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RESUMO

Neste trabalho, o Método de Otimização Topológica é empregado para gerar projetos
capazes de trabalhar com escoamentos compressíveis e rotativos. As equações de Navier
Stokes e da energia são resolvidas para casos a regime permanente. O modelo de gás
perfeito é utilizado. A penalização de Brinkman é aplicada para representar sólidos dentro
do domínio de projeto. Os modelos são representados em um sistema de coordenadas
rotativo e, quando a turbulência é considerada, a média de Favre é utilizada em conjunto
com o modelo de turbulência de Wray Agarwal de 2018. O objetivo principal do trabalho
é otimizar projetos para trabalhar com escoamentos compressíveis e rotativos, no entanto,
escoamentos incompressíveis e sem rotação também foram abordados. As funções objetivo
consideradas para os escoamentos incompressíveis são a dissipação de energia e a eficiência
de bomba e, para escoamentos compressíveis, a variação de entropia e a eficiência isentrópica.
O cálculo de sensibilidades para o problema de otimização é feito através do método adjunto
nas suas abordagens contínua e discreta. A abordagem discreta desenvolvida é uma nova
metodologia proposta e que se apoia em um esquema de diferenças finitas. A implementação
numérica é feita com a biblioteca de volumes finitos OpenFOAM, a biblioteca de C++
Eigen e a biblioteca científica PETSc. Exemplos numéricos são apresentados considerando
escoamentos incompressíveis laminares com e sem rotação, escoamentos compressíveis
laminares com e sem rotação e escoamentos compressíveis turbulentos com e sem rotação.
Além disso, uma avaliação do modelo de turbulência em um contexto de otimização
é apresentada. Os exemplos numéricos mostram que o cálculo de sensibilidades está
implementado corretamente e que a metodologia desenvolvida é capaz de gerar projetos
para trabalhar com escoamentos compressíveis e rotativos.

Palavras-chave: otimização topológica, método adjunto discreto, escoamento
compressível, método dos volumes finitos, escoamento rotativo



ABSTRACT

In this work the Topology Optimization Method is employed to generate designs with
rotating compressible flows. The Navier Stokes and energy equations are solved for steady
state cases. The perfect gas model is used. The Brinkman penalization is applied to
represent the solid regions inside the domain. The physical model is represented in a
rotating reference frame and, to account for turbulent flows, the Favre average is used
with the Wray Agarwal turbulence model from 2018. The main objective of the work is to
optimize designs with compressible rotating flows, however incompressible and non-rotating
cases have also been accounted. The objective functions considered for incompressible flows
are the energy dissipation and the pump efficiency and, for compressible flow problems, the
entropy variation and the impeller isentropic efficiency. The calculation of the sensitivities
for the optimization problem is executed with the adjoint method in the continuous and
the discrete approaches. The discrete approach developed is a novel methodology and
is based on a finite differences scheme. The implementation is made with the use of the
finite volume library OpenFOAM, the C++ library Eigen and the scientific library PETSc.
Numerical examples are presented considering incompressible laminar flows with and
without rotation, compressible laminar flows with and without rotation and compressible
turbulent flows with and without rotation. Also, an assessment of the behavior of the
turbulence model in an optimization context is performed. The numerical examples show
that the sensitivity calculation is correctly implemented and the methodology developed
is capable of generating designs to work with compressible rotating flows.

Key words: topology optimization, discrete adjoint method, compressible flow,
finite volume method, rotating flow
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NOTATION

acent Centripetal acceleration
acor Coriolis acceleration
arot Sum of centripetal and Coriolis acceleration
AMRinf Inferior limit for adaptive mesh refinement
AMRsup Superior limit for adaptive mesh refinement
c Constraint for the optimization problem
cp Specific heat
Cscale Scaling constant
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cvol Constant for augmented lagrangian
h Enthalpy
hin Enthalpy at inlet
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hout,s Enthalpy at outlet for an ideal compression
h̃ Mass averaged enthalpy
h′′ Fluctuating enthalpy component
J Objective function
JΩ Objective function calculated by integration in the domain
JΓ Objective function calculated by boundary integration
Jrot,comp Objective function for rotating compressible problem
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Jstat,comp Objective function for non-rotating compressible problem
Jstat,incomp Objective function for non-rotating incompressible problem
k Gas thermal conductivity
L Lagrangian
L Augmented lagrangian
Ma Mach number
n̂ Normal vector
p Pressure
p Averaged pressure
p′ Fluctuating pressure component
Pf Power added to the flow
pout Pressure at outlet
Pr Prandtl number
Prt Turbulent Prandtl number
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pref Pressure at a reference state
q Interpolation function parameter
R Gas constant
r Position vector
R Residual for state equations
Rc Residual for continuity equation
Ru Residual for momentum equation
tη Kolmogorov time scale
T Temperature
Tavg Averaging time interval
Tref Temperature at a reference state
u Velocity field
u Averaged velocity field
u′ Fluctuating component of the velocity field
u′′ Fluctuating component of the velocity field for mass averaging
ũ Mass averaged velocity field
uin Velocity at inlet
v Absolute velocity
Vfrac Volume fraction
w Rotation vector
α Penalization term
α Maximum allowable penalization
α Minimum allowable penalization
γ Specific heat ratio
Γ Boundary of domain
δadj Perturbation for adjoint system assembly
δFD Perturbation for finite difference verification
δSD Size for steepest descent
ϵ Average rate of dissipation of turbulent kinetic energy
ϵJ Tolerance for objective function
ϵvol Tolerance for volume constraint
ζ Arbitrary flow variable
ζ Averaged arbitrary flow variable
ζ ′ Fluctuating component of arbitrary flow variable
η Kolmogorov length scale
κ Turbulent kinetic energy
λ Bulk viscosity
µ Dynamic viscosity
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µt Turbulent dynamic viscosity
ν Kinematic viscosity
νt Turbulent kinematic viscosity
ρ Density
ρ Averaged density
ρdes Design variable
τ Stress tensor
τ Averaged stress tensor
ϕ Flow variable
ψ Arbitrary flow variable
ψ Averaged arbitrary flow variable
ψ′ Fluctuating component of arbitrary flow variable
ψadj Lagrange multiplier vector for discrete adjoint
ψc Lagrange multiplier for continuity equation
ψu Lagrange multiplier for momentum equation
ψvol Constant for augmented lagrangian
Ω Interior part of domain
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1 INTRODUCTION

In the latest years, weather patterns have been changing and becoming more extreme all
over the world. Oceans are warmer now and the amounts of snow and ice have diminished,
leading to higher sea levels. From 1901 to 2010, the global average sea level increased by
19 cm as oceans expanded due to warming and ice melting. These changes affect every
country in the world and are intimately linked to the emissions of the so-called greenhouse
gases, where carbon dioxide (CO2) plays a major role. With the current concentrations
and on-going emissions, it is estimated that, by the end of the century, the increase in
the global temperature will exceed 1.5oC when compared to the period between 1850 and
1900 (UN, 2022). Even though the temperature changes may seem mild, several intense
consequences are expected to happen, such as dirtier air, more acidic oceans and higher
sea levels, leading to higher death and wildlife extinction rates (NRDC, 2022).

The harmful consequences and effects of climate changes are recognized worldwide and
several nations have been working to contain and reverse the global emissions. Different
strategies and initiatives have been developed. Some projects focus on Nature Based
Solutions (NBS), where the goals involve the protection and restoration of native vegetation,
the re-establishment of native species and land management systems as ways of avoiding
new carbon dioxide emissions and improving the sequestration of the CO2 currently
released to the atmosphere (GIRARDIN et al., 2021). Other projects approach strategies
to capture CO2 emissions and convert them into valuable products by chemical processes.
These are known as Carbon Capture and Utilization (CCU) (GHIAT; AL-ANSARI, 2021).
Beyond that, there are projects focusing on techniques to capture the CO2 in its main
sources, transport and keep it in safe storing places. These are known as Carbon Capture
and Storage (CCS). They are composed of three main steps (see Fig. 1.1) (INSTITUTE,
2022b):

a) The separation of CO2 from other gases at industrial process facilities. The main
CO2 sources are: coal and natural gas based power plants, steel plants, cement plants
and refineries;

b) Compression and transportation of CO2 via pipelines, trucks, ships or any other
methods to a safe site for storage;

c) Injection of the CO2 into deep underground rock formations (usually at depths of 1
km or more).
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Figure 1.1 – Overview of Carbon Capture and Storage (source: Institute (2022a)).

The adoption of CCS in industrial processes comes with uncertainties in energy
consumption and costs implied by the extra infrastructure required. Therefore, the
optimization of CCS processes aiming to reduce energy and cost impacts is an important
field of study in the battle against climate changes (JACKSON; BRODAL, 2019). In order
to be able to transport and inject the CO2, the ability to compress carbon dioxide to
pressures exceeding 20 MPa is fundamental. At this pressure, the fluid easily reaches a
condition known as supercritical, temperature and pressure are above the critical point
(31.05oC and 7.39 MPa).

The compression process can be performed by centrifugal compressors and can
dramatically increase operating costs due to the high density of the fluid in this condition.
To allow economically viable large-scale CCS operations, advanced designs compatible
with supercritical fluids are necessary (LETTIERI et al., 2014). Supercritical CO2 (scCO2)
is not an usual condition, so there is space and need for the development and improvement
of design procedures that aim to generate high efficiency projects. In this condition, the
fluid is treated as compressible due to the high velocities and property variations as can be
seen in the works of Rinaldi, Pecnik and Colonna (2015), Pham et al. (2016) and Ameli,
Turunen-Saaresti and Backman (2018). This work finds itself within the CCS strategies and
is part of a bigger project where the main goal is to develop design procedures to generate
compressor rotors optimized for supercritical CO2. The Topology Optimization Method
(TOM) is the approach used here. During the development of the work, incompressible and
compressible flows have been approached, with and without the presence of rotation. In
the next chapters, these flow regimes are treated. Topology optimization for compressible
flows is a very recent topic, making this one of the main contributions of this work. Even
though compressors for supercritical CO2 motivates and justifies the development of this
work, scCO2 is not considered here. The main objective is the establishment of a procedure
capable of working with rotating compressible flows in topology optimization.
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1.1 Compressible Rotating Flow

When high flow rates are present, high velocity components are inevitably involved
and compressible flow becomes part of the situation (DIXON; HALL, 2010). A common
definition to separate incompressible and compressible flow is based on flow velocity with
respect to sound speed. The ratio between these two variables defines the flow Mach
number Ma. For a given flow, if Ma < 0.3 flow can be considered incompressible and
density is treated as a constant. If Ma > 0.3, density changes become important in flow
modeling and must be taken in consideration. Compressible flow regimes can be divided
in four different groups (ANDERSON, 2003):

• Subsonic: the local Mach number is everywhere less than unity. Hence, the flow
velocity is less than the speed of sound for the whole domain considered. This flow
is characterized by smooth behaviour and continuously varying properties;

• Transonic: if flow velocity at regions away from the geometry of interest is near
sound speed, locally, Mach number can overcome the unity and reach a supersonic
condition. In this case, the domain of interest has a mixed situation, with subsonic and
supersonic regions. Shock waves can be present and severe property discontinuities
can happen, requiring specific strategies to capture the variations appropriately;

• Supersonic: in this case, the whole flow field has velocities above the sound speed
(Ma > 1 everywhere);

• Hypersonic: condition usually assumed for flows where Ma > 5. Temperatures can
be high enough to dissociate or even ionize the gas. In these cases, chemical reactions
between gas components become an important part of the problem.

Inside rotating devices, the flow can be very complex and with three dimensional
characteristics. The addition of compressibility to the problem only increases the complexity
of the system. In this scenario, Computational Fluid Dynamic (CFD) techniques play a
major role since flow behavior can be accurately predicted and studied (WHITE, 1999).
Several works using CFD to study the flow inside rotating devices can be found in literature.
Next, some of the works focused on compressors are briefly described.

Mangani, Casartelli and Mauri (2012) present a study of a high pressure ratio centrifugal
compressor for turbocharger applications. Compressible flow is considered and the main
objective is to compare the use of different turbulence models, focusing on wall modeling.
A modified version of the open-source code OpenFOAM is used. Efficiency and pressure
ratio calculated by the numerical models are compared with experimental data. A good
agreement for all the turbulence models is found. Thus, the authors conclude that the



Chapter 1. INTRODUCTION 19

simplest turbulence modeling among the options studied can be used when assessing
pressure ratio and efficiency, saving computational efforts.

Heinrich and Schwarze (2013) use a segregated pressure-based solver for compressible
flows to investigate the flow field inside the compressor of a turbocharger. The solver is
based on the open source the library OpenFOAM and is validated with two test cases for
centrifugal compressors. Performance maps are calculated for different rotational speeds
and numerical results are compared experimental data, showing a good agreement. In
some cases, the authors found that the performance is over predicted by up to 5% and
attribute this differences to geometry and numerical model simplifications.

Kim et al. (2014) use the commercial code Ansys CFX to study an application
involving the use of supercritical CO2. The geometry used is derived from a water pump.
Two operating points are studied: one next to the critical point and one far from it. An
experimental setup is built to perform tests and compare with the numerical results.
Comparisons of pressure ratio and efficiency are between the experimental measurements
and numerical results are performed. For the operating condition far from the critical
point, the errors found are up to 5% in efficiency. However, for the operating condition
close to the critical region, errors of the order of 20% are observed. In the critical region,
the large variation of the fluid properties and the possibility of phase change occurring
inside the impeller are cited as the main source of errors, since they are very challenging
to model.

In the work of Kim et al. (2016), unshrouded impellers are studied with the objective of
assessing the performance effects of tip clearance variations due to mechanical deformations.
The clearance between the impeller blade and the stationary casing surface is small when
compared to the impeller dimensions, but the leakage that occurs through it is important
and affects its performance. In this study, Ansys CFX is used for the flow analysis and
Ansys Structural for the structural analysis. Two different blades are considered and the
impeller deformed shape is calculated considering centrifugal, thermal and pressure loads.
Considerable reductions in the clearance are observed (up to 47%), resulting in increases
of the pressure ratio and efficiency of the order of 1% for both.

Pinto et al. (2017) presents a comprehensive review of CFD usage in turbomachinery.
Studies for compressors, pumps and turbines are listed, analysed and several issues related
to CFD applications in turbomachinery are identified. The main conclusions presented
affirm that, nowadays, turbomachinery design is unimaginable without CFD. The high
amount of details one can obtain in a short time justifies its use and the applications
are expected to increase and become capable of approaching more complex phenomena.
However, there is still space for development in the numerical modelings to reduce error,
improve the geometry and flow simplifications and, also, improve the parallelization
strategies.
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Ameli, Turunen-Saaresti and Backman (2018) study the flow inside a centrifugal
compressor used in a Brayton cycle. The working fluid is supercritical CO2 and the focus
of the work is to achieve an accurate modeling when working near the critical point. The
fluid properties are inserted in Ansys CFX with the use of real gas properties (RGP) tables.
When the fluid is compressed near the critical point, the sharp variations in the fluid
properties at the vicinity of the critical point cause instabilities and difficulties to achieve
converged results. By increasing the RGP tables resolution, more accurate fluid properties
can be computed, however computational costs and simulation instabilities increase
rapidly. Low-resolution tables alleviate the computational difficulties, but deteriorate
considerably the accuracy of the solution. In this work, the authors propose a strategy of
gradually increasing the resolution of the RGP table to achieve accuracy without experience
divergence right at the beginning of the simulations. The results are encouraging and very
low differences in isentropic efficiency and pressure ratio (when compared to experimental
data) are observed. In a similar study, Ameli et al. (2018) used the same strategy of
increasing the resolution of RGP tables, to study the effect of real gas properties in
different operating conditions to identify trends in efficiency and torque and, also, calculate
the compressor map.

The work of Galindo et al. (2019) focuses on the impact of placing different geometries
at the compressor inlet for automotive applications. The commercial code STAR-CCM+
is used and different parameters such as stability, efficiency and noise emission are studied
for the geometries built. The results are compared with experimental tests and show that
the performance is sensible to the geometry used at the inlet, indicating the possibility of
benefits by choosing the correct inlet configuration.

Dewar et al. (2019) present a work comparing a CFD simulation with results from
experiments for different operating conditions. Static pressure measurements at the diffuser
are used to validate the simulations. The simulations are also used to investigate the
effect of the position of the impeller-diffuser interface, a characteristic of the frozen rotor
modeling approach. For studied cases, the optimal position found is approximately 2% of
the blade radius, resulting in the best agreement between the experimental and numerical
results.

In the work of Romei, Gaetani and Persico (2022), a centrifugal compressor for
large-scale applications working with supercritical CO2 is studied. The operating point is
close to the critical point and the main objective of the work is to analyse the influence of
inlet guide vanes (IGV) with different angles. Three inlet vane configurations are studied.
The pre-rotation induced by the IGVs does not present a considerable effect on efficiency,
but affects the extent of the two-phase region at the impeller inlet, having a negative
impact on the compressor flexibility since it causes an early choking.

As can be seen by the works described, the possibilities of study are many. Each work
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focused on a different aspect of the flow inside the compressor. Two common points among
all the studies are: the use of the Finite Volume Method (FVM) and the modeling of the
impellers by using only sectors (and not the full impellers). In this work, the FVM is also
used to model sectors of the rotating flows.

The high level of detail obtained by CFD simulations allows engineers to carefully study
changes in the designs without the need of conducting experiments for every design iteration.
However, even with this resource, the design of rotating components can be a complicated
and time consuming task given the amount of parameters that need to be defined. Rotors
radius, widths, heights, number of blades, blades curvature, blades thicknesses are only
part of the variables of the problem. To help accelerate the design process and reach
solutions specifically suited for given applications, optimization techniques arise as a very
interesting option.

1.2 Optimization

A common way of classifying optimization techniques is by dividing them in categories
with respect to the definition of the design variables. Three main groups can be identified:
parametric, shape and topology optimization. In parametric optimization (see scheme
in Fig. 1.2), only a few parameters of the problem are used as design variables. Usually
geometric features, process parameters or material properties are considered. In the case
of rotating components, they can be number of blades, inlet angle, outlet angle, rotor
width, rotation, among others. The work presented by Gölcü, Pancar and Sekmen (2006)
exemplifies this category. Through experiments, the authors compare different deep well
centrifugal pumps aiming to find the lowest energy consumption. The parameters changed
are the number of blades and the presence or absence of blade splitters. A baseline case is
defined and energy savings and improvements in efficiency are achieved by the optimization.

Figure 1.2 – Parametric optimization.
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In compressor design, parametric optimization is seen in the work by Shaaban (2015),
where the author optimizes the performance of a compressor by redesigning the vaneless
diffuser. Two geometries are investigated and optimized. The objective is to minimize
the loss coefficient and maximize the pressure coefficient. Simulations are performed by
solving the flow in a 2D axisymmetric model. A genetic optimization algorithm is used and
geometric parameters are chosen as design variables. The optimized geometry achieves a
reduction in the loss coefficient by up to 10% and an increase in the pressure coefficient by
up to 3.8%. The design is verified by 3D simulations with an impeller before the diffuser.
In the 3D model, the optimized diffuser geometry reduces the loss coefficient by up to
4.7% and increases the pressure coefficient by up to 6.6%. Another example can be seen
in Nejadali (2021) with the optimization of a regenerative flow compressor. In this case,
the inlet and outlet blade angles are the design variables. A polynomial based response
surface method is used. The isothermal efficiency and pressure coefficient are defined as
objective functions. For the optimized geometry, the efficiency increase obtained is up to
3.2% and the pressure coefficient increase is up to 8%.

Shape optimization consists in changing the initial geometry by applying small
displacements at the boundaries of the simulation domain. An example can be seen
in scheme of Fig. 1.3. The geometry is parameterized using splines, B-splines or any other
method that can be used to describe a contour and sensitivities of an objective function of
interest are calculated with respect to small variations in these geometry descriptions.

Figure 1.3 – Shape optimization.

An example of design of rotating devices by shape optimization is presented by
Economon, Palacios and Alonso (2013). The authors use the continuous approach of the
adjoint method to calculate the sensitivities and optimize a rotating airfoil and a wind
turbine blade, considering viscous compressible flow in both cases. The drag and the torque
coefficients of baseline cases are improved by using this strategy.

In compressor design, Demeulenaere et al. (2015) present a case of a turbocharger.
An initial design with a high performance is used, consisting of a challenging application



Chapter 1. INTRODUCTION 23

for the optimization. The strategy presented consists in a combination of a genetic
algorithm, a neural network and a database. The basic idea of the methodology is to
build an approximate model of the original analysis model. This model can be used inside
an optimization loop replacing the original model, allowing fast evaluations, since the
approximate model is less costly. To construct the approximate model, the authors use
artificial neural networks (ANN). The geometry is parameterized by Bezier curves. The
objectives are to improve the design performance, improve stall margin, keep the capacity
(choke mass flow) and decrease the peak mechanical stresses by up to 20%. For the
creation of the database, the flow problem is solved by the commercial package NUMECA
(CADENCE, 2022) and the structural problem by the package Oofelie (OOFELIE, 2022).
At the end, an optimized impeller with stress levels are below a fixed limit and with an
increased capacity and stall performance is obtained.

In the work of Oka et al. (2017), a compressor impeller is optimized by using a genetic
algorithm and a two dimensional inverse design method. The aerodynamic design is based
on two steps: a meridional viscous flow calculation and a two dimensional inverse design.
The calculation and the inverse design are performed repeatedly until the blade geometry
and the flow field are converged. The meridional viscous flow calculation is performed on
a two dimensional meridional grid with a blade force modeling in order to obtain the flow
distribution around the impeller. By using the flow distribution and the predetermined
blade loading distribution, the 3D impeller geometry is obtained by the inverse method. In
the inverse blade design procedure, blade loading distribution is given as the design variable.
The total pressure rise and the isentropic efficiency obtained from the meridional viscous
flow analysis are considered objective functions. The optimized result shows performance
improvements and suppression of the flow separations on the suction surfaces.

The work of Hehn et al. (2018) shows the optimization of a transonic centrifugal
compressor, where the objectives are to increase the isentropic efficiency and reduce the
acoustic signature by decreasing the amplitude of the shock pressure waves at the inlet
of the compressor. The optimization is performed at three operating points to maintain
choke mass flow and surge margin. Bezier curves and B-splines are used to describe the
compressor geometry and a combination of artifical neural networks and genetic algorithms
is used. In the optimized design, an increase of 1.4% in isentropic efficiency is observed
together with a reduction of 23% in the shock strength. In a similar strategy, Ekradi and
Madadi (2020) also use a combination of genetic algorithms with artificial neural networks
to optimize a centrifugal compressor achieving an increase in the isentropic efficiency of
0.97% and increases in the total pressure ratio and mass flow rate are of 0.74% and 0.65%,
respectively.

In the work presented by Xia et al. (2021), a centrifugal compressor working with
supercritical CO2 is designed by optimization. Initially, a 1D design is obtained by finding
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optimized parameters with the use of Particle Swarm Optimization and genetic algorithms.
Then, the optimized geometry is assessed in a 3D model and optimized with the use of
artificial neural networks and genetic algorithms to achieve a high efficiency design.

McLaughlin et al. (2022) present the study of a vaned diffuser aiming to reduce the
radial dimensions of the diffuser keeping the compressor performance at the design point.
A metamodel using artificial neural networks is used in the optimization. The vanes are
parameterized by using Bezier curves and a sequence of different objective functions based
on the authors experience is defined. Genetic algorithms are applied to optimize a baseline
geometry. An experimental setup is assembled to test the optimized geometries and the
measured performance shows that the new designs are able to keep the original efficiency
while having a reduction of 15% in the radial dimensions of the diffuser.

In Topology Optimization, the objective function of interest is minimized or maximized
by distributing material inside a design domain. Governing equations of the problem are
modified to allow the addition and removal of material at any part of the domain. Unlike
the other techniques, in Topology Optimization, it is possible to open and close holes,
resulting in a greater freedom of design with a broader range of possibilities. There is
no need to have an initial design that makes sense for the problem (as in scheme of
Fig. 1.4), the final geometry usually has no resemblance with this initial attempt and
non-intuitive solutions can be generated. For rotating devices, the final geometry can have
different blades, flow paths and intermediate bodies (blade splitters) can be created. In the
work of Romero and Silva (2014), rotors for pumps and turbines operating with laminar
incompressible flow are designed to minimize energy dissipation, vorticity and torque.

Figure 1.4 – Topology optimization.

1.3 Topology Optimization Method

Topology Optimization is the most versatile strategy among the optimization approaches.
It allows the placement and removal of material in any part of the domain. A complete
topology optimization procedure consists of a combination of analysis, sensitivity calculations
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and the use of optimization algorithms. The analysis step can be executed with the Finite
Differences Method (FDM), the Finite Volume Method (FVM), the Finite Element Method
(FEM) or any other numerical method that can be used to solve continuum mechanics
problems. In this step, the physical problem is solved and the current state of the design
can be analysed. Then, the sensitivities with respect to a desired objective function are
calculated to guide the optimization algorithm with respect to where material must be
placed and where it must be removed. The optimization algorithm updates the design
variables and a new analysis step is performed. After doing this cycle of steps a couple
times, an optimized design can be obtained. In the case of rotating flows, a scheme for the
procedure can be seen in Figure 1.5. Initially, a domain where the design can exist is defined
with respective boundary conditions. Then, the domain is discretized so the numerical
method is applied. The problem is solved in the domain, the sensitivities of the objective
function are calculated and the optimization algorithms are applied to update the design
variables and generate an optimized design. After some stopping criteria are satisfied for
the optimization algorithm, the resulting design can be post processed, validated through
simulation and manufactured.

Figure 1.5 – Topology optimization for rotating flows.

Topology Optimization has its origins in structural analysis and the first use in fluid
flow problems is presented at the work of Borrvall and Petersson (2003). The authors
generate designs that minimize energy dissipation in several Stokes flow cases by using a
gradient driven optimization scheme. Solid representation inside the domain is performed
with the porous media modeling and an interpolation function is used to control how the
inverse permeability changes with the design variables. Cases of internal and external
flows are presented, showing how the flexibility of topology optimization can be applied to
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fluid flow problems. In a different work, Moos, Klimetzek and Rossmann (2004) optimize
air-guiding systems by using an heuristic scheme focused on recirculation areas. The
inspiration of the algorithm comes from what happens in a river. In areas of high flow
velocity the river becomes deeper since it removes sediments and, in areas of low velocities
or intense recirculation, the river deposits sediments. The authors treat the material
model as a "virtual sand" by depositing it in high recirculation areas with the objective
of finding a design that reduces pressure drop. A traditional design is considered as a
baseline case and compared with results from the optimization proposed. Reductions in
the pressure drop up to 58% are observed. Following the work of Borrvall and Petersson
(2003), Gersborg-Hansen, Sigmund and Haber (2005) minimize energy dissipation in fluid
flow problems, this time using the complete Navier-Stokes equations for incompressible
laminar flow. The sensitivities are calculated by the adjoint method and the problem is
modeled by using the Finite Element Method. Numerical examples designing flow channels
and flow mechanisms are presented.

Othmer (2008) presents the sensitivity calculation for flow topology optimization using
the continuous approach of the adjoint method. The author develops the formulation
considering internal flows and calculates the sensitivities to minimize energy dissipation
and maximize flow uniformity at the outlet plan. Turbulent flow is considered by using
the so-called frozen turbulence approach, where the variation of the Lagrangian does not
consider the variation of eddy viscosity. In this work, the Finite Volume Method is used.

The first work to fully consider turbulence in fluid flow topology optimization is
presented by Papoutsis-Kiachagias et al. (2011). Using the continuous approach of the
adjoint method, the authors derive an adjoint model for the Spalart-Allmaras turbulence
model and present numerical cases minimizing viscous losses. Heat transfer is also considered
in the optimization problems and a constraint to allow the specification of volume flow at
different outlets is implemented.

In the work of Papoutsis-Kiachagias and Giannakoglou (2016), the authors use an
adjoint model for Spalart-Allmaras and also propose a method of applying the law of
the wall to the interface created by topology optimization. Examples for several different
applications are presented, considering 2D and 3D cases.

The only work found dealing with topology optimization of compressible flows is
presented by Lapointe et al. (2017). The authors use OpenFOAM to simulate the flow
and the discrete adjoint approach to calculate sensitivities with a modified version of the
package developed by Towara and Naumann (2013). Supersonic backward facing step
cases are optimized to remove recirculation areas and create desired angles at the flow
outlet. Although interesting, the work lacks discussions about fundamental matters of
topology optimization, such as material model, interpretation of final result and sensitivity
verification.
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Dilgen et al. (2018a) optimize several cases of confined turbulent flows aiming to
minimize energy dissipation. Algorithmic differentiation is used to assemble the adjoint
problem and calculate the sensitivities for the optimization problem. Cases considering
2D and 3D problems are presented. A similar framework is applied in the work of Dilgen
et al. (2018b) where heat transfer is also considered and the objective function is the
minimization of the average temperature in the domain. In order to avoid designs with
high pressure loss, the authors apply a constraint to control the energy dissipation.

In all the works previously cited, the design variable is allowed to vary in a continuous
range, meaning that the final result can have intermediate porosity values. A different
approach conceived to avoid this possibility is seem in the works of Souza et al. (2021),
Picelli et al. (2022) and Moscatelli et al. (2022). In all of them, the strategy called Topology
Optimization of Binary Structures (TOBS) is used. The main advantage is that only 0
and 1 are allowed to the design variables, so well defined geometries are obtained. To do
so, the authors rely on integer linear programming. In the work of Souza et al. (2021),
classical examples (from the work of Borrvall and Petersson (2003)) are presented to show
the methodology working. In the work of Picelli et al. (2022), beyond the use of the TOBS,
the authors implement a strategy to extract the geometry at each optimization iteration
and calculate the physical problem in a body fitted mesh. This way, some of the turbulence
modeling resources, such as wall functions, can be used. The authors present 2D and 3D
cases of minimization of energy dissipation. In the work of Moscatelli et al. (2022), a
strategy to consider rotating and static parts of the domain is developed, allowing the
model to consider the interaction between rotor and stator.

In the design of rotating devices, first use of topology optimization is presented by
Romero and Silva (2014). Rotors for pumps and turbines are designed considering energy
dissipation, vorticity and torque as objective functions. Flow is considered laminar and
incompressible. This work is followed by Sá et al. (2017), where the concept of topological
derivative is used to calculate the sensitivities and by Sá et al. (2018), where, beyond
designing small pump rotors, the authors build a prototype using additive manufacturing
and compare experimental results with numerical predictions. In Sá et al. (2021), turbulence
is considered by using the Spalart-Allmaras model with rotation and curvature correction
to design 2D rotors. Another interesting research line developed for rotor design is
presented in the work of Alonso et al. (2018). The authors use a 2D swirl formulation
to design axisymmetric devices with laminar flow laminar by minimizing the relative
energy dissipation considering the viscous and porous effects. Other works extended this
approach to Tesla pumps (ALONSO et al., 2019), Tesla turbines (ALONSO; SILVA, 2022),
models with non-newtonian flow (ALONSO; SAENZ; SILVA, 2020), blood pump devices
considering blood damage (ALONSO; SILVA, 2021) and designs with turbulence modeling
(ALONSO et al., 2022).
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1.4 Adjoint Problem Solution

In optimization using gradient driven approaches, the calculation of the sensitivities
with respect to the design variables is one of the most important and challenging steps. In
this work, the adjoint method is employed. It has been largely used in several different
works. Only two solver calls are necessary for each optimization iteration, one for the primal
system and one for the adjoint system (OTHMER, 2008; PAPOUTSIS-KIACHAGIAS;
GIANNAKOGLOU, 2016). Two major approaches are used: the continuous and the discrete
approach. The starting point on the continuous approach consists in the primal equations
in their analytical form. Through the Lagrange multipliers method, the adjoint system is
derived analytically and then implemented in any code to be discretized and solved. The
discrete approach starts from the primal system already discretized and, by also using the
Lagrange multipliers method, the adjoint system is defined. This time, no analytical form
of the adjoint system is observed (GILES; PIERCE, 2000; NADARAJAH; JAMESON,
2000; OTHMER, 2008). Both approaches can be observed in the literature and there is no
definite answer on which should be chosen. Advantages and disadvantages in both cases can
be cited. When using the continuous approach, the physical significance of adjoint variables
and the role of adjoint boundary conditions are clearer (GILES; PIERCE, 2000); the
adjoint program requires less memory (GILES; PIERCE, 2000; NADARAJAH; JAMESON,
2000) and the adjoint equation terms can be discretized with different schemes (GILES;
PIERCE, 2000). All this comes at the cost of the hand differentiation and implementation
being challenging tasks, depending on the problem (KENWAY et al., 2019). When the
discrete approach is used, the exact gradient of the discrete objective function is obtained
(GILES; PIERCE, 2000), even for complex calculation routines, such as the ones involved in
turbulence modeling (KENWAY et al., 2019); it can be a guide for the continuous approach
(GILES; PIERCE, 2000; NADARAJAH; JAMESON, 2000); no hand differentiation is
required (MARTA et al., 2007). The main disadvantage of the discrete approach is the
high cost. Computing and storing the exact Jacobian matrices can be very demanding in
terms of computation and memory (KENWAY et al., 2019). It is also worth to mention
that, even though the approaches follow different paths, the results obtained with the
continuous and the discrete approaches approximate to each other as the density of the
discretization increases (NADARAJAH; JAMESON, 2000). In flow optimization in general
(shape and topology), a large amount of interesting works can be found for both, the
continuous and the discrete version of the adjoint method.

In the continuous approach, the work of Othmer (2008) is an important mark for fluid
flow topology optimization. The author derived the adjoint problem for incompressible
flows, focusing on internal flow problems. The objective functions considered are energy
dissipation and flow uniformity at the outlet. This work is implemented in OpenFOAM
and the code is available as a solver for all versions since its development. The frozen
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turbulence assumption is used, which means that the turbulent viscosity is not considered
as a state variable and the turbulence model is not considered during the development
of the adjoint system. The work of Papoutsis-Kiachagias et al. (2011) is the first to fully
consider turbulence when developing topology optimization for flow problems using the
continuous approach. The Spalart-Allmaras turbulence model is used. Heat transfer is
also considered in the numerical cases presented and a mass flow constraint is used to
create designs where each outlet has a previously specified flow rate. A more practical
application can be seen in the work of Villiers and Othmer (2012). The authors design
the intake of combustion chambers by minimizing an objective function resulting of a
combination of pressure drop and flow swirl in a desired region. The flow is modeled using
a compressible approach due to the high velocities, but the adjoint system used is the
one related to an incompressible modeling, constituting what can be seen as a "frozen
density" approach, also in the continuous version of the adjoint method. A baseline case is
defined and different geometries are generated, showing improvements in both the pressure
drop and the flow swirl. The work of Papoutsis-Kiachagias and Giannakoglou (2016) is
very extensive and explores the adjoint formulation for incompressible flows considering
shape and topology optimizations. Cases for internal and external flows are presented,
representing problems from automotive, aerospace and turbomachinery areas. Also, a
discussion about the frozen turbulence assumption is performed, showing that it may
be inappropriate depending on the case. Another interesting work using the continuous
approach is presented by Karpouzas (2019). The flow is considered incompressible and the
frozen turbulence assumption is used. In this work, the focus is the new way of treating the
solid-fluid interface created by topology optimization. The Immersed Boundary Method is
used and the mesh locally adapts to the interface, resulting in accurate flow calculations
close to the surfaces and easier interpretation of the results.

When it comes to the discrete version of the adjoint method, different strategies can
be used. It is possible to work directly with the matrices from the discretized system, as in
the works of Borrvall and Petersson (2003) and Romero and Silva (2014). The first is the
pioneer use of topology optimization in flow problems while the later is the first topology
optimization work dedicated to rotating flows and the design of pumps and turbine
rotors. It is also possible to use automatic differentiation (AD) (NOCEDAL; WRIGHT,
1999) techniques. AD is based in the fact that any function can be broken down into a
composition of elementary arithmetic operations, to which the chain rule can be applied,
thus it is possible to calculate the gradients of any function that can be implemented in a
computer code (NOCEDAL; WRIGHT, 1999). The works of Towara and Naumann (2013)
and Towara, Schanen and Naumann (2015) are examples where the authors differentiate
the full CFD code. By overloading some very fundamental functions in OpenFOAM and
using an AD library, it is possible to obtain gradients of any objective function. In their
works, the authors present examples for topology optimization of incompressible flows.
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This approach is robust and capable of dealing with a great level of complexity, but comes
with a high memory consumption, demanding strategies to alleviate or compensate this
problems when working with large cases. To circumvent this kind of problem, AD can be
applied selectively to only some parts of the code, aiming to maintain the accuracy, but
avoiding a high demand on the computers. In these cases, an adjoint system is assembled
and must be solved by a linear solver. Examples of this kind of approach can be seen in
the works of Dilgen et al. (2018a), Dilgen et al. (2018b), Alonso et al. (2018) and Sá et
al. (2021). In the first and the second works, the authors use an in-house code to solve
incompressible turbulent flow cases and assemble the adjoint system with the help of the
AD library Adept (HOGAN, 2014). In the other two works, the authors use the library
FEniCS to solve the physical problem and its adjoint module to apply AD to assemble the
adjoint system and calculate the sensitivities. An interesting work that also uses FEniCS
is presented by Alonso, Rodriguez and Silva (2021). A framework designed to extract the
strongest capabilities of OpenFOAM and FEniCS is elaborated. An interface between
them is created in such a way that the physical problem is solved in OpenFOAM and the
sensitivities are calculated by the adjoint module of FEniCS. The numerical examples
presented consider 2D and 3D cases and minimize the energy dissipation.

In the calculation of sensitivities for flow optimization problems, another important
question that arises is regarding the consideration of the turbulence models in the sensitivity
calculation. To simplify the derivation of the sensitivities, some authors use what is known as
the frozen turbulence or Constant Eddy Viscosity (CEV) assumption, which means that the
turbulence models are not considered when the sensitivity is being calculated. Comparisons
of calculated gradients with finite differences show that, in some cases, this approximation
can lead to wrong gradients (KIM; KIM; RHO, 2003; DWIGHT; BREZILLON, 2006;
MARTA; SHANKARAN, 2013; ECONOMON; PALACIOS; ALONSO, 2015; DILGEN
et al., 2018a). The validity of this assumption is problem-dependent (ECONOMON;
PALACIOS; ALONSO, 2015) and, in several situations, the sensitivities are accurate
enough to be used for design (KIM; KIM; RHO, 2003; DWIGHT; BREZILLON, 2006;
MARTA; SHANKARAN, 2013; ECONOMON; PALACIOS; ALONSO, 2015). This can be
confirmed by the fact that, in all works investigated (considering optimizations for shape
and topology), the results obtained with frozen turbulence (or CEV) hypothesis and with
complete sensitivity calculation are very similar if not indistinguishable. This hypothesis
is used here when dealing with turbulent flows.

In this work, both approaches of the adjoint method are explored. The continuous
approach is used for incompressible rotating flow cases. For the discrete approach, a
new strategy is used. The matrices and vectors necessary to assemble the adjoint system
and calculate the sensitivities are estimated by finite differences. This strategy is seen in
the works of He et al. (2018), He et al. (2019), He et al. (2020) in shape optimization
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cases and is developed here to topology optimization problems. The new strategy is
robust, easier to apply to complex problems and its development is motivated by the
complexity of a continuous adjoint system for compressible flows. Examples of applications
to incompressible and compressible flow problems are presented.

1.5 Motivation

The need to have a systematic approach to rapidly create optimized designs for
different conditions comes from the non-conventional situations arising from the different
applications that involve rotating machinery (e.g.: compressors for supercritical CO2). The
flow inside rotating devices can exhibit very complex patterns due to the path the flow must
travel inside the device. At high velocities, as in the case of compressors, compressibility
effects are present, density changes become important and the flow modeling must be
able to capture their influence, so a highly nonlinear set of equations must be solved. The
complicated flow conditions and the number of geometric parameters that must be defined
when designing rotating machinery make this process a non trivial and time consuming
task.

In this scenario, the Topology Optimization Method arises as an alternative to integrate
a design procedure that can systematically approach different situations and generate
optimized designs. The use of this approach is motivated by its flexibility to create complex
and non-intuitive geometries (which can be built by additive manufacturing techniques), by
the significant reductions in the development time and also by the amount of information
needed to initiate the design procedure (which is small compared to other procedures).
Since the number of design variables is very high (equals to the number of discretization
cells), the adjoint method is the choice to calculate the sensitivities. For incompressible
flows, the optimization problem is solved with the continuous version of the adjoint method.
However, for the complicated and nonlinear set of equations of compressible flows, the
discrete version of the adjoint method is used. An approach using finite differences, inspired
from the work of He et al. (2018), is developed. Thus, this work aims to apply the Topology
Optimization Method to design devices operating with rotating flows by using the adjoint
method.

Topology optimization for compressible flows is a field nearly unexplored and works
in this area are of undeniable relevance and contribution. Also, its implementation with
the adjoint method based on a finite differences strategy have not been presented in the
literature, making this one of the main contributions of this work.
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1.6 Objectives

The main objective of this work is to develop a systematic procedure to apply the
Topology Optimization Method to problems of rotating compressible flows in the subsonic
regime (0.3 ≤ Ma < 1). The path to achieve the main objective can be decomposed in
steps that are also considered objectives of this work:

• Find a penalization for the system of equations that can represent solid regions in
compressible flow calculations;

• Implement the sensitivity calculation for flow problems using the continuous adjoint
method;

• Implement the sensitivity calculation for flow problems using the discrete adjoint
method based on a finite differences approach;

• Apply the Topology Optimization Method to incompressible laminar flows (with and
without rotation) using the sensitivity calculations developed. In this case, energy
dissipation and pump efficiency are considered as objective functions;

• Apply the Topology Optimization Method to compressible flows with and without
rotation.

1.7 Scientific Contribution

The scientific contributions that resulted from this work are the following:

a) Derivation and implementation of the continuous adjoint model for topology optimization
of incompressible rotating flows;

b) Development and implementation of a penalization strategy that can represent solids
in compressible flow calculations;

c) Development and implementation of a topology optimization strategy using an
adjoint system based on a finite differences approach. The strategy is not physics
related, so it can be extended to other types of problems.

d) Application of the developed strategy to incompressible and compressible flows, with
and without rotation;

e) Definition of objective functions related to compressible flow calculations;
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f) Development and implementation of a topology optimization code capable of
optimizing viscous subsonic compressible flows. The part of the code responsible for
simulating flows comes from an existing open source code. All the development in
this work is the part related to the application of topology optimization.

Four journal papers related to this work have been published:

a) Topology optimization applied to 3D rotor flow path design based on the continuous
adjoint approach (OKUBO et al., 2021);

b) Topology optimization of subsonic compressible flows (SÁ; OKUBO; SILVA, 2021);

c) A discrete adjoint approach based on finite differences applied to topology optimization
of flow problems (OKUBO et al., 2022).

d) Continuous boundary condition propagation model for topology optimization (SÁ et
al., 2022)

1.8 Document Outline

In this work, the methodology developed to apply the Topology Optimization Method
to incompressible and compressible flows with rotation is detailed. The document is
organized as follows: in Chapter 2, the equations for the physical problem are presented
with the modeling used for finite volume approaches. In Chapter 3, the optimization
problem is defined and descriptions of the objective functions and constraint are presented.
In Chapter 4, the adjoint problem is exhibited together with the sensitivity calculation and
some examples for its verification. In Chapter 5, details about the numerical implementation
are described. In Chapter 6, numerical examples are presented, showing optimization cases
for incompressible and compressible flows and also tests for the penalization of equations.
Finally, in Chapter 7, the conclusions for the developed work are reported and ideas for
future work are suggested.
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2 FLUID FLOW MODELING

In this section, the governing equations for rotating incompressible and compressible
flows are introduced. A brief description of turbulence modeling is given together with
details of the turbulence model used in this work. Then, a short explanation on fluid flow
modeling with the Finite Volume Method is presented.

2.1 Governing Equations

In flows where compressibility can be neglected, the system of equations used is
composed by the continuity and the momentum equations, constituting the incompressible
version of the Navier-Stokes equations. For a steady state case, this system is given by
(MOUKALLED; MANGANI; DARWISH, 2016b):

∇ · u = 0 (2.1)

∇ ·
(
uu

)
− ∇ ·

(
ν
(
∇u+ ∇uT

))
+ ∇p

ρ
= 0 (2.2)

where u is the instantaneous velocity, p is the instantaneous pressure, ν is the kinematic
viscosity, ρ is the specific mass.

When the domain being modelled is subject to a rotation ω, it is common to simulate
the flow in the rotating reference frame. This requires the addition of the centripetal and
the Coriolis acceleration components (KUNDU; COHEN; DOWLING, 2012):

acent = ρω × (ω × r) (2.3)
acor = 2ρ (ω × u) (2.4)

An additional term composed by a scalar field α multiplied by the velocity vector
is added to the momentum equations to represent solid regions inside the domain.
This approach, known as Brinkman penalization, is necessary to perform the topology
optimization and is explained in more details in Section 3.2. Thus, for incompressible
rotating flows, the complete system of equations is given by:

∇ · u = 0 (2.5)

∇ ·
(
uu

)
− ∇ ·

(
ν
(
∇u+ ∇uT

))
+ ∇p

ρ
+ arot

ρ
+ αu = 0 (2.6)

where arot = acent + acor.
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For compressible flows, density changes become important and the energy equation
must be part of the system. In these cases, the compressible version of the Navier-Stokes
equations is used and can be written as (HIRSCH, 2007):

∇ · (ρu) = 0 (2.7)
∇ · (ρuu) − ∇ ·

(
µ
(
∇u+ ∇uT

))
+ ∇p− λ∇(∇ · u) = 0 (2.8)

∇ · (ρuh) + ∇ ·
(
ρ
u · u

2 u
)

+ ∇ ·
(

− k

cp
∇h

)
− ∇ · (τ · u) = 0 (2.9)

where the already presented variables hold their meaning, µ is the dynamic viscosity, λ
is the bulk viscosity (here, considered as −2

3µ), h is the specific enthalpy, k is the gas
thermal conductivity, cp is the specific heat, and τ is the stress tensor (with I as an
identity matrix):

τ = µ
(
∇u+ ∇uT

)
+ λ (∇ · u) I (2.10)

In this work, perfect gas is used, hence, the density ρ and the sound speed csound are,
respectively, calculated by:

ρ = cp p

R h
(2.11)

csound =
√
γRT (2.12)

where γ is the ratio of specific heats (used as 1.4), R is the gas constant (considered
287 [J/(kg ·K)]) and T is the temperature.

Again, considering the rotating accelerations in the momentum equations, accounting
for the work of the centrifugal forces in the energy equation (HIRSCH, 2007) and adding
the Brinkman penalization, the complete system of equations can be read as:

∇ · (ρu) = 0 (2.13)
∇ · (ρuu) + ∇p− ∇ · τ + arot + αu = 0 (2.14)

∇ · (ρuh) + ∇ ·
(
ρu

[
u · u

2 − (ω × r)2

2

])
+ ∇ ·

(
− k

Cp
∇h

)
− ∇ · (τ · u) = 0 (2.15)

As can be seen, only the momentum equations are penalized in the case of compressible
flows. The details about this strategy of penalization are presented in Sec. 3.2.

The systems of equations described can be used to simulate laminar flows or calculate
instantaneous values of velocity, pressure and temperature of turbulent flows. In the design
of engineering machinery, the majority of flows is turbulent and solving the flow equations
in the form presented implies in enormous computational requirements. Some additional
modeling strategies can be applied to keep the computational requirements within feasible
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specifications and the ones used in this work are explained next.

2.2 Turbulence Modeling

Most of the flows encountered in engineering practices are turbulent. While laminar
flows are smooth and stable, turbulent flows are chaotic, diffusive, rapid mixing, time
dependent and have three dimensional features. A broad range of time and length scales
can be observed in this kind of flow. Turbulence is a very active research field with
important questions yet to be answered and the most accepted theory to explain how it
happens is based on the energy cascade concept developed and proposed by Kolmogorov.
According to this theory, a composition of eddies of different sizes is the main mechanism
of energy transmission. Each eddy possesses a certain amount of energy that depends on
its dimension. The larger eddies break up transferring energy to smaller size eddies in a
chained process. The smaller eddies go through similar breakup processes and transfer
energy to even smaller eddies. This process continues until the smallest possible eddy is
reached. These smallest eddies are at a scale at which the molecular viscosity is effective
at dissipating the turbulent kinetic energy as heat. The smallest turbulent eddies are
characterized by the Kolmogorov micro scales, being usually named as η for the length
scale and tη for the time scale. The size of the largest eddies (known as integral length
scale) is proportional to the size of the geometry involved and the size of the smallest
eddies is given by (MOUKALLED; MANGANI; DARWISH, 2016b; FERZIGER; PERIC;
STREET, 2020):

η =
(
ν3

ϵ

)0.25

(2.16)

tη =
(
ν

ϵ

)0.5
(2.17)

where ϵ is the average rate of dissipation of turbulent kinetic energy.

Numerical simulations capable of directly solving the Navier-Stokes equations must be
able to resolve the entire spectrum of temporal and spatial turbulent scales by capturing
from the largest to the smallest eddies. Very fine meshes are necessary since the micro scales
are somewhat proportional to the fluid viscosity. This is a computationally demanding
approach known as Direct Numerical Simulation (DNS) and has been used by few
researchers, mainly with simple geometries and aiming to study turbulent flow features. In
order to solve problems with complex geometries, as in the design of machines and devices,
statistical approaches can be used to simplify the solution of turbulent flows and reduce
the computational requirements. Averaging techniques are applied to approximate random
fluctuations observed in turbulent flows. Currently, the most popular approach is based on
solving the Reynolds Averaged Navier-Stokes equations. The central idea is to apply a time
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averaging to decompose the flow variables into a mean component and a fluctuating one
and substitute both in the original equations, resulting in a set of time averaged equations.
The decomposition is applied to all governing equations. For incompressible flows, the
standard Reynolds averaging results in the Reynolds Averaged Navier-Stokes (RANS)
equations. For compressible flows, a mass-weighted averaging technique can be employed.
It is popularly known by Favre averaging and leads to the Favre Averaged Navier-Stokes
(FANS) equations. In both, the intention is to model all scales of turbulent flow, thus
alleviating mesh requirements (MOUKALLED; MANGANI; DARWISH, 2016b).

The averaging approach starts by recognizing that, in a steady flow, any variable ψ
can be decomposed as the sum of a time averaged value ψ and fluctuation component
ψ′, as in the scheme of Fig. 2.1. So, ψ can be written as (MOUKALLED; MANGANI;
DARWISH, 2016b; FERZIGER; PERIC; STREET, 2020):

ψ(x, t) = ψ(x) + ψ′(x, t) (2.18)

where

ψ(x) = lim
Tavg→∞

1
Tavg

∫ Tavg

0
ψ(x, t)dt (2.19)

Figure 2.1 – Mean and fluctuation components.

In Eq. 2.19, t is the time and the Tavg is the averaging interval, which must be large
compared to the typical time scale of the fluctuations.

By considering ζ as another scalar variable present in the flow, with fluctuations ζ ′, the
following identities apply (MOUKALLED; MANGANI; DARWISH, 2016b; FERZIGER;
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PERIC; STREET, 2020):

ψ′ = 0 (2.20)
ψ = ψ (2.21)

∇ψ = ∇ψ (2.22)
ψ + ζ = ψ + ζ (2.23)
ψζ = ψ ζ (2.24)
ψζ ′ = 0 (2.25)
ψζ = ψζ + ψ′ζ ′ (2.26)

The averaging of linear terms results in identical terms for the averaged quantity. For
a quadratic nonlinear term, two terms are obtained, the product of the average and a
covariance. And, for the fluctuations, the average is zero. By decomposing velocity and
pressure in its mean and fluctuating components u = u+ u′ and p = p+ p′ and applying
the averaging identities (Eqs. 2.20 to 2.26) in the system formed by Eqs. 2.1 and 2.2,
the resulting system of equations can be described in terms of the mean and fluctuating
components as (MOUKALLED; MANGANI; DARWISH, 2016b; FERZIGER; PERIC;
STREET, 2020):

∇ · u = 0 (2.27)

∇ ·
(
u u

)
− ∇ ·

(
ν
(
∇u+ ∇uT

))
+ ∇p

ρ
+ ∇ ·

(
u′u′

)
= 0 (2.28)

The tensor inside the divergent of last term in Eq. 2.28 is zero only if the two quantities
are uncorrelated. This rarely happens in turbulent flows. It also cannot be represented in
terms of the mean quantities and modeling this tensor constitutes a classical challenge of
turbulence modeling. The tensor represented by u′u′ is known as the Reynolds stress tensor
and can be modelled based on the Boussinesq hypothesis, which assumes the Reynolds
stress to be a linear function of the mean velocity gradients (WILCOX, 2006):

u′u′ = νt
(
∇u+ ∇uT

)
− 2

3 (κ+ νt(∇ · u)) I (2.29)

where κ is the turbulent kinetic energy, defined as:

κ = 1
2u

′u′ (2.30)

and νt is, now, a flow dependent property known as turbulent viscosity. The turbulent
viscosity can be evaluated using a variety of turbulence models (MOUKALLED; MANGANI;
DARWISH, 2016b; FERZIGER; PERIC; STREET, 2020).
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Finally, the RANS equations considering rotating accelerations and the Brinkman
penalization can be written as :

∇ · u = 0 (2.31)

∇ ·
(
u u

)
− ∇ ·

(
(ν + νt)

(
∇u+ ∇uT

))
+ ∇p

ρ
+ arot

ρ
+ αu = 0 (2.32)

It resembles the original system of equations, differing only in the presence of νt.

When compressible flows are being calculated, beyond velocity and pressure fluctuations,
density and temperature fluctuations must also be accounted. If the averaging procedure
used is the same as in the incompressible flow equations, the resulting system contains
additional terms that require additional correlations making the closure problem even
more challenging. This situation can be simplified by using a density-weighted averaging.
This is the mass-averaging or Favre-averaging and, when applied to the velocity, the mass
averaged velocity ũ is defined as (WILCOX, 2006):

ũ = 1
ρ

lim
Tavg→∞

1
Tavg

∫ Tavg

0
ρ(x, t)u(x, t)dt (2.33)

The decomposition of the instantaneous velocity splits it in its mass-averaged and
fluctuation parts (WILCOX, 2006):

u(x, t) = ũ(x) + u′′(x, t) (2.34)

The other state variables are decomposed as:

ρ = ρ+ ρ′ (2.35)
p = p+ p′ (2.36)
h = h̃+ h′′ (2.37)

After inserting Eqs. 2.34 to 2.37 in the system composed by Eqs. 2.13 to 2.15 and
performing some rearrangements, the Favre Averaged Navier-Stokes with the rotating and
Brinkman terms can be obtained:

∇ · (ρũ) = 0 (2.38)
∇ · (ρũũ) + ∇p− ∇ · τ + arot + αũ+ ∇ ·

(
ρu′′u′′

)
= 0 (2.39)

∇ ·
(
ρũh̃

)
+ ∇ ·

(
ρũ

[
ũ · ũ

2 − (ω × r)2

2

])
+ ∇ ·

(
− k

cp
∇h̃

)
− ∇ · (τ · ũ)+

+∇ ·
(

−τ · u′′ + ρ
u′′ · u′′

2 u′′ + ρu′′ · u′′

2 ũ+ ρu′′h′′ + ρu′′u′′ũ

)
= 0 (2.40)
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with the stress tensor and the perfect gas equations being:

τ = µ
(
∇ũ+ ∇ũT

)
− 2

3µ (∇ · ũ) I (2.41)

ρ = cp p

R h̃
(2.42)

In the last divergent of Eq. 2.40, complicated correlations written in terms of the
fluctuations arise. According to Wilcox (2006), the first and second terms inside the
divergent can be ignored for flows with Mach numbers up to the supersonic range. The
third term is also neglected since it is usually ≪ h̃. The fourth term is the turbulent heat
flux vector and is assumed to be proportional to the mean temperature gradient:

ρu′′h′′ = − µt
Prt

∇h̃ (2.43)

where Prt is known as the turbulent Prandtl number (usually considered ≈ 0.9).

The last term can be approximated by a generalization of the Boussinesq hypothesis
to compressible flows (WILCOX, 2006):

ρu′′u′′ = µt
(
∇ũ+ ∇ũT

)
− 2

3 (ρκ+ µt(∇ · ũ)) I (2.44)

where the turbulent viscosity is now given by µt.

Finally, remembering that the laminar Prandtl number is (WILCOX, 2006):

Pr = cpµ

k
(2.45)

The Favre Averaged Navier-Stokes with the rotating and Brinkman terms can be
written as:

∇ · (ρũ) = 0 (2.46)
∇ · (ρũũ) + ∇p− ∇ · τ turb + arot + αũ = 0 (2.47)

∇ ·
(
ρũ

[
h̃+ ũ · ũ

2 − (ω × r)2

2

])
− ∇ ·

((
µ

Pr
+ µt
Prt

)
∇h̃

)
− ∇ · (τ turb · ũ) = 0 (2.48)

where the stress tensor τ turb has effects from the turbulent viscosity µt:

τ turb = (µ+ µt)
[(

∇ũ+ ∇ũT
)

− 2
3 (∇ · ũ) I

]
(2.49)

The sets of equations given by Eq. 2.31 to Eq. 2.32 and Eq. 2.46 to 2.48 can be used
when solving topology optimization problems for incompressible and compressible rotating
turbulent flows.
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In order to complete the sets of equations, the turbulent viscosity (νt or µt) must be
calculated by some mean. This comes from the turbulence models. Some models, such as
Spalart Allmaras (SPALART; ALLMARAS, 1994), κ − ϵ (JONES; LAUNDER, 1972),
κ−ω (WILCOX, 1988) and SST κ−ω (MENTER, 1994) became very popular due to the
combination of satisfactory accuracy and feasible computational requirements. However,
no model is universally applicable to all flow conditions. Each one has certain advantages
and strengths and also limitations. In this work, a recent turbulence model named Wray
Agarwal 2018 (WA2018) is used (HAN; RAHMAN; AGARWAL, 2018). Its development
can be seen throughout the works of Wray and Agarwal (2014), Han et al. (2015) and
Xu, Wray and Agarwal (2017). It is a one equation model and has been chosen by its
simplicity and accuracy. The model is based on the SST κ− ω, by defining a turbulent
scalar variable R = κ/ω. The turbulent viscosity is calculated by:

νt = fµR (2.50)
µt = ρfµR (2.51)

where:

fµ = χ3

χ3 + C3
w

(2.52)

χ = R

ν
(2.53)

Cw = 8.54 (2.54)

The transport equations for incompressible and compressible flows are, respectively
(HAN; RAHMAN; AGARWAL, 2018):

∇ · (uR) − ∇ · ((σRR + ν)∇R) − C1RS − f1C2κω
R

S
(∇R · ∇S) +

+(1 − f1)min
[
C2κϵR

2
(∇S · ∇S

S2

)
, Cm(∇R · ∇R)

]
+ αR = 0 (2.55)

∇ · (ρuR) − ∇ · (ρ(σRR + ν)∇R) − ρC1RS − ρf1C2κω
R

S
(∇R · ∇S) +

+ρ(1 − f1)min
[
C2κϵR

2
(∇S · ∇S

S2

)
, Cm(∇R · ∇R)

]
+ αR = 0 (2.56)
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where:

σR = f1 (σκω − σκϵ) + σκϵ (2.57)
C1 = f1 (C1κω − C1κϵ) + C1κϵ (2.58)

S =
√

(∇u+ ∇uT ) : (∇u+ ∇uT ) (2.59)
f1 = tanh

(
arg4

1

)
(2.60)

C2κω = C1κω

κ2 + σκω (2.61)

C2κϵ = C1κϵ

κ2 + σκϵ (2.62)

Cm = 8.0 (2.63)

arg1 = ν +R

2
η2

Cµκω
(2.64)

κ = νtS√
Cµ

(2.65)

ω = S√
Cµ

(2.66)

η = S max
(

1,
∣∣∣∣WS

∣∣∣∣) (2.67)

W =
√

(∇u− ∇uT ) : (∇u− ∇uT ) (2.68)
C1κϵ = 0.1284 (2.69)
Cµ = 0.09 (2.70)
σκω = 0.72 (2.71)
σκϵ = 1.0 (2.72)

and the boundary conditions recommended are (NASA, 2022):

Rwall = 0 (2.73)
Rfarfield = 3ν to 5ν (2.74)

In Eqs. 2.55 and 2.56, the last term (αR) is not part of the original model, but added
here in the spirit of the Brinkman penalization to force the R variable to go to zero in the
solid regions (as explained in Section 3.2). Also, an assessment to verify the behavior of
the penalization of the turbulence model is presented in Chapter 6.

2.3 Finite Volume Method

The equations previously described, be it instantaneous or averaged, can be solved
analytically only for a limited number of simple cases. The solutions of these cases are
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extremely useful in helping to understand the fluid flow behavior, but can rarely be used
directly in engineering analysis or design. Thus, engineers have traditionally been forced
to try different strategies instead of directly solving the equations. In the most common
approaches, simplifications based on a combination of approximations, dimensional analysis
and some empirical data have been employed. Although very successful in many cases,
these strategies can only be used when the system is described by one or two parameters,
so applications to complex geometries can become very challenging. Also, the use of
experiments can be expensive and time consuming, if not impossible, depending on the
case. With the development of electronic computers, a different path became available
among the alternatives to study and solve partial differential equations. Numerical methods
created a long time ago could be implemented and new ones have been developed. With
the increasing of the computing capabilities, these methods have been becoming more
sophisticated and have been solving harder problems in shorter times. Among them, the
group of methods intended to solve fluid flow problems is known by Computational Fluid
Dynamics (CFD). Several options of methods to solve the flow equations can be found and
the most popular are the Finite Differences Method (FDM), the Finite Element Method
(FEM) and the Finite Volume Method (FVM) (FERZIGER; PERIC; STREET, 2020).
Among them, the FVM has been widely used to solve flow problems. Its flexibility and the
fact that the discretization is carried out directly in the physical space with no need of
any transformation between the physical and the computational coordinate systems made
it very attractive as a choice to solve complex problems. Also, its numerics mirrors the
physics and the conservation principles it models, the terms that need to be approximated
have a physical meaning, the method is conservative by construction and is, perhaps, the
simplest to understand and to program. All these factors contributed to its popularity
when the objective is to calculate flows in several different conditions (MOUKALLED;
MANGANI; DARWISH, 2016b; FERZIGER; PERIC; STREET, 2020). In this work, the
FVM is used to solve the flow equations and a brief introduction is presented next.

The starting point is the integral form of the governing equations. The domain where
the equations are going to be solved is divided in a set of control volumes (CV) and the
equations are applied to each CV. At the centroid of each one, a computational node is
considered, where the variable values are calculated. Interpolations are used to approximate
the variable values at the CV surface. Each surface and volume integral is approximated
using suitable quadrature formulas. As a result, an algebraic equation is obtained for
each CV, with contributions from the centroid of the CV and the neighbour CVs. For a
general scalar variable ϕ, the conservation equation can be written as (MOUKALLED;
MANGANI; DARWISH, 2016b; FERZIGER; PERIC; STREET, 2020):

∂ρϕ

∂t
+ ∇ · (ρuϕ) = ∇ ·

(
Γϕ∇ϕ

)
+Qϕ (2.75)
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where u is the fluid velocity and Γϕ is the diffusion coefficient of ϕ.

The steady-state form of Eq. 2.75 is:

∇ · (ρuϕ) = ∇ ·
(
Γϕ∇ϕ

)
+Qϕ (2.76)

By integrating over a cell P , Eq. 2.76 becomes:∫
VP

∇ · (ρuϕ) dV =
∫
VP

∇ ·
(
Γϕ∇ϕ

)
dV +

∫
VP

QϕdV (2.77)

and, by using the divergence theorem in the first two terms:∫
ΓP

(ρuϕ) · dS =
∫

ΓP

(
Γϕ∇ϕ

)
· dS +

∫
VP

QϕdV (2.78)

where S is a surface area vector.

Replacing the integrals over cell P by a summation of the flux terms over the faces of
the cell and considering one integration point (MOUKALLED; MANGANI; DARWISH,
2016b):

∑
f

(
ρuϕ− Γϕ∇ϕ

)
f

· Sf = QϕVP (2.79)

where the subscript f denotes calculation at the CV faces.

The fluxes between the cell P and a neighbour N can be linearized and decomposed
as:

(
ρuϕ− Γϕ∇ϕ

)
f

· Sf = FluxPf ϕP + FluxNf ϕN + FluxVf (2.80)

QϕVP = FluxP ϕP + FluxV (2.81)

where FluxPf and FluxNf are linearization coefficients used in the representation of the
contributions of the cell P and N . The term FluxVf describes a nonlinear contribution
that cannot be expressed in terms of ϕP and ϕN . The values of FluxPf , FluxNf and
FluxVf depend on the discretization schemes used. Detailed explanations on these schemes
can be found in Ferziger, Peric and Street (2020) and Moukalled, Mangani and Darwish
(2016b).

Inserting Eqs. 2.80 and 2.81 in Eq. 2.79 results in:

aPϕP +
∑
F

(aNϕN) − bP = 0 (2.82)
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where the coefficients are:

aP =
∑
f

FluxPf − FluxP (2.83)

aN = FluxNf (2.84)
bP = −

∑
f

FluxPf + FluxP (2.85)

Each CV has an equation in the form of 2.82 relating the value of ϕ in its center
to ϕ at the center of the neighbour cells. Since there is an equation for each CV and
one unknown per center of CV, the number of equations and unknowns are equal and a
well-posed system of equations is formed (MOUKALLED; MANGANI; DARWISH, 2016b;
FERZIGER; PERIC; STREET, 2020). The solution of this system to calculate velocity,
pressure and temperature is explained in Section 5.1.
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3 TOPOLOGY OPTIMIZATION OF FLOW

PROBLEMS

In this work, Topology Optimization is applied to incompressible and compressible flow
problems. When turbulence is considered, the frozen turbulence hypothesis is used. The
continuous approach of the adjoint method is used for incompressible flows and the discrete
approach is employed for incompressible and compressible flows. In the next sections, the
objective functions and constraints considered are explained. Also, the material model
used is detailed.

3.1 Objective Function and Constraints

The optimization problem is defined as:

Minimize : J(w(ρdes),ρdes)
ρdes

subjected to : R(w(ρdes),ρdes) = 0
c(ρdes) = 0
0 ≤ ρdes ≤ 1

(3.1)

where J is the objective function to be minimized, w is a vector with the state variables
velocity, pressure and enthalpy (for compressible flow), ρdes is the vector of design variables,
R represents the system of equations written in the residual form, and c is a constraint on
the problem. In this work, a volume constraint is considered. It is applied to impose the
percentage of the domain, Vfrac, to be fluid at the end of the optimization and is defined
as:

c =
∫

Ω ρdes dΩ∫
Ω dΩ − Vfrac (3.2)

The objective functions considered aim to obtain a flow path design that minimizes
energy losses. For the non-rotating incompressible flows, the objective is to minimize
the energy dissipated by the flow in the control volume. The function is shown in Eq.
3.3 and can also be seen in the works by Othmer (2008) and Papoutsis-Kiachagias and
Giannakoglou (2016):

Jstat,incomp = −
∫

Γ

(
p+ ρ

u · u
2

)
(u · n̂) dΓ (3.3)

When the flow is incompressible and subject to rotation, the goal is to design a high
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efficiency device that adds energy to the flow, therefore the objective function considered
is given by the negative of the pump efficiency equation (WHITE, 1999), given by:

Jrot,incomp = − Pf
T · ω

(3.4)

where Pf is the power added to the flow and T is the total torque over the control volume.
Considering v as the velocity in the system of reference that is not rotating (v = u+ω×r),
the power and the torque are calculated by Eqs. 3.5 and 3.6, respectively (WHITE, 1999):

Pf =
∫

Γ

(
p+ ρ

v · v
2

)
(v · n̂) dΓ (3.5)

T =
∫

Γ
ρ (r × v) (v · n̂) dΓ (3.6)

In the continuous adjoint approach, the objective function is adapted to keep the
mathematical simplicity when deriving the adjoint problem. The minimized quantity is
the power dissipated inside the domain, calculated by the difference between Pf and the
power used to drive the component (product of torque and rotation):

Pdiss = T · ω − Pf (3.7)

The power dissipation defined in Eq. 3.7 can be simplified by using the absolute
velocity expression:

Pdiss =
∫

Γ
ρω · (r × v) (v · n̂) dΓ −

∫
Γ

(
p+ ρ

v · v
2

)
(v · n̂) dΓ

=
∫

Γ

[
ρω · (r × (u+ ω × r)) ((u+ ω × r) · n̂)

]
dΓ+

−
∫

Γ

[ (
p+ ρ

(u+ ω × r) · (u+ ω × r)
2

)
((u+ ω × r) · n̂)

]
dΓ

=
∫

Γ

[
(ρω · (r × u) + ρω · (r × (ω × r))) (u · n̂)

]
dΓ+

−
∫

Γ

[ (
p+ ρ

(u · u+ 2u · (ω × r) + (ω × r) · (ω × r))
2

)
(u · n̂)

]
dΓ

=
∫

Γ
ρ

(ωr)2

2 (u · n̂) dΓ −
∫

Γ

(
p+ ρ

u · u
2

)
(u · n̂) dΓ (3.8)

In Eq. 3.8, the first term is constant given that it is a boundary integral term and the
inner and outer radius are considered fixed, so the objective function considered is defined
only by the last integral. Note that it only depends on the specific mass, pressure and
relative velocity and the mathematical expression is equivalent to Eq. 3.3.

In the case of non-rotating compressible flows, the variation of entropy s in a control
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volume is considered as the objective function. Entropy is directly associated with losses
and heat transfer. For this work, no heat is exchanged with the outer media through the
walls, so all entropy generation is related to losses inside the flow. By minimizing the
difference of entropy between the inlet and outlet of the domain an efficient flow path
is obtained at the end of the optimization process (SÁ; OKUBO; SILVA, 2021). The
expression to account for the entropy change inside the control volume for a perfect gas is
(BORGNAKKE; SONNTAG, 2008; PRITCHARD, 2010):

Jstat,comp =
∫

Γ
sρ(u · n̂) dΓ =

∫
Γ

(
Cp ln

(
T

Tref

)
−R ln

(
p

pref

))
ρ (u · n̂) dΓ (3.9)

where the subscripts ref indicate an arbitrary state of reference.

Finally, for rotating compressible flows, the compressor isentropic efficiency is considered
and the optimization is conducted by minimizing the negative of the isentropic efficiency,
given by (DIXON; HALL, 2010):

Jrot,comp = −hout,s − hin
hout − hin

(3.10)

where the subscripts in and out refer to the inlet and the outlet of the domain and the
subscript s indicates an ideal compression process. To calculate these values, the enthalpy
is mass averaged at the respective surfaces.

3.2 Material Model for Compressible Flow

In Topology Optimization, the most common way of representing boundaries inside the
domain is by modifying the governing equations with some type of penalization to enforce
Dirichlet boundary conditions. This usually avoids the need to change the geometry and
rebuild the mesh during the optimization. In the pioneering work of Borrvall and Petersson
(2003), the modification employed to represent solid regions inside the domain is based
on the porous media representation and is performed by adding the term αu (see Eq.
2.6) to the momentum equations. This constitutes the Brinkman penalization. The scalar
field α represents an inverse permeability. Regions where α is zero have fluid behavior,
since the momentum equations assume its original form. Regions where α is high, present
low velocities and can be interpreted as solid portions. Still in the work of Borrvall and
Petersson (2003), an interpolation function is presented, relating the design variables ρdes
to the penalization variable α. This function can be seen in Eq. 3.11:

α = α + (α− α) ρdes
(1 + q)

(ρdes + q) (3.11)
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The design variables ρdes can range from 0 to 1, representing solid and fluid, respectively.
Maximum and minimum values allowed for α are α and α. The relation between α and
ρdes is controlled by the changing the parameter q and different behaviors for this function
for several values of q can be seen in Fig. 3.1.

Figure 3.1 – Interpolation function for different values of q.

This sort of penalization with the interpolation function described have been widely
explored in topology optimization applied to incompressible flow problems and is used in
this work. However, as topology optimization for compressible flows is still a field to be
explored, no material model is established yet and finding a suitable representation for
the solid portions is part of the task. Even so, some authors worked with the objective of
finding a way to represent solid regions inside compressible viscous flows. Next, a short
description of the main works is made.

Liu and Vasilyev (2007) study wave propagation and propose an extension of the
Brinkman penalization to compressible flows by modifying continuity, momentum and
energy equations in a similar way as it is done to incompressible flows. By comparing
numerical simulations with analytical solutions, the authors conclude that the penalization
produces acceptable results for the cases studied. Boiron, Chiavassa and Donat (2009) study
compressible flows by only modifying momentum and energy equations to represent the
solid regions. The authors present some numerical tests by comparing with solutions from
a commercial software. Results are considered very promising, showing a good agreement
between the penalized and the body-fitted mesh cases. Piquet, Roussel and Hadjadj (2016)
compare penalization methods with immersed boundary for supersonic flow cases. Using a
penalization similar to the study of Boiron, Chiavassa and Donat (2009), the authors also



Chapter 3. TOPOLOGY OPTIMIZATION OF FLOW PROBLEMS 50

conclude that penalization can produce accurate results.

In the mentioned studies, the penalization is performed by adding a term to momentum
and energy equations that can enforce a Dirichlet boundary condition inside the domain.
The general idea can be seen from Eqs. 3.12 and 3.13:

Momentum+ χ
1
Φ(u− up) = 0 (3.12)

Energy + χ
1
Φ(T − Tp) = 0 (3.13)

The scalar field χ can only assume values 0 or 1. For regions inside the solid, χ = 1,
meaning that penalization is active. For regions outside the solid, χ = 0, meaning that
penalization is not active and the equations assume their original form. The scalar field
Φ is the inverse permeability and the small its value is, the more penalized is the model.
All studies show the penalized model results are closer to the reference results with lower
values of Φ. It is important to notice that this kind of penalization only enforces a Dirichlet
boundary condition, so for velocity, up is enforced in the penalized region and, for energy,
the same happens with Tp. In topology optimization, it is common to use up = 0, so a
solid region without movement is being represented. The only work found that proposes
a way to enforce Neumann and Robin boundary conditions is from Brown-Dymkoski,
Kasimov and Vasilyev (2014). They propose a method entitled the Characteristic-Based
Volume Penalization (CBVP), where, for a constitutive equation:

∂u

∂t
= RHS (3.14)

Dirichlet, Neumann and Robin boundary conditions can be applied by the modified
equations:

∂u

∂t
= (1 − χ) ×RHS − χ

Φ (u− up(x, t)) + χνn∇2u (3.15)
∂u

∂t
= (1 − χ) ×RHS − χ

Φ (∇u · n̂− q(x, t)) (3.16)
∂u

∂t
= (1 − χ) ×RHS − χ

Φ (a(x, t)u+ b∇u · n̂− g) (3.17)

Variables χ and Φ have the same behavior as described before and do not necessarily
need to have the same value for all the boundary conditions. In the Dirichlet boundary
condition, numerical νn is used to guarantee no discontinuities between solid and fluid
regions. In Neumann case, n̂ is an inward-oriented surface normal and q(x, t) is the desired
Neumann condition. For the Robin condition, a, b and g respects a(x, t)u+ b∂nu = g(x, t).
As in the other works, the authors compare some tests with numerical or analytical cases,
finding an acceptable agreement between them.
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When simulating rotating compressible flows, as is usually the case for rotors of
compressors and turbines, the walls are considered adiabatic. Examples can be seen in
the works of Kim et al. (2010), Mangani, Casartelli and Mauri (2012), Ju, Zhang and Chi
(2012) and Guo et al. (2015) among others. So, the enforcement of Dirichlet boundary
conditions for the energy equation is not adequate. In this work, the strategy used to
impose solid regions in compressible flow problems is different from the studies mentioned.
In Eqs. 2.14 and 2.15, only the momentum equations are penalized. By looking at them, it
is possible to see that, in regions where velocities are close to zero, the first and second
terms of the energy equation go to zero. Under the assumption of small velocity gradients
(∇u ≈ 0) inside the solid portions, the last term also vanishes and the energy equation is
reduced to (SÁ; OKUBO; SILVA, 2021):

∇ ·
(

− k

Cp
∇h

)
= 0 (3.18)

Thus, integrating a solid region Ωsolid, enclosed in a surface Γsolid, it is possible to use
the Gauss theorem to see that:∫

Ωsolid

(
∇ ·

(
− k

Cp
∇h

))
dΩsolid =

∫
Γsolid

(
− k

Cp
∇h · n̂

)
dΓsolid = 0 (3.19)

Therefore, if the material model penalization is applied only in the momentum equation
and the solid region has negligible velocities (u ≈ 0), most terms of the energy equation
loose influence, and the remaining part of the energy equation describes a portion of the
domain surrounded by an almost adiabatic perimeter. An example to assess this hypothesis
is presented in the numerical example at Sec. 6.4.
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4 SENSITIVITY CALCULATION

The continuous and the discrete approaches of the adjoint method are employed to
calculate the sensitivities for the optimization problem. The continuous approach is only
applied to incompressible flow cases. Compressible flow problems are highly nonlinear
and the use of the continuous approach for them results in the need of hand derivation
of the adjoint, which proved to be challenging. Also, the implementation of the resulting
adjoint system is not a trivial task. Thus, for compressible flows, the discrete approach is
used. The strategy developed for the discrete approach is flexible and optimization cases
considering incompressible flow are also presented.

In the sensitivity calculations for compressible turbulent flows, the frozen turbulence
hypothesis is used. This means that the turbulence model is not considered when deriving
and solving the adjoint problem, so the turbulent viscosity is used as a flow property.

In the next sections, the derivation of the adjoint system is explained for both
(continuous and discrete) approaches and a sensitivity verification is performed by comparing
the values calculated by the adjoint method with values calculated directly by finite
differences.

4.1 Continuous Adjoint

Considering a generic objective function J , where JΩ represents the terms in the
interior of the domain and JΓ the terms at the boundary (Eq. 4.1), it is possible to use
the Lagrange multipliers approach to define the Lagrangian as in Eq. 4.2:

J =
∫

Ω
JΩ dΩ +

∫
Γ
JΓ dΓ (4.1)

L = J +
∫

Ω
Ru ·ψu dΩ +

∫
Ω
Rc ψc dΩ (4.2)

The continuity and momentum equations (Eqs. 2.5 and 2.6) are represented by Rc

and Ru, respectively, and the Lagrange multipliers for them are given by ψc and ψu. The
total variation of the Lagrangian can be computed as:

δL = δJ +
∫

Ω
δRu ·ψu dΩ +

∫
Ω
δRc ψc dΩ, (4.3)
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and the terms are defined as:

δJ =
∫

Ω

(
∂JΩ

∂u
· δu+ ∂JΩ

∂p
δp+ ∂JΩ

∂ρdes
δρdes

)
dΩ+

+
∫

Γ

(
∂JΓ

∂u
· δu+ ∂JΓ

∂p
δp+ ∂JΓ

∂ρdes
δρdes

)
dΓ (4.4)

δRu = −ν∇2δu− ν∇ ·
(
∇δuT

)
+ ∇u · δu+ ∇δu · u+ (∇ · u) δu+ (∇ · δu)u+

+ ∇δp
ρ

+ 2 (ω × δu) + αδu+ ∂α

∂ρdes
uδρdes (4.5)

δRc = −∇ · δu (4.6)

By using integration by parts and the scalar triple product (see App. A), the components
in Eq. 4.3 can be grouped in terms with respect to δu, δp and δρdes, so the variation of
the Lagrangian can be written as:

δL =
∫

Ω

(
− ν∇ ·

(
∇ψu + ∇ψuT

)
−
(

∇ψu + ∇ψuT
)

· u+ ∇ψc + 2 (ψu × ω) +

+ αψu + ∂JΩ

∂u

)
· δu dΩ+

+
∫

Ω

(
−∇ ·ψu

ρ
+ ∂JΩ

∂p

)
· δp dΩ +

∫
Ω

(
∂JΩ

∂ρdes
+ ∂α

∂ρdes
u ·ψu

)
· δρdes dΩ+

+
∫

Γ

(
νδu · (∇ψu · n̂) + ν (∇ ·ψu) (δu · n̂) − νψu · (∇δu · n̂) − ν (∇ · δu) (ψu · n̂) +

+ (ψu · δu) (u · n̂) + (u ·ψu) (δu · n̂) − ψc (δu · n̂) + ∂JΓ

∂u
· δu

)
dΓ+

+
∫

Γ

(
ψu · n̂
ρ

+ ∂JΓ

∂p

)
· δp dΓ +

∫
Γ

(
∂JΓ

∂ρdes
+ ∂α

∂ρdes
u ·ψu

)
· δρdes dΓ (4.7)

The adjoint equations and boundary conditions arise from vanishing the terms
multiplied by δu and δp (OTHMER, 2008). Hence, the adjoint system of equations
considering a generic objective function is given by:

− ν∇ ·
(
∇ψu + ∇ψuT

)
−
(
∇ψu + ∇ψuT

)
· u+ ∇ψc + 2 (ψu × ω) + αψu+

+ ∂JΩ

∂u
= 0 (4.8)

− ∇ ·ψu + ∂JΩ

∂p
= 0 (4.9)
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with the following boundary conditions:

νδu · (∇ψu · n̂) + ν (∇ ·ψu) (δu · n̂) − νψu · (∇δu · n̂) − ν (∇ · δu) (ψu · n̂) +

+ (ψu · δu) (u · n̂) + (u ·ψu) (δu · n̂) − ψc (δu · n̂) + ∂JΓ

∂u
· δu = 0 (4.10)

ψu · n̂
ρ

+ ∂JΓ

∂p
= 0 (4.11)

The remaining terms from Eq. 4.7 are:

δL =
∫

Ω

(
∂JΩ

∂ρdes
+ ∂α

∂ρdes
u ·ψu

)
· δρdes dΩ +

∫
Γ

(
∂JΓ

∂ρdes
+ ∂α

∂ρdes
u ·ψu

)
· δρdes dΓ (4.12)

At the boundaries, ρdes is constant, so δρdes = 0 at Γ and the last term from Eq. 4.12
vanishes. Then, the variation of the Langragian with respect to the variation of the design
variables (sensitivities for the optimization problem) can be calculated by the remaining
term of Eq. 4.12 and is written as:

dL

dρdes
=
∫

Ω

(
∂JΩ

∂ρdes
+ ∂α

∂ρdes
u ·ψu

)
dΩ (4.13)

Hence, for a discretized domain, since the design variable ρdes,i only enters the primal
equations in cell i, the contributions from other cells are left out of the integration and
the sensitivity for cell i can be calculated by:

dL

dρdes,i
=
(
∂JΩ

∂ρdes,i
+ ∂α

∂ρdes,i
ui ·ψu,i

)
Vi (4.14)

where Vi is the cell volume.

Considering that the velocity is usually specified at the inlet and walls, δu = 0. For
these regions, the necessary derivative of the objective function presented in Eq. 3.3 and
the adjoint boundary conditions become:

∂JΓ

∂p
= ∂

∂p

(
−1
ρ

(
p+ u · u

2

)
(u · n̂)

)
= −u · n̂

ρ
(4.15)

ψu · n̂
ρ

+ ∂JΓ

∂p
= 0 → ψu · n̂

ρ
= u · n̂

ρ
→ ψu = u (4.16)

This derivation does not impose a condition for the Lagrange multiplier of the continuity
equation ψc. As this term appears in the adjoint Navier-Stokes equations similarly as
pressure does for the primal Navier-Stokes equations, at the inlet and the walls, a zero
gradient (∇ψc · n̂ = 0) boundary condition is assumed for this variable (OTHMER, 2008).

At the outlet, the necessary derivative of the objective function (Eq. 3.3) together
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with the definition of the outlet pressure results in:

∂JΓ

∂u
= −

(
p

ρ
+ u · u

2

)
· n̂− (u · n̂) · u = −

(
u · u

2

)
· n̂− (u · n̂) · u (4.17)

Assuming that, at the outlet, the pressure and the gradient of the velocity (in normal
direction) are zero, δp = 0 and ∇δu · n̂ = 0. From Eq. 4.9, it can be seen that ∇ ·ψu = 0
for objective functions that depend only on boundary terms. From the continuity equation,
it can be stated that ∇ · δu = 0, so Eq. 4.10 can be written as:(

ν (∇ψu · n̂) + (u · n̂)ψu + (u ·ψu) n̂− ψcn̂+ ∂JΓ

∂u

)
· δu = 0 (4.18)

Finally, for the outlet, the adjoint boundary conditions can be written by substituting
Eq. 4.17 in Eq. 4.18:

ν (∇ψu · n̂) + (u · n̂)ψu + (u ·ψu) n̂− ψcn̂−
(
u · u

2

)
· n̂− (u · n̂) · u = 0 (4.19)

Thus, the final adjoint Navier-Stokes system is given by:

−ν∇ ·
(
∇ψu + ∇ψuT

)
−
(

∇ψu + ∇ψuT
)

· u+ ∇ψc + 2 (ψu × ω) + αψu = 0 (4.20)

−∇ ·ψu = 0 (4.21)

with the inlet conditions as (Eq. 4.16 and assumption for ψc):

ψu = uin (4.22)
∇ψc · n̂ = 0 (4.23)

For the walls, the boundary conditions used are (Eq. 4.16 and assumption for ψc):

ψu = 0 (4.24)
∇ψc · n̂ = 0 (4.25)

and, for the outlet, the boundary conditions are:

ν (∇ψu · n̂) + (u · n̂)ψu + (u ·ψu)n̂− ψcn̂−
(
u · u

2

)
· n̂− (u · n̂) · u = 0 (4.26)

4.2 Discrete Adjoint Method using Finite Differences

The discrete approach is developed in this work to overcome the difficulties found in
the derivation and implementation of the continuous adjoint for compressible flow cases.
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The nonlinearities found in a compressible flow modeling make the hand derivation of the
adjoint a challenging task and favour the use of the discrete approach. The initial point of
the discrete approach is also the Lagrange multipliers method. This time, the definition
is made by describing the system in a discretized manner. So, considering the Lagrange
multiplier vector ψadj , the Lagrangian function L can be written as:

L = J(w(ρdes),ρdes) −ψTadjR(w(ρdes),ρdes) (4.27)

wherew is a vector with the state variables velocity, pressure and enthalpy (for compressible
flows), ρdes is a vector with the design variables and R represents the residual equations
(equations for the physical system).

The derivative with respect to ρdes is calculated by:

dL

dρdes
= ∂J

∂ρdes
+ ∂J

∂w

dw

dρdes
−ψTadj

(
∂R

∂ρdes
+ ∂R

∂w

dw

dρdes

)
= (4.28)

= ∂J

∂ρdes
−ψTadj

∂R

∂ρdes
+
(
∂J

∂w
−ψTadj

∂R

∂w

)
dw

dρdes

The term dw/dρdes is computationally very expensive to calculate, so the expression
multiplied by this term in Eq. 4.28 can be set to zero by finding the correct Lagrange
multipliers ψadj . This constitutes the adjoint problem:

∂R

∂w

T

ψadj = ∂J

∂w
(4.29)

After solving the system defined by Eq. 4.29, the sensitivities for the optimization
problem can be calculated by:

dL

dρdes
= ∂J

∂ρdes
−ψTadj

∂R

∂ρdes
(4.30)

The matrices and vectors necessary to the sensitivity calculation (∂R/∂w, ∂J/∂w,
∂R/∂ρdes, and ∂J/∂ρdes in Eqs. 4.29 and 4.30) are constructed by estimating its
components by finite differences.

In a finite volume implementation, the discretization of the governing equations for a
cell P can be written in a general residual form as (MOUKALLED; MANGANI; DARWISH,
2016b):

Rϕ,P = aPϕP +
∑
N

(aNϕN) − bP ≈ 0 (4.31)

where ϕ can be any scalar variable, a represents the coefficients of the discretized equation,
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N indicates contributions from neighbour cells and bP represents any source terms. Hence,
the partial derivatives of the residual equations with respect to each state variable can be
calculated by making a small perturbation with size δadj in the state variable, calculating
the difference with the original residual and dividing it by δadj. For the residual Rϕ,P of
cell P , the partial derivative with respect to ϕP calculated by forward finite differences is:

∂Rϕ,P

∂ϕP
≈ Rϕ,P (ϕP + δadj) −Rϕ,P (ϕP )

δadj
(4.32)

The state variables are the velocity components in the three directions u1, u2 and
u3, the pressure p and the enthalpy h (if the flow is compressible). The vector w can be
w = [u1, u2, u3, p] or w = [u1, u2, u3, p, h]. The solution procedure used performs a
linearization of the convective term (in Eqs. 2.6 and 2.14) by using the fluxes ϕf calculated
at the faces f . For each cell P , this term is written (for incompressible and compressible
flows) as:∫

P
∇ · (u⊗ u) dV =

∫
S

(u⊗ u) · dS =
∑
f

(uf ⊗ uf ) · Sf =
∑
f

ϕfuf (4.33)
∫
P

∇ · (ρu⊗ u) dV =
∫
S

(ρu⊗ u) · dS =
∑
f

(ρuf ⊗ uf ) · Sf =
∑
f

ρϕfuf (4.34)

where S represents a surface vector.

During the flow calculation, the values used for ϕf are obtained from the previous
iteration. This strategy complicates the dependency among ϕf and the other state
variables, making it is more straightforward to also consider ϕf as an independent
variable (ROTH; ULBRICH, 2013; HE et al., 2018). Therefore, for an incompressible
flow, the state variable vector becomes w = [u1, u2, u3, p, ϕ

f ] and, for a compressible
flow, it is w = [u1, u2, u3, p, h, ϕ

f ]. The residuals assessed for each cell are R =
[Ru1 , Ru2 , Ru3 , Rp, Rϕf ] and R = [Ru1 , Ru2 , Ru3 , Rp, Rh, Rϕf ], respectively. As
an example, in Fig. 4.1, the structure of the matrix ∂R/∂w for a compressible flow
case is shown . The columns show the perturbed state variables while the rows present
the perturbed residuals. When only incompressible flows are considered, the matrix is
assembled without the set of rows and columns referring to the enthalpy and to the energy
equation residual.

The state variables have different orders of magnitude (pressure may be in the order
of 106 while face flux can be around 10−4), hence a scaling in the perturbation is applied.
In the numerical cases, the state variables are perturbed by Cscaleδadj, where Cscale is a
power of ten chosen based on the state variable being perturbed. Also, choosing a value
for δadj is part of the task. In Sec. 4.3, sensitivity checks for different magnitudes of δadj
are presented, showing that, even though this is not an obvious choice, there is a wide
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range of values where the calculations work properly.

Figure 4.1 – Jacobian matrix assembly for compressible flows.

4.2.1 Grouping Algorithm

The perturbation process can be very slow and become prohibitive if state variables
are perturbed one at a time. Thus, a strategy to accelerate the process is used. It consists
in assembling groups of cells and faces at the beginning of the optimization or every time
the mesh is changed. The cells and faces contained in one group are perturbed at the same
time. In Fig. 4.2, an example of a mesh can be seen. The highlighted region in Fig. 4.2a
shows a cell with a set of neighbours that are not allowed to be in the same group. By
doing this, there is no residual being perturbed by two different state variables, and the
partial derivatives are calculated correctly. This same observation holds for the faces. In
the same figure, the faces belonging to the highlighted region are not allowed to be on the
same group, guaranteeing that their residuals are not perturbed by more than one state
variable. At the beginning of the optimization (or when the mesh is changed), a list is
created relating each cell to the IDs of the "forbidden neighbours". Then, the grouping
algorithm runs over the whole mesh by iterating over the cell IDs and does not place cells
from the same forbidden region in the same group. This way, the groups only contain cells
that are far enough from each other.

In Fig. 4.2b, the group that contains the highlighted cell from Fig. 4.2a can be seen.
The cells sharing one face with a cell of interest (for example, the cell marked by a red dot)
are considered level 1 neighbours. Cells sharing faces with level 1 neighbours are considered
level 2 neighbours, and so on. Thus, the assembly of groups is performed by avoiding cells
and faces up to a specified level to be on the same group. After the perturbation of a
group is executed, the residuals are recalculated and collected only in a few cells and faces
around the cell/face being perturbed. The partial derivatives are calculated and placed
in the matrices by mapping their position with respect to cells/faces IDs. The grouping
algorithm works by the following steps:



Chapter 4. SENSITIVITY CALCULATION 59

a) Create list of cells and faces with respective neighbours IDs (up to a specified level);

b) Iterate over all cells IDs. If the ID is on the neighbour list, go to the next ID. If the
ID is not on the neighbour list, add it to the current group and start checking the
new cell’s neighbours also;

c) After the iteration over all cells is finished, go back to the lower ID of the remaining
cells and repeat the process from step b);

d) Do the same for faces.

Figure 4.2 – Cell grouping.

(a) Cell with forbidden neighbours. (b) Example of cells from the same group.

4.2.2 Cyclic Boundaries

Rotating domains usually have some sort of cylindrical shape and are commonly
assumed to have rotational periodicity. In these cases, only one sector is modelled and
cyclic boundary conditions can be used. The perturbation of a cell close to the cyclic
boundary affects the residuals of the cells close to the opposite boundary. To avoid the
perturbation of residuals by more than one state variable, the cells adjacent to the cyclic
faces are listed as connected at the beginning of the creation of the groups. The centers
of the cells adjacent to the cyclic boundary are mirrored with respect to the cyclic face
and rotated by an angle equal to the sector being represented. They "fall" inside the cells
adjacent to the opposite cyclic face. The cells where they fell into are identified and listed
as neighbours of the original cells (in item "a" of the previously mentioned steps). Thus,
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the cyclic faces are listed as connected and the grouping algorithm considers that the
mesh is united in these faces. This procedure is illustrated in Fig. 4.3. To avoid duplicate
neighbours and correctly execute the procedure, the discretization used for the cyclic faces
is identical.

Figure 4.3 – Connection of cyclic faces.

4.3 Sensitivity Verification

In order to verify the sensitivities calculated by the methodology described, numerical
examples are defined for each of the adjoint approaches with several flow situations. In
all cases, the same idea is used: a random geometry is created with regions where the
design variables define solid (black), fluid (white) and intermediate material (grey) and
ten points are randomly chosen to perform a comparison for the sensitivities. Two points
are chosen in the solid region, two points in the intermediate region and the other six
in the fluid region. The flows are calculated until the residuals for all state variables are
below 10−5 and the objective functions exhibit a steady behavior. The adjoint system
is solved until the convergence error is below 10−5. The verification is performed by
comparing the sensitivities calculated (for cell i) by the adjoint method (dJ/dρdes,i)adj
with the sensitivities calculated by backward finite differences:(

dJ

dρdes,i

)
FD

≈ J(w(ρdes,i), ρdes,i) − J(w(ρdes,i − δFD), ρdes,i − δFD)
δFD

(4.35)

For all the examples, the geometries used are the same and can be seen in Fig. 4.4, for
the non-rotating and rotating cases.
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Figure 4.4 – Geometries and dimensions for the sensitivity verification cases.

(a) Dimensions of the non-rotating domain. (b) Dimensions of the rotating domain.

For the continuous adjoint approach, the following cases are defined:

a) Incompressible laminar non-rotating flow;

b) Incompressible laminar rotating flow.

and, for the discrete adjoint approach, the cases are:

a) Incompressible laminar non-rotating flow;

b) Incompressible laminar rotating flow;

c) Compressible laminar non-rotating flow;

d) Compressible laminar rotating flow;

e) Compressible turbulent non-rotating flow (frozen turbulence);

f) Compressible turbulent rotating flow (frozen turbulence).

In all laminar cases, the value used for δFD is 10−5. In the turbulent cases, δFD = 10−3.
They are obtained by testing different values for δFD and choosing the smallest values
that are far from roundoff errors but big enough to make a small change in the flow.

4.3.1 Continuous Adjoint - Incompressible Laminar Flows

In Fig. 4.5, the boundary definitions for the incompressible laminar cases (non-rotating
and rotating) can be seen. The inlet velocity for the rotating case is defined in terms of a
radial and a tangential components (see Fig. 4.5c). The viscosity and values for boundary
conditions are presented in Tab. 4.1.
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Figure 4.5 – Boundary condition definitions for the incompressible laminar cases.

(a) BCs for the incompressible
non-rotating case.

(b) BCs for the incompressible
rotating case. (c) Radial and tangential directions.

Table 4.1 – BCs for the incompressible laminar cases.

Non-rotating Rotating
ν (m2/s) 1.0 0.1
uin (m/s) 1 10r̂ − 52.4t̂
pout (Pa) 0 0
Rotation (rpm) 0 1000

The solution of the direct and adjoint problems are conducted as explained in Sections
5.1 and 5.2, respectively. For both cases (non-rotating and rotating), the objective function
used is presented in Eq. 3.3. The cells chosen to perform the sensitivity verification are
presented in Fig. 4.6.

Figure 4.6 – Cells for the sensitivity verification.

(a) Non-rotating. (b) Rotating.

The values of the sensitivities calculated for the set of chosen cells can be seen in Fig.
4.7. The ’X’ marks the sensitivities directly calculated by finite differences and the ’O’
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marks the sensitivities calculated by the continuous adjoint approach.

Figure 4.7 – Sensitivity verification for incompressible non-rotating and rotating flows (continuous
adjoint).

(a) Incompressible non-rotating. (b) Incompressible rotating.

The differences observed for the non-rotating case are smaller than 0.5% (with the
finite difference value as a reference) and, for the rotating case, up to 7.5% for the highest
value. As can be seen, the good agreement indicates that the sensitivity calculation is
correctly implemented for the continuous adjoint approach.

4.3.2 Discrete Adjoint - Incompressible Laminar Flows

In this case, the same geometries, boundary conditions and points are used (see Figs.
4.4 to 4.6 and Tab. 4.1). The solution of the direct problem is again as explained in Section
5.1, however the solution of the adjoint problem is as explained in Sec. 5.3 (it is also used
for the other examples of the discrete adjoint). For the non-rotating case, the objective
function used is the energy dissipation presented in Eq. 3.3 and, for the rotating case, the
pump efficiency presented in Eq. 3.4.

In this adjoint approach, finite differences are also used to assemble the adjoint system,
hence the value of the step size δadj must also be chosen. In Fig. 4.8, the results from the
finite differences estimates can be seen together with the results from the discrete adjoint
with several step sizes δadj (between parenthesis).

Figure 4.8 – Sensitivity verification for incompressible laminar non-rotating and rotating flows (discrete
adjoint).

(a) Incompressible non-rotating. (b) Incompressible rotating.
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In both graphs, the sensitivities calculated are in good agreement for a wide range of
steps used to perturb the primal system. The differences observed for highest values of
all cases are smaller than 1.3% (with the finite difference value as a reference). Thus, the
good agreement indicates that the sensitivity calculation is correctly implemented for the
discrete adjoint for incompressible laminar flows.

4.3.3 Discrete Adjoint - Compressible Laminar Flows

For the compressible flows without turbulence, the geometry and points from Figs.
4.4 and 4.6 are still used. The boundary conditions now have definitions for the energy
equation, as presented in Fig. 4.9. Again, for the rotating case, the inlet velocity is defined
in terms of a radial and a tangential components (see Fig. 4.5c) The flow properties and
boundary condition values used are shown in Tab. 4.2

Figure 4.9 – Boundary condition definitions for the compressible cases.

(a) BCs for the compressible non-rotating case. (b) BCs for the compressible rotating case.

Table 4.2 – BCs for the compressible laminar cases.

Non-rotating Rotating
µ (Pa · s) 1.0 0.5
uin (m/s) 102 100r̂ − 261.8t̂
pout (Pa) 101325 101325
hin (J/kg) 2.95 · 105 2.95 · 105

cp (J/(kg ·K)) 1005 1005
Pr (Pa) 0.705 0.705
Rotation (rpm) 0 5000

Now, the objective functions used are the entropy variation from Eq. 3.9 in the
non-rotating case and the isentropic efficiency from Eq. 3.10 in the rotating case. As in the
last example, the value of the step size δadj must also be chosen. In Fig. 4.10, the results
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for the compressible flows without turbulence models are presented together with several
the step sizes δadj between parenthesis.

Figure 4.10 – Sensitivity verification for compressible laminar non-rotating and rotating flows (discrete
adjoint).

(a) Compressible non-rotating. (b) Compressible rotating.

The sensitivities calculated are in good agreement for the range of steps used to
perturb the primal system. The differences observed for highest sensitivity values of all
cases are smaller than 2.0% (with the finite difference value as a reference). Thus, the
good agreement indicates that the sensitivity calculation is correctly implemented for the
discrete adjoint for compressible laminar flows.

4.3.4 Discrete Adjoint - Compressible Turbulent Flows

In the compressible turbulent flow cases, the turbulence model from Sec. 2.2 is used.
The geometry for the non-rotating case is changed to have a well behaved flow. The
geometry for the rotating case is kept, since a good convergence is obtained by only
changing the boundary condition values. The new geometry for the non-rotating case with
the points used is presented in Fig. 4.11. The values for boundary conditions for both
cases can be seen in Tab. 4.3.

Figure 4.11 – Cells for sensitivity verification in new non-rotating model.
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Table 4.3 – BCs for the compressible laminar cases.

Non-rotating Rotating
µ (Pa · s) 1.8 × 10−5 1.8 × 10−5

uin (m/s) 102 100r̂ − 130.9t̂
pout (Pa) 101325 101325
hin (J/kg) 2.95 · 105 2.95 · 105

cp (J/(kg ·K)) 1005 1005
Pr (Pa) 0.705 0.705
Rotation (rpm) 0 2500

The objective function used is the entropy variation (Eq. 3.9) for the non-rotating
case and the isentropic efficiency (Eq. 3.10) for the rotating case. The step size used is
δadj = 10−6. In Fig. 4.12, the results from the finite differences estimates can be seen
together with the results from the discrete adjoint.

Figure 4.12 – Sensitivity verification for compressible turbulent non-rotating and rotating flows
(discrete adjoint).

(a) Compressible non-rotating. (b) Compressible rotating.

In both graphs, the sensitivities calculated show the same tendency. The differences
observed for highest values of all cases can reach 28.0% (with the finite difference value as
a reference). This difference comes mainly from the frozen turbulence hypothesis. Even
not being as accurate as the sensitivities for the laminar cases, the values indicate the
correct direction of the sensitivities and can be used in the optimization.
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5 NUMERICAL IMPLEMENTATION

The work is developed in the finite volume library OpenFOAM version 2006 (ESI,
2020a). It is an open-source, C++ and object-oriented code, designed to be applied to
continuum mechanics problems. The library comes with several applications coded to
handle different problems (incompressible, compressible, multi-phase, non-Newtonian,
structural, heat transfer, etc.) and a broad range of boundary conditions ready to be
used. Over the years, it has been mainly used on fluid mechanics applications. It allows
programmers and users to build their own classes and applications by simply calling
specific objects and customizing existing solvers. When implementing or modifying a solver,
the main idea is to see the partial differential equations as a sum of single differential
operators that can be discretized separately and with different discretization schemes
(MANGANI; CASARTELLI; MAURI, 2012). Therefore, the implementation of different
types of equations is performed by the coding of a set of differential operators acting on
field variables. A language similar to the mathematical definition is used to facilitate code
comprehension. As an example, the momentum equation for an incompressible flow (with
p being pressure divided by specific mass ρ):

∂u

∂t
+ ∇ · (u⊗ u) − ∇ · (ν∇u) = −∇p (5.1)

can be solved with the following piece of code:

solve
(

fvm::ddt(U)
+ fvm::div(phi,U)
- fvm::laplacian(nu,U)
==
-fvc::grad(p)

)

All differential operators are treated like finite volume calculus (fvc) or finite volume
method (fvm) operators. Explicit derivatives are calculated by the former, while, for
the later, an implicit derivation converts the expression into matrix coefficients. Three
dimensional polyhedral meshes can be handled by OpenFOAM, making it versatile and
applicable to problems going from simple and well behaved cases to complex and large-scale
problems.

For the continuous adjoint approach, all the infrastructure of OpenFOAM is used. The



Chapter 5. NUMERICAL IMPLEMENTATION 68

existing solver called adjointShapeOptimizationFoam (ESI, 2022a) is modified to account
for rotation and to be able to apply the material model and the volume constraint.

For the discrete adjoint, the flow calculations are performed by the solvers simpleFoam
(ESI, 2022d) and rhoSimpleFoam (ESI, 2022c) for the incompressible and compressible
flows, respectively. The existing codes for these solvers are modified to include the parts
related to topology optimization developed in this work. All the algebraic manipulations,
except for the solution of the adjoint system, are executed by the library Eigen, version
3.3.9 (EIGEN, 2020). It is a fast and lightweight library for linear algebra, written in C++.
It is open-source and can be easily compiled with OpenFOAM codes.

The solution of the discrete adjoint system is calculated with the library PETSc,
version 3.15 (PETSC, 2021). PETSc stands for "Portable, Extensible Toolkit for Scientific
Computation". It is developed for use in large-scale application projects. A large suite of
parallel linear, nonlinear equation solvers and preconditioners are available. The libraries
can be found in C, C++, Fortran and Python.

In short, the structure developed in this work is composed by two main codes:
PETSc in its default implementation and OpenFOAM, modified with the perturbations
described in Chap. 4 and compiled with Eigen to perform the algebraic manipulations. The
communication between PETSc and the modified solvers from OpenFOAM is performed
via writing and reading of files. The solver starts, calculates the flow until some stopping
criteria, assembles the adjoint system, writes it in a binary file, call PETSc and waits.
PETSc reads the file, solves the system, writes the solution and close, letting the modified
solver from OpenFOAM read the adjoint solution and continue with the optimization.
With several sequences of these steps, the topology optimization is applied.

5.1 Solution of the Direct Problem

The solution of the physical problem is performed with the implementations of the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm (PATANKAR,
1980) available in OpenFOAM. The algorithm is pressure based and works in a segregated
way, by solving the pressure and velocity separately and then making corrections. While
the velocity is calculated by solving the momentum equations, the pressure is calculated
by an equation resulting from the combination of momentum and continuity equations.
If the flow is compressible, the temperature is calculated from the energy equation. A
detailed description of the algorithms for incompressible and compressible flows can be
seen in Jasak (1996) and Jasak (2006). A short explanation is presented next.

The momentum equation for a cell with center P can be written in semi-discretized
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form as:

auPuP +
∑
N

auNuN = r − ∇p (5.2)

where uP is the velocity in a cell of interest, uN are the velocities in the neighbor cells
and aui are the coefficients from the discretization.

Defining an H(u) operator, containing the off-diagonal part of the momentum matrix
and any associated r.h.s. contributions:

H(u) = r −
∑
N

auNuN (5.3)

Velocity can be calculated by:

uP = (auP )−1H(u) − (auP )−1∇p (5.4)

By substituting Eq. 5.4 in the incompressible continuity equation, an equation to
calculate the pressure in incompressible flows can be derived:

∇ · u = ∇ ·
(
(auP )−1H(u)

)
− ∇ ·

(
(auP )−1∇p

)
= 0 (5.5)

During the calculation a linearization in the convective term is performed as described
by Eqs. 4.33 and 4.34, so the face flux ϕf must be updated with the new pressure field.
By opening the continuity equation and using Eq. 5.4, ϕf can be written as:

∇ · u =
∑
f

Sf · uf =
∑

ϕf (5.6)

ϕf = Sf ·
[
(auP )−1H(u) − (auP )−1∇p

]
f

(5.7)

In order to avoid divergence during the calculation, under relaxation is applied to all
equations of the system. Also, for turbulent flows, the turbulence equations are solved
inside the same loop, but after the velocity and pressure are calculated.

In OpenFOAM v2006, the pressure-based solver for incompressible flows works by the
following steps:

a) Initialize u and p using latest available values;

b) Assemble the momentum equation (Eq. 5.4);

c) Under-relax the momentum equations;



Chapter 5. NUMERICAL IMPLEMENTATION 70

d) Solve the momentum equation to obtain a prediction for u (momentum predictor
step);

e) Assemble the pressure equation (Eq. 5.5) with the calculated velocity;

f) Calculate the new pressure (pressure correction step);

g) Based on pressure solution, assemble face flux (Eq. 5.7);

h) Under-relax the calculated pressure field;

i) Correct the velocity field using the new pressure field (use Eq. 5.4);

j) Solve turbulence equation(s);

k) Repeat until reach convergence.

In the case of compressible flows, the same idea is used, however the loop involves
more steps due to the presence of the energy equation and an equation of state. A different
equation for the pressure calculation arises from the compressible continuity equation.
Defining the compressibility ψ from the ideal gas law as:

ρ = p

RT
= ψp (5.8)

The compressible continuity can be written as:

∇ · (ρu) = ∇ ·
(
ρ(auP )−1H(u)

)
− ∇ ·

(
ρ(auP )−1∇p

)
= 0 (5.9)

So, with Eq. 5.8, the pressure equation is:

∇ ·
(
ψ(auP )−1H(u)p

)
− ∇ ·

(
ρ(auP )−1∇p

)
= 0 (5.10)

And the flux at the faces can be calculated by:

∇ · (ρu) =
∑
f

Sf · ρuf =
∑

ϕf (5.11)

ϕf = Sf ·
[
ψ(auP )−1H(u)p− ρ(auP )−1∇p

]
f

(5.12)

For the velocity calculation, Eq. 5.4 is used.

In OpenFOAM v2006, the pressure-based solver for compressible flows works by the
steps described as follows:

a) Initialize u, p and T using latest available values;
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b) Assemble the momentum equation (Eq. 5.4);

c) Under-relax the momentum equations;

d) Solve the momentum equation to obtain a prediction for u (momentum predictor
step);

e) Assemble, under-relax and solve the energy equation;

f) Calculate density field from state equation;

g) Assemble the pressure equation (Eq. 5.10) with the calculated velocity and density;

h) Calculate the new pressure (pressure correction step);

i) Based on pressure solution, assemble face flux (Eq. 5.12);

j) Under-relax the calculated pressure field;

k) Correct the velocity field using the new pressure field (use Equation 5.4);

l) Solve turbulence equation(s);

m) Repeat until reach convergence.

During the calculation of the steps described for incompressible and compressible flows,
it is necessary to solve linear systems several times. In OpenFOAM, different types of
linear solvers are available (ESI, 2020b):

a) Diagonal: diagonal solver for explicit systems.

b) PCG and PBiCG: preconditioned (bi-)conjugate gradient solver;

c) PBiCGStab: stabilized Preconditioned bi-conjugate gradient solver;

d) GAMG: generalised geometric algebraic multigrid. The principle is to generate a
quick solution on a mesh with a small number of cells, map this solution onto a finer
mesh, use it as an initial guess to obtain a more accurate solution on the fine mesh.

For the conjugate gradient solvers, a number of preconditioners can be found (ESI,
2020b):

a) Diagonal preconditioner;

b) DIC: diagonal incomplete-Cholesky (symmetric);
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c) FDIC: a faster version of the DIC preconditioner for symmetric matrices, in which
the reciprocal of the preconditioned diagonal and the upper coefficients divided by
the diagonal are calculated and stored (MOUKALLED; MANGANI; DARWISH,
2016a);

d) DILU: diagonal incomplete-LU (asymmetric);

e) GAMG: a geometric algebraic multigrid preconditioner. It uses a mutigrid cycle as
preconditioner (MOUKALLED; MANGANI; DARWISH, 2016a).

Also, smoothers can be used (ESI, 2020b):

a) Gauss-Seidel: Gauss-Seidel method for both symmetric and asymmetric matrices;

b) DIC: a diagonal-based incomplete Cholesky smoother;

c) DICGaussSeidel: a combined DIC/Gauss-Seidel smoother in which DIC smoothing
is followed by Gauss-Seidel to smooth out “spikes” that may be created by the DIC
sweeps (MOUKALLED; MANGANI; DARWISH, 2016a).

In this work, GAMG solver is used for the pressure equation and smoothers with the
Gauss-Seidel method for the momentum equations.

5.2 Solution of the Continuous Adjoint Problem

The solution of the adjoint problem in the continuous approach is performed with
an adaptation of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
algorithm (PATANKAR, 1980) available in OpenFOAM versions. As in the version used
in the physical problem, the algorithm is pressure based and works in a segregated way, by
solving the adjoint pressure and velocity separately and then making corrections. While
the adjoint velocity is calculated by solving the adjoint momentum equations (Eq. 4.20),
the adjoint pressure is calculated by an equation resulting from the combination of adjoint
momentum and adjoint continuity (Eq. 4.21) equations. A short explanation is presented
next.

The adjoint momentum equation for a cell with center P can be written in semi-discretized
form as:

aψu
P ψuP +

∑
N

aψu
N ψuN = r − ∇ψc (5.13)

where ψuP is the adjoint velocity in a cell of interest, ψuN are the adjoint velocities in the
neighbor cells and aui are the coefficients from the discretization.
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The adjoint velocity can be calculated by:

ψuP = (aψu
P )−1H(ψu) − (aψu

P )−1∇ψc (5.14)

By substituting Eq. 5.14 in the incompressible adjoint continuity equation, an equation
to calculate the adjoint pressure can be derived:

∇ ·ψu = ∇ ·
(
(aψu
P )−1H(ψu)

)
− ∇ ·

(
(aψu
P )−1∇ψc

)
= 0 (5.15)

During the calculation a linearization in the adjoint convective term is performed as
described by Eqs. 4.33 and 4.34 for the physical problem, so the face flux ϕfψu

must be
updated with the new adjoint pressure field. By opening the adjoint continuity equation
and using Eq. 5.14, ϕfψu

can be written as:

∇ ·ψu =
∑
f

Sf ·ψuf =
∑

ϕfψu
(5.16)

ϕfψu
= Sf ·

[
(aψu
P )−1H(ψu) − (aψu

P )−1∇ψc
]
f

(5.17)

In order to avoid divergence during the calculation, under relaxation is applied to all
equations of the system.

In OpenFOAM v2006, the adjoint pressure-based solver for incompressible flows works
by the following steps:

a) Initialize ψu and ψc using latest available values;

b) Assemble the adjoint momentum equation (Eq. 5.14);

c) Under-relax the adjoint momentum equations;

d) Solve the adjoint momentum equation to obtain a prediction for ψu;

e) Assemble the adjoint pressure equation (Eq. 5.15) with the calculated adjoint velocity;

f) Calculate the new adjoint pressure;

g) Based on the adjoint pressure solution, assemble the adjoint face flux (Eq. 5.17);

h) Under-relax the calculated adjoint pressure field;

i) Correct the adjoint velocity field using the new adjoint pressure field (use Eq. 5.14);

j) Repeat until reach convergence.
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5.3 Solution of the Discrete Adjoint Problem

The solution of the discrete adjoint system corresponds to solving the problem stated
by Eq. 4.29. This time, the system is solved in a coupled manner, so all the adjoint variables
are calculated by solving the same linear system and no correction steps are involved.
As the system is being perturbed, the components of the matrix ∂R/∂w and the vector
∂J/∂w are stored. After perturbation of all groups are done, the matrix and the vector
are written in a binary file and a separate executable is called. The main code stops and
waits for the adjoint system to be solved. When the desired convergence error is achieved,
the executable save the adjoint solution ψadj in a binary file and the main code starts to
work again. It reads the new solution and proceeds with the optimization. Among all the
options for solvers inside PETSc, the flexible version of the Generalized Minimal Residual
(FGMRES) with restart or the Conjugate Gradient Method on the Normal Equations
(CGNE) are used, depending on the problem. For the preconditioning, the block Jacobi is
used as a global preconditioner and the incomplete lower and upper factorization (ILU ) as
a local preconditioner for each subproblem. Also, the Jacobian matrix is scaled to improve
the diagonal dominance and condition number. This combinations proved to be effective
and the option using FGMRES can also be seen in other works, such as He et al. (2018),
He et al. (2019), Kenway et al. (2019) and He et al. (2020).

5.4 Adaptive Mesh Refinement

In order to improve the definition of the boundaries of the designs without excessively
increasing the computational cost of the problem, an adaptive mesh refinement (AMR)
scheme is implemented. To refine only the borders of the design being created, AMR is
applied only in the cells chosen by the magnitude of the gradient of the design variables.
All cells where:

AMRinf ≤ |∇ (ρdes,i ) | ≤ AMRsup (5.18)

are cut in all three directions. The predefined constants AMRinf and AMRsup establish
lower and upper values for the choice of cells to be refined.

The refinement can be applied only one time at a specific optimization iteration,
several times at each m iterations (defined before the optimization starts) or when the
difference between the value of the objective function at iteration n and its value at the
previous iteration is smaller than or equal to a specified tolerance ϵAMR. For the volume
constraint, the comparison is performed between the volume fraction at iteration n and
the specified volume fraction. The criteria for objective function and volume constraint
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are presented in Eqs. 5.19 and 5.20: ∣∣∣∣∣Jn − Jn−1

Jn−1

∣∣∣∣∣ ≤ ϵAMR (5.19)∣∣∣∣∣
∫

Ω ρ
n
des dΩ∫

Ω dΩ − Vfrac

∣∣∣∣∣ ≤ ϵAMR (5.20)

This feature can be applied only to hexahedral cells. Cell coarsening is also allowed,
but only up to the original mesh size. In Fig. 5.1, an example of the refinement for one
cell can be seen.

Figure 5.1 – Adaptive mesh refinement for 1 cell.

5.5 Optimization Scheme

In the continuous adjoint approach, the Globally Convergent version of the Method
of Moving Asymptotes (GCMMA) is employed. In this version, a set of inner and outer
iterations is used. An outer iteration starts from the current values of the design variables
and ends up with an updated set of values. In each inner iteration (inside an outer iteration),
a convex subproblem is generated and solved. Within this subproblem, the original objective
and constraints are replaced by convex separable functions which approximate the original
functions around the current state. The solution found for the subproblem can be accepted
or rejected. If it is accepted, the solution becomes the new state for the design variables
and the outer iteration is finished. If the solution is rejected, a new inner iteration is
made with a modified subproblem based on modified approximating functions. These inner
iterations are repeated until the approximating objective and constraint functions become
greater than or equal to the original functions at the optimal solution of the subproblem.
For specific details of the algorithm, the reader is referred to Svanberg (2002) and Svanberg
(2007).
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In the discrete adjoint approach, the optimization is performed by using the steepest
descent. Hence, the design variables are updated by stepping in the opposite direction of
the gradient as described by Eq. 5.21:

ρn+1
des = min

(
max

(
ρndes − δSD

dL

dρdes
, 0
)
, 1
)

(5.21)

where the superscript n indicates the current optimization iteration and δSD is the step
used in the steepest descent. The min and max functions are used to keep the design
variables in the range of [0, 1]. The volume constraint c is applied by using the Augmented
Lagrangian Method (WRIGHT; NOCEDAL, 1999). The Augmented Lagrangian L is
defined as:

L = J(w(ρdes),ρdes) −ψTadjR(w,ρdes) − ψvolc+ wvolc
2 (5.22)

where ψvol is the Lagrange multiplier for the constraint function c and wvol is the weight
for this same function. Hence, when the constraint is enabled, the design variables are
updated by considering additional terms as follows:

ρn+1
des = min

(
max

(
ρndes − δSD

(
dL
dρdes

− (ψnvol − 2wnvolcnvol)
∂c

∂ρdes

)
, 0
)
, 1
)

(5.23)

At the beginning of the optimization, ψvol = 0 and wvol assumes a positive value. Both
variables are updated during the optimization by:

ψn+1
vol = ψnvol − 2wnvolcn (5.24)

wn+1
vol = min (γwnvol, wmax) (5.25)

where γ is a multiplier (positive and > 1) to increase the weight of the constraint and
wmax is the maximum value that the weight can assume. Except for ψvol, all the variables
defined to implement the constraint by the Augmented Lagrangian Method must have
values assigned before the optimization starts and depend on each case. In the numerical
examples presented, all values used are found by trial and error.

Whether it is the continuous or the discrete approach, the sequence of steps used in
the optimization is performed as follows (see Fig. 5.2):

a) An initial design is defined.

b) The groups of cells and faces to perturb the system and assemble the adjoint problem
is defined for the initial mesh.

c) The primal problem (flow problem) is solved.
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d) The adjoint problem is assembled and solved.

e) The sensitivities are calculated with the results of the previous steps.

f) The stopping criteria are assessed.

g) If the stopping criteria are not satisfied, design variables are updated and AMR can
be applied.

h) If AMR is applied, new groups to perform the perturbation of the primal problem are
created and the code proceeds to solve the primal problem. If AMR is not applied,
the code proceeds directly to solve the primal problem.

i) The steps described are repeated until the stopping criteria are satisfied.

Figure 5.2 – Optimization flowchart.

The optimization stops if the maximum number of iterations is reached or if the
difference between two consecutive objective function values is less than a specified
tolerance ϵJ . Also, if the volume constraint is active, a tolerance ϵvol is checked. The
stopping criteria for objective function and volume constraint can be seen in Eqs. 5.26
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and 5.27: ∣∣∣∣∣Jn − Jn−1

Jn−1

∣∣∣∣∣ ≤ ϵJ (5.26)∣∣∣∣∣
∫

Ω ρ
n
des dΩ∫

Ω dΩ − Vfrac

∣∣∣∣∣ ≤ ϵvol (5.27)
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6 NUMERICAL EXAMPLES

In this section, numerical examples are presented to show the frameworks described in
the previous chapters working. In the first example, the continuous adjoint is used in an
optimization case to design a 3D rotor working with incompressible laminar flow. In the
second example, the discrete adjoint developed is applied to the traditional double-channel
case. The third example consists in a comparison of times between the continuous and
the discrete approaches for the same optimization problem. The fourth example is an
assessment of the hypothesis explained for the adiabatic boundary representation in Sec.
3.2. The fifth case is an application of the discrete adjoint to a compressible flow problem
without turbulence, considering different cell topologies. The sixth example shows the
application of the discrete adjoint to a 3D case of compressible flow. The seventh case is
an optimization of a rotor working with compressible flow and without turbulence. The
eightieth case is an assessment of the penalization needed when the turbulence model is
considered. In the ninth case, a channel with compressible turbulent flow is optimized
with the discrete adjoint approach. Finally, in the tenth case, a high efficiency design of a
rotor is obtained by optimization to work with compressible turbulent flow. In all cases,
the divergence scheme linear upwind (ESI, 2022b) is used. For the turbulent cases, the
properties of air at 20oC and 1 atm are considered.

6.1 Incompressible Laminar Rotor

In the first numerical example, the continuous adjoint approach is used to design a 3D
rotor. The objective is to minimize the dissipated power inside the rotor (Eq. 3.3) and
compare the value of the optimized case with a traditional design. The domain used for
the optimization is a 60o sector of a circular crown. Cyclic boundary conditions are defined
to represent a full rotor. The boundary condition definitions are presented in Fig. 6.1. The
flow enters in the domain axially and leaves at the outer radius. The inlet area goes from
a diameter of 0.10 m to 0.25 m. The outlet diameter is 0.50 m and the domain width is
0.125 m. The inlet velocity is composed by a normal component of 5 m/s and a tangential
component according to a rotation of 1000rpm. The kinematic viscosity ν is 0.01 m2/s.
The outlet pressure is 0 Pa. The value used for α is 2.5 × 104.
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Figure 6.1 – Boundary condition definitions for the 3D rotor case.

In this case, the traditional design considered is composed of six straight radial blades.
In Fig. 6.2, the full rotor and the 60o sector used in the simulations are presented. To assess
the performance of the straight bladed design, the physical problem is calculated until
the residuals reach 10−4 and the objective function exhibits a steady behavior. Velocity
and pressure contours and streamlines are presented in Fig. 6.3 for the full geometry (the
results for the sector are rotated). As can be seen, the misalignment of the blades with
the incoming flow results in sharp variations for the velocities and pressures and causes
big recirculation areas. The final value for the objective function of the sector is −6.09 W.

Figure 6.2 – Straight blade design.

(a) Full rotor. (b) Sector used in the simulation.
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Figure 6.3 – Velocity, pressure and streamlines for the straight bladed rotor.

(a) Velocity contour. (b) Pressure contour. (c) Streamlines.

In the optimization, a volume constraint of 50% is used. The initial state is a uniform
field where the design variables satisfy the volume constraint. The parameter q (from Eq.
3.11) starts with a value of 0.01 and, after 25 iterations, increases with steps from 0.1 up
to the value of 1.0. The physical and adjoint problems are calculated until the residuals
reach 10−4. The optimization is conducted until the relative difference between objective
function values is lower than 10−4. The optimized topology for the sector and the full
rotor can be seen in Fig. 6.4. Velocity and pressure contours at a plane at the mid width
are presented in Fig. 6.5 together with streamlines.

Figure 6.4 – Optimized rotor.

(a) Full optimized rotor. (b) Sector used in the optimization.
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Figure 6.5 – Velocity, pressure and streamlines for the optimized rotor.

(a) Velocity contour. (b) Pressure contour. (c) Streamlines.

In the complete rotor, it is possible to see six channels. The flow path created connects
the inlet to only a region of the outlet, creating an oval outlet area. The path is twisted
close to the inlet. This twist corrects the initial flow rotation and no big recirculation
region is seen in the streamlines. At the outlet, the channel has a smooth surface inclined
in a direction opposed to the rotation, similar to traditional backward-facing blades. In
the pressure plots, it is possible to see that the path division near the inlet is smooth
and does not create pressure spikes at the corner. The resulting design is well defined and
with no regions of intermediary values for the design variables. The objective function
is approximately −7.00 W for the sector. The objective function evolution is presented
in Fig. 6.6. At approximately 30 iterations, a spike can be seen. This point marks where
parameter q starts to change.

Figure 6.6 – Objective function for the 3D rotor case.

The optimized design is post processed to remove the material model effects and
compare its performance with the straight bladed design. Again, a sector is used for the
simulation, but the results in Fig. 6.7 are presented for the full rotor. As can be seen, the
velocity and pressure contours indicate a smooth variation inside the flowpath. Also, the
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streamlines show a well organized flow without big recirculation areas. The final objective
function for post processed case is approximately −6.67 W, being 9.52% better than the
straight bladed rotor.

Figure 6.7 – Velocity, pressure and streamlines for the post processed geometry.

(a) Post processed geometry. (b) Velocity contour.

(c) Pressure contour. (d) Streamlines.

6.2 Incompressible Laminar Double Channel

In this first example using the discrete adjoint developed, the traditional double-channel
optimization is presented with the objective of verifying the method working with well
established results from the literature. Two domains are defined. One is composed by a
short path (L = 1 m in Fig. 6.8) and the other is a longer path (L = 1.5 m). The case
considers a volume constraint Vfrac = 1/3. The adaptive mesh refinement is used with
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the option of refining after the objective function changes are smaller than a specified
tolerance. The values used are ϵAMR = 10−2 for the AMR and ϵJ = ϵvol = 5 × 10−4 for the
optimization. The dimensions, boundary definitions and optimization domain can be seen
in Fig. 6.8.

Figure 6.8 – Dimensions, design domain and boundary conditions.

The kinematic viscosity ν considered is 1 m2/s, the outlet pressure pout is 0 Pa, the
inlet velocity uin has a parabolic profile with maximum velocity of 11 m/s and the walls are
defined as zero velocity. The region considered for the optimization (Ωdesign) is highlighted
in blue and the objective function is the energy dissipation (Eq. 3.3).

In the short channel case, the optimization runs for 56 iterations. The mesh is refined
at iterations 32, 34, 35, 42 and 43. The final topology can be seen in Fig. 6.10 at the left
and the objective function is 0.57 W. The starting mesh has 3108 cells and the final mesh
is composed of 35226 cells (see Fig. 6.9a). In the case of the long channel, the optimization
stops after 198 iterations. The AMR is applied at iterations 77, 148, 174, 175 and 176. The
final topology is presented in Fig. 6.10 at the right and presents an objective function
value of 0.58 W. The starting mesh has 4672 cells and the final mesh is composed of 48495
cells (see Fig. 6.9b). The evolution of the objective function and the fluid fraction for this
case are exhibited in Fig. 6.11. As can be noticed, the application of the AMR causes
peaks of the objective function during the optimization, caused by small deviations in the
interpolation.
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Figure 6.9 – Initial and final meshes for the double channel optimization cases.

(a) Short case. (b) Long case.

Figure 6.10 – Optimized designs.

Figure 6.11 – Objective function and fluid fraction for the long channel.

In both cases, the increase in the number of cells is slightly higher than 10 times the



Chapter 6. NUMERICAL EXAMPLES 86

initial values. As the AMR strategy only refines the interfaces, the final geometries have
smooth boundary definitions and the computational cost is lower than it would be if a
uniform and very fine mesh was used. For both cases, the results are coherent with the
results seen in Borrvall and Petersson (2003), Challis and Guest (2009), Sá et al. (2016),
where the short channel minimum is composed of two straight channels and the long
channel case is optimized by having a design with a central wide channel. Hence, the
proposed methodology is capable of reaching the well known results in the literature and
is a viable option to perform the optimization for flow channels.

6.3 Incompressible Laminar Pipe Bend

This case presents a comparison between the two adjoint approaches described in this
work, the continuous and the discrete, with the objective of comparing the computational
cost of them by assessing the time taken to perform optimization cases. This time, a pipe
bend example considering incompressible laminar flow is used. In Fig. 6.12, the geometry,
the design domain and the boundary definitions are presented. The dimensions for this
case are the same used for non-rotating cases of Sec. 4.3. The kinematic viscosity ν is
1 m2/s, the outlet pressure pout is 0 Pa, the inlet velocity uin is parabolic with a maximum
velocity of 1 m/s and the walls are defined as zero velocity. The region considered for the
optimization (Ωdesign) is highlighted in blue and the objective function is again the energy
dissipation (Eq. 3.3).

Figure 6.12 – Design domain and boundary conditions.

Different meshes are also used to assess the variation of time when the number of cells
is increased. Four mesh refinements are defined. In the continuous adjoint , the strategy
used is the one-shot approach (PAPOUTSIS-KIACHAGIAS; GIANNAKOGLOU, 2016),
which means that the design variables are updated before the primal and adjoint systems
are fully converged, i.e., few solver iterations are run between the updates. In the discrete
approach, the update of the design variables is performed after the primal and the adjoint
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systems are solved and the tolerance is met (10−4 for this case). The volume constraint
defined is defined Vfrac = 0.08π, which represents 1/4 of a circular crown between the inlet
and the outlet. The stopping criteria are ϵJ = ϵvol = 1 · 10−2. The parameters necessary
for the solutions of the primal and adjoint problems are set as close as possible for both
approaches in order to have a fair comparison. Only one thread is used for the calculations,
so no parallelization is considered in the comparison. In Tab. 6.1, the number of cells
used for each mesh and the final objective function values are presented. In Fig. 6.13, the
computational times for each approach versus the number of cells, as well as the resulting
topologies are exhibited.

Table 6.1 – Objective function values of continuous and discrete adjoint approaches..

Number of cells Jincomp (cont.) Jincomp (disc.)
2560 0.46 W 0.45 W
4841 0.48 W 0.50 W
9332 0.50 W 0.47 W
18604 0.52 W 0.46 W

Figure 6.13 – Time and optimized topologies (continuous vs discrete approaches).



Chapter 6. NUMERICAL EXAMPLES 88

The two approaches are capable of reaching the same local minimum, considering that
optimized topologies are very similar. The computational time for both approaches is very
similar for the less refined meshes. However, the difference becomes more significant as the
number of cells is increased, which is coherent with the results seen in (NADARAJAH;
JAMESON, 2000). The continuous adjoint approach presents a better computational
cost for the more refined meshes, given that it performs fewer operations to calculate the
sensitivities.

The energy dissipation values in Tab. 6.1 show that the values are very close for the less
refined meshes. However, the discrete approach achieved lower energy dissipation values
(0.46 W) than the continuous adjoint approach for the more refined meshes (0.52 W). This
occurs due to the more curved design from the cases solved with the discrete approach,
which is caused by the fact that the optimizer updates the design variables by using
the sensitivities calculated over fully converged fields (contrary to the one-shot scheme).
The computational cost (here, measured by time) indicate a tendency of the discrete
approach to present a higher cost increase than the continuous approach. For applications
in large-scale cases, the discrete approach may require improvements focusing on the speed
of the matrix assembling processes. It is worth to highlight that, even though it takes
more time than the continuous approach, the discrete approach developed in this work is
especially useful in problems where the complexity of the governing equations is such that
the derivation of the adjoint problem by hand becomes too complicated (e.g.: compressible
flows, non-newtonian flows). Also, sophisticated objective functions and constraints may
difficult the use of the continuous adjoint, highlighting the importance of being able to
use the discrete approach.

6.4 Material Model Assessment for Compressible Flows

In this example, the idea is to compare a body fitted mesh case with a case where the
penalization is used to represent the geometry. The dimensions of the numerical domain
used for this case are the same used for non-rotating cases of Sec. 4.3. The geometries used
can be seen in Fig. 6.14. Flow enters the domain by the left edge (indicated by the black
arrows) and leaves at the bottom edge. All other edges are considered walls. The dynamic
viscosity µ is 0.1 Pa · s, the specific heat Cp is 1005 J/(kg · K), the Prandtl number Pr
is 0.705, the outlet pressure pout is 101 325 Pa, the inlet velocity uin is a uniform profile
with 102 m/s, the inlet enthalpy hin is 2.95 · 105 J/kg and the walls are defined as no-slip
and adiabatic. The penalized domain is composed by a 1 × 1 m square with extensions
of length equals to 0.5 m. The material model is distributed so the body fitted geometry
is draw inside the domain. The colors black and white indicates solid and fluid regions,
respectively. Velocity, pressure and temperature are assessed in the section cut by the red
line in Fig. 6.14 for α values going from 102 to 107. The calculations are performed until
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the residuals are below 10−5 or a total of 5000 iterations is reached.
Figure 6.14 – Domains for material model assessment.

(a) Domain for body fitted mesh. (b) Domain for cases with penalization.

The results can be seen in Fig. 6.15. The black solid line is the reference case (body
fitted mesh) and the dashed colorful lines are used to show the distribution of the variables
for the penalized cases. As can be seen, the values calculated in the penalized cases exhibit
a similar behavior when compared to the reference case and this behavior is improved for
higher values of α. In the cases where α = 104 or higher, almost no difference is visible,
indicating that, for this case, 104 can already be used to represent the solid regions. Overall,
the material model works as expected, showing that it can be used to represent solid
regions inside the domain in topology optimization of compressible flows. It is important
to note that the representation does not fit perfectly the reference values because the
contour is not perfect. The representation using Brinkman penalization does not result in
a smooth contour, so small differences are expected.
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Figure 6.15 – State variables for different penalizations.

(a) Velocity for different penalizations.

(b) Pressure for different penalizations.

(c) Temperature for different penalizations.

6.5 Compressible Laminar Convergent Channel

In this example, half of a convergent channel is optimized in three meshes with different
types of cells, showing the adaptability of the method for different cell topologies. The
dimensions, boundary conditions and design domain can be seen in Fig. 6.16. In this case,
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the inlet velocity uin has a parabolic profile with maximum velocity of 65 m/s, resulting
in a maximum inlet Mach number of 0.2. The dynamic viscosity µ is 1 Pa · s, the specific
heat Cp is 1005 J/(kg · K), the Prandtl number Pr is 0.705, the outlet pressure pout is
101 325 Pa, the inlet enthalpy hin is 2.95 · 105 J/kg and the walls are defined as no-slip.
The objective function is the entropy variation, given by Eq. 3.9.

Figure 6.16 – Dimensions and boundary conditions.

Three meshes composed of different cell topologies are evaluated. Quadrilateral,
triangular, and polygonal cells are used, as can be seen in Fig. 6.17. The volume constraint
used for this case is Vfrac = 0.65. The stopping criteria used for the optimization are
ϵJ = ϵvol = 1 · 10−3.

Figure 6.17 – Meshes used (top: quadrilateral; middle: triangular; bottom: polygonal).

The optimized designs for the three meshes are almost identical as can be seen in Fig.
6.18. The quadrilateral mesh case achieves convergence in 32 optimization iterations, the
triangular mesh case takes only 27 and the polygonal mesh case uses 37 iterations. For the
three meshes, the optimized topology connects the inlet to the path with a smaller section
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area by a slightly curved design. The Mach numbers and density contours are exhibited in
Fig. 6.19, showing that the flow inside the domains of the three cases are very similar.

Figure 6.18 – Optimized designs.

(a) Quadrilateral. (b) Triangular. (c) Polygonal.

Figure 6.19 – Mach and density contours.

(a) Mach number
(quadrilateral). (b) Mach number (triangular). (c) Mach number (polygonal).

(d) Density (quadrilateral). (e) Density (triangular). (f) Density (polygonal).

In Fig. 6.20, the objective function and the volume of fluid evolution for the three
cases are presented. The mesh with triangular cells presents the highest value at the
first iteration, however, all values are close at the end of the optimization. The final
objective function values are 15.5 W/K, 17.9 W/K and 16.8 W/K for the quadrilateral,
triangular and polygonal meshes, respectively. The differences observed are related to small
differences at the solid-fluid interface created by the optimization. The quadrilateral mesh
case resulted in almost no intermediate values for the design variable (no grey regions).
The mesh with triangular cells shows a thin layer with intermediate values at the solid-fluid
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interface and the polygonal mesh case is in between these two. Also, it is well known that
different cell topologies have different accuracy in the calculation of the flow problem.
This contributes to the differences observed in the objective function values. Even so, it is
demonstrated that the methodology is capable of working with meshes using different cell
topologies and reach very similar designs for the same problem.

Figure 6.20 – Objective function and fluid fraction for the convergent channel.

(a) Objective function. (b) Fluid fraction.

6.6 Compressible Laminar Triple Channel

This example is intended to show that the methodology can be directly expanded
to 3D problems. In this case, a comparison between a case defined as a baseline and an
optimized design generated by the discrete adjoint is presented. The model has a domain
with three inlets and three outlets. The numerical domain calculates only half of the case
by using a symmetry boundary condition. The dimensions, boundary condition definitions
and design domain can be seen in Fig. 6.21. The inlet velocity uin is a paraboloid with
maximum velocity of 102 m/s (maximum inlet Mach number of 0.3), the dynamic viscosity
µ is 1 Pa · s, the specific heat Cp is 1005 J/(kg · K), the Prandtl number Pr is 0.705, the
outlet pressure pout is 101325 Pa, the inlet enthalpy hin is 2.95 · 105 J/kg and the walls are
defined as no-slip. The objective function is the entropy variation (Eq. 3.9).
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Figure 6.21 – Dimensions, boundary conditions and design domain.

The baseline case defined in this example is composed by an intuitive design for
connecting the inlets to the outlets, which consists of three straight ducts. The fluid
volume constraint Vfrac is defined as 15π/296 (based in the baseline design). The AMR is
used in this case with a tolerance of ϵAMR = 10−2. The stopping criteria for the optimization
is ϵJ = ϵvol = 10−3. The mesh used for the optimization is composed of hexahedral cells,
starting with 60 216 cells and, after refinements at iterations 79, 123, 124 and 143, finishing
with 124 007 cells. The optimization stops after 144 iterations. In Fig. 6.22, the baseline
and the optimized designs can be seen with the solid-fluid interface reflected w.r.t. to the
symmetry plane. The Mach number and density contours are presented in Fig. 6.23.

The optimized design is composed of a wide central channel connecting the inlets and
outlets. The connections created are smoothly curved to conduct the flow with minimal
losses. This central channel has a bigger transverse section than the baseline straight
ducts. The average Ma number is higher in the optimized case (Fig. 6.23) than in the
baseline case (Fig. 6.23), indicating that the flow has lower resistance in this design. Also,
it is possible to see that the pressure changes in the optimized case are smaller than in
the baseline. This directly reflects in the entropy variation, being lower in the optimized
topology. Hence, while the objective function for the baseline is around 1.41 × 103 W/K,
for the optimized case this value is 1.09 × 103 W/K, representing a reduction of 22.7%.
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Figure 6.22 – Baseline and optimized designs.

(a) Baseline. (b) Optimized design.

Figure 6.23 – Mach and density contours.

(a) Baseline Mach number. (b) Baseline density field. (c) Baseline pressure field.

(d) Optimized Mach number. (e) Optimized density field. (f) Optimized pressure field.

6.7 Compressible Laminar Rotor Optimization

In this example, topology optimization is used in a rotating compressible flow example,
with the objective of designing a rotor with high isentropic efficiency (Eq. 3.10). The
domain and design area used are presented in Fig. 6.24a. The boundary conditions can be
seen with the initial guess in Fig. 6.24b. The dynamic viscosity µ considered is 10−2 Pa · s.
The specific heat cp is 1005 J/(kg · K), the Prandtl number Pr is 0.705, the outlet pressure
pout is 101325 Pa and the inlet velocity uin is composed by a radial component of 100 m/s
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and a tangential component according to the rotation of 22500 rpm.

Figure 6.24 – Rotor domain, boundary conditions and initial guess.

(a) Dimensions and design domain. (b) Boundary conditions and initial guess.

The optimization runs with a tolerance ϵJ of 10−4 or a maximum of 50 iterations.
Between each optimization iteration, the flow solution is calculated for 2 500 iterations.
The optimization stops after 29 iterations. While the initial design (Fig. 6.24b) has an
isentropic efficiency of 39.7%, the final design results in an isentropic efficiency of 44.7%.
As can be seen in Fig. 6.25, it is composed by a thin slightly curved blade with a small
solid portion after the trailing edge and. The objective function value for each optimization
iteration is presented in Fig. 6.26. A noticeable improvement is seen in the first two
iterations. After that, the efficiency improvements slowly decreases until the final design is
obtained.

Figure 6.25 – Optimized rotor for compressible laminar flow.
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Figure 6.26 – Impeller isentropic efficiency during the optimization.

The velocity, pressure and temperature contours of the initial guess and of the final
stage of the optimization are presented in Fig. 6.27. The Mach number and density contours
can be seen in Fig. 6.28. As can be seen, the increase in the pressure gain in the optimized
design (Figs. 6.27c and 6.27d) is expressive when compared to the initial guess. With a
well behaved flow inside the rotor, this results in a more efficient design.
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Figure 6.27 – Velocity, pressure and temperature contours (compressible laminar rotating case).

(a) Velocity (initial guess). (b) Velocity (optimized design).

(c) Pressure (initial guess). (d) Pressure (optimized design).

(e) Temperature (initial guess). (f) Temperature (optimized design).
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Figure 6.28 – Mach number and density (compressible rotating case).

(a) Mach number (initial guess). (b) Mach number (optimized design).

(c) Density (initial guess). (d) Density (optimized design).

6.8 Penalization Assessment for Turbulent Cases

In this example, the objective is to assess the influence of different penalization values
aiming to find the maximum value of α needed when the turbulence model presented
in Sec. 2.2 is used. The main concern is to have the material model performing as close
as possible to impenetrable solid regions, resulting in realistic flow behaviors inside the
domain.

A flow simulation performed in a body fitted mesh is established as a reference case.
Simulations using the material model to represent the geometry are used to perform the
comparisons by checking objective function values and profiles of the state variables at
flow sections. The penalization assessment is performed only for compressible flow. The
geometry of a U-shaped channel is used. The dimensions can be seen in Fig. 6.29.

Figure 6.29 – U-channel dimensions.
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The tests of the different penalization values are performed in a mesh larger than
the U-shaped channel. Inside this domain, the channel is represented by the material
distribution. The cell sizes used are similar to the body fitted case and, at the solid-fluid
interfaces, mesh refinements similar to the prism layer of the body fitted case are applied.
The mesh has 4 785 326 cells. The domain and an example of the material distribution
can be seen in Fig. 6.30 with a detail of the mesh refinement. The black regions (ρdes = 0)
represent solid and the white regions (ρdes = 1) represent fluid. This color code is used for
the other numerical examples also.

Figure 6.30 – Domain and geometry representation using material model.

(a) Domain dimensions. (b) Representation and mesh detail.

The state variables are compared in the three sections (top, middle and bottom)
exhibited in Fig. 6.31. A mesh convergence verification is performed for the values of the
objective function in the body fitted cases by using the Grid Convergence Index (GCI)
described in Celik et al. (2008) and explained in App. B.

Figure 6.31 – Sections to compare state variables.

The boundary condition definitions, the flow properties and the boundary condition
values are presented in Fig. 6.32 and Tab. 6.2.

Figure 6.32 – BCs for the compressible case.
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Table 6.2 – BCs and objective function for the compressible case.

Property Value
µ (Pa · s) 1.8 × 10−5

uin (m/s) 125
pout (Pa) 101325
hin (J/kg) 2.95 · 105

cp (J/kg) 1005
Pr 0.705
Objective function Entropy variation (Eq. 3.9)

Three meshes for the body fitted case are built, with 57 360, 136 266 and 322 958 cells.
Close to the walls, a prismatic layer with 20 layers and a growth ratio of 1.2 are used. The
flow problem is solved with more than 10 000 iterations of the algorithm described in 5.1
to achieve low residuals and a constant objective function (see Figs. 6.33a and 6.33). The
entropy variation calculated is 1.87 W/K ± 0.9%.

Figure 6.33 – Residuals and objective function for the compressible body fitted case.

(a) Residuals. (b) Entropy variation.

The state variables are compared in the three sections from Fig. 6.31. Four values for
the maximum penalization are tested: 104, 105, 106 and 107. For each penalization, the
flow problem is solved with more than 30 000 iterations to achieve low residuals and a
constant objective function. The velocity, pressure and temperature values in each section
can be seen in Fig. 6.34. The black solid line is the profile extracted from the reference
case and the colored dashed lines are the values from the penalized cases.
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Figure 6.34 – Velocity, pressure and temperature profiles for the compressible flow.

(a) Velocity at top section. (b) Velocity at middle section. (c) Velocity at bottom section.

(d) Pressure at top section. (e) Pressure at middle section. (f) Pressure at bottom section.

(g) Temperature at top section. (h) Temperature at middle section.(i) Temperature at bottom section.

In all cases, the velocity, pressure and temperature profiles exhibit a shape similar
to the reference case. For the lowest penalization, the differences in the magnitudes can
be expressive. As an example, the temperature profile for the middle section (Fig. 6.34h)
starts around 280 K for the reference case while, for a penalization of 104, it is around
300 K. As the penalization increases, the profiles approximate to the reference, meaning
that the flow exhibits a behavior closer to the one it must represent. The objective function
values also follow this behavior (see Fig. 6.35). For α = 104, the entropy variation is
8.16 W/K (336% higher than the reference) and, for α = 107, it is 2.00 W/K, only 7%
higher than the reference value. Thus, for this case, the Brinkman penalization values
necessary to have an accurate flow representation are around 107.



Chapter 6. NUMERICAL EXAMPLES 103

Figure 6.35 – Entropy variation for different penalizations.

To better understand this behavior, the turbulent viscosity fields for the body fitted
case, α = 107 and α = 105 are presented in Fig. 6.36. The white line identifies the interface
established by the material model. As can be seen, the turbulent viscosity field for the
lowest value of penalization has higher values and these cover a bigger area. The two
white arrows indicate regions where the turbulent viscosity is almost not noticeable for
the body fitted and the α = 107 cases. However, for the α = 105 case, these regions
already have a growing layer where turbulent viscosity is noticeable. These higher amount
of turbulent viscosity present in the less penalized case is the main cause of the higher
entropy variation observed. To understand why they happen, it is interesting to take a
closer look at the regions highlighted by the white dashed rectangles. In Fig. 6.37, these
regions are represented with the mesh cells and a scale of maximum velocity of 3 m/s. It is
possible to see that, in the less penalized case, a layer of two cells has a velocity magnitude
higher than zero. Even being a small portion, these layers where a solid region should be
represented (but the velocity is not reduced to negligible values) act as a porous layer
and increase the turbulent viscosity. Since the flow travels for a long path of solid-fluid
interface with this effect, it becomes cumulative and the distribution of turbulent viscosity
affects the whole flow. In the most penalized case, this effect is not observed, so the results
are closer to the reference case.
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Figure 6.36 – Turbulent viscosity for body fitted and penalized cases (compressible).

Figure 6.37 – Velocity at solid-fluid interface (compressible).

6.9 Compressible Turbulent U-Channel Optimization

The case explored previously is now considered as a baseline for an optimization
example. The baseline represents an intuitive design, which is also the shortest path
connecting the inlet to the outlet in the domain defined for the optimization. It is
expected to have a low entropy variation when compared to other possible designs. In the
optimization, a volume constraint is imposed, so the optimized design and the baseline have
the same fluid volume and a fair comparison is made. For the same volume of fluid, longer
channels must be narrower, so higher losses and, consequently, higher entropy variations
can be expected. With all these conditions, this problem establishes an interesting challenge
where a balanced solution must be found by the optimizer. The objective is to verify the
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possibility of finding a design with the same fluid volume connecting the inlet to the outlet
with lower entropy variation than the example showed in the previous numerical case. The
domain and boundary conditions can be seen in Fig. 6.38 and the BC values, viscosity
and objective function are presented in Tab. 6.2.

Figure 6.38 – Boundary conditions and design domain for compressible U-channel.

A volume fraction Vfrac equals to 19% of the design domain is used. To be able to
reach a steady-state condition in the first optimization iterations, an initial guess with a
uniform value of 0.19 for the design variables is considered (see Fig. 6.39). A continuation
strategy is used to start with a low porosity value and achieve a nice representation of
solid regions at the end. The variable α starts with α = 103, the optimization runs for 10
iterations or until ϵJ is smaller than 10−4. After, α is changed to 104, 105, 106 and 107 with
the same definitions for the maximum number of optimization iterations and tolerance.
Between each optimization iteration, a total of 2 500 iterations of flow calculation are
used. The final design results in an entropy variation of 1.15 W/K with a volume fraction
of approximately 19.3% and can be seen in Fig. 6.40. The objective function evolution
during the optimization can be seen in Fig. 6.41 with all the changes in the maximum
value used for the penalization.

Figure 6.39 – Initial guess.
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Figure 6.40 – Optimized channel.

Figure 6.41 – Entropy variation during optimization.

As can be seen, the final solution has no intermediary values, so a well defined solid-fluid
interface can be identified. The design is composed by a channel slightly narrower than
the baseline and travels through a longer path. The optimized channel has a smooth curve
next to the inlet, then a turn with a smaller radius conducts the flow to the outlet. The
flow direction is changed in a smoother manner than in the baseline, so it can represent a
better option. During the optimization, the highest value observed for the entropy variation
happens in the very first iterations due to the porous region acting as an obstacle for the
flow. After approximately 5 iterations, a path is opened and the objective function drops
considerably. With a maximum penalization of 104, the objective function continues to
drop, as the channel is being established. Then, in the next iterations, only small changes
can be seen. To assess the optimized design and compare it to the baseline, the final
geometry is post processed with a CAD software and extracted by manually adjusting
splines (see Fig. 6.42).
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Figure 6.42 – CAD post processing and resulting channel.

(a) CAD post processing with splines. (b) Optimized channel.

The same boundary conditions are used and the solid-fluid interfaces obtained in the
optimization are now defined as no slip walls. Three meshes are built, with 11 084, 45 830
and 108 276 cells. The grid convergence assessment explained in Appendix B is used. For
the finer mesh, the residuals for velocity, pressure, temperature and the turbulence model
can be seen in Fig. 6.43a. For the same mesh, the objective function evolution during
the flow calculation is presented in Fig. 6.43b. As can be seen, after 10 000 iterations,
the residuals are at a low level (smaller than 10−6) and the objective function presents
a steady behavior, so the solution can be considered converged. The entropy variation
obtained is Jcomp = 0.69 W/K ± 4.6%, representing approximately 63% of reduction
when compared to the baseline. The velocity, pressure and temperature contours for the
optimization result (with material model) and for the post processed geometry can be
seen in Fig. 6.44, while the Mach number and density fields are presented in Fig. 6.45.

Figure 6.43 – Residuals and objective function for optimized channel.

(a) Residuals for the final geometry. (b) Objective function for the final geometry.
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Figure 6.44 – Velocity, pressure and temperature contours for the compressible U-channel.

(a) Velocity (optimization). (b) Velocity (final geometry).

(c) Pressure (optimization). (d) Pressure (final geometry).

(e) Temperature (optimization). (f) Temperature (final geometry).
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Figure 6.45 – Mach number and density contours for the compressible U-channel.

(a) Mach number (optimization). (b) Mach number (final geometry).

(c) Density (optimization). (d) Density (final geometry).

The flows in the optimization result and in the post processed geometry are not exactly
the same and the differences arise mainly from the fact that the mesh definitions used in
both cases are different. The mesh from the optimization case is too coarse to accurately
represent the flow inside this geometry. Since the mesh requirements are not known a
priori in the optimization cases, an accurate representation is not always possible. However,
the model used in the optimization is able to capture the main flow features and results in
an optimized design as is proved by the results from the interpreted geometry. Thus, the
methodology is capable of designing non-rotating components working with compressible
flow by topology optimization.

6.10 Compressible Turbulent Rotor Optimization

In this final example, topology optimization is used in a rotating compressible flow
example considering a turbulent flow. The objective is to achieve a rotor with high isentropic
efficiency (Eq. 3.10). The domain and design area used are the same from the example in
Sec. 6.7 (see Fig. 6.24a). The boundary conditions, flow properties and initial guess (Fig.
6.24b) are also from Sec. 6.7, except for the the dynamic viscosity µ which, in this case, is
1.8 × 10−5 Pa · s.

A continuation strategy is used for the viscosity since the initial guess does not result
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in a steady-state flow. The initial value used for the viscosity is 1.0 × 10−2 Pa · s. The
optimization runs with a tolerance ϵJ of 10−4 or a maximum of 25 iterations. After, the
viscosity is changed to 5.0 × 10−3 Pa · s with the same tolerance and maximum number of
iterations. Then, reduced again to 1.0 × 10−3 Pa · s and this process is repeated until the
final value is achieved. Continuation is also used for α. From Sec. 6.8, a value of 107 is
observed to generate results in good agreement with the body fitted mesh for compressible
flows. However, a value of 106 is used initially, since it results in a steady-state behavior.
The final value for α is used at the same time the final value for the viscosity is used. After
the optimization runs with the final values for the viscosity and the maximum penalization,
the adaptive mesh refinement is enabled to act at each 10 optimization iterations and the
optimization runs for a maximum of 150 iterations or until ϵJ is smaller than 10−5. Before
the AMR, 5 000 iterations for the flow calculation are used between each optimization
iteration. When the AMR is enabled, the flow is calculated by using 10 000 iterations
between each optimization iteration. The final design results in an isentropic efficiency of
64.4% and can be seen in Fig. 6.46 with the respective full rotor. The initial mesh and the
mesh after the refinement are presented in Fig. 6.47. The objective function value for each
optimization iteration can be seen in Fig. 6.48 with respective values for the viscosity and
maximum penalization.

Figure 6.46 – Optimized rotor for compressible flow.

(a) Optimized design. (b) Full rotor from the optimized design.
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Figure 6.47 – Initial and final meshes.

(a) Initial mesh (23 926 cells). (b) Final mesh (38 465 cells).

Figure 6.48 – Impeller isentropic efficiency during the optimization.

During the first steps of the optimization, it is possible to see that the objective
function oscillates, but does not present any real improvement. This indicates a changing
behavior of the geometry that still does not result in a steady condition. After µ reaches
the value of 5 × 10−4 Pa · s and α is 106, the objective function stabilizes and starts to
show some slow improvements. When the AMR is applied and the final values for µ and α
are used, a more evident improvement can be noticed until it reaches its final value. The
final geometry is extracted by using a CAD software (Fig. 6.49) and an assessment in a
body fitted mesh is performed.
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Figure 6.49 – CAD post processing and geometry.

(a) CAD post processing with splines. (b) Optimized geometry.

Three meshes are built (22 778, 78 427 and 181 278 cells) and assessed with the GCI
(Appendix B. The residuals and objective functions for 7 500 iterations of flow calculations
can be seen in Figs. 6.50a and 6.50b, indicating a converged state.

Figure 6.50 – Residuals and objective function.

(a) Residuals for the final geometry. (b) Objective function for the final geometry.

The final value for the isentropic efficiency obtained is 70.3% ± 0.001%, being
approximately 5.9% higher than the value obtained in the optimization. The velocity,
pressure and temperature contours of the final stage of the optimization and the body
fitted geometry are presented in Fig. 6.51. The Mach number and density contours can
be seen in Fig. 6.52. The flow fields and, consequently, the objective functions are very
similar and show that, in this example, the strategy using AMR results in an accurate
flow and an optimized design.
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Figure 6.51 – Velocity, pressure and temperature contours (compressible rotating case).

(a) Velocity (optimization). (b) Velocity (final geometry).

(c) Pressure (optimization). (d) Pressure (final geometry).

(e) Temperature (optimization). (f) Temperature (final geometry).
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Figure 6.52 – Mach number and density (compressible rotating case).

(a) Mach number (optimization). (b) Mach number (final geometry).

(c) Density (optimization). (d) Density (final geometry).
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7 CONCLUSIONS

In this work, topology optimization is applied to compressible flows with and without
rotation. The Brinkman penalization is used to represent the geometry inside the domain.
A material model focused on representing adiabatic walls is studied and applied. The
sensitivities for the optimization problem are calculated by using the adjoint method.
The continuous version was the initial strategy and its development for incompressible
laminar flows has been done and worked well. However, using the continuous approach
in compressible flow problems proved to be very challenging since the system is highly
non-linear and a new path had to be explored. The discrete version of the adjoint method
has been applied in a novel strategy based on finite differences. It is flexible and has been
motivated by the difficulties found when deriving the adjoint system for compressible flows
in the continuous approach. The flexibility of the developed approach allowed it to be
applied to incompressible and compressible flow cases. A sensitivity verification by finite
differences shows that the implementations are working correctly for the laminar cases
and that the correct tendencies are obtained for the compressible turbulent cases. Ten
numerical examples are presented.

In the 3D rotor working with incompressible laminar flow, an optimized design is
obtained by topology optimization. The result is post processed and the final geometry
is compared to a traditional straight bladed design. The optimized design proved to
be approximately 9.52% better than the traditional one. The optimization designed a
geometry with no recirculation areas, resulting in a well behaved flow with better objective
function than the straight bladed design. The resulting paths have a twisted non intuitive
geometry, inclined to the opposite direction of the rotation. This shows that the flow inside
this kind of device can have complicated trajectories, so finding an optimized geometry is
not trivial and topology optimization can be very beneficial to the design process. In this
case, the continuous adjoint has been used and worked well. Since the application of the
continuous approach for compressible flows was not possible, in all other examples, the
discrete approach developed in this work is used.

To assess the capabilities of the discrete adjoint developed, it is applied to the traditional
double-channel case. The flow is laminar and incompressible and the objective is to verify if
the methodology is able to reach well known results. The adaptive mesh refinement is used
to improve the boundary definitions. The results obtained are in a good agreement with
results published in the topology optimization literature, showing that the methodology
can reach well established designs. The use of the AMR allowed to have a well refined mesh
only in important regions of the design, changing during the optimization and correctly
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following the boundaries. Beyond that, a comparison of the continuous and the discrete
adjoint approaches for an incompressible and laminar pipe bend case is presented. Four
different meshes are used. The designs obtained by both approaches are very similar. The
continuous approach proved to be faster, as already expected. Also, as the mesh density
increases, the differences in the computational cost between the discrete and the continuous
approach increases. However, the value of the discrete approach is not in its computational
demand, but in its flexibility. This example draws attention to the fact that focused work
can be necessary to use the discrete approach to large-scale cases.

Before applying topology optimization to compressible flows, a representation of
adiabatic walls has been studied. The example considering a pipe bend with compressible
laminar flow demonstrates a comparison between a body fitted mesh and the same geometry
represented by the material model. The values of velocity, pressure and temperature for
both models (body fitted and material model) are compared at a diagonal line crossing
the domain. By using high values of penalization only at the momentum equations, it is
possible to have a representation that mimics adiabatic walls. This strategy is used in all
the other examples.

In the convergent channel example, compressible laminar flow is considered and the
objective is to compare different cell topologies. Three different cells are used: quadrilateral,
triangular and polyhedral. In finite volume models, it is common to have different cell
topologies in the same mesh. This example proves that the methodology is able to work
with different cells, reaching the same design at the end of the optimization.

In the 3D compressible flow case, laminar regime is considered and the idea is to verify
the discrete adjoint developed working in a 3D problem. A baseline case is defined with
a design that can be considered intuitive and a volume constraint is applied with the
objective of finding a better design with the same volume of fluid. The optimized design is
approximately 22.7% better than the baseline. This case shows that the methodology can
be extended to 3D problems.

Before applying the methodology to compressible turbulent and rotating flows, a
laminar rotating case is presented. An initial guess of a straight and backward blade is
used. The final design is composed of a thin blade with a small body after the trailing
edge. The isentropic efficiency is increased in approximately 5%. From this example, it
is possible to conclude that the methodology is able to optimize compressible laminar
rotating flows.

To better understand the behavior of the penalization when a turbulence model is
present, a U shaped channel case is analyzed considering compressible turbulent flow. The
objective is to find penalization values that result in an accurate representation of the
flow inside the domain. A case with a body fitted mesh is established as a reference and
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its geometry is reproduced by porosity fields inside the test cases. The results show that
high values of penalization are necessary (in the order of 107) to have an accurate flow
representation, resulting in similar flow fields between the reference and penalized cases.
For low penalization values, the turbulent viscosity can be very high, changing the flow
inside the domain (with respect to a flow in a body fitted case) causing big deviations in
the objective function. This is a point of attention that is not present in the laminar flow
cases, but one must be cautious when designing devices with turbulent flows, since the
results can be very different if the penalization used is not high enough.

The U-channel studied is also used in an optimization case. This time, the flow is
considered compressible and turbulent, the channel is defined as a baseline and the discrete
adjoint strategy developed is applied to design a channel with less entropy variation. An
initial guess considering a uniform porosity field is used and a continuation strategy is used
for the maximum penalization value. The optimized channel is composed by a sequence of
curves, starting very close to the inlet and leading the flow smoothly to the outlet. The
interpreted geometry shows a reduction of approximately 63% of entropy variation when
compared to the baseline case. This case shows that it is possible to find designs better
than the most obvious one for compressible flows. Additionally, even though the fluid
inside the optimization model is not accurate when compared to a body fitted case, it is
capable of representing the main flow features and reaching an optimized design.

Finally, a rotating domain with compressible turbulent flow is considered. The objective
is to generate a design with a high isentropic efficiency. An initial guess representing an
inclined straight blade is used to have a well behaved flow in the first optimization iterations.
In this case, continuation is used in the viscosity and maximum penalization values. The
adaptive mesh refinement is used to improve the boundary definitions. The final design
achieves an efficiency of approximately 70.3% and the flow inside the optimization model
closely represents the post processed geometry. This example shows that the methodology
is able to optimize compressible turbulent flows with rotation.

The numerical examples clearly show that the methodologies using the continuous and
the discrete adjoint work and can be used to design optimized geometries for incompressible
and compressible flows with and without rotation. The objective functions presented are
energy dissipation, entropy variation, pump efficiency and isentropic efficiency, but the
methodology can work other functions as well, requiring small changes in the adjoint
derivations.

In some numerical examples, continuation strategies proved to be necessary to have
steady-state flows in the first optimization iterations. If the flow is not well represented by
a steady-state modeling in the first iterations, the adjoint problem becomes very difficult to
solve, leading to useless results or even diverging and stopping the optimization procedure.
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The objectives established initially, in Sec. 1.6, have been achieved. All the theoretical
explanations are described in Chapters 3, 4 and 5 and exemplified by the content of
Chapter 6. The contributions of this work can be summarized in two main items: the
application of topology optimization to compressible flow problems and the development
of topology optimization using a finite differences strategy for the adjoint system. The first
item enlarged the area of application of topology optimization. Thus, new problems can
be approached and new applications can arise. The second item represents an innovation
that can helps in problems with complex physics. Since the finite differences strategy is
independent of how hard it is to solve the physical problem, it represents a new option to
be considered when developing topology optimization where it has not been applied yet.

7.1 Future Work

The work developed so far considers steady-state flows and the turbulence modeling
are based on RANS and FANS approaches. The frozen turbulence is used when calculating
the sensitivities. Also, perfect gas is considered when working with compressible flows. So,
possible paths to explore and augment the capabilities of the methodology developed are:

a) Consider the turbulence models in the adjoint derivation. This will increase the
accuracy of sensitivity calculations and better optimized designs can be found;

b) Develop capabilities to apply the methodology to problems focused on heat transfer
(e.g.: heat sink device design). Problems with flow exchange between fluids and solids
can be challenging and this approach may help to improve the existing strategies;

c) Develop strategies to account for solid region design during the optimization (fluid-structure
interaction). This area is still poorly explored in topology optimization. The physical
problems can be complicated, so the strategy using finite differences may simplify
the development of this application;

d) Expand the methodology to transient flows. Transient problems are common in
fluid dynamics, so expanding the capabilities of the approach developed in this work
can enlarge the area of application of topology optimization and help finding new
optimized designs for different problems;

e) Use other turbulence approaches, such as LES (large eddy simulation) and DES
(detached eddy simulation);

f) Use other gas models. Problems where real gas properties are required are not
unusual. Hence, improving the methodology developed here to account for other gas
models can allow the use of topology optimization in different problems of practical
applications;
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g) Improve the optimizer. The steepest descent is used in this work. Even though the
results show that the optimization is working well, improvements in the optimizer can
help finding better minima and also reduce the time necessary in the optimization
cases.

Additionally, the assemble of the adjoint system for the discrete approach is still a
time-consuming step, prohibitive for 3D cases. Thus, to improve the methodology and
allow it to work with large-scale cases, developments in the assemble and solution of the
adjoint system are necessary and can be interesting options for further research.
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APPENDIX A – NOTES ON

INTEGRATION

The integration by parts and scalar triple product for terms of Equation 4.5 can be
seen below:∫

Ω
∇2δu ·ψu dΩ = −

∫
Ω

∇δu : ∇ψu dΩ +
∫

Γ
ψu (∇δu · n̂) dΓ =

∫
Ω

∇2ψu · δu dΩ+

+
∫

Γ
(ψu (∇δu · n̂) − δu (ψu · n̂)) dΓ (A.1)

Knowing that ∇ ·
(
∇δuT

)
= ∇ (∇ · δu):

∫
Ω

∇ (∇ · δu) ·ψu dΩ = −
∫

Ω
(∇ · δu) (∇ ·ψu) dΩ +

∫
Γ

(∇ · δu) (ψu · n̂) dΓ =

=
∫

Ω
∇ (∇ ·ψu) · δu dΩ +

∫
Γ

((∇ · δu) (ψu · n̂) − (∇ ·ψu) (δu · n̂)) dΓ (A.2)∫
Ω
ψu · (∇δu · u) dΩ = −

∫
Ω
δu · (∇ψu · u) dΩ +

∫
Γ

(ψu · δu) (u · n̂) dΓ (A.3)∫
Ω

(∇ · δu) (u ·ψu) dΩ = −
∫

Ω
∇ (u ·ψu) · δu dΩ +

∫
Γ

(u ·ψu) · (δu · n̂) dΓ (A.4)∫
Ω

∇δp ·ψu dΩ = −
∫

Ω
δp∇ ·ψu dΩ +

∫
Γ
δp (ψu · n̂) dΓ (A.5)∫

Ω
2 (ω × δu) ·ψu dΩ =

∫
Ω

2 (ψu × ω) · δu dΩ (A.6)∫
Ω

(∇ · δu)ψc dΩ = −
∫

Ω
∇ψc · δu dΩ +

∫
Γ
ψc (δu · n̂) dΓ (A.7)
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APPENDIX B – ESTIMATION OF

DISCRETIZATION UNCERTAINTIES IN

CFD

The uncertainties due to the discretization reported in this work are calculated based
on the Grid Convergence Index (GCI) method. The procedure to calculate the GCI is
described by Celik et al. (2008) and is explained in this Section.

The procedure begins by calculating a representative mesh size h. For 3D and 2D
meshes, it is calculated, respectively, by:

h =
[

1
N

N∑
i=1

(∆Vi)
]1/3

(B.1)

h =
[

1
N

N∑
i=1

(∆Ai)
]1/2

(B.2)

where Vi is the volume, Ai is the area of the ith cell and N is the total number of cells.

Then, three different sets of grids are chosen and simulations are performed to determine
the value of the variable of interest ϕ. It is recommended that the refinement factor used
for the meshes r = hcoarse/hfine be greater than 1.3.

With three meshes of representative sizes h1, h2 and h3 and defining r21 = h2/h1 and
r32 = h3/h2, the apparent order p is calculated using the expressions:

p = 1
ln(r21)

∣∣∣∣ln ∣∣∣∣ϵ32

ϵ21

∣∣∣∣+ q(p)
∣∣∣∣ (B.3)

q(p) = ln

(
rp21 − s

rp32 − s

)
(B.4)

s = 1 sgn
(
ϵ32

ϵ21

)
(B.5)

where ϵ32 = ϕ3 − ϕ2, ϵ21 = ϕ2 − ϕ1 and ϕk is the variable of interest calculated from the
kth mesh. The set of equations B.3, B.4 and B.5 can be solved using fixed-point iteration
with the initial guess equal to the first term.
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After, the extrapolated values are calculated with:

ϕ21
ext = rp21ϕ1 − ϕ2

rp21 − 1 (B.6)

ϕ32
ext = rp32ϕ1 − ϕ2

rp32 − 1 (B.7)

Finally, the estimated error can be calculated in its approximated relative form,
extrapolated relative form and fine-grid convergence index:

e21
a =

∣∣∣∣∣ϕ1 − ϕ2

ϕ1

∣∣∣∣∣ (B.8)

e21
ext =

∣∣∣∣∣ϕ21
ext − ϕ1

ϕ21
ext

∣∣∣∣∣ (B.9)

GCI21
fine = 1.25e21

a

rp21 − 1 (B.10)

In Tabs. B.1 and B.2, the procedure is exemplified for the compressible body fitted
case in Sec. 6.8 and considering ϕ as the objective function.

Table B.1 – Mesh parameters and ϕ values.

Mesh 1 Mesh 2 Mesh 3
N 322 958 136 266 57 360
V (m3) 7.13 × 10−3 7.13 × 10−3 7.13 × 10−3

h (m) 2.81 × 10−3 3.74 × 10−3 4.99 × 10−3

ϕ 1.87 1.82 1.59

Table B.2 – GCI calculation example.

Parameter Value
r21 1.33
r32 1.33
p 5.31
ϕ21
ext 4.62
e21
a 2.67%
e21
ext 1.88%
GCI21

fine 0.92%


	Title page
	Resumo
	Abstract
	List of Figures
	List of Tables
	Notation
	Contents
	INTRODUCTION
	Compressible Rotating Flow
	Optimization
	Topology Optimization Method
	Adjoint Problem Solution
	Motivation
	Objectives
	Scientific Contribution
	Document Outline

	FLUID FLOW MODELING
	Governing Equations
	Turbulence Modeling
	Finite Volume Method

	TOPOLOGY OPTIMIZATION OF FLOW PROBLEMS
	Objective Function and Constraints
	Material Model for Compressible Flow

	SENSITIVITY CALCULATION
	Continuous Adjoint
	Discrete Adjoint Method using Finite Differences
	Grouping Algorithm
	Cyclic Boundaries

	Sensitivity Verification
	Continuous Adjoint - Incompressible Laminar Flows
	Discrete Adjoint - Incompressible Laminar Flows
	Discrete Adjoint - Compressible Laminar Flows
	Discrete Adjoint - Compressible Turbulent Flows


	NUMERICAL IMPLEMENTATION
	Solution of the Direct Problem
	Solution of the Continuous Adjoint Problem
	Solution of the Discrete Adjoint Problem
	Adaptive Mesh Refinement
	Optimization Scheme

	NUMERICAL EXAMPLES
	Incompressible Laminar Rotor
	Incompressible Laminar Double Channel
	Incompressible Laminar Pipe Bend
	Material Model Assessment for Compressible Flows
	Compressible Laminar Convergent Channel
	Compressible Laminar Triple Channel
	Compressible Laminar Rotor Optimization
	Penalization Assessment for Turbulent Cases
	Compressible Turbulent U-Channel Optimization
	Compressible Turbulent Rotor Optimization

	CONCLUSIONS
	Future Work

	References
	NOTES ON INTEGRATION
	ESTIMATION OF DISCRETIZATION UNCERTAINTIES IN CFD

