9 and 10. In a real situation of ultrasound for thorax and lung tomography,

however, most probably the transducers – unless if they were very big – will be placed in

a belt, and this belt fastened around the thorax, putting the transducers in touch with

the skin, with only a tiny layer of gel for impedance matching.

Rigorously speaking, the finite element model of this thorax section is a tridimensional

one. However, with 2.5 cm in height and 21.0 cm in length, a ratio height/length of 12%,

it can be considered to behave as two dimensional model. On the other hand, the models

solved by [39] are intrinsically of two dimensions.

Initially meshes had 6 elements per wavelength, according to [41], later meshes were

used with 10 elements per wavelength, looking for greater fidelity in the representation of

the wave phenomenon, according to [42].

The sound propagation speeds in each of the model media are, except for the lungs,

the same used by [39], without variations in the spine sound speed; for the lungs the speed
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Figure 9 – Dimensions of the thorax model and of the transducers’ ellipse.

21 cm

21
cm

Source: adapted from [39].

Figure 10 – Comparison of the original high resolution contour with the contour sampled at
every 15th point from the original.

(a) High resolution contour (modified from [39]).
(b) Simplified contour, with one point for every 15

from the original.

is like in [43], valid for a frequency range from 10 kHz to 1 MHz; frequencies in which

lungs are translucid for ultrasound. The actual sound speed values are in table 1.
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Table 1 – Sound propagation speeds cℓ in each thorax model component (m/s). Longitudinal
waves.

medium cℓ (m/s)

water 1540

lungs 1500

vertebral spine 1630

thorax interior 1520

heart 1570

Source: data from [39] and from [43].

As already stated, to avoid echoes in the upper and lower planes of the thorax slice,

in order to simulate a 3D domain, and on the sides beyond the walls containing the water

around the thorax, it was needed to wrap this whole volume with a 3D ALID layer. With

the inclusion of this wrapping the mesh size increases considerably.

In order to generate the finite element meshes with Gmsh, one must first define the

geometry of the model, that is, the complete set of points, lines, curves and surfaces that

define the figures and volumes of the model. In our case, the geometry files are created

by commands in a script file read and executed by GNU Octave ([44]); this command

file is commented and has the important parameters clearly identified: dimensions of the

transducers’ ellipse axis, height of the thorax slice, length of the square region with water,

quantity and size of the transducers, etc., therefore with the edition of a few values many

different models can be created for study. Comments are also included in the generated

geometry file, and the most important values like the number of transducers and how many

elements per wavelength are displayed in the Gmsh message area when the geometry file

is opened, therefore a user can double check if the desired data are being dealt with.

Selection of how many elements per wavelength to use is based on calculation of a

“characteristic length” which Gmsh utilizes; this value regulates the (approximate) size

of finite elements in free regions of the geometry, while close to points which define the

geometry the elements have to conform to the geometry. That is why sampled contours

are used, to avoid an excess of very small elements close to the high resolution geometry

contour, with bigger elements (with the desired size) far away from the geometry.

3.1.4.2 Meshes for the breast with a tumor

One of the phases of this work is the development of numerical phantoms to be used

in the simulations. Initially a realistic phantom was pursued. The actual model does not
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resemble a breast at all. It is simpler and more suitable for software development and

initial tests.

Realistic human breast: an attempt to create a realistic breast involved the use of

computer generated models and also some stereo-lithography (.STL) files for 3D scanned

bodies or torsos. These STL files contain only information about the surface of the objects.

Deficiencies of the realistic models: all the realistic phantoms above share

a common pitfall. It is reasonable to think that in an ultrasound breast tomography the

person undergoing the examination will have to lie over a table, or bed, with their breast

(one at a time) suspended through a table hole and immersed in liquid, according to figure

11. In this situation, de Kleijn ([45]) states that the breast shows some little concavities,

and, with time11, the breast will even swell and deform, because of blood accumulation

in it due to gravity. The tomograph shown in 11a does a complete scanning in about 10

seconds.

Figure 11 – Some equipments for breast tomography and for breast measurements.

(a) Koning Breast computed tomograph (old
model, [46]).

(b) CAD representation of the test bed from [45].

Simplified human breast: the attempts to create a realistic finite element model

of a human breast have a very high number of FE elements. Notice that the values shown

in table 6 already include the breast, the water around it and an additional layer of ALID

elements. This high number of elements has potential to make the computational run

time considerable, even considering parallelization in the program.

11In his study the time for the measurement is around 15 minutes, consequently breathing also affected
measurements [45].



52

For practical reasons, a simpler breast model is more suitable for the development of

the tomography algorithm, allowing for faster program development and testing. Once

the algorithm is finished and working well, more effort can be directed to realistic models

(for real world experimentation of the program) and to improvements in parallelization

and faster execution time.

Therefore the breast was substituted by a small cylinder, with a smaller cylinder

inside it to act as a tumor. Again, as in the thorax model, the breast model will be of

small height. This will allow for smaller meshes to simulate, speeding up the tests and

development of the tomography algorithm.

At early stages of the tomography algorithm development – and before regularization

– some crude tests of the optimization gave bad results. As the sound speed in water

was then the same used in the thorax simulations, 1540.0 m/s, and, according to some

sources12 that for the breast was chosen as 1545.0 m/s and for the tumor 1570.0 m/s, the

small difference of only 5.0 m/s from water to breast was considered to be a problem.

Since breast data had big variations from one reference to another, or were much

specific and not adequate for the breast as a whole, e. g. 1440.0 m/s for breast fat and

1505.0 m/s for the mammary gland, a decision has been made regarding sound speeds

of 1510.0 m/s for the breast [47, cited as “average value”], 1480.0 m/s for water [2] and

1560.0 m/s for the tumor [48], which allow for 30.0 m/s differences from water to breast

and 50.0 m/s from breast tissue to tumor. These speeds were chosen for use with the

simplified model and are in table 2.

Table 2 – Sound propagation speeds cℓ in the simplified breast model (m/s). Longitudinal
waves.

medium cℓ (m/s)

water 1480.0

breast tissue 1510.0

tumor 1560.0

The ultrasound frequency is 25 kHz. Higher frequencies, with shorter wavelengths,

would imply in more elements in the mesh for the same number of elements per wavelength.

12Among them, for instance, http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/

usound2.html, https://itis.swiss/virtual-population/tissue-properties/database/

acoustic-properties/speed-of-sound/, https://onlinelibrary.wiley.com/doi/pdf/10.

1002/9780470561478.app1, https://asa.scitation.org/doi/pdf/10.1121/1.1336896 and
http://www.rfcafe.com/references/general/velocity-sound-media.htm.
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The diameter of the models (reference and tomography) was increased from 3 to 10

cm, this change was thought to help with the optimization process.

There are two meshes: a reference mesh and a simulation one. The reference is used

as a standard or surrogate of real world measurements; the simulation mesh is used as

direct problem in the tomography algorithm and is simpler to allow faster (compared to

the reference model) execution times.

The mesh for the reference model has 15 elements per wavelength (for a very accurate

representation of the wave using linear elements), an ALID of type 5/5/313 whose thickness

is 9.8667 cm – a thick ALID in order to minimize echoes. The tumor has a radius of

0.7678 cm, in a breast of radius 4.0 cm and vat of radius 5.0 cm and height 1.5 cm.

The mesh used for the direct problem (simulation) in the tomography program has 6

elements per wavelength and an ALID of type 3/2/3 with thickness 6.24 cm. Breast and

vat are the same as in the reference model. This very simplified model has less than 50,000

elements, including water and ALID. This is 34 times smaller than the model cuba2020

and 115 times smaller than cuba 2020B14. The number of transducers is 24. The number

of elements and nodes of both reference and tomography meshes are in table 3. Their

geometry is in figure 12.

Table 3 – Number of elements and nodes in the simplified breast model, including the ALID
layer.

mesh elements nodes

reference 1348973 227965

tomography 49093 8952

13Recall equation 4.1 and the description in its paragraph, at page 62, and figure 13.
14However, the realistic breast models were created for an ultrasound of 50 kHz, with 10 elements per

wavelength, therefore for 25 kHz with 6 elements per wavelength an adjustment factor of
(
25
50 × 10

6

)3 ≈
0.579 can be applied to the number of elements, and the simpler breast would be, for a fair comparison
with the same conditions, 19,6 times smaller than cuba2020 and 66.5 times smaller than cuba 2020B for
the same ultrasound and elements per wavelength.
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Figure 12 – Wireframe geometry for the simplified breast model. At left the reference model,
at right the model used for the direct problem in the tomography program. Not
in the same scale – the disc surrounded by small lateral discs (the transducers) is
the same size in both models.

(a) Simplified breast and tumor used as reference,
in top view. From the outside to the center:
ALID, water, breast, and tumor in the breast,
down and to the right. The circle with black
points (because of the transducers) is the vat
wall.

(b) Simplified vat model used in the tomography
as direct problem, with ALID layer, in top
view. The tomography algorithm will have
to correctly assign properties of water, health
breast and an likely tumor to the elements in-
side the vat.

(c) Simplified breast and tumor used as reference,
in oblique view.

(d) Simplified vat model used in the tomography,
in oblique view.
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3.1.5 Parallel computing

Parallel computing is the use of many processor units, simultaneously, to perform

calculations and in this way speed-up program throughput. This means the use of all

available processor cores that nowadays CPUs (computer processing units) have, and also

the use of simultaneous CPUs and networked computers to do calculations.

The first finite element program was serial, that is, unaware of how many CPU cores

and simultaneous multithreading (SMT)15 the computer could offer. Only one of the

many cores of modern computers was used. After most of the changes in the list a)–l)

were done, and the usability of the program deemed good, the development of the code

was focused on better performance, via parallelization of the program.

Some parallelization technologies as OpenACC ([49], [50], [51]) and CUDA were ini-

tially evaluated. Then another parallelization option, OpenMP ([21]), was investigated.

3.1.5.1 Parallelism using OpenMP

OpenMP is used in the FEM simulation and tomography program. The GNU compil-

ers used to develop the program are compatible, implementing many of the most recent

specifications of OpenMP.

The current versions of OpenMP allow also for execution in GPUs ([22]).

3.2 Inverse problem

In order to obtain a tomographic image Baye’s Theorem will be used, the image

should maximize the posterior probability density function, given that a set of pressure

measurements had happened. The prior probability density function will be used as a reg-

ularization of the problem that, otherwise, has an infinitude of solutions [52]. Maximizing

the posterior probability is consistent with minimizing a performance index.

From a computational point of view, a way to assign properties of each voxel to the

corresponding finite elements in the model was devised. As the properties in each voxel

affect the simulated measurements, they must be changed appropriately to minimize the

performance index through an iterative process. For that purpose a performance index is

devised and an optimization algorithm is adopted.

15Or “hyper-threading” in Intel parlance.
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3.2.1 Initial guess

The initial guess tells the program the starting values, in each voxel, to begin the

optimization process. The standard values are the sound propagation speeds of water

and of an homogeneous breast tissue, but some voxels could start with tumor values if

desired. Also, the final tomography of a previous run of the program could be used to

proceed with the optimization.

A small program was developed which asks for the type of voxel grid to be created,

the sound speeds, the dimensions of the model elements, and the grid discretization in the

XY plane and in the height (Z axis). As the simulation model uses very simple geometric

figures for the breast inside the vat, only the radius and height of the vat and of the

breast are needed as input dimensions. This program then saves a file with the initial

sound speed values, assuming only water and breast exist in the vat16. This file is used

as input for the tomography program.

3.2.1.1 How voxels and finite elements are correlated

The tomography algorithm loads the initial values of each voxel at startup. When

the individual finite elements have their properties calculated by the program to build up

the mass, damping and stiffness matrices of the FE problem, they use the sound speed

corresponding to the voxel where the geometric center of the element lies.

Inside the program, the voxel values are stored as a vector variable; each vector

element is an “optimization parameter” for the optimizer, and only the optimizer changes

the values in this vector. For each new iteration of the program, the elements have their

acoustical properties calculated with updated vector values. Also at each iteration a new

file is saved with updated voxel values.

3.2.2 Regularization: sample based prior

It is known that inverse problems are ill-posed and their solution requires special

methods ([53], [54], [52], [55]). Generation of a tomographic image is an ill-posed problem.

Regular, ordinary mathematical problems are, on the other hand, well posed. Most of

the mathematical problems usually dealt with, and most problems of engineering interest,

belong to this class.

16A graphical representation of the file created by this program is in figure 32a on page 86.
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Being T the (linear) forward operator of which the inversion is wanted, T : X → Y ,

T bounded and X, Y separable Hilbert spaces, and R and N respectively the range and

nullspace of T . According to [53], the inversion of T is said to be well posed if it satisfies

these conditions17:

� existence: for all g ∈ Y, there exists f ∈ X such that Tf = g, that is,

R(T ) = Y , (3.9)

� uniqueness: for all g ∈ Y, there is a unique solution,

N (T ) = {0} , (3.10)

� stability: the solution depends continuously on the data,

T−1 ∈ L(Y,X) , (3.11)

where L(Y,X) is the set of all bounded linear transforms mapping from Y to X. If any

of the three conditions is not met, the problem is ill-posed.

In practical terms, non-uniqueness is undesirable because, if the same image or to-

mography could be created by two or more different objects, this is problematic for the

(correct) reconstruction.

Lack of stability leads to numerical problems. And real world measurements are sub-

jected to noise, and have limited accuracy; even computer simulated values are subjected

to numerical accuracy and truncation errors. A non-stable solution signifies that any

small deviation, in any variable, causes a great variation in the values of the solution,

therefore it can be far from the true (and unknown) solution.

The theory of regularization deals with the problems of stability. So, the solution

will depend on the noise level or measurement accuracy, but will be “attracted” to vi-

able values. If the first condition is violated, a “classical” solution can be relaxed and,

instead, a generalized solution may be seek. As stated by [53], “ ...how one can aim at

extracting information as stably as possible from an unstable system. This is the goal

of regularization.” The results for nonlinear inverse problems are inspired by the linear

problem.

The problem of ultrasound tomography of the breast is ill-posed. For instance, even

with an initial guess with voxel values close to the desired solution, known from the

17Known as Hadamard conditions for well posedness.
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forward problem used by the simulator as the reference, the optimization could not give

good results most of the time, with voxels usually going to the maximum or minimum

allowed limits.

If an exact solution g can not be found, it is usual to look for the best fit f , a

least-squares solution, which minimizes the Euclidean norm,

||Tf − g|| ≤ ||Th− g|| , ∀h ∈ X . (3.12)

The objective function to be optimized depends on the sound propagation speed cl,

but of course the function can have any parameters of interest, for instance damping

(dissipation) of the different tissues subjected to the tomography process. Let r be this

function; before regularization it is of the form [·]T

r(cℓ) = ||ϕm − ϕ(cℓ)||2 =
(
ϕm − ϕ(cℓ)

)T (
ϕm − ϕ(cℓ)

)
(3.13)

where ϕm is a performance index that depends on the reference measured pressure values

– which are simulated by a precise model in this work – and ϕ(cℓ) are the values from

the tomography direct model, function of the sound wave speeds cℓ in each voxel. For

simplicity, the adopted idea is to match in time the position of the pressure peak in the

reference and in the tomography direct problem; the performance considers the squared

delays of the peaks in the time history of all available signals: for each transducer as

listener, and for each emitter.

ϕ(·) A generalized Tikhonov regularization term

λ2||L2(θ − θ̄)||2 (3.14)

is added to r(cℓ). In this regularization term, θ is the vector of sound wave speeds (cℓ) at

the tomography voxels, and θ̄ the vector of expected mean values of sound wave speed at

each voxel. Those expected values are from samples of a population of interest, computed

using normal distributions with given mean values and standard deviations for the breast

and tumor radii and also varying the position of the tumor inside the breast; only a given

fraction of the individuals has tumors. The breasts are always at the center of the vat.

Care was taken to avoid biased results due to bad choice of random number generators18.

In the present work, L2 is the inverse of a sampled covariance matrix I; this regularization

term tries to avoid big discrepancies, in regard to the values found in the population, of

18In [35, chap. 7.1] the authors alert against bad implementations of “random number” generators that
are very common; these generators have “sequential correlations” in successive calls.
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the θ′ obtained in the optimization process, as the problem is ill-posed.

The program which calculates the mean values θ̄ also determines the covariances Γ for

the same random sample of breasts, therefore a second regularization term can be added

to r(cℓ),

γ2(θ − θ̄)Γ−1(θ − θ̄) (3.15)

where Γ−1 is the inverse of the covariances, and θ̄ the mean values. However, Γ has a big

condition number and is difficult to invert, so it is modified as (Γ +βI)−1, β being “white

noise” added to the covariances.

With the regularization terms, the objective function becomes

r(cℓ) =
(
ϕm −ϕ(cℓ)

)T (
ϕm −ϕ(cℓ)

)
+ λ2||L2(θ− θ̄)||2 + γ2(θ− θ̄)(Γ + βI)−1(θ− θ̄) (3.16)

and λ2 and γ2 are the weightings for the regularization terms. A set of faster simulations

with various combinations of γ and λ was executed, with a lower voxel count, using a

16 × 16 grid, 44 parameters to adjust, see table 7.

Note that equation (3.16) can be multiplied or divided by any non-zero value at any

time, this way making its first term, the error from measurements to the values given

by the tomography model, to appear always with unitary weighting19, with no loss of

generality. However, the optimization program has parameters which affect the way this

model error is calculated, and care must be taken to avoid this term to numerically vanish

and become negligible; also, the optimizer from next section stops if the performance index

(objective function) does not diminish below a given tolerance, therefore it made sense to

weight the model error with values other than 1.

3.2.3 Search for the maximum a posteriori probality

The regularization acts to avoid the voxels to acquire undesired, unfeasible or unreal

values. But the algorithm has to provide a mean for the values to evolve from the initial

guess to a final one, where a tumor, if present in the breast, will be shown in its approxi-

mate position and size, according to the grid size chosen for the voxels. An optimizer will

drive the choice of adequate voxel values, minimizing the objective function 3.16.

19The actual tomography program has a weighting value for the first term, the model error. This
parameter was not removed when weightings for mean values were later added.
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3.2.3.1 Selection of algorithms

Some algorithms were considered for this task: TOMP (Trajectory Optimization by

Mathematical Programming, [56, 57]); VE08, from the Harwell Subroutine Library ([58]),

good at non-linear unconstrained optimization problems; Subplex, subspace-searching

simplex method for unconstrained optimization ([59]); BBVSCG, a variable storage For-

tran subprogram for function minimization ([60]); lmdif, from the MINPACK library,

which performs the Levenberg-Marquardt algorithm, with Jacobian calculated via finite

differences ([61]); and even simulated annealing with simann ([62]).

Due to previous experience with the software TOMP, e. g. [63], solving a com-

plex control problem where other methods, albeit carefully implemented from [64], were

unsuccessful, it was chosen as optimizer.

While all the FEM simulation and the remaining of the inverse problem are C code;

just the optimizer is Fortran. Mixed programming can easily be implemented with GNU

compilers.

TOMP is divided in two main parts: one is a simulator (called d TOMP) and the

other is the optimizer, which name is SLSQP, for Sequential Least SQuares Programming;

the simulator d TOMP is not used at all for the tomography algorithm.

Optimization problem statement. TOMP’s optimizer SLSQP receives a vector

x of all the optimization parameters, the gradient G of the cost (objective) function

to be minimized, and the Jacobian J of constraint violations. For the purpose of the

tomography optimization there are no constraint conditions, therefore J is 0 whenever it

appears in the program. Also there are lower and upper bounds for the parameters. For

the tomography, each parameter is simply the sound propagation speed to be optimized20.

Formally, the optimizer will solve the nonlinear programming problem

min
x∈Rn

f(x) (3.17)

with each component of the vector x bounded by lower and upper limits

li ≤ xi ≤ ui , i = 1, ..., n (3.18)

20As already stated, dissipation values can be used too.
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and also satisfying constraints as

gj(x) = 0 , j = 1, ...,me (3.19)

and

gj(x) ≥ 0 , j = me + 1, ...,m (3.20)

with f : Rn → R1. In our tomography problem m has value 0, and also me.

As the optimizer does not have to deal with constraint violations in the breast ultra-

sound tomography, it’s internal variables for m and me will have value 0, the subroutines

involved with the constraints return immediately, and some loops in the program will not

be executed. There is no extra simulation penalty, although some useless variables are

still used in subroutine calls. In other words, SLSQP can be streamlined for use in this

tomography algorithm, but the overall program performance may not improve at all.

The method for optimization is sequential quadratic programming, a efficient com-

putational method to solve general nonlinear minimization problems, equation (3.17). A

comprehensive explanation of the SLSQP algorithm is available in annex D.
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4 RESULTS

The first simulations, done with the thorax model, show abundant echoes at the model

borders. This artificial echo interferes with with the transducers’ readings, and because

of that they must be diminished to acceptable levels in order to allow readings without

extraneous signals.

The direct problem numerical simulator is compared to a set of simulations (from

another simulator) which in turn were compared to physical laboratory experiments and

agreed very precisely. This comparison addresses whether the tomography simulator is of

an equivalent level of accuracy.

The tomography algorithm is applied to simple phantoms of the breast (represented

by small cylinders) and its ability to indicate the position of a tumor is tested.

4.1 Development of an ALID model

A simple equation was devised for the ALID attenuation, with increase according to a

power law, and a very subtle increment in the start of the layer. The ALID layer increases

the size of the model, but is effective to avoid echoes.

4.1.1 ALID equation

In the simulations the ALID is indicated by a numeric code in the format N1/N2/N3

meaning that the layer is made up by N1 sub-layers, each one with a width of N2 elements

(with their given “characteristic length”) and power N3 for absorption increase, according

to figure 13 and equation 4.1.

Ca(e) = Ca0 ×
(

1 +

(
d(e)

Tsl

)P
)

, (4.1)
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where Ca(e) is the attenuation coefficient of the finite element e, Ca0 the water attenuation

coefficient, which borders the ALID layer, d(e) is the distance from the start of the

absorbing layer to the geometric center of the element e, Tsl the thickness of one sub-layer

of the ALID, given by the characteristic length1 L of the elements and number N2 (in

the direction of the thickness) of elements in the sub-layer, that is, Tsl = N2 × L, and P

(parameter N3) the power for the attenuation increment.

Figure 13 – Composition of an ALID layer “N1/N2/N3” of N1 sub-layers of N2 elements, here
showing an ALID 2/3/3. Each one of the 2 sub-layers has approximately 3 elements
(highlighted) or exactly 3 characteristic lengths in width.

4.1.2 ALID sizes

Comparisons of the sizes and processing times for meshes with different ALID layers

are in table 4.

In order to check the effectiveness of the ALID wrapping some meshes were created,

without the thorax and internal organs, containing only water and the ALID layer, with

a single point emitter in the geometric center of the model. The transducer readings file

will show the occurrence of any echo and its intensity. The excitation is a single pulse.

1A parameter in Gmsh for the creation of the mesh.
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Table 4 – Sizes of the thorax simulation models with different ALID layers.

model
ALID wrapping tetrahedrons total nodes total simulation

thickness (m) (comparison, %) (comparison, %) time (s)

Qual553 0,077000 3606232 (100%) 624919 (100%) 25960

Qual443 0,049280 1974992 (54,77%) 348688 (55,80%) 13245

Qual343 0,036960 1497299 (41,52%) 265854 (42,54%) 9584

Qual333 0,027720 1149905 (31,89%) 205710 (32,92%) 8029

without ALID absent 276096 (7,66%) 56239 (9,00%) 2164

Simulation times using an older, serial version of the simulation program.

4.2 Use of parallelism in the program

Parallelism technologies were developed for use with computationally intensive tasks.

Problems involving finite elements and the generation of tomographic images can be

considered computationally intensive, unless they have a small FE mesh as a model or a

small domain for the tomography.

In this work models of different sizes were used: smaller models for testing and faster

program development, and larger models for the tomographies. The performance of these

various models allow for the elaboration of guidelines for the efficient use of parallelism,

in general, and particularly for the problem of tomography using FEM.

4.2.1 Influence of the number of threads

OpenMP is “well suited for expressing loop-level parallelism” (cf. [21], 6.1 Scalability

Challenges for OpenMP), but care must be taken with the nature of the problem to solve.

As example, some tests were done in a “supercomputer” from CITI/USP2, with 48 threads

available, and there is a clear trade-off where the number of processor cores (or threads)

being used is optimal, and the use of all available resources can be counterproductive, due

to the overhead of splitting, say, a for loop among all 48 threads, when the size of the

mesh is not big enough to compensate for this overhead. In other words, the management

of all the cores/threads takes an amount of time that is not compensated by the very

short execution of the work by each core; by the brief moment each core finishes its small

share of the for loop, the added time to start and then conclude the parallelization in

2CITI - Centro Interdisciplinar de Tecnologias Interativas (Cross-disciplinary Interactive Technologies
Center) from USP.
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all cores is, in proportion, too big. Illustrative results are available in appendix B for a

medium to big FE model used when the simulation program was in development.

4.2.2 Parallelization for very small problems?

The same parallelization overhead that impacted the results shown in appendix B

when a big number of threads is used3 can be noticed, keeping now a fixed number of

threads, but with problems of varying sizes.

Take a big problem, which will have long loop iterations, like a complex finite element

mesh with some millions of elements. In this circumstance, more computer cores or threads

lead to smaller execution times. The time in each loop is greater than the overhead, and

more threads will reduce those loop times.

For very small problems, on the other hand, the overhead of preparing and starting a

parallel region (a for loop) and, when it concludes, finishing this region and proceeding

to another one or to serial code can easily be much larger than the time spent in a short

duration loop with relatively few elements or vector variables to iterate. In extreme cases,

a serial program will have better performance than a parallel one.

Table 5 shows results for some mesh sizes; when there are less than 100,000 tetrahe-

drons the serial version of the program is faster than the parallelized program.

3How “big” or “good” this number is depends and varies in proportion to the amount of calculations
to do, or with the size of the FE model.
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Table 5 – Execution times for meshes of various sizes, serial and parallelized programs. Com-
puters with 8 and with 12 threads for the parallelized programs. In bold face the
fastest program.

CPU i7-3610QM, 8 threads CPU i7-8700K, 12 threads

mesh name

execution times (s) execution times (s)size (tetrahedrons/nodes)

integration steps

cuba 2020B
parallel: 689

serial: 991

parallel: 379

serial: 581
5545240/907937

500

trans ely NG
parallel: 456

serial: 518

parallel: 246

serial: 306
477437/85742

5000

trEconc
parallel: 186

serial: 161

parallel: 101

serial: 88
94283/18311

10000

MiniA
parallel: 118

serial: 77

parallel: 62

serial: 45
47623/9565

10000

MiniB
parallel: 31

serial: 16

parallel: 18

serial: 9
8825/1958

10000

MiniC
parallel: 31

serial: 15

parallel: 17

serial: 8
4576/1038

30000

4.2.3 Parallelism using the GPU

Programs parallelized with OpenMP can, without much additional effort, be executed

in the GPU. There are two drawbacks: data transfer from the computer RAM memory to

the GPU memory is slow – and occurs twice: uploading data to be processed in the GPU

and later downloading the results to the RAM – and there is no input/output capabilities

in the GPU for reading or writing files.

There are OpenMP directives which allow data to be uploaded to the GPU and then

remain there for repeated use later on, reducing the amount of data (and time) to upload
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in later calls of the function using the GPU. In the FEM simulation, the GPU is used

for the multiplication of a matrix by a vector; the matrix elements are constant values

(as long as the model properties do not change), uploaded only once to the GPU, and

the vector is the only data which is uploaded at every function call; the result of the

multiplication is always downloaded to the computer RAM.

In the same way the use of all available CPU cores may be counterproductive, the use

of the GPU for parallelism can not be justified unless the problem at hand is big enough,

because the time for upload/download of data between CPU and GPU may be dominant

and surpass any parallelism gains.

We did limited testing of GPU parallelism, in the machine with the CPU i7-8700K

CPU (12 threads), with a NVIDIA RTX 2070 GPU. This GPU model has 40 “streaming

processors” with 64 cores each, for a total of 2560 “shader processors”4. With this hard-

ware, and only the matrix times vector operation using the GPU, a simulation with a

4,592,407 tetrahedrons mesh took 444 s. using only CPU parallelism, and 357 s., almost

20% faster, using CPU+GPU. At that time the decision to use much smaller meshes was

done, and in this situation the use of the GPU would not be beneficial.

OpenMP allows the use of NVIDIA and newer Radeon GPUs for parallelism. This is

a positive point over CUDA, which works only with NVIDIA GPUs.

4.3 Simulation results for the thorax model

Results for thorax simulations are presented in this section. These results show how

echoes manifest in the model, and how an adequate ALID layer, wrapping the model at

all sides, is effective in attenuating echoes.

All simulations are done for a 50000 Hz ultrasound, of only one pulse, modulated by

a Gaussian curve. The integration time step was 1.0×10-8 s, with a total of 12,500 steps

for models similar to the ones solved by k-Wave and 30,000 steps for models used for

echo evaluation. Models for echo evaluation do not have thorax contours nor the internal

organs, being a simple closed volume of water with the ALID wrapping around and a

single point transducer in the geometric center of the model.

The thorax model represents one model used by Cárdenas [39], for use in the D-bar

tomography ([65]). The simulations, unless otherwise specified, are made for only the first

4However, not all “processors” are equally capable, e. g. only a few of them can work with transcen-
dental functions. This is a general purpose gaming GPU, not one designed for heavy data mining.
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excitation pattern, that is, with n = 1 in equation 3.8, with amplitudes proportional to

cos(θ).

The first simulation is of a model without ALID wrapping. In this case echoes are

abundant and can be easily recognized, see figures 14 and 15. There are 64 transducers,

in an elliptic arrangement (figure 8 on page 48) and angularly equi-spaced.

Figure 14 – Visual identification of echo at the model borders. Single pulse excitation in the
64 transducers with amplitude according to cos(θ). Pressure in Pa.

In figure 15 there is a selection of some frames recorded in the visualization result file,

which helps to understand how the sound propagation evolved.

With an ALID absorbing layer as is described in section 3.1.3 it is clear that echoes at

the model borders are eliminated or at least greatly diminished, as can be seen in figures 16

and 17, where the figures include the ALID layer and, because of that, figures appear to

have a smaller region of interest (transducers, water, thorax and internal organs) than in

figure 15; however the dimensions are exactly the same. All the apparent size variation

in the following figures is due to varying ALID layer thicknesses, see table 4 on page 64.

One objection that can be made is that, in the thorax simulation models, the trans-

ducers are numerous, and are in an ellipse, at a distance from the center and closer to

the model lateral borders. In the ALID evaluation models it is used a single transducer,

in the center point of the model, therefore the total sound intensity reaching the ALID

layer is smaller in this situation.

One echo evaluation result with an ALID 6/2/4 is shown in figure 17, where the value

scale is adjusted to encompass the minimum and maximum values of the depicted instant

in time.

There is no echo, and the waves have their intensity vastly reduced inside the absorbing
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layer. However, with the same ALID layer 6/2/4, but in the thorax simulation, with all

the transducers emitting, still some echo can be noticed, as is shown in the sequence of

figure 18; for the increased power from many emitters the ALID must be bigger.

Figure 15 – Evolution of an excitation pulse generating echoes. Model without ALID layer,
pressure in Pa.

(a) instant t = 0.0 s. (b) instant t = 7, 5× 10−6 s. (c) instant t = 2, 5× 10−5 s.

(d) instant t = 3, 75× 10−5 s. (e) instant t = 4, 75× 10−5 s. (f) instant t = 6, 75× 10−5 s.

(g) instant t = 7, 75× 10−5 s. (h) instant t = 8, 75× 10−5 s. (i) instant t = 9, 75× 10−5 s.
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Figure 16 – Temporal evolution of the excitation pulse with an ALID layer 3/3/3. Pressure in
Pa.

(a) instant t = 0, 0 s. (b) instant t = 7, 5× 10−6 s. (c) instant t = 2, 5× 10−5 s.

(d) instant t = 3, 75× 10−5 s. (e) instant t = 4, 75× 10−5 s. (f) instant t = 6, 75× 10−5 s.

(g) instant t = 7, 75× 10−5 s. (h) instant t = 8, 75× 10−5 s. (i) instant t = 9, 75× 10−5 s.
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Figure 17 – Behavior of the echo model, ALID 6/2/4, instant t = 8, 4 × 10−5 s. Pressure in
Pa.
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Figure 18 – Temporal evolution of the excitation pulse with an ALID layer 6/2/4. Pressure in
Pa.

(a) instant t = 0, 0 s. (b) instant t = 7, 5× 10−6 s. (c) instant t = 2, 5× 10−5 s.

(d) instant t = 3, 75× 10−5 s. (e) instant t = 4, 75× 10−5 s. (f) instant t = 6, 75× 10−5 s.

(g) instant t = 7, 75× 10−5 s. (h) instant t = 8, 75× 10−5 s. (i) instant t = 9, 75× 10−5 s.
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4.3.1 Effectiveness of the ALID layer

The echo also appears very clearly in the reading signal from the echo evaluation

model, without ALID, figure 19, where it is shown in 19b the excitation pulse followed

by a series of small waves – which are not seen in simulations with ALID layers. These

disturbances, however, are not echoes from the far borders, because they appear already at

the moment the excitation ends, at instant t = 2×10−5 s, whereas the first echo signal from

the borders, due the size of the model, should only appear at the time t = 1, 3636×10−4 s.

Such disturbances are due to echoes between the planes that define the thorax slice, as

shown in appendix C.

With the use of an ALID 3D wrapping the measured sound pressures is reduced.

Keeping the same power for the increase in the absorption, figures 20a-20c show how a

thicker ALID avoids echoes.

Figure 19 – Excitation and reading with initial pulse and echo signal. Model for echo evalua-
tion, without ALID layer.
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Figure 20 – Readings with echo attenuated by the use of an ALID wrapping. Same conditions
of figure 19 except for the different ALIDs.
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4.4 Realistic breast

One breast mesh was developed using a STL tumor with 18,498 polygons and 18,580

vertices, shown in figure 21 ([66]) and a breast extracted from a human character created

with the software MakeHuman ([67]).

Figure 21 – Tumor for the realistic model, described by a STL file, from [66].

Source: [66].

A series of operations had to be performed in order to obtain the final model: a) as

can be seen in figure 21, the tumor has veins and arterioles of no value for our application,

and the fact that they are opened at their extremities will provoke errors when trying to

create a (closed) volume in Gmsh, and for this reason they have to be removed, b) no

character in MakeHuman was found or could be created, to our very limited knowledge,

in the desired position, with the breast hanging below the horizontally laid torso; because

of that, when an individual in an acrobatic posture – named “Gym01” – was found it

was assumed the best that could get at the time; this character was exported as a .dae

(Collada) mesh, c) this character had to be rotated from its default position, in order to

make the breast point vertically downwards, using Blender, d) the whole character was

combined with simpler volumes (cubes, cylinders, etc.) and operations of subtractions

and intersections made in order to isolate one of the breasts; for this the program Blender

([68]) was used, e) the tumor had to be scaled down, and then positioned inside the

breast, again using Blender, f) the isolated breast and the tumor are then saved, each one
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in an independent file, g) an script/program was created and executed in Octave ([44]) to

create a vat, with the chosen dimensions and number of transducers as parameters, and

this information saved in a geometry file for Gmsh, h) a method was devised in Gmsh to

allow that the STL files of the breast and the tumor were loaded and combined with the

vat geometry, and finally a FE mesh was generated, while preserving the ability to access

a water volume, the breast and the tumor independently, i) as the resulting FE mesh had

bad shaped tetrahedrons (Gmsh displays an alert when the mesh just created has these

problems), simplifications, corrections and improvements to the breast and tumor STL

files were done using Meshlab5 ([69]) and step h) redone, iteratively, until a good FEM

mesh was obtained with Gmsh, with a small number of bad elements6.

An adequate balance has to be found between finer surface meshes, for the breast and

for the tumor, and coarser ones. Obviously a fine mesh has a large number of elements

and requires more computer power or time to simulate, and a coarse mesh would not work

well to simulate the wave phenomena (see [42]).

Other problems appeared too: in figure 22 a big difference in mesh size exists in the

breast. The original MakeHuman surface, which corresponds to the skin of the breast, has

small or (say) adequate size, while the surfaces for the “cuts” done with simple geometric

volumes in order to isolate the breast from the whole body have a very coarse mesh,

maybe because of the more regular surface and curvatures of the volumes. As the surface

mesh drives the creation of volumetric elements in Gmsh, the resulting tetrahedral mesh

is of bad quality. Also, some triangles from the STL surfaces are very pointy, and this

also causes difficulties as a low quality mesh and later numerical problems in the finite

element program.

5Several resampling and remeshing algorithms were used: Catmull-Clark, Butterfly subdivision,
TwoStep smoothing, etc, to improve the breast and tumor meshes.

6A background field was used in Gmsh, however this could not correctly drive the element sizes near
the boundaries defined by the STL triangles; in attempts with B-rep files for the breast and tumor the
background field worked better, but then it was impossible to correctly subtract volumes and there was
water and breast volumes sharing the same region in space, at the same time.
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Figure 22 – Big variation in the size of surface triangles in one of the realistic breasts. The
mesh file for the complete model using this breast, with water and ALID, has
1,735,789 elements.

(a) Front view. (b) Rear view with some big triangles.

A more regular surface mesh can be seen in figure 23, obtained with different re-

meshing algorithms applied to the same starting stereo-lithography file from figure 22;

however, the resulting 3D mesh created in Gmsh, even after all the optimization stages,

still has bad tetrahedrons, as shown in table 6; the breast used in mesh cuba2020 is the

one in figure 22, and from mesh cuba 2020B is in figure 23.

Figure 23 – A more uniform size of surface triangles in another of the realistic breasts. With
this breast, the complete mesh file (with water and ALID) has 5,881,631 elements.

(a) Front view. (b) Rear view.

In figure 24 one of the breasts models can be seen inside his vat, slightly from below

the level Z = 0. Breast and tumor are shown as surfaces made up from many triangles –
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that is the information their STL files contains – and only the triangles’ edges were drawn

in this figure.

Figure 24 – Wireframe geometry depicting cuba 2020 breast in the vat, viewed from below. A
bluish blob inside the breast is the tumor.

Table 6 – Properties of some of the realistic breast meshes.

mesh file
tetrahedrons

total ill-shaped

cuba2020 1735789 12

cuba 2020B 5881631 61

Numbers with Gmsh 4.8.4, may vary with other versions.

MakeHuman, according to Wikipedia, has been used in industrial design, to verify the

anthropometry of a project, and in virtual reality research, to quickly produce avatars

from measures or camera views; MakeHuman characters are used in biomechanics and

biomedical engineering, to simulate the behavior of the human body under certain con-

ditions or treatments; full-body 3D virtual reconstructions have been performed using

MakeHuman, and 3D analysis of early Christian burials, among other applications ([70]).
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4.5 Simulations and experimental data

In section 4.3 some results from the simulator were already shown. In figures 14

(page 68) and 15 the echoes can be clearly seen, because of the absence of an ALID layer.

Also an ALID was developed, with a damping according to equation 4.1. After a good

set of values for the parameters N1/N2/N3 was established empirically the echoes are

effectively dissipated, as can be seen in figure 18 (on page 72).

4.5.1 Numerical comparison

More simulations were done with the simulation model (direct problem) and these

results compared to experimental data available in the work of Nakanishi ([71]), where

the author used a pair of know transducers to emit a pulse and receive it at various

controlled distances from the emitter, both transducers in a water tank. The complete

tests were repeated 16 times and the mean values obtained then used to ascertain the

precision of a computer simulation of the problem, made with finite elements.

It should be noted that the mesh used for comparisons was not the same from [71];

there, by the figures, the mesh seems to be somehow structured – see figure 25 – as

some points of measurement are equally and regularly spaced along the length of the

cylinder, and any section of the mesh, between two consecutive measurement points, had

a visual pattern which repeat itself for the other segments between measurement points;

this is more clearly visible in the coarser mesh with 5 points per wavelength. Much more

noticeable, however, even for the finer meshes (10, 20 and 30 points per wavelength) are

the concentric layers of attenuating elements used to avoid echoes, as Nakanishi created

“tubes” of PML (perfectly matching layer) around the central cylinder where he simulated

sound propagating in pure water. In a PML, damping properties are a function of distance,

therefore he calculated those properties for thin cylindrical shells.

The shape of the excitation signal in [71] is also different from what was used before

in our simulations with thorax sections. New parameters were tested until the excitation

used in the test resembled Nakanishi’s one.

In addition to cylindrical models, [71] also includes comparisons with a spherical

mesh. The use of PML elements is not necessary in this mesh. Comparing his computer

results with experimental data the agreement is very good, with greatest error of about

6%, explained by differences in the sound propagation speed, exact shape of the real

excitation signal, multiple wave reflections between emitter and sensor transducers in the
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Figure 25 – Structured meshes used in comparisons between simulated and experimental data.

(a) Mesh with 5 elements per wavelength. (b) Mesh with 5 elements per wavelength.

Source: [71].

experimental setup, among other factors. Most of the position measurements have less

than 1% errors. Nakanishi used the mean of 16 experimental samples, and his values were

normalized by dividing all the signals by the peak value of each experiment and this is

what was compared to his simulations.

Figure 26 shows the simulated measurements for the spherical model from [71], and

figure 27 shows numerically simulated readings for the corresponding positions computed

by the FEM direct problem simulator. In both situations, the present work and Nakan-

ishi’s work, the excitation signal is applied by a disc surface at the center of the sphere.

Figure 26 – Pressures at various distances from the center of a sphere, simulated by Nakanishi.
Emitter at the center of the sphere (position 0 mm).

Source: modified from [71].

The excitation signal in [71] is a 150 kHz pulse made with 3 cycles of a sine wave,

attenuated at the beginning and end of the pulse. However, comparing figures 26 and
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Figure 27 – Pressures at various distances from the center of a sphere with the simulator used
for the tomography algorithm. Emitter at the center (position 0 mm).

−
5
00

0
5
00

p
re
ss
u
re

(P
a
)

0 1 2 3 4 5 6 7 8×10−5

time (s)

Transducer readings
0 mm

10 mm

20 mm

30 mm

40 mm

50 mm

60 mm

70 mm

80 mm

90 mm

100 mm

27 for the pressure at the center of the sphere, position 0 mm, where the excitation is

applied to the surrounding water, the signal in [71] appears to lack enough attenuation

for a very smooth transition from steady state at rest (constant zero pressure) to the

pulse, see the detail in figure 28. The pulse used in the tomography simulator has a much

more attenuated transition from and to steady state – around half of a complete sine

disappears. This signal is a sine wave attenuated by a Gaussian curve. Indeed in [71] the

author wrote about the same convolution of a sine wave with a Gaussian, and shows a

graph much closer7 to the excitation in figure 27; however, this is not the signal that can

be seen in figure 26 or figure 28.

Despite this difference in the excitation, the pressure peaks at each position in both

figures 26 and 27 are comparable, and the decay seems a little greater than the one

computed by the direct problem in the present work. A discrepancy in the ultrasound

dissipation properties may justify this, and will be explained in chapter 5.

Since the numerical simulator used in the tomography algorithm generated results

comparable to those of Nakanishi in [71], which in turn agree with experimental data,

indirectly, it is presumed that the direct problem represents, up to a certain precision,

results of the real world. Further investigation is needed to better assess the quality of

the simulator.

7It is almost identical, but the normalized peak value is attenuated by the Gaussian and reaches about
0.9 instead of 1.0.
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Figure 28 – Excitation pulse (blue line) with 3 sinusoidal cycles and sharp transition from and
to steady state. Enlarged detail of figure 26.

Source: [71].

4.6 Tomography grids for faster results

During the development of the tomography algorithm, even small models intended for

testing the program required significant processing time, which hindered debugging and

testing. To reduce program run times, some schemes were devised for creating tomography

grids that allow a given number of voxels to have fewer optimization parameters, resulting

in faster results.

Three types of voxel grid were used: a) cylindrical, the first created, named after the

cylindrical aspect of the simpler breast model. In this grid, every voxel can be optimized

independently of the others; b) rings, where the water filled region around the breast is

divided into a desired number of rings, of equal width, and all the voxels corresponding to

the same ring will have the same properties to be optimized; this way not only the water

voxels will have, more consistent properties (at least less prone to variations from voxel

to voxel) but, more importantly, the problem will have less optimization parameters –

this is the first grid type intended to speed up the program; c) rings and sectors, where,

besides the water rings from b), the breast is divided in four quadrants, and, as the tumor

is placed somewhere inside the fourth quadrant, the three first ones will have common

properties for the voxels inside them, and there will be much less optimization parameters

for the program to make computations with, therefore the running time will be further

reduced. In figures 29 and 30 the optimization indexes and voxel numbers are shown for

a rings and sectors grid with 16x16 voxel grid and 4 rings.
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Figure 29 – Sample of a “rings and sectors” grid of voxels for a 16x16 grid with 4 rings. This
is the file with the optimization indices for each voxel. Note the repeated index
numbers 1–4 for voxels in each of the 4 rings, 5–7 for the voxels in each of the first
three sectors and the individual voxels with indexes 8 to 44 in the fourth sector.
The index 0 is for ALID voxels, which are excluded from the optimization.

1 Z=0 - gerado por makegrid 3.6 (2023-07-10T15:05) - geometria QA - cilı́ndrica com quadrantes e aneis. Data: 19/07/2023 - 12h24m09s em avell-b152

2 0 0 0 0 0 1 2 2 2 2 1 0 0 0 0 0

3 0 0 0 1 2 4 5 5 6 6 4 2 1 0 0 0

4 0 0 1 3 5 5 5 5 6 6 6 6 3 1 0 0

5 0 1 3 5 5 5 5 5 6 6 6 6 6 3 1 0

6 0 2 5 5 5 5 5 5 6 6 6 6 6 6 2 0

7 1 4 5 5 5 5 5 5 6 6 6 6 6 6 4 1

8 2 5 5 5 5 5 5 5 6 6 6 6 6 6 6 2

9 2 5 5 5 5 5 5 5 6 6 6 6 6 6 6 2

10 2 7 7 7 7 7 7 7 8 9 10 11 12 13 14 2

11 2 7 7 7 7 7 7 7 15 16 17 18 19 20 21 2

12 1 4 7 7 7 7 7 7 22 23 24 25 26 27 4 1

13 0 2 7 7 7 7 7 7 28 29 30 31 32 33 2 0

14 0 1 3 7 7 7 7 7 34 35 36 37 38 3 1 0

15 0 0 1 3 7 7 7 7 39 40 41 42 3 1 0 0

16 0 0 0 1 2 4 7 7 43 44 4 2 1 0 0 0

17 0 0 0 0 0 1 2 2 2 2 1 0 0 0 0 0

Figure 30 – Voxel numbers in the same “rings and sectors” grid of voxels with a 16x16 grid
and 4 rings from figure 29. There are 208 voxels in this domain. The number 0 is
shared among ALID voxels.

1 Z=0 - gerado por makegrid 3.6 (2023-07-10T15:05) - geometria QA - cilı́ndrica com quadrantes e aneis. Data: 19/07/2023 - 12h24m09s em avell-b152

2 0 0 0 0 0 1 2 3 4 5 6 0 0 0 0 0

3 0 0 0 7 8 9 10 11 12 13 14 15 16 0 0 0

4 0 0 17 18 19 20 21 22 23 24 25 26 27 28 0 0

5 0 29 30 31 32 33 34 35 36 37 38 39 40 41 42 0

6 0 43 44 45 46 47 48 49 50 51 52 53 54 55 56 0

7 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

8 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

9 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

10 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

11 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

12 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

13 0 153 154 155 156 157 158 159 160 161 162 163 164 165 166 0

14 0 167 168 169 170 171 172 173 174 175 176 177 178 179 180 0

15 0 0 181 182 183 184 185 186 187 188 189 190 191 192 0 0

16 0 0 0 193 194 195 196 197 198 199 200 201 202 0 0 0

17 0 0 0 0 0 203 204 205 206 207 208 0 0 0 0 0
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To illustrate how much those types of voxel grids or patterns can reduce the number

of optimization parameters, table 7 shows the effect of the three grid types in the total

number of variables to optimize.

Table 7 – Influence of the grid type in the number of optimization parameters. Type C is
“cylindrical”, R is “rings” and RS “rings with sectors” – see description in the text.

model characteristics
parameters

voxels in

breast
grid type

diameters (m) XY grid rings C R RS

vat 0.10

breast 0.084

30 x 30 5 716 505 133 500

24 x 24 5 448 321 87 316

20 x 20 4 316 220 61 216

16 x 16 4 208 152 44 148

vat 0.070

breast 0.045

20 x 20 4 316 128 38 124

16 x 16 4 208 84 27 80

14 x 14 4 156 64 22 60

12 x 12 4 112 56 20 52

10 x 10 4 80 36 15 32

8 x 8 2 52 26 11 24

Number of rings not applicable to the “C” grid.

The larger vat, with 0.10 m diameter, is being used to try to obtain a tomography.

As some values that influence the optimization algorithm and the regularization need

to be adjusted, the lower number of parameters to optimize in a coarser grid allows for

faster tests; later, with ideal values for the optimization algorithm and regularization,

more refined grids could be used again. Those tests are run in a relatively fast desktop

computer.

The smaller vat, which corresponds to the lower part of table 7, has a much smaller

number of parameters to be optimized, linked to coarser voxel grids. Those are not

intended for any useful tomography, but just for the fastest possible execution times

of the whole program, allowing program development, testing and debugging in a more

efficient way.
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4.7 Tomography results

The UST algorithm was used to perform the optimizations to the voxel values and

generate an image with the voxels depicting the breast with a tumor. The direct problem

numerical simulation using the mesh shown in figure 31 generated the results used as

reference signals for the tomography – they are used as surrogate measurements; later the

diameter of the vat and height were modified and similar reference signals were used, with

variations in size (vat and breast diameters) and in the size and position of the tumor.

In the statistical solution of inverse problems, regularization parameters come from

the data; in the present work, that is exploratory and approximation errors are not inves-

tigated, the question is whether there is a set of parameters for the inverse problem using

the FEM.

Figure 31 – Finite element mesh used as a reference model, with regions of water, breast and
tumor in top view. ALID elements not shown. Actual sizes may vary slightly
according to each test done.

Tests were performed for the selection of adequate values for the regularization param-

eters (weightings). These tests were done in a model with the same size as the simplified

breast model (see page 51), however with a smaller number of voxels in order to speed

up the tests. Initially only 6 transducers were used. The diameter is divided in 14 parts

in the direction of the x and of the y axes, and with 3 “rings” for the water around the
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breast, which gives 156 voxels8. The result below is for a vat of diameter 8.4 cm, initial

values considering separation between water and breast at radius 3.75 cm, and the ref-

erence model has a breast 7.5 cm in diameter and a tumor 1.4396 cm in diameter; the

domain is 1.75 cm in height. The grid is of type RS (see item c) on page 82, which gives

30 voxels in the fourth quadrant (sector) – where the tumor must be found – but only 36

optimization parameters for the whole domain. The contrast was increased, with sound

propagation speeds shown in table 8. In figure 32 there are the initial values given to

the program in the left subfigure, and the solution after 119 iterations of the optimizer in

the right subfigure. In the initial values, figure 32a, the voxels of the water region can be

clearly seen in yellow, and the breast in green.

Table 8 – High contrast sound propagation speeds cℓ in the simplified breast model (m/s).
Longitudinal waves.

medium cℓ (m/s)

water 1100.0

breast tissue 1510.0

tumor 2700.0

Figure 32 – Tomography with tumor in the fourth quadrant. Initial values and tomography
after 119 optimization steps.
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(a) Initial voxel values.
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(b) Tomography after optimization.

The optimizer SLSQP was also compared with the Simplex method (known as well as

Nelder-Mead’s flexible polyhedra or amoeba optimization). As shown in figure 33 there

8The “missing” 142 − 156 = 40 voxels are in regions occupied by the ALID layer, and therefore are
excluded from the the search of a solution.
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is a good agreement between both results; however, SLSQP found a solution in 7h27m,

while the simplex optimizer stopped only after it reached the limit for iterations, which

took 34h36m of run time.

Figure 33 – Comparison of optimizers: SLSQP versus Simplex.
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(a) SLSQP tomography.
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(b) Simplex tomography.

The objective function used here is extremely simple, yet effective. The idea is to

match in time the peak values of the signals; the optimized direct problem of the to-

mography must match the reference. This is shown in figure 34 for a pair of random

transducers, one firing and the other reading.

Figure 34 – Effectiveness of the simple objective function used. Red curve is the reference
reading, green curve is optimized for best overall match (total of 6 transducers).
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Further tests were done with a larger model. The new vat is 10.0 cm in diameter, the

breast has 8.0 cm in diameter, the tumor has 1.5356 cm in diameter and 2.0 cm in height.

To improve the image resolution 24 transducers are used. The tomography has a new grid

type where all of the bottom half of the region representing the breast have independently

optimizable values, only the upper half voxels share a single optimization value. The grid

has a discretization of 14 elements (voxels) in the x and y axes, 3 rings for water, and 60

optimization parameters, 56 of them for the bottom half of the breast where the tumor

must be found. The grid has water rings with 8.4 cm in internal diameter, while the

representation of the numerical phantom breast has 8.0 cm in diameter.

The mean values of the population, calculated from 100,000 samples, can be seen in

figure 35. Each sample comes from independent uniform distributions for breast radius,

tumor radius and tumor position, and the assumed percentage of tumors in the population

was 53.5%.

Figure 35 – Mean values from 100,000 elements randomly drawn, on a 14 x 14 voxel grid, with
uniform distribution of values for breast and tumor sizes and tumor position. The
tumor can be almost anywhere in the bottom half in 53.5% of the individuals.
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The initial voxel values and the solution of the inverse problem, after 50 iterations,
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are in figure 36. The numerical phantom used in this test had the tumor in the third

quadrant (bottom left quarter of the circle), and the solution of the inverse problem

correctly located the tumor. The elements of the FE mesh, with their optimized values,

are in figure 37.

Figure 36 – Tomography with 24 transducers and tumor anywhere in the bottom half of the
breast. Regularization with mean values from figure 35.
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(a) Initial voxel values.
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(b) Result of optimization.

The jump in use of only 6 to 24 transducers was done after the optimization using 6

transducers stopped when it reached the limit of iterations and the result started to show

higher speed voxels in the region of the tumor; besides the number of transducers, the

numerical phantom had its sizes slightly increased. The tomographies with 6 and with

24 transducers are in figure 38. Whenever the numerical phantoms have the same size,

the optimized tomography with 6 transducers could be used as initial guess for the 24

transducers tomography; in a similar fashion, one result could easily be used as initial

values in a refined tomography with doubled resolution, that is, using a grid with twice

the number of divisions in the x and y directions (and optionally twice in the z direction).
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Figure 37 – Mesh of the direct problem after last optimization by the UST algorithm – compare
with figure 36b. This mesh includes the ALID. The scale shows sound wave speed
in m/s.

Figure 38 – Improvement in a tomography with more transducers, here going from 6 to 24.
Problems with similar sizes, all other conditions are the same.
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(a) Tomography using 6 transducers.
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(b) Tomography using 24 transducers.
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5 ANALYSIS AND DISCUSSION

In the present chapter the results obtained are analyzed. The time to solve the

numerical inverse problem with a simple domain is reported.

After some tests of the program, when the optimization finishes and the final tomog-

raphy is generated, it is evident that the complete process in this tomography algorithm

takes a lot of time. One single simulation (direct problem) of ultrasound propagation,

in the case of small models like the simplified breast used in this work (see 3.1.4.2), is

fast1, but one single simulation has to be repeated by the number of transducers, if they

fire one at a time. Then, for each optimization parameter, when its value is changed,

the direct problem must be done again to show how this change affects the results. The

number of optimization parameters (voxels, individually or grouped in one parameter)

in the tomography was greatly reduced with a grid type like the RS (see c), page 82

and some values in table 7), although this limits the possible location of the tumor to

a restricted region of the breast – which is reasonable in real life. Actually, the direct

problem is performed Nop +1 times, the number Nop of optimization parameters plus one,

accounting for the base situation without perturbed voxels/parameters and then with per-

turbations in each of the optimization parameters, while numerically calculating gradients

for the optimization algorithm. Then, the process is driven by the iterative optimization,

which in some tests required about 100 iterations to converge2. The time needed, with

12 CPU cores, ranged from 2h31m45s (44 parameters, 21 iterations, 6 transducers) to

2 days 8h26m03s (60 parameters, 24 transducers, reached the limit of 50 iterations and

generated the tomography in figure 36b.)

For a more detailed tomography, with a finer voxel grid (more optimization parame-

ters), the time will be greater. For the same dimensions and FE mesh, the “jump” from a

grid of 16 x 16 divisions to one with 30 x 30 divisions, still according to table 7, with the

RS grid type, is an increase of 133/44 ≈ 3 times in the total running time of the program

1Only 3 seconds for 1125 integration steps, with 8 CPU cores working.
2Or around 20 iterations, with bad regularization weighting and very bad “results” as tomographies.

There are also a few runs that reached the iteration limit.
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– if the optimizer could maintain the same performance regardless of the problem size. A

finer voxel grid can only be well represented by a mesh with more and smaller elements,

otherwise there would exist optimization parameters that would not affect the mesh.

Besides the long running time of the proposed FEM tomography algorithm, there are

other considerations that can be made:

a) lower sensitivity with higher resolution/smaller voxels. When the voxels are smaller,

the effect of changes in their properties are less noticeable than with bigger voxels.

Suppose an initial guess with the same sound speed in every voxel; at some point

the algorithm changes, using a small increment, the value for the n-th voxel. Then

a simulation of the tomographic process, with some transducers firing3 is done,

and the effect of the change in this n-th voxel used to determine if and how the

performance index improved (numerically determining gradients, the Jacobian of

the system) therefore the optimizer could establish better voxel properties in the

next iteration; for a small voxel the overall effect is less noticeable than when a

greater amount of material (in a bigger voxel) has its properties changed.

For a voxel V1 with a given sound propagation speed c and a length lV1 (in any

direction traversed by the sound wave), the time tV1 it takes for the wave to traverse

this voxel in this direction is

tV1 =
lV1

c
. (5.1)

Now, applying an increment to the sound speed, c + ∆c, the time is

tV1∆
=

lV1

c + ∆c

. (5.2)

Suppose now a more refined tomography is desired, with a higher resolution voxel

grid, such that new voxel lengths lV2 are now a fraction f of the former lengths,

lV2 = flV1 . For simplicity, consider that the new voxel V2 and it(s) neighbor(s) have

both the same sound speed c as before; the same path from the coarser tomography

takes the same amount of time, but now encompasses a smaller length lV2 in the

voxel V2 and the remaining lV1 − lV2 in it(s) neighbor(s),

tV1 =
lV2

c
+

lV1 − lV2

c
=

flV1

c
+

lV1 − flV1

c
=

flV1

c
+ (1 − f)

lV1

c
. (5.3)

Now, when only one of the new smaller voxels has its sound speed “perturbed” by

3According to some adequate excitation pattern, which in our case is a single transducer firing, and
after that another transducer firing, until all transducers have excited the system.



93

the increment, the new time tV2∆
will be

tV2∆
=

flV1

c + ∆c

+ (1 − f)
lV1

c
. (5.4)

and in the limit as f approaches 0 of tV2∆
(an “ultra-refined” grid) and using equation

5.1,

lim
f→0

tV2∆
= lim

f→0

(
flV1

c + ∆c

+ (1 − f)
lV1

c

)
=

lV1

c
= tV1 , (5.5)

so, even for a big (and unnatural) increment c + ∆c, the new time tV2∆
will be

indistinguishable from tV1 .

The real problem is: there is no need to reach such extreme situations. It suffices

for tV2∆
− tV1 (or, for that matter, also tV1∆

− tV1) to be less than the time step of

the simulation to have virtually identical results, and the perturbation ∆c will be

ineffective, therefore the optimizer will give up with this voxel.

For the simplified breast, whose model has a diameter of 10 cm, assuming a sound

propagation speed c of 1500.0 m/s, a perturbation (increment) ∆c of 10.0 m/s,

table 9 shows, for various voxel grid divisions N x N, the face to face length of the

voxel lV1 – the shortest distance if it is assumed the wave will pass through the

whole voxel in its way from emitter to receiver –, the times tV1 and tV1∆
for the

initial (unperturbed) and incremented (perturbed) sound wave speeds to traverse

this distance, and the difference tV1 − tV1∆
. Figure 39 summarizes the sensitivities

from table 9 for N in the range from 10 to 50. It is clear that, with an integration

step of 1.0 × 10−8, the optimizer should notice the effect of ∆c applied to a voxel

until a grid of 40 x 40 voxels; however, for the sake of faster tests, a time step of

4.0 × 10−8 is being used; it seems that all these faster simulations are wasted time,

because for this step anything above N =10 will fall below the limit for perceptible

effects.
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Table 9 – “Time sensitivity” tV1 − tV1∆
for various voxel grid resolutions N x N. Assuming

a model with diameter 10 cm, sound propagation speed of 1500.0 m/s and speed
increment of 10.0 m/s.

N lV1(m) tV1(s) tV1∆
(s) tV1 − tV1∆

(s)

10 1.000000 × 10−2 6.666667 × 10−6 6.622517 × 10−6 4.415011 × 10−8

12 8.333333 × 10−3 5.555556 × 10−6 5.518764 × 10−6 3.679176 × 10−8

14 7.142857 × 10−3 4.761905 × 10−6 4.730369 × 10−6 3.153579 × 10−8

16 6.250000 × 10−3 4.166667 × 10−6 4.139073 × 10−6 2.759382 × 10−8

18 5.555556 × 10−3 3.703704 × 10−6 3.679176 × 10−6 2.452784 × 10−8

20 5.000000 × 10−3 3.333333 × 10−6 3.311258 × 10−6 2.207506 × 10−8

22 4.545455 × 10−3 3.030303 × 10−6 3.010235 × 10−6 2.006823 × 10−8

24 4.166667 × 10−3 2.777778 × 10−6 2.759382 × 10−6 1.839588 × 10−8

26 3.846154 × 10−3 2.564103 × 10−6 2.547122 × 10−6 1.698081 × 10−8

28 3.571429 × 10−3 2.380952 × 10−6 2.365184 × 10−6 1.576790 × 10−8

30 3.333333 × 10−3 2.222222 × 10−6 2.207506 × 10−6 1.471670 × 10−8

32 3.125000 × 10−3 2.083333 × 10−6 2.069536 × 10−6 1.379691 × 10−8

34 2.941176 × 10−3 1.960784 × 10−6 1.947799 × 10−6 1.298533 × 10−8

36 2.777778 × 10−3 1.851852 × 10−6 1.839588 × 10−6 1.226392 × 10−8

38 2.631579 × 10−3 1.754386 × 10−6 1.742768 × 10−6 1.161845 × 10−8

40 2.500000 × 10−3 1.666667 × 10−6 1.655629 × 10−6 1.103753 × 10−8

42 2.380952 × 10−3 1.587302 × 10−6 1.576790 × 10−6 1.051193 × 10−8

44 2.272727 × 10−3 1.515152 × 10−6 1.505117 × 10−6 1.003412 × 10−8

46 2.173913 × 10−3 1.449275 × 10−6 1.439678 × 10−6 9.597850 × 10−9

48 2.083333 × 10−3 1.388889 × 10−6 1.379691 × 10−6 9.197940 × 10−9

50 2.000000 × 10−3 1.333333 × 10−6 1.324503 × 10−6 8.830022 × 10−9

lV1 : size of the voxel (face to face), tV1 and tV1∆
: times to traverse lV1 with initial and incremented

sound speeds.

At least, in the case where many voxels share the same value of a single “optimization

parameter” – as is the case with geometries of types R and RS – the sensitivity is

improved in comparison with the situation of individual and independent voxels.

However, where a tumor is to be detected, each voxel must have its own value to be

optimized, therefore there remains a compromise mesh refinement versus Jacobian

sensitivity.

b) the discretization interval affects the sensitivity also. All transducer measurements

generated in the direct problem simulations are recorded in a file at each time
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Figure 39 – Plot of the “time sensitivity” tV1 − tV1∆
for various voxel grid resolutions. Same

conditions as in table 9
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increment. In the event of reference data from a physical experiment, the measured

values will be available only at discrete time steps, according to the acquisition

system capabilities, but probably the simulation steps for the direct problem will

be greater than the sampling time of the transducers. Because of discretized time,

errors in the instants of the peaks between reference and direct problem do not

have continuous variations, but only can be detected at the greater time increment

between real measurement (or reference simulation) and tomography simulation. In

the algorithm those time differences are divided by the value of the time increment,

resulting in an error in terms of intervalar arithmetic.

c) one of the tricks to speed the algorithm is the possibility to use for the tomography

direct problem an integration time step ∆t that is a multiple Nts×∆t – usually the

double – of the time step in the reference simulation. This way each FE simulation

will be Nts times faster, with 1/Nts steps, than if using the same reference time step

and full number of integration steps. This Nts multiple also reduces the sensitivity

as explained in b) above.
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d) better ALID dimensioning. According to [38, Chapter 3], there are occurrences

of “numerical reflection”, physically non-existent but visible in FE results4. This

reflection increases with bigger amplitude (higher power) of the ultrasound waves

and decreases, but less and less, with more finite elements per wavelength. It also

increases with higher coefficients in the ALID (or PML) attenuation equation5. In

the current study, ALID dimensioning was made empirically, changing each of the

N1/N2/N3 values based on previous results until a good result was achieved.

With numerical reflection the echo absorbing layer still works, but there is an optimal

value for the attenuation equation coefficients; beyond this optimum, the reflection

increases considerably, more than 20 dB6.

This is one reason to use thick ALID layers – at least in the reference models –

so lower attenuations could be used, eventually reducing any numerical echo in the

simulation.

e) better performance index. The optimizer minimizes the performance index where

the error is defined as the sum of differences of peak time of the predicted pressures

and measured pressures. Changing the definition of error, the sensitivity should

change.

4It is explained in [72]: when a PDE problem, like the sound wave equations, is solved by volume
discretization, as is he case in the FE method, the computational grid is truncated, which can introduce
artifacts. The most difficult problems to truncate involve wave equations, where the solutions are oscil-
lating and typically decay with distance r only as 1/r(d−1)/2 in d dimensions. The slow decay means that
simply truncating the grid with hard-wall (Dirichlet or Neumann) or periodic boundary conditions will
lead to unacceptable artifacts from boundary reflections. Therefore, wave equations require something
different: an absorbing boundary that will somehow absorb waves that strike it, without reflecting them,
and without requiring infeasible resolution. The best of those solutions, PML (used in [71] and [38]) is
reflectionless only when the exact wave equations are solved, which is not the case in a FEM discretized
problem. When the medium varies slowly reflections can be made small, and increasing the resolution
also increases the effectiveness of the PML, because it approaches the exact wave equation.

5Although in his work Drozdz uses other types of equations, similarly, with a too big Ca0
in equation

4.1, this thesis ALID may have numerical reflections too.
6See [38, Chapter 3].



97

6 CONCLUSIONS AND CONTINUITY OF THE

WORK

The experience with the use of FE models for the ultrasound simulation and for the US

tomography algorithm has enabled us to draw some conclusions and propose alternatives

or improvements for further developments on the subject.

6.1 Conclusions

The main conclusion is that the Finite Elements Method is a flexible three-dimensional

modeling platform for Ultrasound Tomography and viable from the point of view of com-

putational cost. The methodology and results allow the following statements to be written:

� the use of finite elements is viable to solve an inverse problem and therefore imple-

ment an ultrasound tomography algorithm in three dimensions; some aspects of the

present work are in three dimensions, acoustic waves are free to propagate in the ax-

ial direction of the numerical phantoms and the transducers have finite dimensions

in the axial direction;

� FE models for the acoustical direct problem can be build, and to work effectively

echoes at the boundaries of the model must be eliminated. For that an ALID layer

is employed; however this layer increases the size of the complete FE model. The

increment of dissipation with distance in the ALID elements must be progressive,

not much intense, and the thickness of the layer must be enough to absorb and

dampen a sound wave that otherwise could return as echo;

� an optimization scheme was implemented and allowed an adequate set of acoustical

properties to be applied to all the voxels used to represent the domain. Values of

each voxel were attributed to finite elements inside them, and the direct problem

solution shows the effect of the changing properties at each iteration of the optimizer;
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� the algorithm optimized the a posteriori conditional probability density function,

and a tomography correctly located regions of higher sound wave velocity of a nu-

merical phantom, corresponding to a tumor, inside a breast; mean values from

thousands of drawings of breast samples, with and without tumor, and specified

distributions of sizes and positions, were used as regularization for the ill-posed

inverse problem;

� acceleration of the program via parallelization is effective, but can be questionable

for small problems. Using OpenMP the simulation and tomography program can

run much faster than a serial version of the program, however, this depends on the

size of the problem. Very small problems run faster in serial mode, medium size

problems are faster using only the CPU (maybe not using all available cores if they

were many) and not the GPU, and really big problems can benefit of plenty of CPU

cores and GPU. The simplified breast model in this thesis, with an internal vat

10 cm in diameter and ALID, is faster in parallel mode, both in a notebook CPU

with 8 cores and a desktop computer with 12 cores, both without use of the GPU;

� use of a big penalty value, as a method to impose internal pressure restrictions, is not

advisable. The literature suggests the use of a very big numerical value as penalty in

the penalty method (see section 3.1.2 on page 43) but the tests demonstrated that,

while following the desired input more precisely at the nodes where it is applied,

finite elements in the vicinity had unnatural values. The penalty was lowered and

then all the elements had sensible values;

� small integration time steps are required for an effective optimization of the voxel

values. From the discussion in a) (page 92), and with the values in table 9, the

time sensitivity can be a problem with smaller voxels in the tomography. When

the integration step is higher than the time sensitivity, the optimizer can not detect

changes it makes to the voxels: differences in time between an original wave and a

perturbed wave, after a voxel has his speed increased, will fall in the same integration

step, and the optimizer can not use this information;

� as expected from similar inverse problems, more transducers improve the optimiza-

tion. There is more information, more readings, for the optimizer to work with; if

a single measurement is able to lower the performance index while the others don’t

(because of low sensitivities). In figure 38 the improvement of a tomography when

going from 6 to 24 transducers illustrates the usefulness of the added information

for the optimization, although this also increases the time for one complete pass of
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the direct problem (i. e., all the transducers had to fire).

The increased number of finite elements due to the ALID layer, and the small time

step because of the time sensitivity for the optimizer to work, lead to a FE problem in

the tomography direct problem that takes longer to simulate and takes more steps too.

And the numeric determination of derivatives and Jacobian for the optimizer requires a

complete simulation – all transducers emitting, one after the other – for each voxel with

a perturbed (increased) sound speed.

With the proposed algorithm a US tomography is numerically feasible. Although its

time of execution is large at the present stage, modeling the physical environment using

the FE method opens many possibilities, as e. g. use of non-linear models, dissipation that

follows the power law (or others, see [9, chap. 4]), modeling of highly complex geometries

and irregular shapes with different materials like the structure of a porous bone1, use of

multiple types of boundary conditions, many possibilities to interpret and visually see the

results with existing FEM programs, etc.

6.2 Continuity of the work

A problem with the proposed FEM tomography algorithm is the amount of time it

takes, even with an extremely simplified and small model. One way to speed up FE

simulations can be the use of Fourier series of the excitation signal.

In this particular work, the number of transducers was chosen as 24. It is probable

that more transducers, capturing a richer set of information about sound propagation in

the breast, could help achieve more detailed tomographies; the number used was reduced

(instead of using 36 or 48 transducers) in order to reduce computational time, especially

while developing/debugging the program and also while testing sets of weightings for the

regularization. Some equipments (or studies) for breast UST have 200 [73], 256 [2, 74] or

even 2048 transducers (SoftVue, [75]).

Another direction of improvement is the use of full wave inversion (FWI) or waveform

inversion; instead of using the peak value of pressure signals, the likelihood and the

performance index can be defined in terms of the complete signals. A technique initially

used in geophysics problems and now spreading to UST of human tissues and specifically

of the breast. FWI has not only very good spatial resolution, but can also give the sound

speeds and the acoustic attenuation with good precision, and is already being used for UST

1See, for instance, [42].
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of the breast [73, 74, 30, 29, 76]. In this technique the wave equations are solved, therefore

every possible information can be extracted from the acoustics properties of subjacent

media; in contrast, methods based on approximate models or on simplifications of the US

phenomena like ray-tracing or time of flight algorithms can have fast convergence, but

limited spatial resolution. There are FWI methods that solve only the sound propagation

speed problem, others solve only the attenuation, and methods for both at the same time.

FWI is computationally intensive, and some articles state that results can be obtained

in minutes, with high resolution, but the hardware was not specified besides the use of

GPUs.

For the numerical evaluation of derivatives, the program uses an increment ∆ in

the values of the optimization parameters. This increment is a parameter passed in the

program call. All tomographies until now used a value of 10.0, and a very small increment

may have negligible effect, while a big increment may give results not much precise. An

optimization of the ∆, perturbation of sound speed during Jacobian computations, may

bring improvements. Currently only the sound propagation speed is optimized, therefore

∆ (∆c in this case) refers to this physical property, with units of m/s.

There is room for improvements concerning the direct problem numerical simulation

problem:

� nodes of the transducers could be determined by the simulation program directly.

Currently the nodes of a transducer are read from a “definition file”, generated by an

auxiliary program. This requires the mesh to be recorded in a file with an adequate

format (INP) – which is not the format used by the simulation program – and this

file must be created when Gmsh generates the mesh. The auxiliary program creates

an ordered list of nodes for each transducer, but missing some lines (header, end of

data delimiter, a few others) and because of that this list of nodes must be inserted

manually in a template, or substitute the nodes in an already existing definition file:

some editing must still be done by the user. However, the mesh file the simulator

uses already has embedded information about “physical surfaces”, which correspond

to the transducer surfaces, and this allows for the identification of the correct nodes.

This identification process is more intricate than the current method, but can be

implemented and would avoid human errors, reduce the number of data files, and

simplify the use of new mesh files.

� better detection of user errors. In line with the previous item, improvements to

the checks already being done with data files can be implemented, reducing the
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possibility of bad usage because wrong data was selected for a tomography. For

example, the files with mean values and covariances for the regularization have

different sizes (number and length of lines) according to the intended discretization

(voxel grid), but this information is not yet available in the header of the files. All

data files have headers, and some files have additional lines which helps the user

when he changes the data2.

The selection of the correct files for a simulation or a tomography relies only on the

name assigned to them, and a user may easily forget to change a name – after he

had already changed other names in the main data file of the program –, select a file

with a name similar to the intended, and so on. Today many files have short headers

which the user can edit and use to know about the purpose of the file. Improved

headers, with some lines with automatic content, written by the programs which

create some of these files, could contain the name of the FE model, voxel grid,

number of materials in the model, number of transducers, etc. With this additional

information the tomography program could verify if the data files are all compatible,

e. g., if an initial guess is compatible with the grid of the regularization values and

vice-versa, if the reference simulation and the tomography direct model are of the

same models (only with different number of elements per wavelength and ALID)

and the same number of transducers.

There are more methodological suggestions:

� use as initial guess the expected mean values,

� compare reference (precise) simulations with different values of finite elements per

wavelength; if the measurements do not show signal peaks at the same time, then

the use of a lower number of finite elements per wavelength in the mesh used for

the tomography direct problem will not work,

� in the same way, compare reference simulations with different ALIDs and see if and

how much this could influence the measured signal peaks regarding to their precise

time.

2These additional lines also allow the program to check for some errors.
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APPENDIX A – ACOUSTIC FINITE

ELEMENTS WITH

DISSIPATION

Here the FEM equations with viscous damping are derived. For simplicity no volume

sources are considered in the domain, q ≡ 0, and an unidirectional wave is assumed,

therefore the complex k′ = β − iα (see equation 2.11 and section 2.1.2.1 on page 27)

holds. An harmonic problem is governed by the Helmholtz equation:

∇2p(x, y, z) + k′2.p(x, y, z) = 0 , (Ap-A.1)

where β = ω/cps, the real part of k′, is the propagation wavenumber and cps the phase

speed.

In the same way of section 2.1.5, an equivalent formulation for equation Ap-A.1 is:∫
V

p̃
(
∇2p + k′2p

)
dV = 0 (Ap-A.2)

where p̃ is a weighting and V is the domain.

The weighted residuals equation Ap-A.2 can be rewritten as∫
V

(
∇⃗p̃∇⃗p

)
dV − k′2

∫
V

(p̃p) dV =

∫
V

[
∂

∂x

(
p̃
∂p

∂x

)
+

∂

∂y

(
p̃
∂p

∂y

)
+

∂

∂z

(
p̃
∂p

∂z

)]
dV

(Ap-A.3)

and, using the divergence theorem and equation 2.33 for the right side integral, being Ω

the boundary surface of the domain V ,∫
V

(
∇⃗p̃∇⃗p

)
dV − k′2

∫
V

(p̃p) dV = −
∫
Ω

(iρ0ωp̃v⃗n⃗) dΩ . (Ap-A.4)
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Now, introducing in this equation the expanded k′2,

k′2 = (β − iα).(β − iα) = β2 − α2 − 2iαβ , (Ap-A.5)

the equation Ap-A.4 can be written as∫
V

(
∇⃗p̃∇⃗p

)
dV + (α2 − β2 + 2iαβ)

∫
V

(p̃p) dV = −
∫
Ω

(iρ0ωp̃v⃗n⃗) dΩ . (Ap-A.6)

The second integral term from equation Ap-A.6 can be written as

c2(α2 − β2 + 2iαβ)

∫
V

1

c2
(p̃p) dV =

(
c2(α2 + 2iαβ) − ω2

) ∫
V

1

c2
(p̃p) dV , (Ap-A.7)

remembering that β = ω/cps and dropping the subindex ps from the phase speed of the

wave.

From equation An-B.23 from annex B we have∫
V

1

c2
(p̃p) dV = {p̃i}T [M ] {p̂i} (Ap-A.8)

and therefore equation Ap-A.7 can be written as(
c2(α2 + 2iαβ) − ω2

) ∫
V

1

c2
(p̃p) dV =

(
c2(α2 + 2iαβ) − ω2

)
{p̃i}T [M ] {p̂i} ,

(Ap-A.9)

Equation An-B.28 let us write

−
∫
Ω

(iρ0ωp̃v⃗n⃗) dΩ = −
∫
Ωv

(
iρ0ωp̃v̄n

)
dΩ−

∫
Ωp

(
iρ0ωp̃v⃗n⃗

)
dΩ−

∫
ΩZ

(
iρ0ωp̃Āp̂

)
dΩ . (Ap-A.10)

Using equations An-B.29, An-B.35 and An-B.37 in the first, second and third integral

terms in equation Ap-A.10, we have

−
∫
Ω

(iρ0ωp̃v⃗n⃗) dΩ = {p̃i}T {Vni} + {p̃i}T {Pi} − iω {p̃i}T [C] {p̂i} . (Ap-A.11)

With equations An-B.18, Ap-A.9 and Ap-A.11, equation Ap-A.6 can be written as

{p̃i}T [K] {p̂i} +
(
c2(α2 + 2iαβ) − ω2

)
{p̃i}T [M ] {p̂i} =

{p̃i}T {Vni} + {p̃i}T {Pi} − iω {p̃i}T [C] {p̂i} .
(Ap-A.12)
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Rearranging the terms, this equation is

{p̃i}T
(

[K] +
(
c2(α2 + 2iαβ) − ω2

)
[M ] + iω [C]

)
{p̂i} =

{p̃i}T
(
{Vni} + {Pi}

)
.

(Ap-A.13)

Since this equation is valid for any value of the weighted residuals {p̃i}, equation

Ap-A.13 reduces to(
[K] +

(
c2(α2 + 2iαβ) − ω2

)
[M ] + iω [C]

)
{p̂i} = {Vni} + {Pi} . (Ap-A.14)

and, recalling that β = ω/c,(
[K] +

(
c2α2 + 2i.c.αω − ω2

)
[M ] + iω [C]

)
{p̂i} = {Vni} + {Pi} . (Ap-A.15)

Since the mass, damping and stiffness matrices [M ], [C] and [K] in equation Ap-A.15

are calculated in exactly the same way as in equation An-B.41, it becomes evident that

the consideration of a viscous loss given by an exponential decay e−αx, with an absorption

coefficient α and distance x from a reference position, only affects the factor that multiplies

the mass matrix in the system of equations of the FEM problem. This factor increases by

c2α2 + 2i.c.αω from the original −ω2 of the lossless problem. For consideration of volume

sources in the domain it suffices to add {Qi} to the forcing terms to the right of equation

Ap-A.15 – see also equations An-B.27 and An-B.42.
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APPENDIX B – EXECUTION TIMES:

OPENMP VERSUS

NUMBER OF THREADS

Tables 10, 11 and 12 show results for a mesh with 1,061,828 tetrahedrons (180,729

nodes), simulated with the FE ultrasound program and using from the first to the last

thread available in 3 different computers.

The tests are automated by a Bash script and run without user intervention, in a

virtual desktop in personal computers or, for the supercomputer, started in a remote

terminal (ssh) with NOHUP activated, then the remote terminal was closed.

It is apparent that, when using all the threads in the CITI1 supercomputer, the

execution time escalates. Values for tables 10, 11 are the mean of 3 repetitions of each

test for each selected number of threads; they were made in computers with no other

loads at the time and the values for each repetition agreed very well2, therefore no more

repetitions were done. For table 12 8 repetitions were done and the best value was selected

for the table; with this computer there was greater dispersion among the results, especially

above 42 cores – this is a multi-user machine, and its load clearly had varied during the

tests3, therefore longer tests – those using more cores – were most impacted.

1See footnote 2 at page 64.
2Most of the variations within 10 seconds or less.
3Each complete test started with 1 core and proceeded until the last one available; for table 12 the

tests ranged from 9h58m to 17h24m, and four of them lasted less than 10h35m in total run time.
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Table 10 – Execution times for a mesh with 1,061,828 tetrahedrons and 180,729 nodes in a
computer with 8 threads. Notebook with an Intel Core� i7-3610QM CPU, clock
2.30 GHz, 4589.72 BogoMips, SSD disk.

number of threads execution time (s)

1 3586

2 2030

3 1524

4 1278

5 1270

6 1267

7 1209

8 1207

Table 11 – Execution times for a mesh with 1,061,828 tetrahedrons and 180,729 nodes in a
computer with 12 threads. Computer with an Intel Core� i7-8700K CPU, clock
3.70 GHz, 7399.70 BogoMips, SSD disk.

number of threads execution time (s)

1 2190

2 1201

3 909

4 767

5 740

6 711

7 695

8 695

9 709

10 699

11 699

12 680
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Table 12 – Execution times for a mesh with 1,061,828 tetrahedrons and 180,729 nodes in a
computer with 48 threads; value shown is the best from 8 repetitions. Computer
with virtualized Intel processors, 6584.52 BogoMips.

threads time (s) threads time (s) threads time (s) threads time (s)

1 3396 13 451 25 344 37 366

2 1838 14 436 26 355 38 372

3 1362 15 417 27 362 39 370

4 1106 16 396 28 365 40 376

5 901 17 378 29 369 41 383

6 777 18 363 30 373 42 385

7 701 19 356 31 363 43 408

8 624 20 352 32 361 44 429

9 590 21 346 33 356 45 470

10 544 22 346 34 351 46 640

11 503 23 342 35 359 47 1669

12 472 24 341 36 365 48 5604
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APPENDIX C – ECHOES IN THE UPPER

AND LOWER

SURFACES OF THE

THORAX SECTION

This appendix shows that echoes do appear at the upper and lower planes of the thin

thorax section from 4.3, in the absence of an ALID wrapping. The same can happen with

the simplified breast model.

These figures show the echo evaluation model, with a single transducer in the geo-

metric center of the model, which has only water inside.

Figure 40 – Temporal evolution of a pulse in the echo evaluation model, here without an ALID
wrapping, evidences echoes at the upper and lower planes of the thorax section.
Central cut view perpendicular to the Y axis of the model. Pressure values in Pa.

(a) instant t = 6, 0× 10−6 s.

(b) instant t = 1, 2× 10−5 s.

(c) instant t = 1, 8× 10−5 s. The pulse just arrived to the upper and lower planes.
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(d) instant t = 2, 4× 10−5 s. The two echoes, upper and lower, cross the center of the model, where the
transducer is.

(e) instant t = 3, 0× 10−5 s. Each echo reaches the plane opposed to the original echo.

(f) instant t = 3, 6× 10−5 s. The echoes, “re-echoing”, cross again the center of the model.

(g) instant t = 4, 2× 10−5 s. Echoes ready to reach by the third time the sectional planes.

(h) instant t = 4, 8× 10−5 s. Echoes ready to reach by the third time the central transducer.

(i) instant t = 5, 4× 10−5 s. Echoes in the third cross of the central region, each time more attenuated.

(j) instant t = 6, 0 × 10−5 s. The process continues, and the initial pulse has not yet reached the side
borders of the model.
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ANNEX A – ULTRASOUND IN

MEDICINE: THE

BEGINNING

Here a shortened version of [77], with addends from [9] and [78], is presented.

Ultrasound, the sound with higher frequencies than the human ear can hear, can

be linked to physiological acoustics, which was actively investigated in the nineteenth

century; in 1862 Hermann von Helmholtz, a physiologist and physicist, published ‘Die

Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik ’

(On the Sensations of Tone as a Physiological Basis for the Theory of Music, or simply

“Sensations of Tone”), the main text on the subject. However it took time to agree

on the upper frequency limit for audible sounds on 20 kHz, thank to estimates from

Rudolph Koenig in 1899 and years later confirmed by Franz Schultze. In 1903 Wilhelm

Altberg was the first to use use radiation pressure to measure the intensity of a sound

wave; this was a key experiment directly relevant to later developments in the physics of

medical ultrasound. In 1907 Altberg generated ultrasonic pulses of 1 mm wavelength or

300 kHz; in 1911 Lebedev and Neklepajev explained that Altberg could not detect higher

frequencies due to absorption, with a coefficient dependent on the square of the frequency.

All these works were done in open air.

In 1912 Lewis Fry Richardson was the first to propose underwater detection using

ultrasound1. With the first World War and the advent of submarine warfare, Constantin

Chilowsky proposed, in 1915, an ultrasonic system for submarine detection, and in two

years Paul Langevin and his team developed a working pulse-echo system. The efforts

resulted in a capacitor transmitter that emitted 50 ms pulses of 100 MHz ultrasound,

at a rate of 2 Hz, and a carbon microphone placed at the focus of a parabolic mirror

1He submited two patents – the first for airborne, the second for underwater ultrasound – for detec-
tion of icebergs, soon after 15th April 1912, when the Titanic sank. However their ideas could not be
implemented at the time.
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of 120 cm diameter, to receive the echoes. There were many technical and operational

challenges, and hydrophones remained the best option to detect submarines by the sound

they emitted. Other groups developed quartz transducers and were able, in 1918, to

succeed with a signaling distance of 8 km: in pulse-echo mode, clear echoes were obtained

for the first time from a submarine. The development of new transducer technologies was

fundamental for the medical use of ultrasound.

In September 1927 appeared the first publication citing “biological effects” and ultra-

sound, where a high power ultrasound was employed – it even melted glass in experiments.

The german physicist Reimar Pohlman was the first to establish the use of ultrasound for

therapy in 1938. He specifically rejected the high intensity approach to cancer therapy

being explored at the time, and proposed that ultrasound at lower intensities could be

used to stimulate healing through a combination of thermal and mechanical processes.

His first experiments were designed to select the most appropriate frequency to use. From

measurements at 800 kHz and at 2.4 MHz, he concluded that he would gain greater tissue

penetration at the lower of these frequencies, which he selected for the clinical evaluation.

Attenuation at 800 kHz, expressed as half-value thickness for intensity, was 6.8 cm for

adipose tissue, and 3.6 cm for muscle. For mixed muscle and fat, the half-value thickness

at 2.4 MHz was 1.5 cm, compared with 4.9 cm at 800 kHz. He found no difference between

the attenuation of tissue of adults and children, within an error limit of about 10%. He

confirmed observations that the frequency dependence of the absorption coefficient did

not follow the square-law dependence expected from classical theory of viscous loss. The

first clinical trials of his ultrasound therapy were carried out before the end of 1938, and

favorable results were reported for some neurological and neuro-muscular disorders.

The first uses of ultrasound in medicine, in the late 1940s and early 1950s, involved

industrial ultrasound equipments, known as “flaw detectors”, and an engineer of physi-

cist working with the physicians. The echoes from ultrasonic pulses were captured in

oscilloscopes, and heart motions could be seen for the first time.

The first “Flaw detecting device and measuring instrument” was from Floyd Firestone,

in 27th May 1940, an invention which “pertains to a device for detecting the presence

of inhomogeneities of density or elasticity in materials” and “may also be used for the

measurement of dimensions of objects, and is particularly useful where one of the faces

to which the measurement extends is inaccessible”.

In Germany, Heinrich Netheler, a physician at the Luebeck-South Hospital in Ham-

burg, was operating in 1945 a small repair facility for medical equipments at the Hamburg
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university hospital at Eppendorf and had a mission of developing inventive medical prod-

ucts. Professor Hansen, his superior, suggested to him in that year to develop an ultrasonic

tomographic equipment for medical use basing on the concept of the RADAR but, due to

a lack of funds right after the war, the equipment designs had not reached the stage of

actual fabrication [78].

George Ludwig was the first to report the velocity of sound transmission in animal

soft tissues; it was determined to be between 1490 and 1610 meters per second, with a

mean value of 1540 m/s. However, as he did research for the US Navy, his works were

not released to the public domain until October 1949 by the United States Department

of Defense.

By the mid 1950s, bibliographic listings of works on ultrasonic physics and engineering

applications had totaled more than 6,000.

Smaller and better transducers were being assembled from the newer piezoceramics

barium titanate after the mid 1940s. They were replaced by lead zirconate-titanate (PZT)

when it was discovered in 1954.

John Julian Wild started investigations (after 1945) with ultrasound waves on the

thickness of the bowel wall in various surgical conditions, such as paralytic ileus and

obstruction. Working with Donald Neal, an engineer, Wild published their work in 1950 on

uni-directional A-mode ultrasound investigations into the thickness of surgical intestinal

material and later on the properties of gastric malignancies. They noted that malignant

tissue was more echogenic than benign tissue and the former could be diagnosed from

their density and failure to contract and relax.

John Reid, an electrical engineer, was engaged through a grant from the National

Cancer Institute as the sole engineer to build and operate Wild’s ultrasonic apparatus.

The device which they first used was an ultrasonic instrument which had been designed

by the U.S. Navy for training pilots in the use of the radar, with which it was possible to

practice “flying” over a tank of water covering a small scale map of enemy territory. “We

have a tissue radar machine scaled to inches instead of miles by the use of ultrasound”.

Wild and Reid soon built a linear hand-held B-mode instrument, a formidable technical

task in those days, and were able to visualize tumors by sweeping from side to side

through breast lumps. The instrument operated at a frequency of 15 megahertz. In 1952

they published the landmark paper: “Application of Echo-Ranging Techniques to the

Determination of Structure of Biological Tissues”. In May 1953 they produced real-time

images at 15 megahertz of cancerous growths of the breast. By 1956, Wild and Reid had
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examined 117 cases of breast pathology with their linear real-time B-mode instrument

and had started work on colon tumor diagnosis and detection.

Pioneering designs in electronic circuits were made in conjunction with the develop-

ment of the B-scan; these included the pulse-echo generator circuitry, the limiter and

log amplification circuitry and the demodulator and time gain compensation circuits.

Early B-scanners employed threshold detection which registered echoes on a phosphorous

coated oscilloscope screen as dots of light. A “storage” or “bi-stable” cathode-ray tube

was used. Echoes above a certain amplitude are displayed as dots of constant intensity

and echoes of a lesser amplitude below the threshold were not depicted. The images were

often recorded unsatisfactorily on ordinary 35mm photographic film. The situation was

improved with the advent of the black and white “peel-apart” Polaroid instant film which

had become available from 1959 onward in both England, Europe and the United States.

Although there was good representation of size, shape and position, the images did not

depict differences in echo amplitude. It was apparent that some sort of gray-scaling was

imminently necessary to expand the diagnostic capability and accuracy of a B-scan.

The analog scan converter, which was hailed as a profound “invention” in the field

of image processing and reproduction, used a silicon oxide/silicon target that acted as a

capacitance matrix and was then raster-scanned by an electron beam that “read” it and

displayed the information on a standard television monitor unit. By doing so, computer-

processor technology, which was just up and coming at about the same time, could be

applied to process the signal. Images could then be scaled, calipers moved and applied

on-screen (something that had changed entirely the way measurements are made), gray-

scaling applied to the images and the resultant image recorded on a variety of media

including videotape, emulsion films and thermal printer devices.

With early scanners made of vacuum tubes there was often problem of drifts and

numeric instability which required periodic re-calibration. Another important considera-

tion in the early days was the assumed velocity of ultrasounds in human tissues. Different

centers adopted different values, ranging from 1540 m/s, 1580 m/s and 1600 m/s, and this

had to be stated in their reports and papers. By about the early 1980s and after several

meeting of the experts, the ultrasound community throughout the world settled for 1540

m/s. This universal acceptance is important because with different velocity calibrations

measurements like the biparietal diameter will end up with different normals.

Attenuation characteristics, axial and lateral resolution, fluid enhancement character-

istics etc. were also periodically tested with “tissue phantoms” to determine the imaging
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quality and accuracy of the scanner. Hospital physicists are often pre-occupied with such

calibrations. With the later advent of array real-time scanners these tissue phantoms pro-

gressively became obsolete and by about the late-80s they have completely disappeared

from the scene and few are bordered by the figure of 1540 m/s.

The concept of the multi-element linear electronic arrays was first described by Werner

Buschmann in an ophthalmologic application in 1964 in East Berlin. His probe, fabricated

in collaboration with Kretztechnik AG consisted of 10 small transducers mounted on an

arc-shaped apparatus to fit over the eye. Buschmann’s transducer however never became

very functional in a clinical setting and did not go into serial production. It was Martin H.

Wilcox, founder and engineer at the Advanced Diagnostic Research Corporation (ADR,

a company founded in 1972 in Tempe, Arizona), who designed and produced one of the

earliest commercially available models of a linear-array real-time scanner in 1973 and very

much set the standard for subsequent designs to follow. The array contained 64 crystals

in a row (3 times the number in the earlier cardiac counterparts and 3 times as long and

wide), fabricated with the best material available and in the best acoustic configurations

and using “stepping” crystals techniques.

The M-mode (time-motion) display was first described by Inge Edler and Hellmuth

Hertz in Lund, Sweden in 1954 using a modified metal-flaw detector from Siemens of

Germany.

The Doppler principle was first described over 100 years ago by Christian Andreas

Doppler in Austria in 1842. Medical applications of the Ultrasonic Doppler techniques

were first implemented by Shigeo Satomura and Yasuhara Nimura at the Institute of

Scientific and Industrial Research in Osaka, Japan in 1955 for the study of cardiac valvular

motion and pulsations of peripheral blood vessels.

Further development led to 2D color flow imaging. Marco Brandestini and his team at

the University of Washington in 1975 obtained blood-flow images using a 128-point multi-

gated pulsed Doppler system, where velocity waveforms and flow images were encoded in

color and superimposed on M-mode and gray scale 2-D anatomical images.

Image quality of real-time ultrasound scanners made steady improvements during

the mid 1980’s to early 90’s secondary to the increasing versatility and affordability in

microprocessor technology. Nevertheless it was not until the early to mid 1990’s that

more substantial enhancements in image quality were seen.
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ANNEX B – FINITE ELEMENT

FORMULATION FOR

SOUND WAVES

In this annex, based on a seminar from Desmet and Vandepitte [16], a short introduc-

tion to the Finite Elements Method is presented, followed by the development of equations

of acoustical properties for the elements.

Here, the acoustical problem is considered to be uncoupled, that is, there are no other

objects or surfaces, neither at the boundaries nor in the interior of the region considered

in the problem, which are influenced by the sound pressure waves, nor e. g. mechanical

vibrations that could generate pressure interferences in the media (besides the pressure

source).

We start recalling the Helmholtz equation 2.31 and the three possible boundary con-

ditions, equations 2.32-2.34 from chapter 2.1.

B.1 Basic equation and boundary conditions

The pressure field p in any point (x, y, z) in a limited domain V , closed by a surface

Ω, generated by an external and distributed source q with frequency ω = 2πf , is governed

by the second order Helmholtz equation:

∇2p(x, y, z) + k2.p(x, y, z) = −iρ0ω.q(x, y, z) , (An-B.1)

where k = ω/c = 2πf/c is the wave number, c the sound speed and ρ0 the mass density

of the fluid.

In order to define the pressure field in V , one boundary condition must be specified

in each position of the closed border Ω = Ωp ∪ Ωv ∪ ΩZ :
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� imposed pressure:

p = p in Ωp , (An-B.2)

� imposed normal velocity:

vn =
i

ρ0ω

∂p

∂n
= vn in Ωv , (An-B.3)

� imposed acoustic impedance:

p = Zvn =
vn

A
=

iZ

ρ0ω

∂p

∂n
=

i

ρ0ωA

∂p

∂n
in ΩZ . (An-B.4)

For the tomographic problem in this thesis the entire closed border Ω is kept at

ambient static pressure (p = 0), as already justified in section 2.1.4, and as pressure

source q(x, y, z) there are the FE nodes corresponding to the transducers; the values are

applied to these nodes via the penalty method [20]. Alternatively, those nodes – with

known pressures – can be removed from the unknowns and the system of rearranged

equations solved only for the remaining nodes with unknown values.

B.2 Weighted residual formulation of the Helmholtz

equation

One equivalent formulation for An-B.1, possible due to the concept of weighted resid-

uals, allows us to affirm that the steady state pressure field in a domain V has the integral

equation ∫
V

p̃
(
∇2p + k2p + iρ0ωq

)
dV = 0 (An-B.5)

satisfied for any weighting p̃, limited and unambiguously defined in the volume V and in

the boundary surface Ω.

Using the chain rule of derivation,

∂

∂x

(
p̃
∂p

∂x

)
=

∂p̃

∂x

∂p

∂x
+ p̃

∂2p

∂x2

∂

∂y

(
p̃
∂p

∂y

)
=

∂p̃

∂y

∂p

∂y
+ p̃

∂2p

∂y2

∂

∂z

(
p̃
∂p

∂z

)
=

∂p̃

∂z

∂p

∂z
+ p̃

∂2p

∂z2

(An-B.6)
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the weighted residuals equation An-B.5 can be rewritten as∫
V

[
∂

∂x

(
p̃
∂p

∂x

)
+

∂

∂y

(
p̃
∂p

∂y

)
+

∂

∂z

(
p̃
∂p

∂z

)]
dV−

∫
V

(
∂p̃

∂x

∂p

∂x
+

∂p̃

∂y

∂p

∂y
+

∂p̃

∂z

∂p

∂z
+

)
dV + (An-B.7)

∫
V

k2p̃p dV +

∫
V

iρ0ωp̃q dV = 0

or yet in the form ∫
V

(
∇⃗p̃∇⃗p

)
dV − ω2

∫
V

(
1

c2
p̃p

)
dV =

∫
V

iρ0ωp̃q dV +

∫
V

[
∂

∂x

(
p̃
∂p

∂x

)
+

∂

∂y

(
p̃
∂p

∂y

)
+

∂

∂z

(
p̃
∂p

∂z

)]
dV .

(An-B.8)

According to the divergence theorem, the integral of the normal component of a vector

field ϕ⃗ in a closed surface Ω equals the integral of the field divergent, integrated in the

volume V which is bound by the surface Ω:∫
V

(
∇⃗ϕ⃗
)
dV =

∫
Ω

(
ϕ⃗ n⃗
)
dΩ (An-B.9)

where n⃗ is the normal unit vector which points outward of the volume V .

Application of this theorem to the last integral in (An-B.8) results in∫
V

[
∂

∂x

(
p̃
∂p

∂x

)
+

∂

∂y

(
p̃
∂p

∂y

)
+

∂

∂z

(
p̃
∂p

∂z

)]
dV =

∫
V

[
∇⃗
(
p̃∇⃗p

)]
dV =

∫
Ω

(
p̃
∂p

∂n

)
dΩ = −

∫
Ω

(iρ0ωp̃v⃗n⃗) dΩ .

(An-B.10)

Substitution of (An-B.10) in (An-B.8) results in the “weak form” of the weighted

residual formulation of the Helmholtz equation:∫
V

(
∇⃗p̃∇⃗p

)
dV − ω2

∫
V

(
1

c2
p̃p

)
dV =

∫
V

(iρ0ωp̃q) dV −
∫
Ω

(iρ0ωp̃v⃗n⃗) dΩ . (An-B.11)
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B.3 Approximation of the field variables

In the finite elements method, the domain V is discretized in small subdomains Ve,

the “finite elements”, and some number of nodes ne which are defined at some points

in those elements. In each element the distribution of the field variable, in the acoustic

case the pressure p, is approximated by an expansion p̂ in terms of a number np of form

functions N e
i , defined only inside an elementary domain Ve, and the nodal values ai:

p(x, y, z) ≈ p̂(x, y, z) =

np∑
i=1

N e
i (x, y, z)ai (x, y, z) ∈ Ve . (An-B.12)

For the linear elements usually employed, tetrahedrons and hexahedrons, the nodes

are defined in its vertexes and the number of shape functions equals the number of nodes,

np = ne. Each shape function N e
i is defined with unit value in the node i of the element

and zero in the other nodes. So, each contribution ai in the pressure expansion (An-B.12)

represents the pressure approximation p̂ at node i of the element,

p̂(x, y, z) =

np∑
i=1

N e
i (x, y, z).p̂i (x, y, z) ∈ Ve . (An-B.13)

Based on the shape functions of the elements N e
i , which are defined in the elements

Ve, global shape functions Ni can be built for all the fluid domain V . In each domain

Ve in which the node i belongs, a global shape function Ni is identical to the elementary

function N e
i , being zero in all other elementary domains. So, the expansion of the global

pressure can be defined as

p̂(x, y, z) =

nf∑
i=1

Ni(x, y, z).p̂i = [N ]{p̂i} (x, y, z) ∈ V , (An-B.14)

where nf is the total of nodes in the discretization, [N ] is a vector (1×nf ) of global shape

functions and {p̂i} a vector (nf × 1) of unknown nodal pressure values.

The approximation of the pressure gradient is:

∇⃗p ≈ ∇⃗p̂ =


∂p̂
∂x

∂p̂
∂y

∂p̂
∂z

 = [∂][N ]{p̂i} = [B]{p̂i} , (An-B.15)

where [∂] is a vector (3×1) of gradient operators and [B] is a matrix (3×nf ) of components

of the gradient of the global shape functions.
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Figure 41 – Principles of the finite element modeling: (a) discretization of a bi-dimensional
region in nodes and elements, (b) linear shape functions for a given element, (c)
global shape function, also linear.

Source: modified from [16].

Some concepts of element discretization and shape functions are depicted in figure 41

for a two-dimensional problem, discretized into linear rectangular elements.

B.4 Uncoupled finite element model for acoustic prob-

lems

Determination of unknown pressures p̂i in expansions (An-B.14) and (An-B.15) is

based in the weak formulation of weighted residues (An-B.11) from the Helmholtz equa-

tion.

In the most used method of weighted residues, the Galerkin method, the weighting

function p̃ and the gradient vector in equation An-B.11 are expanded with the same type
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of shape functions used for the pressure and for its gradient, that is:

p̃(x, y, z) =

nf∑
i=1

Ni(x, y, z)p̃i = [N ] {p̃i} (x, y, z) ∈ V (An-B.16)

∇⃗p̃ = [∂][N ]{p̃i} = [B]{p̃i} . (An-B.17)

Substitution of expansions (An-B.14)—(An-B.17) in the integral terms of the weak

formulation (An-B.11) leads to the definitions, as will be shown, of an acoustic stiffness

matrix, an acoustic mass matrix, acoustic excitation vectors and an acoustic damping

matrix. Combining those elements results in an acoustical finite element model, which

when solved gives the nodal pressures p̂i.

B.4.1 Acoustical stiffness matrix

For the first integral term on the left of (An-B.11), substitutions give:∫
V

(
∇⃗p̃∇⃗p̂

)
dV =

∫
V

((
[B] {p̃i}

)T (
[B] {p̂i}

))
dV

= {p̃i}T
∫

V

(
[B]T [B]

)
dV

 {p̂i} = {p̃i}T [K] {p̂i}
(An-B.18)

where [·]T indicates matrix transposition and [K] is a (nf × nf ) matrix.

Keeping an analogy with structural finite element models, the matrix [K] is called

acoustical stiffness matrix, although, indeed, it represents an inverse of mass or mobility

matrix, relating pressure to an acceleration.

The matrix element Ki,j at line i and column j in that matrix is

Ki,j =

∫
V

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z
+

)
dV . (An-B.19)

Recalling, the global shape functions Ni and Nj, as its derivatives, have non-zero

values only in the domain of its respective elements, in other words, those that contain

nodes i and j. So, integration in the volume of (An-B.19) is restricted to the integration

in the domain of those elements. As the total volume integral can be considered the

sum of the integrals of each elementary volume, and as the shape functions of each of

those volumes and the global shape function (in the domain of elementary volumes) are



131

identical, the element Ki,j can be expressed as

Ki,j =

mi,j∑
e=1

∫
Ve

(
∂N e

i

∂x

∂N e
j

∂x
+

∂N e
i

∂y

∂N e
j

∂y
+

∂N e
i

∂z

∂N e
j

∂z
+

)
dV

 , (An-B.20)

where mi,j is the number of elements which simultaneously contain the nodes i and j.

As a given node belongs to a few elements which are defined by this node and some

more adjacent nodes, only some elements Ki,j are not zero. Therefore the [K] matrix is

sparse.

Benefiting from this sparsity, the practical calculation of the stiffness matrix can be

made in a very efficient way. Confining the volumetric integral of (An-B.18) to the domain

of one element, it can be written

∫
Ve

(
∇⃗p̃∇⃗p̂

)
dV = {p̃ei}T

∫
Ve

((
[∂] [N e]

)T (
[∂] [N e]

))
dV

 {p̂ei}

= {p̃ei}T
∫

Ve

(
[Be]T [Be]

)
dV

 {p̂ei} = {p̃ei}T [Ke] {p̂ei} ,

(An-B.21)

where [N e] is a (1 × np) vector of shape functions of the element and {p̂ei} is a (np × 1)

vector of unknown nodal pressures of the element. The elements of the associated (np×np)

stiffness matrix [Ke] are

Ke
i,j =

∫
Ve

(
∂N e

i

∂x

∂N e
j

∂x
+

∂N e
i

∂y

∂N e
j

∂y
+

∂N e
i

∂z

∂N e
j

∂z
+

)
dV . (An-B.22)

Notice that, as all the shape functions of an element have non-zero values in the

domain Ve, each elementary stiffness matrix is full.

Calculation of the global stiffness matrix [K] can be done in two phases. On the

first, all elementary stiffness matrices are evaluated. On the second phase, each non-zero

element Ki,j of the global stiffness is evaluated according to (An-B.20) by simple addition

of the values of (An-B.22) in the corresponding elements of the (global) matrix. With an

adequate numbering of the nodes in the finite element discretization, the non-zero values

in the global matrix will lay in a small band around the matrix diagonal, resulting in a

sparse banded diagonal matrix.
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B.4.2 Acoustical mass matrix

In the same way, the second integral term to the left of (An-B.11) can be expressed

as

−ω2

∫
V

(
1

c2
p̃p

)
dV = − ω2 {p̃i}T

∫
V

(
1

c2
[N ]T [N ]

)
dV

 {p̂i}

= − ω2 {p̃i}T [M ] {p̂i} ,

(An-B.23)

where [M ] is a (nf × nf ) matrix. By analogy with a structural model, the matrix [M ]

is called as the acoustical mass matrix, although it represents compressibility, relating

pressure to displacement.

As in the case of the global stiffness matrix, the practical evaluation of this sparse

diagonal banded matrix is based in the assembly of elementary mass matrices, according

to

Mi,j =

∫
V

(
1

c2
NiNj

)
dV =

mi,j∑
e=1

∫
Ve

(
1

c2
N e

i N
e
j

)
dV

 . (An-B.24)

B.4.3 Acoustical excitation vectors

The first term to the right in (An-B.11) can be written as

∫
V

(iρ0ωp̃q) dV = {p̃i}T
∫

V

(
iρ0ω [N ]T q

)
dV

 = {p̃i}T {Qi} , (An-B.25)

where {Qi} is the acoustical source vector, with dimension (nf × 1).

When the distribution q of the external acoustic sources is confined, for instance, to

a point force source {q̄i}, placed on node i, the distribution q of the source is

q(x, y, z) = q̄iδ(xi, yi, zi) , (An-B.26)

where δ is the Dirac delta function on node i. Therefore the vector is

{Qi} = iρ0ω

∫
V

(
q̄i [N ]T δ

)
dV

 . (An-B.27)

As long as the node i is not on the surface of V , all the (nf ×1) components of the source

vector are zero, except for row i, which is equal to iρ0ωq̄i.

The second integral term to the right in (An-B.11) allows the consideration of bound-
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ary conditions. As the contour surface integral Ω can be regarded as the sum of the

integrals of the component surfaces Ωv, ΩZ and Ωp, and as normal velocity and normal

impedance on equations An-B.3 and An-B.4 must be satisfied in Ωv and ΩZ , respectively,

this second integral term can be expressed as

−
∫
Ωv

(
iρ0ωp̃v̄n

)
dΩ −

∫
Ωp

(
iρ0ωp̃v⃗n⃗

)
dΩ −

∫
ΩZ

(
iρ0ωp̃Āp̂

)
dΩ . (An-B.28)

Substitution from (An-B.16) in the first term of (An-B.28) results in

−
∫
Ωv

(
iρ0ωp̃v̄n

)
dΩ = {p̃i}T

∫
Ωv

(
−iρ0ω [N ]T v̄n

)
dΩ

 = {p̃i}T {Vni} . (An-B.29)

The component on row i of the (nf×1) vector of imposed velocities {Vni} is, therefore,

Vni =

∫
Ωv

(
− iρ0ωNiv̄n

)
dΩ . (An-B.30)

The contour surface of an element is the union of all its faces. The surface of a fluid

element of linear tetrahedron or linear hexahedron types, for instance, is the union of four

or six faces, respectively. For these compatible elements, the value of the global shape

function Ni in a given element face will not be zero only when the node i is part of this

face. Consequently, the value of the global shape function Ni in the surface Ωv and the

vector component Vni are not zero only in the nodes that make up the contour surface

Ωv.

Thus, the practical evaluation of the imposed velocity vector is based in the expression

of its component element,

Vni = −iρ0ω

mvi∑
e=1

fe
vi∑

f=1

∫
Ωf

e

(
N e

i v̄n
)
dΩ

 , (An-B.31)

where mvi is the number of elements in which node i is located in its f e
vi elementary faces

Ωf
e , which make up the contour surface Ωv.

The normal velocity in a certain point of an elementary face is usually specified by

an expansion via shape functions, comparable to the expression (An-B.14),

v̄n(x, y, z) = {n}T [N f
ve]{v̄fe } (x, y, z) ∈ Ωf

e , (An-B.32)
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where the (3 × 1) vector {n} consists in the components x, y and z of the unit vector

normal to the considered face. The matrix

[
N f

ve

]
=


N e

1 0 0 · · · N e
nv

0 0

0 N e
1 0 · · · 0 N e

nv
0

0 0 N e
1 · · · 0 0 N e

nv

 (An-B.33)

of dimension (3 × nv) contains the pressure shape functions of the nv nodes from the

considered face of the element. In every of those nodes, the components x, y and z of the

fluid velocity are specified, resulting in the (3nv × 1) vector{
v̄fe
}T

= {v̄x1 v̄y1 v̄z1 · · · v̄xnv v̄ynv v̄znv} . (An-B.34)

Substitution of (An-B.16) in the second term from (An-B.28) results in

−
∫
Ωp

(
iρ0ωp̃v⃗n⃗

)
dΩ = {p̃i}T

∫
Ωv

(
−iρ0ω [N ]T v⃗n⃗

)
dΩ

 = {p̃i}T {Pi} . (An-B.35)

Thanks to the characteristics of the global shape functions Ni, the component in the

row i of the (nf × 1) vector of imposed pressure {Pi},

Pi =

∫
Ωp

(
− iρ0ωNiv⃗n⃗

)
dΩ , (An-B.36)

is not zero only when the node i lies in the contour surface Ωp. As this expression does not

consider the contour imposed pressures, (An-B.2), but instead a alternative formulation

with velocity, density and frequency, those pressures will enter the finite element model

as will be shown later.

B.4.4 Acoustical damping matrix

The third term from (An-B.28) can be written as

−
∫
ΩZ

(
iρ0ωp̃Āp̂

)
dΩ = − iω {p̃i}T

 ∫
ΩZ

(
ρ0Ā [N ]T [N ]

)
dΩ

 {p̂i}

= − iω {p̃i}T [C] {p̂i} ,

(An-B.37)

where [C] is the (nf × nf ) matrix of acoustical damping that is caused by the contour

impedance conditions.
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The element Ci,j in the row i and column j in this matrix is

Ci,j =

∫
ΩZ

(
ρ0ĀNiNj

)
dΩ . (An-B.38)

As is with the stiffness and mass matrices, the damping matrix is sparse, because its

Ci,j elements are only non-zero when both nodes i and j lie in at least one face of the

element which belongs to the contour surface ΩZ .

The practical evaluation of the non-zero matrix elements is, therefore, based in the

expression

Ci,j =

mZi,j∑
f=1

∫
Ωf

e

(
ρ0ĀN

e
i N

e
j

)
dΩ

 , (An-B.39)

where mZi,j
is the quantity of elementary faces Ωf

e in which the nodes i and j are contained

and are parts of the contour surface ΩZ .

Specification of normal admittance is generally considered constant in each elementary

face of ΩZ .

B.4.5 Acoustical model by finite elements

Substution of expressions (An-B.18), (An-B.23), (An-B.25), (An-B.29), (An-B.35)

and (An-B.37) in equation An-B.11, the weak form of the weighted residual formulation

of the Helmholtz equation, including the boundary conditions (An-B.3) and (An-B.4),

results in

{p̃i}T
(

[K] + iω [C] − ω2 [M ]
)
{p̂i} = {p̃i}T

(
{Qi} + {Vni} + {Pi}

)
. (An-B.40)

As the weighted residual formulation must be valid for any type of weighting, that is,

any value set of the shape function {p̃i} (see equation An-B.16), a set of nf equations in

the nf nodal unknowns of the pressure approximation p̂i is obtained,(
[K] + iω [C] − ω2 [M ]

)
{p̂i} = {Qi} + {Vni} + {Pi} . (An-B.41)

The row i in this matrix equation shows the weighted residual formulation where the

global shape function Ni, associated to node i, is used as weighting function p̃.

The contour imposed pressure, (An-B.2), is not yet included in the matrix equation

An-B.41. This consideration is usually made by assigning the imposed pressure at each
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nodal point of the contour surface Ωp to the corresponding nodal unknown p̂i.

When such assignment is made to the np̄ nodes in Ωp, there will remain na = nf − np̄

pressure approximations p̂i still unknown. This means that np̄ equations should be elim-

inated in (An-B.41) in order to the system of equations to be determined.

This is generally done by elimination of each row from (An-B.41) where the weighted

residuals formulation utilizes as weighting functions the global function of a node on the

surface Ωp. Elimination from these equations, which orthogonalize the pressure error in

regions close to Ωp in regard to the shape functions in that region, is motivated by the

fact that the evaluation error is lesser than errors in other regions of the fluid domain,

since the exact pressure values in nodes of the contour surface Ωp are assigned a priori.

Eliminating the adequate rows in (An-B.41) and moving the left terms which contain

imposed pressures to the right side, results in the expression for the finite element model

for the uncoupled acoustical problem,(
[Ka] + iω [Ca] − ω2 [Ma]

)
{pi} = {Fai} , (An-B.42)

where the vector {pi} with dimension (na × 1) contains the nodal pressure unknowns

approximations and where the acoustical stiffness, damping and mass matrices [Ka], [Ca]

and [Ma] are now with dimension (na × na).

As the non-zero elements from {Pi} occur only in the eliminated equations from

(An-B.41), the (na × 1) vector of acoustical force {Fai} contains the stiffness, damping

and mass terms of the nodes where the imposed pressure was a priori assigned, and the

contributions of the acoustical source (An-B.25) and imposed velocities vector (An-B.29)

were assigned.
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ANNEX C – THE CENTRAL

DIFFERENCE METHOD

The time evolution of pressures inside the domain is carried out not by an implicit

integration in time, but using the central difference method.

This annex, based on [79], explains the method.

For a multi-degree of freedom system, with a mass matrix [M ], damping matrix [C],

stiffness matrix [K] and displacement vector {X}, the equation of motion is

[M ]{Ẍ} + [C]{Ẋ} + [K]{X} = {F (t)} , (An-C.1)

where {Ẍ} is the acceleration vector and {Ẋ} the velocity vector.

Consider the time history of one single displacement variable of this system depicted

in figure 42. The idea can be applied in the same way to the multi-variable system as

well. Using the midpoint of the time interval ∆t = h after and before the instant i, the

velocity can be written as both

Ẋi+ 1
2

=
Xi+1 −Xi

∆t
(An-C.2)

and

Ẋi− 1
2

=
Xi −Xi−1

∆t
. (An-C.3)

With equations An-C.2 and An-C.3 the acceleration can be written as

Ẍi =
Ẋi+ 1

2
− Ẋi− 1

2

∆t
. (An-C.4)

Substitution of Ẋi+ 1
2

and Ẋi− 1
2

from equations An-C.2 and An-C.3 into An-C.4 leads

to

Ẍi =
1

∆t2

(
Xi+1 − 2Xi + Xi−1

)
. (An-C.5)

Extending these ideas to vector variables, it is now possible to express the velocity at
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a given instant t as the mean value of {Ẋi+1} and {Ẋi−1} using equations analogous to

An-C.2 and An-C.3, that is,

˙{X}t =
1

2∆t

(
{X}t+∆t − {X}t−∆t

)
(An-C.6)

while, as with equation An-C.5 for a single variable, the vector acceleration is

¨{X}t =
1

∆t2

(
{X}t+∆t − 2{X}t + {X}t−∆t

)
. (An-C.7)

Substitution of equations An-C.6 and An-C.7 into equation An-C.1, and rearranging

and isolating terms at instant t + ∆t to the left, gives

[Meff]{X}t+∆t = {Feff}t (An-C.8)

where the “effective mass” matrix is

[Meff] =
1

∆t2
[M ] +

1

2∆t
[C] (An-C.9)

and the “effective force” is

{Feff}t = {F}t −
(

[K] − 2

∆t2
[M ]

)
{X}t −

( 1

∆t2
[M ] − 1

2∆t
[C]
)
{X}t−∆t . (An-C.10)

Then, all the displacements {X}t+∆t can be calculated using equation An-C.8, based

on current and past displacement values, and the velocities and accelerations calculated

using equations An-C.6 and An-C.7.

Figure 42 – Time grid in the central difference method.
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ANNEX D – MATHEMATICAL DETAILS

ABOUT SLSQP, TOMP’S

OPTIMIZER

This annex presents the rationale behind the SLSQP optimizer, which is available in

the TOMP package [56]. This text is primarily based on [57], which is no longer available.

It includes information from some of the sources cited by Kraft, the creator of TOMP, in

this technical article. The text appears to be related to a Engineering course material.

The optimizer will solve the nonlinear programming problem

min
x∈Rn

f(x) (An-D.1)

with each component of the vector x bounded by lower and upper limits

li ≤ xi ≤ ui , i = 1, ..., n (An-D.2)

and also satisfying constraints as

gj(x) = 0 , j = 1, ...,me (An-D.3)

and

gj(x) ≥ 0 , j = me + 1, ...,m (An-D.4)

with f : Rn → R1.

In our tomography problem both me from equation An-D.3 and m from An-D.4 have

value 0.

D.1 Sequential quadratic programming

The method for optimization is sequential quadratic programming, SQP, a efficient

computational method to solve general nonlinear minimization problems like (An-D.1),
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corroborated by extensive tests and reported by [80], apud [57].

D.1.1 Iteractive optimization

The solution should be sought iteratively, from the initial vector x0 of optimization

parameters and going from iteration k to k + 1 with a search direction dk and step length

αk,

xk+1 = xk + αkdk . (An-D.5)

D.1.2 Search direction

According to [57], there are two algorithms for determination of the search direction.

The first is to solve a complete quadratic programming problem1 in order to solve the

optimality conditions, then there is a quadratic programming problem for the equality

constraints alone. This is done by the behavior of a quadratic exterior point penalty

function, and the equality constraint bounding the step size.

In the first approach the search direction dk is determined by a quadratic programming

subproblem, which is formulated by a quadratic approximation of the Lagrange function

L(x, λ) of the problem (An-D.1),

L(x, λ) = f(x) −
m∑
j=1

λjgj(x) , (An-D.6)

and a linear approximation of constraints gj. This is a problem belonging to a standard

form of quadratic programming:

min
d∈Rn

1

2
dTBkd + ∇f(xk)d (An-D.7)

subject to

∇gj(x
k)d + gj(x

k) = 0 , j = 1, ...,me , (An-D.8)

∇gj(x
k)d + gj(x

k) ≥ 0 , j = me, ...,m , (An-D.9)

1A quadratic program is the special case of linearly constrained optimization that occurs when the
objective function is the quadratic function

F (x) = cTx+
1

2
xTGx ,

for some constant vector x and constant symmetric matrix G; the gradient of this function is Gx+ c and
the Hessian is G. ([81], [82]).

Again, for the tomography algorithm, no constraints are needed besides the bounds of minimum and
maximum allowed values.
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where matrix Bk is symmetric and need to be determined. The gradients ∇f(x) and

∇gj(x) are row vectors.

Wilson ([83]) suggested the search direction with

B = ∇2
xxL(x, λ) . (An-D.10)

D.1.3 Step size

Books on numerical methods like [35] draw our attention to the fact that the direction

calculated by (An-D.7) has a strong analogy to the search direction while solving systems

of (nonlinear) equations by Newton’s method. Like there, the ideal step α = 1 is valid for

nonlinear functions near a local optimum point, however the step has to be modified for

vectors xk far from the optimum, otherwise global convergence is not guaranteed.

It has been proved ([84], apud [57]) that a one-dimensional minimization of the non-

differentiable exact penalty function

ϕ(x; ρ) = f(x) +
me∑
j=1

ρjgj(x) +
m∑

j=me+1

ρjmin [0, gj(x)] (An-D.11)

as a merit function φ : R1 → R1

φ(α) = ϕ
(
xk + αdk

)
, (An-D.12)

with both xk and dk fixed, leads to a step size α that guarantees global convergence for

values of penalty parameters ρj greater than a certain lower bound. Powell ([85]) proposed

updating of the penalty parameters using the formula

ρj = max

[
1

2
(ρj̄ + µj), µj

]
, j = 1, ...,m . (An-D.13)

where µj denotes the Lagrange multiplier of the j-th constraint in the quadratic subprob-

lem and ρj̄ is the j-th penalty parameter in the previous iteration, starting with ρ0j = 0

for instance.

In view of possible difficulties in the line search of the non-differentiable merit function

Schittkowski ([86], [87]), instead of (An-D.11), used the differentiable augmented Lagrange
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function

Φ(x, λ, ρ) = f(x) −
me∑
j=1

λjgj(x)

− 1

2
ρjgj(x)2 −

m∑
j=me+1

λjgj(x) − 1
2
ρjgj(x)2 , if gj(x) ≤ λj/ρj ,

1
2
λ2
j/ρj , otherwise.

(An-D.14)

D.1.4 Update of the Matrix B

It is very important for the computational efficiency in practical applications of se-

quential quadratic programming not to evaluate the matrix Bk as in equation (An-D.10)

at every iteration, but to use only first-order information to approximate the Hessian

matrix of the Lagrange function. This is very common for unconstrained optimization

for a long time and is known as quasi Newton methods. A very used update is the

BFGS formula. Reference [88] gives a comprehensive overview on numerical methods for

unconstrained optimization and the closely related field of nonlinear equations.

The analogue formula for the constrained case has been developed by Powell [85]. The

difficulty in constrained optimization is that, unlike in unconstrained optimization, Bk

need not remain positive definite for a positive definite initial estimate. Therefore Powell

proposed this modification:

Bk+1 = Bk +
qk(qk)T

(pk)T qk
− Bkpk(pk)TBk

(pk)TBkpk
, (An-D.15)

with

pk = xk+1 − xk = αkdk , (An-D.16)

and

qk = θkηk + (1 − θk)Bkpk , (An-D.17)

where ηk is the difference in gradients of the Lagrange function

ηk = ∇xL(xk+1, λk) −∇xL(xk, λk) , (An-D.18)

and θk is chosen as

θk =

1, if (pk)Tηk ≥ 0.2(pk)TBkpk ,

0.8(pk)TBkpk

(pk)TBkpk−(pk)T ηk
, otherwise.

(An-D.19)
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which guarantees the condition

(pk)T qk ≥ 0.2(pk)TBkpk , (An-D.20)

which holds Bk+1 positive definite within the linear manifold defined by the tangent planes

to the active constraints at xk+1. The multipliers λk are taken to be those of the quadratic

subproblem at it’s solution. The choice of conditions (An-D.16)–(An-D.19) guarantees the

updated B matrix (An-D.15) to remain positive definite for an arbitrary initial positive

definite estimate of this matrix.

D.1.5 Least Squares Subproblems

Schittkowski ([87], apud [57]) proposed to replace the quadratic programming sub-

problem (An-D.7) by a linear least squares subproblem, using a stable LDLT factorization

of the matrix B:

min
d∈Rn

∣∣∣∣(Dk)1/2(Lk)Td + (Dk)−1/2(Lk)−1∇f(xk)T
∣∣∣∣ (An-D.21)

subject to

∇gj(x
k)d + gj(x

k) = 0 , j = 1, ...,me , (An-D.22)

∇gj(x
k)d + gj(x

k) ≥ 0 , j = me + 1, ...,m , (An-D.23)

li ≤ xi ≤ ui , i = 1, ..., n . (An-D.24)

This subproblem can be solved using the linear least squares software of Lawson and

Hanson [89].

D.1.6 Motivation of SQP Methods

D.1.6.1 Optimality Conditions.

SQP-based methods are motivated as methods analog to Newton’s method for solving

systems of nonlinear equations. First we need the Kuhn-Tucker conditions for problem

(An-D.7), a set of necessary optimality conditions:

∇xL(x, λ) = 0 , (An-D.25)

gj(x) = 0 , j = 1, ...,me , (An-D.26)

gj(x) ≥ 0 , j = me + 1, ...,m , (An-D.27)
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λj(x) ≥ 0 , j = me + 1, ...,m , (An-D.28)

gj(x)λj(x) = 0 , j = me + 1, ...,m . (An-D.29)

To start with the arguments equality-constrained problems (An-D.1) and (An-D.3)

are considered first, and then inequality-constrained problems are treated introducing the

notion of active constraint sets.

From the necessary conditions of the equality-constrained problem it follows that the

condition

e(x, λ) =

(
∇f(x) − A(x)λ

g(x)

)
=

(
0

0

)
(An-D.30)

is satisfied, where A(x) such as

AT (x) =


∇g1(x)

...

∇gme(x)

 (An-D.31)

is the n × me Jacobi matrix of equality constraints, assumed to be of full rank at the

corresponding vector x.

Now Newton’s method is applied to the solution of the system of n + me (usually

nonlinear) equations (An-D.30) in the n+me unknowns (x, λ)T . Let (xk, λk)T be the k-th

iterate of the Newton process, defined by the equation

∇e(xk, λk)

(
∆x

∆λ

)
+ ∇e(xk, λk) = 0 (An-D.32)

and the step (
xk+1

λk+1

)
=

(
xk

λk

)
+

(
∆x

∆λ

)
, (An-D.33)

with

∇e(xk, λk) =

(
H(xk, λk) −A(xk)

A(xk)T 0

)
(An-D.34)

the Jacobian of e(x, λ) with respect to (x, λ)T within the k-th iteration, and

H(xk, λk) = ∇2
xf(xk) −

me∑
j=1

λk
j∇2

xgj(x
k) (An-D.35)

the Hessian matrix with respect to x of the Lagrange function L(x, λ). Explicitly written,
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equations (An-D.32) and (An-D.33) become(
H(xk, λk) −A(xk)

A(xk)T 0

)(
d

λk+1

)
=

(
∆f(xk)

g(xk)

)
, (An-D.36)

and

xk+1 = xk + d . (An-D.37)

Equation (An-D.36) can be solved based on matrix decomposition methods given by

[90].

D.1.6.2 Nonlinear Equations and Quadratic Programming.

It can be verified by direct evaluation of (An-D.25) that the conditions (An-D.36) and

(An-D.37) are equivalent to the Kuhn-Tucker conditions of the quadratic programming

problem with pure equality constraints (An-D.7) and (An-D.8):

min
d∈Rn

1

2
dTBkd + ∇f(xk)d (An-D.38)

subject to

∇gj(x
k)d + gj(x

k) = 0 , j = 1, ...,me (An-D.39)

with Bk = H(xk, λk).

This equivalence is the reason for the choice of the search direction (An-D.7)–(An-D.9).

This is especially convenient in the inequality constrained case, where no practical imple-

mentation exists to solve the corresponding problem (An-D.36)–(An-D.37).

D.1.7 Active Set Strategy

A complete solution for the equality-constrained quadratic programming problem

(An-D.38)–(An-D.39) is given in the next section. Here, a technique for solving the

general QP problem, with inequalities included, will be presented in the context of primal

methods. The matrix B will be assumed to be positive definite throughout; the slightly

more complex case when B is indefinite is treated by Gill and Murray ([91]) and by Bunch

and Kaufman (see [92]).

First suppose a feasible iterate xk is given, that is, a point satisfying the constraints

(An-D.8) and (An-D.9). If such point is not available, it has to be provided by a suitable

starting procedure, for instance a phase I method of the simplex algorithm. Now the
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active set is an index set Ika consisting of the indices of all tk active constraints at the

point xk:

Ika = {j = 1, ...,me} ∪ {j = me + 1, ...,m|aTj (xk)d− gkj = 0} (An-D.40)

with gkj = gj(x
k). The inactive inequalities aTj (xk)d − gkj > 0 will be temporarily disre-

garded.

Now the equality constrained quadratic programming problem with active constraints

min
d∈Rn

1

2
dTBkd + ∇f(xk)d (An-D.41)

subject to

∇gj(x
k)d + gj(x

k) = 0 , j = 1, ..., tk , (An-D.42)

must be solved; let the solution be (dk, λk)T . Next a step is taken into this direction

according to (An-D.5)

xk+1 = xk + αkdk . (An-D.43)

with the restrictions

f(xk + αkdk) < f(xk) , (An-D.44)

and

αk ≤ α̂k =

min
gj−aTj xk

aTj dk
, if aTj d

k < 0 for some j /∈ Ika ,

+∞ , if aTj d
k ≥ 0 for all j /∈ Ika .

(An-D.45)

Note that α̂k will have a positive value under the conditions of (An-D.45), as the index j

is not within the active set.

If aTj d
k ≥ 0, any positive step along dk will not violate the inactive constraint j.

On the other hand, if aTj d
k < 0, there is a step αj which activates the constraint j :

gj − aTj (xk + αjd
k) = 0. This is the reasoning behind condition (An-D.45).

As in unconstrained optimization, this algorithm requires sufficient decrease of the cost

function, stated in relation (An-D.44), as to prove it’s global convergence. For further

information see reference [81, pages 168–170].

Conditions (An-D.44) and (An-D.45) may leave the active set unaltered or enlarged,

according to whether αk < α̂k or αk = α̂k. As a third possibility the deletion of a

constraint has to be considered. This is the case when the optimality conditions, especially

(An-D.28)

λj(x) ≥ 0 , j = me + 1, ...,m , (An-D.46)
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are not satisfied for the active inequality constraints. This means that the active set is

not yet correct. The minimum of the cost function is sought in a subspace of too small

dimension. If the Lagrange multipliers of the current solution of (An-D.41) and (An-D.42)

are assumed to be sufficient accurate estimates, then condition (An-D.46) can be used as a

criterion to delete a binding constraint, for instance that one with the smallest (negative)

value l:

l = arg min
j

(
λj(x) < 0 , j = me + 1, ...,m

)
. (An-D.47)

D.2 Quadratic programming algorithm

Four main algorithms for the solution of the quadratic programming core problem

of the sequential quadratic programming method are known: a primal method based on

the direct formulation of the problem, a primal/dual approach based on a least squares

transformation, a dual method which finds the active set beginning from an unconstrained

problem and methods based on linear complementarity problems. Kraft ([56], [57]) prefers

the primal/dual approach.

D.2.1 Problem Equivalence

It can be shown that the general quadratic programming problem (An-D.7)

min
x∈Rn

1

2
xTGx + hTx (An-D.48)

subject to

ATx ≥ b , (An-D.49)

and

CTx = d , (An-D.50)

is equivalent to the following linear least squares formulation (An-D.21)

min
x∈Rn

1

2
||Ex− f ||2 (An-D.51)

subject to

ATx ≥ b , (An-D.52)

and

CTx = d . (An-D.53)
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This problem has been extensively treated by Lawson and Hanson [89]. In the context

of Sequential Quadratic Programming (SQP) methods, square matrices E with dimension

n and with special structure are considered. The matrices AT and CT are of dimension

(m−me)× n and me × n, respectively. All matrices are assumed to be of full rank. This

assumption does not constrain the generality of the method; it has been introduced to

relax the derivation from the necessary refinements in the event of rank deficiencies.

The implementation (An-D.51) is used as QP solver within the code SLSQP of DLR

Oberpfaffenhofen2. Actually, the code includes simple bounds on the variables li ≤ xi ≤
ui, i = 1, ..., n.

D.2.2 Problem Transformation

According to Lawson and Hanson [93] a transformation of variables is introduced by

an orthogonal basis K of the nullspace of CT :

x = K

(
x1

x20

)
me

n−me

, (An-D.54)

where the n× n orthogonal matrix K triangularizes the matrix CT from the right:

n
me CT

n E K =

m−me AT

me n−me
C̃1 0

Ẽ1 Ẽ2

Ã1 Ã2

. (An-D.55)

Then x̂1 is determined as the solution of the lower triangular system

C̃1x1 = d , (An-D.56)

and x̂2 is the solution of the following inequality-constrained least squares problem

min
x2∈Rn−me

∣∣∣∣∣∣Ẽ2x2 + Ẽ1x̂1 − f
∣∣∣∣∣∣ (An-D.57)

subject to

Ã2x2 ≥ b− Ã1x̂1 . (An-D.58)

Problem (An-D.57) is now transformed into a least distance problem (LDP). First the

2Which is the algorithm used for the tomography.
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QR factors of the n× (n−me) matrix Ẽ2,

Ẽ2 = Q

(
R

0

)
(An-D.59)

are determined, with Q an n×n orthogonal matrix and R an upper triangular non-singular

matrix. Then a further change of variables is introduced

y = Rx2 − f̄ , (An-D.60)

with

f̄ = Q̄T (f − Ẽ1x̂1) , (An-D.61)

where the n× (n−me) matrix Q̄T is composed of the first n× (n−me) columns of the

matrix Q. Problem LDP can now be formulated as

min
y∈Rn−me

||y|| (An-D.62)

subject to

Ã2R
−1y ≥ b−

(
Ã1x̂1 + Ã2R

−1f̄
)

. (An-D.63)

The solution ŷ of problem LDP is introduced into equation (An-D.60) from which the

solution x̂2 of problem (An-D.57) is obtained, which in turn is put into equation (An-D.54)

to give the solution x of the original problem (An-D.51).

Problem LDP has a non-negative least squares problem (NNLS)

min
z∈Rm

||Gz − h|| (An-D.64)

subject to

z ≥ 0 (An-D.65)

as its dual problem, where the (n+ 1)×m matrix G is composed of the constraint matrix

and the right hand side of equation (An-D.63) and the (n + 1) vector h consists of n

leading zeros followed by a trailing one, h = (0, ..., 0, 1)T . This transformation has been

proposed by Cline [94].

From the solution ẑ of the dual problem NNLS and its residual r = Gẑ−h the solution

ŷ of problem LDP is obtained by the relation

ŷi = ri/rn+1, i = 1, ..., n−me , (An-D.66)
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and the corresponding Lagrange multipliers λ of problem LDP are

λj = −uj/rn+1, j = 1, ...,m , (An-D.67)

where the vector u is the multiplier vector of problem NNLS (An-D.64). Finally, problem

NNLS is solved by an active set strategy.
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ANNEX E – FACTS ABOUT BREAST

CANCER

This annex, based on [95], presents information for a better understanting of what is

breast cancer, including its development and symptoms. It is intended for enginners and

those without medical knowledge. One purpose is to clarify that breast cancer in its early

stages may not have calcifications and therefore cannot be detected by mammographic

exams using X-rays.

As the odds of successful treatment of breast cancer increase dramatically with early

diagnosis, and early tumors lack X-rays detectable matter, ultrasound and ultrasound

tomography emerges as a valuable mean to preserve health.

E.1 What is cancer

Cancer is a disease characterized by uncontrolled growth of cells. There are more than

200 types of cancer, each one with a specific therapy.

Body cells are of many forms and have specialized functions, but all of them grow

(by cellular division) to replace old and dead cells; this is a continuous and slow process.

Sometimes this cellular growth becomes disordered and at times accelerated, giving origin

to a lump called tumor, as depicted in figure 43.

Benign tumors grow slowly and in a fixed place. They can cause troubles when big,

because of pressure on adjacent organs.

Malign tumors grow not only fast, but also spread through adjacent tissues (and can

destroy those tissues) and are also capable of starting to grow in other places of the body,

at a distance, not connected to the primary tumor. The neoplastic cells detach from the

original tumor and, via the lymphatic or the blood system, reach other organs where they

could continue to grow, what is called a metastasis. Therefore – which is characteristic
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of a metastasis – it’s cells are not of the same type of cells from the (new) place where

the metastasis is, but are cancerous, abnormal cells from the same kind of tissue of the

original tumor. As an example, see figure 44.

Figure 43 – Comparison of regular and tumor cells.

(a) Regular cells. (b) Tumor cells.

Source: [95].

Figure 44 – Metastatic pancreatic cells (pale) in a liver.

Source: By Haymanj - Self-photographed, Public Domain, https://commons.wikimedia.org/
w/index.php?curid=3662694.
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E.2 The human breast

The human breast is composed mainly of skin, fatty tissue and glandular tissue, and

those constituents proportions also change with age: in young women the gladular tissue

prevails, in older women, instead, the fatty tissue. The breast is further subdivided, as

depicted in figure 46, in lobules – which in turn are made up by smaller alveoli – milk

ducts which goes from the lobules to the nipple, and veins, arteries, and connections with

the lymphatic system by means of lymphatic vessels.

Mammary gland cells are of two types: lobular cells, which produce milk, and ductal

cells, which compose the milk duct. If any of those cells starts to grow incontrollabily and

invading and spreading to neighbouring cells, we will have a lobular or a ductal tumor

or carninoma, according to its origin. The change into a carcinoma is relatively slow and

has some phases:

� in a first phase the carcinoma grows in the anathomic region of origin, and so is

called in situ;

� in a second phase it becomes infiltrant in this region, and is then called infiltrating

or invasive.

So, when someone is diagnosed with an invasive ductal or lobular carcinoma, it is still

localized in a very specific region and not spreading to the whole body.

E.2.1 Types of breast carcinoma

The breast carcinomas can be of four types:

1. lobular carcinoma in situ (LCIS): this is not a life risk, however is a pre-cancerous

state if the carcinoma continues to develop. The treatment consists in the surgical

removal of the tumor area. According to the evolution to a more malign state, it

can be classified as LIN 1, LIN 2 or LIN 3, for lobular intraepithelial neoplasia. This

carcinoma is not associated with calcifications.

2. ductal carcinoma in situ (DCIS): this is also considered a pre-cancerous tumor, how-

ever it is more dangerous than the lobular carcinoma in situ, because it tends to

evolve and become infiltrant. Must be carefully treated, but this is not always possi-

ble, as in this stage it is not yet palpable. It frequently presents microcalcifications,
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making it visible in mamographies (using X-rays). Teraphy is surgical remotion and

radiotheraphy.

3. invasive (or infiltrant) lobular carcinoma (ILC): this is already a full-fledged car-

cinoma. Usually it is multi-centric (tumor foci in many quadrants of the breast)

and multi-focal (many tumor foci in the same breast quadrant). This is the rarest

ductal carcinoma. Usually demands magnegtic resonance for a precise diagnosis.

Theraphy is surgical, including surgical evaluation of axillary lymph nodes.

4. invasive (infiltrant) ductal carcinoma (IDC): the most common breast carcinoma.

Generally it is a single lump that grows in a specific point of the mammary gland.

Therapy is surgical, including surgical evaluation of the axillary lymph nodes.

Figure 45 – Anatomy of a human female breast.

1 chest wall
2 pectoralis muscles
3 lobules
4 nipple
5 areola
6 milk duct
7 fatty tissue
8 skin

1
2

3
4

5
6

7 8

Source: By Original author: Patrick J. Lynch. Reworked by Morgoth666 to add numbered leg-
end arrows. - Patrick J. Lynch, medical illustrator, CC BY 3.0, https://commons.wikimedia.
org/w/index.php?curid=2676813. Modified by the thesis author for typographical adherence
to the required standard.
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Figure 46 – Lymphatic system in the breast region.

axillary
lymph
nodes

lymph nodes
from the internal
mammary chain

Source: modified from [95].


