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ABSTRACT

LAZO VÁSQUEZ, D. A. Study on stability and flow-pattern transitions of stratified flows

in pipes. 2023. Doctoral Thesis – Escola Politécnica, Universidade de São Paulo, São Paulo,

2023.

In the oil and gas industry, predicting multiphase flow pattern transitions plays an essen-

tial role. Two-phase flow pipeline systems are frequently simulated by solving the one-

dimensional two-fluid model equations (i.e., cross-sectional average per phase of the three-

dimensional Navier–Stokes equations) with first-order finite-volume methods. However,

physical instabilities can be damped due to excessive numerical diffusion during wave

growth. The Taylor-Hood finite elements have been employed for solving the Navier Stokes

equations, mainly due to their numerical stability properties, circumventing the use of stag-

gered grids, frequently used in the finite volume method. This thesis proposes a model to

predict potential flow pattern transitions, considering gas-liquid stratified smooth flow as

the initial condition, through the dynamic solution of the two-fluid model with Taylor-Hood

elements for the spatial discretization combined with implicit time schemes. The differen-

tial equations are spatially discretized with a mixed formulation of higher-order continuous

Galerkin elements for the average phase velocities and lower-order continuous Galerkin

elements for the interfacial pressure and liquid holdup. By constructing fully discrete flow

pattern maps, the model estimates neutral stability curves and well-posed limits through

the simulation of liquid wave growth in time for a set of initial conditions and pipe inclina-

tions. Overall, spatial discretization using Taylor-Hood mixed finite elements demonstrates a

favorable ability to reproduce wave growth and predict flow pattern transitions. The model

describes wave growth in different pipeline configurations for stratified smooth initial condi-

tions within the Viscous Kelvin-Helmholtz region and under the well-posed limits. The effect

of the initial conditions, mesh configuration, order of basis functions, and the influence of

the local pipe inclination on stability has been investigated through a stiffness analysis of

the semi-discretized equations and a Fourier analysis of the fully-discretized equations. The

hybrid differential-discrete flow pattern maps based on Kelvin-Helmholtz instabilities and

dynamic simulations depict the factual flow stability regions for a large set of initial conditions,

enabling the prediction of potential ill-posedness and flow pattern transitions. The model is

written in Python 3 and the Open Source FEniCS Project computing platform for the finite

element method. The model enables the addition of regularization terms and other spatial

and time discretization schemes for further studies.

Computational Fluid Dynamics, Finite-element Method, Gas-liquid flow, Linear stability,

Taylor-Hood elements.





RESUMO

LAZO VÁSQUEZ, D. A. Estudo de estabilidade e transição de padrão de escoamentos

estratificados em tubulações. Tese – Escola Politécnica, Universidade de São Paulo, São

Paulo, 2023.

A previsão de transição de padrão de escoamentos multifásicos é essencial na indústria de

óleo e gás. Sistemas multifásicos em linhas longas são frequentemente simulados com o

modelo unidimensional de dois fluidos, que consiste em uma média da seção transversal por

fase das equações de Navier-Stokes. É comum usar métodos de volumes finitos de primeira

ordem para resolver as equações; no entanto, com métodos de discretização de baixa

ordem, instabilidades físicas podem ser atenuadas devido à difusão numérica excessiva

durante o crescimento de ondas. Esta tese propõe um modelo capaz de prever potenciais

transições de padrão de escoamento através da solução dinâmica do modelo de dois fluidos

com elementos finitos do tipo Taylor-Hood para a discretização espacial, combinado com

esquemas temporais implícitos. Ultimamente, os elementos finitos do tipo Taylor-Hood têm

sido utilizados para resolver as equações de Navier-Stokes devido às suas propriedades de

estabilidade numérica, evitando o uso de malhas deslocadas, prática comum no método dos

volumes finitos. Neste estudo, as equações diferenciais são discretizadas espacialmente

com uma formulação mista de: elementos do tipo Continuo Galerkin de alta ordem para

as velocidades das fases e Continuo Galerkin de baixa ordem para a pressão interfacial e

a altura de líquido. Através de mapas de padrão de escoamento baseados nas equações

totalmente discretizadas, o modelo estima as curvas de estabilidade neutra e limites de um

problema bem posto mediante a simulação do crescimento de ondas de líquido para es-

coamentos estratificados lisos dentro da região Kelvin-Helmholtz Viscosa e do limite de um

problema bem posto. O efeito das condições iniciais, configuração de malha e a influência da

inclinação da tubulação são investigadas mediante a análise de estabilidade das equações

semi-discretizadas e a análise de Fourier das equações totalmente discretizadas. Os mapas

de padrão de escoamento híbridos (equações diferenciais, equações discretizadas e de

dados da literatura), baseados em instabilidades Kelvin-Helmholtz e simulações dinâmicas,

mostram as regiões de estabilidade para o conjunto de condições analisado. O modelo está

escrito em Python 3 e a plataforma de código aberto para métodos de elementos finitos

FEniCS Project. O modelo permite a adição de termos de regularização ou outros métodos

de discretização espacial e temporal para futuros estudos.

Palavras-chave: Elementos finitos tipo Taylor-Hood, Escoamento Gás-líquido, Estabilidade

Linear, Método dos Elementos Finitos, Mecânica dos Fluidos Computacional.
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1 INTRODUCTION AND BACKGROUND

1.1 Stratified and intermittent flow in pipelines

In the petroleum industry (see Figure 1), oil and gas are transported through long

multiphase pipeline systems (Zwieten et al., 2017) presenting different phase distributions

depending on several parameters (i.e., phase velocities, densities, viscosities, and pipe

configurations) (Smith, 2017). Under operation conditions, stratified and intermittent flow

patterns are the most frequent. Figures 2 to 4 illustrate the flow patterns found in the oil and

Figure 1 – Christmas tree, manifold, and risers in the Petrobras (Brazil) offshore oil production systems.

Note: adapted from Morais (2013).

gas industry. At low flow rates and mainly at horizontal and downhill sections, in stratified

flow, the gas and the liquid are separated into different layers, with the gas flowing above the

liquid phase (Schlumberger, 2020). The liquid level rises as the liquid flow rate increases

and a wave is formed. Perturbations of short waves may grow into larger and longer ones as

a result of pipe undulations (Issa; Kempf, 2003) and Kelvin–Helmholtz (KH) instabilities (Lin;

Hanratty, 1986; Z.Fan; Ruder; Hanratty, 1993; Ansari, 1998).

Slug flow consists of aerated liquid plugs followed by gas bubbles (i.e., Taylor Bubbles).

Slugs may grow if their fronts travel faster than their tails, and, alternatively, they would

collapse (Taitel; Barnea, 1990; Zheng; Brill; Taitel, 1994; Issa; Kempf, 2003). The emergence

of slugs can yield fluctuations of pressure and severe production decrements. Consequently,

the prediction of slug flow considerably influences the sizing of receiving facilities, e.g., slug

catchers or separators (Taitel; Barnea, 1998; Zwieten et al., 2017).
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Figure 2 – Stratified flow patterns in horizontal and slightly inclined pipes.

(a) Smooth flow (SS). (b) Wavy flow (SW). (c) SW (higher ug).

Note: the gas velocity is denoted by ug. Adapted from Montini (2010).

Figure 3 – Intermittent (I) flow patterns in horizontal and inclined pipes.

(a) Elongated bubble flow. (b) Slug flow.

Note: adapted from Montini (2010).

Figure 4 – Annular and Dispersed (AD) flow patterns in horizontal and inclined pipes.

(a) Annular flow. (b) Dispersed flow.

Note: adapted from Montini (2010).

Taitel and Dukler (1976) constructed phenomenological flow pattern maps for steady

two-phase flows in horizontal and nearly horizontal pipes to study the influence of the

pipe diameter, viscosity, and local inclination on flow pattern transitions. Some authors

have built flow pattern maps for different pipe configurations, which include horizontal and

slightly inclined pipes (Taitel; Dukler, 1976; Husain; WG, 1978; Lin; Hanratty, 1986), vertical

upward flow (Taitel et al., 1980; Ishii, 1975; McQuillan; Whalley, 1985), inclined upward

flow (Barnea et al., 1985), downward inclined low (Barnea; Shoham; Taitel, 1982), amongst

others. Figure 5 depicts flow pattern maps for steady-state water-air flow in horizontal and

inclined straight pipes.
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Figure 5 – Flow patterns in horizontal and nearly inclined straight pipes

(a) Horizontal. (b) Upward flow.

(c) Downward flow.

Note: The liquid and gas superficial velocities are represented by us
L = ulαl and us

G = ugαg, respectively.
From Taitel and Dukler (1976).

Theoretical flow patterns map may not be accurate enough to describe transient flow

transitions. Experimentally, the initiation of slugging can occur above or below these bound-

aries (Shoham, 1982); consequently, slug initiation is one of the challenges in the multiphase

flow simulation. One of the numerical techniques for predicting stratified to intermittent flow

transitions is the Slug Capturing approach of Issa and Kempf (2003), which consists of

the numerical simulation of the natural growth of instabilities, the formation of slugs, and

the procession of slug trains. Slugging initiates automatically from numerical truncation,

machine round-off in the computations, or starting from a non-equilibrium flow. When the

liquid phase blocks the pipe, the gas equations vanish and transition criteria should be

imposed (Bonzanini; Picchi; Poesio, 2017; Ferrari; Bonzanini; Poesio, 2017). According to

Smith (2017), the Slug Capturing approach can be significantly slower due to the fine grid

and reduced time step, so evaluating the feasibility of numerical methods for improving the

prediction of the onset of slugging is decisive.
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1.2 One-dimensional two-fluid model

The one-dimensional Two-fluid Model (Ishii, 1975) (hereafter Two-fluid Model) results

from applying cross-sectional averaging per phase of the three-dimensional Navier–Stokes

equations. For oil and gas systems, the numerical solution of the three-dimensional equations

would be costly, considering the multi-scale nature of the problem (i.e., pipelines of the order

of kilometers and gas bubbles of millimeters) (Zwieten et al., 2017). Therefore, despite its

limitations (e.g. the absence of radial curvature for liquid liquid flows), the one-dimensional

Two-fluid Model is frequently employed for simulating two-phase flows in pipelines.

The well-posedness of the Two-fluid Model equations has been studied by several authors

(Pokharna; Mori; Ransom, 1997; Ansari, 1998; Issa; Kempf, 2003; Montini, 2010; Sanderse;

Smith; Hendrix, 2017). The Two-fluid Model can become ill-posed and yield grid-dependent

solutions for large relative superficial velocities (i.e., ur = |usl − usg|). Above the limit of well-

posedness, the Two-fluid Model has complex characteristics (Dinh; Nourgaliev; Theofanous,

2003) (i.e., the wave growth rates increase unboundedly as the wavelength shrinks to zero).

The ill-posedness of the Two-fluid Model is still an open question (Holmås et al., 2008;

Liao; Mei; Klausner, 2008; Fullmer et al., 2010; Bertodano et al., 2017; Sanderse; Smith;

Hendrix, 2017). Several authors proposed different approaches to deal with the ill-posedness

of the Two-fluid Model, which may be rendered well-posed, including appropriate short-

wavelength physics. Pokharna, Mori and Ransom (1997), Montini (2010), Bertodano, Fullmer

and Vaidheeswaran (2013) studied lower-order regularization of the Two-fluid Model (i.e.,

interfacial drag and hydrostatic pressure).

Ramshaw and Trapp (1978), Holmås et al. (2008), Montini (2010), Bonzanini, Picchi and

Poesio (2017) studied higher-order regularization mechanisms (i.e., surface tension term

(Ramshaw; Trapp, 1978; Pokharna; Mori; Ransom, 1997), artificial interfacial pressure terms

(Evje; Flåtten, 2003; Fullmer et al., 2014; Liao; Mei; Klausner, 2008), and numerical diffusion

terms (Holmås et al., 2008; Fullmer et al., 2014)). Including higher-order regularization

terms leads to dispersive equation systems (i.e., waves of different wavelengths propagate

at different phase velocities) (Montini, 2010). Surface tension can also make the equation

system well-posed and introduce a cut-off wavelength (Ramshaw; Trapp, 1978). However,

the maximum wave growth rates are still high.

Industrial codes render well-posedness by introducing diffusive terms to dampen the

short-wavelength components of the numerical solution (i.e., numerical diffusion correlations

serve as filters, rendering dissipation and stability). This strategy succeeds because of

the "turbulent energy cascade," where the long-wavelength motion governs the energy

dissipation rate. Using diffusion terms as regularization parallels the methods for modeling

turbulent flow, where the small-scale eddies are not directly resolved (Bertodano et al., 2017).

Montini (2010) investigated values to obtain representative pipe diameter cut-off wavelengths

for different initial conditions.
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1.3 Numerical modeling of stratified flow, wave growth, and slugging

The industry has proposed commercial codes (e.g., OLGA (Bendiksen et al., 1987;

Bendlksen et al., 1991) and PLAC (Black et al., 1990)) to come up with solutions to the Two-

fluid Model. In OLGA and PLAC, initially developed by the nuclear industry, fast transients

correlated with Loss Of Coolant Accidents (LOCA) are of particular interest. In contrast, the

petroleum industry is interested in slow transients associated with transporting and releasing

slugs at receiving facilities (Masella et al., 1998).

Regarding academic formulations, the Two-fluid Model is frequently spatially discretized

with first-order Finite Differences or Finite Volume schemes (Ansari; Shokri, 2011; Kim;

Kang; Lowengrub, 2004; Kjeldby; Nydal, 2013; Liao; Mei; Klausner, 2008; Holmås et al.,

2008; Fullmer, 2014; Ortega; Nieckele, 2005) and implicit time integration schemes. Some

Slug Capturing codes (e.g., TRIOMPH (Issa; Kempf, 2003)) use first-order central difference

schemes for the convective quantities to avoid the attenuation of physical instabilities due

to excessive numerical diffusion (Liao; Mei; Klausner, 2008). Additionally, upwind schemes

may present unfavorable stability properties (Fullmer, 2014) and high numerical diffusion.

Moreover, Holmås et al. (2008) used a pseudo-spectral Fourier method to solve the Two-fluid

Model. They indicated that the computational time is several orders of magnitude larger

than that of classical finite difference schemes. Fullmer (2014) show improved accuracy

of a second-order method over a first-order method. However, their approach leads to

non-monotone results.

Sanderse, Smith and Hendrix (2017) studied the effect of the discretization schemes on

the factual stability of the flow in horizontal pipes. They presented stability and ill-posedness

regions through discrete flow pattern maps (DFPM) based on Kelvin-Helmholtz instabilities.

Lately, Ferrari, Bonzanini and Poesio (2017) proposed a five-equation Two-fluid Model. They

added a transport equation for the gas volumetric fraction to deal with ill-posedness. This

equation indicates that the gas volumetric fraction is transported with the mean interfacial

velocity (Drew, 1983; Munkejord; Gran, 2009; Ansari; Daramizadeh, 2012).

Zwieten et al. (2017) proposed an h-adaptive space-time Discontinuous-Galerkin Finite

Element Method (DGFEM) scheme for simulating stratified flow within the well-posed region

in horizontal pipes. For smooth initial problems, the DG method converges with the theoretical

rate. Recently, Bezchlebová et al. (2019) used level set methods for modeling the interface

of two-phase flows of immiscible fluids. They adopted Taylor-Hood (TH) elements for the

transport equations and DG elements for the level-set equation.

1.4 Objective and contribution

This thesis aims to develop a hybrid stability and numerical model for predicting wave

growth and the consequent potential flow pattern transitions in horizontal and slightly inclined

pipes. The Two-fluid Model is numerically solved with finite elements. The contribution of
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this work lies in a code that can be suited for two-phase flow simulations under different

initial conditions and pipe configurations, enabling the investigation of numerical methods

and regularization techniques. The numerical formulation is based on an adaptation of the

techniques frequently used for solving convection-dominated problems with Taylor-Hood

elements.

1.5 Outline of the thesis

This thesis is organized as follows. Chapter 1 describes the physical mechanisms

that lead to slugging. Additionally, the background is shaped based on the state-of-the-art

numerical modeling of two-phase flow. Chapter 2 presents the governing equations and

the closure models. This chapter also details the numerical methods, the well-posedness

analysis, the linear stability analysis, and the methods to construct differential and discrete

flow pattern maps. Also, this chapter describes the numerical methods and their verification

procedure. Chapter 3 discusses the most relevant results through eigenspectrum and flow

pattern maps. The results of the validation and verification processes are also presented in

this chapter. Chapter 4 details this work’s conclusions and future perspectives.
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2 METHODS

This chapter describes the governing equations, stability analysis, and the numerical

formulation for predicting flow pattern transitions. The Two-fluid Model is solved through the

finite element method, starting from stratified smooth flows as initial conditions.

2.1 Governing equations

2.1.1 Two-fluid Model

The one-dimensional Two-fluid Model (Ishii, 1975) consists of three conservation equa-

tions for each phase (i.e., mass, momentum, and energy). For isothermal flow, the energy

equations can be dismissed. The mass and momentum conservation equations are given

by:

∂t (αlρl) + ∂s (αlρlul) = 0 (2.1)

∂t (αgρg) + ∂s (αgρgug) = 0 (2.2)

∂t (αlρlul) + ∂s
(
αlρlu

2
l

)
+ αl∂spil + αlρlg∂shl cos β

= −αlρlg sin β − Flw + Fgl

(2.3)

∂t (αgρgug) + ∂s
(
αgρgu

2
g

)
+ αg∂spig + αgρgg∂shl cos β

= −αgρgg sin β − Fgw + Flg

(2.4)

The independent variables α, u, and pi represent the volumetric fraction, phase velocity,

and interfacial pressure. The subscripts l and g indicate the liquid and gas phases. The

remaining variables β and F represent the local inclination of the pipeline with respect to the

horizontal and the shear force, respectively. Time is represented by t, and s is the spatial

coordinate. Figure 6 illustrates the parameters of stratified flows in horizontal and inclined

straight pipes.

Figure 6 – Stratified flow layout

Note: adapted from Montini (2010).
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The interfacial pressure is defined by pi, the liquid and gas volumetric fractions sum to

one αl +αg = 1, and the average phase velocities usl and usgcan be expressed as functions

of the volumetric fractions:

ul =
usl

αl

, ug =
usg

αg

(2.5)

The liquid density is constant, and the gas density ρg is related to the interfacial pressure

pi by the correlation of Montini (2010):

ρg =
pi − pi,0
c2g,0

+ ρg,0 (2.6)

where cg,0, pi,0, and ρg,0 represent the propagation velocity of an infinitesimal pressure wave

compatible with an isothermal evolution, the atmospheric pressure, and the air density at

atmospheric pressure, respectively.

Equations (2.1) - (2.4) can be written in a matrix (quasi-linear) form:

A(W)∂tW +B(W)∂sW +C(W) = 0 (2.7)

where W = [αl, ul, ug, p]
T ∈ Rq is a column vector of the primitive variables. The matrices A

and B are the Jacobian matrices of dimension n x n. The column vector that contains the

source terms is denoted by C, and n is the number of independent variables. The matrices

A and B, and the vector C are detailed in Appendix 4.2.

Equations (2.1)-(2.4) are discretized with Taylor-Hood finite element methods and implicit

time schemes. The transient equations are resolved for a set of initial conditions in distinct

pipe configurations as follows.

2.1.2 Closure relations

2.1.2.1 Geometry

The direction of τgl shown in Fig. 6 is given by:

sgn (τkθ) =





1 if ug > ul,

0 if ug = ul,

−1 if ug < ul

(2.8)

where k ∈ {l, g} denotes a phase, θ ∈ {l, g, w} and k ̸= θ.

According to Biberg (1999), the geometric relation between the stratification angle γl and

the liquid volumetric fraction αl reads:

γl = π (αl) +

(
3π

2

)1/3 (
1− 2αl + α

1/3
l − (1− αl)

1/3
)

(2.9)

The cross-sectional areas of the phases are defined by Ak = αkA. The following

geometric identities are used to express the wall and interfacial perimeters in terms of the

stratification angle:

Plw = Dγl (2.10)



31

Pgw = D(π − γl) (2.11)

Pgl = D sin γl (2.12)

Finally, the liquid height hl and the liquid holdup αl in the hydrostatic pressure term are

related by the expression of Bonizzi (2003):

∂shl cos β = dc∂s(1− αl) (2.13)

The corrected diameter reads:

dc = − πd cos β

4 sin (γl/2)
(2.14)

and γl is the stratification angle.

2.1.2.2 Friction models

The shear stress terms are physically modeled by:

τkϕ =

{
1
2
fkϕρkuk |uk| if ϕ = w,

1
2
fkϕρg(uk − uϕ) |uk − uϕ| if ϕ ∈ {g, l}

(2.15)

where the subscript k ∈ {l, g}. The Fanning friction factors are denoted by fl, fg, and fgl

(see Table 1) based on the combination proposed in Issa and Kempf (2003), Montini (2010).

Table 1 – Correlations for the friction factors

Laminar flow
(Rek < 1180)

Turbulent flow
(Rek ≥ 1180)

Source

flw 24Re−1
l 0.0262 (α1Rel)

−0.139 Hand (1991), Balay et al. (1997)
fgw 16Re−1

g 0.046Re−0.2
g Taitel and Dukler (1976)

fgl = flg 16Re−1
g max {fgw, 0.014} Liao, Mei and Klausner (2008)
The subscripts k ∈ {l, g} and w represents the pipe wall.

The Reynolds numbers are evaluated as in Issa and Kempf (2003):

Reg =
Dhgugρg

µg

(2.16)

Rel =
Duslρ1
µ1

(2.17)

where the hydraulic diameter for the gas phase is evaluated as in Agrawal, Gregory and

Govier (1973):

Dhg =
4Ag

Pgw + Pgl

(2.18)
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2.2 Numerical method

2.2.1 Spatial discretization

2.2.1.1 Variational form

For a domain Ω ⊂ Rn with boundaries ∂Ω = Γin
D ∪ Γout

D , the quasi-linear form of the

governing equations reads:

∂tW +B(W)∂sW +C(W) = 0 in Ω (2.19)

with the Dirichlet boundary conditions

W = W (0, t) on Γin
D (2.20)

W = W (L, t) on Γout
D (2.21)

where Γin
D is defined by the liquid volumetric fraction and the velocities, and Γout

D by the

interfacial pressure. The Two-fluid Model (i.e., 2.1 to 2.4) can be formulated in a mixed

variational form, where the four variables αl, ul, ug, pi are approximated simultaneously by

the following problem:

Find Wh = [αl, ul, ug, pi]
T in Vh such that:

a (Wh,Vh) = L (Vh) (2.22)

R (Wh,Vh) = aA (Wh,Vh)− L (Vh) = 0 (2.23)

where L (Vh) is the linear form, a (Wh,Vh) is the bilinear form, and R (Wh,Vh) is the

residual. The mixed function space Vh = Vh,1 × Vh,2 × Vh,3 × Vh,4 is composed of scalar-

valued continuous piecewise polynomials.

For the test functions [v1, v2, v3, v4]
T ∈ Vh and trial functions w1, w2, w3, w4 ∈ Vh the

variational form reads:

∑

Ω∈Ωh

∫

Ω

∂tWhVhdx+
∑

Ω∈Ωh

∫

Ω

aA

(
B0,h;Wh,Vh

)
dx :=

∑

Ω∈Ωh

∫

Ω

C0,hdx (2.24)

where the discretized vector of variables is:

Wh = [(Wh1)1,...,N , (Wh2)1,...,N , (Wh3)1,...,N , (Wh4)1,...,N ]
T (2.25)

A weighted residual method resolves equation (2.24). The approximate solution is a

linear combination of basis functions in a finite subspace Vh ⊂ V . The approximate solution

is a sum of coefficients times basis functions:

Wh(s, t) ≈ Wh(s, t) =

j=1∑

N

ξjϕj(x, t)), Vh = {ϕ1, ..., ϕN} {ϕj}Nj=1 (2.26)
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The coefficients {ξj}Nj=1 is determined by an orthogonal projection of the residual of the

equation system onto the finite subspace Vh, that is:

R (Wh, Vh) = 0 (2.27)

for all v ∈ Vh, which corresponds to a matrix equation Ax = b, that is solved by numerical

methods.

The advection term aA is:
∑

Ω∈Ωh

∫

Ω

aA

(
B0,h;Wh,Vh

)
=

∑

Ω∈Ωh

∫

Ω

Vh.∇B0,hWhdx, (2.28)

2.2.1.2 Taylor-Hood mixed finite elements

The Two-fluid Model (i.e., Eqs. (2.1) to (2.4)) represents a convection-dominated problem,

and the diffusive forces are introduced as sources. Taylor and Zienkiewicz (2013) pointed out

that the numerical treatment of convection-dominated equations is non-trivial. The Two-fluid

Model equations are frequently resolved with first-order Finite-Diferences or the Finite Volume

method, using staggered grids (Ansari; Shokri, 2011; Kim; Kang; Lowengrub, 2004; Kjeldby;

Nydal, 2013; Liao; Mei; Klausner, 2008; Holmås et al., 2008; Fullmer, 2014; Ortega; Nieckele,

2005), usually presenting excessive numerical diffusion for higher-order schemes. Finite

Difference and Finite Volume methods need staggered grids for the variables (Versteeg;

Malalasekera, 2007). Volume quantities (i.e., volumetric fraction, interfacial pressure) are

stored at cell centroids (ordinary nodes), and velocities are stored at cell faces (staggered

grid) (Anderson; Tannehill; Pletcher, 1997; Versteeg; Malalasekera, 2007; Montini, 2010).

The Model resolves Eqs. (2.1) to (2.4) with continuous finite elements for the spatial

discretization due to their accuracy and stability since the initial conditions are smooth (Alnæs

et al., 2014). Logg, Mardal and Wells (2012) presented element spaces frequently used for

resolving the Navier-Stokes equations (e.g., Taylor–Hood (Taylor; Hood, 1973; Boffi, 1997)

and MINI elements, a cheaper alternative to Taylor-Hood (Arnold; Franco; Fortin, 1984)).

The Taylor-Hood elements (Taylor; Hood, 1973; Boffi, 1997) used for the spatial dis-

cretization of Eqs. (2.1) to (2.4) consist of Pp (p ≥ 2) Continuous Galerkin elements for

the velocities and Pp−1 Continuous Galerkin elements for the interfacial pressure. Thus, the

interfacial pressure convergence order is lower than that for the velocity.

Taylor-Hood elements satisfy the Ladyzhenskaya-Babuška-Brezzi (LBB) condition, also

known as inf-sup stability or div-stability condition (Mercier, 1979). The LBB condition is

sufficient for saddle point problems with unique solutions that depend continuously on the

input data.

The capability of the spatial discretization schemes to reproduce wave growth is in-

vestigated through the construction of eigenspectra for finite element schemes used for

discretizing convection-dominated problems (i.e., Continuous Galerkin, Taylor-Hood, and

MINI elements) (Alnæs et al., 2014).
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Also, in this work, MINI elements are employed to compare the discretization schemes’

effect on the eigenspectra for distinct scenarios. As stated in Arnold, Franco and Fortin

(1984), enriching a finite element space can improve stability properties. MINI elements

are composed of linear vector Continuous Galerkin elements enriched with a set of cubic

vector Bubble elements and function space of continuous piecewise linear elements. The

vector Bubble element is used for the velocity approximation (Logg; Mardal; Wells, 2012).

For one-dimensional problems, the Bubble element Bq is defined for q ≥ (d+ 1).

The definition of the element space Vh depends on the element space, as follows:

• Continuous Galerkin: scalar-valued continuous p-order piecewise polynomials.

• Taylor-Hood: p-order scalar-valued continuous for the velocities, and (p − 1)-order

scalar-valued continuous piecewise polynomials for the liquid holdup and interfacial

pressure.

• MINI: p + 1-order enriched elements for the velocities and p-order scalar-valued

continuous piecewise polynomials for the liquid holdup and interfacial pressure.

Equations 2.1 to 2.4 are resolved in horizontal and inclined pipelines, discretized in a

uniform mesh. Horizontal, upward inclined pipes (β = 0.25◦), and downward inclined pipes

(β = −5◦) are analyzed for instability and nonlinear studies (see Figs. 7a to 7c).

Figure 7 – Horizontal and slightly inclined straight pipes

(a) Horizontal

(b) Upward inclined

(c) Downward inclined

Note: adapted from Issa and Kempf (2003).
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2.2.2 Time integration

The Two-fluid Model is regularly discretized through implicit time schemes (e.g., First-

order Backward Differentiation Formula) because of its unconditional numerical stability.

However, it is only first-order accurate and can introduce significant numerical diffusion

(Sanderse; Smith; Hendrix, 2017). The Two-fluid Model equations are discretized with fully

implicit time integration methods (see Table 2) according to the θ-method proposed in Barclay,

Griffiths and Higham (2000).

Table 2 – Parameter values for time integration methods

Scheme a0 a1 a2 θ
BDF1 1 -1 0 1
BDF2 3

2
-2 1

2
1

CN 1 -1 0 1
2

Note: adapted from Sanderse, Smith and Hendrix (2017).

The left side of Eq. (2.24) can be written under the following expression (Smith, 2017;

Sanderse; Smith; Hendrix, 2017):

a0W
n+1 + a1W

n + a2W
n−1

∆t
= θF

(
Wn+1, tn+1

)
+ (1− θ)F (Wn, tn) (2.29)

with the parameter values given in Table 2. The local truncation for the methods is given by:

τ̄CN, BDF =

(
θ − 1

2

)
∆t2F′′ +

(
1

2
θ − 1

3

)
∆t3F′′′ +O

(
∆t4

)
(2.30)

The Courant–Friedrichs–Lewy (CFL) number (Courant; Friedrichs; Lewy, 1928; Courant;

Friedrichs; Lewy, 2010) is taken as CCFL = 1 as the first approach, based on the study of

Sanderse, Smith and Hendrix (2017). However, for nonlinear simulations, the CFL numbers

can be modified. Han and Guo (2015), stated that, in consideration of the stiffness of the

problem, the time steps could be adjusted to ensure that the CFL numbers are less than 0.1

for all mesh cells. A variable time step is used for satisfying a CFL-type stability condition.

The time step ∆t is defined by:

∆tk =
CCFLhmin

max |λk−1
n | (2.31)

where hmin is the minimum cell size of the mesh, max
∣∣λk−1

n

∣∣ is the maximum characteristic

at the previous time step, and CCFL is a chosen positive number.

2.2.3 Initial and boundary conditions

As stated in Issa and Kempf (2003), Montini (2010), Bertodano et al. (2017), Zwieten et

al. (2017), Ferrari, Bonzanini and Poesio (2017), the starting condition is a stratified smooth

steady flow. Fig. 8 illustrates the layout of stratified smooth flow for horizontal and inclined

straight pipes.
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Figure 8 – Equilibrium stratified flow in inclined and horizontal pipes.

For stratified smooth flow, a momentum balance on each phase yields

∂spi −
τlwSlw

Aαl

+
τglSgl

Aαl

+ ρlg sin β = 0 (2.32)

∂spi −
τgwSgw

Aαg

− τglSgl

Aαg

+ ρgg sin β = 0 (2.33)

Equating pressure drop in Eqs. (2.32) - (2.33) and assuming that the hydraulic gradient

in the liquid is negligible gives

τgw
Pgw

Ag

− τlw
Plw

Al

+ τglPgl

(
1

Al

+
1

Ag

)
+ (ρg − ρl) g sin β = 0 (2.34)

where the shear stresses and geometric relations are evaluated as shown in Sections 2.1.2.1

and 2.1.2.2. The liquid fraction αeq
l at the initial state can be calculated from Eq. (2.34) for

given values of the superficial velocities. Equation (2.34) can be used for horizontal and

slightly inclined pipes (Issa; Kempf, 2003; Holmås et al., 2008; Liao; Mei; Klausner, 2008;

Bonzanini; Picchi; Poesio, 2017; Sanderse; Smith; Hendrix, 2017; Hendrix et al., 2016).

Three boundary conditions must be set at the inlet and one at the outlet:

1. Liquid volumetric fraction: αl (s = 0, t) = αin
l ,

2. Superficial liquid velocity: ul (s = 0, t) = uin
l ,

3. Superficial gas velocity: ug (s = 0, t) = uin
g ,

4. Absolute interfacial pressure: pi (s = L, t) = pouti .

2.3 Stability

The stability regions for different initial conditions are determined by analyzing Kelvin-

Helmhotz-type instabilities. According to (Barnea; Taitel, 1994), the curves representing

the limit of well-posedness coincide with the Inviscid Kelvin Helmholtz (IKH) limit. Among

other authors, Barnea and Taitel (1994) studied the effect of liquid viscosity on stability. They

concluded that the neutral stability curves coincide with the Viscous Kelvin-Helmholtz (VKH)

limit and approximate the transition from stratified to intermittent flow in horizontal pipes. In
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contrast, Bendiksen and Espedal (1992) argued that the VKH does not provide necessary

and sufficient conditions for the onset of slugging and only gives the transition from stratified

smooth to stratified wavy flow.

2.3.1 Well-posedness analysis

The well-posedness criteria reveal the hyperbolicity of the model through its characteris-

tics (Fletcher, 2012; Hirsch, 1988b; LeVeque, 2002; Montini, 2010). A problem is well-posed

when the solution exists, is unique, and depends continuously on the initial data (Hadamard,

1902). When these conditions are satisfied, the problem is well-posed, and any perturbation

can grow as it propagates along the domain. As stated in Issa and Kempf (2003), Montini

(2010), the ill-posedness character of the Two-fluid Model is not influenced by the energy

equations. Substituting wave-like solutions (Hirsch, 1988a; Drew; Passman, 1998; Sanderse;

Smith; Hendrix, 2017) in the homogeneous part of (2.7):

W = Ŵei(nss+ntt) (2.35)

letting λn = −ns/nt, the generalized eigenvalue problem reads:

det(B− λnA) = 0 (2.36)

Equation (2.36) has n eigenvalues λn for the n equations, which represent the velocities

and their eigenvectors, the direction of propagation of the information (Sanderse; Smith;

Hendrix, 2017). Based on the characteristics, according to Montini (2010);

• If Im(λn) = 0 the equation system is parabolic and well-posed;

• If Im(λn) = 0, and λn are different the equation system is hyperbolic and well-posed;

• If Im(λn) ̸= 0 the equation system is elliptic and ill-posed.

2.3.2 Fourier analysis

The Fourier analysis studies the response of the linearized equations when imposing

infinitesimal perturbations (i.e., solitary waves on the interface (Pokharna; Mori; Ransom,

1997; Ansari, 1998)). The information on the growth rate of the instabilities around equilibrium

solutions (Ramshaw; Trapp, 1978) is provided through a Fourier analysis, concordantly with

Liao, Mei and Klausner (2008), Montini (2010), Fullmer (2014).

Equations (2.1) - (2.4) are linearized around a reference state with an infinitesimally small

perturbation W = W0 + W̃ imposed. The linearized equations read:

A0(W0)∂tW̃ +B0(W0)∂sW̃ + (∂WC)0(W0)W̃ = 0 (2.37)

where A0, B0 and (∂WC)0 are evaluated at the reference state W0. The linearization

process of the Two-fluid Model is presented in Appendix 4.2.
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The perturbation is assumed to be of a wave-like form εe[I(ωt−ks)] with amplitude ε,

angular frequency ω and wavenumber k, leading to:

(A0 (Iω)−B0 (Ik) + (∂WC)0) εe
I(ωt−ks) = 0 (2.38)

where the imaginary component Im(ω) of the angular frequency represents the wave growth

rate. Equation (2.38) has a non-trivial solution if the determinant of the coefficient matrix

vanishes:

det (A0 (Iω)−B0 (Ik) + (∂WC)0) = 0 (2.39)

The Two-fluid Model leads to a nonlinear dispersive system of equations (i.e., waves of

different wavelengths propagate at different phase velocities (Dodd et al., 1982; Montini,

2010)). The variation of the wave growth rate of the disturbances with the wavenumber is

studied through the resolution of Eq. (2.39).

For a single wave with k = 2π (i.e., the smallest wave number presented on the domain),

the dispersion equation (2.39) can be solved for the wave frequency. The solution leads

to 4 waves, two convective and two acoustic waves. Fullmer et al. (2010), Pokharna, Mori

and Ransom (1997), VonNeumann and Richtmyer (1950) affirmed that the Fourier analysis

provides a stability condition of the equation system based on the growth rate of disturbances

−Im(ωn) for distinct wavelengths.

• If −Im(ωn) < 0 the system is stable and the flow is stratified smooth,

• If −Im(ωn) = 0 the system is neutrally stable;

• If −Im(ωn) > 0, the system is unstable, leading to stratified wavy flow and the eventual

flow pattern transition to intermittent flow;

• If −Im(ωn) exponentially blows up for short wavelengths λ and the equation system is

ill-posed.

2.3.3 Stiffness analysis of the semi-discrete equations

The Fourier analysis of the differential equations (see Section 2.3.2) studies the stability

of the equation system at the initial conditions. Ultimately, Eqs. (2.1) - (2.4) are discretized in

space (see Equation 2.24). Some terms in the differential equations lead to fast transients,

while others are slow (Sanderse; Smith; Hendrix, 2017), which makes the semi-discrete

equations (2.24) stiff. The stiffness is studied through eigenvalue analysis of the semi-

discrete equations. The eigenspectrum reveals the feasibility of the spatial discretization

scheme for capturing instabilities or reproducing wave growth. It depends on several factors,

including the grid size, the order of the basis functions, gas compressibility, and grid size.

Equations (2.1) - (2.4) are semi-discretized, leading to a semi-discrete system, only

depending on time, following the procedure of (Sanderse; Smith; Hendrix, 2017), reading:
dU

dt
= F(U), (2.40)
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where U = U(t) ∈ RqN is the vector of conserved variables:

U = [(αlρl) , (αgρg) , (αlρlul) , (αlρlul)]
T (2.41)

Equation (2.41) is linearized around the initial condition (see Section 2.2.3): W = W0+W̃(t).

The semi-discrete system only depends on time. It can be written as:

dW

dt
= JW̃ (2.42)

where J = (∂WF) ∈ RqNxqN . Diagonalization of J = KDK−1 leads to the following set of

decoupled equations:
dZ̃

dt
= DZ̃ (2.43)

where Z = K−1U. The matrix D is a diagonal matrix with eigenvalues ωN of J. These

eigenvalues are the discrete approximation of the eigenvalues of only the spatial derivatives

of the Two-fluid Model.

2.3.4 Wave growth prediction through von Neumann analysis

For unstable initial conditions, infinitesimal disturbances imposed on the equilibrium state

grow with different growth rates for each time step and position in the pipe, presenting the

possibility of the emergence of waves, which can grow until blocking the pipe diameter,

producing intermittent flow, or they can be attenuated due to gravity, viscous forces, the

configuration of the pipeline or the numerical diffusion of the numerical method (Taitel; Dukler,

1976; Issa; Kempf, 2003; Montini, 2010).

Differential flow pattern maps display stable and unstable regions based on the Kelvin-

Helmholtz stability theory (Taitel; Dukler, 1976). Experimental flow pattern maps show

transition curves and flow pattern regions in steady-state. Ultimately, discrete flow pattern

maps introduced in Sanderse, Smith and Hendrix (2017) display the effective stability regions

when the discrete equations are solved with a particular numerical method, grid, and time

resolution.

The Discrete Flow Pattern Maps are constructed through the von Neumann analysis

(VonNeumann; Richtmyer, 1950) and indicate whether a discretization method can correctly

capture the unstable well-posed regime and the potential transition to slug flow or if numerical

diffusion overwhelms the physical growth of instabilities. During transient simulations, growth

rates can differ from those obtained from the dispersion analysis of the differential equations

because of the numerical diffusion involved in some schemes (Sanderse; Smith; Hendrix,

2017).

The spatial discretization eigenvalues should fall inside the stability region for the time

integration method, which is constructed by application of the time integration method

described by Eq. (2.29) to a linear test equation (as derived from Eq. (2.43) ) following the
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procedure of Sanderse, Smith and Hendrix (2017):

v̇(t) = ωvdt, ω ∈ C (2.44)

The application of the time integration method (see Eq. (2.29)) to Eqs. (2.1) - (2.4) leads

to the following equation for the numerical growth rate (i.e., amplification factor) G:

(a0 − ω∆tθ)G2 + (a1 − ω∆t (1− θ))G+ a2 = 0 (2.45)

where the coefficients a0, a1, and a2 are defined in Table 2 The amplification factor G

indicates whether the numerical solution will grow in time, and is defined by:

G(z) =

∣∣∣∣
vn+1

vn

∣∣∣∣ (2.46)

where z = ωN∆t.

2.4 Regularization of the Two-fluid Model

Since the Two-fluid model equations represent a dispersive system, and wavelengths

shorter than a cut-off value λ0 can be considered insignificant (see Section 1.2), it is desirable

to have an energy sink in the numerical scheme at a short wavelength (i.e., λ ≈ 2∆x) to

keep these wavelengths from growing and affecting the solution. The numerical scheme

amplification factor for λ = 2∆x should be less than one. However, in some cases, it does

not resolve the fundamental ill-posed behavior of the Two-fluid Model in a physical sense,

and it may preclude convergence beyond the IKH criterion.

Second-order numerical diffusion terms can be added to all equations to achieve a cut-off

wavenumber beyond which perturbations decay. Montini (2010) added axial diffusion terms

in the momentum equations. They used Fick’s law of diffusion (i.e., J = −∇Γϕ (Fick, 1855),

where J is the diffusion flux, Γ is the diffusion coefficient, and ϕ is a generic concentration).

Bonzanini, Picchi and Poesio (2017), Holmås et al. (2008), Montini (2010) introduced ad-hoc

diffusion-like terms into the Two-fluid Model equations and solved the Two-fluid Model in

horizontal pipes. Appendix 4.2 presents a regularized Two-fluid Model equation system with

numerical diffusion.

As a first approach, ad hoc numerical diffusion can be added to the equation system to

study the capability of the numerical model to describe the effect of the wavelength on the

growth rate of disturbances. The gas and liquid coefficients are considered equal for the

mass and momentum diffusion (i.e., Γl = Γg = Γ and νl = νg = ν).

2.5 Implementation

The numerical model is written in the Python 3 programming language (with a few C++

extensions) (Rossum; Drake, 2009) with the aid of the open-source computing FEniCS
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Project platform (Alnæs et al., 2015; Logg; Mardal; Wells, 2012). After formulating the

variational problem, the FEniCS framework is used to construct the basis functions, solve

the integral functions on the element level, and assemble the system matrix.

For the stability analysis (see Section 2.3.2), the linearization of the Two-fluid Model is

performed with Wolfram Mathematica (Wolfram Research, Inc., 2020). The solution to the

equation system (2.34) at the initial state is solved through the secant method. The solution

to generalized eigenvalue problems of Sections 2.3.1, 2.3.2, and 2.3.3 is accomplished with

the Python 3 language through the ARPACK library (Lehoucq; Sorensen; Yang, 1998).

In the well-posedness analysis, equation (2.36) is resolved through the Arnoldi Package

(ARPACK) library (Lehoucq; Sorensen; Yang, 1998), and the Portable, Extensible Toolkit

for Scientific Computation (PETSc) suite (Balay et al., 2019; Katz et al., 2007). In the

Fourier analysis, equation (2.39) is numerically solved with ARPACK functions, which use

the Implicitly Restarted Arnoldi Method (Lehoucq; Sorensen; Yang, 1998, 1998) to find the

angular frequencies.

The Jacobian is obtained using the symbolic differentiation of FEniCS for nonlinear

simulations through the Newton linearization method. The linear system is solved through

the Unsymmetric MultiFrontal method (UMFPACK) method (Davis, 2004; Duff; Scott, 2004)

available in the Portable, Extensible Toolkit for Scientific Computation (PETSc) suite (Balay

et al., 2019; Katz et al., 2007).
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3 RESULTS AND DISCUSSION

This chapter presents the results and the discussion through sensitivity studies on the

capability of the numerical model to reproduce wave growth. Furthermore, differential and

hybrid flow pattern maps (i.e., a combination of differential, discrete, and experimental) show

the regions where flow pattern transitions may occur. The numerical model is also validated

through data available in the literature.

This work resulted in two oral presentations in conferences (Lazo-Vásquez; Baliño, 2022;

Lazo-Vásquez; Baliño, 2023a) (see the conference papers in Annexes 4.2 and 4.2), a journal

paper submission (see Annex 4.2), and a co-authorship of a conference paper about a

unit-cell approach for predicting slug flow in steady-state (Pellegrini et al., 2019) (see the

conference paper in Annex 4.2). The Model implementation is available online in a GitHub

repository (Lazo-Vásquez; Baliño, 2023b).

The numerical model proposed in this thesis (Lazo-Vásquez; Baliño, 2023b) has the

capability of performing: stability analysis of the linearized equations, stiffness analysis of

the semi-discrete equations, transient simulations of the fully-discrete equations, and the

construction of hybrid flow pattern maps. The inputs (i.e., phase properties, the geometry of

the pipes, and flow conditions) and outputs of the model are shown in Fig. 9:

Figure 9 – Inputs and outputs of the model

Model

ρk, µk

D, L, β (s)

W(s, 0)

Well-posedness analysis

Fourier analysis

Stiffness analysis

Hybrid flow pattern maps

Transient simulations Wh(s, t)

Note: the subscript k ∈ {l, g}, W = [αl, ul, ug, p]
T, s is the spatial coordinate, and t is the time coordinate.

The equation system to be resolved by the model can be set as an input or selected from

a list, consisting of the two-fluid model equations in the primitive and conservative forms.

The code allows the addition of other equation systems, being convection-dominated or not,

enabling studies on finite-element spaces, time discretization schemes, and other simulation

parameters.

The results are organized as follows. First, a well-posedness and Fourier analyses of

the differential equations show the regions where the two-fluid model equations can be

resolved at the initial conditions. The eigenspectra at different initial conditions reveal the

characteristics and modes associated with such regions. Also, through a dispersion analysis,

for diverse initial conditions, the dispersive behavior of the equation system is investigated,
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showing the relationship between wavelengths and stability. As an example, the capability

of the model for regularization studies is presented by adding numerical diffusion to damp

short wavelengths associated with ill-posedness. The model uses ad-hoc coefficients.

Second, considering stratified smooth flow at the initial conditions, after spatially dis-

cretizing the Two-fluid Model equations, a stiffness analysis is performed aiming to reveal

the influence of different finite element formulations on stability. Also, the modes of the eigen-

spectra are analyzed through the variation of some parameters, including pipe inclination,

number of elements, and order of the basis functions.

Third, after discretizing the two-fluid model equations with implicit time schemes, fully

discrete flow pattern maps are constructed through transient simulations during the first time

steps, revealing the factual stability of the equations in time. Finally, through a combination

of well-posedness and neutral stability curves, hybrid flow pattern maps for different pipe in-

clinations serve to analyze the possible discrepancies between the differential and numerical

solutions and the necessity of the inclusion of terms in the equations.

3.1 Initial conditions and parameters

In the numerical simulations and stability studies, the phase properties adopted are the

same as Issa and Kempf (2003), Montini (2010), Sanderse, Smith and Hendrix (2017) to

ease validation of the results. The geometry is determined by the correlations described

in Section 2.1.2.1 for straight pipes (see Fig. 7). The initial conditions, i.e., W(s, 0), are

obtained through the characterization of air-water stratified smooth flow (see Eqs. 2.34).

The liquid phase density is considered constant, and the gas phase is compressible. The

fluid properties and other parameter values that remain constant in this study are shown in

Table 3.

Table 3 – Parameter values that remain constant.

Parameter Value SI unit

ρl 1000 kg m−3

pi,0 105 Pa
cg 343 m s−1

L 1 m
g 9.8 m s−2

µl 1.8 · 10−5 Pa s
µg 8.9 · 10−4 Pa s

The phenomenological flow pattern maps of Shoham (1982), Barnea and Taitel (1994),

validated with experimental data of steady-state air-water flow, served as the theoretical

transition boundaries. Table 4 shows the parameters of the experimental flow pattern maps

employed to validate differential and numerical flow pattern maps.
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Table 4 – Test cases for validating differential flow pattern maps with experimental data.

Case β [deg] D [cm] Validation

Ia 0 5.1 Shoham (1982), Barnea and Taitel (1994)
Ib 0.25 5.1 Shoham (1982), Barnea and Taitel (1994)
Ic -5 5.1 Shoham (1982), Barnea and Taitel (1994)
Id 0 7.8 Sanderse, Smith and Hendrix (2017)

3.2 Stability at the initial conditions

3.2.1 Well-posedness analysis

The well-posedness analysis (Section 2.3.1) reveals the regions where the Two-fluid

Model keeps its hyperbolicity. Above the limits of well-posedness, the equation system should

be regularized to be solved with any standard numerical method. The curves representing the

limit of well-posedness are built with a sequence of superficial velocities. The computations

are stopped when complex eigenvalues are found, i.e., the equation system is no longer

hyperbolic. Four eigenvalues associated with the characteristics are obtained. Two of them

(λ1,2 ≈ ±c) are related to the speed of sound c, and the others (λ3 ≈ usl, and λ4 ≈ usg) are

related to the speed of the convective waves (Wallis; Wallis, 1969).

The limits of well-posedness can coincide with the IKH criteria for horizontal and slightly

inclined pipes (see Section 2.3.1). Figure 10 shows the influence of local pipe inclination on

the limits of well-posedness. In upward inclined pipes, the limits of well-posedness of the

Two-fluid Model limits arise at lower liquid superficial velocities, which implies the need for

regularization at higher flow rates. Table 5 presents the test points used as initial conditions

in well-posed analysis and further stability studies.

Table 5 – Test points for differential flow pattern maps

Test point usl [m/s] usg [m/s]

□ 0.05 0.829
⃝ 0.5 6.908
△ 0.7 10.0

Note: data from Sanderse, Smith and Hendrix (2017).

Figures 12b and 11 depict the influence of the local inclination of the pipeline on

the characteristics. When the model becomes ill-posed, complex eigenvalues arise. The

system is well-posed for all the initial conditions studied in downward inclined pipes (see

Fig. 11). Alternatively, in upward inclined pipes, ill-posedness arises at lower liquid superficial

velocities.
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Figure 10 – Effect of local inclination on the limit of well-posedness for horizontal and inclined pipes with
D = 0.078 m.

Figure 11 – Effect of flow conditions and local inclination on the characteristics of the differential equation
system D = 0.078 m.

(a) Downward inclined pipe (β = −5 deg).
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Figure 12 – Effect of flow conditions and local inclination on the characteristics of the differential equation
system (D = 0.078 m).

(a) Horizontal pipe (β = 0 deg).

(b) Upward inclined pipe (β = 0.25 deg).

3.2.2 Fourier analysis

The dispersion relation (2.39) indicates how waves with distinct wavelengths can lead

to different growth rates of disturbances. The growth rate of disturbances varies due to the

dispersive character of the equation system, which is shown in Fig 13, which details the

effect of the wavelength λ on the complex angular frequencies ω. The wave-growth rate is

always finite for well-posed initial conditions for any wavelength. However, such growth rates
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can be infinite for ill-posed cases for short wavelengths. Alternately, Fig 14 shows the effect

of a regularized equation system according to Section 2.4.

Figure 13 – Effect of initial conditions on the dispersion of a non-regularized model

The parameters jl and jg stand for the liquid and gas superficial velocities

Figure 14 – Effect of initial conditions on the dispersion of a regularized model

The parameters jl and jg stand for the liquid and gas superficial velocities

For a single wave with k = 2π, the dispersion relation (see Eq. (2.39) led to an eigenvalue

problem, which is solved for a sequence of superficial velocities. When positive complex

angular frequencies are found, the system is considered stable; alternatively, when negative
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complex angular frequencies are found, the system is unstable. When real angular fre-

quencies appear, the system is neutrally stable. The eigenspectra shown in Fig. 17 provide

information about the initial conditions. The system leads to two convective waves and two

acoustic waves. Three of them travel forward, and the last one backward. That is why one

boundary condition is chosen at the pipe outlet. In transient simulations, traveling waves

based on the data of the eigenspectra can be imposed as initial perturbations (Sanderse;

Smith; Hendrix, 2017), forcing the emergence of waves.

Figure 15 – Effect of the local inclination on the eigenspectra for D = 0.078 m.

(a) Horizontal pipe (β = 0 deg).

Figure 16 – Effect of the local inclination on the eigenspectra for D = 0.078 m.

(a) Upward inclinedpipe (β = 0.25 deg).
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Figure 17 – Effect of the local inclination on the eigenspectra for D = 0.078 m.

(a) Downward inclinedpipe (β = 0 deg).

3.3 Stiffness analysis of the semi-discrete equations

The eigenspectra of the semi-discrete equations are related to the capability of the

spatial discretization schemes to reproduce wave growth. Table 6 reports the test cases for

sensitivity studies on the Effect of the mesh size, the order of basis functions, superficial

velocities, the local inclination of the pipeline, and the type of element spaces on the stiffness

of the equations.

Figure 18 illustrates the effect of the finite-element space on the stiffness of the problem.

The eigenmodes corresponding to convective waves have the largest real components for

unstable initial conditions. Conversely, the eigenmodes corresponding to acoustic waves

have the largest imaginary components. Convective waves may lead to instabilities in the

Two-fluid Model semi-discretized equations when associated with positive real eigenmodes.

The structure of the eigenspectra is preserved in Case I, which suggests that the methods

can reproduce wave growth. The following sensitivity studies are performed with higher-order

Taylor-Hood elements, known for preserving the inf-sup condition. Moreover, MINI elements

are known for their improved stability, which can be beneficial during transient simulations

and the prediction of flow pattern transitions.
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Table 6 – Test cases for stiffness analysis of the semi-discrete Two-fluid Model

Sensitivity analysis Elements Case N q usl [m/s] usg [m/s] β [deg]
Element space CG Ia 40 2 0.50 6.908 0

TH Ib 40 2 0.50 6.908 0
MINI Ic 40 2 0.50 6.908 0

Local inclination TH IIa 40 2 0.50 6.908 0
TH IIb 40 2 0.50 6.908 0.25
TH IIc 40 2 0.50 6.908 -5

Number of elements TH IIIa 40 2 0.50 6.908 0
TH IIIb 80 2 0.50 6.908 0
TH IIIc 160 2 0.50 6.908 0

Order of basis functions TH IVa 40 2 0.50 6.908 0
TH IVb 40 4 0.50 6.908 0
TH IVc 40 6 0.50 6.908 0

Superficial velocities TH Va 40 2 0.05 0.829 0
TH Vb 40 2 0.50 6.908 0
TH Vc 40 2 0.70 10.000 0

Note: the acronyms CG and TH stand for Continuous Galerkin and Taylor-Hood, respectively. The acronym
MINI stands for linear vector Continuous Galerkin elements enriched with a set of cubic vector Bubble elements.

Figure 18 – Effect of discretization of convective and source terms with distinct finite-element spaces on the
stiffness (case I).

(a) Continuous Galerkin elements P2. (b) Taylor-Hood elements P2 − P1.

(c) MINI elements P1 − B3.

Figures 19 to 22 show the spectrum of the Two-fluid Model semi-discrete equations for
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the parameter values of table 6 with Taylor-Hood element spaces. As shown in Fig 19, they

can have real positive components for different initial conditions. There are no real positive

modes for well-posed stable initial conditions; otherwise, they have positive real modes.

Therefore, convective waves may produce wave growth without being attenuated.

Figure 19 – Effect of the superficial velocities on the stiffness (case II)

(a) Well-posed stable (case IIa) (b) Well-posed unstable (case IIb).

Note: spatial discretization of the convective and source terms with Continuous Galerkin P2 elements.

Figure 20 – Effect of the local inclination on the stiffness (case II:). Spatial discretization of the convective and
source terms with Continuous Galerkin P2 elements.

(a) Horizontal pipe (β = 0 deg) (case IIIa). (b) Upward inclinedpipe (β = 0.5 deg) (case IIIb).

(c) Downward inclinedpipe (β = −1.5 deg) (case IIIc).

Figure 20 shows the pipe local inclination’s influence on the waves’ emergence. For

downward inclined pipes with β = −1.5◦ (see Fig. 20c), they are just a few real positive
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modes with a low growth rate of disturbances, which suggests that it is not feasible to

develop waves with higher growth rates. However, for horizontal and upward inclined pipes,

the real positive part of the modes has disturbances with a higher growth rate, validating the

differential flow pattern maps.

With an unstable well-posed initial state, Fig. 21 shows the influence of the mesh size.

Notably, for a horizontal mesh of 400 elements, there is a larger number of modes; however,

the disposition of the spectrum does not change. It is still possible to reproduce wave growth.

Fig 21 shows the structure of the eigenspectrum changes for incompressible flow. The

figure depicts eigenmodes in both negative and positive real parts. The largest imaginary

components of the modes reduce to 100, and the modes representing acoustic waves are

displaced near the origin.

Figure 21 – Case IV: Effect of mesh size on the stiffness. Spatial discretization of the convective and source
terms with Continuous Galerkin P2 elements.

(a) Coarse mesh (N = 40) (Case IVa) (b) Fine mesh (N = 400) (case IVb).

Figure 22 – Effect of the order of basis functions on the stiffness (case IV).

(a) Low-order basis functions (k = 2) (case IVa). (b) Higher-order basis functions (k = 6) (case IVb).

Figure 22 depicts the influence of the order of the basis functions. For higher-order basis

functions, the eigenspectra change; however, it is possible to simulate wave growth. The

eigenmodes corresponding to acoustic waves acquire higher maximum rates and structure

changes. However, the structure of the eigenmodes corresponding to the convective waves

is maintained, having higher real positive values.
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3.4 Flow pattern prediction based on Kelvin-Helmholtz instabilities

3.4.1 Differential flow pattern maps at the initial conditions

The differential flow pattern maps show the limit of the well-posedness of the equation

system, the neutral stability curves at the initial conditions, and the regions where the

stratified and non-stratified flow can occur. The neutral stability curves can coincide with the

VKH criteria for horizontal and slightly inclined pipes (see Section 2.3.2).

Downward-inclined pipes have a stabilizing effect on fluid flow. According to Issa and

Kempf (2003), this is why downward inclined pipes are usually placed before upward inclined

pipes. The unstable region is located between the IKH and VKH limits. It represents the

zone where it is most probable that stratified wavy flow occurs and, in some circumstances,

intermittent flow. This criterion must be validated through the stability analysis of the semi-

discretized equations (see Section 3.3) and transient simulations.

Fig 23 validates a differential flow pattern map of horizontal pipes with the map obtained

in Sanderse, Smith and Hendrix (2017). The system can be well-posed and unstable at

lower superficial velocities at the initial conditions. The governing equations (4.1) to (4.4)

do not consider the second term of the hydrostatic pressure term of Sanderse, Smith and

Hendrix (2017) since it is third order.

3.4.2 Discrete and hybrid flow pattern maps

As the first approach, we simulate air-water flow (ρl = 1000 kg/m3, µl = 1.8e− 5 Pa s,

µg = 8.9e− 4 Pa s) in a horizontal pipe with D = 0.078 m, L = 1 m, and n = 40 elements.

Wave growth simulations and the construction of fully discretized flow pattern maps (see

Figs. 24 and 25) are performed simultaneously to track the stability of the equations within

the entire domain. A characteristics analysis is performed parallel to the numerical model

to ensure that the computations made with this numerical model correspond to physical

phenomena.

The Discrete Flow Pattern Maps are constructed like differential flow pattern maps in

Section 3.4, using a sequence of superficial liquid and gas velocities, solving the discrete

equations with a small perturbation as the initial condition, and determining the growth rate

ωN . The stability boundary is given by Im(ωN) = 0. Additionally, when amplification factors

0 ≤ G(z) ≤ 1 are found, the system is unstable; alternatively, the system is stable when

amplification factors G(z) > 1 are found. The computations are stopped when 0 ≤ G(z) ≤ 1.

The amplification factors of the fully discrete equations are computed for the time step

∆t = 1/40 s as the first approach, as suggested in (Sanderse; Smith; Hendrix, 2017). Also,

the CFL number is CCFL = 1, and then it is adjusted following the procedure of (Sanderse;

Smith; Hendrix, 2017). The well-posedness of the fully discrete equations is evaluated every
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time step, so simulations starting above the limit of ill-posedness are directly considered

ill-posed.

Hybrid flow pattern maps in Figs. 23 to 25 depict a combination of neutral stability and

limit of well-posedness curves belonging to differential, discrete, and experimental flow

pattern maps for a large sequence of initial conditions and local inclinations (see Figs. 24

and 25). A well-posedness analysis was performed at each time step, Since the Two-fluid

Model is ill-posed for high slip velocities (i.e., where slug flow takes place). The stability

analysis determines the feasibility of simulating wave growth with higher-order finite-element

methods.

Sanderse, Smith and Hendrix (2017) stated that any simulation starting above the ill-

posedness boundary would be marked as ill-posed because our ill-posedness indicator

is based on evaluating the eigenvalues of the differential equations. However, simulations

that start in the unstable well-posed regime may grow into the ill-posed regime due to

nonlinear effects. The regions and the curves illustrated in Fig. 25 agree with differential and

experimental flow pattern maps. For a well-posed unstable initial condition, the system has a

maximum numerical growth Gmax = 1.00212604 and ωmax = 0.386 the first 10s of simulation.

The hybrid flow pattern maps at the initial conditions, shown in Figs. 24 and 25, present

good agreement with the literature. However, the discrepancies at high flow velocities may

have been triggered due to several reasons. One of these reasons is the lack of accurate

closure models in terms of the primitive variables of the equation system. The Two-fluid

Model equation system in this thesis uses phenomenological correlations to describe friction,

which can lead to divergences at high flow rates.

Figure 23 – Differential flow pattern maps validated with the maps in Table 4.

Note: 1 m horizontal pipe (β = 0 deg) with D = 0.078 m.
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Figure 24 – Hybrid flow pattern maps for horizontal pipes (β = 0 deg) with D = 0.078 m

(a) Discrete flow pattern maps in horizontal pipes (β = 0).
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(b) Discrete flow pattern maps in upward inclinedpipes (β = 0.25 deg).
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Note: Taylor-Hood P2 finite elements for the convective and source terms and the BDF2 scheme for time
integration. Validated with the maps of Barnea and Taitel (1994)
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The main advantage of constructing hybrid flow pattern maps is that the theoretical

and factual stability regions and potential transitions can be tracked at each time step,

revealing several issues related to the numerical model, including morphology changes in

the maps and displacements of the limits. These alterations during transient simulations

may suggest, among other reasons, the limitations of certain closure relations, numerical

discretization schemes, geometrical discontinuities, or even regularization mechanisms.

As shown in Figs. 23 to 25, discrepancies between theoretical and numerical curves can

be tracked in time in order to understand their causes and analyze the divergences that

can appear during long simulation times. The results of this thesis depict an adoption

of the methodology for constructing Discrete Flow Pattern Maps for horizontal pipes and

Finite-volume methods, detailed in (Sanderse; Smith; Hendrix, 2017), for an open-source

Taylor-Hood finite-element model with the possibility of conducting studies on more complex

geometries and discretization schemes.

Figure 25 – Hybrid flow pattern maps for pipes with D = 0.078 m

(a) Downward inclinedpipes (β = −5 deg).
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Note: Taylor-Hood P2 finite elements for the convective and source terms and the BDF2 scheme for time
integration. Validated with the maps of Barnea and Taitel (1994).
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4 CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions and the next steps, conforming with the objective,

hypothesis, and methods described in Chapter 1.

4.1 Conclusions

This thesis presents an analysis of the capability of a novel finite-element formulation,

combined with linear stability analysis, for predicting wave growth with the Two-fluid Model.

The numerical formulation predicts well-posedness and wave growth that may lead to flow

pattern transition for a range of superficial velocities, pipe diameters, and pipe inclinations.

Although the previous works investigating wave growth in stratified smooth flows and their

consequent onset of flow pattern transitions have proposed diverse numerical formulations

and regularization mechanisms, the solution to the one-dimensional Two-fluid Model still

represents an open question.

The Two-fluid Model is conditionally well-posed; therefore, predicting well-posedness

during flow simulations is fundamental during wave growth, flow pattern transitions, and the

onset of slugging. The differential flow pattern maps based on Kelvin-Helmholtz instabilities

show the stability and well-posedness regime regions, predicting potential flow pattern

transitions.

The stiffness analysis demonstrated that several factors (e.g., mesh size, local pipe

inclination, order of basis functions, and average phase velocities) could affect the eigenvalue

distribution of semi-discrete equations, presenting unstable modes that may lead to wave

growth. Eigenspectra shows that convective waves are not attenuated by numerical diffusion

present in the numerical schemes. Also, the eigenvalues associated with acoustic waves do

not affect wave growth for smooth initial conditions.

Although continuous Galerkin elements for the spatial discretization predict wave growth

under well-posed unstable initial conditions, Taylor-Hood elements preserve the inf-sup

stability condition and provide the possibility of using higher-order basis functions. Also,

Taylor-Hood elements maintain the eigenstructure and stability regions predicted through

Fourier analysis of the differential equations. Furthermore, Mini-enriched stabilized elements

reproduce wave growth but are limited to lower-order basis functions.

The fully discrete flow pattern maps track the actual stability properties of the numerical

formulation within the entire domain during the first time steps of transient simulations, not

only in horizontal pipes as in previous studies but in slightly inclined pipes. The numerical

formulation presents the capability for adding diverse closure relations (i.e., regularization

terms for high flow rates, a local variation of inclination angle along the pipeline) into the

variational form, being advantageous over the finite volume method, as in some of the

previous studies.
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In slightly inclined pipes and stratified smooth flow as the initial condition, continuous

finite-element schemes render expected wave growth rates in agreement with the literature.

However, special attention must be put when simulating wave growth when discontinuities

appear during single to two-phase flow transitions and in complex configurations composed

of irregular geometries.

For further investigations, the numerical Model can perform linear stability analysis for

distinct equation systems as inputs. This enables linear stability studies of regularized

equation systems by adding physical and numerical terms from the literature. Also, the

Model allows the incorporation of other finite element spaces available in the open-source

computing FEniCS Project platform, enabling the study of stiffness of different discretization

techniques for initial conditions related to higher gas and liquid superficial velocities.

4.2 Future work

Future work concerns a further analysis of numerical methods, regularization techniques,

transition prediction, verification, and numerical model validation for solving the Two-fluid

Model proposed in this thesis. The Model proposed uses the Slug Capturing approach as

a reference. Therefore, the next steps consist of simulating factual flow-pattern transitions

considering the effects of nonlinear instabilities.

Regarding numerical modeling, the literature shows recent works on Discontinuous

Galerkin methods for solving convection-dominated problems with discontinuities. For in-

stance, The transport level-set problem can be solved with Discontinuous Galerkin methods,

and the transport equations can be discretized with Taylor-Hood elements, as inspired by

the technique of Bezchlebová, Dolejš\’\i and Feistauer (2016). Besides, space-time adaptive

techniques may be an option for further studies during factual transitions.

For high gas-liquid relative velocities, the equations become ill-posed. Thus, it is essen-

tial to study physical and numerical regularization mechanisms. The addition of level-set

equations for the interface can be investigated to obtain larger unstable, well-posedness

regions in the fully discrete flow pattern maps presented in this work. Furthermore, to avoid

ad hoc analyses for the addition of numerical viscosity as regularization, we can investigate

other numerical regularization techniques that may extend the well-posedness regions and,

in consequence, improve the capability of simulating wave growth under higher flow rates.

Studies on the dispersive effect of the two-fluid model equations using Taylor-Hood

elements for the spatial derivatives can be complementary. For example, the excessive

growth rate of disturbances can be attenuated at a cut-off criterion: the minimum size of the

elements (Montini, 2010).

This thesis presents solutions under the ill-posedness limits and before flow pattern

transitions. In the future, we can consider transition criteria to deal with the gas discontinuities

in the pipelines during the one-phase to two-phase switch in stratified to intermittent flow
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transitions. In terms of wave growth and transition simulations, the influence of acoustic

waves on stability and wave growth might be investigated since, in this study, we only

associate the effect of convective waves on wave growth.

How the Model is constructed enables adding tests for field conditions and verification

with equation systems with properties similar to the Two-fluid Model equations. Also, the

Model can include demos related to pipe inclinations found in receiving facilities for further

studies.
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APPENDIX 1 - DERIVATION OF THE TWO-FLUID MODEL IN MATRIX FORM

The complete Two-fluid Model (Bonizzi, 2003; Sanderse; Smith; Hendrix, 2017; Smith,

2017; Zwieten et al., 2017) (i.e., Eqs. (2.1)-(2.4)) reads:

Continuity

∂t (αlρl) + ∂s (αlρlul) = 0 (4.1)

∂t (αgρg) + ∂s (αgρgug) = 0 (4.2)

Momentum

∂t (αlρlul) + ∂s
(
αlρlu

2
l

)
+ αl∂spil + αlρlg∂shl cos β

= −αlρlg sin β − Flw + Fgl

(4.3)

∂t (αgρgug) + ∂s
(
αgρgu

2
g

)
+ αg∂spig + αgρgg∂shl cos β

= −αgρgg sin β − Fgw − Fgl

(4.4)

If the compressibility of the gas phase is taken into account, the matrices A(W), B(W)

and C(W) are:

A(W) =




ρl 0 0 0

−
(

pi−pi,0
c2g

+ ρg,0

)
0 0 1

c2g
(1− αl)

ρlul ρlαl 0 0

−
(

pi−pi,0
c2g

+ ρg,0

)
ug 0

(
pi−pi,0

c2g
+ ρg,0

)
(1− αl)

1
c2g
(1− αl)ug




(4.5)

B(W) =


ρlul ρlαl 0 0

−
(

pi−pi,0
c2g

+ ρg,0
)
ug 0

(
pi−pi,0

c2g
+ ρg,0

)
(1− αl)

1
c2g

(1− αl)ug

ρlu
2
l − αlρldcg 2ρlαlul 0 αl(

pi−pi,0
c2g

+ ρg,0
) (

−u2
g − dc (1− αl) g

)
0

(
pi−pi,0

c2g
+ ρg,0

)
2 (1− αl)ug

1
c2g

(1− αl)u
2
g + (1− αl)


(4.6)

C(W) =




0

0

−ρlgαl sin β − Flw + Fgl

−
(

pi−pi,0
c2g

+ ρg,0

)
g (1− α1) sin β − Fgw − Fgl




(4.7)
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APPENDIX 2 - LINEARIZATION OF THE TWO-FLUID MODEL

The conservative form of the Two-fluid Model (i.e., Eqs. (2.1)-(2.4)) is derived as follows:

∂U

∂t
+B(W)

∂W

∂U

∂U

∂s
= C(W). (4.8)

where U is the vector of the conserved variables and W is the vector of the primitive

variables. Equation 4.8 can be written as:

∂U

∂t
+B(W)

[
∂U

∂W

]−1
∂U

∂s
= C(W), (4.9)

where

E(W) = B(W)

[
∂U

∂W

]−1

=




ul 0 0 0
ρgugul

αlρl
0 αgρg

αlρl
0

0 −2αlρlugul

αgρg
0 αl

αgρg

−ρ2g(u2
g+αggdc)
αgρl

0 0 0




(4.10)

By defining W in terms of U:

αl =
1

ρl
W1,

ul =
W3

W1

,

ug =
W4

W2

,

pi = pi,0 + c2g

(
−ρg,0 + ρl

W2

W1

)
,

(4.11)

The elements of the matrix B(U) of the conservative form of the Two-fluid Model become:

B11(U) =
W3

W1

B21(U) =
ρlW3W4

W3
1

B23(U) =
(ρl −W1)W2

W2
1

B32(U) =
2W1W3W4

(−ρl +W1)W2
2

B34(U) =
W2

1

ρ2lW2 − ρlW1W2

B41(U) =
ρl (−ρlW

2
4 + g (−ρl +W1)W

2
2dc)

(ρl −W1)W2
1

(4.12)
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APPENDIX 3 - DERIVATION OF THE QUASILINEAR FORM OF THE TWO-FLUID MODEL

The Two-fluid Model (i.e., Eqs. (2.1)-(2.4)) can be written in a matrix form:

A(W)∂tW +B(W)∂sW −C(W)−D(W)∂ssW − E(W)∂sssW = 0. (4.13)

To study linear stability,

A(W)∂tW +B(W)∂sW −C(W) = 0, (4.14)

where W = [αl, ul, ug, p]
T is a column vector of the variables. The governing equations

were linearized around a reference state with an infinitesimally small perturbation imposed:

W = W0 + W̃.

A(W0 + W̃)∂t(W0 + W̃) +B(W0 + W̃)∂s(W0 + W̃)

−C(W +W0) = 0,
(4.15)

Linearizing the nonlinear terms M ∈ [A,B,C] by means of Taylor expansions around its

unperturbed value:

M(W0 + W̃) = M(W0) + (∂WM(W ))W0
W̃ (4.16)

equation (4.15) stands:
[
A(W0) + (∂WA(W))W0

W̃
]
∂tW0

+
[
A(W0) + (∂WA(W))W0

W̃
]
∂tW̃

+
[
B(W0) + (∂WB(W))W0

W̃
]
∂sW0

+
[
B(W0) + (∂WB(W))W0

W̃
]
∂sW̃

−
[
C(W0) + (∂WC(W))W0

W̃
]
= 0

(4.17)

If the second-order terms (i.e., the product of disturbances) vanish, the linearized Two-

fluid Model follows:

A(W0)∂tW̃ +B(W0)∂sW̃

+
[
(∂WA(W))W0

∂tW0 + (∂WB(W))W0
∂sW0 − (∂WC(W))W0

]
W̃ + const,

(4.18)

The column matrix is:

A(W0) +B(W0)−C(W0) = 0. (4.19)
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APPENDIX 4 - TWO-FLUID MODEL CONSIDERING NUMERICAL DIFFUSION TERMS

The complete Two-fluid Model (i.e., Eqs. (2.1)-(2.4)), with gas compressibility (Bonizzi,

2003; Sanderse; Smith; Hendrix, 2017; Smith, 2017; Zwieten et al., 2017) and numerical

viscosity (Bonzanini; Picchi; Poesio, 2017; Holmås et al., 2008; Montini, 2010) reads:

Continuity

∂t (αlρl) + ∂s (αlρlul) = ρlΓl∂ssαl (4.20)

∂t (αgρg) + ∂s (αgρgug) = ρgΓg∂ssαg (4.21)

Momentum

∂t (αlρlul) + ∂s
(
αlρlu

2
l

)
+ αl∂spi + αlρlDc∂sαl

= −αlρlg sin β − τlwPlw

A
− τglPgl

A
+ αlνl∂ssul

(4.22)

∂t (αgρgug) + ∂s
(
αgρgu

2
g

)
+ αg∂spi − αgρgDc∂sαg

= −αgρgg sin β − τgwPgw

A
+

τglPgl

A
+ αgνg∂ssug

(4.23)

The corrected diameter Dc is expressed by (2.14). Equations (4.20) -(4.23) can be

rewritten in terms of the primitive variables αl, ul, ug, pi as follows:

Continuity

ρl∂tαl + ρlαl∂sul + ρlul∂sαl − ρlΓl∂ssαl = 0 (4.24)

1

c2g
(1− αl) ∂tpi −

1

c2g
pi∂tαl +

1

c2g
(1− αl) pi∂sug

+
1

c2g
(1− αl)ug∂spi −

1

c2g
ugpi∂sαl +

1

c2g
Γgpi∂ssαl = 0

(4.25)

Momentum

ρlαl∂tul + ρlul∂tαl + 2ρlαlul∂sul + ρlu
2
l ∂sαl + αl∂spi + ρlDcαl∂sαl

+ρlg sin βαl +
τwlPlw

A
+

τglPgl

A
− νlαl∂ssul = 0

(4.26)

1

c2g
(1− αl) pi∂tug +

1

c2g
(1− αl)ug∂tpi −

1

c2g
ugpi∂tαl + 2

1

c2g
(1− αl)ugpi∂sug

+
1

c2g
(1− αl)u

2
g∂spi −

1

c2g
u2
gpi∂sαl + (1− αl) ∂spi +

1

c2g
Dc (1− αl) pi∂sαl

+
1

c2g
g sin β (1− αl) pi +

τgwPgw

A
− τglPgl

A
− νg (1− αl) ∂ssug = 0

(4.27)
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The matrices A, B, C and D are:

A =




ρl 0 0 0

− 1
c2g
pi 0 0 1

c2g
(1− αl)

ρlul ρlαl 0 0

− 1
c2g
ugp 0 1

c2g
(1− αl) pi

1
c2g
(1− αl)ug




(4.28)

B =




ρlul ρlαl 0 0

− 1
c2g
ugp 0 1

c2g
(1− αl) pi

1
c2g
(1− αl)ug

ρlu
2
l + ρlDcαl 2ρlαlul 0 αl

− 1
c2g
u2
gpi +

1
c2g
Dc (1− αl) pi 0 1

c2g
2 (1− αl)ugpi

1
c2g
(1− αl)u

2
g + (1− αl)




(4.29)

C =




0

0

−ρlg sin βαlA− τlwPlw − τglPgl

− 1
c2g
gA sin β (1− α1) pi − τgwPgw + τglPgl




(4.30)

D =




ρlΓl 0 0 0

− 1
c2g
Γgpi 0 0 0

0 αlνl 0 0

0 0 (1− αl) νg 0




(4.31)
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Abstract

Stratified to intermittent flow pattern transition modeling is particularly interesting for production assurance in large oil and gas
systems. In long pipes, the one-dimensional two-fluid model has been employed to predict wave growth, despite its conditional
well-posedness for high phasic velocities and excessive numerical diffusion that can attenuate physical disturbances. This
work investigates wave growth and flow pattern transition prediction of gas-liquid flows. The compressible one-dimensional
two-fluid model is solved using implicit time schemes and Taylor-Hood finite elements for spatial discretization, satisfying the
inf-sup stability and circumventing the use of staggered grids. Simultaneously, the numerical formulation tracks the effective
stability of the fluid flow with the aid of the construction of fully discrete flow pattern maps in time. In conclusion, for unstable
initial conditions, the numerical formulation predicts wave growth along the pipe with a stratified smooth flow as the initial
condition. Also, the potential transition to intermittent flow is predicted when imposing an infinitesimal perturbation in the
form of a sinusoidal wave.

Introduction

In oil and gas systems, multiphase flows present various pha-
sic distributions in pipelines depending on several factors
(e.g., phasic velocities, pipe diameter, and local inclination).
In long pipes, the one-dimensional two-fluid model has been
employed to predict flow pattern transitions although its con-
ditional well-posedness, resolving it through different nu-
merical formulations (i.e., finite differences, finite volume,
and finite elements).

Most codes used by the petroleum industry resolve the
two-fluid model with first-order discretization schemes for
the convection terms. Also, some employ ad hoc artificial
diffusion to attenuate the numerical instabilities innate to the
ill-posedness nature of the two-fluid model equations at high
flow rates. However, most methods lead to non-monotone
results and are limited to lower-order numerical schemes and
straight pipes.

This work aims to resolve the compressible one-
dimensional two-fluid model (hereafter two-fluid model)
with Taylor-Hood finite elements and implicit time schemes,
using the slug capturing methodology introduced by Issa and
Kempf (2003) as a reference. The equations are numerically
solved simultaneously with the construction of fully-discrete
flow pattern maps, previously introduced by Sanderse et al.
(2017), to facilitate tracking wave growth and stability in
time. The code, implemented in the Python 3 language, us-
ing the FEniCS Project Platform, is available online (Lazo-
Vasquez and Baliño 2022).

Methods

Governing equations and closure relations: The two-fluid
model of Ishii and Hibiki (2010) for isothermal flow consists
of a set of mass and momentum conservation equations for
the gas and liquid phases:

∂t (αkρk) + ∂s (αkρkuk) = 0 (1)

∂t (αkρkuk) + ∂s
(
αkρku

2
k

)
+ αk∂spi+

αkρkg∂shi cosβ = −αkρkg sinβ−
∑

θ∈{l,g,w}

τkθPkθ

A

(2)

The subscript k ∈ {l, g}) represents the liquid and gas
phases, w the pipe wall, and i the interface. The liquid and
gas volume fractions satisfy αl + αg = 1. The local incli-
nation angle is denoted by β. The wetted perimeter P and
shear stress terms τ are modeled by the combination pro-
posed by Issa and Kempf (2003).

Spatial and time discretization: Equations (1) and (2)
are simultaneously approximated by the variational form:

∑

Ω∈Ωh

∫

Ω

(∂tWh V +V.∇Bh Wh ) dx

=
∑

Ω∈Ωh

∫

Ω

Ch dx
(3)

where Wh (s, t) = [αl, ul, ug, pi]
T ∈ Rq=4 represents the

vector of the discretized variables (i.e., liquid volume frac-
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tion, liquid and gas velocities, and interfacial pressure), Bh

the Jacobian matrix, Ch the source terms vector, Ω ⊂ Rn the
spatial domain containing n elements, and Wh and V the
trial and test function vectors.

The convective and source terms are discretized with Tay-
lor Hood P2−P1 mixed elements, consisting of second-order
Continuous Galerkin (CG) elements for ul and ug , and first-
order CG for αl and pi, circumventing the use of staggered
grids. The time derivatives are discretized with BDF2.

Results and discussion

As the first approach, we simulate air-water flow (ρl = 1000
kg/m3, µl = 1.8e−5 Pa s, µg = 8.9e−4 Pa s) in a horizontal
pipe with D = 0.078 m, L = 1 m, and n = 360 elements.

Linear wave growth: Wave growth simulations and the
construction of fully-discretized flow pattern maps (see Fig.
1) are performed simultaneously to track the stability of the
equations within the entire domain. The linearized equations

100 101

usg [m s 1]
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10 1

100

u s
l [

m
s

1 ]

Differential IKH ,  = 0.00 deg
Discrete VKH ,  = 0.00 deg
Differential IKH (Barnea and Taitel, 1994)
Experimental VKH (Barnea and Taitel, 1994)

Figure 1: Fully-discrete flow pattern map for the studied conditions,
validated with the maps of Barnea and Taitel (1994).

are solved for the phasic velocities usl = 0.5 m/s and usg =
6.908 m/s, located in the unstable region (Fig. 2).

Figure 2: Liquid holdup αl variation during linear wave growth sim-
ulations of an unstable flow.

Nonlinear wave growth: Imposing a sinusoidal perturba-
tion (k = 2π 1/m and ω = 8.484 1/s), the liquid holdup

grows in time until blocking the pipe (Fig. 3). The equa-
tions become ill-posed, and a correlation for the flow pattern
switch can be used for the solution.

Figure 3: Void fraction αg variation at the pipe outlet (s = 1 m) due
to wave growth after imposing a sinusoidal perturbation.

Conclusions

The numerical formulation predicts potential flow pattern
transitions due to wave growth in stratified flows with un-
stable initial conditions.

Simultaneous nonlinear simulations and fully-discrete
flow pattern map construction facilitate tracking stability in
the entire spatial domain, independently of the local pipe in-
clination.
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RESUMO – The one-dimensional two-fluid model, employed for simulating two-
phase flows in long pipes, is conditionally well-posed and discretized with lower-
order space and time schemes. This work investigates the capability of continuous
finite-element methods of describing wave growth and potential flow pattern
transitions, with stratified smooth flow as an initial condition, using the FEniCS
computing platform. The effects of initial conditions, mesh configuration, order
of basis functions, and pipe inclination on the stability were investigated through
eigenspectra and flow pattern maps of the differential and discrete equations.
The numerical model proposed describes potential wave growth, which serves as
a baseline for simulating flow pattern transitions in oil and gas systems.

1. INTRODUCTION

Two-phase flows in long pipes are frequently simulated with the one-dimensional two-
fluid model (hereafter two-fluid model), proposed by Ishii e Hibiki (2011). In large sys-
tems, the pipe lengths are of the order of kilometers and gas bubble diameters of milli-
meters van Zwieten et al. (2017).

Issa e Kempf (2003) proposed the slug capturing approach by solving the two-fluid
model under well-posed initial conditions, simulating the natural growth of instabilities
starting from non-equilibrium flows. Issa e Kempf (2003); Liao et al. (2008) used first-
order Finite Volume central schemes to avoid excessive numerical diffusion associated with
upwind schemes.

This paper proposes a methodology for predicting potential wave growth, solving the
two-fluid model. We investigate the spatial discretization with Continuous Galerkin and
Taylor-Hood finite elements, often employed for solving the Navier-Stokes equations and
other convection-dominated problems Logg et al. (2012).

2. METHODS

The starting point of this work is the slug capturing approach of Issa e Kempf (2003)
and the equations of Montini (2010), with stratified smooth flow (see Fig. ??) as the initial
condition, as in the studies Sanderse et al. (2017); van Zwieten et al. (2017).

2.1. Governing equations

The two-fluid model Ishii e Hibiki (2011) consists of a set of transport equations for
the phases, including mass, momentum, and energy equations. For isothermal flow, the

1
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energy equations are dismissed Issa e Kempf (2003). The governing equations for one-
dimensional stratified and slug flow read

∂t (αkρk) + ∂s (αkρkuk) = 0, (1)

and

∂t (αkρkuk) + ∂s
(
αkρku

2
k

)
+ αk∂spi + αkρkg∂shi cos β = −αkρkg sin β −

∑

θ∈{l,g,w}

τkθPkθ

A
,

(2)

where θ ̸= k, w is the pipe wall. The liquid and gas volume fractions sum to one
(αl + αg = 1). The liquid, gas, and interface are represented by the subscripts l, g and i,
respectively.

2.2. Spatial discretization

The convective terms of equations (1)-(2) should be carefully discretized to prevent
issues related to numerical oscillations De Bertodano et al. (2016); Liao et al. (2008);
Sanderse et al. (2017).

Equation (??) is simultaneously approximated by the variational form of Eq. (??):

∑

Ω∈Ωh

∫

Ω

∂tWh V dx+
∑

Ω∈Ωh

∫

Ω

aA
(
B0,h;Wh,V

)
dx =

∑

Ω∈Ωh

∫

Ω

C0,h dx, (3)

where Wh and V are the vectors of trial and test functions, respectively. The convective
term is denoted by aA. Ω ⊂ Rn is the spatial domain with boundaries ∂Ω = Γin

D ∪ Γout
D .

At the inlet {αl,0, ul,0, ug,0} ∈ Γin
D , and at the outlet {pi,0} ∈ Γout

D .

3. RESULTS AND DISCUSSION

The results are reported through eigenspectra and flow pattern maps, validated against
the literature. To ease validation of the results, the input parameters are the same as Issa
e Kempf (2003); Montini (2010); Sanderse et al. (2017). cg is taken such that for pi = pi,0,
the gas density ρg = 1.1614 kg m−3 Sanderse et al. (2017).

3.1. Stiffness analysis of the semi-discrete equations

Using Taylor-Hood elements, the existence of convective modes suggest that certain
solutions might potentially grow in time, since they have a positive real part. Differently,
using continuous elements, the eigenspectrum is composed of acoustic modes. The imagi-
nary parts of the eigenvalues associated with acoustic and convective waves have different
orders of magnitude since acoustic modes have higher frequencies than convective mo-
des. Taylor-Hood function spaces preserve the eigenstructure for the parameters studied,
suggesting the capability of such function spaces for describing wave growth.
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Figura 1 – Taylor-Hood P2.

3.2. Discrete flow pattern maps

The VKH limits for the fully discrete equations are built with a sequence of superficial
velocities, for the time step ∆t = 1/40 as the first approach (See Fig. 2).
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Experimental VKH (Barnea and Taitel, 1994)

Figura 2 – Discrete flow pattern maps (D = 0.051 m). Taylor-Hood P2 combined with
BDF2.
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4. CONCLUSIONS

The stiffness analysis of the semi-discretized equations reveals the influence of pipe
inclination on the presence of eigenvalues related to acoustic and convective waves. Con-
vective waves are not attenuated by numerical diffusion present in the numerical schemes.
The eigenvalues associated with acoustic waves do not affect the wave growth for smo-
oth initial conditions. Continuous finite element function spaces represent alternatives to
solve the two-fluid model equations under smooth initial conditions. Additionally, the dis-
cretization with Taylor-Hood mixed finite elements, combined with implicit time schemes,
describes potential wave growth.

Discrete flow pattern maps for different pipe inclinations validate the numerical methods
proposed during the first time steps in transient simulations. Differential and discrete flow
pattern maps based on Kelvin-Helmholtz instabilities present good agreement with ex-
perimental data available in the literature. Meanwhile, it is essential to simultaneously
validate the actual flow patterns and transition curves through differential flow pattern
maps, discrete flow pattern maps, and nonlinear simulations.
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Abstract

Among the techniques for multiphase flow monitoring, Electrical Impedance Tomography (EIT) allows for non-intrusive
measurement but is hindered by its intrinsic ill-posed characteristics. One form of dealing with this challenge is the introduction
of prior knowledge, such as flow pattern. This work presents the design of a library for EIT grounded on a literature-based
phenomenological model. An adapted mechanistic model of gas-liquid slug flow is constructed to provide the disposition of
the phases departing from fluid properties, geometrical parameters and flow conditions. This is accomplished with a unit-cell
model for slug flow and a statistical slug length prediction method. Sampling of different flow conditions, along with sampling
of the expected deviations of the correlations implemented, is used to obtain a phase distribution in the continuum. Electrical
properties are attributed for both phases and, with a finite mesh, a series of representative images are numerically obtained for
slug flow. Results are presented treating the distribution as a Gaussian density function. This library is expected to support the
regularization of the inverse EIT problem, in the sense of a Bayesian prior.

Introduction

EIT allows for non-intrusive estimation of phase distribution,
as electric properties in a duct can be calculated from the elec-
tric currents imposed on electrodes at the duct wall and the
resulting measured electric potentials. This problem is math-
ematically ill-posed, as sensor noise prevents the inversion of
the data to obtain a unique image for the flow. One single
solution can, though, be achieved with the introduction of pri-
orly know information from sources other than the measured
data.

A typical information that can be imposed is that the solu-
tion is smooth. For this case, a single solution is reached at
the expense of blurring the estimated image.

Alternatively, sample-based Bayesian priors (Kaipio and
Somersalo 2004, p.70) can be generated from a collection
of images, described in terms of the electric properties. This
library of images can be built with the support of other exper-
imental techniques or through analytic models. This sample-
based prior can provide a sharper image with finer details (Ca-
margo 2013).

In the literature of multiphase systems, there are many an-
alytic models to predict phase distribution characteristic be-
haviors, depending on the flow pattern. A sample-based li-
brary from a phenomenological model for annular flow was
presented in Pellegrini et al. (2016). However, as intermit-
tent flow is of particular interest for the oil industry, this work
aims at constructing a library of slug flow based on a phe-
nomenological model, to be used as a sample-based prior.

Numerical Methods

For this purpose, a phenomenological model was assem-
bled combining correlations and equations from the litera-
ture. This model provides a characterization phase distribu-
tion within the continuum.

Next, a discrete (finite element) mesh is introduced, and
values of electrical conductivity are attributed depending on
the phase present near the centroid of each element.

Sampling values for superficial velocities, correlation er-
rors, slug lengths and electrical conductivities, a library of
images is obtained, providing a series of expected solutions
for the estimation problem. This library is summarized in a
Gaussian distribution, with the description in terms of a sam-
ple mean and covariance.

Phenomenological Model

The hydrodynamic average flow characteristics and the local
holdup profiles were determined with the Unit-cell approach
proposed by Taitel and Barnea (1990), as shown in Fig.1.
The slug length was estimated by a log-normal distribution
according to studies of Barnea and Taitel (1993) and Cook
and Behnia (2000).

Transport equations: The mass and momentum equations
proposed by Taitel and Barnea (1990) were used for comput-
ing the flow parameters. The combined momentum differen-
tial equation was solved numerically for the profile hf (z).

1

90



10th International Conference on Multiphase Flow,
ICMF 2019, Rio de Janeiro, Brazil, May 19 – 24, 2019

Figure 1: Unit-cell model parameters.

Closure models: The shear stress terms were modeled by
the correlations of Taitel, Y. and Dukler (1976).

Results and Discussion

The phase occupation obtained through the phenomenologi-
cal model and the discrete mesh is shown in Fig. 2, for four
parts of the unit cell. The use of a short mesh (to model the in-
fluence of the electrodes) does not prevent the representation
of the complete unit cell.

(a) L = (6D; 8D) (b) L = (11D; 13D)

(c) L = (65D; 67D) (d) L = (84D; 86D)

Figure 2: Representative images for one unit cell, in terms of
phase occupation with air (bright color) and water
(dark): (a) body of the slug, (b) upstream end of the
slug and bubble tail, (c) body of the bubble and (d)
bubble nose.

The obtained sample mean is shown in Fig. 3.

Figure 3: Sample mean (N = 486620 images generated), in
terms of electrical conductivity.

With the eigenvalue decomposition of the covariance ma-
trix, the two most important directions of variation are shown
in Fig. 4. These seem coherent with the properties of a slug

flow, as the first eigenvector can denote the passage of a slug
and the second, the variation of the height of the film.

(a) Eigenvalue, λ1 = 1.6103 (b) Eigenvalue, λ2 = 4.6104

Figure 4: Most important eigenvectors of the empirical co-
variance matrix calculated (N = 486620).

Conclusions

Unit-cell modelling is shown to be an efficient computational
approach to characterize the local phase distribution in slug
flow.

The resulting library is compatible with the behavior of
slug flow and can help obtaining more accurate EIT estimates.
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