• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.3.2020.tde-11022021-125916
Documento
Autor
Nome completo
Nikolas Lukin
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2020
Orientador
Banca examinadora
Driemeier, Larissa (Presidente)
Azevedo, Cesar Roberto de Farias
Pesce, Celso Pupo
Proenca, Sergio Persival Baroncini
Silva, Antonio Henrique Monteiro da Fonseca Thomé da
Título em inglês
Metamodeling of structural failure: case study of API S-135 steel tube cut in BOP.
Palavras-chave em inglês
Drilling rig equipment
Drilling strings
Finite Element Method
Statistical interpolation
Structural fracture
Resumo em inglês
In offshore oil exploration, it is necessary the use of a Dynamic Positioning System (DPS) to maintain the platform at a fixed point regardless of the influence of the environment. In an event of failure, however, a drill string inside BOP (BlowOut Preventer) must be cut using its indenters and safely disconnected from the well. Therefore, it is needed an accurate and realistic virtual model of this failure process. Numerical model analysis, in addition to avoid expensive and complex experimental tests, allows, through post-processing tools, a detailed understanding of all phases of the failure process. On a first stage, API S-135 steel, a material commonly used to manufacture drill strings, is characterized using Johnson-Cook model (J-C) for plasticity and failure. The material parameters are obtained from experimental tensile tests on dog bone and 3-point bending beams specimens with different notch radii, covering a wide range of stress triaxialities. Experimental tests and numerical simulations were compared by means of stress-strain curves, Digital Image Correlation (DIC) and Scanning Electron Microscopy (SEM) to validate the model. The material model is applied to simulate the pipe cutting process and to predict the required force for the BOP to cut drill pipes with different geometries, which in comparison to experimental tests permitted to determine BOP internal frictions. Additionally, the numerical simulation also allowed a better understanding of the cutting process here presented as well, coherent to SEM imaging of a similar cut tube in BOP. The required force to cut the string is traditionally determined by analytical models and commissioning tests, which can be far from the real situations. Depending on boundary conditions of this tubular, the BOP may fail to cut it, which can lead to catastrophic events. In this way, a metamodel is defined to predict required forces for BOP to cut API S-135 6.63'' 40.87ppf drill pipes, with different boundary conditions. Different simulations in combined conditions, including initial traction and torque, pipe decentralization and indenter offsetting, were performed in order to find the required force in indentator to cut the pipe. Such data were used to develop a metamodel using feed a machine learning algorithm which leads to conclude that current BOP cutting models may underestimate the required force to cut pipe in realistic conditions.
Título em português
Metamodelagem de falha estrutural: estudo de caso do corte do tubo de aço API S-135 em BOP
Palavras-chave em português
Colunas de perfuração.
Equipamentos da sonda de perfuração
Fratura das estruturas
Interpolação estatística
Método dos Elementos Finitos
Resumo em português
Na exploração de petróleo offshore, o Sistema de Posicionamento Dinâmico (DPS) é necessário para manter a plataforma em um ponto fixo, independentemente da influência do ambiente. Em caso de falha do DPS, no entanto, uma eventual coluna de perfuração dentro do BOP (BlowOut Preventer) deve ser cortada para uma desconexão segura do poço. Portanto, é necessário um modelo virtual preciso e realista desse processo de falha. A análise de modelos numéricos, além de evitar testes experimentais complexos e caros, permite, por meio de ferramentas de pós-processamento, um entendimento detalhado de todas as fases do processo de falha. Em uma primeira etapa, o aço API S-135, material comumente usado na fabricação de colunas de perfuração, é caracterizado usando o modelo Johnson-Cook (J-C). Os parâmetros do material para o são obtidos a partir de ensaios experimentais de tração em amostras cilíndricas e em vigas de flexão de 3 pontos com diferentes raios de entalhe, cobrindo uma ampla gama de triaxialidades de tensão. Testes experimentais e simulações numéricas foram comparados por meio de curvas tensão-deformação, Correlação Digital de Imagem (DIC) e Microscopia Eletrônica de Varredura (MEV) para validar o modelo de material, o qual é aplicado para simular o processo de corte de tubos e prever a força necessária para o BOP cortar tubos de perfuração com geometrias diferentes. Em comparação com testes experimentais, essas simulações permitiram determinar os atritos internos do BOP, fornecendo também uma melhor compreensão do processo de corte aqui apresentado, coerente com imagens SEM de um tubo semelhante cortado no BOP. A força necessária para cortar um tubo de perfuração é tradicionalmente determinada por modelos analíticos e testes de comissionamento, que podem estar longe das condições reais. Dependendo das condições de contorno deste tubular, o BOP pode falhar em cortá-lo, o que pode levar a eventos catastróficos. Para tanto, um metamodelo é definido para prever as forças necessárias para o BOP cortar um tubo de perfuração API S-135 6.63'' 40.87ppf, com diferentes condições de contorno. Diferentes simulações em condições combinadas, incluindo tração e torque inicial, descentralização do tubo e desalinhamento do indentador, foram realizadas para encontrar a força necessária no indentador para cortar o tubo. Tais dados foram usados para desenvolver um metamodelo usando um algoritmo de aprendizado de máquina, levando a concluir que os atuais modelos de corte do BOP podem subestimar a força necessária para cortar o tubo em condições realistas.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-02-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.