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Ao meu amor, Larissa Tháıs de Araújo Machado, pelo apoio incondicional nas noites
em claro, pela paciência, pela integral assistência e companheirismo nas melhores e piores
horas.

Ao meu amigo Lucas Oliveira Siqueira por ser um incentivador e também um exemplo
de motivação e humildade.

Ao Prof. Dr. Josué Labaki da Faculdade de Engenharia Mecânica da UNICAMP,
pelo apoio acadêmico.

Aos meus colegas de grupo de pesquisa por estarem sempre dispostos a ajudar.
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RESUMO

A otimização topológica abre novas perspectivas para o projeto de engenharia es-
trutural por meio de layouts otimizados. A ideia é encontrar layouts estruturais com
desempenho aprimorado independente da experiencia do projetista. Conforme a com-
plexidade das condições de contorno aumenta, novos métodos computacionais precisam
ser desenvolvidos. Uma classe de problemas inexplorados diz respeito ao projeto de es-
truturas sobre solo elástico em contrapartida a suportes ŕıgidos. Neste contexto, este
projeto de mestrado propõe e investiga o método de otimização topológica aplicado a
problemas de interação solo-estrutura. Neste esquema, o solo e a estrutura são modelados
separadamente com o Método dos Elementos de Contorno Indiretos (IBEM do inglês In-
direct Boundary Element Method) e com o Método dos Elementos Finitos (FEM do inglês
Finite Element Method), respectivamente. A resposta da estrutura interagindo com o
solo é obtida impondo condições de continuidade e equiĺıbrio na interface. O método de
Otimização Topológica de Estruturas Binárias (TOBS do inglês Topology Optimization
of Binary Structures) é escolhido para resolver o problema de maximização da rigidez
de uma estrutura sujeita a uma restrição de volume. Os resultados numéricos mostram
que os efeitos da iteração solo-estrutura são relevantes ao projetar uma estrutura via
otimização topológica para diferentes razões de rigidez estrutura-solo. Além disso, os
resultados mostram que a presença de vazios no solo altera sua flexibilidade, indepen-
dentemente das propriedades constitutivas do solo e que isso altera significativamente a
estrutura otimizada.

Palavras-Chave – Otimização Topológica, Interação Solo-estrutura, TOBS, Método
dos Elementos Finitos, Método dos Elementos de Contorno.



ABSTRACT

Topology optimization opens up new perspectives for structural engineering design via
optimized layouts. The idea is to find structural layouts with improved performance re-
gardless of the designer’s experience. As the complexity of boundary conditions increase,
new computational methods are required to be developed. One class of unexplored prob-
lems concerns the design of structures resting on elastic soil instead of rigid supports. In
that context, this master by research project proposes and investigates the topology op-
timization method applied to soil-structure interaction problems. In this scheme, the soil
and the structure are modeled separately with the Indirect Boundary Element Method
(IBEM) and with the Finite Element Method (FEM), respectively. The response of the
structure interacting with the soil is obtained by imposing continuity and equilibrium
conditions at their interface. The Topology Optimization of Binary Structures (TOBS)
method is chosen to solve the structural stiffness maximization problem subject to a vol-
ume constraint. Numerical results show that the effects of the soil-structure iteration are
relevant when designing a structure via topological optimization for different structure-soil
stiffness ratios. Furthermore, the results show that the presence of voids in the soil alters
its flexibility, regardless of the constitutive properties of the soil and that this significantly
alters the optimized structure.

Keywords – Topology Optimization, Soil-Structure Interaction, TOBS, Finite Ele-
ment Method, Boundary Element Method.
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1 INTRODUCTION

1.1 Soil-Structure Interaction

Static response of a structure can be significantly changed depending on the soil profile

where it is fixed. The consideration of soil elasticity is generally not taken into account

in the optimization design of structures. However, for macro structures, for structures

sensitive to small displacements and vibrations, or when the structure is installed in softer

marine soil, for example, inclusion of this consideration becomes more important. On the

other hand, the soil influence in the structural Topology Optimization (TO) is often

neglected. Major uncertainties about its conditions justify why this parameter has not

been sufficiently addressed in design optimization. Therefore, Soil-Structure Interaction

(SSI) defines a relevant phenomenon for structural design and must be taken into account

on TO problems.

Given the current interest of this topic, the literature is scarce regarding the influence

of the soil in the TO. Figures 1 and 2 show selected examples of soil-structure interaction

problems, which illustrate the need of considering the influence of soil flexibility in the

structural analysis. These examples consider a structure under uniformly distributed

horizontal and vertical loads, supported by a rigid base and resting on the surface of

the elastic soil. The color map shows the normal strain in the vertical direction. The

comparison of these results shows that the displacement and strain field of the structure

are strongly affected by the presence of soil. This suggests that optimal topologies for the

structure will depend on whether or not the presence of the soil is taken into consideration

in the analysis.

Figure 1: Displacement and strain fields of a structure under uniformly distributed horizontal load
supported by:

(a) a rigid base. (b) the elastic soil.
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Figure 2: Displacement and strain fields of a structure under uniformly distributed vertical load supported
by:

(a) a rigid base. (b) the elastic soil.

The aim of this dissertation is to investigate how the flexibility of the soil affects the

TO of the structure in a static SSI problem. This is an important consideration when

designing a structure via TO in problems in which the influence of the soil is significant,

such as particle accelerators buildings, nuclear power plants, and offshore structures on

seabed.

In this work, the soil is modeled as a homogeneous, isotropic, elastic half-space, on

the surface of which rests an arbitrarily-shaped structure. The static response of the soil

is obtained by superposition of Green’s functions for the unbounded medium, in the sense

of the Indirect Boundary Element Method (IBEM). This enables accurate representation

of the load transfer between soil and structure through their continuous contact inter-

face. Differently than a Finite Element Method (FEM) discretization, for the soil part,

this IBEM scheme requires only the one-dimensional contact interface to be discretized.

Coupling between the FEM model of the structure and the IBEM model of the soil is

obtained by imposing rigorous equilibrium and continuity conditions at the interface.

1.2 Justification

The influence of soil displacement is important in the design of structures that are

sensitive even to micro-displacements from soil such as nuclear power plants, particle

accelerators, gravitational waves observatory, etc., and where the soil elasticity must be

take into consideration, such as offshore platforms and offshore wind turbines. Literature

is scarce on TO considering the elasticity of the soil. Most works consider the soil as a

rigid boundary condition or an elastic spring representing the behavior of the soil. In

other works, more sophisticated FEM models were developed [1].

The IBEM allows the discretization of infinite domains with a finite number of ele-

ments located in the soil-structure interface. The response at any point in that domain is
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exact and the method is more formal than the FEM. Furthermore, in dynamic problems,

the FEM presents the problem of reflection on the edge of discretization, bringing errors,

or leading to the need for additional implementations to circumvent this problem. Con-

sidering the possibility of future works including dynamic analysis and the formalism of

the method, the IBEM was chosen.

The main purpose of topology optimization is to find the ideal material distribution of

a structure subject to known constraints, loads and final material volume within a spec-

ified design domain [2]. The optimization of structures subject to soil influence allows

for material savings. This potential can be widely applied when of more complex manu-

facturing techniques are developed and applied largely in the market. Some works have

been developed into civil construction field using 3D printing of cementitious composites

[3]. They showed that 3D printing technology for cementitious materials is a promising

alternative to revolutionize the conventional building and construction process through

low-cost, high-efficient automatic construction and design freedom given by optimization

algorithms.

In the future, optimized layouts that bring weight and structural performance opti-

mizations will be a priority for designers and will bring savings in project costs. Currently,

the fabrication costs of structures with complex geometries are still not always enough

to justify the choice of an optimized design. However, in the future, technologies such

as additive manufacturing and 3D printing will become increasingly accessible. Topology

optimization will provide the best designs for fabrication of structures to be built through

these processes.

Many optimization methods have been developed within the last decades. Binary

topology optimization methods defines the structure using a pixel-like definition. A use-

ful design variable called pseudo-density (ρ) is stated as 1 if the element is solid or 0

when the element is void. Topology Optimization of Binary Structures (TOBS) method,

developed by Sivapuram and Picelli [4] was used. The advantages of TOBS are the clear

definition of the boundary and the possibility to deal with multiphysics, multiobjective

and multimaterial optimization.

1.3 Objectives

Based on the discussed academic scenario, the aim of this dissertation is to solve

topology optimization problems considering soil-structure interaction. Instead of classical
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density-based methods, the TOBS method will be adopted, owing to the potential per-

formance improvement of binary design variables. In addition, IBEM is used to model

soil behavior.

The objectives are:

1. To couple soil and structure models;

2. To perform topology optimization using the TOBS method for different structure-

to-soil flexibility ratios;

3. To understand the influence of soil flexibility in optimum structural design.

1.4 Layout of the Work

This document is organized as follows. Chapter 2 presents the literature review with

analysis of the relevant literature already published in the areas of soil modeling, and

topology optimization. Chapter 3 presents the problem governing equations, the alge-

braic system used in the finite element method and the boundary element method, the

optimization parameters and definitions, and the TOBS method. Chapter 4 presents the

structural problem to be solved, the soil-structure coupling, and the optimization sen-

sitivity analysis is performed. In Chapter 5, numerical results obtained are presented,

comparing different structure-to-soil elasticity relations and parameters. Finally, chapter

6, presents the main conclusions of this research, suggested future works, and discussions.
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2 LITERATURE REVIEW

This chapter presents the literature review with analysis of the relevant literature of

soil modeling, and topology optimization. It serves as a basis for the investigation of the

proposed work.

2.1 Soil Modeling

In practice, soil is a heterogeneous, non-linear and anisotropic medium. Also, the

presence of fluctuation of water table further adds to its complexity. Therefore, it would be

very complex and costly to model soil medium taking into account all these characteristics

[5]. Soil can be modeled in a number of ways with various levels of rigor. In this context,

the simplicity of models often becomes a primary consideration and often yields reasonable

results [6].

The first idealization of a linear-elastic soil model was proposed by Winkler [7]. Win-

kler models the soil as a system of identical but mutually independent, closely spaced,

discrete, linearly elastic springs. Figure 3 shows the physical representation of the Winkler

foundation.

Figure 3: The Winkler foundation.

Rigid Layer

Structure Loads

Linear Springs

Diagram by Author.

In this model, as we can see in the figure 3, the soil is deformed only in the region where

there is loading. Neighboring regions remain unchanged. This is one of the disadvantages

of this method. Another problem is the determination of the value of the linear spring

constant. Several methods proposed to estimate this value. Terzaghi [8] estimates these

subgrade reaction methods as well as brief reviews of the practical application of subgrade

reaction theories.
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Other models were proposed to make the soil modeling more accurate from develop-

ments of the Winkler model by creating new parameters [9, 10]. These models, however,

also suffer from the drawback that these parameters are difficult to determine. In re-

cent years, a lot of research has been conducted in the field of soil-structure interaction,

simulating the soil in a variety of complex ways based on Winkler.

Figure 4: Half-space acted upon by a nor-
mal point load on its surface.

Diagram by Author.

Other branch of soil medium model is the elas-

tic continuum model. It emerged with the analysis

of conceptual physical problems used as the funda-

mental solution for other problems. The problem

of determining the stress and displacement field in

an isotropic half-space, which is acted upon by a

concentrated point load on its surface (see figure 4).

Boussinesq [11] was the first to use the continuum

mechanics to model the soil as a semi-infinite, ho-

mogeneous, isotropic, linear elastic solid subjected

to a concentrated force acting normal to the plane

boundary. This approach provides much more information on the stresses and deforma-

tions within soil mass than the Winkler model. However, the drawback of this method

is its complexity to be done computationally due to the appearance of improper inte-

grals. Also, it was noticed an inaccuracy in reactions calculated at the peripheries of

the foundation. In experimental observations the displacements of the surface away from

the loaded region decreased more rapidly than what is predicted by this approach [12].

Several models have been developed as improved versions of the continuum model in view

of mitigate these drawbacks.

Figure 5: FEM discreatization of the soil
with an end-boundary.

Diagram by Author.

The use of the FEM to model structures has

been extensively studied since the seminal article by

Turner et al.[13]. Since the number of elements to

be used in any discretization is finite, even if millions

of elements were used, soil would still have a bound-

ary [14], see figure 5. Some works have tried to deal

with this problem using a series of techniques. God-

bole et al. [15] modeled the infinite extent of the soil

domain with a coupled finite-infinite element formu-

lation, to model the infinite extent of the soil domain. There are other ways to deal with

this problem within the FEM, such as creating absorbent barriers, perfectly matched
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layers, etc., but they also present challenges [6, 16].

Figure 6: BEM discreatization of the soil.

Diagram by Author.

The Boundary Element Method (BEM) is an-

other popular numerical approach to geomechanical

analysis used by a number of authors. Kokkinos and

Spyrakos [17] used the BEM to model the elastic,

isotropic, and homogeneous soil medium and FEM

to model the flexible and massive foundation of a

structure subjected to dynamic analysis. In a recent

work, Barros et al. [18] proposed the soil modeling

using the Indirect-BEM, and coupled a pile struc-

ture and foundation modeled via the FEM. The IBEM-FEM coupling scheme used in this

dissertation uses the displacement influence functions available in the literature [19]. In

addition, the formulations of the influence functions for the cases with a trench in the soil

are given by Cortez et al. [20] who used a IBEM-FEM coupled formulation to model the

soil and structure with the inclusion of a trench in the soil-structure interface.

2.2 Topology Optimization

2.2.1 Brief history of Optimization

Structural Optimization methods grew after the development of computational tech-

niques that enabled the creation of algorithms based on theories already formulated by

scholars in the 20th century. Figure 7 shows some results reached by Michell [21] in 1904

using the main isostress lines. The results essentially consisted of initially calculating the

principal mechanical stress field, using the theory of elasticity, of a force applied at a point

in an infinite domain that is subject to displacement constraints at other points. Once

the main isostress lines were obtained, the basic idea was to propose in this domain a

structure formed by bars (truss), in which each bar (truss element) was aligned with the

main stress directions calculated in the domain [22]. Using these techniques enables more

complex and non-intuitive solutions to emerge after the creating of computational tools.

Since the seminal article by Bendsøe and Kikuchi [24], optimization field has increased

and several methods for solving topology optimization problems have been created. De-

pending on the values that design variables can assume, there are two main branches in

topology optimization: the continuous density methods [23,25,26] and discrete (or binary)

methods [4, 27–29]. Additionally, there are boundary description methods, such as the
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Figure 7: Examples of truss structures obtained by Michell in 1904. The bars follow the main isotension
lines.

Adapted from Bendsøe and Sigmund [23].

ones based on level sets [30]. A review on topology optimization methods can be found

in [31].

A famous example of continuous density methods is the Solid Isotropic Material with

Penalization (SIMP) method created by Bendsøe and Sigmund [23, 26]. The acronym

SIMP can denote both the optimization method and the material model, definition that

will be presented later. It is sometimes called “material interpolation”, “artificial ma-

terial”, “power law”, or “density” method [32]. The SIMP method is one of the most

widespread methods in TO because it is very versatile, it is widely accepted by the com-

munity, and it is able to solve various problems. As examples of problems that were solved

in TO using SIMP we can mention: multiple load TO problems (Diaz and Bedsøe [33]),

eigenvalue problem (Diaz e Kikuchi [34]), vibrating and design-dependent loads (Hammer

and Olhoff [35] and Du e Olhoff [36]), and design of compliant mechanisms (solved by

Sigmund [37]).

In addition, works on pressure loads such as the work of Sigmund and Clausen [38]

have been developed, which suggested a new method to solve pressure load problems us-

ing a mixed displacement-pressure formulation for the finite element problem using SIMP.

However, in continuous density methods applied to design-dependent pressure loads, chal-

lenges are in the identification of the structural boundaries or design-dependent loading

during optimization. Wang et al. [39] propose a new material boundary identification

scheme based on image segmentation technique to lead with this problem but still obtained

gray scales final results. The article by Lundgaard et al. [40] applies the density-based

topology optimization to fluid-structure-interaction problems using SIMP. Results have

no clear boundary. So the author proposes the use of a penalty to lead to a discrete re-

sult. Furthermore, as soon as an element outside the fluid-structure interface is removed,

instead of being replaced by an empty element, it is replaced by fluid.

More recently, authors have focused on proposing SIMP algorithms for solving op-

timization problems involving mechanical stress [41]. Du and Olhoff [42] discussed TO
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involving natural frequency. Sigmund and Clausen [38] suggest a way to solve pressure

load problems in TO using SIMP. Furthermore, geometrically nonlinear problems in op-

timization were also solved by Chen et al. [43] using density methods.

As examples of binary methods one has the Evolutionary Structural Optimization

(ESO) method created by Xie and Steven [27], the most popular Bi-directional Evolu-

tionary Structural Optimization (BESO) method presented by Huang and Xie [44], the

Sequential Approximate Integer Programming with Trust-Region (SAIP-TP) method by

Liang and Cheng [45] and the Topology Optimization of Binary Structures (TOBS) de-

veloped by Sivapuram and Picelli [4]. Several authors have proposed solutions to opti-

mization problems using binary algorithms. Such as multi-material problems by Huang

and Xie [46], vibration problems by Xie and Steven [47], mechanical stress [48] and non-

linearities [49]. Binary methods stand out for obtaining results with clear boundaries and

have an advantage over design-dependent problems when compared to density methods.

Picelli et al. [50] propose an evolutionary topology optimization method for compli-

ance minimization of structures under design-dependent pressure loads. Problems with

multiphysics interaction have also gained notoriety in recent years and are still an open

problem in OT. Picelli et al. [51], solved TO for natural frequency maximization problems

considering acoustic–structure interaction.

In addition to the types of methods discussed, there are also those based on boundary

movement that mix topological optimization with shape optimization such as The Level-

Set Method developed by Allaire et al. [30] that uses the level-set of a function to define the

structural domain. The Level-set method is an example where a high-degree function is

used to describe the structural domain boundary through its zero-value level-set function.

Positive values represent the full structural domain and negative values the void structural

domain, as shown in figure 8 from Deaton and Grandhi (2014)[31]. Such procedures use

the position of the structural surfaces as design variables in order to keep track of the

implicitly defined structural shapes. These methods can require fixed grids or remeshing,

presenting special challenges in their numerical implementations.

The method of Moving Morphable Components (MMC) created by Zhang et al. [52]

uses the position and size of predefined shapes to define the topology of the structure.

Others methods are discussed in the references, see [31,32] for an overview and classifica-

tion.

Another famous solution to the topology optimization problem is the use of non-

gradient based algorithms such as Genetic Algorithms [53], Ant Colonies, and others
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Figure 8: The Level-Set Method domain representation.

that use features of nature as a search engine in complex optimizable domains. However,

Sigmund [54] showed that these non-gradient based techniques are inefficient in the context

of optimization when compared with gradient based methods due to computational cost.

Nonetheless, the usefulness of non-gradient based algorithms are in complex problems

where gradient information is very hard to be computed [55].

2.3 Soil-Structure Interaction Topology Optimization

Into structural optimization context, the soil-structure iteration had recent contribu-

tions by Seitz and Grabe [56] who presented the TO of 3D structures for foundations in

granular soil using the SIMP method. The authors limited to the design of foundations.

Also, Tian et al. [57] explored the applicability of TO in structures on seabed also using

SIMP. They modeled the soil using the Winkler model. Recently, Tavares and Labaki [58]

used the BESO method to optimize structures on pilled foundations using a IBEM-FEM

coupling. Siqueira et al. [59] also used the BESO method, optimized a tunnel reinforce-

ment distribution topology. In their work, the unbounded soil was modeled using the

IBEM and it was coupled with structure of the tunnel reinforcement modeled using the

FEM.

Until the publication of this dissertation, the topology optimization of structures sub-

jected to soil-structure iteration using the TOBS method and modeling the soil with IBEM

was still unexplored. This work proposes to overcome this gap. This modeling allows the

expansion of this analysis to dynamic, multi-objective and multi-material problems.
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3 THEORETICAL FRAMEWORK

This chapter presents the theoretical foundation used in this dissertation. It presents

the main ideas, concepts and important processes in the elasticity, soil modeling and

optimization.

3.1 Linear Elasticity

Figure 9: Infinitesimal 3D soil element.

Diagram by Author.

Elasticity equations presented here govern both

soil and structure domains. However, the solutions

to the static problem for each of these coupled do-

mains are achieved by different methods. It is im-

portant to state that it is generally convenient in

soil mechanics to consider compressive stresses to

be positive (see figure 9) meanwhile in the structure,

normal stresses in the positive coordinate directions

are positive. This difference in signals is taken into

account at the soil-structure coupling step.

Consider an infinitesimal 3D element as show in figure 9. The elastostatic equilibrium

equations, in terms of stresses, in the absence of body forces, are

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0, (3.1)

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0, (3.2)

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
= 0, (3.3)

where, σij are the stresses in the i face acting in the j-direction. If i = j, then σii are

normal stresses and when i ̸= j, σij are the shear stresses. (i, j = x, y, z).

The theory of elasticity makes use of Hooke’s law of elasticity as constitutive equation.

Basically, bodies are considered elastic, that is, they deform linearly with the load and

return to the initial state of inertia once the load is removed. This consideration is only

true for small displacements. Hooke’s law relates stress σij to strain εij using a constant
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of elasticity. Considering the isotropy, strains are written as a function of the stresses as

follows:

εxx =
1

E
[σxx − ν(σyy + σzz)], (3.4)

εyy =
1

E
[σyy − ν(σxx + σzz)], (3.5)

εzz =
1

E
[σzz − ν(σxx + σyy)], (3.6)

εxy =
1

G
σxy, (3.7)

εyz =
1

G
σyz, (3.8)

εzx =
1

G
σzx, (3.9)

in which, E is the Young’s modulos, G the shear modulus and ν is the Poisson’s ra-

tio which relates the deformation (expansion or contraction) of a material in directions

perpendicular to the specific direction of loading.

From equations 3.4 to 3.9, Hooke’s law can be written in a matrix form as

σ = Dε, (3.10)

where σ is the stress tensor, ε the strain tensor and the matrix D for the elastic linear

isotropic case is:

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
(1− 2ν)

2
0 0

0 0 0 0
(1− 2ν)

2
0

0 0 0 0 0
(1− 2ν)

2


. (3.11)

Since six strain components are derived from just three displacements, the strains are

not independent of each other. Six additional relations, known as compatibility equations,

can be derived. They are as follows:

∂2εxx
∂y2

+
∂2εyy
∂x2

=
∂2εxy
∂x∂y

, (3.12)

∂2εyy
∂z2

+
∂2εzz
∂y2

=
∂2εyz
∂y∂z

, (3.13)
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∂2εzz
∂x2

+
∂2εxx
∂z2

=
∂2εxz
∂x∂z

, (3.14)

2

(
∂2εxx
∂y∂x

)
=

∂

∂x

(
−∂εyz

∂x
+

∂εzx
∂y

+
∂εxy
∂z

)
, (3.15)

2

(
∂2εyy
∂z∂x

)
=

∂

∂y

(
∂εyz
∂x
− ∂εzx

∂y
+

∂εxy
∂z

)
, (3.16)

2

(
∂2εzz
∂x∂y

)
=

∂

∂z

(
∂εyz
∂x

+
∂εzx
∂y
− ∂εxy

∂z

)
. (3.17)

Considering the Hooke’s law and strain-displacement relationships, the governing

equations of elasticity, know as Navier’s equations, are expressed in terms of displace-

ments as

µ∇2ux + (λ+ µ)
∂e

∂x
= 0, (3.18)

µ∇2uy + (λ+ µ)
∂e

∂y
= 0, (3.19)

µ∇2uz + (λ+ µ)
∂e

∂z
= 0, (3.20)

where ∇2 = ( ∂2

∂x2
∂2

∂y2
∂2

∂z2
) is the Laplacian operator, e = (εxx+ εyy+ εzz) is the volumetric

strain, and λ and µ are Lamé’s constants defined as

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (3.21)

Many situations in soil mechanics can be treated as two-dimensional problems in

which only the stresses in a single plane need to be considered. The most important case

is the plane strain in which the displacement in one of the coordinate directions (usually

the y direction) is zero. In this case, the object have to be “long” in the y-direction.

Another class of problems are those involving the plane stress where the stress at one of

the coordinates (usually y) is zero. In this case, the thickness (measured in y) is very

small, as in the case of thin plates.

Considering 2D analysis and the material as isotropic and homogeneous, one can write

the equilibrium equation in terms of the displacement field ui = ui (x, z) in the i−direction
(i = x, z) as

α
∂2ux

∂x2
+

∂2ux

∂z2
+ κ

∂2uz

∂x∂z
= 0, (3.22)

∂2uz

∂x2
+ α

∂2uz

∂z2
+ κ

∂2ux

∂x∂z
= 0, (3.23)

in which α = 2 + λ/µ, and κ = 1 + λ/µ.
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3.2 Soil Modeling

A number of approximations are used to model the soil depending on the level of rigor.

In this dissertation soil is modeled as a elastic, continuous, homogeneous and isotropic

medium, and the BEM is used to model the soil.

The BEM is a numerical method for solving boundary value problems (BVP) in engi-

neering. Simply stated, a BVP is a mathematical problem in which one or more dependent

variables must satisfy a differential equation everywhere within a known domain of inde-

pendent variables and satisfy specific conditions on the boundary of the domain. The BEM

is an alternative to the more traditional FEM. Moreover, this method is well-positioned

in problems with infinite domains. The main feature of this method is that it is necessary

to discretize only the boundary of the problem, in contrast to other methods, such as

the FEM, that impose discretization of the entire domain. This feature makes the soil

modeling using BEM attractive, being capable to model an 3D infinite soil by discretizat-

ing only the 2D soil-structure interface. There is a decrease in the discretized dimension.

Also, the BEM provides very good accuracy, especially away from the boundaries whereas

the FEM provides exact solutions only at nodal points.

Some of the disadvantages of the BEM are: Matrix to be solved is full and asym-

metric; its conditioning is not always very good; evaluating the singular integrals on the

boundaries can be difficult; there are a number of singularities and improper integrals that

must be computed numerically. Some of these problems can be solved using numerical

integration techniques and applying it to well-posed problems.

There are two common branches of the BEM: these are known as the so called direct

and indirect formulations. The main difference between the two formulations is the use of

continuous variables with physical meaning (the direct formulation) or the use of unknown

functions represented by fictitious source densities that are used later to calculate real

variables of the problem (the indirect formulation)[60].

The BEM is indicated for problems that have a small boundary/volume ratio, which

is the case of infinite soil. Therefore, it is recommended in the literature [17] to use the

BEM to model the soil medium and the FEM to model the structure. These two different

idealization methods can be appropriately matched at the interface through balance and

compatibility conditions.
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3.2.1 Solution strategy

BEM is based on finding the solution for the displacement (and tension) of the domain

from the principle of superposition of displacements caused by loads applied in specific

regions of the space. The solutions for the influence of these loads in space are called

fundamental solutions. These solutions are only available for relatively simple types of

loading. These solutions are usually found in the literature in the form of functions and

tables.

The solutions for the surface loading cases studied in this dissertation are found in

[19] and the solutions for the influence functions for the buried loading case used in this

dissertation are found in [20]. The derivation consists in subjecting the coupled equilib-

rium equations of soil media to a Fourier transformation, in the space of which boundary

conditions corresponding to buried loads can be imposed algebraically. Stress fields are

obtained from their displacements counterparts through the constitutive equation (see

equations 3.4 to 3.9). Final solutions for the stress and displacement fields of the soil are

expressed in terms of improper integrals in the Fourier transformed space, and must be

evaluated numerically to obtain the solutions in the physical space.

The linear system of equations in Eqs. 3.22 and 3.23 can be written in matrix form as[
α ∂2

∂x2 +
∂2

∂z2
κ ∂2

∂x ∂z

κ ∂2

∂x ∂z
∂2

∂x2 + α ∂2

∂z2

]{
ux

uz

}
= Lu = 0. (3.24)

The non-trivial solution for this matrix equation is obtained when detL = 0, which yields

α
∂4ui

∂x4
+ α

∂4ui

∂z4
+ γ

∂4ui

∂x2∂z2
= 0, (3.25)

in which γ = 4+2λ/µ and i = (x, z). Applying a Fourier transformation to equation 3.25

yields the uncoupled set of equations

αζ4ūi + α
∂4ūi

∂z4
− γζ2

∂2ūi

∂z2
= 0, (3.26)

in which ζ is the Fourier space variable, and the bar on top of variables indicates that

they are written in the transformed space. Assuming that ūz is of the form ūz = eξz ̸= 0,

it comes from equation 3.26 that αζ4 + αξ4 − γζ2ξ2 = 0, which has the following four

roots: ±ξi (i = 1, 2) such that

ξ1,2 =

√
γζ2 ±

√
Φ

√
2α

, (3.27)
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in which Φ = γ2− 4α2. General solutions for ui can be obtained following the form above

as

ūx = ω̄1Ae
−ξ1z − ω̄1Beξ1z + ω̄2Ce−ξ2z − ω̄2Deξ2z, (3.28)

ūz = Ae−ξ1z +Beξ1z + Ce−ξ2z +Deξ2z, (3.29)

with

ω̄i =
αξ2i − ζ2

iκζξi
,

in which the exponential terms are selected so that the general expression complies with

Sommerfeld’s radiation condition for z → ±∞ [61], and A, B, C, and D are arbitrary

functions to be determined from the boundary conditions of a given problem.

3.2.2 Stress fields

The infinitesimal strain components in this two-dimensional, plane strain problem

are given by εij = (ui,j + uj,i) /2, (i, j = x, z), and the constitutive equation is σij =

λ (∇ • u) δij + µ (ui,j + uj,i), with u =
{

ux uz

}T

, in which δij is the Krönecker delta.

In view of Eqs. 3.28 and 3.29, general expression for the stress components in the Fourier

transformed space can be written as

σ̄xx = µ
(
η1Ae

−ξ1z − η1Beξ1z + η2Ce−ξ2z − η2Deξ2z
)
, (3.30)

σ̄xz = µ
(
η3Ae

−ξ1z + η3Beξ1z + η4Ce−ξ2z + η4Deξ2z
)
, (3.31)

σ̄zz = µ
(
η5Ae

−ξ1z − η5Beξ1z + η6Ce−ξ2z − η6Deξ2z
)
, (3.32)

in which

η1,2 =
1

κξ1,2

[(
α2 − κ2 + κ

)
ξ21,2 − ζ2α

]
,

η3,4 =
i

κζ

[
αξ21,2 + (κ− 1) ζ2

]
,

η5,6 = −
1

κξ1,2

[
(κ− 1) ζ2 + αξ21,2

]
.

3.2.3 General solution

Equations 3.28 to 3.32 express general displacement and stress fields in the Fourier

transformed space ζ. Their physical-domain (x, z) counterparts are obtained upon sub-

jecting them to inverse Fourier transforms, which results in

ux =
1√
2π

∫ ∞

−∞

(
ω̄1Ae

−ξ1z − ω̄1Beξ1z + ω̄2Ce−ξ2z − ω̄2Deξ2z
)
eiζxdζ, (3.33)
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uz =
1√
2π

∫ ∞

−∞

(
Ae−ξ1z +Beξ1z + Ce−ξ2z +Deξ2z

)
eiζxdζ, (3.34)

σxx =
µ√
2π

∫ ∞

−∞

(
η1Ae

−ξ1z − η1Beξ1z + η2Ce−ξ2z − η2Deξ2z
)
eiζxdζ, (3.35)

σxz =
µ√
2π

∫ ∞

−∞

(
η3Ae

−ξ1z + η3Beξ1z + η4Ce−ξ2z + η4Deξ2z
)
eiζxdζ, (3.36)

σzz =
µ√
2π

∫ ∞

−∞

(
η5Ae

−ξ1z − η5Beξ1z + η6Ce−ξ2z − η6Deξ2z
)
eiζxdζ, (3.37)

in which A, B, C, and D depend on particular boundary-value problems.

3.2.4 BVP: layer over rigid base

In this dissertation, we obtain the displacement and stress fields for the BVP of a soil

layer of depth h resting over a rigid base. This is the soil medium considered in one of

the results that presents a canal.

The layer is divided into media 1 (0 < z < z′) and 2 (z′ < z < h), at the interface

of which (x = x′, z = z′) a point load pi (x, z) = δ (x′, z′) is applied. The index i = x, z

denote the direction of the load and δ is the Dirac Delta. The expression for pi in the

Fourier space is p̄ (ζ) = (2π)−1.

Continuity conditions are imposed at the interface between media (1) and (2), u
(1)
i (x, z′) =

u
(2)
i (x, z′), in which the superindices denote the media referred to by ui. The free surface

of the layer is described by imposing that σ
(1)
ij (x, z = 0) = 0. The presence of the rigid

base is described by imposing that u
(2)
i (x, h) = 0. For horizontal loads, equilibrium con-

ditions are imposed as σ
(1)
xz (x, z′)−σ

(2)
xz (x, z′) = px (x, z

′) and σ
(1)
zz (x, z′)−σ

(2)
zz (x, z′) = 0,

and for vertical loads σ
(1)
xz (x, z′)− σ

(2)
xz (x, z′) = 0 and σ

(1)
zz (x, z′)− σ

(2)
zz (x, z′) = pz (x, z

′).

In order to formulate the constant boundary elements used to model the soil in this

dissertation, stress and displacement fields due to uniformly distributed buried loads must

be derived. These are extensions of the BVP above for the case in which the point load

is replaced by loads that are distributed on a horizontal or vertical line of length 2a.

These can be written as pi (x, z) = H (−a) − H (a), in which H is the unit Heaviside

step distribution, and their expression in the Fourier space is p̄ (ζ) = 2 sin (ζa) /
√
2πζ.

The corresponding boundary conditions must be imposed for −a < x < a, z = z′ for

horizontally-distributed loads, and for −a < z′ < a, x = x′ for the case of vertically-

distributed loads. Horizontally- and vertically-distributed loads are used in this disserta-

tion to describe respectively the bottom and side faces of the canal.
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3.2.5 Isotropic layer case

A crucial detail for the isotropic layer case considered in this dissertation is that,

in this case, Φ = 0 and ξ1 = ξ2 = ζ (equation 3.27), and the numerical evaluation of

Eqs. 3.33–3.37 is sometimes unattainable. A special solution has been derived for this

case, with the introduction of variable

θ =
λ

µ
=

2ν

1− 2ν
, (3.38)

in which ν is the Poisson ratio. In view of equation 3.38, α = θ + 2 and κ = θ + 1, and

displacement and stress solutions for the isotropic case can be written as

ūx(ζ, z) = Ae−ζz +Beζz + ω1Ce−ζz + ω2Deζz,

ūz(ζ, z) = iAe−ζz − iBeζz + iζzCe−ζz − iζzDeζz,

σ̄xx(ζ, z) = µ(2iζAe−ζz + 2iζBeζz + 2iζη1Ce−ζz + 2iζη2Deζz),

σ̄xz(ζ, z) = µ(−2ζAe−λz + 2ζBeζz − 2ζη3Ce−ζz + 2ζη4Deζz),

σ̄zz(ζ, z) = µ(−2iζAe−λz − 2iζBeζz − 2iζη5Ce−ζz − 2iζη6Deζz),

in which

ω1,2 = ζz ∓ θ + 3

θ + 1
,

η1,2 = ζz ∓ 2θ + 3

θ + 1
,

η3,4 = ζz ∓ θ + 2

θ + 1
,

η5,6 = ζz ∓ 1

θ + 1
.

3.2.6 Numerical evaluation

The numerical evaluation of Eqs. 3.33–3.37 requires special attention. The integrand

of these expressions contain a number of singularities within 0 < ζ ≤ 1, and an indefinitely

alternating-decaying behavior for ζ > 1. In the present implementation, we incorporate

a small damping η into µ through µ∗ = µ (1 + iη) [62] and use the complex-valued µ∗

instead of µ throughout the analysis. This has negligible effect in the response of the

soil, but it takes the singularities out of the real contour of integration, and makes the

evaluation of the integral possible through some classical adaptive Gaussian quadrature

[63]. For the ζ > 1 domain, we use an extrapolation-based numerical recipe that avoids
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truncation of the integration interval [64].

3.3 Finite Element Method Modeling

The finite element method, sometimes referred to as finite element analysis (FEA), is

a computational technique used to obtain approximate solutions of BVP in engineering.

The idea is to divide the domain of the continuous structure into smaller discrete structures

called elements. The equilibrium equation of the full structure is given by:

Ku = F, (3.39)

where K is the global stiffness matrix, u is the displacement field and F is the vector of

forces. The balance of the structure is resolved within each element and then assembled

on the full structure to obtain an approximate solution.

The number of elements used to discretize the domain defines the desired level of ap-

proximation to the final solution. The more elements used, the better the approximation.

When more elements are used, the discretization is said to be more refined. Figure 10

shows two modeling examples using elements of different sizes. The shaded region repre-

sents the area not included in the model. This area is smaller when the discretization is

more refined. The elements of a discretization are interconnected by nodes. The solution

is given at each node and interpolated throughout the element.

Figure 10: Arbitrary shape geometry modeled using square elements. a) Using 16 finite elements the
area not included in the model is larger than b) using 85 elements.

(a) (b)

Illustration by Author.

Depending on the type of element used, approximations to the displacement are de-

fined for the equilibrium equation solution. These answers are approximated using so-

called shape functions Ni as:

ū =
4∑

i=1

Niui. (3.40)
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where ū is the approximated displacement field and ui the displacements at each node i.

Figure 11: Quadrilateral element.

Illustration by Author.

In this dissertation, the structure is discretized

using a two-dimensional isoparametric quadrilateral

element as shown in the figure 11. The shape func-

tions for interpolate displacement are given by:

N1 = 1/4(1− r)(1− s)

N2 = 1/4(1 + r)(1− s)

N3 = 1/4(1 + r)(1 + s)

N4 = 1/4(1− r)(1 + s)

(3.41)

where r and s are the local coordinates of the parent

element as shown in the figure 12.

The quadrilateral element is a 4-noded element and has 2 degree of freedom (DOF)

per node. Isoparametric element uses a mapping scheme to deal with deformed elements.

In this approach, each node is related to a rectangular parent element in a regular dis-

cretization as the illustration in the figure 12. An interpolation function is used to map

the element. The geometry interpolation is given by:

x =
4∑

i=1

Nixi, (3.42)

where Ni are the same shape functions used to interpolate the displacement shown in

equations 3.41.

Figure 12: Mapping of isoparametric element geometry.

Illustration by Author.

Once the mapping is done, we can write the local coordinates r and s as a function

of the global coordinates x and z. Deriving the displacement (u or v) in relation to the
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global coordinates and using the chain rule, one has

∂()

∂r
=

∂()

∂x

∂x

∂r
+

∂()

∂z

∂z

∂r

∂()

∂s
=

∂()

∂x

∂x

∂s
+

∂()

∂z

∂z

∂s
,

(3.43)

and then one can write
∂()

∂r

∂()

∂s

 =


∂x

∂r

∂z

∂r

∂x

∂s

∂z

∂s



∂()

∂x

∂()

∂z

⇒

∂()

∂r

∂()

∂s

 = [J]


∂()

∂x

∂()

∂z

 , (3.44)

in which J is the Jacobian matrix.

The deformations in the elements are defined from the derivatives of the displacements

with respect to local coordinates:

ε = Bu (3.45)

where the matrix B is obtained by differentiating the shape functions N.

The element stiffness matrix Ke is given by

Ke =

∫
V

BTDBdV (3.46)

where V denotes the volume. The integration is done numerically using the Gaussian

integration. For this, it is convenient to transform the limits of integration as follows

Ke =

∫ 1

−1

∫ 1

−1

BTDBt det(J)drds (3.47)

considering a constant thickness t.

A set of 2x2 points are used to calculate the Gaussian quadrature. Structural dis-

placements are evaluated at the nodes and stress are calculated at the centroid of the

element. Figure (13) shows a representative element with the Gauss points used to cal-

culate displacements and stress calculations.

Once the element stiffness matrix is calculated, the global stiffness matrix is assembled.

Boundary conditions are given by coupling with the soil, as presented in the Methodology

section.
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Figure 13: Gaussian quadrature points for calculating a) displacements and b) stresses.

Illustration by Author.

3.4 Optimization

Optimization refers to strategies for a rationalized search for an optimal solution

automatically, systematically and independent of the designer’s experience. A well-known

example is maximizing a company’s profit given the products it can produce, restricted to

the amount of raw material available. For an inattentive reader, this problem may seem

simple, it would be enough to analyze all the options and choose the best one. However,

real-world problems can have thousands of variables and millions of combinations.The

smartest way to find the optimum is to analyze by performance by using Operational

Research.

Operational Research (OR) is the search for the best use of resources and processes

to improve decision-making of a real problem. It is sometimes defined as the search

for methods to determine extreme values (maximum or minimum) of a function (profit,

performance, cost, loss). It is done by manipulating variables under constraint conditions.

By using other mathematical science fields such as modeling, statistics, and optimization,

OR arrives at the optimal or near-optimal solution to complex decision problems.

Optimization is a field of mathematics. It is also called mathematical programming,

“a somewhat confusing term coined in the 1940s, before the word “programming” became

inseparably linked with computer software” [65]. The development of mathematical pro-

gramming in the 1940s stimulated the field and led to the publication of several articles

and books in addition to the creation and investigation of new optimization methods.
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3.4.1 Fundamentals of Optimization

In the 1960s, with the emergence of the FEM, structural optimization problems began

to be widely studied and applied in engineering, mainly in the aeronautical industry, where

weight restrictions are more important than cost restrictions. The idea of developing a

structure with greater stiffness and with as little material as possible can be achieved

by minimizing the Structural Mean Compliance, subjecting the structural domain to a

volume constraint. Structural Mean Compliance (C) is a scalar quantity that can be

understood as the inverse of structural stiffness. This property is given by the work of a

applied external force F that generates a displacement U in the structure.

C =
1

2
F TU . (3.48)

Generally speaking, the smaller the compliance of a structure, the greater its stiffness.

Many algorithms in topology optimization work on minimize the compliance of a structure,

subject to a volume constraint, thus maximizing the structural stiffness given a final

volume constraint. In this dissertation, all problems are of compliance minimization.

Some concepts that are fundamental within the field of optimization are design vari-

ables, objective function and constraint function are introduced bellow:

• Design variables: are the variables that the designer has control. The determination

of their value is the goal of the optimization process. They are usually presented in

the form of a x vector. Example: quantity of products of type “A” or “B” to be

produced, the values to be invested in each investment, cross-sectional area, member

sizes, where there will be or not material in a structure, etc.

• Objective functions: these are functions to be extremized that depend on the design

variable. Some problems that can have multiple objective functions are called multi-

objective. Examples in classical problems are cost to be minimized, profit to be

maximized, minimization of compliance, etc.

• Constraint functions: are functions that constrain the domain to a region of interest

in which the problem is delimited. They can be of two types: inequality when

delivering upper and/or lower bounds to the design variable or equality which are

more restrictive, as they encircle the viable domain more tightly. Examples include

the restriction of expenses, material, volume, etc. Constraint functions define the

viable domain: the domain location where all constraint functions are satisfied.

Within this domain there is an extreme value that is the best answer to the problem.
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Optimization methods try to reach this point although there is no guarantee that

they will have reached it at the end of the optimization.

The values that design variables can take are often used as a way of classifying opti-

mization methods. Depending on the problem to be addressed, each optimization method,

or the choice of design variable, can bring advantages and disadvantages.

Within Linear Programming (LP), for problems in which design variables can only

assume integer values, the problems are said to be of Integer Linear Programming (ILP).

When the variables can only assume values 0 or 1 we call it Binary Variables. Finally,

Mixed Integer Linear Programming (MILP) are those where some design variables can be

continuous and other can assume only integer values.[22]

In the context of structural optimization the term “Binary Structures” can denotes

structures whose domain can be defined by 0 for void locations or 1 to solid locations.

“Binary methods” make use of this property. This has a number of advantages when

compared to other ways of defining design variables. Some of these advantages are eas-

ier problem boundary definition, ability to deal with multi-physics and multi-objective

problems, etc.

3.4.1.1 Standard Formulation

Optimization problems can be written as follows

Minimize
x

f(x)

subject to g(x) ≤ 0,

h(x) = 0,

x ∈ Ωx

(3.49)

where f(x) is the objective function to be extremized, g(x) are inequality constraint

functions, h(x) equality constraint functions and x is the vector of design variables that

belong to a domain Ωx. The values of x that satisfy the constraints form the feasible

domain. Using minimization as the default in the notation does not generate a loss of

generality since we can switch to a maximization problem just by changing the sign of

f(x) to negative.

When both the objective function and constraint functions are linear functions of

design variable so the problems are of linear optimization and are solved by Linear Pro-

gramming (LP). However, if at least one of this functions is a nonlinear function of design
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variable, so the problems is said to be of nonlinear optimization and make use of Nonlinear

Programming (NLP).

3.4.2 Structural Optimization

Optimization of structures can take place along three lines [22]: Parametric Optimiza-

tion, Shape Optimization and Topology Optimization. Figure 14 shows examples of the

three categories of optimization.

Figure 14: Three categories of structural optimization. Parametric Optimization, Shape Optimization
and Topology Optimization.

• Parametric Optimization: an initial shape of the structure is given, based on the

designer’s experience and the structure parameters are optimized, such as diameters,

lengths, thicknesses, etc., subject to a constraint such as local stress, deflection, etc.

• Shape Optimization: in shape optimization, an initial topology is given (Initial

shape with location and number of holes) and then the shape of the structure

boundaries and holes are optimized without modifying their topology (number of

holes and bars) generally using spline curves. In this type of optimization new holes

does not appear.

• Topology Optimization: the material distribution over a solid domain is controlled

by a design variable. The process consists of defining in the optimized structure

where the material is present (design variable equals to 1) or absent (design variable

equals to 0).
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3.4.3 Sensitivity Analysis

Sensitivities are numerical evaluations of how the function of some variable changes

due to a change in the design variable. Objective and constraint functions must be

evaluated at each optimization step for their sensitivity when the design variable changes.

This can be done via the derivatives of these functions.

Between the main method for calculating the sensitivities of a function, one can cite:

Finite Difference Method (FDM), Analytical Methods and the Semi-Analytical Method.

The choice of method to use depends on the number of design variables n and the number

of constraints ni, although this choice can also be up to the programmer.

3.4.3.1 Finite Difference Method

The FDM is an easy to implement and very popular method that can be divided into:

progressive, regressive or central difference method [66].

In progressive finite difference, having in hand the value of the function in xi, the

function is evaluated at a point xi + ∆x and a linear approximation of the derivative is

made as follows:
df(x)

dxi

=
f(xi +∆x)− f(xi)

∆x
, (3.50)

where n additional analysis are needed to calculate f(xi+∆x) and the estimated approx-

imation error is on the order of ∆x.

In the regressive FDM, having the value of the function in xi, the function is evaluated

at a point xi −∆x and a linear approximation of the derivative is made as follows:

df(x)

dxi

=
f(xi)− f(xi −∆x)

∆x
, (3.51)

here again, n additional analysis are needed to calculate f(xi − ∆x) and the estimated

approximation error is on the order of ∆x.

Finally, in the central finite difference, the function is calculated at an earlier point

f(xi −∆x) and a later point f(xi +∆x) in order to make use of a linear approximation

of the derivative as follows

df(x)

dxi

=
f(xi +∆x)− f(xi −∆x)

∆x
, (3.52)

where 2n additional analysis is needed to calculate f(xi −∆x) and f(xi + ∆x) and the

estimated approximation error is on the order of ∆x2. That is, it is more expensive than
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the progressive and regressive methods, but more accurate.

3.4.3.2 Analytical Methods

Among the methods for calculating sensitivity, the analytical method is the most

accurate. It provides the exact value. It is based on numerical calculus theory and uses

differentiation rules like chain rule, and product rule, etc. [66].

The analytical method can be divided into direct method or adjunct method.

• Direct Method

Let an objective function f(u(x),x) with a constraint of the type A(x)u = B(x),

one has for the direct method:

df(u,x)

dx
=

∂f(u,x)

∂x
+ zT

du

dx
, (3.53)

where the first term is the explicit derivative (usually zero), the second term is the implicit

derivative calculated using the chain rule, and z is the gradient of f with respect to u(x)

z = ∇uf. (3.54)

The derivative du/dx in the last term of equation 3.53 can be calculated from the

constraint:
A(x)u = B(x)

⇒ d(A(x)u)

dx
=

dB(x)

dx
,

(3.55)

applying the product rule on the left side of the equality we can rewrite

dA(x)

dx
u+A(x)

du

dx
=

dB(x)

dx
, (3.56)

isolating the term du/dx, we have

du

dx
= A−1(x)

(
dB(x)

dx
− dA(x)

dx
u

)
, (3.57)

the above system must be resolved for each design variable x. Therefore, we can write

the sensitivity as:

df(u,x)

dx
=

∂f(u,x)

∂x
+ zTA−1(x)

(
dB(x)

dx
− dA(x)

dx
u

)
, (3.58)

the matrices A(x) and B(x) can usually be written explicitly in terms of x and their

derivatives are computed analytically.
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• The Adjoint Method

Consider an objective function f(u(x),x) with a constraint of the typeA(x)u = B(x),

one has for the adjunct method:

L(u(x), x, λ) = f(u(x), x) + λT (A(x)u − B(x)), (3.59)

where λ is an arbitrary variable called adjoint variable. With respect to the restriction,

the second term on the right side of the equation is null, so

dL

dx
=

df

dx
. (3.60)

Then,
dL

dx
=

df

dx
+ λT

(
d(A(x)u − B(x))

dx

)
, (3.61)

dL

dx
=

∂f(u,x)

∂x
+ zT

du

dx
+ λT

(
d(A(x)u − B(x))

dx

)
, (3.62)

this calculation is done to each constraint gj. Applying the product rule we have:

dL

dx
=

∂f(u,x)

∂x
+ zT

du

dx
+ λT

(
dA

dx
u+A

du

dx
− dB(x)

dx

)
. (3.63)

Joining the terms with du/dx we have:

dL

dx
=

∂f(u,x)

∂x
+ (zT + λTA)

du

dx
+ λT

(
dA

dx
u− dB(x)

dx

)
. (3.64)

The adjoint variable λ is chosen such that the term that multiplies du/dx is null and

thus it is not necessary to solve the system of equations solved in equation 3.57. For this,

the following system must be satisfied:

zT + λTA(x) = 0⇒ λT = −zTA−1(x). (3.65)

Substituting this condition in equation 3.64, we have:

dL

dx
=

∂f(u,x)

∂x
− zTA−1(x)

(
dA(x)

dx
u− dB(x)

dx

)
. (3.66)

The Direct and the Adjoint Methods arrive at the same result (see equation 3.58),

however, computationally, by different ways. As noted, the direct method is more expen-

sive when the number of design variables is greater than the number of constraints and

the adjunct method, in turn, is more expensive when the number of constraints is greater
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than the number of design variables [66].

3.4.3.3 Semi-Analytical Method

In the semi-analytical method, the first steps of the analytical method are followed

until arriving at equation 3.58 or equation 3.66. In the semi-analytical method, the first

steps of the analytical method are followed until arriving at equation 3.58 or equation 3.66.

The Semi-Analytical method, however, proposes that the derivatives of the matrices A(x)

and/or B(x) be computed using the finite difference method, that is:

dA(x)

dx
≈ A(x + ∆x) − A(x)

∆x
, (3.67)

where ∆x is a sufficiently small variation in the design variables.

As in the FDM, the approximation to the matrix A must also be done n times, where

n is the number of elements of the vector x. This can make this method expensive owing

to the need to compute the matrix A taking into account the increment ∆x in each

element of the vector. However, this method can be advantageous in cases where A does

not explicitly depend on x, or when it is very difficult to find an analytic function for the

derivative.

3.4.4 Material Model

Evaluating the analytic derivative of the matrix A or B as a function of the design

variable x can be challenging for problems where there is no explicit function. For opti-

mization problems, some tricks are used to get around this difficulty. For the special case

of the structural problem (Ku = F ), the matrices A and B are stiffness matrix K and

force vector F , respectively. A widespread method is the interpolation of the densities xi

through a penalty function.

The SIMP material method (not to be confused with the homonymous optimization

method) proposed by [23] interpolates the structural stiffness by:

K(xi) = A→ xi
pKi (3.68)

in which K is the global stiffness matrix, Ki is the element stiffness matrix, and p is a

positive penalty.
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The derivative of the matrix K as a function of the design variable xi is given by

dK

dxi

= pxi
p−1Ki. (3.69)

This result can be substituted in Eqs.(3.58) and (3.66) to obtain a complete expression

of the analytical methods. Note that, in the above equations, dF/dx = 0 (= dB/dx),

since the applied force does not depend on the density of the element. Then the sensitivity

is:

f ′ = −pxi
p−1unKi

−1un. (3.70)

where un is the displacement of each element.

3.4.5 Topology Optimization

The two main optimization problems in the mechanic industry are the minimization

of mechanical stress and the maximization of stiffness. Topology optimization for stress

minimization, however, is still an open problem in engineering. The complexity of this

problem is explained by the fact that mechanical stress is a local constraint and we have

infinite points in the domain where this constraint must be applied, in addition, the

removal of elements can cause stress concentration problems, which makes the problem

even more complex. This work, however, focuses on compliance minimization.

The most common approach to TO is to use the pseudo-density ρ (hereinafter called

density) as the design variable that are assigned for each element in a finite element mesh

discretizing the design domain. The stiffness matrix of the structure continuously depends

on this variable.

The first approach works with continuous variables and apply a penalty factor to try

leading the solution to near black-and-white results. The binary TO methods, on the

other hand, keep the original ρ = {0} or {1} binary variables. The design variable points

out where there should or should not be material.

In the SIMP method a “material model” is used to interpolate the problem physics

linking it to the continuous design variables. The results using continuous variables are

characterized by presenting regions in gray scale, representing the continuous values of the

design variable (see figure 15). However, in practice one usually wants a black-and-white

design in the macroscale. At the end of the optimization, it is necessary to penalize the

gray scale elements using methods keeping the volume constraint active.

Early, in the development TO methods there were mesh dependency issues and the
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Figure 15: SIMP characteristic result with gray scale at boundary.

checkerboard pattern appearance in the final solution, or even lack of convergence [67].

Checkerboard pattern is a configuration of elements where two neighboring elements are

linked by just one node. This configuration presents an artificial stiffness.

This barrier have been overcome by the creation of techniques and filters that leave

the solution free of checkerboard and mesh-independent [44,68]. These techniques will be

discussed bellow. The BESO method [44] evolved from the idea that less contributing

portions of material can be systematically removed (or added) from the structure by eval-

uating the sensitivity field of the objective function and using a target mass volume. The

standard BESO update scheme does not uses mathematical programming and working

only on volume restriction. Despite the term ”evolutionary” the ESO and BESO methods

are gradient-based methods.

The strategy is to order the compliance sensitivities (gradients) in a vector and define

as void (or full) the elements that have the lower (or higher) sensitivity values. The choice

of the amount of elements to be removed (or added) is controlled by an arbitrary variable

that depends on the final volume and is defined by the user heuristically, in other words,

it is not based on a automatic and systematic choice. Thus, BESO method ends up being

more restricted despite providing a result with explicit structural boundaries [69]. Also,

this brings challenges when applying the method to problems without volume constraints

[31].

Figure 16: BESO characteristic result with well-defined boundary.

The TOBS is a method that generalizes the binary topology optimization problem
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using formal mathematical programming. In this method the original problem is linearized

in sub-problems that are solved using the branch-and-bound algorithm. The Branch-

and-bound algorithm is a method that solve Integer Linear Problems. It consists of a

systematic enumeration of all solution candidates, whereby large subsets of unfeasible

candidates are discarded using the upper and lower bounds of the optimizable quantity.

This allows the method to consider multiple and different constraints, rather than just

volume-based one. This method also uses sensitivity filters to avoid both checkerboard

and mesh-dependency issues. The TOBS method was the first to produce convergent and

mesh-independent TO solutions using Integer Linear Programming by mean of the branch-

and-bound algorithm. Figure 17 shows a characteristic result for minimum compliance

problem in the MBB-Beam example. Other TOmethods, such as those based on boundary

movement will not be considered in this work.

Figure 17: TOBS characteristic result.

3.4.5.1 The TOBS Method

A generic binary optimization problem with inequality constraints is given by

Minimize
x

f(x),

Subject to gi(x) ≤ gi, i ∈ [1, Ng],

xj = 0 or 1, j ∈ [1, Nd],

(3.71)

where f is the objective function, gi is the ith inequality constraint, gi is the associated

upper bound and Ng is the number of inequality constraints in the optimization problem.

Since general topology optimization problems are highly nonlinear and non convex, the

TOBS method generates and solves approximate integer linear suboptimization problems

iteratively. Using the Taylor’s series approximation, the objective and constraint functions
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can be written as

f(x) = f(xk) +
∂f(xk)

∂x
·∆xk +O(

∣∣∣∣∆xk
∣∣∣∣2
2
),

gi(x) = gi(x
k) +

∂gi(x
k)

∂x
·∆xk +O(

∣∣∣∣∆xk
∣∣∣∣2
2
),

(3.72)

where (·)k indicates the value of quantity (·) at the iteration k andO(
∣∣∣∣∆xk

∣∣∣∣2
2
) corresponds

to superlinear terms. TOBS employs truncated linear approximations of the objective and

constraint functions,

f(x) ≈ f(xk) +
∂f(xk)

∂x
·∆xk,

gi(x) ≈ gi(x
k) +

∂gi(x
k)

∂x
·∆xk,

(3.73)

with the truncation error being O(
∣∣∣∣∆xk

∣∣∣∣2
2
). One can use ∆xk as the vector of change in

design variables in order to solve the optimization problem in Equation 3.71. In general, in

structural topology optimization, xj = 1 represents a solid element. In this case, one can

choose ∆xj ∈ {−1, 0} to prescribe that the element j either turns void (xj = 0) or remains

solid. The same goes for void elements: one can choose ∆xj ∈ {0, 1} prescribing that the

element j either turns solid or remains void after solving the integer linear subproblem.

The set ∆xj is given to the optimizer as a bound constraint, e.g.,0 ≤ ∆xk
j ≤ 1 if xk

j = 0,

−1 ≤ ∆xk
j ≤ 0 if xk

j = 1,
(3.74)

or, in the unified form,

∆xk
j ∈ {−xk

j , 1− xk
j}. (3.75)

Thus, the optimizer picks optimal ∆xk
j while satisfying the problem constraints and also

satisfying integer-only constraints.

In order to maintain the linear approximation (Equation 3.73) valid, the truncation

error O(
∣∣∣∣∆xk

∣∣∣∣2
2
) cannot be large. The truncation error is controlled by adding an extra

constraint that restricts the number of flips of ∆xk from 1 to 0 and vice-versa. This

constraint can be written as ∣∣∣∣∆xk
∣∣∣∣
1
≤ βNd. (3.76)

For topology optimization, this means that the number of elements evolving from solid

to void and vice-versa in each iteration are restrained to a β fraction of the total number

of design variables Nd. Using small values of the control parameter β ensures that the

number of flips remains low at each iteration k, thereby keeping the truncation error
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small.

Using the sequential linear approximations from Equation 3.73 in the original op-

timization problem (Equation 3.71) and the extra constraints from Equation 3.75 and

Equation 3.76, one can write the approximate integer linear subproblem as

Minimize
∆xk

∂f(xk)

∂x
·∆xk,

Subject to
∂gi(x

k)

∂x
·∆xk ≤ gi − gi

(
xk
)
:= ∆gki , i ∈ [1, Ng],∣∣∣∣∆xk

∣∣∣∣
1
≤ βNd,

∆xk
j ∈ {−xk

j , 1− xk
j}, j ∈ [1, Nd].

(3.77)

Equation 3.77 expresses the sequential optimization subproblems in the standard form

solved by TOBS. The term f(xk) from the linearization (Equation 3.73) is dropped out

in Equation 3.77 since scalar addition to the objective function does not alter the opti-

mum design variables. The same is not valid for the constraints. There are some classic

equivalences in the optimization context with regard to the objective function and the con-

straint functions. Minimizing F (x)+constant is the same as minimizing F (x). Imagine a

second-degree polynomial function. The value of x that makes F (x) minimal also makes

F (x) + constant minimal. It can be shown that this applies to problems with greater

degrees and numbers of variables. The constraint function, however, since it works as a

boundary that delimits the optimizable domain of the design variables, cannot be changed

as this would change that boundary. Note that the term gi(x
k) is used to compute the

right-hand side of the constraint ∆gki . The truncation error constraint (Equation 3.76)

keeps the topology from undergoing great changes. This might lead to the infeasibility of

some of the constraints gi in the current iteration k when the bound ∆gki = gi− gi
(
xk
)
is

used. This can be avoided by modifying the upper bounds of constraints ∆gki so that the

suboptimization problems yield feasible solutions. This also helps in generating feasible

subproblems when the initial solution given to the optimizer is far from being feasible, for

instance, starting with a fully solid design domain and having a small volume constraint

in the problem. The constraint bounds are modified using

∆gki =


−ϵigi

(
xk
)

: gi < (1− ϵi)gi
(
xk
)
,

gi − gi
(
xk
)

: gi ∈ [(1− ϵi)gi
(
xk
)
, (1 + ϵi)gi

(
xk
)
],

ϵigi
(
xk
)

: gi > (1 + ϵi)gi
(
xk
)
,

(3.78)

where ϵi is the relaxation parameter corresponding to constraint gi. These parameters
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are selected such that the optimization subproblems obtained through linearization yield

feasible solutions. The modifications are made such that after the linearized subproblem

is solved, the constraint value is expected to remain close enough to the constraint value

before solving the subproblem. For instance, when gi
(
xk
)
is far from gi and approaches

it from above, the upper bound of the linearized constraint gi is −ϵgi
(
xk
)
. This means

that the change of gi
(
xk
)
at the iteration k is a fraction ϵi of gi

(
xk
)
and should enforce a

decrease in gi
(
xk
)
so that it gradually comes close to gi.

The integer optimization subproblems generated using sequential linearization (Equa-

tion 3.77) can be solved using Integer Linear Programming (ILP). An ILP problem is the

same as a Linear Programming (LP) problem, with additional constraints that the design

variables can only have integer solutions. This leads to ILP-based solutions being subop-

timal with respect to the LP-based solutions. However, since this topology optimization

scheme requires binary {0, 1} solutions, integer programming is a reasonable approach. In

this work, the ILP problem is solved using the branch-and-bound algorithm implemented

in the MATLAB built-in intlinprog function, which solves mixed integer linear prob-

lems. The branch-and-bound method is an algorithm based on the heap data structure.

The ILP is first solved without any integer constraints using some linear optimization

techniques.Then branches of LPs are created with additional inequality constraints on

the design variables, in order to obtain the final integer solutions. The integer solutions

of subproblems Rn are stored for further evaluation of the optimal point (local minimum

of the objective function), so that recursive investigations, of the optimization tree (which

is the set of all integer solutions found during the search), can be carried out [70, 71]. In

other words, the optimizer looks among the previous LP solutions for the one that has

the best value for the objective function.

3.4.5.2 Filtering

Numerical filtering is employed in density-based topology optimization approaches to

obtain mesh-independent solutions and to avoid the checkerboard pattern problem, as

shown in figure 18. This setting has an artificial numerical stiffness. Figure 19 shows an

example of the mesh dependency problem.

As shown in figure 19, the optimizer achieves different topologies depending on the

discretization. For didactic purposes, in this example, a sensitivity filter was not applied,

which leads to mesh dependency results. The filter used and the correct way to apply it

is shown below.
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Figure 18: Checkerboard Pattern.

Figure 19: Mesh dependency problem: different topologies given by different discretizations.

The filtered sensitivity for an element j is obtained using a weighted average of element

sensitivity over the neighborhood of j defined by a filter radius rmin.

Figure 20: Numeric filter radius detail shown in a sensitivity plot with colormap.

r

As we can see at figure 20. The larger rmin, the smoother the filtered sensitivity.

The filtered sensitivity field
∂̃f

∂xj

is given as

∂̃f

∂xj

=
1∑

m∈Nm
Hjm

∑
m∈Nm

Hjm
∂f

∂xm

, (3.79)

where Nm is the set of elements m for which the center-to-center distance dist(xj, xm)

from element j is smaller than the filter radius rmin, and Hjm is a weight factor given by

Hjm = max(0, rmin − dist(xe, xm)). (3.80)

The weights are defined such that elements closer to element j contribute more to the
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filtered sensitivity of j than more distant elements. The filtered sensitivity
∂̃f

∂xj

and
∂̃g

∂xj

are used in place of
∂f

∂xj

and
∂g

∂xj

in the linearized optimization problem in Eq. 3.77.

Filtering increases the chances of void elements to return to solid state, especially near

highly stressed solid regions. On the other hand, it may lead to inaccurate assessment of

the sensitivity in the void regions. One way to mitigate this is to employ time stabilization

for the sensitivity field as proposed by [44]. In practice, the filtered sensitivity field is

averaged over two consecutive iterations as

∂̃f

∂xj

k

←−

∂̃f

∂xj

k

+
∂̃f

∂xj

k−1

2
. (3.81)

In this dissertation, all results use TOBS as optimization method and consider com-

pliance minimization subject to volume, equilibrium and soil-structure interaction con-

straints. The structural optimizable domain is discretized using finite element method

and the soil is modeled using indirect boundary element method in a static analysis.



49

4 METHODOLOGY

4.1 Structural Problem

Consider a plane strain, linear-elastostatic problem with external mechanical loads

acting on a two-dimensional structural domain Ω, where σ is the stress field, b are body

forces, D is the elasticity tensor, ϵ is the strain field, (·)(k,l) is the symmetric gradient, u is

the displacement field, g is the specified displacement field, ξ indicates x and z coordinates,

Γg is the part of the boundary where displacement boundary conditions are specified, nj

is the normal vector, ti is the specified traction loading, and Γt is the part of the boundary

where traction boundary conditions are specified. Table 1 summarizes the formulation of

the strong form of this problem.

Table 1: Strong form for linear elastostatics.

σij,j + bi = 0 Equilibrium equation
σij = Dijklϵkl Constitutive equation
ϵkl = u(k,l) Infinitesimal strain tensor

u = g for ξ ∈ Γg Essential boundary conditions
σijnj = ti for ξ ∈ Γt Natural boundary conditions

ui : Ω→ IR Solution map

The variational form of this problem can be given as

Find u = {uiei : u = g for ξ ∈ Γg, u ∈ S} such that∫
Ω

δu(i,j)Dijklu(k,l) dΩ =

∫
Ω

δuibi dΩ +

∫
Γt

δuiti dΓ
(4.1)

where δui defines the displacement variations, ei is the unit vector in the i−direction
(i = x, z), S is the solution space for displacements, u and g represent the displacement

vector and specified displacement vector at a material coordinate, respectively. Using

finite element approximation, Eq. (4.1) becomes

Find uh = {uh : uh ∈ Sh ⊂ S and uh = gh for ξ ∈ Γg} such that∫
Ω

δuhTBsTDBsuh dΩ =

∫
Ω

δuhTN sT b dΩ +

∫
Γt

δuhTN sTN sth dΩ
(4.2)

in which the superscript (·)h indicates that the quantity (·) is discretized, h indicates the

element size, uh is the vector of nodal displacements, Sh is the finite element approxima-
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tion space, and N s and Bs are the matrices corresponding to shape functions and their

gradients, respectively.

We use Voigt notation for the representation of matrices in this work, and drop the

superscript h for the sake of simplicity. Equation (4.2) can be written in the following

matrix form

Ku = F (4.3)

in which K is the stiffness matrix (corresponding to the left-hand side of Eq. (4.2)),

F is the f equivalent nodal forces, (corresponding to the right-hand side of Eq. (4.2)).

The stiffness matrix and load vectors are obtained by assembling element-wise stiffness

matrices (Ke) and element-wise load vectors (F ), which are given by

Kj =

∫
Ωj

BsTDjB
s dΩ

Fj =

∫
Ωj

N sT b dΩ +

∫
Γt∩Γj

N sTN st dΩ

(4.4)

where Ωj is the subdomain corresponding to structure finite element j, and Γj is the

associated finite element boundary. The elasticity tensor for each finite element is modeled

using a penalization method like SIMP, such that

Dj = xp
jD (4.5)

in which D is the elasticity tensor for a fully solid finite element, xj is the design variable

to be optimized within optimization context, and p = 3 is the penalization factor. In this

work, we use xj = 1 and xj = 0.001 to represent solid and void material, respectively. The

value xj = 0.001 is used instead of xj = 0 in order to avoid problems with singularities in

the finite element matrix.

4.2 Soil-Structure Coupling

Figure 21 illustrates the coupling considered in this formulation. A surface structure is

modeled by finite elements and the soil is modeled with the IBEM. This section describes

the coupling between the two methods at the interface – the surface of the soil.

In this formulation, the soil is modeled as a homogeneous, two-dimensional, un-

bounded half-space. The contact interface between the superstructure and the soil is

discretized by a number of elements in which displacements and tractions are considered

to be uniformly distributed. The superstructure is modeled with linear-elastic, four-noded
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Figure 21: Model of soil-structure interaction through an IBEM-FEM coupling scheme.
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boundary elements

finite
elements

quadrilateral finite elements, with two degree-of-freedom per node (displacements in the

x− and z−directions). Concentrated or distributed forces can be applied anywhere in

the structure in terms of nodal equivalents. The interface is discretized such that there is

one boundary element of soil corresponding to each finite element of the structure at the

interface. A condition of perfect bonding (no slip) between soil and structure is assumed;

perfect continuity condition is imposed at the interface.

4.2.1 Equilibrium at the interface

In this coupling formulation, the influence of the presence of the soil is incorporated

in the response of the structure through a set of equivalent nodal contact forces fs, such

that:

Ku = F − fs, (4.6)

in which K is the same stiffness matrix of the structure from Eq. (4.3).

The distribution of contact tractions at the interface is unknown. These are ap-

proximated by a series of piece-wise constant approximations called fictitious stresses qi,

(i = x, z) (figure 22). Notice that, since the boundary and finite elements have different

orders of approximation, the number of nodes in the IBEM discretization is incompatible

with those of the FEM discretization.

The distribution of fictitious contact stresses qi in terms of nodal equivalents fsi must

account for this difference (figure 23). This transformation is obtained through

fs = Aq, (4.7)
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Figure 22: Piece-wise constant approximations for contact tractions.
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in which

fs =
{
f 1
sx f 1

sz f 2
sx f 2

sz · · · fnn
sx fnn

sz

}T

2nn×1
(4.8)

and

q =
{
q1x q1z q2x q2z · · · qns

x qns
z

}T

2ns×1
(4.9)

in which nn and ns are the number of nodes in the FE and BE meshes, respectively, and

A =
1

2



l1e 0

0 l1e

l1e 0 l2e 0

0 l1e 0 l2e

l2e 0

0 l2e
. . .

lNe 0

0 lNe

lNe 0

0 lNe


2ns×2nn

is the transformation matrix, in which lie is the length of finite element i (i = 1, N), where

N = 2nn − 1 is the total number of finite elements in the interface.

The equilibrium equation for the nodes of the structure at the interface, with the

incorporation of the presence of the soil is

Ku+ Aq = F. (4.10)
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Figure 23: Coupling between boundary and finite elements.
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4.2.2 Kinematic compatibility

The displacement wsi (i = x, z) of each of the elements of soil in the i-direction due

to the contact tractions qi is given by

ws = Uq, (4.11)

in which ws =
{
w1

sx w1
sz w2

sx w2
sz · · · wns

sx wns
sz

}T

2ns×1
and

U =



u1,1
xx u1,1

xz u1,2
xx u1,2

xz · · · u1,Nb
xx u1,Nb

xz

u1,1
zx u1,1

zz u1,2
zx u1,2

zz · · · u1,Nb
zx u1,Nb

zz

u2,1
xx u2,1

xz u2,2
xx u2,2

xz u2,Nb
xx u2,Nb

xz

u2,1
zx u2,1

zz u2,2
zx u2,2

zz u2,Nb
zx u2,Nb

zz

...
. . .

uNs,1
xx uNs,1

xz uNs,2
xx uNs,2

xz uNs,Ns
xx uNs,Ns

xz

uNs,1
zx uNs,1

zz uNs,2
zx uNs,2

zz uNs,Ns
zx uNs,Ns

zz


2Ns×2Ns

(4.12)

is the influence matrix of the soil, in which ui,j
r,s is the displacement of element i in the

r-direction due to a unit load applied at element j in the s-direction, and Ns = ns is

the number of soil elements. These displacement-field solutions for half-spaces under

uniformly distributed loads are called influence functions. Influence functions for this

case of surface loads can be found in [19].

In order to impose the continuity condition between the soil and the structure, that

the displacement of each soil element equals that of its corresponding structure element,

it is necessary to write ws in terms of nodal equivalents as well. This can be obtained by

ws = Du, (4.13)
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in which

D =
1

2



1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1
. . .

1 0 1 0

0 1 0 1


2nn×2ns

is the transformation matrix. The continuity condition then yields

Du− Uq = 0. (4.14)

4.2.3 Equilibrium equation

The final equilibrium equation for the nodes at the interface results from Eqs. 4.10

and 4.14:

[
K A

D −U

]{
u

q

}
=

{
F

0

}
. (4.15)

Notice that this equation involves only the degrees of freedom of the structure that

are at the interface. These terms need to be assembled back into the full equilibrium

equation of the structure in the appropriate places.

4.2.4 Void regions in the soil

In this work, we include an analysis of the influence of voids in the soil in the opti-

mization procedure. This is important because voids and inclusions alter the flexibility

of the soil as well, and in a different way than the constitutive properties of the soil. An

illustration of the case considered in this work is shown in figure 24. Two separate points

of the structure are in contact with the soil. In an intermediate surface over the void,

finite elements of the structure are not coupled with soil elements. The void is modeled

by discretizing its contour within the soil with boundary elements, and imposing zero-

traction condition throughout the contour. A fundamental difference from the surface

structure case is that, in order to impose traction boundary conditions at points within
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the soil, stress influence functions must be available as well, and these are significantly

more difficult to derive and evaluate numerically than their displacement counterparts.

Figure 24: Illustration of the soil void problem considered in this work.
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void

The equilibrium equation of the soil-structure-void problem can be derived in a similar

way of Equation 4.15, and results in[
K A

D −C

]{
u

l

}
=

{
F

0

}
, (4.16)

in which C = U−1, and l is the unknown vector of loads exchanged at the structure-soil

interface, such that

q = −Tvv
−1Tvpl, (4.17)

for the case in which zero-traction is imposed throughout the contour of the void. Tvv

and Tvp in Equation 4.17 are traction counterparts to the displacement influence matrix

U in Equation 4.12. The terms ti,jr,s,m of Tvv and Tvp are tractions on element i of the void

(m = v) or of the structure-soil interface (m = l) in the r-direction due to a unit load

applied at element j in the s-direction of an element ofm. Traction influence functions are

obtained from stress influence functions upon considering the normal vector to the surface

in which they are computed, such that ti,jr,s,m = σik,j
r,s,mnk. The normal vector points away

from the material portion of the domain, such that in the case of the void nk = {0, 1}T at

the bottom surface of the void, and nk = {1, 0}T and nk = {−1, 0}T at its left and right

walls, respectively (Figure 24). Differently than the displacement influence functions for

surface loads involved in Equation 4.12, stress influence functions for buried loads are

not available in the literature. Professor Josué Labaki and Prof. Pérsio Barros both

from University of Campinas SP have derived these influence functions for this work, in

a academic partnership;
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4.3 Topology Optimization Framework

4.3.1 Sensitivity Analysis

The compliance sensitivity with respect to the design variable xj can be derived using

the adjoint method [22]. First, an extended function is written:

L = F Tu+ λT
1 (Ku+ Aq − F ) + λT

2 (Du− Uq), (4.18)

where λ1 and λ2 are arbitrary constants. Deriving L is equivalent to deriving C(x) where

both constraints Ku + Aq = F and Du = Uq are satisfied. Notice that the first term

from right side is the same expression of compliance. The second and third terms come

from equilibrium equation 4.15. The derivative of L can be expressed as

∂L

∂xj

= F T ∂u

∂xj

+ λT
1

(
∂K

∂xj

u+K
∂u

∂xj

+ A
∂q

∂xj

)
+ λT

2

(
D

∂u

∂xj

− U
∂q

∂xj

)
. (4.19)

The derivative of F , A, D, and U in this case are 0 since the load and such matrices does

not depend on the element density xj.

The derivative of Equation 4.14 with respect to density is given by

D
∂u

∂xj

= U
∂q

∂xj

⇒ ∂q

∂xj

= U−1D
∂u

∂xj

. (4.20)

Substituting the above relation into Equation 4.19, the last term is canceled and the

remainder is
∂L

∂xj

= F T ∂u

∂xj

+ λT
1

(
∂K

∂xj

u+K
∂u

∂xj

+ AU−1D
∂u

∂xj

)
. (4.21)

The derivatives of the state variables
∂u

∂xj

in Equation 4.21 are usually computationally

expensive to evaluate. One can choose a λ1 such that the terms depending on
∂u

∂xj

are

zero,

F T + λT
1 (K + AU−1D) = 0, (4.22)

which makes λ1 assume the following value

λT
1 = −F T (K + AU−1D)−1. (4.23)

Using the continuity equation, Equation 4.14, into equilibrium, Equation 4.10, one has

Ku+ A(U−1Du) = F . (4.24)
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from which comes

u = (K + AU−1D)−1F . (4.25)

Comparing Equation 4.23 and Equation 4.25, we can conclude that λT
1 = −u. This

substitution is possible because the structural compliance function is self-adjoint. For

more complex problems, e.g., stress analysis, the solution of a system of equations maybe

required to obtain λ1. Choosing λT
1 = −u and knowing that the terms depending on

∂u

∂xj

are now canceled out, Eq. 4.21 can be rewritten as

∂L

∂xj

= λT
1

∂K

∂xj

u, (4.26)

∂L

∂xj

= −F T (K + AU−1D)−1∂K

∂xj

u, (4.27)

and, finally,
∂C(x)

∂xj

=
∂L

∂xj

= −uT ∂K

∂xj

u. (4.28)

In order to compute the term
∂K

∂xj

in Equation 4.28 analytically, we interpolate the

structural stiffness as

K =

Nd∑
j=1

E(xj)k0, (4.29)

where k0 is the element stiffness matrix of a solid element and E(xj) is an interpolation

function of the Young’s Modulus. This function can be expressed via the modified SIMP

approach [72] as

E(xj) = Emin + xp
j(E0 − Emin), (4.30)

where E0 is the stiffness of the solid material, Emin is a very small stiffness assigned to void

regions in order to prevent singularities in the global stiffness matrix, and p is a positive

penalization factor. The expression in Equation 4.30 can also be called material model.

Deriving Equation 4.29 with respect to xj and substituting its value in Equation 4.28, the

final expression for the compliance sensitivity can be obtained:

∂C

∂xj

= −1

2
pxp−1

j (E0 − Emin)u
T
j k0uj, (4.31)

where uj is the vector of element displacements.

In view of this model, the compliance function can be rewritten in terms of design

variables:

C(x) =

Nd∑
j=1

E(xj)u
T
j k0uj. (4.32)
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Although the TOBS method is restricted to integer variables, the material model is

employed to aid the derivation of sensitivity. When xj = 1, E(xj) = E0, and when

xj = 0, E(xj) = Emin, thus independent of penalty p. The use of binary variables

makes the method naturally avoid intermediate densities that create numerical issues

when dealing with more complex physics. We advocate that any sensitivity analysis

method can be used to find the required sensitivity by the TOBS method, as long as they

are only evaluated at the {0, 1} bounds. Corroborating with that, Liang and Cheng [73]

presented mathematical proof that discrete sensitivities and SIMP-based sensitivities are

equivalent.

The sensitivity of the volume constraint depends on V (xj). The discrete form of

V (xj) =
∫
Ω
xjdΩ is given as

Vx =

Nd∑
j=1

xjVj, (4.33)

where Vj is the volume of the element j. Then, the sensitivity of this term is given in the

discrete form as:
dVx

dxj

= Vj. (4.34)

4.3.2 Filtering

A numerical filter was employed over the sensitivities as showed in equation 3.79. Also

an time stabilization for the sensitivity field was used as described in equation 3.81.

4.4 Formulation of Optimization Problem

The minimum compliance problem subject to a volume constraint is used to illustrate

structural topology optimization. The corresponding optimization problem is formulated

as follows:

Minimize
x

C(x) = F Tu,

Subject to
V (x)

V0

≤ V ,[
K A

D −U

]{
u

q

}
=

{
F

0

}
,

xj ∈ {0, 1}, j ∈ [1, Nd],

(4.35)
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where x is the vector of design variables of size Nd, C(x) is the structural compliance

function, V (x) is the volume of the structure, V0 is the volume of the initial fully solid

design domain and V is the upper bound specified on the structural volume fraction.

4.5 Algorithm

The optimization algorithm of the present method is present in the flowchart of Fig-

ure 25. The step-by-step methodology is as follow.

Figure 25: Flowchart of the optimization.

1. Choose the optimization parameters and the soil and structure material properties.

2. Discretize the structure with a finite element mesh.

3. Discretize the soil and compute the soil influence matrix U using Eq. (4.12) and the

coupling matrices A and D.

4. Compute the stiffness matrix K, taking into account the design variables expressed

in Eq. (4.29), and, obtaining the soil-structure equilibrium equation given in Eq. (4.15)

or Eq. (4.16).

5. Compute the compliance sensitivities using Eq. (4.31) and the volume sensitivities

using Eq. (4.34).

6. Filter the sensitivities using Eq. (3.79). Incorporate the time stabilization from Eq.

(3.81) into the compliance sensitivities.

7. Solve the linearized optimization subproblem from Eq. (3.77) using the ILP solver.

8. Evaluate the convergence of the objective function. If converged, stop. If not

converged, repeat from step 4.
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5 RESULTS AND DISCUSSIONS

This section considers three soil-structure interaction problems to investigate the influ-

ence of soil flexibility in the topology design optimization framework. These problems are

a tower, a viaduct, and a bridge, under plane strain case interacting with an isotropic soil

of Poisson’s ratio ν = 0.25 and Young’ modulus Es. In these analyses, the superstructure

is discretized using 4-noded quadrilateral finite elements, of linear-elastic isotropic materi-

als with Poisson’s ratio ν = 0.25 and Young’s modulus E0. The minimum value chosen for

the Young’s modulus for void elements is Emin = 0.001. Results are presented in terms of

the relative structure-to-soil stiffness ratio m = E0/Es. Increasing values of m correspond

to more flexible soils, given a fixed stiffness of the structure. In engineering practice,

m ≫ 1. Results are presented in terms of the normalized compliance C∗ = CNk
/C1, in

which Ck is the compliance of the structure at the kth iteration (k = 1, Nk).

The optimization parameters used throughout this section are shown in Table 2. The

radius r of the sensitivity filter was chosen according to the discretization and its value is

specified in each case.

Table 2: Optimization parameters used in this section.

Optimization parameters Value
Density (SIMP) penalization (p) 3

Constraint relaxation parameter (ϵ) 0.01
Truncation error constraint parameter (β) 0.05

Convergence tolerance (τ) 0.001

5.1 The Tower

The present example was proposed to consider a slender structure, in which the region

of contact with the soil is small compared to the other dimensions. This example consists

of a 6 m tall, 2 m wide tower resting on the soil surface (figure 26). Horizontal and

vertical point loads are applied on the center point of the top of the tower. The domain is

discretized with 100× 300 elements. Compliance optimization is considered, subject to a

prescribed 50% volume fraction, with filter radius rmin = 0.2 m. These analyses consider

m = {1, 10, 102, 103, 104 and 105}, and the case of tower over a rigid base is included for

comparison.



61

Figure 26: Elastic tower over elastic soil under (a) horizontal and (b) longitudinal loads.

(a) (b)

5.1.1 Tower under horizontal load

This section considers the case of the tower under horizontal load. The final optimized

topology for different values of soil flexibility is shown in figure 27. Figures 27c and 27d

show that the base of the two outer vertical frames of the tower begin to thicken up for

m = 10, in order to compensate for the effect of the flexibility of the soil in that region.

For more flexible soils (m = 102, 103, 104 and 105), a horizontal bar materializes at the

base of the tower, in order to compensate for the increased flexibility of the soil. This bar

works as a stiffening link, which prevents the horizontal displacement of the two frames,

and helps to reduce the compliance of the structure as a whole. There is also a general

tendency for the diagonal braces to be organized more closely to the base of the tower as

the soil becomes more flexible. This indicates that the optimization procedure identifies

the increased flexibility of the bottom portion of the system and distributes its volume

accordingly. Figure 28 shows the compliance and volume fraction history versus iteration

steps of the optimization procedure for the case considering m = 104.

5.1.2 Tower under vertical load

Figure 29 shows the optimized topology obtained for the case of the tower under ver-

tical loading. These results consider m = {1, 10, 102 and 103}. Figure 29a shows that

the optimized topology for the tower over a rigid base is the classical result obtained for

a clamped-free bar under plane strain case: two continuous links connect the rigid base



62

Figure 27: Optimized topologies for the (a) tower over rigid base and for (b) m = 1, (c) m = 10, (d)
m = 102, (e) m = 103, (f) m = 104 and (g) m = 105.

(a) rigid base,
C∗ = 1.4235

(b) m = 1,
C∗ = 1.4187

(c) m = 10,
C∗ = 1.3896

(d) m = 102,
C∗ = 1.4068

(e) m = 103,
C∗ = 1.4039

(f) m = 104,
C∗ = 1.4014

(g) m = 105,
C∗ = 1.2119

to the loading surface. As the flexibility of the soil increases, the general tendency is that

these two links branch off near the soil, and an additional horizontal link begins to materi-

alize, connecting the tip of the branches together and to the soil surface. Figure 30 shows

the compliance and volume fraction history during the iterative steps of the optimization

procedure for the case in which m = 102.

A cross-check analysis was also carried out. Consider cases b and e shown in Figs.

29b and 29e, respectively. Let Eb
s and Ee

s be the Young’s modulus of the soil in each

case, such that m = Eb
0/E

b
s = 1 and m = Ee

0/E
e
s = 103, with Eb

0 = Ee
0. The optimal

topology obtained for the tower in case b was then coupled with the soil from case e, and

the compliance and displacement responses were computed for this new coupled system

in which the tower and the soil have Young’s moduli Eb
0 and Ee

s , respectively. Results
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Figure 28: Compliance and volume fraction history for the case of tower under horizontal load and
m = 104.

Figure 29: Optimized topology of (a) tower over rigid base, and (b) m = 1, (c) m = 10, (d) m = 102,
and (d) m = 103.

(a) Rigid base,
C∗ = 1.4232

(b) m = 1,
C∗ = 1.4190

(c) m = 10,
C∗ = 1.4260

(d) m = 102,
C∗ = 1.4202

(e) m = 103,
C∗ = 1.4180

are shown in figure 31. The colormap in this figure shows the total displacement field

(u2
x + u2

z)
1/2 in the body of the tower. Structure is shown with deformation multiplied to

a scale of 10. The value of the normalized compliance (C∗) measured for the system is

also shown. Figure 31b shows for comparison the results obtained for the tower with Ee
0,

that is, the tower that had been optimized for this particular soil case. These results show
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Figure 30: Compliance and volume fraction history for the case of tower under vertical load and m = 102.

that the topology that had been optimized for soil b performs considerably worse than

the design that had been optimized for the soil with which the tower actually interacts.

This attests that the optimization procedure considering the elasticity of the soil leads to

better designs.

Figure 31: Displacement field and final compliance obtained for the vertically-loaded tower interacting
with soil Ee

s , for the optimal topologies obtained for a) Eb
s and b) Ee

s . Displacement fields are multiplied
by 10 a large factor in order to improve visualization.

(a) (b)
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5.2 The Viaduct

This viaduct problem significantly differs from the previous tower problem. In the

present problem the structure is connected to the soil in two different, distant points.

The presence of the soil corresponds to a flexible connection between these two supports,

which must be compensated in some way by the optimization algorithm. Additionally,

solid and void passive element regions are incorporated into the viaduct, in order to study

the performance of the present method in a variety of situations. The domain of the

problem in the x− z plane is given by a 40× 20 m rectangle minus a circular cut-out of

radius 20.6 m centered at 10 m below the surface of the soil (figure 32). The domain is

discretized by 400× 200 elements. The structure has two regions with passive elements.

The black strip at the top of the viaduct and the white arch in the bottom are modeled

with solid and void passive elements, respectively. Solid and void passive elements keep

their density 1 and 0, respectively, throughout the optimization procedure. These are

defined in order to represent usable traffic space overhead and underneath the viaduct.

A uniformly distributed downward vertical load is applied over the top of the viaduct,

representing loads that it may undertake on its deck.

This analysis considers the compliance minimization under a prescribed volume frac-

tion of 40%, using a filter of rmin = 0.3, such that the filter covers 3 neighboring elements.

Figure 33 shows the optimized topologies for m = {10, 102 and 103}. The case of the

viaduct over a rigid base is included for comparison.

For stiffer soils such asm = 10 in figure 33b, the optimized topologies show a structure

that arches over the prescribed passive void region, in a very close topology to rigid soil

case in figure 33a As the soil becomes more flexible, m = 102 in figure 33c, center bars

appear as a way to constrain horizontal displacements at the base, this had been seen

with the tower problem as well. In addition, the main arch changes its configuration to

accommodate these center bars. For the case m = 103 more horizontal bars materialize

in the center of the topology over the non-optimizable empty region and the main arch

features an upside-down U-shape. Two slender columns appear on outer side of the

structure as a way to support the ends of the deck.

5.3 The Bridge

This problem is modeled to represent the case in which a bridge is supported by the

shoulders of a canal (figure 34). This analysis is important because inclusions and voids in
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Figure 32: Structural domain of the viaduct (a) over a rigid base and (b) on the soil surface.

(a)

(b)

the soil affect its flexibility, even if its constitutive properties are the same. Additionally,

the presence of the void in the soil causes different contact points between the bridge

and the soil to have different flexibility, and in different directions. It is important to

understand how this affects the optimization process.

The canal is modeled by discretizing its contour within the soil with boundary ele-

ments, and imposing free traction condition throughout the contour. In order for this to

be possible, original influence functions corresponding to buried horizontal and vertical

loads had to be derived for this model.

A 1.2 m thick layer of solid passive elements is prescribed on top of the bridge to

account for a usable overhead traffic surface, where uniformly distributed, downward

vertical loads are applied. The structural domain measuring 40 × 20 m was discretized

using 400×200 finite elements. The soil is a 40 m deep layer over rigid bedrock, containing

a 24 m wide canal of depth d. The variable d is introduced here so that canals of different

depths can be considered. The bridge-soil interface was discretized with 160 boundary

elements, and the bottom and sides of the canal were discretized with 50 and 40 boundary
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Figure 33: Optimized topologies for the (a) viaduct over rigid base and (b) m = 10, (c) m = 102, and
(d) m = 103.

(a) Rigid base,
C∗ = 1.5930.

(b) m = 10,
C∗ = 1.4905.

(c) m = 102,
C∗ = 1.5084.

(d) m = 103,
C∗ = 1.8057.

elements, respectively.

Figure 34: Structural domain and boundary conditions of the bridge over a canal.

This analysis considers the compliance minimization under a prescribed volume frac-

tion of 40% and filter radius of rmin = 0.3 m, which covers 3 neighboring elements.

Different bridge-soil stiffness ratios are considered, m = 1, m = 10, 102, 103 and 104.

Figure 35 shows the optimized topology obtained for each value of m using d = 20 m.

The case of the bridge over rigid supports is included for comparison. These results show

that taking into account the flexibility of the soil has a significant impact on the optimized

topology. The horizontal bar that had been observed in the previous tower and viaduct
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problems is present in the bridge problem even for stiffer soils (m = 1, in which the soil is

as stiff as the bridge; a theoretical limit that does not even occur in engineering practice).

A significant percentage of the material is allocated by the optimization algorithm to

the bottom portion of the bridge. For more flexible soils, struts begin to materialize to

support the center of the main bridge arch. The thicker strut at the bottom of the bridge

is under traction, as show in figure 36a, which indicates that its function is to contain the

horizontal displacement of the outer legs of the main arch structure. The inclined struts

inside the main arch are under compression, which indicates that their function is to assist

with bearing the loads from the deck. It can be pointed out that the present formulation

does not include buckling optimization, which is recommended in a future work.

Figure 35: Optimized topologies for the bridge with different values of soil flexibility (a) over rigid soil,
(b) m = 10, (c) m = 102, (d) m = 103 and (e) m = 104, over a canal of d = 20 m.

(a) rigid base,
C∗ = 2.0693.

(b) m = 1,
C∗ = 1.9732.

(c) m = 10,
C∗ = 2.0355.

(d) m = 102,
C∗ = 2.0391.

(e) m = 103,
C∗ = 2.0343.

(f) m = 104,
C∗ = 2.0361.

Figure 37 shows the optimized topology of the bridge when different canal depths are



69

Figure 36: Stress distribution in the bridge designed for m = 103 over a canal of d = 20 m.

(a) Normal stress in x direction, σxx.

-0.3 -0.2 -0.1 0 0.1 0.2

(b) Normal stress in z direction, σzz.

-0.3 -0.2 -0.1 0 0.1 0.2

considered. These results consider d = 10, 20 and 30 m, for a relative soil flexibility of

m = 102. The case of no canal (d = 0), in which the bridge is in contact with the soil

throughout its bottom surface, is included for comparison. Table 3 shows quantitative

results from this problem. It shows the compliance of the initial and optimized designs,

as well as the relative compliance C∗.

Figure 37: Optimized topology for the bridge for three different values of canal depth, using m = 102.

(a) d = 0 (no canal) (b) d = 10m

(c) d = 20m (d) d = 30m

These results support the initial argument that voids in the soil alter its flexibility,

regardless of the soil’s constitutive properties. The optimized topology of the no-canal case

resembles that of a series of bars, with branched-off, interconnected ends to compensate

for the soil flexibility. The inclusion of even a shallow canal (d = 10 m) causes drastic

changes in the optimized topology. In all d ̸= 0 cases, a significant portion of the material
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available is allocated to create a thick horizontal brace connecting the two supports of

the bridge. Inclined struts are created with different thicknesses and at different positions

depending on the depth of the canal.

A comparison between the d = 20 m and the d = 30 m cases, however, indicate that

after a certain depth, the influence of the depth of the canal in the optimized topology

is negligible. This is understandable: although deeper canals continuously affect the

flexibility of deeper portions of the soil, their effect on the shoulders of the canal, where

the bridge rests, begins to be negligible at some point.

Table 3: Compliance values for the bridge problem with different depths of the canal.

C1 (Nm) CNk
(Nm) C∗

d = 0 m 0.0032 0.0070 2.1880
d = 10 m 0.0059 0.0122 2.0700
d = 20 m 0.0065 0.0133 2.0391
d = 30 m 0.0068 0.0136 2.0106
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6 CONCLUSIONS

This dissertation proposes and investigates the TOBS method applied to problems of

soil-structure interaction. For the best of the our knowledge the field of TO considering SSI

was still unexplored. It is hoped that the examples proposed in this dissertation will serve

as benchmarks for future work on this field. In this work a combination of the FEM and

IBEM is proposed for TO problems using the TOBS method. The FEM is used to model

the structure and the IBEM is used to model the isotropic elastic soil. The advantages

of using the IBEM to model the soil, instead of the FEM, was the capability to model

a infinite domain by discretizating only the soil-structure interface. Coupling between

soil and structure was successfully obtained by imposing compatibility and equilibrium

conditions at their shared interface.

Numerical results showed that the effects of the soil-structure connection are relevant

when designing a structure via topology optimization for different ratios of structure-to-

soil stiffness and the flexibility of the soil must be taken under consideration in the design

of a structure via topology optimization.

Future works include the consideration of material or geometry nonlinearities. Also,

the results presented here are only for 2D models and next work include considering 3D

models. The application in multiphysics or multiobjective problems, such as the study

of the optimization of submerged structures subject to iteration with the seabed and

simultaneously subjected to fluid-structure iteration from the sea can be studied in future

works. Finally, a series of dynamic analyzes can be performed on these results to take

advantage of the BEM features.



72

REFERENCES

1 PUCKER, T.; GRABE, J. Structural optimization in geotechnical engineering: basics
and application. Acta Geotechnica, Springer, v. 6, n. 1, p. 41–49, 2011.

2 BENDSOE, M. P.; SIGMUND, O. Topology optimization: theory, methods, and
applications. [S.l.]: Springer Science & Business Media, 2013.

3 HAMIDI, F.; ASLANI, F. Additive manufacturing of cementitious composites:
Materials, methods, potentials, and challenges. Construction and Building Materials,
v. 218, p. 582–609, 2019. ISSN 0950-0618. Dispońıvel em: ⟨https://www.sciencedirect.
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