• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.3.2018.tde-04102018-072516
Documento
Autor
Nombre completo
Marcelo Otávio dos Santos
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Batalha, Gilmar Ferreira (Presidente)
Crichigno Filho, Joel Martins
Faria, Alfredo Rocha de
Ferreira, João Carlos Espíndola
Gomes, Jefferson de Oliveira
Título en portugués
Modelagem numérica e experimental dos erros térmicos de um centro de usinagem CNC 5 eixos.
Palabras clave en portugués
Método dos Elementos Finitos
Redes Neurais
Transferência de calor
Usinagem
Resumen en portugués
Esta tese teve por objetivo desenvolver um algoritmo preciso e robusto capaz de compensar os erros térmicos volumétricos de um centro de usinagem 5 eixos em diferentes condições operacionais. O comportamento térmico da máquina foi modelado usando técnicas do método dos elementos finitos (MEF) com base na teoria do calor de atrito e calor de convecção, e validadas através dos vários campos de temperatura obtidos experimentalmente usando termopares e imagens térmicas. Os principais subsistemas da máquina foram inicialmente modelados, como o conjunto de fusos de esferas, guias lineares e motofuso, o que permitiu posteriormente a validação do comportamento termoelástico da máquina completa para onze ciclos de trabalho em vazio, seis ciclos de usinagem, nove ciclos de posicionamento e dois ciclos com temperatura ambiente variando, obtendo erros máximos inferiores a 9%, ao comparar os resultados numéricos com os resultados experimentais. A validação do modelo em elementos finitos permitiu usar os resultados obtidos para treinar e validar uma rede neural artificial (RNA) para prever os erros térmicos do centro de usinagem. Os desvios entre os erros térmicos previstos pela RNA e os calculados pelo MEF foram inferiores a 5%. Baseado nos resultados obtidos pelas medições das peças de trabalho usinadas foi possível formular e implementar um modelo de compensação dos erros térmicos no CNC do centro de usinagem, que obteve uma redução dos erros entre 62% e 100% nas peças usinadas com compensação. Foi também proposto um algoritmo de previsão e compensação dos erros térmicos para o centro de usinagem, baseado em todos os ciclos e simulações realizadas, e que se comparando com os resultados experimentais mostrou-se capaz de reduzir os erros térmicos entre 50% e 95%. Após sua validação, foi possível concluir que o algoritmo desenvolvido é uma ferramenta precisa e robusta para compensar os erros térmicos da máquina para várias condições de trabalho, podendo compensá-los mesmo com esta movendo-se a diferentes velocidades, em usinagem ou mesmo operando em temperatura ambiente variável.
Título en inglés
Numerical and experimental modeling of thermal errors in a five-axis CNC machining center.
Palabras clave en inglés
5-axis
Artificial neural networks
CNC machining center
Finite Element Method
Temperature compensation
Thermal error
Resumen en inglés
This thesis aims to develop an accurate and robust algorithm capable of compensating the volumetric thermal errors of a 5-axis machining center under different operating conditions. The thermal behavior of the machine was first modeled using finite element method (FEM) techniques based on theory of friction heat and convection heat, and validated with the various experimentally raised temperature fields using thermocouples and thermal imaging. The main machine subsystems were initially modeled, such as the ball screw system, linear guides and spindle, which allowed for validating of the thermoelastic behavior of the entire machine for eleven no load duty cycles, six cycles of machining, nine cycles of positioning and two cycles with varying ambient temperature, obtaining errors lower than 9%, when comparing the numerical results with the experimental results. The validation of the finite element model allowed for the use of the results obtained to train and validate an artificial neural network (ANN) for predicting the thermal errors of the machining center. The deviations between the thermal errors predicted by ANN and the FEM simulation results were less than 5%. Based on the results obtained by the measurements of the machined workpieces, it was possible to formulate and implement a model of compensation of the thermal errors in the CNC of the machining center, which obtained a reduction of errors of 62% and 100% of the machined parts with compensation. It was also proposed a thermal error prediction and compensation algorithm for the machining center, based on all cycles and simulations performed, and that, comparing with the experimental results, it was able to reduce the thermal errors between 50% and 95%. After its validation, it was possible to conclude that the developed algorithm is an accurate and robust tool to compensate the thermal errors of the machine for various duty conditions, being able to compensate the errors even when it is moving at different speeds, in machining process or even operating in variable ambient temperature.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-11-21
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.