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Abstract

This thesis focuses on numerical computations of adjoint-based stability and sensit-
ivity analyses for fluid flow and fluid-structure interaction problems. Nektar++ was the
software used in the simulations, which is based in Spectral/hp Element Method. New
results of the adjoint-based sensitivity with respect to non-geometric variables (Reynolds
number, inlet velocity and external forcing) for internal and external steady flows are in-
troduced. To verify this methodology, comparisons with data obtained by other methods
to provide sensitivity measures (like central finite difference) are performed. The adjoint
method showed to be applicable to compute the quantitative sensitivities. For global
linear analysis, adjoint-based stability and sensitivity methodology are first reviewed for
fluid flow problems. Numerical simulations are carried out and verified for the flow around
a fixed circular cylinder. Next, this thesis introduces a theoretical extension of stability
and sensitivity analyses for fluid-structure interaction (FSI) systems. The displacement
of the structure is governed by the linear mass-spring-damper equation, and the structure
and flow equations are coupled using the non-inertial frame of reference method. The
linearization of the FSI system is carried out using the transpiration approach and the
Newmark-beta solver is used to integrate the mass-spring-damper system in time. Stabil-
ity and sensitivity analyses are carried out from generalized eigenvalues problems solved
by the Arnoldi method.

A review of the main recent results of linear stability analysis for an elastically-mounted
cylinder is presented. Next, adjoint-based receptivity and sensitivity analyses are applied
for this FSI problem. New sensitivity analyses with respect to external forcing are per-
formed. In all the cases, comparisons with the sensitivity results for the flow around a
fixed cylinder are made. The fields of receptivity and sensitivity show different configura-
tions. Based on the results from the sensitivity analysis to a steady forcing, simulations of
the flow subject to open-loop control are carried out. The steady forcing is proportional
to the square of the base flow velocity, which is a forcing similar to the insertion of a
small cylinder in the domain. The conclusion is that an elastically-mounted cylinder may
respond differently than the fixed cylinder, where can happen cases in which the insertion
of an external forcing at a point of the domain stabilizes the flow system. On the other
hand, this same forcing can induce a higher growth rate of the least stable mode of the
FSI system.

v



vi

This thesis also investigates the character of the primary bifurcation for an oscillating
elastically-mounted cylinder. Analyzing the bifurcation around a critical Reynolds num-
ber, it is noticed that the nonlinear character of the bifurcation changes completely for
some cases, when compared to what is observed for a fixed cylinder. In these cases, the
bifurcation is subcritical, while for a fixed cylinder it is supercritical. Finally, this work
introduces calculations of optimal energy growth not yet assessed for Reynolds number
(Re) below of the primary instability of the fixed cylinder pRe ă 47q. In this case, the
results are also compared with those obtained for a fixed cylinder. The optimal energy
of the fixed and elastically-mounted cylinders stays close. However, the optimal initial
conditions of the fixed and elastically-mounted cylinders can be noticeably different.

Keywords: Adjoint-based sensitivity, linear stability, bifurcation, elastically-mounted cyl-
inder.



Resumo

Esta tese atenta-se aos cálculos numéricos de análises de estabilidade e sensibilidade
usando o método adjunto, onde as aplicaçoes são feitas para problemas de fluido-dinâmica
e para um problema de interação fluido-estrutura. O software usado nas simulações
numéricas foi o Nektar++, o qual é baseado no método de elementos espectrais/hp. Este
trabalho começa com a introdução de formulaçoes matemáticas que fornecem resultados
de sensibilidade em relação às variáveis não geométricas (número de Reynolds, velocidade
de entrada e força externa). Os cálculos são aplicados para escoamentos estacionários
internos e externos. As expressões matemáticas de sensibilidade calculadas pelo método
adjunto são comparadas com as sensibilidades calculadas pelo método de diferenças fi-
nitas central, onde o método adjunto mostra-se capaz de fornecer cálculos quantitavos
de sensibilidades para escoamentos estacionários. No contexto de análise linear global,
inicialmente é feita uma revisão das metodologias de estabilidade e sensibilidade usando
o método adjunto para problemas de fluid-dinâmica. Simulações numéricas para o escoa-
mento em torno de um cilindro são apresentadas e verificadas a partir de comparações com
resultados bem estabelecidos na literatura. Em seguida, esta tese introduz uma extensão
teórica das análises de estabilidade e sensibilidade para sistemas de interação estrutura-
fluido (IFS), num caso particular em que o movimento da estrutura é governado pela
equação linear massa-mola-amortecedor. O acoplamento das equações da estrutura e do
fluido é feito pelo método não inercial e a linearização do sistema de IFS é realizada
usando a abordagem conhecida como transpiration. O método Newmark-beta solver é
usado para calcular a solução do sistema massa-mola-amortecedor. As análises de estabil-
idade e sensibilidade são feitas resolvendo problemas de autovalor generalizado, o qual é
solucionado pelo método de Arnoldi.

Uma revisão de recentes resultados de análise de estabilidade linear para um cilindro
montado-elasticamente é apresentada. Em seguida, análises de receptividade e sensibil-
idade baseadas no método adjunto são aplicadas para esse problema de IFS, onde novas
análises de sensibilidade com relação a uma força externa são feitas. Em todos os casos
são realizadas comparações com os resultados de sensibilidade para o escoamento em
torno de um cilindro fixo, observando-se que os campos de receptividade e sensibilidade
mostram diferentes configurações. Com base nos resultados de análise de sensibilidade em
relação a uma força constante, são feitas simulações considerando que o sistema de IFS
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está sujeito a um controle passivo, onde aplica-se uma força constante proporcional ao
quadrado da velocidade do campo base. Esta modelagem da força é similar à inserção de
um pequeno cilindro no domínio computacional. Nesta configuracão, conclui-se que um
cilindro montado-elasticamente pode responder de forma diferente do cilindro fixo, isto é,
podem ocorrer casos em que a inserção de uma força externa em um ponto do domínio
estabiliza o sistema de escoamento, mas por outro lado, essa mesma força pode induzir a
uma taxa de crescimento positiva do modo menos estável do sistema de IFS.

Esta tese também apresenta um estudo do caráter da bifurcação primária de um cilin-
dro montado-elasticamente. Avaliando a bifurcação em torno de um número crítico de
Reynolds, percebe-se que o caráter não linear da bifurcação muda completamente em
alguns casos quando comparado ao que é observado no cilindro fixo. Nesses casos, a bi-
furcação do cilindro montado-elasticamente é subcrítica, enquanto para um cilindro fixo
a bifurcação é supercrítica. Por fim, são feitos cálculos de crescimento ótimo da en-
ergia para números de Reynolds (Re) abaixo da instabilidade primária do cilindro fixo
pRe ă 47q. Nesse casos, os resultados também são comparados com os aqueles obtidos
para um cilindro fixo. A energias ótimas do cilindro fixo e do cilindro livre pra oscilar
permanecem próximas. No entanto, as condições iniciais ótimas dos cilindro fixo e do
montado-elasticamente podem ser notavelmente diferentes.

Palavras chaves: Sensibilidade baseadas no método adjunto, estabilidade linear, bifurc-
ação, interação fluid-estrutura.
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Chapter

1
Introduction

The application of numerical techniques based on the adjoint method to perform sta-
bility, receptivity and sensitivity analyses has become common in fluid mechanics. Using
these techniques, the flow fields can be characterized with respect to their stability, re-
sponse to external forcing and to structural changes. Adjoint-based sensitivity analysis
has a wide application in different physical problems. It was first applied for linear prob-
lems in nuclear reactor physics problem (Pendlebury, 1955), and later for aerodynamic
design (Pironneau, 1974; Jameson, 1988), atmospheric phenomena (Hall & Cacuci, 1983)
and commonly used in control theory (Gunzburger et al. , 1991; Gunzburger, 2003; Kim
& Bewley, 2007; Marquet et al. , 2008; Meliga et al. , 2014). In fluid flow problems,
adjoint-based stability and sensitivity analyses can provide guidance to help in the con-
trol of the vortex shedding (Marquet et al. , 2008), or control of the aerodynamic forces
(Meliga et al. , 2014). Also, it can compute quantitative measures of sensitivity, like the
variation of aerodynamic forces with respect to a non-geometric variable (Hayashi et al.
, 2016), or be used in optimization problems, like finding the optimal energy of a linear
perturbation (Blackburn et al. , 2008).

In a broad context, the sensitivity calculations assess the influence of one (or several)
control variable(s) on one (or several) system output(s). Mathematically, this is done by
calculating the gradient of the system parameter(s) with respect to the control variable(s).
A way to perform these computations is by employing the adjoint method, which is
particularly well-suited for cases in which the number of outputs is small and the number
of control variables is large. In this thesis, the mathematical expressions of the adjoint-
based sensitivity measures are obtained from a Lagrangian functional. A brief insight into
this approach is introduced in the next section.

1
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1.1 Adjoint-based sensitivity obtained by a Lagrangian

functional

Based on the approach introduced by Cacuci (1981); Marquet et al. (2008); Meliga
& Chomaz (2011), a way to carry out the sensitivity calculations is from the Lagrangian
functional:

Lpq,q:,B,B:, I0, I
:

0, α, fq “ J´ xq:,Spq, αq ´ fy ´ xB:,By ´ xI:0, I0y, (1.1)

in which J is the objective functional, q represents the state vector, and α represents the
parameters of a physical problem. The system Spq, αq ´ f “ 0 represents the constraint
that is enforced by the Lagrange multiplier q:, where f represents an external forcing.
The system Spq, αq´ f “ 0 satisfies the boundary conditions B and the initial conditions
I0 that are explicitly enforced by B: and I:0, respectively. In some works, the boundary
conditions and the initial conditions were not explicitly imposed as constraints in the
Lagrangian functional (Marquet et al. , 2008; Meliga et al. , 2014). In this current case,
the mathematical expressions of sensitivity are given by the gradient of the functional
objective J with respect to the control variable, where the expression depends of the
Lagrange multipliers also referred by adjoint variables. In this thesis, the control variables
are non-geometric parameters which can be an external forcing f , a parameter of the
system α, the initial condition I0, or a boundary condition B.

This thesis focuses on performing the adjoint-based stability and sensitivity analyses
for fluid flow and fluid-structure interaction problems. Adjoint-based sensitivity is first
used to verify its applicability on providing correct measures of aerodynamic forces sensit-
ivity with respect to non-geometric variables for fluid flow problems. This way, the object-
ive functional is the aerodynamic force and the control variables are the non-geometric
variables: Reynolds number, inlet velocity and external forcing. The constraint of the
Lagrangian functional is the non-linear Navier-Stokes system. In linear global analysis
applied to a FSI system, this work introduces sensitivity with respect to external forcing
and the sensitivity of optimal energy growth with respect to initial conditions. In the first
case, the functional objective is the least stable eigenvalue and the control variable is an
external forcing. In the second case, the functional objective is the perturbation energy,
and the control variable is the initial condition. For both cases, the linearized FSI system
appears as a constraint of the Lagrangian functional.

In the next sections, we will present a literature review of the main results of the
adjoint-based stability and sensitivity analyses used as a theoretical base to perform the
studies introduced in this thesis.
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1.2 Adjoint-based stability and sensitivity in linear global

analysis

Hydrodynamic stability theory is concerned with the response of a flow to a perturb-
ation. In this context, if a laminar flow is subject to a small or moderate perturbation
and returns to its original state, the flow is described as stable. Otherwise, the flow is
described as unstable. Global linear stability analysis represents the most general form
to study the instabilities of two and three-dimensional flows. This theory starts with
the linearization of the Navier-Stokes equations around a base flow. Next, the linearized
system is written as a generalized eigenvalue problem and modal analysis can be applied.
In this case, the stability analysis is carried out by evaluating the eigenvalue of the least
stable eigen-vector/direct modes. However, for some cases an asymptotically stable flow
can exhibit non-negligible transient energy growth due to the non-normality of the lin-
earized Navier-Stokes system (Chomaz, 2005; Schmid, 2007). Blackburn et al. (2008)
showed that the optimal perturbation energy growth can be computed by a generalized
eigenvalue problem, in which the optimal growth is given by the maximum singular value
of the linearized Navier-Stokes operator L, i.e., the maximum eigenvalue of the product
of L by the its adjoint L:. Mao et al. (2013) used an optimization approach to compute
the optimal growth energy. The perturbation energy growth was the functional object-
ive, and the initial condition was the control variable. Analogously to Blackburn et al.
(2008), they showed that the optimal energy growth can be obtained from a generalized
eigenvalue problem. The least stable eigenvalue gives the optimal energy and the least
stable mode provides the optimal initial condition.

The non-normality of the linearized operator can also lead to a significant response or
receptivity to external forcing (Trefethen et al. , 1993), and in a considerable sensitivity of
the spectrum to perturbations (Chomaz, 2005). For fluid flow systems, several works have
performed receptivity and sensitivity analyses using adjoint equations (Hill, 1992; Airiau
et al. , 2002; Giannetti & Luchini, 2006, 2007; Giannetti et al. , 2010; Marquet et al. ,
2008). Giannetti & Luchini (2007) were pioneers in the application of numerical techniques
based on the direct and adjoint modes in sensitivity and receptivity analysis applied to
open flows. The problem chosen was the flow around a circular cylinder with Reynolds
number close to the primary instability of the flow. The authors identified the regions of
the domain where the flow is more receptive to the presence of momentum forcing and mass
injection. Besides that, based on the spatial distribution of the product between the direct
and adjoint least stable eigen-vectors/modes, they identified the regions that are more
sensitive to structural changes. Later on, Marquet et al. (2008) introduced eigenvalue
sensitivity analysis with respect to a steady forcing imposed in the steady base flow.
The Lagrangian functional was used to obtain the adjoint system and the mathematical
expression of sensitivity. In those works (Giannetti & Luchini, 2007; Marquet et al. ,
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2008), the adjoint variables/Lagrange multipliers were the key tool for the receptivity
and sensitivity analysis.

Although there are important results of stability, receptivity and sensitivity analysis
for fluid flow problems in the literature, for fluid-structure interaction (FSI) problems, the
studies are recent and still scarce. In the last few years, linear stability analysis has been
employed for vortex-induced vibration (VIV) problems. Cossu & Morino (2000) were the
first to apply this tool for the flow around a flexibly-mounted circular cylinder. They
calculated the threshold for the primary instability to be Re “ 23.5 for non-dimensional
mass ratios (mass of the moving body divided by the mass of displaced fluid) m˚ “ 7 and
m˚ “ 70 with the cylinder free to oscillate in the transverse direction. For a fixed cylinder,
the primary bifurcation critical Reynolds number is Rec0 “ 46.8 (Jackson, 1987). Besides
finding the critical Reynolds number, Cossu & Morino (2000) identified two unstable
modes, referred in that work as nearly-structural and von-Kármán modes. For large mass
ratio, m˚, the eigenvalue of the nearly-structural mode tended to the natural frequency of
the structure and the eigenvalues of the von-Kármán mode corresponded to the leading
eigenvalues of the flow past a fixed cylinder. More than one decade later, Meliga & Chomaz
(2011), Zhang et al. (2015), Navrose & Mittal (2016), Yao & Jaiman (2017) and J. Kou
& Li (2017) also showed results that confirmed instability for Re ă Rec0 “ 47. Meliga
& Chomaz (2011) presented a mapping of stable and unstable regions with respect to
the parameter m˚ for flow past a circular cylinder free to oscillate in both the transverse
and in-line directions. Recently, Pfister et al. (2019) applied stability analysis for a
flow around a circular cylinder with an attached elastic plate, for a flag immersed in a
channel flow and a three-dimensional flexible plate perpendicular to the flow direction.
In that work, the FSI system was formulated with Arbitrary Lagrangian-Eulerian (ALE)
method. Its linearization was performed using the transpiration approach, which consists
on writing the velocity and pressure at the boundary of the structure as an approximation
around an equilibrium point. This transpiration approach in linear stability analysis of
an FSI problem was first used by Fernández & Tallec (2002, 2003). Recently, Negi et al.
(2019) also used the transpiration approach in stability analysis applied for a rotating
circular cylinder with an attached splitter plate. Results of structural sensitivity were
also introduced for an oscillating circular cylinder.

Receptivity and sensitivity analyses to external forcing applied to FSI problems have
not yet been published in the literature. Bearing this in mind and departing from the
previous developments and results of linear stability analysis of FSI problems, this thesis
introduces a methodology and presents results of receptivity and sensitivity applied to
low Reynolds number flow around an elastically-mounted circular cylinder. We compare
the receptivity and sensitivity fields with the results obtained for a fixed cylinder. For
this same FSI problem, calculations of optimal energy growth (receptivity of energy per-
turbation to initial conditions) are also introduced for Re ă 47. Besides that, we also
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present a non-linear analysis, used to investigate the character of the primary bifurcation
for the flow around a flexibly-mounted circular cylinder.

1.3 Adjoint-based sensitivity of the aerodynamic forces

Aerodynamic forces sensitivity using the adjoint method has been applied in control
of the drag and lift forces. In previous works (Meliga et al. , 2014; Mao, 2015; Meliga
et al. , 2018) the control variable was an external forcing. In Meliga et al. (2014),
the sensitivity analysis was applied to a flow around fixed square and circular cylinders.
In those works, the authors calculated the aerodynamic forces sensitivity with respect
to variations of an external forcing applied in a localised point of the domain. The
objective was to apply a force to decrease the drag force. Mao (2015) applied sensitivity
calculations to a flow around a fixed airfoil, with the purpose of investigating the drag and
lift sensitivity with respect to a surface forcing. Hayashi et al. (2016) introduced a method
to calculate aerodynamic force sensitivity with respect to non-geometric control variables.
The computations of sensitivity were applied for a two-dimensional channel flow, and the
control variable was the Reynolds number. In that work, the calculations of sensitivity
given by the adjoint method were verified by comparing with the sensitivity computed
by the finite difference method. In this thesis, we applied calculations of sensitivity with
respect to non-geometric variables for internal and external steady flows. Here, we want
to verify the applicability of the adjoint-based sensitivity in providing correct measures.
The control variables are the inlet velocity and Reynolds number. The fluid flow problems
chosen were the fully-developed channel flow and backward-facing step flow for internal
flows. For external flows, we applied the methodology for the flow around a flat plate
parallel to the streamwise direction, square cylinder and NACA 0012 airfoil.

1.4 Outline of this thesis

Chapter 2 introduces the mathematical formulation to obtain measures of sensitivity
of aerodynamic forces for steady base flows. Applications of this sensitivity are presented
in the chapter 3. In most cases, the results of sensitivity measures are compared with the
sensitivity computation using the finite differences method.

In the theory of global linear analysis, the methodology to calculate sensitivity is
extended for a fluid-structure interaction system. To this end, a theoretical study of the
analyses of stability, receptivity, and sensitivity for a fluid flow system was carried out
and presented in chapter 4. Applications for the flow around a fixed cylinder are also
presented in this chapter, with two objectives: of verifying the numerical methodology
and to produce results which serve as benchmark for comparison against those obtained
for the flow around an elastically-mounted cylinder (presented in chapter 6).
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Chapter 5 delineates the mathematical formulation used to perform the stability and
sensitivity analyses for flows around elastically-mounted bodies. We describe the Navier-
Stokes equations coupled to a mass-spring-damper system and employ the non-inertial
frame of reference method. Besides that, a mathematical formulation to obtain the lin-
earized and adjoint FSI systems and the sensitivity measures are introduced. In chapter 6,
these methods are applied in the flow around an elastically-mounted cylinder. We first
present a review covering the main results from stability analysis for this kind of FSI
problem. Next, we present a numerical verification of the adjoint system solution, by
comparing its eigenvalues with the eigenvalues of the direct FSI system. Lastly, results
of sensitivity analysis are presented and compared with sensitivity analyses for the flow
around a fixed cylinder. In chapter 7, computations to assess the character of the primary
bifurcation in the flow around fixed and elastically-mounted cylinders are shown, as well
as computations of optimal energy growth for same FSI problem.

Finally, in chapter 8 we draw conclusions and suggest future works that could follow
from this research. Figure 2 displays a chart illustrating the organization of this thesis.
The asterisks indicate the new contributions of this thesis to the state-of-the-art.

The numerical simulations reported in this thesis were performed using the Nektar++
software, which is an open-source code which implements the Spectral/hp Element Method
(Karniadakis & Sherwin, 2005). Appendix A.1 shows a concise description of this method.
The Newmark-beta solver was used to integrate the mass-spring-damper system in time
is also described in Appendix A, specifically in the section A.2. For low values of mass
ratio and damping, we used the fictitious mass-damping method. A brief insight into it
is described in section A.3. The Arnoldi method, used to solve the generalized eigenvalue
problems, is described in Appendix B. In Appendix C, details about the computational
meshes used in this thesis are presented. In this same appendix, we show the results
from a mesh convergence analysis that was carried out for the flow around a fixed circular
cylinder.
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Figure 2: Organizational diagram of this thesis.
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Chapter

2
Sensitivity of aerodynamic forces:

Mathematical formulation

In this chapter, we present the mathematical formulations employed to calculate the
sensitivity of aerodynamic forces with respect to a non-geometric parameters. We start
by defining the constraint that is given by the governing equations for incompressible
viscous flows, which constitute the nonlinear Navier-Stokes operator. Next, we introduce
a general Lagrangian functional used to set the mathematical expressions to compute the
aerodynamic sensitivities. The mathematical methodology introduced in this chapter is
based in the Meliga et al. (2014, 2018). All the equations (Navier-Stokes and adjoint)
are defined in a three-dimensional domain Ω, i. e, Ω Ă R3.

2.1 Navier-Stokes equations

In this work, we consider incompressible and viscous flows, which are governed math-
ematically by the Navier-Stokes equations. They are written in dimensional form as

∇ ¨ u˚ “ 0, (2.1)

ρ

ˆ

Bu˚

Bt
`∇u˚ ¨ u˚

˙

´∇σ˚ “ 0. (2.2)

The vector u˚ “ u˚px˚, t˚q represents the velocity field, which depends on the spatial
coordinates x˚ P Ω and time t˚ P r0, τ s Ă R, ρ is the density and σ˚ is the stress tensor.
For Newtonian fluids, σ˚ is written as

σ˚ “ µ
“

∇u˚ ` p∇u˚qT q
‰

´ p˚I,

9
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in which p˚ is the pressure, the parameter µ represents the dynamic viscosity and I is the
identity tensor.

In order to express equations (2.1)-(2.2) in non-dimensional form, we define the fol-
lowing non-dimensional variables:

x “
x˚

L
, u “

u˚

U
, t “

t˚U

L
, p “

p˚

ρU2
,

where L and U are the reference values for length and velocity, respectively. Substituting
these non-dimensional variables in (2.1)-(2.2) and writing in a convenient form, we have
the non-dimensional Navier-Stokes equations:

∇ ¨ u “ 0, (2.3)
Bu

Bt
`∇u ¨ u´∇σ “ 0. (2.4)

The non-dimensional stress tensor σ is:

σpu, pq “
1

Re

“

∇u` p∇uqT q
‰

´ pI.

The non-dimensional parameter Re “ ρUL{µ is the Reynolds number and I is the identity
operator.

2.2 Lagrangian functional

The expressions of the sensitivity are obtained using the Lagrangian functional:

Lpq,q:,B:, cq “ J´ xq:,Npqq ´ fy ´ xB:,ByBΩ. (2.5)

Here, the objective functional, J, is given by one of the aerodynamic force coefficients:

Cd “ 2

ż

BΩw

tσpp,uq ¨ nu ¨ ex dS, (2.6)

Cl “ 2

ż

BΩw

tσpp,uq ¨ nu ¨ ey dS, (2.7)

where Cd is the drag coefficient, Cl is the lift coefficient, BΩw denotes the structure wall,
n indicates unit outward normal vector, ex and ey are unit vector parallel to the x and
y axes, respectively. The control parameter is denoted by c, and it can be a vector or a
scalar. The constraints are given by the steady forced Navier-Stokes system

Npqq ´ f “

#

∇u ¨ u´∇σpp,uq ´ f “ 0,

∇ ¨ u “ 0,
(2.8)
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and their boundary conditions Bpu, pq. The vector q: “ ru:, p:sT and B: are the Lagrange
multipliers, and well-know as adjoint variables. For steady flow u “ upxq, p “ ppxq, and
the inner product x¨y is defined as the integral

ş

Ω
¨dV, in which Ω represents the spatial

domain. The inner product x¨yBΩ is the integral
ş

BΩ
¨dS over the boundary regions of

the domain BΩ. The methodology to obtain the sensitivity expressions is based on the
approach introduced by Meliga et al. (2014, 2018). However, in this current case, the
flow boundary conditions are also explicitly imposed as constraints in the Lagrangian
functional.

In this work, the external forcing f , Reynolds number Re and inlet velocity Uc are
the control parameters used in the sensitivity studies. We will introduce the procedure to
obtain the sensitivity of the drag force only (i.e., the drag force is the objective functional).
Due to similarity, the process to obtain the sensitivity of the lift force is omitted.

2.3 Sensitivity to an external forcing

In the optimization problem (2.5) adapted to compute the drag sensitivity with respect
to an external forcing. So the control variable c “ f . The objective functional is given by
the drag coefficient, expression (2.6). To compute the sensitivity, we start by inroducing
the gradient of the Lagrangian functional, which at an optimal case is zero.

In this work, the gradient of the Lagrangian functional with respect to any variable s
is given by the Gateaux derivative:

BL

Bs
“ lim

εÑ0

Lps` εδsq ´ Lpsq

ε
. (2.9)

So computing the derivative
BL

Bq:
, we get:

BL

Bq:
“ lim

εÑ0

ş

Ω
pq: ` εδq:q ¨ pNpqq ´ fq ´ q: ¨ pNpqq ´ fq dV

ε
“

ż

Ω

δq: ¨ pNpqq ´ fqdV “ 0.

Therefore, the derivative
BL

Bq:
δq: “ 0 is true if Npqq ´ f “ 0 for all x in the domain Ω.

Analogously, the boundary conditions of the base flow are enforced by the calculating the

derivative
BL

BB:
δB: and making it equal to zero.

2.3.1 Adjoint system

As was said in chapter 1, the expression of the sensitivity derived with the adjoint
method is a function of the Lagrange multiplier that is the solution of an adjoint sys-

tem. To determine the adjoint system, we calculate
BL

Bq
δq “ 0. To apply the Gateaux
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derivative, first we write the Lagrangian functional Lpδq,q:,B:, fq:

Lpδq,q:,B:, fq “2

ż

BΩw

tσpδu, δpq ¨ nu ¨ ex dS ´

ż

Ω

p:p∇ ¨ δuq dV´

ż

BΩ

B: ¨ δB dS

´

ż

Ω

u: ¨

ˆ

∇u ¨ δu` u ¨∇δu´ 1

Re
∇2δu`∇δp

˙

dV

On applying integral by parts in the domain integrals and after that the Divergence
Theorem in the boundary integrals, we achieved:

Lpδq,q:,B:, fq “ ´

ż

Ω

ˆ

´u ¨∇u: `∇u ¨ u: ´
1

Re
∇2u: ´∇p:

˙

¨ δu` p∇ ¨ u:qδp dV
looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

I

`

´

ż

BΩw

`

2ex ´ u:
˘

¨ t´σpδu, δpq ¨ nu ` δu ¨
 

σp´p:,u:q ¨ n` pu ¨ nqu:
(

dS`
looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

II

´

ż

BΩi,o

“

pu ¨ nqu: ` p:I ¨ n`
`

Re´1∇u:
˘

¨ n
‰

¨ δu dS
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

III

`

ż

BΩi,o

u: ¨
`

δpI´Re´1∇δu
˘

¨ n dS
looooooooooooooooooooomooooooooooooooooooooon

IV

´

ż

BΩ

B: ¨ δB dS

From the term I , we set the steady adjoint system:

Apuqq: “

$

&

%

∇ ¨ u: “ 0

´∇u: ¨ u`∇u ¨ u: ´
1

Re
∇2u: ´∇p: “ 0.

(2.10)

To solve this system, we have to impose boundary conditions. Assuming the boundary

condition u: ¨ n “ 2ex at the wall (BΩw), the term II is annulled, and
BL

Bq
δq is reduced

to:

Lpδq,q:,B:, fq “ ´

ż

BΩi,o

“

pu ¨ nqu: ` p:I ¨ n`
`

Re´1∇u:
˘

¨ n
‰

¨ δu dS
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

III

`

ż

BΩi,o

u: ¨
`

δpI´Re´1∇δu
˘

¨ n dS
looooooooooooooooooooomooooooooooooooooooooon

IV

´

ż

BΩ

B: ¨ δB dS

In this work, the boundary conditions of the base flow are:

• Inlet (BΩi): u “ Uc;

• Outlet (BΩo): ∇u ¨ n “ p “ 0.

• Wall (BΩw): u “ 0;
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Therefore, the operator B at inlet, outlet and wall is given respectively by:

Bi “ Uc, Bo “ ∇u ¨ n “ 0, Bw “ u “ 0,

and
BL

Bq
δq can be rewritten as:

Lpδq,q:,B:, cq “ ´

ż

BΩi,o

“

pu ¨ nqu: ` p:I ¨ n`
`

Re´1∇u:
˘

¨ n
‰

¨ δu dS
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

III

`

ż

BΩi,o

u: ¨
`

δpI´Re´1∇δu
˘

¨ n dS
looooooooooooooooooooomooooooooooooooooooooon

IV

´

ż

BΩi

B: ¨ δUc dS

Imposing B: “ ´
“

p:I`Re´1∇u:
‰

¨ n and assuming:

u: “ 0 at the inlet (BΩi), (2.11)

p:n`Re´1∇u: ¨ n “ ´pu ¨ nqu: at the outlet (BΩo), (2.12)

we set the boundary conditions of the adjoint system. Next, applying the Gateaux deriv-
ative, we have:

BL

Bq
δq “

ż

τ

ż

Ω

pAq:q ¨ δqdVdt “ 0.

So, we conclude that if the adjoint system is satisfied, the derivative of L with respect to
q is zero.

2.3.2 Sensitivity

Finally, to determine a mathematical expression of the drag coefficient sensitivity with
respect to f , we calculate:

BL

Bf
δf “

BCd
Bf

δf `

ż

Ω

u: ¨ δf dV “ 0 ñ
BCd
Bf

δf “ ´xu:, δfy (2.13)

Notice that the sensitivity is proportional to adjoint field u:, i.e., this field indicates the
regions that are more susceptible to external forcing, making it possible to evaluate the
locations where the addition of force can increase or decrease the drag coefficient.

Analogously, we can get the lift sensitivity with respect to f . In this case, the adjoint
system is also given by the system (2.10). The change occurs only at the cylinder wall
boundary: for sensitivity of lift coefficient, the boundary condition at BΩw is u: “ 2ey.
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2.4 Sensitivity to Reynolds number

To obtain a mathematical expression of the sensitivity
ˆ

BCd
BRe

˙

, the Lagrangian func-

tional (2.5) is used with the control variable c “ Re and f “ 0. In what follows, the
functional objective is again the drag force (2.6), and the procedure for finding a sensit-
ivity expression is similar to that used in the previous section. So we depart by enforcing
the adjoint system and nonlinear Navier-Stokes system:

Apuqq: “ 0 ñ
BL

Bq
δq “ 0,

Npqq “ 0 ñ
BL

Bq:
δq: “ 0.

For a steady base flow, Npqq is given by the system (2.8) with f “ 0 and the adjoint
system Apuqq: “ 0 is given by the system (2.10). We define the boundary conditions of

the adjoint system so as to make
BL

BB:
δB: “ 0.

At last, the expression of the sensitivity of the drag coefficient with respect Re is given
by:

BCd
BRe

δRe “ ´Re´2

"

2

ż

BΩw

 “

∇u` p∇uqT
‰

¨ n
(

¨ ex dS` (2.14)

`

ż

Ω

∇2u ¨ u: dV`

ż

BΩi

U ¨
 “

∇u: ` p∇u:qT
‰

¨ n
(

¨ ex dS

*

δRe.

In a similar process, we obtain the lift sensitivity that is computed by the expression:

BCl
BRe

δRe “ ´Re´2

"

2

ż

BΩw

 “

∇u` p∇uqT
‰

¨ n
(

¨ ey dS` (2.15)

`

ż

Ω

∇2u ¨ u: dV`

ż

BΩi

U ¨
 “

∇u: ` p∇u:qT
‰

¨ n
(

¨ ey dS

*

δRe.

2.5 Sensitivity to inlet velocity

In this section, we want to find a mathematical expression for the sensitivity of the
drag coefficient with respect to variations in the inlet velocity. We use the Lagrangian
functional (2.5) setting the inlet velocity as the control variable c “ Uc and setting f “ 0.
The Navier-Stokes equations, adjoint system and their respective boundary conditions are

enforced by making
BL

Bq
δq “ 0,

BL

Bq:
δq: “ 0 and

BL

BB:
δB: “ 0, respectively.

For a steady base flow, the drag sensitivity with respect to inlet velocity is then given
by:

BCd
BUc

δUc “

ż

BΩi

δUc ¨
 

´p:I`Re´1
`

∇u: ` p∇u:qT
˘

¨ n
(

¨ ex dS.
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while the lift sensitivity is computed by the expression:

BCl
BUc

δUc “

ż

BΩi

δUc ¨
 

´p:I`Re´1
`

∇u: ` p∇u:qT
˘

¨ n
(

¨ ey dS.

Remind that the adjoint systems to compute the lift and drag sensitivity are very similar,
only the boundary condition at the wall is modified. For lift sensitivity the boundary
condition is u: “ 2 ¨ ey, and for drag sensitivity, u: “ 2 ¨ ex.
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Chapter

3
Sensitivity of aerodynamic forces:

Results

Meliga et al. (2014); Mao (2015); Meliga et al. (2018) investigated the sensitivity
of the aerodynamic forces with respect to an external forcing. Recently, Hayashi et al.
(2016) introduced a formulation to compute aerodynamic force sensitivity with respect
Reynolds number and applied it for two-dimensional channel flow. In this chapter, we
extend the calculations of sensitivity with respect to non-geometric variables for other fluid
flow problems. The main objective is to verify the mathematical formulation introduced
in the previous chapter for two-dimensional flows. Besides that, we want to verify the
applicability of the adjoint-based sensitivity in providing quantitative measures. To do
that, calculations of sensitivity are applied to internal and external steady flows.

3.1 Numerical methodology

The numerical results were obtained using the Nektar++ software, which is an open-
source code based on the spectral/hp element method Karniadakis & Sherwin (2005).
Sensitivity calculations were applied for steady flows. In the nektar++, Navier–Stokes
(2.3) and adjoint systems were solved by the stiffly stable time-stepping scheme (Karni-
adakis et al. , 1991) that is described in Appendix A. We employed a second order scheme
to advance the solution for a sufficiently long time to reach steady state.

Calculations of sensitivities were performed with respect to non-geometric parameters
and applied to the following fluid flow problems: fully-developed channel flow, backward-
facing step, flow around a square cylinder and flow around a NACA 0012 airfoil. For
the first three cases, drag sensitivity was measured. For the NACA 0012 airfoil, we
also computed the lift sensitivity. For fully-developed channel flow, the calculations of
adjoint-based sensitivity were compared with the analytic solution. In other fluid flow

17
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Figure 3: Schematic diagram of a representative channel geometry parallel to the x-axis.

problems, the results of sensitivity given by the adjoint method (AM) were compared to
the sensitivity obtained by the central finite difference method (FDM):

dF
dP

“
F |P`δP ´ F |P´δP

2pδP q
`OpδP q2 (3.1)

where F represents the drag or lift coefficient. We considered that the shift δP corresponds
to 1% of the value of the control variable P . Details of the computational mesh and
polynomial order employed for each of the cases investigated in this chapter are given in
Appendix C.

In this chapter, we are introducing measures of aerodynamic forces sensitivity with
respect to Reynolds number, inlet velocity and external forcing. In some cases, mainly
for external flow, the Reynolds number (Re) is defined as function of the inlet velocity.
Therefore, to clarify, when we carry out computations of aerodynamic forces sensitivity
with respect to Re, we consider that the reference velocity does not change. Besides that,
we consider that the geometry length of reference does not change either.

3.2 Fully-developed channel flow

In this case, we calculate the drag sensitivity with respect to Reynolds number, Re,
and mean inlet velocity Ū. Figure 3 illustrates a two-dimensional fully-developed channel
flow parallel to the x-axis. The channel has height H, length L, depth B and the mean
flow velocity is Ū. In the calculations we made, the channel was centred at y “ 0, with
the top and bottom walls at y “ ˘0.5 (i.e., height H “ 1.0), length L “ 30 and mean
velocity Ū “ rŪ , V̄ sT “ r1, 0sT .

For this fluid flow problem, we compare the sensitivity computed with the AM to the
results obtained from the analytical expression of the sensitivity. To obtain the analytical
sensitivity, we consider that the flow is fully developed. This means that the velocities,
the stress tensor, and the pressure gradient do not vary along the channel. So, these
properties are independent of the coordinate x, and the analytic velocity profile is given
by:

upyq “ 2Ū

«

1´

ˆ

2y

H

˙2
ff

and v “ 0.
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Figure 4: Velocity profile of the channel flow.
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For this velocity profile (shown in Figure 4), the wall shear stress is

τw “ µ
du

dy

ˇ

ˇ

ˇ

ˇ

y“˘H{2

“ ¯µ
8Ū

H
.

Considering bottom and top walls, the drag coefficient is written as:

Cd “
Fx

1
2
ρŪ2HB

,

where
Fx “ 2|τw|BL “ 16

µŪ

H
BL.

Using Re “ ρŪH{µ, the analytic expression for the drag coefficient considering the top
and bottom channel walls is:

Cd “
32µL

ρŪH2
“

32

Re

L

H
.

Therefore, the analytic drag sensitivities with respect to the mean velocity Ū and Re are
given respectively by:

BCd
BŪ

“ ´
32µL

ρŪ2H2
, (3.2)

BCd
BRe

“ ´
32

Re2

L

H
. (3.3)

The same drag sensitivity measures obtained by the adjoint method are described by
the equations (2.16) and (2.14), respectively. The steady base flow was solved with the
following boundary conditions: u “ 2Ū

”

1´
`

2y
H

˘2
ı

and v “ 0 at inlet, u “ 0 at wall
and ∇u ¨ n “ 0 at outlet. The boundary conditions of the adjoint system are given in
section 2.3.1.
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Tables 3.1 and 3.2 show the drag sensitivity measures with respect to Re and Ū ,
respectively. We noticed a good agreement, the largest error was 0.01%. Figures 5(a) and
5(b) display the curves of drag sensitivity given by the AM and by the analytic solution
as functions of the parameter analyzed (Re and Ū). For all values tested, we observe
that the drag sensitivities with respect to Re and Ū are negative. As Re is increased, the
absolute value of the sensitivity decreases. This means that an external forcing is more
effective in changing the drag coefficient to lower Reynolds number.

It is important to say that when we are evaluating the drag sensitivity with respect
to Re, the average velocity (Ū) and height (H) of the channel are fixed. So the growth of
Re implies that the dynamic viscosity decreases. This way, the drag force also decreases,
implying in a negative sensitivity. In the drag sensitivity with respect to Ū and to each
value of Re, the dynamic viscosity and the height (H) of the channel were fixed. This
way, we observe in Table 3.2 and in Figure 5(b) that the sensitivity is negative with the
growth of Ū.

Table 3.1: Drag coefficient sensitivity with respect to Re (Channel flow).

Re Analytic sens. (AS) AM pAS ´ AMq{AS (%)
30 ´0.035... ´0.03555566 3.2ˆ 10´4

60 ´8.88...ˆ 10´3 ´8.8884ˆ 10´3 3.76ˆ 10´3

120 ´2.22...ˆ 10´3 ´2.2212ˆ 10´3 3.7ˆ 10´2

200 ´8ˆ 10´4 ´7.9904ˆ 10´4 1ˆ 10´2

400 ´2ˆ 10´4 ´2.0002ˆ 10´4 1ˆ 10´2

800 ´5ˆ 10´5 ´5.0028ˆ 10´5 1ˆ 10´2

Table 3.2: Drag coefficient sensitivity with respect to Ū (Channel flow).

Re Analytic sens. (AS) AM pAS ´ AMq{AS (%)
30 ´1.06... ´1.066669 3ˆ 10´4

60 ´0.53.. ´0.533304 5ˆ 10´3

120 ´0.26... ´0.266544 5ˆ 10´2

200 ´0.16 ´0.1598 1ˆ 10´1

400 ´0.08 ´0.07989 1ˆ 10´1

800 ´0.02 ´0.0200112 6ˆ 10´2

As previously said, the adjoint field provides the regions in which the drag force is
more susceptible to external forcing. This way, we plotted in Figure 6 a field of the
adjoint velocity magnitude at Re “ 400. We then observe the stronger drag sensitivity to
external forcing located at the wall of the channel and a weaker sensitivity closer to the
center of the channel, at the region where the velocity achieves the maximum value. Also,
notice that though the base flow velocity is uniform along of x-axis due to imposition of
fully developed flow velocity profile, the same behaviour is not observed in the adjoint
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velocity magnitude. That occurs due to the boundary condition of the adjoint velocity,
which is u “ 0 at inlet and pu, vq “ p2, 0q at wall of the channel.

Figure 5: Computations of drag coefficient sensitivity applied for fully-developed channel
flow with respect to Re (a) and Ūpbq.
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Figure 6: Magnitude of adjoint velocity, at Re “ 400.

3.3 Backward-facing step

We now test the methodology for another internal flow, which is a channel flow with
a sudden expansion, forming a backward facing step (BFS). The domain is illustrated
in Figure 7, and comprises a channel inflow with height H “ 1 and expansion 2H. The
length of the channel inflow is li “ 10 and the and expansion has length lo “ 50. Reynolds
number was defined as Re “ ρŪH{µ. At the inlet, we imposed the boundary condition
u “ 1 and v “ 0. This case is reasonably more complex than the channel flow since the flow
is truly two-dimensional. For the range of Reynolds number investigated in this section,
a parabolic velocity profile develops along the inflow channel. As shown in Figure 9(b),
after the expansion, shear layer separation occurs, giving rise to a recirculation region
next to the step.

Tables 3.3 and 3.4 display the results of the drag coefficient sensitivity with respect
to Reynolds number (Re) and to the inlet velocity (Ū), respectively. In all the cases, the
differences between the sensitivities were less than 1%. Sensitivity measures as function
of Reynolds number obtained by the AM and FDM are also plotted in Figure 8. We can
see that, in general, this flow is more sensitive to a change in Ū than to a change in Re.
As in the plane channel flow, for lower Reynolds number, we notice in Figure 8(b) that
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Figure 7: Schematic diagram of the backward-facing step.

the drag sensitivity with respect to Ū or Re present a large variation. When the Reynolds
number or the inlet velocity increase, the variation decreases.

Table 3.3: Drag coefficient sensitivity with respect to Re (Backward-facing step).

Re FDM AM pFDM ´ AMq{FDM (%)
50 ´0.15168 ´0.15636 0.02
100 ´2.641ˆ 10´2 ´2.640ˆ 10´2 0.01
200 ´9.301ˆ 10´3 ´9.386ˆ 10´3 0.09
300 ´4.327ˆ 10´3 ´4.305ˆ 10´3 0.50
400 ´2.554ˆ 10´3 ´2.564ˆ 10´3 0.32

Table 3.4: Drag coefficient sensitivity with respect to Ū (Backward-facing step).

Re FDM AM pFDM ´ AMq{FDM (%)
50 ´7.585 ´7.518 0.8
100 ´2.642 ´2.641 0.01
200 ´1.861 ´1.865 0.32
300 ´1.238 ´1.233 0.41
400 ´1.021 ´1.026 0.43

Figure 9 shows the adjoint velocity magnitude at Re “ 100. Comparing it with the
streamlines of the base flow (see Figure 9(b)), we observe that the drag force is most
sensitive to an external forcing at the corner of the expansion, where the shear layer
separates. Other regions of somewhat high drag sensitivity are also identified near the
wall and at the wall of the outflow channel.

3.4 Flat plate

The first external flow presented is the laminar flow over a parallel flat plate with
nondimensional length D “ 1. The free stream velocity used in the simulations was
U8 “ 1 and the Reynolds number is defined as Re “ ρU8D{µ. Figure 10 shows an
illustration of the current fluid flow problem, in which the origin of the coordinate system is
at the center of the flat plate. The two-dimensional domain has the following dimensions:
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Figure 8: Drag sensitivity calculations with respect to Re (a) and Ū (b) for Backward-
facing step.
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Figure 9: Adjoint velocity magnitude (a) and streamlines of the base flow (b) of the
backward facing step, at Re “ 100.

(a)

(b)

x` “ 30 to downstream, x´ “ ´30 to upstream and vertical y˘ “ 25. Figure 11 shows
the streamlines of the base flow at Re “ 100, in which we can see a laminar flow around
of the flat plate.

Tables 3.5 and 3.6 show the measures of the drag sensitivity with respect to U8 and
Re. Notice that the results from AM and central FDM exhibit good agreement. Although
the difference increases when the Re increases, they remain below 1%. We also verify that
the values of sensitivity are negative and the variations decrease with the growth of the
Reynolds number.

Table 3.5: Drag sensitivity with respect to inlet velocity U8 (flat plate).
Re Adjoint (A) Finite Difference (FD) (FD-A)/FD %
30 ´4.506ˆ 10´1 ´4.495ˆ 10´1 0.2%
60 ´2.892ˆ 10´1 ´2.887ˆ 10´1 0.2%
100 ´2.162ˆ 10´1 ´2.122ˆ 10´1 0.2%
200 ´1.366ˆ 10´1 ´1.336ˆ 10´1 0.2%
300 ´1.062ˆ 10´1 ´1.056ˆ 10´1 0.5%
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Figure 10: Schematic diagram of a representative flow past a flat plate.

Figure 11: Streamlines of the flat plate, at Re “ 100.

Table 3.6: Drag sensitivity with respect to Re (flat plate).
Re Adjoint (A) Finite Difference (FD) (FD-A)/FD %
30 ´1.503ˆ 10´2 ´1.497ˆ 10´2 0.2%
60 ´4.80ˆ 10´3 ´4.781ˆ 10´3 0.2%
100 ´2.082ˆ 10´3 ´2.076ˆ 10´3 0.3%
200 ´6.706ˆ 10´4 ´6.678ˆ 10´4 0.3%
300 ´3.539ˆ 10´4 ´3.551ˆ 10´4 0.3%

The adjoint velocity magnitude plotted in Figure 12 shows that the drag force of the
flat plat is most sensitive to external forcing at the region around of this body. Besides
that, we verify that a weaker region of sensitivity is located upstream from the plate.

3.5 Square cylinder

The methodology was also tested for an external flow around a bluff body. A square
cylinder with side length D “ 1 was the geometry used. As illustrated in Figure 13,
this solid body was immersed in an uniform flow with stream velocity U8 “ 1 parallel
to the x-axis, pointing to the x` direction. The origin of the coordinate system was at
the centre of the cylinder. The domain extended x` “ 50 to downstream, x´ “ ´35 to
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Figure 12: Adjoint velocity magnitude of the flat plate, at Re “ 100.

Figure 13: Schematic diagram of a square cylinder in a uniform flow.

upstream and y˘ “ 50 in the cross-stream direction. In this case, the Reynolds number
was defined as Re “ ρU8D{µ. The sensitivity was calculated for a range of Reynolds
number in which the fluid flow around a square cylinder is steady. In this case, the flow
separates from the rear side of the square cylinder and a symmetric stable recirculation
bubble is formed downstream. An illustration of this flow is observed in Figure 14(a),
which shows the velocity magnitude and the streamlines of the base flow, at Re “ 40.

3.5.1 Numerical verification – drag sensitivity with respect to a

localized external forcing

We first present a numerical verification of the method applied to obtain the drag
sensitivity with respect to an external forcing. The results obtained in our calculations
are compared to the data obtained by Meliga et al. (2014). The calculation of the drag
sensitivity with respect to an external forcing was carried out for a particular case in
which the forcing is applied at a point of the domain. This external forcing is described
analytically by the Gaussian function:

fαpx, yq “
α

2πX
e

ˆ

´
px´xcq

2`py´ycq
2

2X2

˙

. (3.4)



26

Figure 14: (a) Velocity magnitude and streamline of the base flow; and (b) magnitude of
the adjoint velocity, at Re “ 40

(a) (b)

To match the setup used by Meliga et al. (2014), we adopted X “ 6.25 ˆ 10´3 and
α0 “ 10´3. The values xc and yc are the coordinates of the point at which the external
forcing is applied. The Reynolds number was Re “ 40. The sensitivity for this particular
case is given by equation (2.13).

The drag coefficient computed from the numerical simulations was 1.66. This value
agrees well with the result presented by Meliga et al. (2014), that was Cd “ 1.67.
Table 3.7 shows sensitivity results compared with those obtained by Meliga et al. (2014).
The largest difference was around 2%, at pxc, ycq “ p4, 0q and pxc, ycq “ p0, 0.85q. So we
consider that the agreement was very good.

Table 3.7: Drag sensitivity to external forcing (Re “ 40).

xc yc Meliga (2014) Current work Difference (%)
´1.5 0 2.32ˆ 100 2.31ˆ 100 0.5
0 0.65 7.10ˆ 10´1 7.03ˆ 10´1 0.9
0 0.85 ´2.89ˆ 10´1 ´2.82ˆ 10´1 2
1.5 0 1.24ˆ 100 1.24ˆ 100 –
2.5 0 8.96ˆ 10´1 8.96ˆ 10´1 –
4 0 5.68ˆ 10´1 5.80ˆ 10´1 2

Comparing the adjoint velocity magnitude (Figure 14(b)) with the base flow (Fig-
ure 14(a)), we see that the regions of stronger drag sensitivity are located upstream of
the cylinder, in the shear layers, and in the recirculation bubble.

3.5.2 Sensitivity with respect to Reynolds number and inlet ve-

locity

Despite the different configuration of the fluid flow problems, for the steady base
flow the drag sensitivities computed by the adjoint method are precisely given by the
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Figure 15: Drag coefficient sensitivity measures for flow past a square cylinder.
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equations (2.16) and (2.14). Results of drag coefficient sensitivity with respect to Re and
inlet velocity U8 are shown in Tables 3.8 and 3.9. The sensitivities computed by the
AM show good agreement with those obtained with the FDM. The differences between
the measures are less than 1%. In Figure 15 the curves of sensitivities are plotted. For
this range of Re, we observe that the drag sensitivity with respect to U8 is negative and
present a smaller variation when Re increases.

Table 3.8: Drag coefficient sensitivity in respect to Re (square cylinder).

Re FDM AM (FDM-AM)/FDM (%)
10 ´1.6949ˆ 10´1 ´1.6838ˆ 10´1 0.65
20 ´5.0199ˆ 10´2 ´5.0489ˆ 10´2 0.58
30 ´2.6253ˆ 10´2 ´2.6135ˆ 10´2 0.45
40 ´1.6680ˆ 10´2 ´1.6602ˆ 10´2 0.47

Table 3.9: Drag coefficient sensitivity in respect to U8 (square cylinder).

Re FDM AM (FDM-AM)/FDM (%)
10 ´1.665 ´1.6899 1.4
20 ´1.009 ´1.004 0.5
30 ´0.7845 ´0.7876 0.4
40 ´0.6641 ´0.6672 0.5

3.6 Airfoil NACA 0012

Figure 16 illustrates the domain in which two-dimensional flows around an NACA 0012
airfoil were calculated. The free stream velocity used was U8 “ 1, and the airfoil chord
length was c “ 1. The origin of the coordinate system was at the leading edge of the airfoil.
The domain extended x` “ 40 to downstream, x´ “ ´40 to upstream and y˘ “ 40 on
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Figure 16: Schematic diagram of a representative flow around an airfoil NACA 0012.

the cross-stream direction. Reynolds number was defined as Re “ ρU8c{µ. We set the
components of the inlet velocity as u “ U8 cosp2πα{360q and v “ U8 senp2πα{360q, where
α is the angle of attack (angle between the chord line and the incoming flow), in degrees.
The numerical results were obtained for Re “ 500.

We computed the drag coefficient and lift coefficient sensitivities. The control para-
meters used were U8, Re and the angle of attack α. The sensitivities with respect to Re

and U8 computed by the adjoint method are given by (2.16) and (2.14), respectively. The
sensitivity with respect to α is calculated with the equation:

BCd
Bα adj

“
BCl
Bα adj

“ ´
2π

360

ż

BΩi

Bu

Bα
¨
 

´p:I`Re´1
`

∇u: ` p∇u:qT
˘

¨ n
(

¨ e dS. (3.5)

Tables 3.10, 3.11 and 3.12 show the lift sensitivity with respect to α, Re and U8, re-
spectively. The drag sensitivities with respect to α, Re and U8 are shown in Tables 3.13,
3.14 and 3.15. The largest difference between the sensitivities obtained by the AM and
FDM was 3% for lift coefficient sensitivity with respect to U8 and drag coefficient sensit-
ivity with respect to α. So we consider that the method works well also for this case. It
is important to highlight that, due to the low Reynolds number of the flow in this case,
Cl is not equal to 2πα.

Table 3.10: Lift coefficient sensitivity with respect to the angle of attack (airfoil).

α Finite Difference (FD) Adjoint (A) pDF ´ Aq{DF p%q
3 4.63ˆ 10´2 4.66ˆ 10´2 0.7
5 4.04ˆ 10´2 4.07ˆ 10´2 0.8

Evaluating the results of lift coefficient sensitivity computations, we observe that for
the angle of attack α “ 30 and α “ 50, the lift sensitivity with respect to α is positive
with the growth of α. We notice that the values of sensitivity do not present considerable
changes when we compare the sensitivities of α “ 50 with the sensitivities of α “ 30.
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Table 3.11: Lift coefficient sensitivity with respect to Re (airfoil).

α Finite Difference (FD) Adjoint (A) pDF ´ Aq{DF (%)
3 ´5.27ˆ 10´5 ´5.22ˆ 10´5 1
5 ´9.86ˆ 10´5 ´9.65ˆ 10´5 2

Table 3.12: Lift coefficient sensitivity with respect to U8 (airfoil).

α Finite Difference (FD) Adjoint (A) pDF ´ Aq{DF (%)
3 ´2.63ˆ 10´2 ´2.55ˆ 10´2 3
5 ´4.93ˆ 10´2 ´4.78ˆ 10´2 3

Table 3.13: Drag coefficient sensitivity with respect to α (airfoil).

α Finite Difference (FD) Adjoint (A) pDF ´ Aq{DF p%q
3 ´2.93ˆ 10´3 ´2.84ˆ 10´3 3
5 ´3.65ˆ 10´3 ´3.78ˆ 10´3 3

Table 3.14: Drag coefficient sensitivity with respect to Re (airfoil).

α Finite Difference (FD) Adjoint (A) pDF ´ Aq{DF p%q
3 ´1.91ˆ 10´4 1.93ˆ 10´4 1
5 ´1.86ˆ 10´4 ´1.84ˆ 10´4 0.9

Table 3.15: Drag coefficient sensitivity with respect to U8 (airfoil).

α Finite Difference (FD) Adjoint (A) pDF ´ Aq{DF p%q
3 ´0.95 ´0.94 1
5 ´0.93 ´0.92 1

Lift sensitivities with respect to Re and U8 are negative with the growth of α. We also
observe that with the growth of α, the variations increase.

Now, analyzing the drag sensitivities with the growth of α, we can see that the meas-
ures of sensitivity are negative for all control variables (U8, Re and α). Tables 3.13 shows
that the variation of the drag force increases with the growth of the angle of attack. In
Tables 3.14 and 3.15, we notice that the drag sensitivity with respect to Re and U8 do
not present significant variation with the growth of α.

Figure (17) shows the adjoint velocity magnitude used for the calculations of drag and
lift sensitivities at α “ 30. Figure 17(a) shows that the drag sensitivity to an external
forcing is stronger at wall, mainly at the leading edge and at the trailing edge. Weaker
drag sensitivity is verified close to the airfoil and to upstream of this body. Evaluating
the adjoint velocity magnitude used to compute the lift sensitivity, we observe that the
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lift force is most susceptible to external forcing on top of airfoil, closer to the leading edge.
A weaker sensitivity is verified at the trailing edge and above the airfoil.

Figure 17: (a) Fields of adjoint velocity magnitude used to obtain the drag force sensitiv-
ity; (b) lift force sensitivity; and (c) velocity magnitude with the streamlines of the flow
around an airfoil, at α “ 30.

(a) (b)

(c)

3.7 Conclusions

This work focused on computing sensitivities using the adjoint method for steady
flows. On combining previous works, mainly the ones by Cacuci (1981) and Meliga &
Chomaz (2011), it was possible to compute sensitivities with respect to non geometric
control parameters (Reynolds number, inlet velocity and external forcing).

It was shown that the current approach is applicable for internal and external steady
flows. The results for internal flows show excellent agreement between the sensitivities
computed by the adjoint method and other sources like analytically sensitivity (fully-
developed channel flow) and central finite difference. The errors were lower than 0.8%.
Regarding external flows, the errors did not exceed 3%. We also presented the fields of
adjoint velocity magnitude, which show the regions most receptive to external forcing.
In the flow around a square cylinder, this kind of sensitivity calculation was verified
comparing our results with the computations introduced by Meliga et al. (2014). We
noticed a good agreement between the results; the largest difference was 2%.

In conclusion, the verification regarding the use of the adjoint method to compute
sensitivities for low Reynolds flows with respect to non-geometric control parameters was
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completed. The results entice the extension of this alternative approach to computing
sensitivities of new objective functional with respect to any kind of parameters in different
applications including optimization problems.



32



Chapter

4
Global linear analysis applied for

fluid flow systems

Based on a review of the literature, mathematical formulations for linear stability
and sensitivity analyses of fluid flows are introduced in this chapter. The state vector
q consists of the velocity vector field, u, and the pressure field, p. Stability analysis is
performed by considering an infinitesimal perturbation q1 in the fluid flow fields. The
governing equation for the perturbation is obtained from the linearization of the Navier-
Stokes equations around a base flow Q. In the context of linear global analysis, we
introduce the mathematical process to perform the transient growth analysis. Next, the
sensitivity expressions of the least stable eigenvalues with respect to an external forcing
are described. In the last two cases, the adjoint field q: is used. Lastly, applications of
stability and sensitivity analyses are carried out for a two-dimensional flow around a fixed
circular cylinder.

4.1 Linear stability analysis

Hydrodynamic stability analysis consists of investigating the evolution of a small per-
turbation superimposed on a base flow Q. So it is assumed that q “ pu, pq is given by
the base flow Q “ pU, P q plus a perturbation q1 “ pu1, p1q. Substituting q “ Q ` q1 in
the Navier-Stokes equations (2.3), we have:

∇ ¨ u1 `∇ ¨U “ 0
Bu1

Bt
`∇U ¨ u1 `U ¨∇u1 ´ σpu1, p1q `∇u1 ¨ u1

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Non-linear equation of the perturbation evolution

`
BU

Bt
`U ¨∇U´ σpU, pq

looooooooooooooomooooooooooooooon

NpQq

“ 0

33
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The base flow satisfies the nonlinear Navier-Stokes equations NpQq “ 0, and the evolution
of the perturbation is governed by:

∇ ¨ u1 “ 0, (4.1)
Bu1

Bt
`∇U ¨ u1 `U ¨∇u1 ´ σ1

loooooooooooooooooomoooooooooooooooooon

Linear equation of the perturbation evolution

` ∇u1 ¨ u1
looomooon

Nonlinear term

“ 0. (4.2)

The linearization process can be applied when the base flow is tested against an in-
finitesimal perturbation. This means to assume that the nonlinear term ∇u1 ¨ u1 in equa-
tion (4.2) is of a smaller order than the other terms in the short time scale. So it can be
neglected and equation (4.2) becomes:

Bu1

Bt
`∇U ¨ u1 `U ¨∇u1 ´

1

Re
∇2u1 `∇p1 “ 0.

The set of linearized equations is conveniently written as:

Hq1 “

¨

˚

˚

˚

˚

˝

«

Bt

0

ff

`

«

pU ¨∇q ` p∇Uq ¨ ´Re´1∇2 ∇
∇¨ 0

ff

loooooooooooooooooooooomoooooooooooooooooooooon

L

˛

‹

‹

‹

‹

‚

«

u1

p1

ff

“

«

0

0

ff

, (4.3)

in which Bt represents partial derivative with respect to time.
An approach to evaluate hydrodynamic stability is checking whether a flow subject to

a small perturbation returns to its original state or changes to a different state. In the
first case, the flow is stable. In the second case, the flow is unstable. For linear stability
analysis, the usual form to verify the stability is using the modal analysis. This approach
will be introduced in the next subsection.

4.1.1 Modal Analysis

The main goal of the modal analysis is to evaluate the least stable mode. To do that,
the linear system (4.3) is rewritten as a generalized eigenvalue problem by setting an
asymptotic solution given by q1 “ exppλtqpq, so the system (4.3) can be rewritten as:

Hq1 “

¨

˚

˚

˚

˚

˝

λ

«

I

0

ff

loomoon

B

`

«

pU ¨∇q ` p∇Uq ¨ ´Re´1∇2 ∇
∇¨ 0

ff

looooooooooooooooooooooomooooooooooooooooooooooon

L

˛

‹

‹

‹

‹

‚

«

pu

pp

ff

“

«

0

0

ff

.
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This can be written in compact form as the generalized eigenvalue problem:

pλB´ Lqpq “ 0. (4.4)

Non-homogeneous solutions to this problem are pairs of eigenvalues (λ) and eigenvectors/direct
modes (pq).

For a steady base flow (U “ Upxq), the operator L “ LpUq is steady and the system
stability can be assessed from the the sign of the real part of the eigenvalues. If there is
at least one eigenvalue with positive real part, the perturbation energy grows with time
and the system is unstable. On the other hand, if all eigenvalues have negative real part,
the perturbation energy decreases with time and system is stable.

4.1.2 Non-modal analysis: Response to initial conditions

In the previous subsection, we saw that the stability of the system can be assessed from
the eigenvalues of the linearized system. However, in some cases, there is a discrepancy
between the stability analysis results and the response of the perturbation growth in a
finite time interval (τ). This occurs when the system is asymptotically stable but not

monotonically stable, i.e.,
dEpτq

dt
“

d||u1px, τq||2

dt
ă 0 does not hold for all time. For these

cases, the modal analysis is not sufficient to characterize the dynamics of the flow in the
time interval (τ) (Trefethen et al. , 1993; Chomaz, 2005) and the non-modal analysis is
necessary.

To explain the non-modal analysis, let us consider the solution of the linearized sys-
tem (4.3) given by

u1px, τq “ exppLtqu1px, 0q. (4.5)

Using the energy norm Epτq “ ||u1px, τq||2 at a generic time interval τ and normalising
Epτq in order to obtain Ep0q “ 1, we have the perturbation growth written as

Gpτq “ Epτq “ ||u1px, τq||2 “ ||exppLτqu1px, 0q||2 “ ||exppLτq||2. (4.6)

Applying the spectral decomposition to the operator L, the growth Gpτqmay be evaluated
of the following way:

Gpτq “ ||exppLτq||2 “ ||exppSΛS´1τq||2 “ ||SexppΛτqS´1
||

2.

The columns of the matrix S are composed by the eigenvectors/modes of L and Λ is
a diagonal operator which contains the eigenvalues of L. To analyze the perturbation
behaviour on a finite time interval τ , we estimate the inferior and superior limits of Gpτq.
To do that, let us admit a stable flow system. This way, for the inferior limit we use the
fact that the energy cannot decrease at a rate faster than that given by the least stable
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eigenvalue λ1, i.e.,
||exppλ1τq||

2
ď ||exppLτq||2 .

For the superior limit, we consider the spectral decomposition

||exppLτq||2 “ ||SexppΛτqS´1
||

2
ď ||S||2||S´1

||
2
||exppλ1τq||

2. (4.7)

Analyzing the inequation (4.7) on finite time interval τ , we see that the system can
show two different behaviours depending on the operator L:

• If L is a normal operator then it is diagonalizable and ||S||2||S´1||2 “ 1. Thus,
superior and inferior limits are equivalent, and the stability will be given by the
eigenvalue analysis, i.e., the modal analysis gives all the information about the
evolution of small perturbations.

• If L is not a normal operator then the eigenvalue analysis is not sufficient for a
finite time interval τ analysis, because we can have ||S||2||S´1||2 " 1. This makes
the transient growth of perturbation energy possible, even though the system is
asymptotically stable.

According to Schmid (2007), the non-modal analysis can be divided in two approaches:
response to initial conditions and response to external forcing. The first approach is
central to hydrodynamic stability theory and will be treated in this subsection, whereas
the second ventures into the closely related field of sensitivity analysis (this approach will
be studied in section 4.2).

The optimal growth over a finite time interval τ is defined as the maximum energy
growth over all possible initial perturbations. So taking exppLτq “ Apτq, this expression
can be rewritten as

Gpτq “ ||Apτqu1px, 0q||2 “ă Apτqu1px, 0q,Apτqu1px, 0q ą“ă u1px, 0q,A:pτqApτqu1px, 0q ą,

where the operator A:pτq is the adjoint of the operator Apτq. The inner product x¨y is
defined as the integral

ş

τ

ş

Ω
¨dVdt.

The largest possible transient growth is then dictated by the dominant eigenvalue of
symmetric operator A:pτqApτq. Therefore, we have an eigenvalue problem:

A:pτqApτqvk “ λkvk, ||vk||
2
“ 1

where vk are the modes with non-negative growth λk on the time interval τ . Optimal
growth is given by the maximal eigenvalue, maxpλkq “ λ1, of A:pτqApτq, and the optimal
initial condition u1px, 0q is given by the mode associated with λ1. Therefore,

Gpτq “ ||Apτqu1px, 0q||2 “ xu1px, 0q, λ1u
1
px, 0qy “ λ1, ||u1px, 0q||2 “ 1.
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4.1.2.1 Optimization approach

A typical optimization problem consists of state variables, control variables, objective
functional, and constraints. Based on the work by Mao et al. (2013), an optimization
approach is adopted to obtain the optimal initial perturbation and optimal energy growth.
In this approach, we deal with the Lagrangian functional

Lpq1,q:,u1px, 0qq “ Epτq ´ xq:,Hq1y ´ xu:px, 0q,u1px, 0q ´ u10y, (4.8)

where q: “ ru:, p:s is the Lagrange multiplier also referred to as the adjoint variable. The
linearized system Hq1 “ 0 and the initial conditions u1px, 0q are the constraints. The
gradient of the Lagrangian functional with respect to any variable s is defined by:

BL

Bs
“ lim

εÑ0

Lps` εδsq ´ Lpsq

ε
. (4.9)

At an optimum point, the gradient of Lpq1,q:,u1px, 0qq with respect to any variable is
zero. If we express the first variation of L with respect to the adjoint/Lagrange multiplier
q:, we obtain

BL

Bq:
“ lim

εÑ0

ş

τ

“ş

Ω
pq: ` εδq:q ¨ pHq1q ´ q: ¨ pHq1q

‰

dVdt
ε

“

ż

τ

ż

Ω

δq: ¨ pHq1qdVdt “ 0,

because we require that the constraint Hq1 “ 0 must be satisfied for all domain Ω and
time τ .

Next, we compute the first variation of L with respect to the state vector q1:

BL

Bq1
δq1 “

B

Bq1

ˆ
ż

τ

ż

Ω

q: ¨Hq1dVdt
˙

δq1 “
B

Bq1

ˆ
ż

τ

ż

Ω

H:q: ¨ q1dVdt
˙

δq1

The adjoint system and its boundary and initial conditions are obtained from the integral
by parts:
ż

τ

ż

Ω

q: ¨HqdVdt “
ż

τ

ż

Ω

H:q: ¨ q1 dVdt

“

ż

τ

ż

Ω

u: ¨

„

Bu1

Bt
`∇U ¨ u1 `U ¨∇u1 ´

1

Re
∇2u1 `∇p1



` p: r∇ ¨ u1s dVdt

“

ż

τ

ż

Ω

„

´
Bu:

Bt
´U ¨∇u: `∇U ¨ u: ´Re´1∇2u: ´∇p:



¨ u1 dVdt`

`

ż

τ

ż

Ω

“

∇ ¨ u:
‰

p1 dVdt`
ż

τ

ż

Ω

“

u1 ¨ u:
‰τ

0
dVdt`

`

ż

τ

ż

Ω

∇ ¨
 

Uu1u: ` u:p1 ` p:u1
(

dVdt`

`

ż

τ

ż

Ω

∇ ¨
 

Re´1
“

u1 ¨∇u: ´∇u1 ¨ u:
‰(

dVdt.
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Assuming that the adjoint system H:q: “ 0, we can write:

H:q: “

$

&

%

´
Bu:

Bt
´U ¨∇u: `∇U ¨ u: ´Re´1∇2u: ´∇p: “ 0,

∇ ¨ u: “ 0.
(4.10)

Besides that, employing the Divergence Theorem, we have:

ă Hq,q: ą ´ ă q,H:q: ą“
ż

Ω

“

u1 ¨ u:
‰τ

0
dV`B,

in which the term B, called bilinear concomitant, is

B “

ż

τ

ż

BΩ

n ¨
 

pU ¨ u1qu: ` u:p` p:u1 `Re´1
“

u1 ¨∇u: ´∇u1 ¨ u:
‰(

dSdt.

with n a unit outward normal on the spatial boundary of the domain BΩ.
In this work, the boundary conditions adopted for the perturbation velocity field are:

• u1 “ 0 at inlet (BΩi) and wall (BΩw);

• ∇u1 ¨ n “ 0 and p1 “ 0 at outlet (BΩo).

Therefore, the concomitant bilinear is reduced to:

B “

ż

τ

ż

BΩi,w

n ¨
 

u: ¨ p´Re´1∇u1 ¨ u:
(

dSdt`

`

ż

τ

ż

BΩo

n ¨
 

pU ¨ u1qu: ` u:p` p:u1 `Re´1u1 ¨∇u:
(

dSdt

Taking B “ 0, the boundary conditions for the adjoint system are given by:

• u: “ 0 at inlet (BΩi) and wall (BΩw);

• pU ¨ nqu: `Re´1∇u: “ p “ 0 at outlet (BΩo).

The term
ş

BΩ

“

u1 ¨ u:
‰τ

0
dΩ vanishes if the constraint xu1px, τq,u:px, τqy “ xu1px, 0q,u:px, 0qy

is satisfied. As a result of the simplifications, ă Hq,q: ą ´ ă q,H:q: ą“ 0 is achieved.
Therefore,

BL

Bδq1
δq1 “

B

Bδq1

ˆ
ż

τ

ż

Ω

H:q: ¨ qdVdt
˙

δq1

“ lim
εÑ0

ş

τ

ş

Ω
H:q: ¨ pq1 ` εδq1q ´ pH:q:q ¨ q1dVdt

ε
δq1 “

ż

τ

ż

Ω

pH:q:q ¨ δq1dVdtδq1 “ 0
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By making
BL

Bδu1px, 0q
δu1px, 0q “ 0, it is possible to set an expression to compute the

optimal energy as follows:

BL

Bu1px, 0q
δu1px, 0q “ ∇u1px,0qEpτqδu1px, 0q ´ xδu1px, 0q,u:px, 0qy “ 0 ñ

ñ ∇u1px,0qEpτq “ u:px, 0q

Therefore, the energy growth gradient with respect to u1px, 0q is given by the adjoint
variable u:px, 0q. The optimal energy and optimal initial condition can be obtained from
an eigenvalue problem by evaluating the constraint:

xu1px, τq,u:px, τqy ´ xu1px, 0q,u:px, 0qy “ xApτqu1px, 0q,u:px, τqy ´ xu1px, 0q,u:px, 0qy

“ xu1px, 0q,A:pτqu:px, τqy ´ xu1px, 0q,u:px, 0qy “ 0

Thus, u:px, 0q “ A:pτqu:px, τq and Apτqu1px, 0q “ u:px, τq. From these two equations,
we can explain the relationship between optimal energy growth and the eigenvalues of the
symmetric operator A:pτqApτq, i.e:

Apτqu1px, 0q “ u:px, τq ñ A:pτqApτqu1px, 0q “ A:pτqu:px, τq “ λu:px, τq “ u:px, 0q

Using Arnoldi modified method (presented in Appendix B), the optimal energy growth
can be obtained by carrying out the following steps:

1. Integrate the linearized system forward in time interval τ , where the initial condition
is the adjoint velocity u:px, 0q;

2. The perturbation velocity u1px, τq is used as initial condition for the adjoint system
that is integrated backwards in the same time interval τ .

3. Next, the optimal energy growth is obtained by computing the growth rate λ1 of
the adjoint vector u:px, 0q.

4.2 Sensitivity analysis

In the context of global linear stability analysis, sensitivity analysis is given by the
eigenvalue gradient with respect to an arbitrary variable, such as an external forcing, for
example (Giannetti & Luchini (2007), Marquet et al. (2008)). A mathematical expression
to compute this gradient can be found by using an optimization problem formulated with
the Lagrangian functional. In the global linear stability analysis, the base flow Q and the
perturbation q1 fields are the state variables, J is the least stable eigenvalue λ1 and the
control variable is the external forcing.
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In this section, two approaches to sensitivity analysis will be introduced: firstly, the
eigenvalue sensitivity with respect to an external forcing added to the perturbation field
(structural sensitivity); secondly, the eigenvalue sensitivity with respect to an external
forcing added to the base flow (sensitivity to steady forcing).

4.2.1 Structural sensitivity

Following the work introduced by Giannetti & Luchini (2007), the structural changes
are due to an external forcing added in the linearized momentum equation. For this
case, the goal is to find a structural modification which produces the greatest least stable
eigenvalue drift δλ1. To obtain this sensitivity field, let us consider a Lagrangian functional
defined as

Lpλ1, pq,pf , pq
:
q “ λ1 ´ xpq

:, pλB´ Lqpq´ pfy.

Here, the forced generalized eigenvalue problem pλB´ Lqpq´pf “ 0 is the constraint, the
least stable eigenvalue λ1 is the objective functional, and pq: is the Lagrange multiplier.

At an optimum point, the gradient ∇Lpλ1, pq,pf , pq
:q “ 0. The procedure to reach the

zero gradient is similar to that introduced in section 2.3. The treatment of each partial
derivative is explained below.

• BL

Bpq:
δpq:

Taking the first variation with respect to the adjoint/Lagrange multiplier pq: by
using the eq. (4.9), we have:

BL

Bpq:
“ lim

εÑ0

ş

τ

ş

Ω

`

pq: ` εδpq:
˘

¨

”

pλB´ Lqpq´ pf
ı

` pq: ¨
”

pλB´ Lqpq´ pf
ı

dVdt

ε

“

ż

τ

ż

Ω

δpq: ¨
”

pλB´ Lqpq´ pf
ı

dVdt “ 0.

Therefore, the partial derivative
BL

Bpq:
δpq: “ 0 requires that the constraint pλB ´

Lqpq´ pf “ 0 must be satisfied in all domain Ω.

• BL
Bpq
δpq

On carrying out the first variation with respect to the direct mode pq, we have:

BL

Bpq
δpq “ xpq:, pλB´ Lqδpqy

“ ´

ż

Ω

p:p∇ ¨ δpuqdV`

´

ż

Ω

pu: ¨

ˆ

λpu`∇U ¨ δpu`U ¨∇δpu´ 1

Re
∇2δpu`∇δpp

˙

dV
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Applying integration by parts and then the Divergence Theorem:

BL

Bpq
δpq “ xpq:, pλB´ Lqδpqy

“

ż

τ

ż

Ω

“

λpu: `∇U ¨ pu: ´U ¨∇pu: ´Re´1∇2
pu: ´∇pp:

‰

¨ δpu dVdt`

`

ż

τ

ż

Ω

“

∇ ¨ pu:
‰

δpp dVdt`

`

ż

τ

ż

BΩ

n ¨
 

pU ¨ δpuqpu: ` pu:δpp` pp:δpu
(

dVdt
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

I

`

`

ż

τ

ż

BΩ

n ¨
 

Re´1
“

δpu ¨∇pu: ´∇δpu ¨ pu:
‰(

dVdt
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

II

.

Assuming that:

λpu: `∇U ¨ pu: ´U ¨∇pu: ´Re´1∇2
pu: ´∇pp: “ 0 (4.11)

∇ ¨ pu: “ 0 (4.12)

we have an adjoint generalized eigenvalue problem, whose solution is the Lagrange
multiplier pq: “ rpu:, pp:s. In this work, for flows around a fixed structure, we set
pu “ 0 at inlet (BΩi) and wall (BΩw), and ∇pu ¨ n “ 0 at outlet (BΩo). So the terms
I and II are reduced to:

I ` II “

ż

τ

ż

BΩi,w

n ¨
 

pu:δpp´Re´1∇δpu ¨ pu:
(

dVdt`

`

ż

τ

ż

BΩ

n ¨
 

pU ¨ δpuqpu: ` pp:δpu`Re´1δpu ¨∇pu:
(

dVdt

Assuming pu: “ 0 at inlet and wall, and pU ¨nqpu:` pp:`Re´1∇pu: “ 0 at outlet, we

arrive at I ` II “ 0 and
BL

Bpq
δpq “ 0.

• BL

Bλ1

δλ1

Computing the gradient of the Lagrangian functional with respect to λ1, we get:

BL

Bλ1

δλ1 “ δλ1 ´ xpu
:, δλ1puy “ δλ1 ´ xpu

:, puyδλ1. (4.13)

Taking xpu:, puy “ 1,
BL

Bλ1

δλ1 “ 0 holds true.
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Lastly, we work out the derivative of L with respect to pf to achieve:

BL

Bpf
δpf “

Bλ

Bpf
δpf “ xpq:, δpfy. (4.14)

So we conclude that the first variation of the least stable eigenvalue,
Bλ1

Bpf
δpf , is propor-

tional to the Lagrange multiplier/adjoint mode pq:. In the optimal case, the adjoint mode
corresponds to the least stable eigenvalue.

Giannetti & Luchini (2007) identified the wavemaker region as the region in space
susceptible to structural modifications that produce the strongest drift of the eigenvalue.
The wavemaker region was determined by assuming δpf “ Cpxq ¨ δpu, i.e., the force applied
on the system is proportional to velocity mode δpu. Besides that, it is supposed that the
force δpf has a localized feedback mechanism in space by setting Cpxq “ δpx´ x0qC0. In
this last expression, C0 is a constant coefficient, x0 is the cartesian position where the
forcing acts and δpx´ x0q is a Dirac delta function.

To determine the wavemaker region, we can rewrite the eigenvalue sensitivity in respect
to external forcing (4.14) as:

Bλ

Bpf
δpf “ xpu:, δpfy “ xpu:, Cpxqpuy ď ||pu:||2||pu||2||C0||

2. (4.15)

Therefore, the eigenvalue sensitivity due to the localized feedback mechanism is limited
by the product between the direct and adjoint fields ||pu:||2||pu||2.

4.2.2 Sensitivity to a steady forcing

Marquet et al. (2008) also introduced a sensitivity study of the flow with respect to
an external forcing. However, differently from the previous case, they suggest that the
presence of a control cylinder also modifies the base flow and can change its dynamics.
So they proposed that the sensitivity to base flow modifications should be considered.
Therefore, the goal was to evaluate the modifications induced by a steady force acting
on the base flow. In this case, the sensitivity had the objective of showing the regions at
which the eigenvalues were more susceptible to change with the imposition of a steady
force f in the base flow. This problem was solved using the Lagrangian functional in
which the state variables were Q and pq and the constraints were given by the forced base
flow system:

NpQq ´ f “

$

&

%

∇U ¨U´
1

Re
∇2U`∇P ´ f “ 0,

∇ ¨U “ 0,
(4.16)
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and by the generalized eigenvalue problem pλB´Lqpq “ 0. This Lagrangian functional is
written as:

LpQ, f , pq, λ,Q:, pq:q “ λ´ xpq:, pλB´ Lqpqy ´ xQ:,NpQq ´ fy, (4.17)

in which pq: and Q: are the Lagrange multipliers.
In the optimal case, all the derivatives of the Larangean functional are annulled. So

analogous to the process introduced in the previous section, Fréchet derivative (4.9) is used
to compute the derivatives. The explanation of how to set each of the partial derivatives
to zero is the following:

• BL

Bpq:
δpq:,

BL

B pQ:
δ pQ: and

BL

Bλ
δλ

When the Lagrangian derivatives with respect to Lagrange multipliers q: and Q:

are computed, the constraints are enforced:

BL

Bpq:
δpq: “ 0 ñ pλB´ Lqpq “ 0,

BL

BQ:
Q:
“ 0 ñ NpQq ´ f “ 0.

As explained in the previous subsection, when we take the gradient
BL

Bpq
δpq “ 0,

we obtain the adjoint generalized eigenvalue problem (4.11). If we employ the

normalization xpu:, λpuy “ λxpu:, puy “ 1, it results in
BL

Bλ
δλ “ 0.

• BL
BQ

δQ

BL

BQ
δQ “ ´

ż

Ω

pu: ¨ p∇δU ¨ pu`∇pu ¨ δUq dV´
ż

Ω

P : p∇ ¨ δUq dV`

´

ż

Ω

U:
¨

ˆ

∇δU ¨U` δU ¨∇U´
1

Re
∇2δU`∇δP

˙

dV.

Applying integral by parts and the divergence theorem, we arrive at:

BL

BQ
δQ “ ´

ż

Ω

`

∇pu ¨ pu: ´∇pu: ¨ pu
˘

¨ δUdV´
ż

Ω

`

∇ ¨U:
˘

δPdV`

´

ż

Ω

ˆ

∇U ¨U:
´∇U:

¨U´
1

Re
∇2U:

´∇P :
˙

¨ δUdV´B,
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where the bilinear concomitant is:

B “

ż

BΩ

n ¨
 

û ¨ pδUpu:q `U ¨ pδUU:
q `U:P ` P :δU`

` Re´1
“

δU ¨∇U:
´∇δU ¨U:

‰(

dS.

Therefore, we obtain the adjoint system:

∇U ¨U:
´∇U:

¨U´Re´1∇2U:
´∇P : “ ∇pu ¨ pu: ´∇pu: ¨ pu, (4.18)

∇ ¨U:
“ 0. (4.19)

We then set boundary conditions for this system such that B “ 0. To obtain these
boundary conditions, we first consider the boundary conditions of the base flow
system (4.16) and of the GEP system (4.4), and impose the following boundary
conditions for the adjoint velocity:

˝ U: “ 0 at inlet (BΩi) and wall (BΩw);

˝ pû ¨ nqu: ` pU ¨ nqU: ` P : `Re´1∇U: “ 0 at outlet (BΩw).

Therefore,
BL

BQ
δQ “ 0 is satisfied.

After following the steps delineated above, the total variation of the least stable ei-
genvalue is reduced to

δλ1 “
BL

Bf
δf “

Bλ1

Bf
δλ1 “ xQ

:, δfy, (4.20)

so the eigenvalue sensitivity to a steady force applied in the base field is given by ∇fλ1 “

Q:. The Langrange multiplier Q: is the solution of the adjoint system (4.18) - (4.19).
The adjoint mode pu: is obtained by solving the generalized eigenvalue adjoint prob-

lem (4.11), and the perturbation velocity pu is calculated with the generalized eigenvalue
direct problem (4.4). For the optimal case, the direct (pu) and adjoint (pu:) modes corres-
pond to the least stable eigenvalue λ1.

Therefore, to obtain the eigenvalue sensitivity to a steady forcing, it is necessary to
carry out the following steps:

1. Compute the steady base flow Q by solving the system (4.16);

2. Compute the direct modes pq by solving the direct generalized eigenvalue prob-
lem (4.4);

3. Compute the adjoint modes pq: by solving the adjoint generalized eigenvalue prob-
lem (4.11);

4. Normalize the adjoint mode pu: in order to obtain
ş

Ω
pu ¨ pu: dV “ 1.
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5. Compute the eigenvalue sensitivity with respect to base flow modification by the
expression (4.21);

6. Compute the adjoint field Q: given by the system (4.18) - (4.19).

4.2.3 Sensitivity to base flow modifications

The term on the right side of the equation (4.18) is interpreted as the base flow
sensitivity (Marquet et al. , 2008). This can be explained by considering the Lagrangian
functional:

LpQ,q, pq:, λ1q “ λ1 ´ xpq
:, pλB´ Lq ¨ pqy.

We obtain
BL

Bpq:
δpq: “ 0 if the constraint pλB ´ Lq ¨ pq “ 0 is satisfied. We then compute

the gradient of L with respect to base flow Q to arrive at

BL

BQ
δQ “

Bλ1

BQ
δQ “ ´x∇pu ¨ pu: ´∇pu: ¨ pu, δUy.

Therefore, the eigenvalue sensitivity to base flow modifications is

∇Qλ1 “ ´∇pu ¨ pu: `∇pu: ¨ pu. (4.21)

4.3 Global linear analysis applied for flow around a

fixed circular cylinder

This section has the goal to exemplify the application of the linear stability analysis
and sensitivity analysis for the flow around a fixed structure. Base flow, modal analysis,
and the sensitivity calculations are verified by making comparisons with results from
previous works.

4.3.1 Numerical methodology

The partial differential equations were discretized and solved using the spectral/hp
element method Karniadakis & Sherwin (2005) (a brief description of this method can
be found in Appendix A). Seventh-degree polynomials were employed as basis functions
in the two-dimensional simulations. A second-order stiffly-stable time-stepping scheme
(Karniadakis et al. , 1991) was employed to advance the solution in time. The eigenvalues
were obtained by solving a generalized eigenvalue problem with the Arnoldi method (Saad,
1992), as described in Appendix B. In the case of steady base flow, the Navier-Stokes
system was solved for a sufficiently large time to reach the steady state.
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Figure 18: Schematic diagram of a representative flow past a circular cylinder.

Figure 18 shows the geometry of interest. We considered a circular cylinder of diameter
D “ 1. This solid body was immersed in an uniform flow of magnitude U parallel to the
x-axis, pointing to the x` direction. The origin of the coordinate system was at the centre
of the cylinder with dimensions: x` “ 45D downstream, x´ “ ´25D upstream and y˘ “
25D cross-stream. For the base and perturbation fields, Neumann high-order boundary
conditions for pressure (Karniadakis et al. , 1991) and Dirichlet boundary conditions for
the velocity were imposed at inlet and cylinder wall. The velocity boundary conditions
were: at the inlet, U “ p1, 0q for the base flow calculations, u1 “ u: “ U: “ 0 for the linear
stability analysis and for sensitivity analysis; at the cylinder wall, U “ u1 “ u: “ U: “ 0;
at the outlet, ∇U ¨n “ ∇u1 ¨n “ ∇u ¨n “ 0 and P “ p1 “ p: “ P : “ 0 were imposed for
all calculations.

4.3.2 Base flow

It is well-known that for very low Reynolds numbers, the flow follows the contour of
the cylinder (see Figure 19(a)). This flow regime occurs for Reynolds numbers up to 5.
As shown in Figure 19(b), when the Reynolds number increases, the steady flow separates
from the rear side of the cylinder and a symmetric stable recirculation bubble is formed.
For the critical Reynolds number Rec0 – 47, the flow undergoes a supercritical Hopf
bifurcation (primary instability) that leads to a two-dimensional time-periodic laminar
flow (Figure 19(c)). The two-dimensional time-periodic flow produces a vortex wake
observed downstream of the cylinder, which is known as von-Kármán wake. This wake
is two-dimensional for 47 ě Re ď 190 (Williamson, 1989; Barkley & Henderson, 1996).
The vortices are shed at a fixed non-dimensional frequency fst called Strouhal frequency,
which depends on the Reynolds number.
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Figure 19: Flow regimes around a cylinder. Extracted from Dyke (1988).

(a) Re À 5. (b) 5 À Re À 47. (c) Re « 50.

As a numerical verification of the steady base flow (Re ă 47), we compare the length
of the wake bubble Lw and drag coefficient Cd measured for Re “ 20 and Re “ 40

with results from the literature (Table 4.1). The comparisons with Ye et al. (1999) and
Giannetti & Luchini (2007) show good agreement. The time-periodic base flow is verified
by comparing the Strouhal number for 47 ă Re ă 180 with experimental data from
Williamson (1989). In Figure 20, we can notice a good agreement with the results of that
paper.

Table 4.1: Length of the wake bubble Lw (measured from the rear stagnation point) and
drag coefficient CD.

Re “ 20 Re “ 40

Lw Cd Lw Cd

Ye et al. (1999) 0.92 2.03 2.27 1.52

Ganetti & Luchini (2007) 0.92 2.05 2.24 1.54

Current work 0.95 2.06 2.25 1.54

4.3.3 Stability analysis

In order to check the methodology used to perform linear stability analysis, this section
shows the comparison of the critical Re obtained for the primary instability with results
found in the literature. Table 4.2 shows the growth rate λr and eigenfrequency λi{p2πq
associated to the leading global mode as a for Reynolds numbers between Re “ 46 and
Re “ 47. As explained in Section 4.1, the stability can be assessed by the sign of the real
part of the eigenvalue λr. We observed that the system changes from stable (λr negative)
to unstable (λr positive) for Reynolds number between Re “ 46.5 and Re “ 46.6, being
thus reasonable to affirm that the first instability occurs for Rec0 – 46.6. This value of
the critical Reynolds number Rec0 agrees with results from the literature (Jackson, 1987;
Dusĕk & Fraunie, 1994). Besides that, the frequency given by the global stability analysis
for this Reynolds number is λi – 0.118, which is also in good agreement with Giannetti
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Figure 20: Strouhal number (St) as a function of Reynolds number (Re) for two-
dimensional time-periodic flow.
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& Luchini (2007) (λi – 0.118) and Marquet et al. (2008) (λi – 0.116). The magnitude
of the real and imaginary parts of the least stable modes are shown in figure 21.

Table 4.2: Eigenvalues for Reynolds numbers Re around of the first instability.
Re λr λi{2π
46.4 ´6.7714ˆ 10´4 0.11873
46.5 ´2.4954ˆ 10´4 0.11875
46.6 1.7694ˆ 10´4 0.11878
46.7 6.0212ˆ 10´4 0.1188
46.8 1.0262ˆ 10´3 0.11882
47 1.8708ˆ 10´3 0.11887

4.3.4 Structural sensitivity: Wavemaker

According to the mathematical formulation introduced in section 4.2.1, the structural
sensitivity evaluates the greatest drift of the eigenvalue with respect to an external forcing
added to the perturbation field. For a particular case, it was assumed in Giannetti
& Luchini (2007) that this forcing was localized and proportional to mode pu. Under
this assumption, we can conclude that the expression given by ||pu:||||pu|| provides the
wavemaker region. The modes are computed by solving the adjoint generalized eigenvalue
problem.

Figures 22 and 23 display the magnitudes of the adjoint and direct modes respectively,
and they are compared with the results from Giannetti & Luchini (2007). A good agree-
ment between the fields is observed. The direct are very different from the adjoint modes.
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Figure 21: Spatial distribution of the leading global mode magnitude for critical Reynolds
Re “ 46.6.

(a) Magnitude of the real part.

(b) Magnitude of the imaginary part.

This can be explained by the non-normality of the linearized operator L (Chomaz, 2005;
Schmid, 2007; Trefethen et al. , 1993).

Figure 22: Spatial distribution of receptivity ||pu:||, at Re “ 50.

(a) Current work.
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Figure 10. Receptivity to momentum forcing and initial conditions (∥ f̂
+
(x, y)∥) at Re= 50.
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Figure 11. Receptivity to mass injection (|p̂+(x, y)|) at Re= 50.

Both studies, however, predict a shift of xmax towards the bluff body as the Reynolds
number is increased.

The adjoint mode, on the other hand, shows that the regions of maximum receptivity
to momentum forcing and mass injection are localized in the near wake of the
cylinder, close to the upper and lower sides of the body surface. This can be seen in
figures 10 and 11, which display the spatial distribution of the functions ∥ f̂

+
(x, y)∥

and |m+(x, y)| at Re =50: darker regions are where the forcing terms f̂ and m̂ in
(3.2) are most effective, i.e. give rise to a mode with the largest amplitude. In striking
contrast with the results for the direct mode, the receptivity decays rapidly both
upstream and downstream of the cylinder. As discussed in § 3 (and clearly shown
in (3.10)), the adjoint field f̂

+
(x, y) also represents the sensitivity of the mode to

the initial conditions used to solve the corresponding temporal stability problem.
In particular, modes with large amplitude are produced when the initial conditions

(b) Giannetti & Luchini (2007).

Comparing the adjoint magnitude field ||pu:|| shown in figure 22 with the base flow
shown in figure 24, we notice that the maximum responses to an external forcing (re-
ceptivity) are localized slightly downstream of the cylinder, close to the separation point
of the boundary layer on the cylinder surface.
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Figure 23: Spatial distribution of the perturbation velocity magnitude ||pu||.
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Figure 8. Spatial distribution of the velocity field modulus ∥û(x, y)∥ at Re =50.

become important and substantially modify the St − Re relationship away from the
linear result of figure 7.

6.1. Direct and adjoint mode characteristics

Figures 8 and 9 show the modulus of the velocity ∥û(x, y)∥ and pressure |p̂(x, y)| of
the perturbation at Re = 50, a value corresponding to a weakly unstable configuration.
The dashed line in the pictures indicates the boundary of the separation bubble, while
the solid lines are the isolines corresponding to the tick values in the grey-level scale.
In the neighbourhood of the critical point, the maxima of q̂ are located far downstream
of the recirculating region. A surprising fact, in the light of this result, is that
both Zebib (1987) and Hill (1992) obtained converged results with a computational
domain too short to capture the maxima of the direct eigenfunctions. In their case,
the choice of a small domain was mainly dictated by the use of cylindrical coordinates
with the ensuing degradation of the spatial resolution with radial distance. The
numerical approach used here, on the other hand, allowed us to perform the calcula-
tions on a much larger domain: in this way we were able to resolve the details of

(b) Giannetti & Luchini (2007).

Figure 24: Contours of velocity magnitude and streamlines for the steady base flow at
Re “ 50

Figure 25 shows the spatial distribution of the inner product ||pu:||2 ¨ ||pu||2. The regions
in which a feedback control actuation can be most effective are symmetrically localized
downstream of the cylinder, into the recirculation bubble. Giannetti & Luchini (2007)
noticed that these regions were similar to those regions where the placement of a small con-
trol cylinder suppressed the vortex shedding in the experiments introduced by Strykowski
& Sreenivasan (1990).

4.3.5 Sensitivity to base flow modifications

Figure 27 shows a qualitative comparison of the growth rate sensitivity ∇Uλ1r and the
eigenfrequency sensitivity ∇Uλ1i with results from Marquet et al. (2008). For Re “ 46.8,
the optimal growth rate and frequency sensitivities to base flow modifications are localized
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Figure 25: Wavemaker at Re “ 50.

Figure 26: Streamlines of the steady base flow, at Re “ 46.8

in the vicinity of the separation point and in the recirculation bubble of the steady flow,
which is plotted in figure 26. The greatest variation of the eigenvalue with respect to base
flow modifications is computed by the inner product x∇λ1Q, δfy.

To explain the effect of a forcing δf imposed at some point of the two-dimensional
domain, let us admit that δf is oriented in the same direction of the sensitivity ∇Uλ1r

and is localized on the centerline of the recirculation bubble. So observing the streamlines
of ∇Uλ1r and ∇Uλ1i plotted in figures 27(a) and 27(c) respectively, it can be noticed that
δλ1r is positive, while δλ1i is negative. In contrast, if δf is oriented in the opposite
direction of the sensitivity ∇Uλ1r, δλ1r is negative, and δλ1i is positive. Therefore, in the
second case, δf can stabilize the flow and increase the frequency.

4.3.6 Sensitivity to a steady forcing

Figures 28(a) and 28(b) display the growth rate and frequency sensitivities to a steady
forcing. Optimal responses are localized in the vicinity of the separation point and in the
centre of the recirculation bubble. A weaker region of sensitivity was identified out of the
recirculation bubble, at the top and the bottom.

By evaluating the streamlines of the sensitivity fields and on considering a particular
case in which a local forcing is imposed in the vicinity of the separation point or in the
center of the recirculation bubble, we can see that this force has an opposite direction
(downstream direction) of the sensitivity∇fλ1r. So this local forcing can stabilize the flow.
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Figure 27: Sensitivity to base flow modifications ∇Uλ1 at Re “ 46.8. Comparison of
the spatial distribution of the growth rate sensitivity ∇Uλ1r (a)-(b) and the frequency
sensitivity ∇Uλ1i (c)-(d) with results introduced by Marquet et al. (2008).

(a) Current work (b) Marquet et al. (2008)

(c) Current work (d) Marquet et al. (2008)

On the other hand, this forcing can destabilize the flow if applied out of the recirculation
bubble, at the top or the bottom.

Marquet et al. (2008) considered an external forcing exerted on the base flow at a
point px0, y0q, where this forcing was given by the insertion of a small cylinder of diameter
d “ 0.1. Analytically, this kind of control was modelled by the following expression:

δf “ ´0.5dCdpRe lq||U||Uδpx0, y0q. (4.22)

In this equation, CdpRe lq is the drag coefficient and is a function of the local Reynolds
number Re l. Therefore, for a steady forcing proportional to base flow velocity U, an

Figure 28: Sensitivity to a steady forcing at Re “ 46.8

(a) ∇fλr (b) ∇fλi
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optimal variation of the least stable eigenvalue (δλ1) can be evaluated by the expression:

δλ1 “ ´0.5dxU:, CdpRe lq||U||Uy. (4.23)

Figure 29: Spatial distribution of the growth rate variation δλ1,r{CdpRe lq (a) and the
frequency variation δλ1,f{α (b).

(a) (b)

Figure 29 shows the variation δλ1{CdpRe lq, in which an external forcing modelled by
the expression (4.22) can stabilize the flow system if applied in the region where the growth
rate variation δλ1,r is negative. Otherwise, this forcing can destabilize if applied on the
regions where δλ1,r ą 0. Therefore, the growth rate increases and the frequency decreases
if a local steady forcing is applied at the top and at the bottom of the cylinder. On the
other hand, the growth rate decreases when the local forcing is imposed at the limit of
the recirculation bubble, slightly above or below. In this same region, the frequency also
decreases. These results agree with the experimental analysis introduced by Strykowski &
Sreenivasan (1990). In that work, the authors present a mapping of the regions in which
the insertion of small cylinder with diameter d “ 0.1 stabilizes the system, i.e., suppress
the vortex shedding.
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Chapter

5
Global linear analysis: mathematical

formulation for flexibly-mounted
bluff bodies

In this chapter, we introduce the fluid-structure interaction (FSI) systems used to
carry out linear stability analysis and sensitivity analysis. We consider the movement
of a flexibly-mounted bluff body, which is governed by a mass-spring damper system.
To model the linearized and adjoint FSI systems we employ the non-inertial frame of
reference method.

5.1 Mass-spring-damper system

For a viscous two-dimensional flow around a flexibly-mounted structure free to oscillate
in streamwise (in-line) and cross-stream (transverse) directions, the structure is governed
by the mass-spring-damper system:

M :y ` C 9y `Ky “ Fptq. (5.1)

The variables y “ yptq, 9y “ 9yptq and :y “ :yptq represent respectively the vectors of
displacement, velocity and acceleration of the structure. The constant coefficients M , C
andK are the mass, damping and stiffness of the system, and F is the fluid force described
by:

F “

ż

BΩw

n ¨
 

´pI`Re´1
p∇u` p∇uqT q

(

dSw “
ż

BΩw

n ¨ σpu, pqdSw. (5.2)

The subscript w indicates that the integral is calculated along the structure wall
(BΩw,0).
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To make the structure equation (5.1) non-dimensional, consider the dimensional con-
stant coefficients (M,K,C), the force F, the variables of the system y, 9y, :y and the time
t written in dimensionless form:

M˚
“

M

ρD2L
, C˚ “

C

ρU8DL
, K˚

“
K

ρU2
8L

, F ˚ “
F

ρU2
8DL

,

y˚ “
y

D
, 9y˚ “

9y

U8
, :y˚ “

:yD

U2
8

, t˚ “
tU8
D

.

In these expressions, D and L are the diameter and the length of the cylinder, respectively,
ρ is the fluid density and U8 is the free stream speed. Substituting these non-dimensional
expressions in (5.1) and writing in convenient form, we have the non-dimensional mass-
spring-damper forced system (for simplicity, the asterisks of the displacement, velocity
and acceleration vectors were omitted):

M˚:y ` C˚ 9y `K˚y “ F˚. (5.3)

The system given by (5.3) and Navier-Stokes equations (2.3) govern the flow around a
flexibly-mounted structure.

5.2 Non-inertial frame of reference

In this method, the system of coordinates is fixed to the structure and the mesh is not
modified. We adopt the approach described in Li & Bearman (2002), but in this work
we restrain the structure motion to translation yptq. For a two-dimensional motion, we
have the following coordinate transformation between the absolute and relative frame of
references:

x1,a “ y1 ` x1, x2,a “ y2 ` x2. (5.4)

The illustration of this coordinate transformation is shown in Figure 30. The coordin-
ates xa “ rx1,a, x2,a, x3,as

T denotes an arbitrary point described in the absolute frame of
reference, x “ rx1, x2, x3s

T are the coordinates of the point P described in the relative
frame of reference, and yptq “ ry1ptq, y2ptqs

T “ ry1, y2s
T are the coordinates of the origin

of the relative frame of reference (fixed to the structure), described in the absolute frame
of reference. This coordinate transformation can be written in vector form:

xa “ y ` x (5.5)
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Figure 30: Coordinate transformation of the non-inertial frame of reference method.

In this mapping, the velocity components are given by the time derivative of the
expression (5.5). So the absolute velocity vector is described by:

ua “ 9y ` u, (5.6)

where
Bx

Bt
“ u, u the relative velocity. For the two-dimensional FSI system, the non-

inertial spatial derivatives have the following form:

B

Bx1,a

“
B

Bx1

Bx1

Bx1,a

`
B

Bx2

Bx2

Bx1,a

“
B

Bx1

,

B

Bx2,a

“
B

Bx1

Bx1

Bx2,a

`
B

Bx2

Bx2

Bx2,a

“
B

Bx2

.

Therefore, the gradient and laplacian operators in the non-inertial form are given respect-
ively by:

∇a “ ∇, (5.7)

∇2
a “ ∇2. (5.8)

To calculate the time derivative, we have to take the structure translation into account.
So the absolute time derivative is:

B

Bt

ˇ

ˇ

ˇ

ˇ

a

“
Bx1

Bt

ˇ

ˇ

ˇ

ˇ

a

B

Bx1

`
Bx2

Bt

ˇ

ˇ

ˇ

ˇ

a

B

Bx2

`
B

Bt

ˇ

ˇ

ˇ

ˇ

r

“ ´ 9y ¨∇` B

Bt

ˇ

ˇ

ˇ

ˇ

r

. (5.9)
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We now proceed to describe the motion of the fluid in the relative frame of reference.
We start by writing the non-dimensional Navier-Stokes equations in absolute coordinates:

Bua
Bt

ˇ

ˇ

ˇ

ˇ

a

`∇aua ¨ ua ´Re
´1∇2

aua `∇apa “ 0,

∇a ¨ ua “ 0.

Then, we rewrite the time and spatial derivatives of the Navier-Stokes equations using
(5.7), (5.8) and (5.9). Besides that, we write the absolute velocity in terms of the relative
velocity by using (5.6), so:

Bua
Bt

ˇ

ˇ

ˇ

ˇ

a

“ ´ 9y ¨∇ua `
Bua
Bt

ˇ

ˇ

ˇ

ˇ

r

“ ´ 9y ¨∇u`
Bu

Bt
`

d 9y

dt
,

∇aua “ ∇u ñ ∇ua ¨ ua “ ∇u ¨ pu` 9yq, ∇2
aua “ ∇2u, ∇ap “ ∇p.

After these transformations, we obtain the Navier-Stokes equations and the mass-spring-
damper system equation (5.3) described in the non-inertial frame of reference:

Bu

Bt
`∇u ¨ u´

1

Re
∇2u`∇p` d 9y

dt
“ 0, (5.10)

∇ ¨ u “ 0, (5.11)

M˚d 9y
dt
` C˚ 9y `K˚y “ Fpu, pq. (5.12)

The system above is used in this work to model the behaviour of the flow and the
elastically-mounted structure. Here we consider external flows (uniform flow around the
structure), which employ the following boundary conditions:

• Inlet: Dirichlet boundary conditions are used at inlet. Therefore, ua “ u ` 9y,
implying at u “ ua ´ 9y.

• Structure wall: At this boundary it is assumed that ua “ 9y. Thus, with the change
of coordinates, we have u “ 0.

• Outlet: Neumann boundary condition for the velocities U and u1 are applied at the
outlet. Hence, ∇u ¨ n “ 0.

5.3 Linearized fluid-structure system

As we saw in section 4.1, hydrodynamic stability analysis consists in evaluating the
evolution of a perturbation q1 superimposed to the base flow Q. For fluid-structure
interaction (FSI) problems, the same approach is adopted. However, the main difference
is in the domain where the system is defined. In the “flow only” case, the Navier-Stokes
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system is defined in a fixed domain (Ω). Therefore, base flow and perturbation are
solved in the same domain. For a FSI system, this hypothesis does not hold. Assuming
q “ Q`q1, the steady base field Q is solved in a fixed domain, but the perturbation field
is computed in a domain that can vary in the time.

To explain that, let us linearize the FSI system with the same approach used for the
“flow only” problem. Consider the vector state q “ Q`q1 “ ru, p,y, 9ys “ rU, P 1,Y, 9YsT`

ru, p1,y1, 9y1sT , in which the structure has two degrees of freedom. Substituting this in the
FSI system (5.10)-(5.12), we get:

Bu1

Bt
`U ¨∇u1 `∇U ¨ u1 `∇u1 ¨ u1 ´

1

Re
∇2u1 `∇p1 ` :y1

`∇U ¨U´
1

Re
∇2U`∇P ` :Y

looooooooooooooooooomooooooooooooooooooon

Evolution equation for the base field

“ 0,

∇ ¨ u1 `∇ ¨U “ 0,

M˚:y1 ` C˚ 9y1 `K˚y1 “ Fpu1, p1q.

For a steady base flow Y “ 9Y “ :Y “ 0 and for small perturbation the non-linear term
(∇u1 ¨ u1) is negligible. For FSI problems, the Navier-Stokes system is described using a
coordinate system x that is time dependent. However, the base field Q is defined in a
fixed domain x0. So it is necessary to evaluate time and spatial derivatives of Q in the
relative frame of reference x. To work with this kind of problem, we adopted a strategy
introduced in previous works (Fernández, 2001; Fernández & Tallec, 2002, 2003).

5.3.1 Flow equations

To carry out the stability analysis of a two-dimensional FSI system, let us write the
velocity u and pressure p as a Taylor series expansion of first order around an equilibrium
point x0. So the velocity and pressure fields are written as:

u “ upx0, tq `∇0upx0, tq ¨ δx

p “ ppx0, tq `∇0ppx0, tq ¨ δx,

where ∇0 “

„

B

Bx0

,
B

By0

T

. Imposing q “ Q` q1, velocity and pressure fields become

u “ Upx0q `∇0Upx0, tq ¨ δx` u1px0, tq `∇0u
1
px0, tq ¨ δx,

p “ P px0q `∇0P px0, tq ¨ δx` p
1
px0, tq `∇0p

1
px0, tq ¨ δx.

Using the hypothesis that δx is a small perturbation, the terms ∇0u
1px0, tq ¨ δx and

∇0p
1px0, tq ¨ δx can be neglected. Consequently, the velocity and pressure are described
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by

u “ Upx0q `∇0Upx0, tq ¨ δx` u1px0, tq, (5.13)

p “ P px0q `∇0P px0, tq ¨ δx` p
1
px0, tq. (5.14)

On using Taylor expansion around of x0, the velocity and pressure are defined in the
fixed domain. However, in the FSI system (5.10)-(5.12) the domain points can move in
the time. Therefore, for the correct application of the spatial gradients, it is necessary to
perform coordinate transformations from/to the relative frame of reference x to/from the
absolute frame of reference x0. To do that, we employ the following assumption:

x “ pI`R1
qx0.

This means that the coordinates of each domain point in the relative frame of reference is
given by the coordinates of that point in the absolute frame of reference plus a perturbation
represented by the application of a perturbation matrix R1 in x0, i.e., δx “ R1x0. In the
non-inertial frame of reference method, the relative frame of reference is attached to the
structure. So δx corresponds to the structure translation and is uniform for all points in
the domain at a given time instant.

If we substitute eqs. (5.13) and (5.14) into eqs. (5.10) and (5.11), the spatial derivatives

will give rise to terms that will include
Bx0

Bx
and

Bδx

Bx
. To find an expression for

Bx0

Bx
, we

start by expressing:
Bx0

Bx
“

ˆ

Bx

Bx0

˙´1

“ pI`R1
q
´1.

We then write pI`R1q´1 as a Neumann series to obtain:

pI`R1
q
´1
“ I´R1

`R12
´R13

` ...´ ...

For a small perturbation (R1 ! 1), we arrive at:

Bx0

Bx
“ pI`R1

q
´1
“ I´R1

implying in
Bδx

Bx
“
B

Bx
pR1x0q “ R1pI´R1q. Retaining only the first order terms, we arrive

at
Bδx

Bx
“ R1.
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So the spatial gradient ∇u is rewritten as:

∇u “ ∇ pU`∇0U ¨ δx` u1q

“ ∇0U ¨
Bx0

Bx
`∇0u

1
¨
Bx0

Bx
`∇0p∇0Uq ¨

ˆ

Bx0

Bx
δx

˙

`∇0U ¨
Bδx

Bx

“ ∇0U ¨ pI´R1
q `∇0u

1
¨ pI´R1

q `

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇0U ¨ pI´R1
q `∇0U ¨R1

“ ∇0U`∇0u
1
¨ pI´R1

q `

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇0U ¨ pI´R1
q

For small perturbations, the terms of second order can be neglected and we arrive at:

∇u “ ∇0U`∇0u
1
`

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇0U

Using the same procedure, the pressure gradient is:

∇p “ ∇0P `∇0p
1
`

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇0p

The divergence of the velocity is:

∇ ¨ u “ ∇ ¨ pU`∇0U ¨ δx` u1q

“ ∇0 ¨U
Bx0

Bx
`∇0 ¨ u

1
¨
Bx0

Bx
`∇0 ¨ p∇0Uq ¨

ˆ

Bx0

Bx
δx

˙

`∇0 ¨U ¨
Bδx

Bx

“ p∇0 ¨U`∇0 ¨ u
1
q
Bx0

Bx
`∇0p∇0 ¨Uq ¨

ˆ

Bx0

Bx
δx

˙

The base flow and perturbed flow are divergence free, i.e., ∇0 ¨U “ 0 and ∇ ¨ u “ 0. If
we use that in the equation above, we conclude that ∇0 ¨ u

1 “ 0.
Regarding the Laplacian term, we have:

∇2u “ ∇ ¨ p∇uq “ ∇ ¨
ˆ

∇0U`∇0u
1
¨ pI´R1

q `

ˆ

δx
B

Bx
` δy

B

By

˙

¨∇0UpI´R1
q

˙

“ ∇2
0U ¨

Bx0

Bx
`∇2

0u
1
¨ pI´R1

q
Bx0

Bx
`

ˆ

Bδx

Bx

B

Bx0

`
Bδy

By

B

By0

˙

∇0U ¨ pI´R1
q `

`

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇2
0U ¨ pI´R1

q
Bx0

Bx

“ ∇2
0UpI´R1

q `∇2
0u
1
¨ pI´R1

q
2
`

ˆ

R1
0

B

Bx0

`R1
1

B

By0

˙

∇0U ¨ pI´R1
q `

`

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇2
0U ¨ pI´R1

q
2
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For small perturbations, we neglect the second and higher order terms, so the Laplacian
is given by:

∇2u “ ∇2
0U ¨ pI´R1

q `∇2
0u
1
`R1

¨∇2
0U`

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇2
0U

“ ∇2
0U`∇2

0u
1
`

ˆ

δx
B

Bx0

` δy
B

By0

˙

∇2
0U.

The mapping of the time derivative for points x described in the relative frame of
reference from the description in the absolute frame of reference is:

B

Bt

ˇ

ˇ

ˇ

ˇ

x

“
Bδx0

Bt
¨∇0 `

B

Bt

ˇ

ˇ

ˇ

ˇ

x0

“
B

Bt

ˇ

ˇ

ˇ

ˇ

x0

.

Next, substituting the velocity by (5.13), and remembering that the base flow is steady,
we reach:

Bu

Bt
“
B

Bt

ˆ

Upx0q `
BUpx0, tq

Bx
δx`

BUpx0, tq

By
δy ` u1px0, tq

˙

“
Bu1

Bt

ˇ

ˇ

ˇ

ˇ

x0

`
Bδx

Bt
¨∇0U

Substituting the velocity field by (5.13) and using the derivatives introduced above,
the momentum equation (5.10) is rewritten as:

Bu1

Bt

ˇ

ˇ

ˇ

ˇ

x0

`U ¨∇0u
1
` u1 ¨∇0U`

Bδx

Bt
¨∇0U´

1

Re
∇2

0u
1
`∇0p

1
`
B 9y1

Bt
`∇0u

1
¨ u1

looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

Non-linear evolution equation for the perturbation

`

`δx ¨∇0

»

—

—

–

∇0U ¨U´
1

Re
∇2

0U`∇0P
loooooooooooooooomoooooooooooooooon

Steady base field

fi

ffi

ffi

fl

`

»

—

—

–

∇0U ¨U´
1

Re
∇2

0U`∇0P
loooooooooooooooomoooooooooooooooon

Steady base field

fi

ffi

ffi

fl

“ 0.

(5.15)

Therefore, the steady base flow is governed by:

∇0U ¨U´
1

Re
∇2

0U`∇0P “ 0, (5.16)

∇0 ¨U “ 0, (5.17)

While the momentum and mass conservation equations that govern the perturbation are
described by:

Bu1

Bt

ˇ

ˇ

ˇ

ˇ

x0

`U ¨∇0u
1
`

ˆ

u1 `
Bδx

Bt

˙

¨∇0U´
1

Re
∇2

0u
1
`∇0p

1
`
B 9y1

Bt

ˇ

ˇ

ˇ

ˇ

x0

` ∇0u
1
¨ u1

looomooon

Non-linear term

“ 0.

∇ ¨ u1 “ 0,
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To obtain the linearized system, we assume the same hypothesis used in the Section
4.1, i.e., the ∇0u

1 ¨ u1 has a smaller order than the other terms in the short time scale.
Therefore, the momentum equation is rewritten as:

Bu1

Bt

ˇ

ˇ

ˇ

ˇ

x0

`U ¨∇0u
1
`

ˆ

u1 `
Bδx

Bt

˙

¨∇0U´
1

Re
∇2

0u
1
`∇0p

1
`
B 9y1

Bt

ˇ

ˇ

ˇ

ˇ

x0

“ 0.

In the non-inertial frame of reference method, δx “ y for all x P Ω, implying in
Bδx

Bt
“ 9y.

From now the notation B

Bt

ˇ

ˇ

x0
“ Bu1

Bt
will be considered.

Notice that u1 and p1 are the relative velocity and pressure, respectively. However,
we are interested in carrying out the stability analysis using the absolute velocity u1a and
p1a. Reminding that u1a “ u1 ` 9y1 and p1a “ p1, the linearized Navie-Stokes system can be
written as the action of the linear operator on the perturbation u1a and p1a, i.e.,

»

–

B

Bt
` pU ¨∇0q ` p∇0Uq ¨ ´Re´1∇2

0 ∇0

∇0¨ 0

fi

fl

«

u1 ` 9y1

p

ff

“

“

»

–

B

Bt
` pU ¨∇0q ` p∇0Uq ¨ ´Re´1∇2

0 ∇0

∇0¨ 0

fi

fl

«

u1a

pa

ff

“

«

0

0

ff

,

5.3.1.1 Structure equations

After linearizing the Navier-Stokes, the next step is to find a mass-spring-damper
equation for the perturbation. To do so, we write the mass displacement as y “ Y ` y1.
For steady base flow, we have Y “ 0. Next, we have to deal with the force F given by
(5.2) and considering a steady base flow:

Fpu, pq “

ż

BΩw

n ¨ σpu, pqdSw “
ż

BΩw,0

n ¨ σpu1, p1qdSw0 `

ż

BΩw,0

n ¨∇σpU, P qδxdSw0 .

Therefore, the mass-spring-damper system that governs the displacement of the struc-
ture due to a perturbation is given by:

M˚d 9y1

dt
` C˚ 9y1 `

˜

K˚
`

ż

BΩw,0

n ¨∇σpU, P qdSw0

¸

y1 “

ż

BΩw,0

n ¨ σpu1a, p
1
aqdSw0 . (5.18)

To conduct the stability analysis of the FSI system, it is convenient to write the mass-
spring-damper system (5.18) as a system of two first order differential equations:

dy1

dt
“ y11 (5.19)

dy11
dt

`
C˚

M˚
y11 `

K˚
1

M˚
y1 “

1

M˚

ż

BΩw,0

n ¨ σpu1a, p
1
aqdSw0 , (5.20)
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where
K˚

1 “ K˚
`

ż

BΩw,0

n ¨∇σpU, P qdSw0

5.3.2 Boundary conditions

Applying the first order Taylor expansion around an equilibrium point x0 and using
u “ U` u1, we describe the boundary conditions adopted for linearized FSI system:

• Inlet (BΩi,0):

ua “ Uc `
BUc

Bx0

δx`
BUc

By0

δy ` u1apx0, tq

In this work, we imposed a uniform velocity at inlet (Uc). Therefore,

BUc

Bx0

δx`
BUc

By0

δy “ 0,

and the boundary condition at inlet for the perturbation velocity is u1apx0, tq “ 0.

• Structure wall (BΩw,0):
At this boundary ua “ 9y and U “ 0. Thus,

ua “ 9y “
BU

Bx0

δx`
BU

By0

δy ` u1apx0, tq ñ u1apx0, tq “ 9y ´
BU

Bx0

δx´
BU

By0

δy

• Outlet (BΩo,0):
Neumann boundary condition is applied at outlet. In other words, ∇ua ¨ n “ 0,
implying at ∇0u

1
a ¨ n “ 0.

5.3.3 Final system

In conclusion, the linearized FSI system that governs the perturbation fields and its
boundary conditions are given by:

Bu1a
Bt

`U ¨∇0u
1
a `∇0U ¨ u1a ´

1

Re
∇2

0u
1
a `∇p1a “ 0 (5.21)

∇0 ¨ u
1
“ 0, (5.22)

dy1

dt
“ y11 (5.23)

dy11
dt

`
C˚

M˚
y11 `

K˚
1

M˚
y1 “

1

M˚

ż

BΩw,0

n ¨ σpu1a, p
1
aqdSw0 (5.24)

u1 “ 0 at BΩi,0 (5.25)

u1a “ 9y ´∇0U ¨ δx at BΩw,0 (5.26)

∇0u
1
a ¨ n “ 0 at BΩo,0 (5.27)
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Since this is a linear system, for modal analysis, we can assume the following solution for
the perturbation:

q1apx0, tq “ pqexppλtq “ rpupx0qexppλtq, pppx0qexppλtq, pyexppλtq, py1exppλtqs
T ,

in which λ is the eigenvalue and pq is the respective direct mode. Considering solutions fo
this form, the linearized FSI system can be rewritten as:

pλB´ Lqpq “

$

’

’

’

’

’

&

’

’

’

’

’

%

λpu`U ¨∇0pu`∇0U ¨ pu´ 1
Re
∇2

0pu`∇0pp “ 0

∇0 ¨ pu “ 0,

λpy ´ py1 “ 0

λpy1 `
C˚

M˚
py1 `

K˚
1

M˚
py ´

1

M˚
Fppu, ppq “ 0.

(5.28)

Satisfying the boundary conditions pu “ 0 at inlet (BΩi,0), ∇0pu ¨ n “ pp “ 0 at outlet
(BΩo,0) and pu “ 9

py ´∇0U ¨ δx at wall of the structure (BΩw,0).

5.4 Optimal perturbation energy growth

We have seen that even linearly stable systems can present perturbation growth for
finite time. In order to assess the maximum possible growth a perturbation can have
for a given time, we can formulate and solve an optimization problem, following the the
methodology introduced by Mao et al. (2013). In this approach, we look for an initial
condition (perturbation) that will give the maximum growth for finite time interval τ .
Here, we adapt this methodology for a flow around an elastically-mounted cylinder.

For the FSI system we are considering, the Lagrangian functional is written as:

Lpq1,q:,u1ap0qq “ Epτq ´
ż

τ

ż

Ω0

„

Bu1a
Bt

`U ¨∇0u
1
a `∇0U ¨ u1a ´

1

Re
∇2

0u
1
a `∇0p

1
a



¨ u:dV0dt`

´

ż

τ

ż

Ω0

p∇0 ¨ u
1
aqp

:dV0dt´
ż

τ

ˆ

dy1

dt
´ 9y11

˙

¨ y:dt`

´

ż

τ

„

M˚dy11
dt

´ C˚y11 `K
˚
1 y1 ´ Fpu1a, p

1
aq



¨ y:1dt

´

ż

τ

ż

Ω0

u1ap0q ¨ u
:
p0qdV0dt´

ż

τ

y1p0q ¨ y:p0qdt´
ż

τ

9y1p0q ¨ 9y:p0qdt,

where Epτq “ ||u1apx0, τq||
2 measures the perturbation energy which is normalized in

order to satisfy Ep0q “ ||u1apx0, 0q||
2 “ 1, and the vector q: “

“

u:, p:,y:, 9y:
‰T is the

Lagrange multiplier/adjoint variable. Like we did for the “flow only” system, we will look

for function extreme by making the gradient
BLpq1,q:,u1ap0qq

Bq:
δq: “ 0, so the linerized

system (5.10–5.12) must be satisfied.
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5.4.1 Adjoint system

We start by writing the expression of the variation of the Lagrangian functional with
respect to a perturbation q1:

BL

Bq1
δq1 “ ´

B

Bq1

ż

τ

ż

Ω0

„

Bu1a
Bt

`U ¨∇0u
1
a `∇0U ¨ u1a ´

1

Re
∇2

0u
1
a `∇0p

1
a



¨ u:dV0dtδq1`

´
B

Bq1

ż

τ

ż

Ω0

p∇0 ¨ u
1
aqp

:dV0dtδq1 ´
B

Bq1

ż

τ

ˆ

dy1

dt
´ 9y11

˙

¨ y:dtδq1`

´
B

Bq1

ż

τ

„

M˚dy11
dt

´ C˚y11 `K
˚
1 y1 ´ Fpu1a, p

1
aq



¨ y:1dtδq
1.

The adjoint FSI system is obtained by applying the integral by parts:

ż

τ

ż

Ω0

„

Bu1a
Bt

`U ¨∇0u
1
a `∇0U ¨ u1a ´

1

Re
∇2

0u
1
a `∇0p

1
a



¨ u:dV0dt`

`

ż

τ

ż

Ω0

p∇0 ¨ u
1
aq ¨ p

:dV0dt`
ż

τ

ˆ

dy1

dt
´ 9y11

˙

¨ y:dt`

`

ż

τ

„

M˚dy11
dt

´ C˚y11 `K
˚y1 ´ Fpu1a, p

1
aq



¨ y:1dt

“

ż

τ

ż

Ω0

u1a ¨

„

´
Bu:

Bt
´U∇0u

:
`∇0Uu: ´Re´1∇2

0u
:
´∇0p

:



dV0dt
loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

I

`

`

ż

τ

ż

Ω0

p1a ¨
“

∇0 ¨ u
:
‰

dV0dt
looooooooooooooomooooooooooooooon

II

`

ż

τ

y1 ¨
”

´ 9y: `K˚
1 y:1

ı

dt
loooooooooooooomoooooooooooooon

III

`

`

ż

τ

y11 ¨
”

´M˚ 9y:1 ` C
˚y:1 ´ y:

ı

dt
loooooooooooooooooooomoooooooooooooooooooon

IV

´

ż

τ

Fpu1a, p
1
aq ¨ y

:

1dt
loooooooooomoooooooooon

V

`

`

ż

τ

ż

BΩo,0

n ¨
 

pU ¨ u1aqu
:
` u:p1a ` p

:u1a `Re
´1

“

u1a ¨∇0u
:
´∇0u

1
a ¨ u

:
‰(

dSo,0dt
loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

VI

`

`

ż

τ

ż

BΩi,0

n ¨
 

pU ¨ u1aqu
:
` u:p1a ` p

:u1a `Re
´1

“

u1a ¨∇0u
:
´∇0u

1
a ¨ u

:
‰(

dSi,0dt
loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

VII

`

`

ż

τ

ż

BΩw

n ¨
 

U ¨
`

u1au
:
˘

´ σpu1a, p
1
aq ¨ u

:
` u1a ¨ σpu

:,´p:q
(

dSwdt
loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

VIII

´

”

y1 ¨ y: `M˚y11 ¨ y
:

1

ıτ

0
looooooooooooomooooooooooooon

IX

´

„
ż

Ω0

u1a ¨ u
:dV

τ

0
looooooooomooooooooon

X

.

Using the boundary condition ∇0u
1
a ¨ n “ 0 at outlet (BΩo,0) and assuming that this

boundary is sufficiently far way of structure, we set p1 “ 0. Besides that, on imposing
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p:a “ 0 and pU ¨nqu:`Re´1∇0u
: ¨n “ 0, the terms in bracket VI vanishes. At the inlet,

on using u1a “ 0 and on setting u: “ 0, the term in the bracket VII vanishes. For the
terms V and VIII , we can impose a boundary condition for the adjoint velocity u: at the
wall structure. Besides that, we can set the adjoint aerodynamic force added in adjoint
mass-spring-damper system. So on using the boundary condition U “ 0 at BΩw,0, the
sum V ` VIII is reduced to:

V ` VIII “ ´

ż

τ

ż

BΩw,0

tσpu1a, p
1
aq ¨ nu ¨ y

:

1dSw,0dt`
ż

τ

ż

BΩw,0

n ¨
 

´σpu1a, p
1
aq ¨ u

:
` u1a ¨ σpu

:,´p:q
(

dSw,0dt

Taking the boundary condition u: “ ´y:1 and using u1a “ 9y1´∇0Uδx “ y11´∇0U ¨y1 at
the structure wall (BΩw,0), the terms II ` IV ` V ` VIII are reduced to:

II ` IV ` V ` VIII “

ż

τ

y1 ¨

«

´ 9y: `K˚
1 y:1 ´

ż

BΩw,0

„

BU

Bx0

`
BV

Bx0



σpu:,´p:q ¨ ndSw,0

ff

dt`

`

ż

τ

y11 ¨

«

´M˚ 9y:1 ` C
˚y:1 ´ y: `

ż

BΩw,0

 

σpu:,´p:q
(

¨ ndSw

ff

dt

Thus, considering the terms above and the terms I and II, the adjoint FSI system is
given by:

´
Bu:

Bt
´U ¨∇0u

:
`∇0Uu: ´Re´1∇2

0u
:
´∇0p

:
“ 0 (5.29)

∇0 ¨ u
:
“ 0 (5.30)

´ 9y: `K˚
1 y:1 ´

ż

BΩw,0

„

BU

Bx0

`
BV

Bx0



σpu:,´p:q ¨ ndSw,0 “ 0 (5.31)

´M˚ 9y:1 ` C
˚y:1 ´ y: `

ż

BΩw,0

 

σpu:,´p:q
(

¨ ndSw “ 0, (5.32)

subject to the following boundary conditions:

u: “ 0 at BΩi,0 (5.33)

u: “ ´y:1 at BΩw,0 (5.34)

pU ¨ nqu: `Re´1∇u: ¨ n “ p: “ 0 at BΩo,0 (5.35)

Therefore,
BL

Bq1
δq1 “ 0 if

”

y1 ¨ y: `M˚y11 ¨ y
:

1

ıτ

0
looooooooooooomooooooooooooon

IX

´

„
ż

Ω0

u1a ¨ u
:dV

τ

0
looooooooomooooooooon

X

“ 0
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Writing u1apx0, τq as the action of the linearized Navier-Stokes equation in the initial
conditions u1apx0, τq, we reach Apx0, τqu

1
apx0, 0q “ u:px0, τq and A:px0, τqu

:px0, τq “

u:px0, 0q for all x0 in Ω. Therefore, the term in bracket X is zero. At the structure wall,
for all times, u:px0,w, tq “ ´y:1ptq and u1apx0,wi

, tq “ y11ptq (x0,w are the coordinates at the
wall). So the second term of IX is zero by the same reason that the term X is zero. This
way, we arrive at:

“

y1 ¨ y:
‰τ

0
“ 0

5.4.2 Optimal initial perturbation

Making
BL

Bδu1apx0, 0q
δu1apx0, 0q “ 0 it is possible to get an expression to compute the

optimal initial perturbation as follows:

BL

Bu1apx0, 0q
δu1apx0, 0q “ ∇u1apx0,0qEpτqδu1apx0, 0q ´ xδu

1
apx0, 0q,u

:
px0, 0qy “ 0

ñ ∇u1apx0,0qEpτq “ u:px0, 0q.

Therefore, for flow around an elastically-mounted cylinder, the optimal energy growth
for a given time τ , and the initial perturbation that will result in it can be obtained
carrying out the following steps:

1. Integrate the linearized system forward in time from t “ 0 to t “ τ ;

2. Use the final solution q11pτq “ ru
1px0, τq, p

1px0, τq,y
1pτq,y11pτqs as the initial condi-

tion for the adjoint system and integrate this system backwards in time from t “ τ

to t “ 0.

3. Finally, the optimal energy growth is obtained by computing the growth rate λ of
the adjoint vector u:px0, 0q.

5.5 Sensitivity

5.5.1 Structural sensitivity

In a process analogous to that introduced in section 4.2, structural sensitivity is ob-
tained from an optimization problem. We want to adopt this methodology for the case
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in which the constraint is given by the forced perturbation FSI system:

λpu`U ¨∇0pu`∇0U ¨ pu´
1

Re
∇2

pu`∇0pp “ pf (5.36)

∇0 ¨ pu “ 0, (5.37)

λpy “ py1 (5.38)

λM˚
py1 ` C

˚
py1 `K

˚
1 py “ pF. (5.39)

In order to obtain the eigenvalue sensitivity with respect to an external forcing (pf “
pfpx0q) added to the momentum equation (5.36), the least stable eigenvalue is the objective
functional and Lagrangian functional is written as:

Lpλ, pq, pq:q “ λ´

ż

τ

ż

Ω0

„

λpu`U ¨∇0pu`∇0U ¨ pu´
1

Re
∇2

pu`∇0pp´ f



¨ pu:dV0dt`

´

ż

τ

ż

Ω0

r∇0 ¨ pus ¨ pp
:dV0dt`

´

ż

τ

rλpy ´ py1s ¨ py
:dt´

ż

τ

”

λM˚
py1 ` C

˚
py1 `K

˚
1 py ´

pF
ı

¨ py:1dt.

The treatment of each partial derivative is introduced below.

• BL

Bpq:
δpq: “ 0

Analogous to “flow only” problems, by expressing this term using the definition given
by eq. (4.9), the constraint given by the system (5.36)-(5.39) is enforced.

• BL
Bpq
δpq:

Applying the derivative (4.9), then the integral by parts and finally the Divergence
Theorem, we have:

BL

Bpq
δpq “ ´

ż

τ

ż

Ω0

δpu ¨
“

´λpu: ´U∇0pu
:
`∇0Upu: ´Re´1∇2

pu: ´∇0p
:
‰

dV0dt`
ż

τ

ż

Ω0

pp ¨
“

∇0 ¨ pu
:
‰

dV0dt´B`

´

ż

τ

py ¨
”

´ 9y: `K˚
1 py

:

1

ı

dt´
ż

τ

py11 ¨
”

´M˚ 9y:1 ` C
˚
py:1 ´ py:

ı

dt`
ż

τ

Fppu, ppq ¨ py:1dt

If we enforce that the adjoint FSI system:

´λpu: ´U∇0pu
:
`∇0Upu: ´Re´1∇2

pu: ´∇0p
:
“ 0 (5.40)

∇0 ¨ pu
:
“ 0, (5.41)

λpy: `K:

1py
:

1 ´

ż

BΩw,0

∇0U ¨ σppu:,´p:q ¨ ndSw,0 “ 0 (5.42)

´M :λpy:1 ` C
:
py:1 ´ py: ´

ż

BΩw,0

σppu:,´p:q ¨ ndSw,0 “ 0, (5.43)
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subject to boundary conditions:

pu: “ 0 at BΩi,0 (5.44)

pu: “ ´py:1 at BΩw,0 (5.45)

pU ¨ nqpu: `Re´1∇0pu
:
¨ n “ p: “ 0 at BΩo,0. (5.46)

We reach B “ 0 and
BL

Bpq
δpq “ 0.

Details of how to obtain the adjoint system and its boundary conditions are omitted
due to similarly with the process introduced on previous section.

• BL
Bλ
δλ:

BL

Bλ
δλ “ δλ´ xpu:, puyδλ´ ppy ¨ py: ` py1 ¨ py

:

1qδλ. (5.47)

Taking xpu:, puy “ 1 and ppy ¨ py: ` py1 ¨ py
:

1q “ 0, the gradient
BL

Bλ
δλ “ 0 is satisfied.

Finally, the sensitivity of the less stable eigenvalue with respect to an external forcing
imposed in the perturbations field is computed by the expression:

BL

Bf
δf “

Bλ

Bf
δpf , (5.48)

in which
BL

Bf
δf “

ż

Ω0

pu: ¨ δfdV0 “ xpu
:, δfy.

Analogous to the “flow only” problems, the structural sensitivity of a FSI case is propor-
tional to adjoint mode pu:.

5.5.2 Sensitivity to a steady forcing

Adapting the methodology introduced in section 4.2.2 for an FSI system, the Lag-
rangian functional is written as:

LpQ, f , pq, λ,Q:, pq:q “ λ´

ż

τ

ż

Ω0

„

λpu`U ¨∇0pu`∇0U ¨ pu´
1

Re
∇2

pu`∇0pp´ f



¨ pu:dV0dt`

´

ż

τ

ż

Ω0

r∇0 ¨ pus ¨ pp
:dV0dt`

´

ż

τ

rλpy ´ py1s ¨ py
:dt´

ż

τ

rλM˚
py1 ` C

˚
py1 `K

˚
1 py ´ Fppu, ppqs ¨ py:1dt`

´

ż

τ

ż

Ω0

Q:
¨ rNpQq ´ f s dV0dt
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in which pq: and Q: are the Lagrange multipliers. The constraint NpQq ´ f is the forced
steady base flow (4.16).

The constraints are enforced carrying out
BL

Bpq:
δpq: “ 0 and

BL

BQ:
δQ: “ 0. Like in

section 4.2.2, making the gradient
BL

BQ
δQ “ 0 we obtain the adjoint system (4.18–4.19),

and the mathematical expression of the sensitivity to a steady force is ∇λ1f “ Q:. The
difference from this kind of sensitivity computation to an FSI global analysis is only in
the solution of the eigenmode pu. In the current case, the mode pu and pu ˚ : are solution
of an FSI eigensystem.
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Chapter

6
Eigenvalue sensitivity for flow around

an elastically-mounted cylinder

Recent studies have applied global linear stability analysis for the flow around elastically-
mounted bluff bodies (Cossu & Morino, 2000; Meliga & Chomaz, 2011; Zhang et al. , 2015;
Navrose & Mittal, 2016; Yao & Jaiman, 2017). For a circular cylinder free to oscillate, it
was shown from non-linear (Mittal & Singh, 2005) and linear analysis (Cossu & Morino,
2000; Zhang et al. , 2015; Navrose & Mittal, 2016) that the first instability can occur for
Re ă 47. Figure 31(a) shows the stability regions on a pRe,m˚q map (m˚ is the mass of
the moving body divided by the mass of displaced fluid) introduced by Meliga & Chomaz
(2011). In this figure, the regions in which the flow was unstable (U) are shaded, and
the regions in which the flow was stable (S) are clear. Cossu & Morino (2000), Meliga
& Chomaz (2011), Zhang et al. (2015) and Navrose & Mittal (2016) performed linear
stability analysis and found two least stable modes. For high mass ratio (m˚ ě 20),
Navrose & Mittal (2016) named these modes as elastic mode (EM) and fluid mode (FM).
For low mass ratio (m˚ ď 5), the two least stable modes were referred to as fluid elastic
mode I (FEMI) and fluid elastic mode II (FEMII). These modes satisfied the following
characteristics: the frequency of the eigenvalue of the EM tends to the natural frequency
of the structure and the eigenvalues of the FM are similar to the leading eigenvalues of the
flow past a fixed cylinder; the modes FEMI and FEMII do not present a clear definition,
i.e., these modes cannot be defined as a EM or a FM. Navrose & Mittal (2016) described
the modes as decoupled when there was a clear distinction of the two least stable modes
as EM or FM. Otherwise, these modes were named as coupled. Figure 31(b) shows a
diagram of pRe,m˚q with the regions in which the modes are coupled and decoupled.

Departing from the linear stability analysis results, this chapter introduces the results
of sensitivity analysis in the flow around an elastically-mounted circular cylinder. We
start verifying the mathematical and numerical methodology by comparing our results of

73
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Figure 31: (a) Linear stability map for pRe,m˚q pairs. Shaded regions are those for which
the system is unstable (U), the clear regions indicate the parameter space for which the
system is stable (S); (b) Mapping of coupled and decoupled modes, as a function of Re
and m˚q. Re0 represents the critical Reynolds number of the fixed cylinder.

(a) Extracted from Meliga & Chomaz (2011) (b) Extracted from Navrose & Mittal (2016)

linear stability analysis with data published in the literature. Next, the solution of the
adjoint FSI system is verified by comparisons of its eigenvalues with the eigenvalues of
the direct FSI system. Sensitivity measures are then performed to evaluate the regions
that are more receptive to an external forcing for cases inside and outside of the lock-in
range, for low and high values of mass ratio m˚.

6.1 Numerical methodology

Numerical simulations were carried out in a two-dimensional domain with the settings
presented in section 4.3.1. Seventh-degree polynomials were employed as basis functions
in the two-dimensional simulations. A second-order stiffly stable time-stepping scheme
Karniadakis et al. (1991) was employed to advance the solution in time. The eigenvalues
were obtained by solving a generalized eigenvalue problem with the Arnoldi method Saad
(1992). For the steady base flow case, the Navier-Stokes system was solved for a sufficiently
large time to reach the steady state. For the flow around an elastically-mounted cylinder,
the non-linear FSI system was solved for a time interval long enough for the structure
displacement to reach a constant amplitude of oscillation. The displacement of the circular
cylinder is governed by the non-dimensional mass-spring-damper system:

πm˚

4
:y `

π2ζm˚

Vr
9y `

π3m˚

V 2
r

y “ Fpu, pq, (6.1)

where m˚ “
4M

ρπD2L
“ 4M˚{π is the mass ratio, ζ “

C

2
?
KM

represents the damping

ratio, Vr “
U8
fnD

is the reduced velocity and fn “
?
KM

2π
is the natural frequency of the

structure in vacuum.
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All the results presented in this chapter are applied for an elastically-mounted cylinder
free to oscillate only in transverse direction. The Newmark-beta algorithm (Newmark,
1959) was adopted to integrate the mass-spring-damper equation in time. For low mass
ratio, the fictitious mass-method was employed (Baek & Karniadakis, 2012).

6.2 Stability analysis

First of all, numerical verification was carried out by performing computational simu-
lations of the flow around a circular cylinder allowed to vibrate in the transverse direction
at Re “ 33 for a range of reduced velocities. The mass ratio was m˚ “ 4.73 and struc-
tural damping ζ “ 0 were chosen to match the setup used by Mittal & Singh (2005).
Figure 32(a) shows results of cylinder amplitude oscillation ymax as a function of Vr ob-
tained by Mittal & Singh (2005) and from the current work; the agreement is good.
We also verified the modal analysis methodology by comparing the least stable eigen-
values we obtained for a range of Vr to the results provided by Zhang et al. (2015) at
pRe,m˚, ζq “ p33, 50, 0q (Figure 32(b)) and pRe,m˚, ζq “ p60, 10, 0q (Figure 33). Results
from Navrose & Mittal (2016) are also used in comparisons for pRe,m˚, ζq “ p60, 10, 0q

as can be seen in Figure 33.
Figure 32(b) shows real and imaginary parts with respect to Vr of the least stable

eigenvalue for pRe,m˚, ζq “ p33, 50, 0q, where the results present a good concordance with
Zhang et al. (2015). In this particular case, the eigen-frequencies λi{p2πq tend to natural
frequency fn. Therefore, the least stable eigenvalues correspond to the EM. Figure 33
displays comparisons of the two least stable eigenvalues. Results introduced by Navrose
& Mittal (2016) and Zhang et al. (2015) are used to verify our results for a range of Vr,
at pRe,m˚, ζq “ p60, 10, 0q. The eigen-frequencies λi{p2πq match those from Navrose &
Mittal (2016) and Zhang et al. (2015), but the real part presents some discrepancies.
However, the general behaviour of λr with respect to Vr agrees with Navrose & Mittal
(2016) and Zhang et al. (2015). In this case, the eigen-frequencies λi{p2πq of the least
stable eigenvalue tend to the frequency of the cylinder. In contrast, the eigen-frequencies
λi{p2πq of the second least stable eigenvalues tend to the natural frequency (fn) of the
cylinder. Therefore, the least stable eigenvalues correspond to FM, and the second least
stable eigenvalues correspond to EM.

To explain the relation between the lock-in range and the least unstable modes, we con-
sider two cases: pRe,m˚, ζq “ p33, 50, 0q and pRe,m˚, ζq “ p60, 10, 0q. For pRe,m˚, ζq “

p33, 50, 0q, only the EM is unstable. So we compare the range in which λr ą 0 with the
lock-in range as shown in Figure 34. It was verified that these two ranges match, i.e.,
for 6.8 ă Vr ă 10.3 the eigenvalue of EM is positive and the cylinder presents non zero
oscillation amplitude. For pRe,m˚, ζq “ p60, 20, 0q, the FSI system is unstable for all Vr.
However, in Figure 35 we see that the transverse oscillation starts at the same value of
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Figure 32: (a) Amplitude of cylinder oscillation (ymax) compared with Mittal & Singh
(2005), at Re “ 33, m˚ “ 4.73 and ζ “ 0; (b) real part λr (left) and eigen-frequencies
λi{p2πq (right) of the least stable eigenvalues compared with data from Zhang et al.
(2015), at Re “ 33, m˚ “ 50 and ζ “ 0.
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Figure 33: Real and imaginary part if the less two stable modes compared with Navrose
& Mittal (2016); Zhang et al. (2015), at pRe “ 60,m˚, ζq “ p60, 10, 0q.
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Figure 34: Comparison of lock-in range with the real part of the least stable eigenvalue,
at pRe,m˚, ζq “ p33, 50, 0q.
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Figure 35: Comparison of lock-in range with the real part of two least stable eigenvalues,
at pRe,m˚, ζq “ p60, 20, 0q.
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Vr at which the EM becomes unstable. This behaviour was discussed by Zhang et al.
(2015). They argued that the sign change (from negative to positive) of the eigenvalue of
EM is the root cause of the occurrence of lock-in outside the resonance region. Figure 36
shows that the eigen-frequencies of the two least unstable modes are not close in the initial
branch of lock-in (5.8 ă Vr ă 7.2). Therefore, the cylinder oscillation in this range of Vr
is due to instability of the EM mode, which was referred to by Zhang et al. (2015) as
flutter instability. In the range 7.2 ď Vr ă 9.2, only FM remains unstable. It is verified
that the eigen-frequencies of FM and EM are close, and the cylinder remains oscillating
even for stable EM. So in this case, it is said that the cylinder oscillates due to resonance
instability (Zhang et al. , 2015). For Vr ą 9.2, FM remains unstable, EM remains stable,
the eigen-frequencies of EM and FM depart, and the cylinder stays in rest.

Figure 36 also shows the effect of the mass ratiom˚ in the behaviour of two least stable
eigenvalues. Figure 37 displays only the eigen-frequencies. For pRe,m˚, ζq “ p60, 20, 0q,
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Figure 36: Eigenvalues of the two least stable modes for pRe, ζq “ p60, 0q.
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it is possible to distinguish the two least stable modes as FM and EM. In these cases,
the eigen-frequencies of the least stable mode tend to the vortex shedding frequency
observed for a fixed cylinder, and the eigen-frequencies of the second least stable modes
tend to natural frequency of the structure, fn. Therefore, the modes are decoupled. At
pRe,m˚, ζq “ p60, 5, 0q and for low reduced velocity (Vr ă 5.6), the eigen-frequencies of
FEMI are closer to the FM and the eigen-frequencies of FEMII are closer to the EM. For
5.8 ă Vr ă 9.5, we observe a resonance (see Figure 37), i.e., the eigen-frequencies of FEMI
and FEMII match. In this range of Vr, the real part of the eigenvalue of FEMI decreases
and becomes stable, while the FEMII presents a significant growth rate. Next, the eigen-
frequencies of FEMI and FEMII depart and the eigen-frequencies of FEMI stay closer to
the EM and the eigen-frequencies of FEMII stay closer to the FM. Therefore, for low Vr,
the FEMI tends to the behaviour of FM and FEMII tends to the behaviour of EM. As
shown in Figure 31(b), the coupling of modes are observed for low m˚ and in the vicinity
of the critical Reynolds Re “ 47. In early work (Govardhan & Williamson (2002)), it was
shown that for low m˚ the circular cylinder can vibrate with larger amplitude, and for a
large range of reduced velocity. So the coupling of modes can be explained by a stronger
fluid-structure interaction.

6.3 Sensitivity analysis

In this section, we perform a series of sensitivity analyses for the flow around an
elastically-mounted circular cylinder and compare the results with those obtained for a
fixed cylinder, evaluating the differences in the fields of sensitivity for different config-
urations. The analyses performed were structural sensitivity and sensitivity to a steady
forcing. The mathematical formulation for these cases are presented in sections 5.5.1 and
5.5.2 respectively.
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Figure 37: Eigen-frequency of the two least stable modes for pRe, ζq “ p60, 0q.
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Sensitivity analysis was applied for the following cases: pRe,m˚, ζq “ p46.8, 20, 0q,
pRe,m˚, ζq “ p46.8, 5, 0q and pRe,m˚, ζq “ p33, 50, 0q. Reynolds number Re “ 46.8 was
chosen because it is close to the critical Reynolds number for a fixed cylinder (Rec « 47).
The mass ratio values employed, m˚ “ 5 and m˚ “ 20, are representative of typical low
and a high mass ratios. The calculations of sensitivity were also carried out for Re ă 47.
The goal was to evaluate the sensitivity for a case in which only the EM is unstable.
Thus, pRe,m˚, ζq “ p33, 50, 0q was chosen.

Figures 38(a) and 38(b) show the amplitude of oscillation ymax with respect to Vr for
pRe,m˚, ζq “ p46.8, 20, 0q and pRe,m˚, ζq “ p46.8, 5, 0q, respectively. Figure 38(c) shows
the two least stable eigenvalues of the coupled modes FEMI and FEMII for pRe,m˚, ζq “

p46.8, 20, 0q. Based on the results of the amplitude of oscillation, for m˚ “ 20 we chose
two values of Vr inside of lock-in range (Vr “ 6.3 and Vr “ 9), and a low value and a high
value of Vr outside of lock-in range (V r “ 5 and Vr “ 13). For m˚ “ 5, we chose two
values of Vr inside of lock-in range (Vr “ 6.3 and Vr “ 9).

Figure 34 shows the least stable eigenvalue of the EM and the amplitude of oscillation
with respect to Vr for pRe,m˚, ζq “ p33, 50, 0q. For this case, we chose a low and high
value of Vr outside the lock-in range (Vr “ 5 and Vr “ 12), and a value of Vr inside of
lock-in range (Vr “ 8). As described in the previous section, the range of Vr in which EM
is unstable matches the region where the cylinder presents an oscillation amplitude.

In this work, calculations of sensitivity were performed using the adjoint modes. So
before introducing results of sensitivity, the adjoint mode calculation routines were verified
by comparing the eigenvalues obtained with the respective eigenvalues of the direct modes.
Table 6.1 shows comparisons of the least stable eigenvalues for the direct and adjoint
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Figure 38: Amplitude of cylinder oscillation for pRe,m˚q “ p46.8, 20q (a); and pRe,m˚q “

p46.8, 5q, and the real part and frequency of two least stable eigenvalues (coupled modes)
at pRe,m˚q “ p46.8, 20q (c).
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modes. The quantitative difference was computed using the expressions:

dλr “
λr,d ´ λr,a

λr,d
, dλi “

λi,d ´ λi,a
λi,d

,

where dλr is the relative difference between the real part of the direct (λr,d) and adjoint
(λr,a) eigenvalues, dλi is the relative difference between the imaginary parts (λi,d and λi,a)
of these respective eigenvalues. According to Table 6.1, the highest difference was 4%.
Although this difference could be considered a little high, we believe that the results of
sensitivity using the adjoint and direct modes are satisfactory. Observe in Table 6.1 that
the difference of 4.5% was verified for modes of a fixed cylinder. However, in section 4.3 we
compared our results with previous works and we verified a good agreement. Therefore,
these differences probably do not play a important role in the sensitivity analyses.

6.3.1 Structural sensitivity

6.3.1.1 Adjoint field

Before introducing results of sensitivity, let us evaluate the differences between the
adjoint field of a flow around a cylinder free to oscillate in the transverse direction and
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Table 6.1: Comparisons of less stable eigenvalue (λ1) of direct and adjoint modes for flow
around a fixed cylinder and flow around an elastically-mounted cylinder.
pRe,m˚, ζq Vr λ1 of pu λ1 of u˚ (dλr ,dλi)%

p46.8, 20, 0q

Fixed cyl. ´2.25ˆ 10´5 ` i0.736 ´2.15ˆ 10´5 ` i0.736 (4, 0.0)
Vr “ 5 ´1.586ˆ 10´3 ` i0.739 ´1.625ˆ 10´3 ` i0.740 (2.5, 0.1)
Vr “ 6.3 3.32ˆ 10´3 ` i0.937 3.17ˆ 10´3 ` i9.377 (4.5, 0.0)
Vr “ 9 3.85ˆ 10´2 ` i0.716 3.70ˆ 10´2 ` i0.73 (3.8, 0.5)
Vr “ 13 4.62ˆ 10´3 ` i0.725 4.74ˆ 10´3 ` i0.725 (2.5, 0.)

p46.8, 5, 0q
Vr “ 6.3 6.71ˆ 10´2 ` i0.813 6.55ˆ 10´2 ` i0.813 (2.2, 0.0)
Vr “ 9 8.84ˆ 10´2 ` i0.635 8.53ˆ 10´2 ` i0.638 (3.5, 0.4)

p33, 50, 0q

Fixed cyl. ´7.33ˆ 10´2 ` i0.714 ´7.21ˆ 10´2 ` i0.717 (1.6, 0.4q
Vr “ 5 ´6.24ˆ 10´3 ` i1.22 ´6.13ˆ 10´3 ` i1.22 (1.8, 0.0)
Vr “ 8 8.20ˆ 10´3 ` i0.772 8.45ˆ 10´3 ` i0.765 (3.0, 0.9)
Vr “ 12 4.17ˆ 10´3 ` i0.524 4.24ˆ 10´3 ` i0.523 (1.6, 0.2)

the adjoint field of a fixed cylinder. It is well-know that the adjoint mode can provide
the region of maximal receptivity to an external forcing imposed in the perturbation
field (Giannetti & Luchini, 2007). Figures 39, 40 and 41 show the magnitude of least
stable adjoint mode (||pu:||2) for pRe,m˚, ζq “ p46.8, 20, 0q, pRe,m˚, ζq “ p46.8, 5, 0q and
pRe,m˚, ζq “ p33, 50, 0q, respectively.

Comparing the adjoint velocity magnitude with the streamlines of the steady base
flow (see Figure 42) for Re “ 46.8, we observe in Figures 39 and 40 that the optimal
regions of receptivity are localized close to the separation point, slightly downstream of
the cylinder. When the receptivity of the elastically-mounted cylinder is compared with

Figure 39: Normalized adjoint velocity magnitude ||pu:||2 at pRe,m˚, ζq “ p46.8, 20, 0q
compared with ||pu:||2 of the fixed cylinder at Re “ 46.8.

(a) Fixed cylinder (b) Vr “ 5 (c) Vr “ 6.3

(d) Vr “ 9 (e) Vr “ 13
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Figure 40: Normalized adjoint velocity magnitude ||pu:||2 at pRe,m˚, ζq “ p46.8, 5, 0q
compared with ||pu:||2 of the fixed cylinder at Re “ 46.8.

(a) Vr “ 6.3 (b) Vr “ 9

Figure 41: Normalized adjoint velocity magnitude ||pu:||2 at pRe,m˚, ζq “ p33, 50, 0q com-
pared with ||pu:||2 of the fixed cylinder at Re “ 33.

(a) Fixed cylinder (b) Vr “ 5 (c) Vr “ 8

(d) Vr “ 12

the receptivity of the fixed cylinder (plotted in Figure 39(b)), one observes the greatest
difference between the receptivity fields for pm˚, Vrq “ p20, 6.3q and pm˚, Vrq “ p5, 6.3q.
Differently from the fixed cylinder, Figures 39(d) and 40(a) show fields of receptivity also
located upstream of the cylinder. For both cases, the least stable eigenvalue corresponds
to FEMII mode, which it has the eigen-frequency closer of the eigen-frequency of EM
(see Figure 38(c)). In other cases, the field of receptivity of elastically-mounted cylinder
are similar to that fixed cylinder receptivity. A small difference is observed downstream
for m˚ “ 5 (see Figure 40), where we verify that a weaker receptivity stays closer to the
elastically-mounted cylinder, until x « 2. For the fixed cylinder, a weaker receptivity is
observed up to x « 3.

For pRe,m˚q “ p33, 50q, when it is compared the receptivity regions with the stream-
lines of the steady base flow (plotted in Figure 43), we observe a stronger receptivity
close to the separation point. This is similar to the result the fixed cylinder receptivity
displayed in Figure 43 (a). On the other hand, differently of the fixed cylinder, regions of
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Figure 42: Streamlines of the Steady base flow, at Re “ 46.8

Figure 43: Streamlines of the steady base flow, at Re “ 33

receptivity are also observed upstream from the elastically-mounted cylinder cylinder at
Vr “ 5, 8, 12 (see Figures 43 (a), 43(b), 43 (c)). For Vr “ 5, these regions of receptivity up-
stream are stronger than the other cases (Vr “ 8, 12). To remind, for pRe,m˚q “ p33, 50q

the less stable eigenvalues at Vr “ 5, 8, 12 correspond to EM.

6.3.1.2 Structural sensitivity: Wavemaker

Wavemaker regions are computed in the flow around an elastically-mounted circular
cylinder free to oscillate in the transverse direction. As we showed in section 25, the
expression to obtain these fields is given by ||pu:||2 ¨ ||pu||2. For the current FSI problem,
the direct and adjoint modes are solutions of a generalized eigenvalue problem of the
respective systems (5.10 – 5.12).

Figures 44 and 45 show comparisons of the wavemaker regions of the fixed cylinder with
the wavemaker regions of the elastically-mounted cylinder for pRe,m˚, ζq “ p46.8, 20, 0q,
pRe,m˚, ζq “ p46.8, 5, 0q and pRe,m˚, ζq “ p33, 50, 0q. In the majority of the cases,
the wavemaker regions of the elastically-mounted cylinder and those of the fixed cylin-
der are very different. For a fixed cylinder, a stronger sensitivity is localized to down-
stream, into the recirculation bubble. However, for an elastically-mounted cylinder, this
behaviour is not observed for values of reduced velocity inside the lock-in range. At
pRe,m˚, ζq “ p46.8, 20, 0q, for Vr “ 6.3 the stronger sensitivity is identified upstream
of the separation point, at the cylinder wall. This behaviour is also verified for all res-
ults obtained for pRe,m˚, ζq “ p33, 50, 0q and at pRe,m˚, ζ, Vrq “ p46.8, 5, 0, 6.3q. For
pRe,m˚, ζ, Vrq “ p46.8, 20, 0, 9q, pRe,m˚, ζ, Vrq “ p46.8, 5, 0, 6.3q, and for pRe,m˚, ζ, Vrq “

p33, 50, 0q, at Vr “ 8 and Vr “ 12, regions of stronger wavemaker are seen at the
top and bottom of the wall cylinder. Only at pRe,m˚, ζ, Vrq “ p46.8, 20, 0, 5q) and
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Figure 44: Comparisons of wavemaker regions of the fixed and elastically-mounted cylin-
der at Re “ 46.8, m˚ “ 5 and m˚ “ 20.

(a) Fixed (b) pm˚, Vrq “ p20, 5q (c) pm˚, Vrq “ p20, 6.3q

(d) pm˚, Vrq “ p5, 6.3q (e) pm˚, Vrq “ p20, 9q (f) pm˚, Vrq “ p5, 9q

(g) pm˚, Vrq “ p20, 13q

pRe,m˚, ζ, Vrq “ p46.8, 20, 0, 13q) the wavemaker region is very similar to the wavemaker
of the fixed cylinder. In these cases, the cylinder is in rest and the eigen-frequency of the
least stable mode tends to the frequency of the vortex shedding in flow around a fixed
cylinder.

6.3.2 Sensitivity to a steady forcing

Before introducing the analyses of the receptivity to a steady force imposed in the base
flow, we need to explain that the results are evaluated always referencing the separation
point and bubble of recirculation of the base flow. For Re “ 46.8 and Re “ 33, these
information are plotted in Figure 42 and 43, respectively.

6.3.2.1 Growth rate receptivity at Re “ 46.8

Figure 46 displays comparisons of the growth rate receptivity to a steady forcing of
the flow around fixed and elastically-mounted cylinders, at Re “ 46.8. In the majority
of the cases, the fields of growth rate receptivity are similar. That means, stronger
receptivity close to the separation point and on the centre of the recirculation bubble.
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Figure 45: Comparisons of wavemaker regions of the fixed and elastically-mounted cylin-
der at Re “ 33, m˚ “ 50.

(a) Fixed cylinder (b) pm˚, Vrq “ p50, 5q (c) pm˚, Vrq “ p50, 8q

(d) pm˚, Vrq “ p50, 12q

Figures 46(c) and 46(d) plot the fields of growth rate receptivity at pm˚, Vrq “ p20, 6.3q

and at pm˚, Vrq “ p5, 6.3q, respectively. Notice that the fields of receptivity change from
a higher mass ratio pm˚ “ 20q to a lower mass ratio pm˚ “ 5q. For pm˚, Vrq “ p5, 6.3q,
the growth rate receptivity stays closer to the structure and the stronger receptivity is
located inside o the recirculation bubble. Figures 46(e) shows growth rate receptivity at
pm˚, Vrq “ p20, 9q, where it is verified that the stronger receptivity is located downstream,
in the centre of the bubble. This region of receptivity is smaller than the region of stronger
receptivity of the fixed cylinder. In other cases, regions of the elastically-mounted cylinder
receptivity are very similar to the fixed cylinder receptivity.

In Figure 46 the black arrows represent the streamlines of the recpitivity at Re “ 46.8.
As explained in the section 4.3.6, a steady forcing imposed in the base flow can stabilize
the system if has opposite direction to that streamlines. In general, the streamlines
receptivity of the fixed and elastically-mounted cylinders have a similar behaviour on
the regions inside of the recirculation bubble and close to the separation point. Some
differences are identified for pm˚, Vrq “ p5, 6.3q (see Figure 46(d)).

6.3.2.2 Frequency receptivity at Re “ 46.8

Figure 47 shows that the frequency receptivity for elastically-mounted and fixed cylin-
der. In all cases (fixed and elastically-mounted cylinders), stronger receptivity is located
closer to the separation point. In general, the regions of weaker receptivity are also
identified downstream of the cylinder: inside and outer of the recirculation bubble. At
pm˚, Vrq “ p5, 6.3q, a weaker receptivity is located only inside of the recirculation bubble.
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Figure 46: Comparisons of the growth rate receptivity magnitude |∇r,fλ1| to the base flow
of the elastically-mounted and fixed cylinders at Re “ 46.8.

(a) Fixed cylinder (b) pm˚, Vrq “ p20, 5q

(c) pm˚, Vrq “ p20, 6.3q (d) pm˚, Vrq “ p5, 6.3q

(e) pm˚, Vrq “ p20, 9q (f) pm˚, Vrq “ p20, 13q

On bottom, on top and inside of the recirculation bubble, the streamlines of the fixed and
elastically-mounted cylinder display similar behaviour.

6.3.2.3 Growth rate receptivity for Re “ 33

Figure 48 shows the growth rate receptivity to an external forcing for pRe,m˚, ζq “

p33, 50, 0q. In all cases, the settings of receptivity fields are really different from the fixed
cylinder receptivity plotted in Figure 48(a). For Vr “ 5 (see Figure 48(b)), the stronger
receptivity is located close to the separation point and upstream to the structure. For
Vr “ 8 (see Figure 48(c)), stronger receptivity stay only close to the separation point, and
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Figure 47: Comparisons of the frequency receptivity |∇i,fλ1| of the elastically-mounted
and fixed cylinders at Re “ 46.8.

(a) Fixed cylinder (b) pm˚, Vrq “ p20, 5q

(c) pm˚, Vrq “ p20, 6.3q (d) pm˚, Vrq “ p5, 6.3q

(e) pm˚, Vrq “ p20, 9q (f) pm˚, Vrq “ p20, 13q

a weaker response to an steady forcing is location downstream, inside of the recirculation
bubble region. For Vr “ 12 (see Figure 48(d)), the greatest receptivity is identified closer
to the cylinder, on the bottom and on top. Also, downstream on the region 0 ě x ď 2

and ˘0.5 ď y ď ˘1.
For the elastically-mounted cylinder and for Vr “ 5, 8, 12 (see Figure 48(b), 48(c),

48(d)), the receptivity streamlines have opposite direction than the streamlines of the
fixed cylinder receptivity (see Figure 48(a)). Therefore, the responses of the fixed cylinder
and the elastically-mounted cylinder to an external forcing can be different, maily on the
top and bottom of the strucutre. To exemplify, let us consider an external forcing applied
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Figure 48: Comparisons of the growth rate receptivity |∇r,fλ1| for elastically-mounted
and fixed cylinders at Re “ 33.

(a) Fixed cylinder (b) pm˚, Vrq “ p50, 5q

(c) pm˚, Vrq “ p50, 8q (d) pm˚, Vrq “ p50, 12q

close to the separation point, such that this forcing is applied to upstream direction. This
way, the real part of the least stable eigenvalue (λ1,r) has a positive variation in the case
in which the cylinder is fixed. While λ1,r of the elastically-mounted cylinder, real part of
the least stable eigenvalue (λ1,r) has a negative variation.

6.3.2.4 Frequency receptivity for Re “ 33

Notice in Figure 49 that in both fixed and elastically-mounted cylinders, the stronger
receptivity is located closer to the separation. In the fixed cylinder, a weaker receptivity
is verified downstream, inside and outer of the recirculation bubble (see Figure 49(a)).
For Vr “ 5 and Vr “ 8, Figures 49(b) and 49(c) show a weaker receptivity inside of recir-
culation bubble, on centre region closer to the cylinder. At Vr “ 12, a weaker receptivity
stays on the cylinder lateral regions of the recirculation bubble (see Figure 49(d)). On the
region closer of the separation point, the streamlines have a similar behaviour for both
fixed and elastically-mounted cylinders. On the centre of the recirculation bubble, the
streamlines have also similar frame in the majority of the cases (except at Vr “ 12).
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Figure 49: Comparisons of the frequency receptivity to a steady forcing |∇i,fλ1| for
elastically-mounted and fixed cylinders at Re “ 33.

(a) Fixed cylinder (b) pm˚, Vrq “ p50, 5q

(c) pm˚, Vrq “ p50, 8q (d) pm˚, Vrq “ p50, 12q

6.3.2.5 Passive control

In this section, we consider a passive control given by an external forcing modelled by
the expression (4.22). This force was used in the work by Marquet et al. (2008). In that
work, the objective was to investigate the variation of the least stable eigenvalue of the
flow around a fixed circular cylinder. They verified that the field of growth rate variation
agreed with the regions in which the insertion of a small cylinder suppressed the vortex
shedding in the experiments introduced by Strykowski & Sreenivasan (1990). Here, we
are interested in carrying out comparisons of the growth rate and frequency variations
of the flow around an elastically-mounted cylinder and fixed cylinder. To do that, we
have chosen values of Vr inside the lock-in range only. So for pRe,m˚, ζq “ p33, 50, 0q,
we investigate the eigenvalue variation only at Vr “ 8. For pRe,m˚, ζq “ p46.8, 20, 0q

and pRe,m˚, ζq “ p46.8, 5, 0q, the variation fields are presented for Vr “ 6.3 and Vr “ 9.
We are not interested in stabilizing the FSI systems. Actually, we want to evaluate the
responses of the current FSI system stability with the imposition of a steady forcing and
compare them with the stability responses of the flow around a fixed cylinder.

As explained previously in section 4.3.6, an external forcing modelled by the expression
(4.22) can stabilize the flow system if applied in the region where the growth rate variation
δλ1,r is negative. On the contrary, this forcing can destabilize the flow if applied at the
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Figure 50: Variation of the growth rate δλ1,r{CdpRe lq for Re “ 46.8.

(a) Fixed cylinder (b) pm˚, Vrq “ p20, 6.3q

(c) pm˚, Vrq “ p5, 6.3q (d) pm˚, Vrq “ p20, 9q

regions where δλ1,r ą 0. Figure 50 shows the growth rate variation for Re “ 46.8. In all
the cases, the greatest positive variation is located at the top and bottom of he cylinder.
Figure 51 shows that the frequency variation of the fixed and elastically-mounted cylinders
are similar. For pm˚, Vrq “ p5, 6.3q and pm˚, Vrq “ p5, 6.3q, one verifies a difference in the
value of the negative variation. Table 6.2 shows the variation of the least stable eigenvalue
with the insertion of a small cylinder centred of diameter d “ 1 and centred at the point
px0, y0q “ p1.2, 1q. Similar to the fixed cylinder, at pm˚, Vrq “ p20, 9q the insertion of a
small cylinder of diameter d “ 1 makes a negative variation of the real and imaginary
parts of the less stable eigenvalue. Theses results agree with the variation fields presented
in Figures 50 and 51.

Table 6.2: Least stable eigenvalues of an unforced and forced steady base flow at Re “
46.8. The external forcing modelled by the expression (4.22) is applied at px0, y0q “

p1.2, 1q.
Unforced Forced pδλ1,r, δλ1,iq

m˚ “ 20
Fixed cyl. ´2.25ˆ 10´5 ` i0.736 ´2.92ˆ 10´2 ` i0.550 (-0.03, -0.18)
Vr “ 9 3.85ˆ 10´2 ` i0.736 2.03ˆ 10´2 ` i0.687 (-0.018, -0.05)

Figure 52 shows comparisons of the growth rate variation δλ1,r{CdpRe lq and frequency
variation δλ1,i{CdpRe lq of the less stable eigenvalue for pRe,m˚, ζ, Vrq “ p33, 50, 0, 8q. The
growth rate variation of the elastically-mounted cylinder has different response than the
growth rate variation of the fixed cylinder when a external forcing is modelled by the
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Figure 51: Variation of the frequency δλ1,i{CdpRe lq for pRe,m˚, ζq “ p46.8, 20, 0q.

(a) Fixed cylinder (b) pm˚, Vrq “ p20, 6.3q

(c) pm˚, Vrq “ p5, 6.3q (d) pm˚, Vrq “ p20, 9q

expression (4.22) and is applied at the top and bottom of the cylinder. Notice that for
an elastically-mounted cylinder, δλ1,r{CdpRe lq is negative whereas δλ1,r{CdpRe lq of the
fixed cylinder is positive. For both elastically-mounted and fixed cylinders, the frequency
variation δλ1,i{CdpRe lq has a similar behaviour in the regions closer to the structure.
Table 6.3 shows the variation of the least stable eigenvalue with an insertion of a small
cylinder of diameter d “ 1 and centred at the point px0, y0q “ p1.2, 1q. According to
Figure 52 (b-d), δλ1,r{CdpRe lq and δλ1,i{CdpRe lq are negative.

Table 6.3: Least stable eigenvalues of an unforced and forced steady base flow for Re “ 33.
The external forcing modelled by the expression (4.22) is applied at px0, y0q “ p1.2, 1q.

Unforced Forced pδλ1,r, δλ1,iq

Vr “ 8 8.20ˆ 10´3 ` i0.772 2.04ˆ 10´3 ` i0.70 (-0.006, -0.072)

6.4 Conclusions

Regarding the linear stability analysis of the flow around an elastically-mounted cyl-
inder, this chapter described the main results recently introduced in the literature. For
this case, we saw that the primary instability occurs for Re ă 47. Also, it was shown that
we need to evaluate the two least stable modes to properly capture the dynamic of the
system.
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Figure 52: Variation of the growth rate δλ1,r{CdpRe lq and eigen-frequency δλ1,i{CdpRe lq
for Re “ 33.

(a) δλ1,r{CdpRelq – fixed cylinder (b) δλ1,r{CdpRelq – pm˚, Vrq “ p50, 8q

(c) δλ1,i{CdpRelq – fixed cylinder (d) δλ1,i{CdpRelq – pm˚, Vrq “ p50, 8q

Before introducing sensitivity calculations, we verified the adjoint modes by compar-
ing its eigenvalues with the eigenvalues of the linearized/direct FSI system. Although the
highest difference was 4.5%, we believe that it does not play a relevant role in the sensit-
ivity analyses. Comparisons of the receptivity to an external forcing given by the adjoint
model were carried out for an elastically-mounted cylinder and a fixed cylinder. In all
the cases, the highest receptivity was localized close to the separation point. Differently
from the fixed cylinder, for some cases regions of strong receptivity were also identified
upstream of the cylinder. Wavemaker regions were also calculated for the flow around
an elastically-mounted cylinder. For a fixed cylinder, the regions of stronger sensitivity
were located downstream of the cylinder, into the recirculation bubble. However, for an
elastically-mounted cylinder, this behaviour was generally not the same, particularly for
values of reduced velocity inside of the lock-in range. In some cases, the regions of stronger
wavemaker were upstream of the separation point, at the cylinder wall.

Finally, we presented calculations of sensitivity to a steady forcing. For the elastically-
mounted cylinder, we have chosen the cases in which the reduced velocity was within the
lock-in range. We observed different fields of sensitivity, maily for the cases in which the
Elastic Mode was the less stavle. Differently from the fixed cylinder, in some cases, the
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highest sreceptivity was not observed in the centre of the recirculation bubble. Also, a
weaker sensitivity was located slightly upstream, closer to the cylinder wall. We computed
the variation of the least stable eigenvalue by considering a forcing proportional to the
base flow. For Vr “ 9, the insertion of a small cylinder makes a negative variation of
λ1,r. Differently of the fixed cylinder, we saw that this control is not able to suppress the
vortex shedding when it is applied downstream outer of the recirculation bubble.

To the best author’s knowledge, this kind of analysis was not yet reported for the
lowest Reynolds numbers in the flow around an elastically-mounted cylinder. Therefore,
more detailed analyses can be carried out to investigate if there is a relation with the less
stable mode or with the frequencies of this FSI problem. In conclusion, for the lowest
Reynolds number, sensitivity analyses and passive control for this FSI problem can be
much more complex than the sensitivity analyses and passive control of the fixed cylinder.
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Chapter

7
Bifurcation analysis of the primary
instability and transient growth for
flow around an elastically-mounted

cylinder

As mentioned in section 4.1.2, the non-normality of the linear operator L may permit
a transient growth of the perturbation in a time interval τ , even for stable systems, before
the energy decays to zero. This energy growth is not predicted by the modal analysis,
which is concerned with the asymptotic behaviour of the perturbation. This transient
growth is especially important when it happens close to the critical point of a subcritical
bifurcation. For this cases, the transient energy growth can be enough to trigger nonlinear
mechanisms that sustain the perturbation energy, so the system transitions to another
state, even for Reynolds numbers below the critical (predicted by the modal analysis).

For the flow around a fixed cylinder, the primary bifurcation (steady to time periodic
two-dimensional laminar flow) has supercritical character, as shown by Provansal et al.
(1987) and Sreenivasan et al. (1987), amongst others. However, for the flow around an
oscillating cylinder, this analysis had not been carried out. We fill this gap in this work
with the results of section 7.1, which have already been published (Dolci & Carmo, 2019).

Results presented by Abdessemed et al. (2009) and Cantwell & Barkley (2010) showed
computations of optimal energy growth for a flow around a fixed cylinder. Cantwell &
Barkley (2010) focused on evaluating the transient growth for Re ă 47. They carried out
analyses of the influence of the domain size in the results and evaluated the responses of
transient growth. For the cylinder free to oscillate, this type of analysis has not yet been
made. So in this chapter, section 7.2, we study the optimal energy growth for this kind
of fluid-structure interaction problem. The optimal energy and optimal initial condition
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obtained for the cylinder free to oscillate are compared to the results obtained for the
fixed cylinder.

7.1 Bifurcation analysis

The incompressible flow past a circular cylinder of diameter D can present different
patterns, depending on the Reynolds number Re (Re “ ρUD{µ, where ρ is the fluid
density, U is the free stream speed and µ the fluid dynamic viscosity). If the cylinder is
fixed, the flow is steady for low Reynolds number. The first instability occurs at Reynolds
number Rec0 – 47 (Jackson, 1987; Dusĕk & Fraunie, 1994), when the von-Kármán wake
develops and the flow becomes time-periodic. When the cylinder is free to oscillate, past
studies have shown that the first instability can happen for lower Reynolds numbers.
Mittal & Singh (2005) investigated the flow past a spring mounted cylinder, allowed to
oscillate in both the transverse and in-line directions, for Re ă Rec0 . They observed
vortex shedding and oscillation of the cylinder for some values of reduced velocity Vr

(Vr “ U{pfnDq, where fn is the natural frequency of the structure in vacuum). Lock-in
was verified in all these cases.

For the flow around a fixed circular cylinder, the nonlinear character of the primary
instability was also studied (Provansal et al. , 1987; Sreenivasan et al. , 1987), and it is
known that it corresponds to a supercritical Hopf bifurcation. This means that the steady
flow becomes time-periodic and that the bifurcation does not present hysteresis. However,
to the best of the author’s knowledge, no study has yet assessed the nonlinear character
of the primary bifurcation in the flow around a flexibly-mounted circular cylinder. This
section intends to fill this gap, and check if hysteresis can be observed for Reynolds
numbers in the vicinity of the critical Reynolds number Rec of the flow past a circular
cylinder free to oscillate, thus characterising a subcritical bifurcation. To do that, different
configurations are evaluated, by varying parameters and number of degrees of freedom.

The reduced velocity Vr, mass ratio m˚ and number of degrees of freedom are all
important in the structural response of flexibly-mounted cylinders immersed in a fluid
flow for higher Reynolds numbers. For this reason, this work intends to verify if they also
have influence in the nonlinear character of the primary bifurcation. The reduced velocity
has a very clear importance in the response of the system, as the amplitude of vibration
is significant in the lock-in range, and very small elsewhere. Therefore, to identify the
primary bifurcation character inside and outside of the lock-in range, different values of
reduced velocity are considered. Regarding the number of degrees of freedom, below a
certain mass-ratio Jauvtis & Williamson (2003) have shown that the system responds
differently in the lock-in range if it has 1 or 2 degrees of freedom. Finally, it has been
well established in earlier works (Govardhan. & Willianson (2000)) that the mass ratio
m˚ parameter is of utmost importance for the structural response of the system in the
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lock-in regime at higher Reynolds number. This manuscript also investigates whether it
changed character of the primary bifurcation by employing relatively high and low m˚

values. For each combination of parameters, linear stability analysis is applied to find the
critical Reynolds Rec and nonlinear analysis is performed to determine the character of
the bifurcation.

To investigate the flow regimes (steady or unsteady), the component of velocity v at
an arbitrary point downstream of the cylinder was monitored. The point chosen was
px0, y0q “ p3, 0q. The numerical simulations were carried out for long enough for the
perturbation to settle at either a time periodic or steady state. The variation of the
component v was used to classify the flow as steady or time periodic. We started the
nonlinear simulations from a steady solution obtained for Re ă Rec and gradually in-
creased the Reynolds number until a few units beyond Rec. At that point, and indeed
for any Re ą Rec, the flow is time periodic. Next, we departed from that solution and
performed simulations for gradually decreasing Reynolds numbers. If the bifurcation is
subcritical, we should observe time periodic states for a range of Re ă Rec, which char-
acterises hysteresis. If the bifurcation is supercritical, the amplitude should be zero for
any Re ă Rec.

7.1.1 Results and discussions

We verified our mathematical and numerical methodology performing the convergence
analysis evaluating the amplitude fluctuation A of the velocity component v at a chosen
point in the wake, px0, y0q “ p3, 0q, with respect to the spectral element polynomial order
for a flow around a flexibly-mounted circular cylinder free to oscillate in transverse and in-
line directions, at Re “ 60, m˚ “ 5, ζ “ 0 and Vr “ 5. Table 7.1 shows that polynomials
of degree 5 achieved excellent convergence results. To be rigorous, polynomials of degree 6
were used in all the numerical results introduced in this work. The numerical verification
of a flow around a circular cylinder allowed to vibrate was carried out in section 6.2,
where the cylinder amplitude oscillation ymax was compared to results from Mittal &
Singh (2005). Linear stability analysis was also verified in the section 6.2.

Table 7.1: Fluctuation amplitude A convergence of the velocity component v with respect
to the spectral element polynomial order P for a flow around a flexibly-mounted circular
cylinder free to oscillate in transverse and in-line directions, at Re “ 60, m˚ “ 5, ζ “ 0
and Vr “ 5.

Polynomial order A
P “ 4 0.436
P “ 5 0.446
P “ 6 0.441
P “ 7 0.441
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Figure 53: Bifurcation diagram for the flow past a fixed cylinder, showing a supercritical
character. A is the asymptotic amplitude of v (y component of velocity) at the point
px0, y0q “ p3, 0q.
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We have also checked our method of nonlinear analysis by applying it to the fixed
cylinder case. To do that, first we performed a number of global linear stability analysis
calculations to determine the critical Reynolds number. As showed in section 4.3.3, the
primary instability occurs at Rec0 – 46.6. This value is in good agreement with the
numerical results presented by Jackson (1987) and Dusĕk & Fraunie (1994). Next, we
carried out nonlinear calculations in the vicinity of Rec, for increasing and decreasing
Re. Figure 53 shows a diagram of the asymptotic perturbation amplitude (amplitude of
velocity component v at px0, y0q “ p3, 0q) as a function of Reynolds number, for both
increasing and decreasing Reynolds number calculations. No hysteresis was identified,
and the amplitude grows gradually as the Reynolds number is increased beyond Rec0 .
This behaviour characterises a supercritical bifurcation, agreeing with previous studies
from the literature (Provansal et al. , 1987).

Having verified the numerical method, we proceeded to the selection of parameters to
be used in the calculations of the fluid-structure interaction cases. Figure 32(a) shows
that, for low Reynolds numbers, the lock-in happens for 5 Æ Vr Æ 11. So we chose three
different values of reduced velocity to investigate: one less than the lower limit of the lock-
in range (Vr “ 5), one inside the lock-in range (Vr “ 9) and one higher than the upper
limit of the lock-in range (Vr “ 13). Regarding the mass ratio, we selected a low and a
high value, m˚ “ 5 and m˚ “ 50, respectively. For all cases, the damping parameter,
ζ, was set to zero. We performed simulations for a flexibly-mounted circular cylinder
allowed to oscillate in the transverse direction only (1DoF) and in both transverse and
in-line (2DoF) directions. In the 2DoF cases, the structural stiffness was the same for
both directions. To find the critical Reynolds number Rec, linear stability analysis was
applied. Then nonlinear numerical simulations were carried out in the vicinity of Rec to
verify the bifurcation character. Like the flow around a fixed cylinder, this verification
was carried out using the amplitude of velocity component v at px0, y0q “ p3, 0q.
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Figure 54: Bifurcation diagrams at Vr “ 9 in 1DoF ((a) and (b)) and 2DoF ((c) and (d))
cases, showing a subcritical behaviour. (a) and (c) are results for m˚ “ 50 with Rec – 22;
(b) and (d) are results for m˚ “ 5 with Rec – 23.
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We start showing the results obtained for Vr in the lock-in range. Figure 54 displays
the primary bifurcation diagram for Vr “ 9. Differently from the fixed cylinder case, the
subcritical character was verified in both high and low m˚, for 1DoF and 2DoF. For 1DoF
and 2DoF, the critical Reynolds was Rec – 22 for m˚ “ 50 and slightly higher, Rec – 23,
for m˚ “ 5. Figure 54 shows that the range of hysteresis is larger for m˚ “ 5 than for
m˚ “ 50, but in both cases it covers only a few Reynolds number units. Figure 55 shows
the vorticity fields for Re “ 22 and m˚ “ 50, 1DoF. Figure 55(a) was obtained from a
simulation using a steady flow as initial condition. On the other hand, figure 55(b) is
the result from a simulation using a time periodic flow as initial condition, obtained from
a simulation carried out at Re ą Rec. We can see that the steady and time-periodic
characters of the initial condition remain in the final solution. In the time-periodic result
(Figure 55b), the von-Kármán wake is developed, the flow is time-periodic and the flexibly-
mounted circular cylinder presents a time-periodic oscillation of amplitude ymax “ 0.365.
For the sake of brevity, we only show results for Vr “ 9, but we tested other Vr values
inside the lock-in range and observed the same flow behaviour and subcritical character
of the bifurcation.
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Figure 55: Vorticity field for Re “ 22, Vr “ 9 and m˚ “ 50.

(a) Increasing Re (b) Decreasing Re

Figures 56 and 57 show the bifurcation diagrams obtained for reduced velocities outside
the lock-in range, Vr “ 5 and Vr “ 13. In all these cases, for 1DoF and 2DoF, the primary
bifurcation was supercritical, like in the fixed cylinder case. For m˚ “ 50, Rec “ Rec0 ,
i.e., the critical Reynolds number was the same as that for the fixed cylinder, for both
Vr “ 5 and Vr “ 13, and for both 1DoF and 2DoF. In these cases, for Re ą Rec we
observed the von-Kármán wake time-periodic flow, but the cylinder did not show any
appreciable motion. For m˚ “ 5, the behaviour was different. For Vr “ 13 the primary
instability happened for Re a little lower than Rec0 , Rec – 44, while for Vr “ 5, the
primary instability occurred for Reynolds number slightly larger than Rec0 , at Rec – 48.
In both m˚ “ 5 cases, for Re ą Rec the flow became time-periodic and small amplitude
oscillations could be identified. These amplitudes were significantly lower than those
observed for Vr in the lock-in range, ymax – 10´2. It is important to highlight that we
are referring to Reynolds numbers not very far from Rec0 (we have tested Re up to 60).
As the Reynolds number is further increased, the lock-in Vr range changes and shows a
stronger dependency with the mass ratio too.

7.2 Optimal energy growth

Calculations of energy growth were carried out for time intervals up to τ “ 100

with free-stream velocity U8 “ 1. We performed a convergence analysis to establish an
appropriate domain size for flows around fixed and elastically-mounted cylinders using
the followings meshes:

• M1: x` “ 100D, x´ “ 15D, y˘ “ 20D;

• M2: x` “ 125D, x´ “ 15D, y˘ “ 20D;

• M3: x` “ 100D, x´ “ 25D, y˘ “ 20D;

• M4: x` “ 100D, x´ “ 35D, y˘ “ 20D;

• M5: x` “ 100D, x´ “ 25D, y˘ “ 40D;
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Figure 56: Bifurcation diagram at Vr “ 5 in 1DoF((a) and (b)) and 2DoF ((c) and (d))
cases, showing a supercritical behaviour in all cases. (a) and (b) are results for m˚ “ 50
with Rec – 46.6; (b) and (d) are results for m˚ “ 5 with Rec – 48.
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• M6: x` “ 100D, x´ “ 25D, y˘ “ 60D;

For the elastically-mounted cylinder, the convergence of the domain size was performed
for pRe,m˚, ζ, Vrq “ p45, 50, 0, 7q. For this setup, the system is unstable and the growth
rate of least stable mode was λ1,r “ 4.022 ˆ 10´2. On the other hand, for the fixed
cylinder the rate growth of least stable mode was λ1,r “ ´7.659 ˆ 10´3. To perform the
convergence analysis, we evaluated the relative difference in the highest energy growth.
Results are in Table 7.2.

Meshes M1 and M2 were designed to evaluate the influence of the outflow length.
For a cylinder centred in x “ 0, the difference of the highest energy growth from M1 to
M2 was around of 0.9%. This way, x` “ 100 was considered adequate for our optimal
energy calculations. With the meshes M2, M3 and M4 we evaluated the inflow length.
The difference in the highest energy growth between M3 and M2 was around of 1%.
So we chose x´ “ 25. Next, we evaluated the influence of cross-stream length of the
domain, in which the difference from M4 to M5 of the optimal energy growth was around
of 1%, and the cross-stream length y˘ “ 25 was considered enough for the energy growth
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Figure 57: Bifurcation diagrams at Vr “ 13 in 1DoF((a) and (b)) and 2DoF ((c) and (d))
cases, showing a supercritical behaviour in all cases. (a) and (c) are results for m˚ “ 50
with Rec – 46.6; (b) and (d) are results for m˚ “ 5 with Rec – 44.
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computations. So after the convergence analysis of the domain size, the mesh chosen was
M5.

Table 7.2: Convergence analysis of the domain size for fixed cylinder and elastically-
mounted cylinder.

Mesh Fixed Cyl. (Ep100q) Vr “ 7 (Ep100q)
M1: x` “ 100D, x´ “ 15D, y˘ “ 20D 2.4485ˆ 103 4.0770ˆ 103

M2: x` “ 125D, x´ “ 15D, y˘ “ 20D 2.4492ˆ 103 4.0394ˆ 103

M3: x` “ 100D, x´ “ 25D, y˘ “ 20D 2.3395ˆ 103 4.1169ˆ 103

M4: x` “ 100D, x´ “ 35D, y˘ “ 20D 2.2993ˆ 103 4.1281ˆ 103

M5: x` “ 100D, x´ “ 25D, y˘ “ 40D 2.2736ˆ 103 4.1226ˆ 103

M6: x` “ 100D, x´ “ 25D, y˘ “ 60D 2.2655ˆ 103 4.1203ˆ 103

Firstly, we verified the energy growth computation of this FSI problem at a time
τ . To perform that, it was simulated the perturbation initialized by the optimal initial
condition u:px0, 0q given by the formulation introduced in section 5.4. Next, it was
compared the energy of the perturbation with the optimal growth energy Epτq{Ep0q “
||u1apx0, τq||

2{||u1apx0, 0q||
2 at the same time τ . Figure 58 shows this comparison at τ “ 2,
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Figure 58: Optimal energy growth and energy of the perturbation initialized with the
optimal initial growth, for fixed (circle) and elastically-mounted cylinders (square).

0 20 40 60 80 100
τ

−2

0

2

4

6

8

10

lo
g
( E

(τ
)

E
(0

))

Oscillating cyl. – τ = 2

Fixed cyl. – τ = 2

Oscillating cyl. – τ = 20

Fixed cyl.
Oscillating cyl. – τ = 40

Fixed cyl.

(a)

0 20 40 60 80 100
τ

0

1

2

3

4

5

6

7

8

lo
g
( E

(τ
)

E
(0

))

Oscillating cyl.
Fixed cyl.

(b) τ “ 2

0 20 40 60 80 100
τ

−2

0

2

4

6

8

10

lo
g
( E

(τ
)

E
(0

))

Oscillating cyl.
Fixed cyl.

(c) τ “ 20

0 20 40 60 80 100
τ

−2

0

2

4

6

8

10

lo
g
( E

(τ
)

E
(0

))

Oscillating cyl.
Fixed cyl.

(d) τ “ 40

τ “ 20 and τ “ 40, for fixed cylinder and elastically-mounted cylinder and We have
checked a good agreement between the results.

Figure 59 displays the optimal energy growth envelope for the fixed cylinder and
elastically-mounted cylinder until τ “ 100. For the cases investigated here, we can see
that the optimal energy growth of the fixed and elastically-mounted cylinders are similar.
For fixed cylinder and at Re “ 45, the flow system is stable and the optimal global en-
ergy was observed at τ “ 100, in which logpEp100q{Ep0qq “ 2.2736e ` 03. At the same
Re and for elastically mounted cylinder, the FSI system is unstable. In Figure 59(a)
is verified that the transient growth dominates until Re « 80, next the exponential
growth rate of the less stable mode is observed. Figure 59(b) shows the optimal energy
growth envelope for the fixed cylinder at Re “ 22, and for elastically-mounted cylinder at
pRe,m˚, ζ, Vrq “ p22, 50, 0, 9q. We can see that for elastically-mounted and fixed cylinder,
the global maximum energy growth occurs in τ « 30, in which for elastically-mounted
cylinder logpEpτq{Ep0qq “ 6.047 and for fixed cylinder logpEpτq{Ep0qq “ 6.241. For
elastically-mounted cylinder, we verified in previous section that the primary bifurcation
had a subcritical character. So the transient growth play an important role for this kind
of the bifurcation.
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Figure 59: Comparisons of the optimal energy growth envelope for fixed cylinder (circle)
and elastically-mounted cylinder (square). For pRe,m˚, ζ, Vrq “ p45, 50, 0, 7q, the pre-
dicted energy growth of the least stable mode for the fixed cylinder (traced line) and for
the elastically-mounted cylinder (continuous line) are also shown.
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(b) pRe,m˚, ζ, Vrq “ p22, 50, 0, 9q

Figure 60 shows comparisons of the optimal initial conditions of fixed cylinder at
Re “ 45 and of the elastically-mounted cylinder at pRe,m˚, ζ, Vrq “ p45, 50, 0, 7q for
different time intervals, τ . The contours are all similar. In general, the higher energy is
located close to the separation point, and a weaker energy is identified to downstream,
near to the recirculation bubble. In the majority of the cases, the optimal initial energy of
the fixed and elastically-mounted cylinders are similar, the highest difference is verified at
τ “ 5, in which the maximal magnitude of the optimal initial condition is |u| “ 0.05 for
the fixed cylinder and |u| “ 0.07 for the elastically-mounted cylinder. Also, at τ “ 20, we
can see the difference in the region downstream of the cylinder, outer of the recirculation
bubble. For the elastically-mounted cylinder, the energy distribution is stronger than the
energy of the fixed cylinder.

Figure 61 shows the comparison of the optimal initial conditions for the flow around
a fixed cylinder at Re “ 22 and for the flow around an elastically-mounted cylinder at
pRe,m˚, ζ, Vrq “ p22, 50, 0, 9q. In theses cases, the field of optimal initial conditions are
different. For the fixed cylinder, the stronger energy is located close to the separation
point. However, for the elastically-mounted cylinder, this behaviour is not verified for all
time intervals. At τ “ 20, notice that the highest energy is located downstream, further
from the separation point. At τ “ 5 and τ “ 20, the maximal energy stays closer to
separation point and at the rear of the cylinder.
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Figure 60: Optimal initial conditions for flow around a fixed cylinder (left side) and for
flow around an elastically-mounted cylinder at pm˚, Vrq “ p50, 7q (right side).

(a) τ “ 5 (b) τ “ 5

(c) τ “ 10 (d) τ “ 10

(e) τ “ 20 (f) τ “ 20

(g) τ “ 40 (h) τ “ 40

7.3 Conclusions

In this chapter, we have shown results from an investigation about the primary bifurc-
ation in the flow around a flexibly-mounted circular cylinder. Also, computations of the
optimal energy and optimal initial conditions.

To evaluate the bifurcation character, we have employed numerical linear stability
analysis to find the critical Reynolds numbers. Next, nonlinear direct simulations in the
vicinity of these critical Reynolds were performed to determine the primary bifurcation
character. Different values of reduced velocities were tested, covering cases inside and
outside the lock-in range. We also employed a low value and a high value of mass ratio
(m˚ “ 5 and m˚ “ 50, respectively), and we considered transverse only (1DoF) and
transverse and inline motion (2DoF). The main conclusion was that, like the critical
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Figure 61: Optimal initial conditions for the flow around a fixed cylinder at Re “ 22
(left side) and for the flow around an elastically-mounted cylinder at pRe,m˚, ζ, Vrq “
p22, 50, 0, 9q (right side).

(a) τ “ 5 (b) τ “ 5

(c) τ “ 10 (d) τ “ 10

(e) τ “ 20 (f) τ “ 20

Reynolds number, the nonlinear character of the bifurcation changes completely if the
reduced velocity is inside the lock-in range. For those cases, the critical Reynolds number
is significantly lower than for the fixed cylinder (« 22 vs. 47), and the bifurcation is
subcritical, in contrast to the supercritical character observed for the fixed cylinder and
flexibly-mounted cylinder with Vr outside the lock-in range. In the adopted configurations
(range of Reynolds number, mass ratio and reduced velocity), the critical Reynolds do not
differ in the cases of 1Dof and 2Dof. We saw that the mass ratio and number of degrees
of freedom (1DoF or 2DoF) do not play a relevant role in the results. So we conclude
that the changes in both linear and nonlinear responses are due mainly to the proximity
of the natural frequencies of the structure and of the flow. It is interesting to notice that
both the structure system and the coupling between structure and flow are linear, but
the frequency tuning is able to change the nonlinear character of the coupled system.

Next, we have introduced computations of optimal energy growth and optimal initial
condition for a flow around an elastically-mounted cylinder. The first step of this work was
to compare the computations of the optimal growth energy and optimal initial condition of
the elastically-mounted cylinder with the same computations applied for the fixed cylinder.
In the cases investigated, we verified that the optimal energy of fixed and elastically-
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mounted cylinder stays close. At Re “ 45, the flow system is stable, while the current
FSI system is unstable. So the major difference in the growth energy was verified when
the exponential growth rate of the less stable mode prevails in the elastically-mounted
cylinder at the setup pRe,m˚, ζ, Vrq “ p45, 50, 0, 7q. At Re “ 22, the flow and the FSI
systems were stable and the optimal growth energy had similar results. However, the
optimal initial conditions of the fixed and elastically-mounted cylinders were different.
The major was at τ “ 10, in which we verified that stronger energy arises in different
regions. Evaluating the Figure 31(b), we can see that for pRe,m˚, ζ, Vrq “ p22, 50, 0q the
modes are decoupled. Besides that, we verified that for Vr “ 9 the less stable mode is the
elastically mode (EM). So the difference of the optimal initial condition can be given by the
less stable mode. Obviously, this affirmation must be better investigated by performing
other analyses in the cases in which the less stable mode is the EM. In conclusion, we
verified that the optimal initial conditions of the elastically-mounted cylinder can present
different and similar configurations when compared with the fixed cylinder. In future
works, more detailed analyses can be carried out to investigate in which configuration the
fields are different or similar.
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Chapter

8
Conclusion

This work introduced sensitivity calculations in global linear analysis for a fluid-
structure interaction (FSI) system, and sensitivity of aerodynamic forces with respect
to non-geometric variables. Besides that, we investigated the character of the primary
bifurcation for the flow around a flexibly-mounted circular cylinder. Numerical simu-
lations were carried out with the Nektar++ software, which is an implementation of
the Spectral/hp Element Method (Karniadakis & Sherwin, 2005). Newmark-beta solver
(Newmark, 1959) and fictitious mass method (Baek & Karniadakis, 2012) were used to
integrate the mass-spring-damper system in time. The Arnoldi method was used to solve
the generalized eigenvalue problems (Saad, 1992), and the FSI system was formulated
using the non-inertial frame of reference method (Li & Bearman, 2002).

Adjoint-based sensitivity measures with respect to non-geometric variables for internal
and external steady flows were presented in this thesis. The results showed good quant-
itative agreement with other methods like analytically-calculated sensitivity (applied for
the fully-developed channel flow) and central finite difference. So, for steady base flows,
the adjoint-based methodology to calculate sensitivity of aerodynamic forces with respect
to non-geometric variables (Reynolds number, inlet velocity, external forcing) was verified.

Besides that, a theoretical study about the adjoint-based stability and sensitivity
analysis for the fluid flow problem was made. Next, these analyses were applied for the
flow around a fixed circular cylinder. The main objective was to verify the numerical
methodology used in this work. Later on, the results of the fluid flow around a fixed
cylinder were used as benchmark for comparisons against those obtained for the flow
around an elastically-mounted cylinder. Based on the mathematical methodology used in
the works by Fernández & Tallec (2002, 2003); Pfister et al. (2019); Negi et al. (2019),
the linearization of the FSI system was carried out using the transpiration approach. In
those works, the stability analysis was performed for a FSI system formulated with the
ALE method. Here, we adapted the linearization for a FSI system formulated with the
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non-inertial frame of reference method. The mathematical formulations were done with
the structure displacement governed by linear mass-spring-damper equations.

Linear stability analysis for the flow around an elastically-mounted circular cylinder
was verified by comparisons with results from previous papers. Besides that, a review of
the recent results was presented. Next, adjoint-based receptivity and sensitivity analyses
were applied for this FSI problem. Unprecedented discussions about receptivity were
put forward. Differently from the fixed cylinder, we saw that for the flow around an
elastically-mounted cylinder, regions of receptivity were identified upstream of this struc-
ture. Structural sensitivity were also computed. This kind of analysis was first introduced
by Negi et al. (2019) for pRe,m˚, ζq “ p50, 20, 0q. In this current work, we presented
structural sensitivity for Re “ 46.8 and Re “ 33, evaluating the responses for a high
(m˚ “ 20) and a low (m˚ “ 5) value of mass ratio. Finally, results of sensitivity with
respect to a steady forcing were introduced and with the results of this sensitivity, we
performed computations of open-loop control for the flow around an elastically-mounted
cylinder. Comparisons against those obtained for the flow around a fixed cylinder were
carried out. We verify that this FSI problem can present distinct responses for the same
external forcing, depending on the parameters of the system. Moreover, we saw that the
responses to an external forcing can be different than that for the flow around a fixed
cylinder.

Still in global analysis, the character of the primary bifurcation was investigated for an
oscillating elastically-mounted cylinder. The main conclusion was that, like the critical
Reynolds number, the nonlinear character of the bifurcation changes completely if the
reduced velocity is inside the lock-in range. Differently from the fixed cylinder, the bi-
furcation showed a subcritical character. Later on, calculations of optimal energy growth
were introduced for Reynolds numbers less than the critical for the primary instability
of the fixed cylinder pRe ă 47q. We saw that the optimal energy growth of the fixed
and elastically-mounted cylinders are similar. However, the optimal initial conditions of
the fixed and elastically-mounted cylinders can be markedly different. We noticed this
behaviour for the case in which the least stable eigenvalue corresponded to the elastic
mode (EM).

To conclude, this thesis had the objective of developing adjoint-based analyses of
stability and sensitivity analysis for fluid flow and fluid-structure interaction problems.
To achieve the results of aerodynamic sensitivity, this work introduced a mathematical
approach and calculations to verify if the adjoint-based sensitivity was able to provide
quantitative sensitivity. In steady base flow, that was validated. Regarding global linear
analysis, this work introduced analyses not yet assessed previously for an elastically-
mounted cylinder. Computations of sensitivity, investigations over the bifurcation char-
acter of the primary instability, calculations of the optimal energy growth and optimal
initial conditions were introduced firstly in this thesis.
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8.1 Future work

In this thesis we introduced calculations of aerodynamic sensitivity for steady base
flow. However, there is a wide field of research to advance. Meliga et al. (2014) introduced
calculations of sensitivity with respect to an external forcing to control the drag force in the
flow around a square cylinder. They investigated steady, time-periodic and turbulent base
flows. Later on, the drag force sensitivity was revisited in Meliga et al. (2018), showing
that for time-dependent base flow the adjoint-based sensitivity fails. The justification was
that the error in the adjoint-based sensitivity occurred because the adjoint system does
not adjust the time change of the velocity close to the cylinder. During this research,
problems in computing aerodynamic forces for time-dependent base flows also happened.
Therefore, we believe that there is a gap to explore algebraically and numerically to solve
this kind of problem.

Besides that, adjoint-based sensitivity of the aerodynamic forces (or another func-
tional objective) can be extended for FSI problem. This approach can be algebraically
and numerically interesting. In the adjoint FSI system, it is necessary to deal with the
gradients of the base flow defined in a coordinate system that can change in each time
step.

Regarding the global analysis, adjoint-based stability and sensitivity analyses are
scarce for FSI systems. In the last years, papers have introduced linear stability ana-
lysis for flow around elastically-mounted bluff bodies, where the structure undergoes only
translation. In the first analyses of the sensitivity computations for elastically-mounted
circular cylinder introduced in this thesis, we observed interesting results. When compar-
ing against the flow around a fixed structure, we saw that the FSI problem can present
responses to external forcing that are completely different. So these analyses can be
extended for other FSI problem and in the cases in which the structure is free to rotate.

Besides that, computations of the stability and sensitivity can be extended for time-
periodic base flow. With stability analysis, investigations of the secondary instability of
a FSI problem can be done.

In conclusion, we believe that the adjoint-based stability and sensitivity analyses for
time dependent flow systems and mainly for FSI systems open a range of opportunities.
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Appendix

A
Numerical methods

This chapter present a concise description of the numerical method employed to solve
the Navier-Stokes system in this thesis. Besides that, we describe the numerical method
to integrate the mass-spring-damper system in time.

A.1 The Spectral/hp Element Method

In this thesis, the numerical simulations are performed by employing the Spectral
Element Method/hp (Karniadakis & Sherwin, 2005), which is a high-order method. To
obtain a numerical solution by a computational algorithm, the system of partial differential
equations composed of eqs. (2.3) must be discretized. The Spectral/hp Element Method is
a discretization scheme derived from the Finite Element Method and the classical Spectral
Method. From the Finite Element Method, it inherits the basic idea of subdividing the
domain Ω into a set of juxtaposed subdomains known as elements Ωe, and then construct
the approximate solution of the equations from a sequence of local approximations defined
in each element. These local approximations consist of linear combinations of functions
that belong to a predefined set called base functions. Certain constraints are imposed
to the base functions to ensure some degree of continuity in the global approximation
in Ω. Usually, low order functions such as linear or quadratic polynomials are used as
base functions and the solution converges through refinement of the subdivision of the Ω

domain. This procedure is called mesh refinement is also known as h-refinement, since
the letter h is usually employed to refer to the characteristic length of the mesh elements
edges.

The classical Spectral Method employs a high-order basis of functions to approximate
the solution of the differential equations in the entire domain, without making use of any
spatial discretization. In this case, convergence is achieved by increasing the order of
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the approximation functions. This is known procedure as p-refinement, since p is usually
employed to denote the degree of the polynomial of the base function.

The Spectral/hp Element Method uses the characteristic functions of the classical
Spectral Method in the Finite Element Method formulation, thus combining the advant-
ages of the geometric flexibility of the Finite Elements with the high accuracy of the clas-
sical Spectral Method. Therefore, convergence of the solution can be achieved through
the refinement of the mesh (h convergence) or by increasing the order of the functions
used as basis (p convergence), so the method name hp. This method is especially appro-
priate for simulations involving complex geometries and that require high accuracy. For
this type of problem, the main advantage of the Spectral/hp Element Method is a lower
computational effort when compared to low-order methods. In this sense, it is understood
that the use of such methods in problems that are not yet fully solved in the literature
may represent an advantage, since the influence of numerical errors is minimized. The
code that is used in this research project employs Jacobi polynomials as basis of functions.

A.1.1 Weighted Residues Method and Galerkin Formulation

The idea of solving a set of partial differential equations in a spacial domain Ω is to
find an approximation of the solution that satisfies a finite number of conditions. The
choice of conditions that must be satisfied defines the numerical method. Analogous to
the Finite Element Method, the Spectral/hp Element Method uses the weighted residues
method to specify these conditions. This method can be described by considering a linear
equation in a Ω domain denoted by:

Lpuq “ 0, (A.1)

Subject to appropriate initial and boundary conditions. The approximate solution sought
has the form:

uδ px, tq “ u0 px, tq `
Ndof
ÿ

j“1

ûjptqΦjpxq, (A.2)

where Φjpxq are analytic functions called expansion functions, ûjptq are the Ndof unknown
coefficients and u0 px, tq is chosen to satisfy the initial and boundary conditions. The
functions Φjpxq must satisfy homogeneous boundary conditions, i.e., they must be zero
at the boundaries where Dirichlet conditions are imposed, since these boundary conditions
are satisfied by u0 px, tq. Replacing the approximation (A.2) in (A.1) provides a non-zero
residue, R:

Lpuδq “ Rpuδq. (A.3)

To obtain a unique form to determine the coefficients ûjptq, a constraint must be imposed
on the residue R, so (A.3) is reduced to a system of ordinary differential equations in
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ûjptq. If the original equation (A.1) is time independent, then the coefficients ûj can be
determined directly from the solution of a system of algebraic equations.

The weighted residue method consists on imposing a constraint in R as the internal
product of the residue with respect to an arbitrary test function (or weight) being zero.
So,

pvpxq, Rq “ 0, (A.4)

in which the function vpxq is the test function and the internal product pf, gq over the
domain Ω is defined as:

pf, gq “

ż

Ω

fpxqgpxq dx. (A.5)

If (A.4) is true for all vpxq, the approximation uδ is exact. We relax this condition by
choosing vpxq to be represented by an arbitrary linear combination of a finite set of known
functions,

vpxq “
Ndof
ÿ

i“1

aivipxq, (A.6)

where the coefficients ai are arbitrary and vipxq are know functions. Substituting (A.6)
and (A.3) into (A.4) and using the definition (A.5), leads to

ż

Ω

Ndof
ÿ

i“1

aivipxqLpuδqdx “ 0. (A.7)

If we assume that L is time independent and use the approximation expression (A.2)
in (A.7) explicitly, we obtain:

ż

Ω

Ndof
ÿ

i“1

aivipxqL

«

u0pxq `
Ndof
ÿ

j“1

ûjΦjpxq

ff

dx “

Ndof
ÿ

i“1

ai

#

ż

Ω

vipxqLru0pxqsdx`

ż

Ω

vipxqL

«

Ndof
ÿ

j“1

ûjΦjpxq

ff

dx

+

“ 0.

Since ai is arbitrary, we have a set of algebraic equations which is sufficient to determine
ûj:

Ndof
ÿ

j“1

"

ûj

ż

Ω

vipxqLrΦjpxqs

*

dx “ ´

ż

Ω

vipxqLru0pxqsdx, i “ 1, 2, . . . , Ndof .

This set of equations can be written in matrix form

Aû “ b, (A.8)
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in which û is the vector with the coefficients ûj, the matrix components A are

Aij “

ż

Ω

vipxqLrΦjpxqsdx,

and the vector b is given by

bi “ ´

ż

Ω

vipxqLru0pxqsdx.

In the weighted residual method, the choice of the expansion function Φipxq and
test function vjpxq determine the numerical scheme. The Spectral/hp Element Method
uses the Galerkin formulation, in which the set of test functions is equal to the set of
expansion functions, i.e., vjpxq “ Φjpxq. The Galerkin formulation has some significant
mathematical properties, such as solution uniqueness, orthogonality of the error with
respect of the solution space, energy norm test, and minimization of the error in the
energy norm (for details, see Karniadakis & Sherwin, 2005).

A.1.2 Fundamental Concepts of the Spectral/hp Element Method

discretization

In this section, we describe the two-dimensional base expansions that will be employed,
as well as the procedures to perform the differentiation and integration necessary to
evaluate the A matrix and the right side of (A.8), the vector b. For details about the
bases used in a three-dimensional discretization, please refer to Karniadakis & Sherwin
(2005).

The base expansions are based on a one-dimensional modal basis. This basis is ex-
pressed as:

φppξq “ ψappξq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1´ ξ

2
, p “ 0,

ˆ

1´ ξ

2

˙ˆ

1` ξ

2

˙

P
1,1
p´1pξq, 0 ă p ă P,

1` ξ

2
, p “ P,

(A.9)

where ξ is the one-dimensional coordinate, which ranges from ´1 to 1, and P1,1
p pξq is

Jacobi polynomial of order p. This polynomial has the property of being orthogonal to
all polynomials of order less than p of the same basis when integrated with respect to
p1 ´ ξqp1 ` ξq. For details on the definition of these polynomials, see Karniadakis &
Sherwin (2005).
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Figure 62: Standard regions for elements (a) quadrilaterals, and (b) triangular in terms
of Cartesian coordinates (ξ1, ξ2). Extracted from Karniadakis & Sherwin (2005).

Figure 63: Two-dimensional base expansion for a quadrilateral element of order P “ 4,
constructed from a product of two one-dimensional tensor expansions. Extracted from
Karniadakis & Sherwin (2005).

We define the standard two-dimensional region Q2 for quadrilateral elements as

Ωst “ Q2
“ t´1 ď ξ1, ξ2 ď 1u .

This region is trivially defined by the standard Cartesian coordinate system (figure 62(a)),
then it is easy to construct a two-dimensional base with a one-dimensional base product
(A.9), which can be understood as an one-dimensional tensor in each Cartesian direction,
i.e.,

φpq pξ1, ξ2q “ ψappξ1qψ
a
q pξ2q, 0 ď p, q, p ď P, q ď Q. (A.10)

We note that the polynomial order of the multidimensional expansions can differ in each
coordinate direction, i.e., P and Q can be different. However, in this project the same
order in both directions will always be used. Figure 63 shows the base expansion for
polynomial order P “ 4.

An important property of modal expansion (A.10) is that it can be decomposed in
boundary and interior modes. Boundary modes are all modes that are non zero at the
boundaries of the standard region, while interior modes are those that are zero at the
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boundaries. This property is particularly convenient when a C0 global base expansion
is required, since the global expansion can be obtained from the local expansions by
matching the boundary modes. In a two-dimensional expansion, the boundary modes are
the vertex modes, which are those that have unitary magnitude at a vertex and are zero
in all other vertices, and the edge modes, which are the modes that have support along
one edge and have null value on all other edges and vertices.

In order to apply the same ideas to triangles, the expansion concept of the tensor
product is generalized. This is possible if a collapsed coordinate system is used to repres-
ent the standard region ΩSt for triangles. This coordinate system is collapsed from the
mapping of a square to a triangle, making two adjacent vertices of the square match. The
resulting standard region T2 is shown in the figure 62(b), and can be expressed as

Ωst “ T2
“ tpξ1, ξ2q| ´ 1 ď ξ1, ξ2, ξ1 ` ξ2 ď 0u .

To develop a suitable tensor base for this standard region, we need to adopt a coordinate
system whose local coordinates have independent boundaries on T2. An appropriate
coordinate system is defined by the transformation,

η1 “ 2
1` ξ1

1´ ξ2

´ 1,

η2 “ ξ2,
(A.11)

with inverse transformation:

ξ1 “
p1` η1qp1´ η2q

2
´ 1,

ξ2 “ η2.

This new coordinate system pη1, η2q defines a standard triangular region by

T2
“ tpη1, η2q| ´ 1 ď η1, η2 ď 1u ,

which is identical to the definition of the quadrilateral standard region of the Cartesian
coordinates. Using the collapsed coordinate system, the base expansions for a triangular
region are defined as

φpqpξ1, ξ2q “ ψappη1qψ
b
pqpη2q, (A.12)
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Figure 64: Two-dimensional base expansion for a triangular element of order P “ 4, con-
structed from a tensor product of two modified main functions ψappη1q e ψbpqpη2q. Extracted
from Karniadakis & Sherwin (2005).

where the one-dimensional base expansion modified ψbpqpηq is given by:

ψbpqpηq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ψaq pηq, p “ 0, 0 ď q ď Q,
ˆ

1´ η

2

˙p`1

, 0 ă p ă P, q “ 0,

ˆ

1´ η

2

˙p`1
1` η

2
P

2p`1,1
q´1 pηq, 0 ă p ă P, 0 ă q ă Q

ψaq pηq, p “ P, 0 ď q ď Q.

(A.13)

This expansion base is illustrated in Figure 64. Like the expansion base (A.10) used for
quadrilateral elements, (A.12) can also be decomposed into boundary and interior modes.

The advantages of using tensor bases are due to decoupling of the expansion functions
in each direction ξ1 and ξ2 (η1 and η2 to triangles). Therefore, techniques such as sum-
factorisation (Karniadakis & Sherwin, 2005) can be applied in basic method operations,
resulting in a significant gain in computational efficiency (Carmo, 2009).

A.1.2.1 Global Operations

The global domain Ω is decomposed into elemental subdomains Ωe which can then
be mapped to standard regions, in which a base expansion is defined. The Galerkin
formulation requires that integration and differentiation are done at elementary level and
then the contribution of each element is added during the assembly of the global matrix
system.



126

In this work, the Gaussian quadrature will be employed to perform the numerical
integration with high precision, consistent with the exact integration for polynomials.
Gaussian quadrature defines a series of integration points on which the values of the func-
tion that is being integrated must be known at certain points, which are called quadrature
points. Therefore, when we differentiate a function, we typically need the value of the
derivative at the quadrature points.

In order to obtain the global solution in the Ω domain, the contribution of each
element must be considered taking into account that the global approximation must be
C0 continuous. This is achieved by means of the final system assembly, which is in general
the standard procedure used in the Finite Element Method(see Zienkiewicz & Taylor,
2000). Each global degree of freedom corresponds to one or more local degree of freedoms,
and each local degree of freedom corresponds to only one global degree of freedom. The
process of global assembly consists in summing equations generated for the local degrees
of freedom corresponding to a single global degree of freedom. Thus as a global system
with dimensions equal to the number of global degrees of freedom is produced. Once the
global system is solved, the value of each global degree of freedom will correspond to the
value of the local degrees of freedom associated.

A.1.3 Application in Computational Fluid Dynamics

The concepts presented in this appendix have been used to discretize the system (2.3)
in space. To advance these equations in time, a rigorous stable time discretization scheme
was employed (Karniadakis et al. , 1991). In this scheme, each time step is subdivided
into three steps, and the solution of the discretized Navier-Stokes equation is advanced
from the time step n to the time step n` 1 as follows:

ǔ´
řJi´1
q“0 αqu

n´q

∆t
“

Je´1
ÿ

q“0

βqNpu
n´q
q (A.14)

∇2p̄n`1
“ ∇ ¨

ˆ

ǔ

∆t

˙

(A.15)

γ0u
n`1 ´ ǔ

∆t
`∇p̄n`1

“
1

Re
∇2un`1 (A.16)

where N “ u.∇u denotes the advection operator, which is explicitly treated due its
nonlinearity, Ji is the integration order for implicit terms and Je is the integration order
for explicit terms. The values of the coefficients γ0, αq and βq for integration up to third
order are given in the Table A.1.

This scheme requires that boundary conditions are defined for both velocity and pres-
sure. High order Neumann conditions for pressure are imposed on (A.15) at the boundaries
where Dirichlet boundary conditions are employed for the velocity. For these high-order
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Table A.1: Stiffly-stable splitting scheme coefficients. Extracted from Karniadakis et al.
(1991).

Coefficients 1a order 2a order 3a order
γ0 1 3{2 11{6
α0 1 2 3
α1 0 ´1{2 ´3{2
α2 0 0 1{3
β0 1 2 3
β1 0 ´1 ´3
β2 0 0 1

conditions we used a modified version of the expression given in Karniadakis et al. (1991)
as below:

Bp̄n`1

Bn
“ n ¨

#

Je´1
ÿ

q“0

βq

„

Npun´qq ´
1

Re
p∇ˆ p∇ˆ un´qqq



+

(A.17)

The coefficients βq in (A.17) are also given in the table A.1.

A.2 Newmark-beta solver

The interpolation equations for the Newmark-β scheme are given by:

yn`1
“ yn ` δt 9yn `

δt2

2

“

p1´ 2βq :yn ` 2β:yn`1
‰

(A.18)

9yn`1
“ 9yn ` δt

“

p1´ γq :yn ` γ:yn`1
‰

(A.19)

where the δt is the time step, β and γ are parameters that can be adjusted for accuracy
order and stability of this numerical method. Using the approximations (A.18)-(A.19)
and substituting in the the mass-spring-damper system (5.3), we have:

yn`1
“ yn ` δt 9yn `

δt2

4

„

´
C˚

M˚
9yn `

K˚

M˚
y `

F˚

M˚
`

1

2
:yn`1



, (A.20)

9yn`1
“ 9yn ` δt

„

1

2
:yn `

1

2
:yn`1



. (A.21)

The accuracy of the method depends on the parameters (β, γ). In this thesis we used
(β, γ) = (1{4, 1{2). For these values, the Newmark scheme is of second order. In this
case, the acceleration is constant in the interval t P rtn, tn`1s.
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A.3 Fictitious mass-damping method

For low values of M˚ and C˚ numerical instabilities may occur. So in these cases, this
work uses the fictitious mass-damping method, introduced by Baek & Karniadakis (2012).
In this method, a fictitious mass, M˚

f , times the acceleration and a fictitious damping,
C˚f , times the velocity are added to both sides of the structure equation:

`

M˚
`M˚

f

˘

:y `
`

C ` C˚f
˘

9y `K˚y “ F`M˚
f :y ` C

˚
f 9y. (A.22)

More details of this method are found in Baek & Karniadakis (2012), where convergence
analyses for coupled fluid and structure equations are presented.



Appendix

B
Solution of the generalized

eigenvalue problem

In general, the solution of an eigenvalue problem can be obtained by means of classical
techniques, such as the QZ algorithm (Golub & Van Loan, 1996), or by projection method,
like the methods based on Krylov subspace. The first approach has the advantage of
providing the full spectrum of eigenvalues, but has a high computational cost. This last
fact makes it impractical the use in problems with many degrees of freedom, as is the
case of flows with moderate Reynolds number occurring in complex domains. The second
approach is iterative and allows focusing on a particular region of the spectrum, thus
having an adjustable computational cost, depending on the precision and on number of
eigenvalues that are sought. In general, for stability, receptivity and sensitivity analysis
we require the leading eigenvalues only. Therefore, the projection techniques are more
suitable for our applications.

The basic idea of the projection methods is to obtain an approximation of an eigenvalue
using a specified smaller subspace, with some conditions to make the procedure feasible.
After the projection, an eigenvalue problem of smaller size is obtained.

The projection method approximates the exact eigenvector u by a vector ũ that be-
longs to a subspace K. If the subspace has dimension m, there will be m additional
degrees of freedom, then it is necessary to define m conditions for a unique solution. This
is done by imposing the Petrov-Galerkin condition, in which the residual vector must be
perpendicular to some subspace L, called the left subspace. In an orthogonal projection,
K “ L. In an oblique projection, K ‰ L.

Normally we are interested in the least stable eigenvalues, so it is important to ensure
that the approximation subspace contains the corresponding eigenvectors. This can be
accomplished by taking a random initial vector v, multiplying it by the matrix A, and
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repeating this operation successively:

Km ” spantv,Av,A2v, . . . ,Am´1vu.

The generated subspace is a Krylov subspace, Km, which is the subspace of all vectors in
Cn. C represents the set of complex numbers, which can be written as x “ ppAqv, where
p is a polynomial of degree less or equal to m ´ 1. Among the methods of solving the
eigenvalue problem based on subspaces of this type, we can cite the Arnoldi method and
its variations, the Lanczos method for Hermitian matrices and the Lanczos method for
non-Hermitian matrices (Saad, 1992). In this project, we will employ the Arnoldi method,
which we shall outline below.

The method starts by constructing an orthogonal basis of a Krylov subspace Km. A
variant of the method is:

Choose a vector v1 of unit norm.
for j Ð 1,m do

wj Ð Avj Ź Compute the new vector of the subspace
for iÐ 1, j do

hij Ð pwj,viq

wj Ð wj ´ hijvi Ź Orthogonalization
end for
hj`1,j Ð ||wj||2

if hj`1,j “ 0 then Ź Checks whether vector is linearly dependent
break

end if
vj`1 Ð wj{hj`1,j Ź Normalization

end for

The vectors of the matrix Vm “ rv1,v2, . . . ,vms form an orthonormal basis of Km and
the elements hij form a Hessenberg matrix Hm. Since em is a vector of dimension m in
the direction m,

AVm “ VmHm ` hm`1,mvm`1e
H
m. (B.1)

When ||wj|| “ 0, the algorithm stops because the vectors of the base have become linearly
dependent. This means that the subspace Kj is invariant and the approximate eigenvalues
are exact. Figure 65 helps to visualize the relationship between the dimensions of the
matrices of eq. (B.1).

The approximate eigenvectors of A are called Ritz eigenvectors and are calculated by

u
pmq
i “ Vmy

pmq
i .
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Figure 65: Schematic illustration of the arrays generated in the Arnoldi algorithm.

130 Chapter 6

Vm + wmeH
m=A

Hm

Vm

Figure 6.1: The action of A on Vm gives VmHm plus a rank one matrix.

which is not true. To prove the converse, assume that wj = 0. Then the degree
µ of the minimal polynomial of v1 is such that µ ≤ j. Moreover, we cannot
have µ < j otherwise by the previous proof the vector wµ would be zero and the
algorithm would have stopped at the earlier step number µ. The rest of the result
follows from Proposition 4.3 seen in Chapter 4.

The approximate eigenvalues λ(m)
i provided by the projection process onto

Km are the eigenvalues of the Hessenberg matrix Hm. The Ritz approximate
eigenvector associated with λ(m)

i is defined by u
(m)
i = Vmy

(m)
i where y

(m)
i is an

eigenvector associated with the eigenvalue λ(m)
i . A number of the Ritz eigenval-

ues, typically a small fraction of m, will usually constitute good approximations
of corresponding eigenvalues λi of A and the quality of the approximation will
usually improve as m increases. We will examine these ‘convergence’ properties
in detail in later sections. The original algorithm consists of increasingm until all
desired eigenvalues of A are found. This is costly both in terms of computation
and storage. For storage, we need to keep m vectors of length n plus an m ×m
Hessenberg matrix, a total of approximately nm + m2/2. Considering the com-
putational cost of the j-th step, we need to multiply vj by A, at the cost of 2×Nz,
where Nz is number of nonzero elements in A, and then orthogonalize the result
against j vectors at the cost of 4(j +1)n, which increases with the step number j.

On the practical side it is crucial to be able to estimate the residual norm
inexpensively as the algorithm progresses. This turns out to be quite easy to do
for Arnoldi’s method and, in fact, for all the Krylov subspace methods described
in this chapter. The result is given in the next proposition.

Proposition 6.8 Let y(m)
i be an eigenvector ofHm associated with the eigenvalue

λ
(m)
i and u

(m)
i the Ritz approximate eigenvector u

(m)
i = Vmy

(m)
i . Then,

(A− λ(m)
i I)u

(m)
i = hm+1,m eH

my
(m)
i vm+1

Only part of m eigenvalues will be good approximations, and the quality of these ap-
proximations usually grows with m. The residue of the method can be estimated using
equation (B.1). We multiply all the terms on the right by y

pmq
i , which is eigenvector of

Hm:

AVmy
pmq
i “ VmHmy

pmq
i ` hm`1,mvm`1e

H
my

pmq
i

“ λ
pmq
i VmHmy

pmq
i ` hm`1,mvm`1e

H
my

pmq
i .

Therefore,

AVmy
pmq
i ´ λ

pmq
i VmHmy

pmq
i “ pA´ λ

pmq
i Iqu

pmq
i “ hm`1,mvm`1e

H
my

pmq
i .

Taking the norm,
||pA´ λ

pmq
i Iqu

pmq
i ||2 “ hm`1,m|e

H
my

pmq
i |.

The residue norm is equal to the last component of the eigenvector y
pmq
i multiplied by

hm`1,m.
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Appendix

C
Meshes

In this appendix, we present the meshes employed in the calculations of this thesis.
Figures are provided, along with general data like the number of elements and polynomial
order employed. A mesh convergence analysis for the mesh employed to simulate the flow
around a circular cylinder is also presented in section C.1.1

C.1 Circular cylinder

C.1.1 Mesh convergence analysis

A mesh convergence analysis was carried out for the flow around a fixed circular
cylinder of diamater D “ 1. The control parameters were: mesh discretization (number
of elements), downstream lenght x`, upstream length x´ and vertical y˘ length. The
interpolation polynomial degree was also analyzed.

The boundary conditions used for the flow around a fixed cylinder were: no-slip bound-
ary condition u “ 0 at the wall BΩw; at the inflow (BΩi) we imposed the Dirichlet condition
pu, vq “ p1, 0q ; at the outflow (BΩo) we applied the Neumann condition ∇u ¨ n “ 0 for
the velocity field and Dirichlet p “ 0 for the pressure. At inlet and at wall, Neumann
high-order boundary condition was adopted for pressure (Karniadakis et al. , 1991). A
second order stiffly-stable splitting scheme (described in A.1.3) was employed for time
integration.

In the convergence analysis, the Strouhal number St “ fStD{U8 (fSt is the vortex
shedding frequency), the mean drag coefficient Cd and the RMS of the lift coefficient
ClRMS

were evaluated. The numerical simulations were done for the following Reynolds
numbers: Re “ 100, Re “ 150 and Re “ 200.

We started by analyzing the effects of the mesh refinement in regions downstream and
close to the cylinder. For these cases, seventh-degree polynomials were employed as basis
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function. The computational mesh was composed only of the quadrilateral elements. The
length was x` “ 45D, x´ “ 20D and y ˘ 20D. Tables C.1 and C.2 present the number
of elements (NE) in these respective regions. The meshes M1–M4 evaluate the refinement
around to the cylinder. The meshes M5–M8 correspond to the refinement in the wake of
the cylinder.

Table C.1: Mesh variation at Re “ 100.
Mesh NE St ClRMS

Cd Relative variation (%)
M1 421 0.16691 0.2295 1.3387

rpClRMS
qM1 ´ pClRMS

qM2s { pClRMS
qM1 “ 0.6

M2 841 0.16614 0.2309 1.3420
rpClRMS

qM2 ´ pClRMS
qM1s { pClRMS

qM2 “ 0.17
M3 1405 0.16615 0.2313 1.3433

rpClRMS
qM3 ´ pClRMS

qM2s { pClRMS
qM3 “ 0.17

M4 2113 0.16615 0.2317 1.3439
M5 224 0.16615 0.2314 1.3433

rpClRMS
qM5 ´ pClRMS

qM6s { pClRMS
qM5 “ 0

M6 294 0.16615 0.2314 1.3433
rpClRMS

qM6 ´ pClRMS
qM7s { pClRMS

qM6 “ 0
M7 364 0.16615 0.2314 1.3433

rpClRMS
qM7 ´ pClRMS

qM8s { pClRMS
qM7 “ 0

M8 434 0.16615 0.2314 1.3433

Table C.2: Mesh variation at Re “ 200.
Mesh NE St ClRMS

Cd Relative variation (%)
M1 421 0.19768 0.4802 1.3381

rpClRMS
qM1 ´ pClRMS

qM2s { pClRMS
qM1 “ 0.5

M2 841 0.19768 0.4826 1.3413
rpClRMS

qM2 ´ pClRMS
qM3s { pClRMS

qM2 “ 0.17
M3 1405 0.19768 0.4835 1.3427

rpClRMS
qM3 ´ pClRMS

qM4s { pClRMS
qM3 “ 0.04

M4 2113 0.19768 0.4837 1.3433
M5 224 0.19768 0.4841 1.3434

rpClRMS
qM5 ´ pClRMS

qM6s { pClRMS
qM5 “ 0.01

M6 294 0.19768 0.4835 1.3428
rpClRMS

qM6 ´ pClRMS
qM7s { pClRMS

qM6 “ 0
M7 364 0.19768 0.4835 1.3428

rpClRMS
qM7 ´ pClRMS

qM8s { pClRMS
qM7 “ 0

M8 434 0.19768 0.4835 1.3428

Tables C.1 and C.2 show the assessment of the dimensionless parameters with respect
the number of elements close to the cylinder (meshes M1–M4). We noticed small variations
for Re “ 100 and Re “ 200. From mesh M2 the variation is less than 0.2% in all cases. So
the mesh M3 was judged to be suitable regarding the refinement close to the cylinder and
will be used in the next simulations. With mesh refinement in the wake of the cylinder
(meshes M5–M8), we observe for Re “ 100 that the dimensionless parameters did not
change. For Re “ 200 (see Table C.2) from mesh M6 the parameters remained constant.
Therefore, the mesh M6 can be considered a suitable mesh.

Using mesh M6, the interpolation polynomial degree was varied from 4 to 11 for a
flow at Re “ 150. The results are show in Table C.3, in which it is seen that the relative
variation of the parameters for polynomial degree above 6 was less than 1%. Therefore,
the polynomial degree 7 was considered adequate for the next simulations.

Tables C.4 and C.5 display the variations to upstream lenght x´ and in crossflow
lenght y˘. In all the cases, the relative variations of the dimensioneless parameters were
less than 1%. So in the next numerical simulations, we employ y˘ “ ˘25 and x´ “ 30.
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Table C.3: Polynomial degree interpolation – Re “ 150.
Degree P St Cd ClRMS

Relative variation (%)
4 0.1792 1.3484 0.3876

rpClRMS
q4 ´ pClRMS

q5s { pClRMS
q4 “ 2.3

5 0.1792 1.3327 0.3784
rpClRMS

q5 ´ pClRMS
q6s { pClRMS

q6 “ 1.5
6 0.1792 1.3292 0.3723

rpClRMS
q6 ´ pClRMS

q7s { pClRMS
q6 “ 0.8

7 0.1792 1.3247 0.3699
rpClRMS

q7 ´ pClRMS
q8s { pClRMS

q7 “ 0.6
8 0.1792 1.3249 0.3674

rpClRMS
q8 ´ pClRMS

q9s { pClRMS
q8 “ 0.25

9 0.1792 1.3247 0.3665
rpClRMS

q9 ´ pClRMS
q10s { pClRMS

q9 “ 0.16
10 0.1792 1.3218 0.3659

rpClRMS
q10 ´ pClRMS

q11s { pClRMS
q10 “ 0.05

11 0.1792 1.3218 0.3657

Table C.4: Crossflow length variation.
Re y ˘ {D St Cd ClRMS

100
20 0.16615 1.3464 0.2321
25 0.16615 1.3433 0.2314
30 0.16615 1.3423 0.2312

200
20 0.1792 1.3448 0.4842
25 0.1792 1.3428 0.4835
30 0.1792 1.3419 0.4829

Table C.5: Upstream length variation.
Re x´ {D St Cd ClRMS

100
20 0.16615 1.3428 0.2371
25 0.16615 1.3433 0.2361
30 00.16615 1.3254 0.2348
35 0.16615 1.3228 0.2342

200
20 0.1792 1.3539 0.4874
25 0.1792 1.3469 0.4835
30 0.1792 1.3428 0.4814
35 0.1792 1.3407 0.4804

Figure 66 shows the maximum vorticity module during a cycle in various positions xi.
For each position xi downstream to the cylinder, the vorticity along a parallel segment
to the y-axis was extracted. These segments have length equal to 5 with center in y “ 0,
and contain 50 points. On each segment, the maximum value of the vorticity module
along the segment was saved for each time-step. Next, the maximum value of this set
(for each position xi) was obtained. This process was applied for the downstream lengths:
x` “ 25, x` “ 35 and x` “ 60. The results are shown in Figure 66, in which we can
see that the maximal vorticity module does not present a relevant change for x` ě 40.
Thus, x` “ 45 is considered sufficient.

Therefore, based in the convergence analysis the mesh M6 mesh using polynomial de-
gree interpolation 7 was chosen. The distances of the inflow, lateral and outflow measured
from the cylinder axis are equal to x´ “ ´25, y˘ “ ˘25 e x` “ 45, respectively.
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Figure 66: Convergence test for downstream length at Re “ 150.
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Figure 67: Final computational mesh with the polynomial interpolation of eleventh-
degree.

C.2 Channel

The two-dimensional channel was centred at y “ 0. The height was H “ 1 and the
length was L “ 30. The computational mesh was composed by 195 quadrilateral elements
and eleventh-degree polynomials were employed as basis functions. Figure 67 shows a
region (0 ď x ď 10) of the final computational mesh (with the polynomial interpolation)
used to perform sensitivity calculations presented in the section 3.2.

C.3 Backward-facing step

In the section 3.3, the results were obtained for a backward-facing step with channel
inflow of height H “ 1 and the expansion with the height 2H. The length of the channel
inflow is li “ 10 and the and expansion has length lo “ 50. The mesh was built with
209 triangular elements and 220 quadrilateral elements. Tenth-degree polynomials were
applied as basis functions. Figure 68 plots the computational mesh closer to the expansion
region.
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Figure 68: Final computational mesh with the polynomial interpolation of Tenth-degree
in the region closer to the expansion.

Figure 69: Final computational mesh with the polynomial interpolation of eleventh-degree
in the region closer to the flat plat parallel to the flow direction.

C.4 Flat plate

Figure 69 shows the mesh used in the sensitivity calculations reported in section 3.4
for the flow over a parallel flat plate with nondimensional length D “ 1. The origin of
the coordinate system is at the center of the flat plate. The two-dimensional domain has
the following dimensions: x` “ 30 to downstream, x´ “ ´30 to upstream and vertical
y˘ “ 25. The mesh was composed of the 413 quadrilateral elelements and polynomials
of eleventh-degree were used in the spatial discretization.

C.5 Square cylinder

A square cylinder with side lengthD “ 1 was the geometry used in the section 3.5. The
origin of the coordinate system was at the center of the cylinder. The domain extended
x` “ 50 to downstream, x´ “ ´35 to upstream and y˘ “ 50 in the cross-stream
direction. The computational mesh was composed by 1059 quadrilateral elements and



138

Figure 70: Final computational mesh with the polynomial interpolation of eleventh-degree
in the region closer to the square cylinder.

sixth-degree polynomials were employed as basis functions in the two-dimensional mesh
which is plotted in Figure 70.

C.6 NACA 0012 airfoil

In this case, the origin of the coordinate system was at the leading edge of the airfoil,
which had chord c “ 1. The domain extended x` “ 40 to downstream, x´ “ ´40

to upstream and y˘ “ 40 in the cross-stream direction. The mesh was made with 423
triangular elements and 492 quadrilateral elements. Polynomials of the ninth-degree were
used as base functions. Figure 71 displays the final mesh closer to the airfoil.



139

Figure 71: Final computational mesh with the polynomial interpolation of eleventh-degree
in the region closer to the NACA 0012 airfoil.


