Andrea Arbex Rodrigues

APLICAÇÃO DA METODOLOGIA DESIGN FOR MANUFACTURABILITY AND ASSEMBLY NA INDÚSTRIA AUTOMOTIVA

Trabalho de curso apresentado à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia Automotiva (Mestrado Profissionalizante)

Área de Concentração:
Engenharia Automotiva (Mestrado Profissionalizante)

Orientador:
Prof. Titular
Dr. Dario Ikuo Miyake

São Paulo
2002
AGRADECIMENTOS

Em primeiro lugar, agradeço aos meus pais a educação que me deram, que possibilitou minha formação profissional. Agradeço ainda a eles, a meu marido, irmãos e avó pelo incentivo, força e compreensão durante esta etapa da minha vida, onde minha ausência muitas vezes se fez necessária.

Ao meu orientador, Prof. Dr. Dario Miyake, pela confiança e tão sábias orientações durante todo o período em que trabalhamos juntos.

Agradeço ainda a todos os professores do curso que, de modo direto ou indireto, colaboraram para a conclusão deste trabalho.

Por fim, a todos os meus colegas de trabalho, especialmente ao João Sidney, Sérgio Mosca, Aleixo Holanda, Ronaldo Freitas, Maurício Almeida, Jair Quirelli, Alessandra Gomes, Cilene Lefort, Carlos Monteiro, Valter Prieto, Denis Luque, Marcos Mostarda, Edson Quatrocchi, Luis Roberto Souza e Alfredo Almeida. pelo apoio e auxílio que se mostraram imprescindíveis à realização deste trabalho.
<table>
<thead>
<tr>
<th>Página</th>
<th>Linha(s)</th>
<th>Onde se lê</th>
<th>Leia-se</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ª página de rosto</td>
<td>14ª</td>
<td>Prof. Titular</td>
<td>Prof. Doutor</td>
</tr>
<tr>
<td>2ª página de rosto</td>
<td>15ª</td>
<td>Dr. Dario Ikuo Miyake</td>
<td>Dario Ikuo Miyake</td>
</tr>
<tr>
<td>VIII</td>
<td>19ª</td>
<td>SOP Start of Production VDR Verified Data Release</td>
<td>SAVE Society of American Value Engineers SOP Start of Production VDR Verified Data Release</td>
</tr>
<tr>
<td></td>
<td>27ª</td>
<td>Porém, todos estes funcionários participam do desenvolvimento do projeto A3000 e se reportam matricialmente ao Gerente responsável por este projeto.</td>
<td>Porém, todos estes funcionários participam, por exemplo, do desenvolvimento de um projeto denominado A3000 e se reportam matricialmente ao Gerente responsável por este projeto.</td>
</tr>
<tr>
<td>53</td>
<td>6ª</td>
<td>5.1.3 – Anatomia das Funções</td>
<td>5.3.2 – Técnica EV/AV: Anatomia das Funções</td>
</tr>
<tr>
<td>83</td>
<td>5ª</td>
<td>5.3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>86</td>
<td>11ª</td>
<td>... Capítulo 4 - Metodologias Auxiliares: ...</td>
<td>...</td>
</tr>
<tr>
<td>88</td>
<td>14ª</td>
<td>7.2.2</td>
<td>7.4.2.2</td>
</tr>
<tr>
<td>92</td>
<td>11ª</td>
<td>7.15</td>
<td>7.16</td>
</tr>
<tr>
<td>95</td>
<td>2ª</td>
<td>7-13</td>
<td>7.14</td>
</tr>
<tr>
<td>95</td>
<td>14ª</td>
<td>7.14</td>
<td>7.15</td>
</tr>
<tr>
<td>96</td>
<td>7ª</td>
<td>7.15</td>
<td>7.16</td>
</tr>
<tr>
<td>96</td>
<td>13ª</td>
<td>“Capítulo 5 – Engenharia do Valor... Item “5.3 – Engenharia do Valor...</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>9ª</td>
<td>7.16</td>
<td>7.17</td>
</tr>
<tr>
<td>97</td>
<td>10ª</td>
<td>7.17</td>
<td>7.18</td>
</tr>
<tr>
<td>97</td>
<td>11ª</td>
<td>7.18</td>
<td>7.19</td>
</tr>
<tr>
<td>99</td>
<td>6ª</td>
<td>7.19</td>
<td>7.20</td>
</tr>
<tr>
<td>100</td>
<td>5ª</td>
<td>7.20</td>
<td>7.21</td>
</tr>
<tr>
<td>101</td>
<td>6ª</td>
<td>7.21</td>
<td>7.22</td>
</tr>
<tr>
<td>107</td>
<td>Nota de rodapé 3</td>
<td>Se o leitor tiver interesse, sugerimos consultar sobre Design in Electronics e Design for Low Quantity Production, entre outros.</td>
<td>Se o leitor tiver interesse, sugerimos consultar literatura sobre as metodologias Design in Electronics e Design for Low Quantity Production, entre outras.</td>
</tr>
</tbody>
</table>
SUMÁRIO

LISTA DE TABELAS
LISTA DE FIGURAS
LISTA DE ABBREVIATURAS
RESUMO
ABSTRACT

CAPÍTULO 1 - INTRODUÇÃO E OBJETIVO DO TRABALHO 1
1.1 INTRODUÇÃO ... 1
1.2 OBJETIVO DO TRABALHO .. 2
1.3 CONTEÚDO DO TRABALHO .. 2

CAPÍTULO 2 - DFMA, CONCEITO E APLICAÇÃO 5
2.1 HISTÓRIA DO DFMA ... 5
2.2 DESIGN FOR MANUFACTURABILITY AND ASSEMBLY 6
2.3 ETAPAS DO PROJETO ... 7
2.4 QUANDO APlicAR O DFMA NO DESENVOLVIMENTO DO PROJETO 11
2.5 RESISTÊNCIAS ENCONTRADAS DURANTE A IMPLEMENTAÇÃO DO DFMA 13

CAPÍTULO 3 - DESIGN FOR EXCELLENCE (DFX) 16
3.1 INTRODUÇÃO - DESIGN FOR EXCELLENCE (DFX) 16
3.2 DESIGN FOR HIGHER QUALITY .. 17
 3.2.1 Qualidade ... 17
 3.2.2 Qualidade no projeto ... 19
3.3 DESIGN FOR RELIABILITY ... 21
 3.3.1 Confiabilidade ... 21
 3.3.2 A curva da banheira .. 22
 3.3.3 Confiabilidade no projeto .. 23
 3.3.4 Confiabilidade x DFMA .. 23
3.4 DESIGN FOR SERVICEABILITY / MAINTENABILITY 24
 3.4.1 Design for Serviceability and Maintainability 24
 3.4.2 Regras para Design for Serviceability and Maintainability 25
3.5 DESIGN FOR SAFETY .. 26
 3.5.1 Design for Safety ... 26
 3.5.2 Regras para Design for Safety .. 26
3.6 DESIGN FOR THE ENVIRONMENT ... 27
 3.6.1 Design for the Environment ... 27
 3.6.2 Regras para Design for the Environment 29
3.7 DESIGN FOR USER-FRIENDLINESS 30
 3.7.1 Design for User-friendliness .. 30
 3.7.2 Princípios para o Design for User-friendliness 31
3.8 DESIGN FOR SHORT TIME-TO-MARKET 31
3.8.1 Design for Short Time-to-Market ... 31
3.8.2 Regras para Design for Short Time-to-Market 33

CAPÍTULO 4 - PRINCÍPIOS BÁSICOS DO DFMA .. 34
4.1 INTRODUÇÃO .. 34
 4.1.1 Minimização do número de peças: 34
 4.1.2 Montagem modular ou com componente-base: 36
 4.1.3 Padronização de componentes: 36
 4.1.4 Projeto de peças com características autolocalizadoras: 37
 4.1.5 Montagem empilhada ou unidirecional: 37
 4.1.6 Projetar peças com características de autolocalização: 37
 4.1.7 Minimização de níveis de montagem: 38
 4.1.8 Facilidade de manipulação de peças: 39
 4.1.9 Projeto para estabilidade: .. 41
 4.1.10 Minimização da necessidade de ajustes: 41
 4.1.11 Otimização da sequência de montagem: 41

CAPÍTULO 5 - METODOLOGIAS COMPLEMENTARES: ENGENHARIA SIMULTÂNEA - TIME DE TRABALHO E ENGENHARIA DO VALOR / ANÁLISE DO VALOR ... 43
5.1 INTRODUÇÃO .. 43
5.2 ENGENHARIA SIMULTÂNEA ... 43
 5.2.1 Time de trabalho x Estrutura organizacional 46
 5.2.2 O DFMA x Engenharia Simultânea 47
5.3 ENGENHARIA DO VALOR / ANÁLISE DO VALOR 48
 5.3.1 Conceito .. 49
 5.3.2 Técnica EV/AV: Anatomia das Funções 51
 5.3.3 DFMA x Engenharia do Valor .. 53

CAPÍTULO 6 - PROCESSO DE DESENVOLVIMENTO DE PRODUTOS NA GM ... 54
6.1 A GENERAL MOTORS DO BRASIL ... 54
6.2 PROCESSO DE DESENVOLVIMENTO DE PRODUTOS DA GENERAL MOTORS – GVDP .. 56
6.3 A PRODUÇÃO – LINHA DE MONTAGEM 58
6.4 IMPLEMENTAÇÃO DE UM PROJETO 63
6.5 O DFMA NA GENERAL MOTORS DO BRASIL 64

CAPÍTULO 7 - DESENVOLVIMENTO DE UMA FERRAMENTA PARA A APLICAÇÃO DA METODOLOGIA DFMA ... 65
7.1 INTRODUÇÃO E ANÁLISE DE DADOS 65
7.2 DEFINIÇÃO DOS REQUISITOS DE APLICABILIDADE DE UMA FERRAMENTA DFMA ... 69
 7.2.1 Introdução .. 69
 7.2.2 Resultados ... 70
7.3 SOFTWARES – BOOTROYD DEWHURST INC. – “DESIGN FOR ASSEMBLY” VERSÃO 9.0 .. 76
 7.3.1 Introdução .. 76
7.3.2 Software Design for Assembly - BDI ... 77
7.4 PLANILHA DFMA ... 83
7.4.1 Introdução ... 83
7.4.2 Planilha DFMA ... 83
7.5 COMENTÁRIOS FINAIS ... 101

CAPÍTULO 8 - CONCLUSÃO ... 105
8.1 CONCLUSÕES SOBRE A METODOLOGIA DFMA 105
8.2 CONCLUSÃO SOBRE A FERRAMENTA DESENVOLVIDA 107

ANEXO I – ROTEIRO PARA ENTREVISTA NA PESQUISA COM GRUPO
FOCAL – APLICAÇÃO DA TÉCNICA DE DFMA: 110

ANEXO II – EXEMPLO: PLANILHA DFMA .. 116

ANEXO III – RELATÓRIOS DO SOFTWARE DFA- BOOTHROYD &
DEWHURST ... 138

REFERÊNCIAS BIBLIOGRÁFICAS .. 151
LISTA DE TABELAS

TABELA 5.1 VERBOS E SUBSTANTIVOS PARA AS FUNÇÕES DE USO E ESTIMA (MASSARANI; MATOS, 2001) ... 52
TABELA 5.2 EXEMPLO DA TÉCNICA ANATOMIA DAS FUNÇÕES PARA UM RELÓGIO 53
TABELA 7.1 CLASSIFICAÇÃO DOS PROBLEMAS ... 67
TABELA 7.2 DISTRIBUIÇÃO TEMPORAL DE OCORRÊNCIAS DAS FALHAS 68
TABELA 7.3 - CRITÉRIO DE VALORES ... 70
TABELA 7.4 – FUNÇÕES DA FERRAMENTA DE ANÁLISE DE DFMA 71
TABELA 7.5 - FUNÇÕES RELEVANTES PARA FERRAMENTA DE ANÁLISE DE DFMA 72
TABELA 7.6 - PLANILHA DFMA - IDENTIFICAÇÃO .. 87
TABELA 7.7 - PLANILHA DFMA – LISTA DE PRESENÇA ... 88
TABELA 7.8 - PLANILHA DFMA - PARAMETRIZAÇÃO .. 89
TABELA 7.9 - PLANILHA DFMA - CUSTO DE MONTAGEM ... 90
TABELA 7.10 - PLANILHA DFMA - DESENHO ESQUEMÁTICO 91
TABELA 7.11 - PLANILHA DFMA - CUSTO DOS COMPONENTES 91
TABELA 7.12 ORIGEM DAS PERGUNTAS ... 93
TABELA 7.13 CRITÉRIOS DE BOOTHROYD ... 94
TABELA 7.14 - ORIGEM DAS PERGUNTAS PROVENIENTES DOS “5 PASSOS” 95
TABELA 7.15 – FLUXOGRAMA DAS PERGUNTAS DA PLANILHA DFMA 96
TABELA 7.16 - PLANILHA DFMA - GRAU DE ADEQUAÇÃO DO PROJETO (1) 97
TABELA 7.17 - PLANILHA DFMA - GRAU DE ADEQUAÇÃO DO PROJETO (2) 98
TABELA 7.18 - PLANILHA DFMA - GRAU DE ADEQUAÇÃO DO PROJETO (3) 98
TABELA 7.19 - PLANILHA DFMA - GRAU DE ADEQUAÇÃO DO PROJETO (4) 99
TABELA 7.20 - PLANILHA DFMA - INVESTIMENTO .. 100
TABELA 7.21 - PLANILHA DFMA – RESULTADOS .. 100
TABELA 7.22 - FUNÇÕES DAS FERRAMENTAS .. 101
TABELA 7.23 PROPORÇÃO RELATIVA DO TOTAL DE PROBLEMAS ANALISADOS QUE OCORRERAM PELO NÃO ATENDIMENTO DO REQUISITO ASSOCIADO A CADA PERGUNTA ... 103
LISTA DE FIGURAS

FIGURA 1.1 CONTEÚDO DO TRABALHO .. 3
FIGURA 2.1 ESPECIFICAÇÕES TÉCNICAS DA NECESSIDADE (KAMINSKI, 2000) 9
FIGURA 2.2 ESTRUTURA DA APLICAÇÃO DO DFMA NO PROCESSO DE PROJETO
 (BOOTHROYD; DEWHURST; KNIGHT, 1994) ... 12
FIGURA 2.3 REDUÇÃO DE TEMPO QUANDO APLICADO NO INÍCIO DO PROJETO
 (BOOTHROYD; DEWHURST; KNIGHT, 1994) ... 13
FIGURA 3.1 DESIGN FOR EXCELLENCE (DFX) ... 17
FIGURA 3.2 CURVA DA BANHEIRA (LEITCH, 1995) ... 22
FIGURA 4.1 MONTAGEM EMPILHADA – UNIDIRECIONAL (BOOTHROYD; DEWHURST;
 KNIGHT, 1994) .. 37
FIGURA 4.2 CARACTERÍSTICAS AUTOLOCALIZADORAS (BOOTHROYD; DEWHURST;
 KNIGHT, 1994) .. 38
FIGURA 4.3 CARACTERÍSTICAS AUTOLOCALIZADORAS (BOOTHROYD; DEWHURST;
 KNIGHT, 1994) .. 38
FIGURA 4.4 MATERIAIS FLEXÍVEIS E PONTIAGUDOS (BOOTHROYD; DEWHURST;
 KNIGHT, 1994) .. 39
FIGURA 4.5 PEÇAS PEQUENAS OU ESCORREGADAS (BOOTHROYD; DEWHURST;
 KNIGHT, 1994) .. 39
FIGURA 4.6 PEÇAS SIMÉTRICAS (BOOTHROYD; DEWHURST; KNIGHT, 1994) 40
FIGURA 4.7 PEÇAS ASSIMÉTRICAS (BOOTHROYD; DEWHURST; KNIGHT, 1994) 40
FIGURA 4.8 PEÇAS QUE PODEM FICAR PRESAS (BOOTHROYD; DEWHURST; KNIGHT,
 1994) ... 40
FIGURA 4.9 EVITA EMARANHAMENTO (BOOTHROYD; DEWHURST; KNIGHT, 1994) 40
FIGURA 5.1 OVER THE WALL (BOOTHROYD; DEWHURST; KNIGHT, 1994) 44
FIGURA 5.2 ESTRUTURA ORGANIZACIONAL DA EMPRESA 47
FIGURA 6.1 PARTICIPAÇÃO NO MERCADO E VOLUME DE VENDAS 55
FIGURA 6.2 CRONOGRAMA GVDP 48/22 ... 58
FIGURA 6.3 LINHA DA TAPEÇARIA .. 60
FIGURA 6.4 LINHA AÉREA .. 61
FIGURA 6.5	TRANSFERÊNCIA PARA A LINHA DE PLACAS	.. 62
FIGURA 6.6	A LINHA DE MONTAGEM	.. 62
FIGURA 7.1	CASOS DA TAPEÇARIA	.. 67
FIGURA 7.2	CASOS DA MECÂNICA	.. 68
FIGURA 7.3	FATORES POSITIVOS DA APLICAÇÃO DE FERRAMENTAS DE ANÁLISE	.. 73
FIGURA 7.4	FATORES NEGATIVOS DA APLICAÇÃO DE FERRAMENTAS DE ANÁLISE DE DFMA	.. 74
FIGURA 7.5	RAZÃO PARA PARAR DE UTILIZAR FERRAMENTAS DE ANÁLISE DE DFMA 74
FIGURA 7.6	PRINCIPAIS OBJETIVOS DA APLICAÇÃO DO DFMA	.. 75
FIGURA 7.7	FLUXOGRAMA DO SOFTWARE DFA-BDI	.. 78
FIGURA 7.8	SOFTWARE DFA-BDI - CONFIGURAÇÃO DO SISTEMA	.. 79
FIGURA 7.9	SOFTWARE DFA-BDI - DESCRIÇÃO DO PROCESSO 1	.. 80
FIGURA 7.10	SOFTWARE DFA-BDI - DESCRIÇÃO DO PROCESSO 2	.. 80
FIGURA 7.11	SOFTWARE DFA-BDI - QUESTÕES DE DFA	.. 81
FIGURA 7.12	SOFTWARE DFA-BDI - SUGESTÕES PARA ALTERAÇÃO DE PROJETO 82
FIGURA 7.13	SOFTWARE DFA-BDI - RESUMO DA ANÁLISE	.. 82
FIGURA 7.14	PLANILHA DFMA	.. 84
FIGURA 7.15	FLUXOGRAMA DA FERRAMENTA	.. 86
LISTA DE ABREVIATURAS

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Expansão</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>Architecture Studies Initiation</td>
</tr>
<tr>
<td>BDI</td>
<td>Boothroyd & Dewhurst Inc.</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer aided manufacturing</td>
</tr>
<tr>
<td>CEP</td>
<td>Controle Estatístico do Processo</td>
</tr>
<tr>
<td>DFA</td>
<td>Design for Assembly</td>
</tr>
<tr>
<td>DFE</td>
<td>Design for Environment</td>
</tr>
<tr>
<td>DFM</td>
<td>Design for Manufacturability</td>
</tr>
<tr>
<td>DFMA</td>
<td>Design for Manufacturability and Assembly</td>
</tr>
<tr>
<td>DFS</td>
<td>Design for Service</td>
</tr>
<tr>
<td>DFX</td>
<td>Design for Excellence</td>
</tr>
<tr>
<td>EV/AV</td>
<td>Engenharia do Valor / Análise do Valor</td>
</tr>
<tr>
<td>GMB</td>
<td>General Motors do Brasil</td>
</tr>
<tr>
<td>GVDP</td>
<td>Global Vehicle Development Process</td>
</tr>
<tr>
<td>NAO</td>
<td>North America Operations</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>SOP</td>
<td>Start of Production</td>
</tr>
<tr>
<td>VDR</td>
<td>Verified Data Release</td>
</tr>
</tbody>
</table>
RESUMO

Os principais objetivos deste trabalho são apresentar e discutir os benefícios que podem ser alcançados com a aplicação da metodologia Design for Manufacturability and Assembly (DFMA) e propor a sua disseminação na indústria automotiva.

O trabalho inicia-se com uma revisão teórica dos conceitos e princípios da metodologia Design for Manufacturability and Assembly (DFMA) e Design for Excellence (DFX), bem como de outras metodologias complementares. Em seguida, o trabalho apresenta o ambiente da indústria automotiva, incluindo o processo de desenvolvimento e implementação de projetos neste segmento.

Para verificar a aplicabilidade da metodologia DFMA, o trabalho contou com a análise de dados de produção que comprovou a necessidade de aplicação da metodologia DFMA durante o desenvolvimento de produtos.

Na sequência são apresentados os resultados de uma pesquisa realizada com um grupo focal, composto por funcionários da empresa, que serviu para levantar os requisitos necessários para a elaboração de uma ferramenta de análise de DFMA. O mesmo grupo focal contribuiu para identificação dos principais benefícios buscados e principais dificuldades encontradas na aplicação desta metodologia.

Com base na revisão teórica e na pesquisa realizada com o grupo focal, uma ferramenta para facilitar a disseminação da metodologia DFMA é então desenvolvida e apresentada neste trabalho.
ABSTRACT

The main objectives of this study are to outline and discuss the benefits to be achieved through the application of Design for Manufacturability and Assembly (DFMA) methods and to propose the dissemination of the same in the automotive industry.

The study begins with a theoretical review of the principles and concepts of the Design for Manufacturability and Assembly (DFMA) and Design for Excellence (DFX) methodologies, as well as that of other related methodologies. Next, the study describes the automotive industry environment, including the process for developing and implementing projects in this sector.

In order to verify the applicability of DFMA methods, the study analyzes production data that proves the necessity of applying DFMA methods during product development.

Subsequently, the study presents the results of research carried out with a focus group made up of company employees that was used to establish the necessary requirements for the development of DFMA analytical tools. The same focus group helped to identify the principal benefits sought and difficulties likely to be encountered in the application of this methodology.

Based on the theoretical review and the research conducted with the focus group, the study concludes with the development and presentation of a tool to aid the dissemination of DFMA methods.
CAPÍTULO 1 - INTRODUÇÃO E OBJETIVO DO TRABALHO

1.1 Introdução

A competição acirrada no mercado automotivo tem induzido as montadoras a se preocuparem cada vez mais com a satisfação de seus clientes e, com este objetivo, elas têm procurado desenvolver produtos de baixo custo e alta qualidade em prazos cada vez menores.

Contudo, frequentemente, os engenheiros projetam produtos sem se preocupar com o número de peças e com sua montagem final, adicionando itens desnecessários ao funcionamento do veículo que, no processo de produção, implicam em custos evitáveis de armazenamento, manuseio e tempo de montagem que acabam onerando o custo final do produto.

Neste contexto, o Design For Manufacturability and Assembly (DFMA) desponta como uma valiosa metodologia para simplificar o projeto do produto, reduzindo-se a quantidade de componentes e o tempo de montagem, com o objetivo de alcançar maior produtividade, qualidade e redução de custos.

O objetivo do Design For Manufacturability (DFM) é desenvolver um produto que atenda todos os requisitos funcionais, tenha baixos custos de produção e que também seja de fácil manufatura. Esta técnica é composta de vários princípios, conceitos, regras e recomendações que guiam o projetista para o desenvolvimento do melhor projeto de produto do ponto de vista da fabricação. Já o Design For Assembly (DFA) tem por objetivo racionalizar a etapa de montagem por meio da redução do número de peças, analisando separadamente a função, forma, material e montagem
de cada uma e assim desenvolver um produto funcional, simples e com baixo custo de produção.

Deste modo, a aplicação desta metodologia durante o desenvolvimento de produtos faz com que o custo total de desenvolvimento e o prazo para disponibilizar o produto ao mercado sejam reduzidos, aumentando assim a competitividade do mesmo.

1.2 Objetivo do trabalho

Analisando dados de produção, notamos a grande quantidade de problemas causados pela não utilização da metodologia DFMA durante o desenvolvimento de produtos.

Consultando funcionários envolvidos nesta atividade, percebemos que a metodologia não estava sendo aplicada principalmente por causa da dificuldade de utilização e dos custos de aquisição e treinamento das ferramentas disponíveis no mercado.

Pensando nisso, optamos por desenvolver uma abordagem mais simples, baseada em planilhas eletrônicas, com o propósito de promover a difusão da metodologia DFMA no ambiente de desenvolvimento de produtos de uma empresa montadora de automóveis.

O objetivo deste trabalho é apresentar o desenvolvimento de ferramenta proposta chamada de Planilha DFMA, bem como dados que mostram a necessidade de aplicação da metodologia e os resultados obtidos.

1.3 Conteúdo do trabalho

O trabalho aqui apresentado está dividido em 5 partes principais, conforme mostra a “Figura 1.1 – Conteúdo do trabalho”.

A parte inicial, denominada Introdução e Objetivo do Trabalho, é composta pelo primeiro capítulo, cujo intuito é introduzir o assunto e apresentar o objetivo do trabalho para o leitor.
Os quatro capítulos seguintes fazem parte da Revisão Bibliográfica do trabalho. O objetivo desta seção é introduzir definições, conceitos e princípios da metodologia DFMA, Design for Excellence, Engenharia Simultânea e Engenharia do Valor/Análise do Valor, necessários para o prosseguimento do trabalho.

A terceira parte, Apresentação da Empresa, é composta por um único capítulo, cujo objetivo é situar o leitor no ambiente automotivo, apresentando conceitos básicos sobre linha de montagem, processo de desenvolvimento de produtos entre outros.

A quarta e principal parte do trabalho, Análise do Problema e Desenvolvimento da Solução, é também composta por um único capítulo que apresenta as razões pela escolha do tema, a relevância do mesmo, de uma ferramenta
já disponível no mercado para a aplicação da metodologia DFMA, bem como o desenvolvimento da Planilha DFMA proposta e o resultado de uma pesquisa realizada.

A última parte do trabalho, Conclusão, traz os comentários finais, conclusões e recomendações para futuros desenvolvimentos e aprimoramentos.
CAPÍTULO 2 - DFMA, CONCEITO E APLICAÇÃO

2.1 História do DFMA

O Design for Manufacturability and Assembly é uma técnica utilizada durante o desenvolvimento de produtos, visando facilitar a manufatura e reduzir custos.

Os conceitos da metodologia de Design for Manufacturability and Assembly são conhecidos e aplicados a mais de 180 anos, quando, nesta época, Eli Whitney, que trabalhava para o governo norte-americano, recebeu a incumbência de desenvolver sistema de manufatura de armas. Ele criou uma produção com peças intercambiáveis que substituiu a fabricação manual, onde nenhuma arma era igual à outra e as peças não podiam ser trocadas. Whitney reprojetou cada peça com uma tolerância limitada e dimensões específicas e padronizadas.

Décadas mais tarde, Henry Ford, com o seu automóvel "Model T", desenvolveu um revolucionário sistema de montagem, onde os veículos eram manufaturados manualmente em uma linha de produção, com peças padronizadas e projetadas para atender este processo. Deste modo, Ford atingiu um excelente resultado reduzindo custos de fabricação com alta confiabilidade, qualidade e simplicidade, tornando-se, então, um dos mais famosos engenheiros do setor automotivo.

Roger W. Boltz foi a primeira pessoa a formular a metodologia DFM, apesar de ainda não utilizar esta nomenclatura. Boltz publicou diversos artigos sobre vários processos de manufatura do ponto de vista da engenharia de produtos. Em 1947, todo este material foi compilado em um único livro chamado "Production

Em 1960, a General Electric lançou o livro “Manufacturing Producibility Handbook” e começou a utilizar o termo “Producibility” para identificar esta técnica; anos mais tarde, este termo começou a ser substituído por Design for Manufacturability.

O Design for Assembly surgiu, tempos depois, com Geoffrey Boothroyd que ampliou a metodologia do Design for Manufacturability para a montagem automática, projetando o produto de forma que pudesse atender esta nova condição. O DFA, além de atender o processo automático, passou também a facilitar a montagem manual dos componentes.

Em 1968, Boothroyd, junto com A. H. Redford, publicaram o livro “Mechanized Assembly” em que escreveram um guia para engenheiros e projetistas com as técnicas para desenvolvimento de um produto, atendendo as condições necessárias para a montagem automática e manual.

Boothroyd ficou bastante conhecido ao lado de outro colega Peter Dewhurst, pela enorme contribuição que esta técnica trouxe para o desenvolvimento de produtos. A aplicação da metodologia DFA pode ser considerada como a mais significante redução de custos e simplificação de produtos de todo Design for Manufacturability.

Atualmente, o conceito do Design for Manufacturability foi expandido para outras áreas, ficando genericamente conhecido como Design for Excellence (DFX), que engloba o Design for Manufacturability, Design for Assembly, Design for Higher Quality, Design for the Environment entre outros.

2.2 Design for Manufacturability and Assembly

O objetivo do Design For Manufacturability (DFM) é desenvolver um produto que atenda todos os requisitos funcionais, tenha baixo custo de produção e que também seja de fácil manufatura. Esta técnica é composta por vários princípios, conceitos, regras e recomendações que guiam o projetista para o desenvolvimento do
melhor produto do ponto de vista da sua fabricação. Já o Design For Assembly (DFA) tem por objetivo racionalizar a etapa de montagem por meio da redução do número de peças, analisando separadamente a função, forma, material e montagem de cada uma e assim desenvolver um produto funcional, simples e com baixo custo de produção.

Segundo Boothroyd; Dewhurst; Knight (1994) "Manufacturability" deve ser entendida como a operação de fabricar um componente individual, enquanto Assembly é a simples montagem de mais de um componente formando o produto final; portanto, DFM e DFA devem ser entendidos e aplicados de maneira distinta. Contudo, sempre que possível, o Design for Manufacturability e o Design for Assembly devem ser usados simultaneamente, visando reduzir a complexidade e o número de peças tanto da fabricação dos componentes como da montagem final do produto e evitando que as modificações do produto sugeridas pelo DFM aumentem a dificuldade do processo de montagem, fazendo com que o DFA não possa ser aplicado na sua integra.

O uso do Design For Manufacturability and Assembly traz grandes benefícios ao produto final, tais como: melhoria na qualidade, diminuição do número total de peças, simplificação do processo de montagem e do produto, padronização, modularização, confiabilidade e significante redução dos custos de produção e incentivo ao trabalho em equipe (engenharia simultânea).

2.3 Etapas do projeto

Kaminski (2000) define o processo de desenvolvimento de produtos como sendo: “conjunto de atividades envolvendo quase todos os departamentos da empresa, que tem como objetivo a transformação de necessidades de mercado em produtos ou serviços economicamente viáveis”.

Kaminski (2000) explica ainda que o desenvolvimento de produtos é uma atividade influenciada e que influencia fatores econômicos, culturais, sociais, tecnológicos e políticos da comunidade a que se destina, mudando hábitos, costumes e até mesmo gerando novas necessidades.
Em sua obra, Kaminski (2000) explica que o desenvolvimento do produto deve considerar todo o ciclo de produção e consumo; deste modo, propõe a divisão do processo de desenvolvimento do produto em sete etapas, que vão desde a busca das necessidades do mercado, até o descarte final do produto, conforme explicado a seguir:

1. *Estudo de viabilidade*: é a primeira fase do desenvolvimento; esta etapa é a responsável por determinar as possíveis alternativas para a solução do problema, identificando as necessidades e especificando as exigências;

2. *Projeto básico*: durante esta etapa, os responsáveis devem escolher e especificar a melhor alternativa de todas as propostas anteriores;

3. *Projeto executivo*: esta fase tem por objetivo desenvolver a especificação completa do produto, bem como testá-lo e garantir que está pronto para a produção. Este período do desenvolvimento ainda é propício para realização das alterações que se tornarem necessárias, sem prejuízos econômicos. Contudo, o projeto pode ser ainda abandonado caso o produto não possua condições para produção;

4. *Planejamento da produção / execução*: esta fase elabora o planejamento da produção, que inclui a compra de todos os equipamentos e dispositivos necessários, determinação do processo de montagem, qualificação dos fornecedores, mão-de-obra etc;

5. *Planejamento da disponibilização ao cliente*: esta etapa tem como objetivo planejar como o produto irá chegar até o cliente; cabe ao projetista, por exemplo, definir a embalagem, o transporte e a divulgação do produto;

6. *Planejamento do consumo ou utilização do produto*: o projetista deve também prever como o produto será utilizado ou consumido; o produto deve ser de fácil manutenção, alta confiabilidade, segurança etc.; informações de campo são extremamente valiosas para que o produto possa ser melhorado;
7. **Planejamento do abandono do produto**: o produto pode ser descartado por duas razões, a obsolescência técnica ou desgaste; o caso ideal acontece quando a obsolescência técnica e o desgaste ocorrem ao mesmo tempo; para isso, o projetista deve utilizar uma tecnologia adequada para reduzir a velocidade da obsolescência, e projetar para que a vida útil coincida com o tempo de utilização.

![Diagrama de Especificações Técnicas da Necessidade](image)

Figura 2.1 Especificações técnicas da necessidade (Kaminski, 2000)

1. **Desenvolvimento / planejamento de especificações**: fase pré-conceitual, onde o problema deve ser compreendido para permitir o desenvolvimento das suas soluções;

2. **Projeto conceitual**: a ideia do produto deve ser definida para dar prosseguimento às outras fases do processo;
3. **Projeto do produto:** o projeto conceitual é detalhado e desenvolvido completamente, ficando assim pronto para a fabricação; nessa fase o processo de planejamento da manufatura começa a ser definido;

4. **Produção;**

5. **Uso ou serviço;**

6. **Descarte ou renovação do produto.**

Pahl & Beitz *apud* Sousa (1998) subdividem as três primeiras etapas descritas por Ullman *apud* Sousa (1998) em quatro fases, conforme descritas a seguir:

1. **Esclarecimento da tarefa:** as necessidades do produto são identificadas, especificando dados do projeto;

2. **Projeto conceitual:** a ideia conceitual do projeto é gerada;

3. **Projeto preliminar:** detalhes do projeto conceitual começam a ser desenvolvidos e definidos;

4. **Projeto detalhado:** o projeto preliminar é totalmente desenvolvido dando origem ao produto final.

Deste modo, pode-se notar que, apesar dos autores citados utilizarem nomenclaturas e divisões diferentes, o conteúdo das etapas do desenvolvimento é praticamente igual.

Neste contexto, podemos identificar as etapas do desenvolvimento do produto como:

1. **Identificar a necessidade do mercado consumidor;**

2. **Especificar as funções do produto;**

3. **Especificar as características principais do projeto;**

4. **Elaboração da ideia conceitual do projeto;**

5. **Detalhamento da ideia conceitual, definindo alguns detalhes do produto, como por exemplo a sua forma;**
6. Desenvolvimento final do produto.

2.4 Quando aplicar o DFMA no desenvolvimento do projeto

Segundo Boothroyd; Dewhurst; Knight (1994), o DFMA deve ser utilizado, com maior ênfase, no início da fase conceitual do projeto, pois, nesta etapa, os custos de modificações são mais baixos e o tempo de duração do projeto pode ser reduzido, disponibilizando o produto mais rápido para o mercado e com um preço significativamente menor.

Deve-se salientar também a importância dos aspectos de qualidade nesta fase do projeto, visto que implementá-la em um produto já desenvolvido é muito difícil.

A “Figura 2.2 Estrutura da aplicação do DFMA no processo de projeto”, proposta por Boothroyd; Dewhurst; Knight (1994), mostra a necessidade da aplicação do DFMA no Projeto Conceitual com o objetivo de reduzir o tempo e o custo de desenvolvimento.

Pode-se observar que estas técnicas quando aplicadas já na fase do Projeto Preliminar e Detalhado fazem com que o ciclo retorne à fase do projeto conceitual, já que sugestões para simplificação da estrutura do produto e para materiais e processos mais econômicos ainda são encontradas.
Durante o projeto conceitual, as técnicas de Design For Manufacturability and Assembly são utilizadas para avaliar quais das concepções alternativas são viáveis para serem detalhadas no projeto preliminar. Deve-se dar atenção a informações sobre manufatura, material, produto e montabilidade.

Para uma análise eficiente, Ullman apud Sousa (1998) apresenta 4 técnicas que podem ser usadas: julgamento de praticabilidade (utiliza o bom senso da equipe), disponibilidade tecnológica (analisa a existência de tecnologia para se projetar o produto), avaliação baseada no passa/não passa (as alternativas devem atender os requisitos dos clientes internos e externos) e a matriz de decisão (deve ser determinada a melhor alternativa de concepção, aquela que mais se adequa aos requisitos dos clientes e que apresente a melhor condição de montagem).

Deve-se analisar, ainda, nesta fase do projeto, se as alternativas apresentadas até este ponto atendem os requisitos de funcionalidade do produto e os requisitos de manufatura e montagem. Definições mais detalhadas do projeto, como por exemplo geometria, material, etc., serão discutidas durante o projeto preliminar e detalhado.

A “Figura 2.3 Redução de tempo quando aplicado no início do projeto” compara o desenvolvimento do produto com e sem a aplicação do DFMA e confirma
que a aplicação do DFMA no início do projeto reduz o tempo total de desenvolvimento.

![Diagrama mostrando redução de tempo com e sem DFMA.]

Figura 2.3 Redução de tempo quando aplicado no início do projeto (Boothroyd; Dewhurst; Knight, 1994)

Pode-se notar que, apesar da fase conceitual do projeto com DFMA ter um tempo de duração maior em relação ao projeto que não utiliza estas técnicas, a duração total do mesmo é consideravelmente menor, pois o tempo gasto no detalhamento do projeto e nas modificações e prototipagem é reduzido.

2.5 Resistências encontradas durante a implementação do DFMA

Boothroyd; Dewhurst; Knight (1994) comentam que o DFMA deixa de ser implementado devido à resistência humana quando defronte a assuntos novos e desconhecidos. Escusas, como as citadas a seguir, são comumente utilizadas para justificar a não utilização da metodologia.

1. **Não tem tempo:** engenheiros comumente reclamam da falta de tempo durante o desenvolvimento de produtos e da necessidade de minimizar o tempo de projeto para a manufatura.

2. **Síndrome do bebê feio:** deve-se tomar muito cuidado quando se critica um projeto / produto que outra pessoa desenvolveu; Boothroyd;
Dewhurst; Knight (1994) compararam a crítica ao projeto como dizer para a mãe que seu bebê é feio. Eles recomendam que os projetistas sejam convidados a participar da análise desde o início para que eles próprios possam chegar à conclusão de necessidade de modificação do projeto.

3. **Baixos custos de montagem:** é comum se ouvir que casos onde os custos de manufatura e montagem são extremamente baixos em comparação com o material envolvido não são indicados para a análise do DFMA. Deve-se lembrar, porém, que esta técnica não prevê somente a montagem ou manufatura, mas também a análise do produto. Um estudo de DFMA de um produto como este pode resultar na modificação dos componentes, reduzindo o custo final.

3. **Baixo volume:** o DFMA deve ser aplicado também para produtos com baixos volumes de produção. Existem casos onde o protótipo construído durante o desenvolvimento se torna o produto final, mesmo que sua montagem seja complexa e difícil. A análise de DFMA, neste caso, poderia reduzir o custo de manufatura do produto.

4. **Nós temos feito isso por anos:** muitas vezes o Design for Producing é confundido com o DFMA, e faz com que os projetistas acreditam que já estão aplicando a metodologia por algum tempo. O Design for Producing é o detalhamento do projeto de uma peça individual de uma montagem, visando facilitar a fabricação; o maior problema é que este detalhamento ocorre no final do projeto, onde o custo das mudanças é mais alto.

5. **É somente uma análise do valor:** o DFMA é comumente confundido com a Análise do Valor, porém, embora a Análise do Valor seja uma técnica que compara e questiona o valor de cada componente do produto, eliminando e melhorando o projeto, ela se diferencia do DFMA quando da sua aplicação; a Análise do Valor é tipicamente utilizada em estágios mais avançados do
desenvolvimento, enquanto que o DFMA apresenta melhores resultados quando aplicado na fase conceitual.

6. *DFMA é uma técnica que gera produtos com maior dificuldade para serviços:* esta afirmação não pode ser considerada como realidade, uma vez que a experiência mostra que produtos mais fáceis de montar também são mais fáceis para desmontar.
CAPÍTULO 3 - DESIGN FOR EXCELLENCE (DFX)

3.1 Introdução - Design for Excellence (DFX)

Atualmente, o mercado consumidor exige muito mais do produto do que apenas o preço mais atrativo trazido pela aplicação do DFMA. Em função da grande concorrência e para atrair a atenção dos clientes, o produto deve possuir também outros atributos.

Neste contexto, surgiu o Design for Excellence (DFX), que é definido por Bralla (1996) como sendo uma “base de conhecimentos para aproximar ao máximo o projeto do produto das suas características desejáveis, como alta qualidade, confiabilidade, facilidade de manutenção, segurança, facilidade de uso, preocupação com o meio ambiente, redução do prazo de disponibilização para vendas e ao mesmo tempo reduzindo os custos de manufatura e manutenção do produto”.

O Design for Excellence (DFX) é uma metodologia desenvolvida para estabelecer regras, procedimentos e métodos, de modo a guiar os projetistas para um produto que atenda todos os requisitos esperados pelo mercado consumidor.

A “Figura 3.1 Design for Excellence (DFX)” mostra a abrangência da técnica DFX. Pode-se notar que apesar do DFX ter sido desenvolvido através do sucesso dos conceitos da metodologia DFMA, o seu escopo passou a englobar também esta técnica. Verifique-se ainda que o DFM e o DFA se completam, formando o DFMA.
Figura 3.1 *Design for Excellence* (DFX)

A sigla DFX possui vários significados. Segundo Bralla, DFX significa “projeto para todos os fatores que o produto deve ter” e “projeto para a excelência”, para Meerkamm (1994), DFX significa “projeto para propriedades”.

3.2 Design for Higher Quality

3.2.1 Qualidade

Corbett *et al.* (1991) definem qualidade como “satisfaier ou exceder as expectativas do cliente”. A qualidade do produto existe quando este é capaz de desempenhar as funções determinadas em projeto nas condições especificadas, atingindo a completa necessidade do mercado consumidor em relação àquele produto.

Kaminski (2000) afirma que “para que um produto tenha desempenho satisfatório em serviço, é necessário que o projeto tenha qualidade intrínseca, ou seja, se o produto for produzido de acordo com o projeto, ele apresentará confiabilidade, disponibilidade, segurança, ” qualidade, etc.

Portanto, para que o produto possa ser produzido conforme o projeto, este deve atender os requisitos de manufatura; deste modo, torna-se necessária a
aplicação do DFMA e do *Design for Higher Quality*, durante o desenvolvimento do produto, para se alcançar uma qualidade desejada pelo mercado consumidor.

Deve-se lembrar ainda que muitas destas modificações sugeridas pelo DFMA, além de trazerem redução de custos e facilitarem a fabricação, auxiliam também no aumento da qualidade do produto. Porém, algumas sugestões propostas pelo DFMA podem acarretar na perda da qualidade; neste caso, esta alternativa deve ser analisada cuidadosamente para evitar impacto no produto e na sua manufatura.

Outro aspecto que deve ser analisado é a redução de custos de manufatura, garantia e manutenção dos produtos com o aumento da qualidade. Bralla (1996) afirma que a qualidade reduz custos relacionados a retrabalhos e produtos rejeitados; e, por outro lado, aumenta significativamente as vendas e o volume de produção.

Bralla (1996) afirma, ainda, que a qualidade do produto pode ser medida de acordo com a satisfação do cliente. Quando o produto atende todos os requisitos do consumidor, pode-se dizer que possui alta qualidade. Algumas aspectos podem ser utilizados para avaliar a qualidade do produto, como por exemplo: facilidade de uso e manutenção, economia, segurança etc.

Segundo Taguchi’s *apud* Bralla (1996), o produto alcança a qualidade ideal quando sua performance plena ocorre nas seguintes situações:

1. toda vez que é utilizado;
2. sob condições específicas de operação determinadas em projeto;
3. por toda sua vida;
4. sem problemas colaterais causados por má qualidade de suas peças.

O usuário deve estar ciente que não é apenas o projeto que garante a alta qualidade dos produtos, e sim todas as etapas da vida deste, que vão desde o desenvolvimento do produto até a sua produção, distribuição, uso e manutenção. Deve-se notar ainda que a maior parte das falhas que ocorre durante a produção esta relacionada à falha de projeto, sistema e métodos de montagem e não ao operador; portanto, a qualidade deve ser garantida durante o desenvolvimento do produto e processo.
Assim, todo o processo de fabricação deve ser cuidadosamente executado, por todos os envolvidos, para garantir a qualidade do produto em mais esta etapa da sua vida. Deste modo, a metodologia do Gerenciamento da Qualidade Total (*Total Quality Management - TQM*) é aplicada.

Dentro do escopo do TQM, a empresa deve fazer com que todos os funcionários envolvidos entendam as reais necessidades do cliente, além de incorporar a filosofia de melhorias contínuas durante toda a vida do produto, para garantir que as expectativas do cliente sejam sempre atendidas.

Além do comprometimento dos funcionários, desde o desenvolvimento do produto até sua produção e venda, Bralla (1996) ainda cita outras ferramentas e conceitos que devem ser utilizados no controle da qualidade da produção para atender plenamente a filosofia do TQM, como por exemplo:

1. **CEP** (Controle Estatístico do Processo): é uma ferramenta que utiliza a estatística para identificar e corrigir falhas no processo que afetam a qualidade do produto;

2. **Esforço para eliminar erros**, cuja meta é a perfeição;

3. **Prevenção dos defeitos antes mesmo que eles possam ocorrer**;

4. **Melhorias contínuas do produto e qualidade**;

5. **QFD (Quality Function Deployment)**: um sistema utilizado para traduzir os requisitos desejados pelo mercado consumidor para todas as áreas e etapas da fabricação do produto, incluindo desenvolvimento do projeto, engenharia de produtos, manufatura, *marketing*, vendas e distribuição.

3.2.2 Qualidade no projeto

Em sua obra, Bralla (1996) cita regras que, quando aplicadas durante o projeto, resultam no aumento da qualidade dos produtos, atingindo altos níveis de qualidade, como por exemplo:
1. Projetar o produto ou componente de modo que permita a realização de testes para garantir o seu funcionamento, evitando assim que o subconjunto, que apresente falhas, continue no processo de montagem, dificultando o seu reparo posterior; e até mesmo que este produto chegue nas mãos do cliente final com problemas de qualidade;

2. Utilização de peça padrão existente no mercado, quando possível, em vez de projetar novos componentes. Peças padronizadas e já utilizadas em outros produtos possuem seus processos de fabricação e qualidade testados e aprovados e não necessitam de nova certificação;

3. Utilização de dimensões padrão em desenho, dimensões lineares em vez de angulares auxiliam a manufatura;

4. Projetar peças e determinar tolerância que reduza ou elimine a necessidade de ajustes durante a produção. A eliminação de ajustes normalmente reduz o número de componentes do produto, pois elementos utilizados para gerar movimentos e travas não são mais necessários;

5. Projetar peças cujas dimensões críticas possam ser controladas através de ferramentas, evitando o set up de equipamentos de produção ou interferência humana. Por exemplo: moldes de injeção, estamparia etc.;

6. Minimizar o número de peças diferentes, dar preferência à padronização para evitar a montagem de peças erradas e facilitar a montagem do produto e uso de ferramentas em comum;

7. As modificações realizadas no produto pela engenharia devem ser implementadas e testadas na manufatura o mais rápido possível, visando identificar e sanar possíveis falhas de projeto;

8. Projetar, visando facilitar a montagem:

 a) Projetar peças que eliminem a possibilidade de montagem errada;
b) Projetar o produto onde a falta de qualquer peça impeça a continuação da montagem do conjunto ou que possa ser facilmente notada.

c) Projetar peças que não permitam a montagem na sequência errada;

d) Projetar peças que permitam visão total da operação de montagem, auxiliando na montagem correta do produto.

3.3 Design for Reliability

3.3.1 Confiabilidade

A confiabilidade do produto pode ser definida como: "A medida da habilidade de um produto operar com sucesso, quando solicitado, por um período de tempo pré-determinado, e sob condições ambientais específicas. É medida com uma probabilidade" (European Organization For Quality Control, 1965).

Em outras palavras, a confiabilidade representa a probabilidade do produto, sistema ou processo funcionar, quando necessário, e por um período de tempo pré-determinado, respeitando as características funcionais, temporais e ambientais determinadas em projeto.

A confiabilidade pode ser medida também pela taxa de falhas ou pelo tempo que leva até um determinado componente falhar; acontece sempre quando este não atende as condições esperadas de funcionamento, dentro das características para as quais ele foi projetado.

Deve-se considerar, durante o projeto, que a confiabilidade está diretamente relacionada com o número de componentes existentes no produto; quanto maior, menor será a confiabilidade, pois a possibilidade de ocorrência de uma falha aumenta.

proporcionalmente. Pode-se sugerir, nesta fase, um estudo de DFMA visando reduzir o número de peças e facilitar a montagem deste produto, evitando falhas e aumentando a confiabilidade final.

3.3.2 A curva da banheira

A curva da banheira, como é conhecida, representa o comportamento da taxa de falhas de um determinado componente ou sistema em função do tempo. Este nome é dado devido ao formato da curva, que, na maioria das vezes, possui a forma de uma banheira; a exceção é dada apenas aos sistemas que possuem redundância.

A curva da banheira pode ser dividida em três regiões. A primeira representa a fase onde o sistema apresenta falhas prematuras, causadas principalmente por problemas ocorridos durante montagem ou por componentes com defeitos. Pode-se notar que no início a taxa de falhas é elevada, mas decresce com o tempo. A segunda região possui taxa de falhas constante e a chance de falhar passa a ser aleatória, não mostrando indícios de que irá ocorrer. A terceira região representa o fim da vida operacional do sistema, a taxa de falhas cresce devido ao envelhecimento funcional dos componentes, fadiga e corrosão.

![Figura 3.2 Curva da banheira (Leitch, 1995)](image)

O projeto do produto deve ser eficiente a ponto de prevenir que ocorram falhas prematuras, causadas por montagem ou componentes defeituosos. Deste modo, a primeira região da curva da banheira pode ser significativamente reduzida ou até mesmo eliminada.
Neste contexto, o DFMA desponta, ao lado do *Design for Reliability*, como uma ferramenta para simplificar o projeto do produto, facilitando a sua montagem, evitando que erros causem a "morte" prematura dos componentes do produto e aumentando assim a confiabilidade.

3.3.3 Confiabilidade no projeto

Em sua obra, Bralla (1996) define algumas regras que podem aumentar a confiabilidade de produtos, como por exemplo:

1. Simplificar ao máximo o produto e consequentemente a sua montagem; desta forma a confiabilidade será automaticamente aumentada, uma vez que a probabilidade de erro é diminuída com a redução da complexidade;

2. Aumentar a confiabilidade dos componentes do produto;

3. projetar produtos de fácil manutenção preventiva e pró-ativa e reparos; deste modo, a falha de alguns componentes se torna menos crítica;

4. Prever possíveis problemas ambientais no projeto, como por exemplo: calor externo, umidade, interferências etc.;

5. Padronizar peças, utilizar componentes encontrados no mercado em troca de novos projetos;

6. Projetar pensando na montagem e prevenindo possíveis falhas causadas por operadores;

7. Projetar produtos que possam ser testados facilmente.

3.3.4 Confiabilidade x DFMA

Deve-se porém evitar que a aplicação cega de regras de DFMA afete a confiabilidade do produto e vice-versa. Bralla (1996) cita algumas regras de DFMA e confiabilidade que podem conflitar entre si, tais como:
1. **Tolerâncias maiores**: o aumento das tolerâncias do produto facilita sua fabricação e montagem; porém, aumentam as variações dos componentes, podendo causar impactos na qualidade, performance e confiabilidade do mesmo;

2. **Eliminação de ajustes**: a eliminação dos ajustes na produção implica na modificação do dimensional dos componentes; porém, para garantir uma confiabilidade e qualidade adequada, o controle de produção dos componentes deve ser rigoroso, evitando variações;

3. **Redundância**: a redundância muitas vezes é utilizada para aumentar a confiabilidade; quando um componente importante falha, existe outro para suprir a sua função. Este princípio da confiabilidade vai de encontro à redução do número de peças proposto pelo DFMA.

Resumindo, as regras de DFMA e confiabilidade devem ser analisadas cuidadosamente para evitar que modificações propostas para atender o DFMA impliquem na redução da confiabilidade e qualidade do produto.

3.4 Design for serviceability / maintainability

3.4.1 Design for Serviceability and Maintenability

O Design for Serviceability and Maintenability visa desenvolver o produto que apresente facilidade de manutenção e serviços durante toda a sua vida.

Os custos de manutenção de um produto podem causar a insatisfação do cliente, e é por esta razão que este aspecto deve ser amplamente abordado durante o desenvolvimento do projeto do produto.

Na maioria dos casos, a aplicação do DFMA e a consequente simplificação do produto fazem com que automaticamente a manutenção deste seja beneficiada. Porém, apenas o DFMA não é suficiente para resolver problemas de manutenção do produto, o que torna necessária a aplicação de princípios específicos para esta finalidade.
3.4.2 *Regras para Design for Serviceability and Maintenability*

Em sua obra, Bralla (1996) cita algumas regras que devem ser aplicadas quando se objetiva melhorar e reduzir custos de manutenção e serviços, como por exemplo:

1. Aumento da confiabilidade: conforme comentado no item que trata sobre a confiabilidade, quanto maior for o número, menor será a probabilidade do componente ou produto falhar e, portanto, menor será a necessidade de manutenção;

2. Projetar produtos garantindo que os componentes que necessitam de manutenção periódica estejam visíveis, com fácil acesso, inspeção e sejam simples de serem testados;

3. Projetar módulos que possam ser trocados, facilitando a manutenção. As principais vantagens do uso de módulos são: a simplicidade de substituição, facilidade de testar o componente e redução de estoque e inventário, pois, muitas vezes, um mesmo módulo pode ser utilizado em mais de um tipo de produto. Deve-se, porém, atentar para o fato que muitas vezes o custo de um módulo é superior a um único componente e sua manutenção; cada caso deve ser analisado separatamente e adotado quando vantajoso;

4. Sempre que possível, utilizar peças padronizadas e fáceis de encontrar no mercado;

5. Projetar sistemas auto-diagnosticáveis para facilitar a manutenção;

6. Projetar componentes que impeçam a montagem errada durante a manutenção;

7. Incorporar avisos que indiquem a necessidade de manutenção ou revisão do produto;

8. Providenciar manuais que indiquem e orientem a manutenção do produto.
3.5 Design for Safety

3.5.1 Design for Safety

Design for Safety é mais uma metodologia do DFX e tem como objetivo garantir a segurança do produto, do ponto de vista da manufatura, do uso e do descarte.

Assim como a confiabilidade e a qualidade, a segurança é um atributo que deve nascer com o produto, pois implementá-la depois é muito complicado e, algumas vezes, até impossível.

Segundo Bralla (1996), não existe produto algum que possa ser considerado totalmente seguro. Variações nas condições de uso, falta de entendimento do produto por parte do cliente e outros fatores fazem com que sempre exista um risco para a segurança. O projetista deve, porém, encontrar um equilíbrio entre os custos de manufatura, outros atributos desejados e o custo da segurança do produto.

Sempre que for identificado algum ponto de possível risco de acidente durante o mau uso, o projetista deve informar o usuário através de avisos no produto e no manual; porém, estas falhas devem ser evitadas ao máximo com a aplicação de sistemas de segurança adicionais.

As empresas devem estar cientes de que não é apenas o projeto que torna o produto mais ou menos seguro; a manufatura pode causar falhas imperceptíveis que occasionam falta de segurança para o usuário. Durante a sua fabricação, o produto deve ser testado de modo a garantir o seu correto funcionamento.

3.5.2 Regras para Design for Safety

Bralla (1996) cita algumas regras que devem ser aplicadas quando se objetiva melhorar a segurança de produtos, como por exemplo:

1. Projetar mecanismos e dispositivos que evitem acidentes em caso de falha do produto;
2. Desenvolver sistemas que evitem acidentes em caso de falha humana durante o uso do produto;

3. Eliminar quinas pontiagudas e afiadas que possam causar cortes e machucados no usuário;

4. Projetar capas protetoras, onde existam movimentos mecânicos, para evitar a entrada de objetos estranhos e mãos, e proteger durante a manutenção do produto;

5. O projetista deve garantir o aterramento de produtos elétricos para evitar choque nos usuários;

6. O projetista deve utilizar materiais com alta resistência a impacto, principalmente quando se trata de produtos para crianças, a fim de evitar que, em uma queda, o produto se quebre formando quinas, pontas afiadas, etc, que possam causar ferimentos.

3.6 Design for the Environment

3.6.1 Design for the Environment

O Design for the Environment, ou Green Design, como também é conhecido, foi elaborado visando aliviar os recentes problemas de poluição e destruição do meio ambiente.

Além dos benefícios conhecidos, o advento da tecnologia e urbanização das cidades trouxe também graves problemas para o meio ambiente, que estão sendo notados recentemente; a poluição do ar, água e solo e o desmatamento florestal são as principais preocupações dos cientistas e da população de todo o planeta.

Porém, os projetistas têm trabalhado no desenvolvimento de produtos que agridem menos o meio ambiente. Ainda não se pode falar em eliminar componentes e materiais responsáveis pela poluição, mas na redução de tudo aquilo que possa gerar alguma consequência para a natureza.
O Design for the Environment orienta projetistas no desenvolvimento de produtos que não causem, ou causem menos, efeitos prejudiciais para a natureza durante todo o seu ciclo de vida, o que inclui a manufatura, uso e descarte.

Em sua obra, Kaminski (2000) comenta sobre a preocupação das empresas em manter o seu mercado consumidor, que agora procura por produtos que não prejudiquem o meio ambiente. Ele diz, ainda, que o lucro ou prejuízo das empresas está diretamente relacionado aos três reflexos imediatos, citados a seguir:

1. “pressão do mercado consumidor, que pode implicar a rejeição do produto ou a preferência pelo produto concorrente”;

2. “cobrança de instituições públicas e privadas, que pode se traduzir em multas ou penalidades”;

3. “ganho econômico, evitando desperdícios e reaproveitando produtos”.

As discussões sobre o Design for the Environment geraram uma outra necessidade: a de se desenvolver produtos em que a separação dos materiais recicláveis fosse fácil e barata. Descobriu-se que a reciclagem poderia render lucros para as empresas, no sentido do reaproveitamento de materiais usados e na redução de custos resultante da diminuição dos depósitos; porém, a reciclagem se torna cara quando a separação dos materiais é difícil e, pensando nisso, foram elaborados o Design for Recycling e o Design for Disassembly, ou seja, projetos pensando na reciclagem e na desmontagem dos produtos.

A reciclagem de materiais nem sempre é uma boa solução para a reposição de matéria-prima para o mercado. Alguns materiais necessitam de muita energia para reciclar, tornando-os inviáveis do ponto de vista do meio ambiente e do custo.

Bralla (1996) descreve o escopo do Design for the Environment como sendo o desenvolvimento de produtos, considerando os seguintes aspectos:

1. Matéria-prima: reduzir a poluição do ar, água e terra causada durante a extração da matéria-prima, que possa de alguma maneira prejudicar os trabalhadores, do local, e as famílias que vivem nas proximidades;
2. Manufatura: reduzir a poluição do ar, água e terra causada por materiais gasosos, líquidos e sólidos provenientes do processo de fabricação do produto. Reduzir a poluição sonora na fábrica;

3. Distribuição e Vendas: reduzir a poluição causada durante o transporte e manuseio do produto;

4. Uso: reduzir a poluição do ar, água e terra causada pela emissão de gases durante o uso do produto, pelo vazamento de fluidos e gases de refrigeração, bem como a poluição sonora;

5. Descarte: reduzir ou eliminar a poluição do ar, água e terra causada pelo descarte inapropriado de produtos radioativos, fluidos e gases poluentes.

3.6.2 Regras para Design for the Environment

Bralla (1996) cita algumas regras que podem ser aplicadas durante o desenvolvimento de produtos, para que colaborem na preservação do meio ambiente durante a sua manufatura, uso e descarte, como por exemplo:

1. Os projetistas devem evitar ao máximo o uso de materiais tóxicos no produto e na sua manufatura;

2. Os projetistas devem desenvolver produtos que possam ser reciclados após o uso;

3. Minimizar o número de peças no produto é uma outra técnica utilizada para favorecer o meio ambiente, pois, à medida que o número de componentes é reduzido, a poluição e a energia utilizadas para a sua fabricação e reciclagem também serão reduzidas;

4. Minimizar o número de materiais diferentes no produto visando facilitar a reciclagem;

5. O projetista deve utilizar o menor número de parafusos e porcas para facilitar e reduzir o tempo da desmontagem do material para reciclagem;
6. Escolher materiais compatíveis que possam ser reciclados juntos quando a minimização das peças não puder ser aplicada;

7. Padronizar os componentes para facilitar a reutilização em produtos similares;

8. Identificar a composição da matéria-prima do componente na própria peça para facilitar a reciclagem, por exemplo, em plásticos.

3.7 Design for User-Friendliness

3.7.1 Design for User-friendliness

Design for User-friendliness pode também ser chamado de Design for Human Factors e Design for Ergonomics. Esta metodologia, que também faz parte dos objetivos do Design for Excellence, auxilia os projetistas no desenvolvimento de produtos que são de fácil entendimento por parte de seus clientes, seguros, ergonômicos, confiáveis e que atinjam a satisfação do cliente.

Bralla (1996) afirma que User-friendliness deveria ser o primeiro objetivo do projeto do produto, já que a intenção de todos os produtos é atender as necessidades do usuário. Ele diz ainda que o User-friendliness maximiza a utilidade do produto, melhorando sua eficiência, segurança e conforto; produtos famosos pela sua facilidade de uso, geralmente, são mais fáceis de comercializar.

Shneiderman e Gross's apud Bralla (1996) citam os maiores objetivos, do ponto de vista da utilização, como por exemplo:

1. Curto período de aprendizado de operação do produto;
2. Baixa taxa de erros de operação pelos usuários;
3. Aumento da satisfação do cliente;
4. Maximizar a facilidade de uso.

O desenvolvimento de um produto "amigável" para o cliente implica no conhecimento prévio do usuário a quem se destina. O projetista deve saber qual será
o mercado consumidor deste produto e identificar suas dificuldades, desejos e necessidades.

3.7.2 Princípios para o Design for User-friendliness

Com o objetivo de desenvolver um produto que atenda os requisitos do Design for User-friendliness, Bralla (1996) criou alguns princípios para serem aplicados durante o desenvolvimento do produto, como por exemplo:

1. O produto deve ter suas funções simplificadas, de modo que necessite de um número menor de atividades e conhecimentos do usuário para a utilização;

2. O controle do produto deve parecer óbvio para o usuário, de modo que uma pequena ação dele resulte no resultado desejado. O produto não deve confundir o usuário.

3. O projetista deve prever mecanismos que evitem o uso incorreto do produto;

4. O uso de visores eletrônicos, displays é um artifício bastante utilizado, e desejados pelos clientes para facilitar o uso do produto, indicando funções e apresentando informações importantes;

5. Uma das maneiras de evitar erros durante a utilização do produto é colocar instruções visíveis para que o usuário possa ter acesso mais rápido e fácil;

6. A utilização de funções já conhecidas pelo usuário é uma das maneiras de fazer com que o produto se torne amigável.

3.8 Design for short time-to-Market

3.8.1 Design for Short Time-to-Market

Design for Short Time-to-Market pode ser definido como sendo o desenvolvimento de um projeto em que se gasta o menor tempo possível para
disponibilizar o produto para o mercado consumidor; este período de tempo é contado a partir da ideia de modificar ou desenvolver um produto até o momento em que este é comercializado, ou seja, liberado para o mercado.

As empresas devem analisar cada caso separadamente, pois algumas vezes é mais vantajoso gastar mais para adiantar o desenvolvimento que economizar, mas atrasar a liberação do produto para vendas. Bralla (1996) cita em seu livro que uma empresa americana realizou um estudo em que mostra que um produto que entra no mercado seis meses atrasado, mas com os gastos dentro do planejado, perde cerca de 33% de lucro em um período de 5 anos; já um produto que é lançado no tempo determinado, mas com um gasto extra de 50%, tem seu lucro reduzido em apenas 4% no mesmo espaço de tempo.

Bralla (1996) cita, ainda, algumas vantagens da redução do tempo de desenvolvimento do produto e sua conseqüente disponibilização para vendas, como por exemplo: aumento do mercado consumidor, devido a sua disponibilização adiantada; redução de custos de desenvolvimento, por diminuir gastos com alterações e retrabalhos do projeto; aumento da chance de desenvolver um produto que atinja a satisfação e preferência do mercado consumidor; liberação da equipe de desenvolvimento para trabalhar em um outro projeto mais cedo etc.

A aplicação da engenharia simultânea, durante o desenvolvimento do projeto, permite que várias atividades aconteçam ao mesmo tempo, adiantando a finalização do projeto e sua liberação para o mercado consumidor e redução nos custos de desenvolvimento; pode-se citar como exemplo as seguintes atividades: o planejamento da manufatura, a antecipação de problemas e correção no início do desenvolvimento, a compra e desenvolvimento de dispositivos e equipamentos.

A utilização de softwares simuladores do produto e da manufatura, como por exemplo CAD/CAM (computer-aided design e computer-aided manufacturing), é outra maneira de reduzir o tempo de desenvolvimento do projeto. As respostas do produto e da sua manufatura acontecem quase que instantaneamente, facilitando a correção de problemas, acarretando na redução do prazo e custo do desenvolvimento.
3.8.2 Regras para Design for Short Time-to-Market

Bralla (1996) cita algumas regras com objetivo de reduzir o prazo de desenvolvimento e liberar o produto mais rapidamente para o mercado consumidor, como por exemplo:

1. Uso de componentes padronizados reduz o tempo de desenvolvimento, teste, aprovação e de desenvolvimento de para a produção de um componente novo;

2. Uso de sistemas, procedimentos e materiais padronizados e existentes reduzem o tempo de negociação e testes;

3. Uso de sistemas modulares, especialmente se estes já são utilizados por outros produtos;

4. Fazer certo na primeira vez, ou seja, evitar erros que demandem tempo para serem corrigidos, atrasando o projeto;

5. Projetar o produto que não necessite de ferramentas com alto prazo de desenvolvimento.
CAPÍTULO 4 - PRINCÍPIOS BÁSICOS DO DFMA

4.1 Introdução

O Design for Manufacturability and Assembly leva em consideração a função, a forma, o material e a montagem de cada peça de modo a desenvolver um produto funcional e simples, minimizando e/ou incorporando peças do sistema e reduzindo o custo do produto e da montagem. Neste contexto, foram criados vários princípios que auxiliam os projetistas a desenvolver um produto atendendo os requisitos básicos da metodologia DFMA.

Os princípios utilizados para desenvolver um produto, dentro do contexto do DFMA, são encontrados em inúmeras literaturas. Os tópicos a seguir irão citar as principais regras que devem ser aplicadas para conseguir um produto que atenda todas as necessidades do cliente.

4.1.1 Minimização do número de peças:

Este é um dos princípios mais evidente e importante de todos, pois, com a redução do número de peças, o custo do produto, da montagem e o tempo de montagem também podem ser reduzidos, simplificando o produto final. Sempre que possível, as peças devem ser combinadas, formando o menor número possível para a montagem, eliminando operações de montagem e submontagem.

Segundo Boothroyd; Dewhurst; Knight (1994), para verificar se o componente é realmente necessário no produto, as seguintes perguntas devem ser respondidas. A resposta negativa significa que a peça deve continuar separada das demais e que não pode ser eliminada.
1. O componente deve possuir movimento relativo ao conjunto?

2. O material do componente deve ser diferente do material do conjunto?

3. O componente deve ser separado para permitir a desmontagem e remontagem do conjunto?

Sousa (1998) comenta, ainda, que o componente deve permanecer separado dos demais quando existe alguma restrição técnica de manufatura e quando a combinação e eliminação dificultam o acesso a outras montagens.

Bralla (1996) cita alguns aspectos que devem ser analisados para combinar as peças de um produto:

1. Incorporar dobradiças: as dobradiças podem ser incorporadas em vários materiais plásticos e flexíveis;

2. Incorporar molas: molas podem ser incorporadas em materiais como metais, plásticos e, em alguns casos, fibras;

3. Uso de elementos de encaixe, incorporados na peça, em troca de parafusos.

4. Incorporar elementos como guias e coberturas.

Em sua obra, Bralla (1996) cita, ainda, um trecho do texto de Stoll que diz:

“Menor número de peças significa menos tudo que é necessário para manufaturar um produto. Isto inclui tempo de engenharia, desenhos e número de peças, controle de produção e inventário; número de pedidos de compra, vendedores etc.; número de bins, containers, armazém, buffers etc.; número de equipamentos de manuseio, containers, número de movimentos etc.”
4.1.2 Montagem modular ou com componente-base:

A montagem com componente-base é uma técnica utilizada que visa o uso de apenas uma base para a produção de produtos diferentes; esta técnica permite também a incorporação de componentes de fixação e características de alinhamento, facilitando a montagem e reduzindo o custo do produto.

A montagem modular tem como objetivo diversificar produtos a partir da combinação de módulos intercambiáveis e funcionalmente independentes, como por exemplo componente-base. Este conceito traz como vantagem uma maior agilidade e flexibilidade ao processo.

4.1.3 Padronização de componentes:

A padronização de componentes implica na redução da variação de peças em uma linha de montagem, redução de tempo com engenharia no desenvolvimento de novos componentes, redução no manuseio, otimização da montagem, padronização de ferramentas, redução de treinamento de pessoal e aumento da qualidade e confiabilidade do produto entre outros.

Deste modo, sempre que possível, o conceito de padronização de componentes deve ser utilizado, a fim de facilitar a montagem, diminuir custos com equipamentos, peças estocadas na linha e custo final do produto.

Este conceito deve ser amplamente utilizado quando se trata de componentes de fixação, pois, quanto mais padronizados forem, menor será o número de ferramentas, treinamento e variação na linha de montagem.

A padronização de produtos em uma mesma linha de montagem ajuda a reduzir o custo do produto final, e deve ser aplicado sempre que possível. Quando o produto é padronizado, custos com mão-de-obra, treinamento, ferramentas, etc., podem ser reduzidos. Sousa (1998) comenta que, quando a padronização é inevitável, “sempre que possível, deve-se incorporar características para todas as variantes do produto numa submontagem comum.”
4.1.4 Projeto de peças com características autofixadoras:

Sempre que possível, deve-se projetar peças com características autofixadoras de modo a eliminar componentes, como por exemplo parafusos, porcas e arruelas, e facilitar a montagem e desmontagem do produto.

Segundo Sousa (1998), alguns caminhos para se usar a autofixação são:

1. projetar encaixes em peças plásticas (exemplo: snaps);
2. criar características do tipo tab-in-slot em chapas metálicas de modo a utilizar o menor número de fixadores.

4.1.5 Montagem empilhada ou unidirecional:

Durante o projeto de um produto, deve-se sempre dar preferência para a montagem unidirecional, utilizando sempre a lei da gravidade, ou seja, de cima para baixo. A montagem empilhada ou unidirecional reduz o número de reorientações do componente durante a sua montagem, facilitando o processo de fabricação.

Figura 4.1 Montagem empilhada – unidirecional (Boothroyd; Dewhurst; Knight, 1994)

4.1.6 Projeto peças com características de autolocalização:

Os projetistas devem, sempre que possível, desenvolver componentes com características autolocalizadoras, visando uma montagem precisa, sem ajustes, rápida e fácil. Peças com estas características reduzem o tempo de
montagem e aumentam a qualidade do produto, além de permitirem que a
montagem seja feita automaticamente por um equipamento.

Características autolocalizadoras podem ser conseguidas no componente por
intermédio de chanfros, rebaixos etc.

![Figura 4.2 Características autolocalizadoras (Boothroyd; Dewhurst; Knight, 1994)](image)

Figura 4.2 Características autolocalizadoras (Boothroyd; Dewhurst; Knight, 1994)

![Figura 4.3 Características autolocalizadoras (Boothroyd; Dewhurst; Knight, 1994)](image)

Figura 4.3 Características autolocalizadoras (Boothroyd; Dewhurst; Knight, 1994)

4.1.7 *Minimização de níveis de montagem:*

Deve-se prever a possibilidade de submontar componentes de um
produto antes da sua montagem final. Esta técnica simplifica o processo de
fabricação e documentação e facilita o layout da fábrica, além de aumentar a
flexibilidade da programação da produção.

A submontagem de componentes, além de facilitar a manufatura, traz
também benefícios para o cliente, pois este processo aumenta a qualidade e
confiabilidade do produto e facilita e simplifica a manutenção do mesmo.
4.1.8 Facilidade de manipulação de peças:

Deve-se projetar componentes com peso reduzido e que permitam fácil manipulação, facilitando a montagem e reduzindo o tempo com a operação.

Segundo Sousa (1998), os principais fatores que afetam a manipulação são:

1. geometria: pode ser simplificada pelo emprego de formas regulares;
2. rigidez: evitar materiais macios, moles, pontiagudos ou frágeis;

Figura 4.4 Materiais flexíveis e pontiagudos (Boothroyd; Dewhurst; Knight, 1994)

3. peso: evitar componentes pesados;
4. não utilizar peças muito pequenas, muito grandes ou escorregadias que possam dificultar o manuseio;

Figura 4.5 Peças pequenas ou escorregadias (Boothroyd; Dewhurst; Knight, 1994)
5. peças simétricas reduzem a orientação e a ocorrência de falhas durante a montagem; se a simetria não for possível, projetar características obviamente assimétricas;

Figura 4.6 Peças simétricas (Boothroyd; Dewhurst; Knight, 1994)

Figura 4.7 Peças assimétricas (Boothroyd; Dewhurst; Knight, 1994)

6. não utilizar peças que se aninham ou se emaranham;

Figura 4.8 Peças que podem ficar presas (Boothroyd; Dewhurst; Knight, 1994)

Figura 4.9 Evita emaranhamento (Boothroyd; Dewhurst; Knight, 1994)

7. considerar o empacotamento individual das peças;
8. usar furos ovais para evitar ajustes;
9. usar as propriedades elásticas dos plásticos com uma vantagem;
10. facilitar o acesso ao componente, maximizando o espaço disponível;
11. evitar utilizar peças que necessitem ser manipuladas por duas ou mais mãos.

4.1.9 Projeto para estabilidade:

Deve-se evitar projetar peças que possam se movimentar durante a montagem; as peças devem permanecer estáticas durante a operação. Deste modo, o operador não precisa se preocupar e perder tempo com o processo, pois os componentes envolvidos permanecerão imóveis durante a montagem, não havendo risco de perdê-los.

4.1.10 Minimização da necessidade de ajustes

A eliminação, ou redução, de ajustes durante a montagem ajuda a diminuir o tempo do processo, facilitar a manufatura e aumentar a qualidade e confiabilidade do produto; deste modo, esta técnica deve ser adotada sempre que possível.

4.1.11 Otimização da sequência de montagem:

A sequência de montagem deve ser determinada através da coerência na montagem do produto. Quanto mais otimizado for, melhor será a manufatura do produto, reduzindo tempo e facilitando a sua montagem.

Uma das técnicas utilizadas para determinar a sequência de montagem é determinar a sequência de desmontagem; segundo Sousa (1998), duas suposições são feitas:

1. desmontagem é um processo no qual cada peça pode ser retirada da estrutura, sem prejudicar a estrutura da submontagem;
2. a sequência de montagem é o inverso da sequência de desmontagem.

Segundo Ullman *apud* Sousa (1998), uma sequência eficiente é aquela que:

1. possui o menor número de passos;
2. evita o risco de danificar as peças;
3. evita posições instáveis ou inseguras para o produto, operários ou equipamentos durante a montagem.
CAPÍTULO 5 - METODOLOGIAS COMPLEMENTARES: Engenharia Simultânea - Time de Trabalho e Engenharia do Valor / Análise do Valor

5.1 Introdução

Pode-se afirmar que o DFMA alcança melhores resultados quando associado a outras metodologias conhecidas, como por exemplo: (a) Engenharia Simultânea e (b) Engenharia do Valor / Análise do Valor.

A utilização da Engenharia Simultânea no desenvolvimento de produto, tem por objetivo a formação de grupos de trabalho interdepartamentais, compostos por especialistas em desenvolvimento de projetos, planejamento da manufatura, engenheiros de processos, marketing etc.

Por sua vez, a Engenharia do Valor / Análise do Valor visa identificar a função e o “valor” de cada componente do produto, facilitando a identificação e eliminação de itens desnecessários para o funcionamento do produto; além de promover um melhor entendimento, por parte do grupo, da função e necessidade de cada peça do produto.

Deste modo, as duas metodologias contribuem para uma análise de DFMA mais eficiente.

5.2 Engenharia Simultânea

O desenvolvimento de um produto novo, ou a reformulação de um existente, não são tarefas fáceis para os projetistas. Neste momento, os engenheiros devem analisar vários pontos importantes, não apenas para o produto, mas também para a manufatura, vendas, serviço de pós-vendas, qualidade etc.; porém, os engenheiros de
produto não possuem conhecimentos suficientes para resolver problemas das outras áreas envolvidas.

O principal objetivo da formação de um grupo heterogêneo, que pode aproveitar experiências de diferentes profissionais com diversos pontos de vista sobre o projeto de um mesmo produto, reside na otimização do processo de desenvolvimento e no projeto de produtos que atendam requisitos funcionais, técnicos, de manufatura, marketing etc.

Em sua obra, Bralla (1996) cita três etapas do processo do desenvolvimento de produtos no que tange ao relacionamento interdisciplinar:

1. *Over the wall*: representa a fase onde a engenharia de produto e de manufatura conversavam através da parede, ou seja, a documentação referente ao novo produto era enviada para a engenharia de manufatura sem nenhuma interferência desta no projeto. A figura abaixo é citada por vários autores conceituados e representa esta divisão clara entre os departamentos;

 ![Figura 5.1 Over the wall (Boothroyd; Dewhurst; Knight, 1994)](image)

2. *The sign-off procedure*: nesta fase, a engenharia de manufatura aprova o projeto final do produto antes da liberação para a produção;

3. Engenharia Simultânea: a engenharia de produto, manufatura e outros departamentos, igualmente importantes, participam do desenvolvimento do produto desde o início.
Vale salientar que o fato de ter ocorrido uma evolução na comunicação entre os departamentos não garante que, ainda hoje, existam empresas onde o produto é desenvolvido apenas pela engenharia de produto sem nenhuma participação dos outros departamentos.

Pode-se citar como benefícios decorrentes da engenharia simultânea os seguintes aspectos:

1. Redução de custos, uma vez que os problemas são encontrados mais rapidamente durante o desenvolvimento em que os custos de modificações não são ainda elevados.

2. Redução no prazo de desenvolvimento e planejamento da produção, pois estas duas etapas acontecem simultaneamente;

3. O resultado final do produto é consideravelmente superior devido ao fato de pessoas com diferentes pontos de vista estarem participando do desenvolvimento;

4. Maior compatibilidade entre o produto e a manufatura, uma vez que o desenvolvimento considera os aspectos relevantes ao processo de fabricação.

Bralla (1996) cita, também, algumas desvantagens e considerações importantes que devem ser analisadas na implementação da Engenharia Simultânea, como por exemplo:

1. Dificuldade de gerenciar times de trabalho em relação a projetistas individuais;

2. Dificuldade de algumas pessoas, consideradas ótimas projetistas, em trabalharem em grupo;

3. Custo de reunir um grupo de especialistas no desenvolvimento de um projeto;

4. Possibilidade de desenvolver um projeto, utilizando softwares e atendendo os requisitos do DFMA e DFX, sem a aplicação da Engenharia Simultânea.
5.2.1 *Time de trabalho x Estrutura organizacional*

A Engenharia Simultânea é utilizada durante o desenvolvimento do produto através de um time que faz parte da estrutura organizacional da empresa, e que deve estar dividido em funcional e matricial.

Na estrutura funcional, os profissionais são agrupados pela área de atuação, formando departamentos que se reportam aos gerentes funcionais. Pode-se citar como exemplo os departamentos de Engenharia de Manufatura, Engenharia de Produto, Marketing, Compras, etc.

A estrutura matricial tem a função de integrar os profissionais de diferentes departamentos funcionais, a fim de otimizar os recursos e o desenvolvimento do trabalho. Vale salientar que os gerentes funcional e matricial possuem o mesmo grau de hierarquia, mas atuam em áreas e funções diferentes.

O time de trabalho interdepartamental formado para desenvolver um novo produto, utilizando a metodologia do DFMA, deve se reportar ao gerente matricial, e os profissionais individuais devem se reportar aos seus respectivos gerentes funcionais. Esta estrutura colabora para uma melhor otimização dos recursos disponíveis para o desenvolvimento do produto em questão.

O trabalho executado por este time é conhecido também como Engenharia Simultânea, pois o produto é desenvolvido ao mesmo tempo em que as outras atividades necessárias para preparar a produção.

A "Figura 5.2 Estrutura Organizacional da Empresa" mostra como deve ser dividida a empresa para a aplicação do DFMA, considerando a Engenharia Simultânea. As linhas verticais mostram os departamentos funcionais, em que os funcionários se reportam aos gerentes funcionais, representados aqui por Gerente da Engenharia de Produtos, Gerente da Engenharia de Manufatura, Gerente de Produção, Gerente de Qualidade, Gerente de Serviços e Pós-vendas, Gerente de Marketing e Gerente de Manuseio. Porém, todos estes funcionários participam do desenvolvimento do projeto A3000 e se reportam matricialmente ao Gerente responsável por este projeto.
5.2.2 O DFMA x Engenharia Simultânea

Bralla (1996) diz que:

“O DFX eficaz necessita da Engenharia Simultânea, ou seja, que o projeto é desenvolvido por um time composto por representantes da engenharia de produtos, engenharia de manufatura, e departamentos como serviços, qualidade, segurança, e engenharia do meio ambiente”.

A Engenharia Simultânea é uma ferramenta eficaz que deve ser utilizada durante a aplicação do DFMA para otimizar esta metodologia, melhorando o seu resultado e reduzindo ainda mais os custos de desenvolvimento do produto.

Segundo Whitney (1988), o grupo formado pela Engenharia Simultânea deve seguir um procedimento durante o desenvolvimento, visando disciplinar e integrar o time de trabalho de modo que todos entendam as características, funções, sistema de manufatura e montagem do produto.

O grupo deve determinar quais são as características principais do produto, pensando, já neste momento, na qualidade e necessidades do cliente. Nesta fase, os representantes da manufatura e marketing devem estar envolvidos para analisar os requisitos do mercado consumidor e a possibilidade de produção, evitando continuar
um projeto que atenda todos os requisitos de marketing e que seja manufaturado de forma precária e com baixa qualidade. Whitney (1988) salienta este problema com as seguintes frases: “Quanto o produto é bom se não consegue ser vendido?” (Departamento de Marketing); “Quanto o produto é bom se não pode ser fabricado?” (Departamento de Manufatura).

Todos os participantes do grupo devem entender quais são as funções que o produto e cada componente deve desempenhar, auxiliando assim na eliminação de peças desnecessárias e na determinação dos procedimentos de montagem e desmontagem mais adequados, reduzindo o custo e melhorando a qualidade.

O estudo da produtividade deve também ser analisado pelo time, visando melhorar não apenas a manufatura e montagem, mas também a produção. A Engenharia do Valor pode ser utilizada para auxiliar na determinação das peças que podem ser dispensadas e/ou combinadas para fornecê-las uma única que desempenhe o mesmo papel. Deve-se pensar também em produtos diferentes que são produzidos na mesma linha de montagem, seja através de lotes ou produção sequenciada; quanto mais peças em comum existirem, mais fácil será o manuseio e a montagem.

A determinação da sequência de montagem pelo grupo de trabalho, durante o desenvolvimento do produto, pode ajudar a reduzir custos de produção e tempo de montagem, bem como aumentar a qualidade do produto. Quando isto é estudado nesta fase, ainda é possível corrigir falhas de projeto que custariam muito para a manufatura, em termos de compra de equipamentos mais sofisticados e facilidade de montagem. Outra vantagem proporcionada é a antecipação do planejamento da padronização de operações, o que é bastante importante para a qualidade dos produtos a serem produzidos. Quanto mais padronizadas forem as operações, menor será o número de erros cometidos pelos operadores e maior será a eficiência da operação.

5.3 Engenharia do Valor / Análise do Valor

As metodologias Engenharia do Valor e Análise do Valor tiveram início durante a Segunda Guerra Mundial, nos EUA, quando a matéria-prima utilizada para fabricação dos produtos se tornou cara e escassa. Porém, foi mais amplamente
difundida entre 1947 e 1952. O objetivo maior destas técnicas estava na procura e desenvolvimento de novos materiais que pudessem substituir aqueles que estavam em falta no mercado.

O sucesso desta técnica fez com que se intensificasse ainda mais a sua utilização após a guerra e a difusão por outros países, como por exemplo Canadá, Alemanha, Áustria, Holanda, Itália, França, Inglaterra, Espanha, Japão e Brasil.

A Análise do Valor e a Engenharia do Valor foram adotadas não apenas por indústrias, mas também por órgãos governamentais, como por exemplo a marinha norte-americana.

5.3.1 Conceito

Segundo Csillag (1995), as técnicas de Análise do Valor e Engenharia do Valor constituem uma abordagem original para reduzir custos de produção de bens e serviços e aumentar o valor para o usuário. Consiste basicamente em identificar as funções de determinado produto, avaliá-las e finalmente propor uma forma alternativa de desempenhá-las de maneira mais conveniente do que a conhecida.

Os conceitos Engenharia do Valor e Análise do Valor voltam-se a aplicações diferenciadas. O termo Engenharia do Valor (EV) é aplicado à análise de produtos novos, enquanto que Análise do Valor (AV) é utilizado para produtos já existentes.

Csillag (1995) diz que:

"Engenharia do Valor é um esforço organizado, dirigido para analisar as funções de bens e serviços para atingir aquelas funções necessárias e características essenciais da maneira mais rentável".

Onde:

- Analisar funções significa identificar o que está sendo oferecido e o que o mercado necessita.
• Características essenciais são aquelas de manutenção, de consumo etc.

• Da maneira mais rentável significa o preço determinado pela geração e avaliação de um conjunto de alternativas incluindo novos conceitos, reconfigurações, eliminação ou combinação de itens, processos ou procedimentos.

Csillag (1995) cita, ainda, a definição dada pela SAVE para Análise do Valor:

"Análise do Valor é um esforço organizado dirigido à análise das funções de sistemas, produtos, especificações, padrões, práticas e procedimentos com a finalidade de satisfazer as funções requeridas ao menor custo possível".

De maneira simplista, realizar a análise do valor de determinado produto, respondendo às perguntas abaixo; porém, casos mais complexos necessitam de maior atenção e metodologia. (Csillag, 1995)

1. Qual é o item a ser analisado?
2. Para que ele serve?
3. Quanto custa?
4. De que outra maneira podemos atender aquela necessidade especifica?
5. Qual será o custo desta alternativa?

Para explicar as técnicas de EV/AV, faz-se necessário definir os termos função, desempenho e valor.

A função de um determinado item pode ser definida como a característica de desempenho que se deseja obter com determinado componente ou produto.

O desempenho é definido por Massarani; Mattos (2001) como o “conjunto de características de funcionamento (funcionalidade) ou propriedades de um determinado elemento que o fazem adequável a um dado propósito ou finalidade específica".
O valor é o equilíbrio adequado entre o custo e o desempenho oferecido.

A EV/AV possui várias técnicas para a análise dos produtos, sistemas, serviços etc. Porém, a que mais se aplica no DFMA é a Anatomia das Funções, que será descrita a seguir.

5.3.2 Técnica EV/AV: Anatomia das Funções

Uma das técnicas conhecidas para iniciar uma EV/AV é a definição da função de todos os componentes do produto, do modo a identificar os componentes necessários, desnecessários, que podem ser combinados etc.

Na anatomia das funções, a função de cada componente é definida, utilizando-se um verbo e um substantivo, em que o verbo pretende descrever qual é a ação do componente e o substantivo qual é o objeto onde o verbo atua.

Por sua vez, as funções são classificadas em seis tipos, definidas por Massarani; Mattos (2001) como:

- Função identificadora: consiste na razão de ser do produto, sem a qual o produto estaria descaracterizado e perderia o seu valor ou utilidade para o usuário. A função identificadora é a responsável pela venda do produto. Normalmente, o produto apresenta apenas uma função identificadora.

- Funções agregadas: são aquelas que possibilitam o desempenho da função identificadora ou, ainda, que ajudam na venda do produto.

- Funções de uso: possibilitam o funcionamento do produto e são definidas por verbos e substantivos mensuráveis.

- Funções de estima: estão relacionadas à vontade do usuário em possuir o produto e são definidas por verbos e substantivos não mensuráveis.

- Funções relevantes: são aquelas que o usuário quer encontrar desempenhadas pelo produto.
Funções irrelevantes: existem somente para que funções relevantes possam ser realizadas, ou seja, aparecem apenas para dar suporte à realização das funções relevantes, dependendo, obviamente, da maneira ou método escolhidos pelo fabricante do produto para desempenhar as funções relevantes.

Para facilitar a descrição das funções de uso e estima, foram selecionados alguns verbos que podem ser utilizados. (Massarani; Mattos, 2001)

<table>
<thead>
<tr>
<th>Verbo</th>
<th>Substantivo</th>
<th>Unidade de medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>conduzir</td>
<td>corrente</td>
<td>ampére</td>
</tr>
<tr>
<td>fornecer</td>
<td>energia</td>
<td>Watt/hora</td>
</tr>
<tr>
<td>suportar</td>
<td>força</td>
<td>kgf</td>
</tr>
<tr>
<td>autorizar</td>
<td>programa</td>
<td>R$</td>
</tr>
<tr>
<td>elaborar</td>
<td>projeto</td>
<td>horas</td>
</tr>
<tr>
<td>diminuir</td>
<td>ruído</td>
<td>decibel</td>
</tr>
<tr>
<td>amortecer</td>
<td>vibração</td>
<td>Hertz</td>
</tr>
<tr>
<td>medir</td>
<td>calor</td>
<td>graus Celsius</td>
</tr>
<tr>
<td>transmitir</td>
<td>torque</td>
<td>kgf/cm</td>
</tr>
</tbody>
</table>

Tabela 5.1 Verbos e substantivos para as funções de uso e estima (Massarani; Mattos, 2001)

Deste modo, o produto deve ser dividido em componentes e cada componente deve ter sua função identificada por um verbo mais um substantivo; cada função deve ser classificada quanto aos critérios descritos acima. A “Tabela 5.2 Exemplo da Técnica Anatomia das Funções para um relógio” exemplifica a utilização desta técnica.
<table>
<thead>
<tr>
<th>Item</th>
<th>Função</th>
<th>Identificadora / Agregada</th>
<th>Relevante / Irrelevante</th>
<th>Uso / Estima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulseira</td>
<td>Prover conforto</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td></td>
<td>Prover estética</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td>Fecho</td>
<td>Facilitar uso</td>
<td>Agregada</td>
<td>Irrelevante</td>
<td>Estima</td>
</tr>
<tr>
<td></td>
<td>Prover estética</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td></td>
<td>Prender objeto</td>
<td>Agregada</td>
<td>Irrelevante</td>
<td>Estima</td>
</tr>
<tr>
<td>Máquina</td>
<td>Contar tempo</td>
<td>Identificadora</td>
<td>Relevante</td>
<td>Uso</td>
</tr>
<tr>
<td>Bateria</td>
<td>Fornecer Energia</td>
<td>Identificadora</td>
<td>Irrelevante</td>
<td>Uso</td>
</tr>
<tr>
<td>Ponteiros</td>
<td>Marcar hora</td>
<td>Identificadora</td>
<td>Relevante</td>
<td>Uso</td>
</tr>
<tr>
<td>Botão de Ajuste</td>
<td>Acelar hora</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Uso</td>
</tr>
<tr>
<td>Visor</td>
<td>Proteger ponteiros</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Uso</td>
</tr>
<tr>
<td></td>
<td>Mostrar horas</td>
<td>Identificadora</td>
<td>Relevante</td>
<td>Uso</td>
</tr>
<tr>
<td>Caixa máquina</td>
<td>Proteger máquina</td>
<td>Agregada</td>
<td>Irrelevante</td>
<td>Uso</td>
</tr>
<tr>
<td></td>
<td>Prover estética</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td>Números</td>
<td>Facilitar visualização</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td></td>
<td>Prover estética</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td>Estampa do visor</td>
<td>Identificar fabricante</td>
<td>Agregada</td>
<td>Irrelevante</td>
<td>Estima</td>
</tr>
<tr>
<td></td>
<td>Identificar modelo</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td></td>
<td>Prover estética</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
<tr>
<td>Calendário</td>
<td>Mostrar data</td>
<td>Agregada</td>
<td>Relevante</td>
<td>Estima</td>
</tr>
</tbody>
</table>

Tabela 5.2 Exemplo da Técnica Anatomia das Funções para um relógio

5.3.3 DFMA x Engenharia do Valor

O principal objetivo do DFMA é desenvolver um produto cuja manufatura seja simples e o seu custo o menor possível. Um dos métodos para alcançar este objetivo é reduzir o número de peças do produto, seja eliminando as desnecessárias ou combinando várias peças em uma única.

A técnica da EV/AV, apresentada no item “5.1.3 – Anatomia das Funções”, é uma ferramenta importante na descrição do produto, pois a função de cada componente é identificada e classificada, possibilitando uma visualização rápida dos itens realmente necessários para o funcionamento do produto.

Deste modo, pode-se pensar nos componentes que poderiam ser eliminados ou combinados, facilitando a manufatura do produto e reduzindo os custos do produto, manufatura, manuseio etc.

Assim sendo, a Anatomia das Funções se torna uma ferramenta importante tanto para a EV/AV quanto para o Design for Excellence, incluindo o DFMA.
CAPÍTULO 6 - PROCESSO DE DESENVOLVIMENTO DE PRODUTOS NA GM

6.1 A General Motors do Brasil

A General Motors Corporation é uma empresa do setor automotivo que possui fábricas espalhadas pelos cinco continentes. A matriz está situada em Detroit, EUA.

A General Motors do Brasil (GMB) é uma das empresas da corporação, fundada em 1925, no bairro do Ipiranga, na cidade de São Paulo. As primeiras instalações da empresa eram galpões alugados, com a capacidade de produção de 25 veículos por dia.

Atualmente, a GMB, como também é conhecida, é composta por quatro complexos industriais. O primeiro complexo construído situa-se em São Caetano do Sul (SP), em uma área de 577.369 m², onde está a administração da empresa, bem como os departamentos de engenharia de produtos, engenharia de manufatura, marketing, compras e outros, além da fábrica responsável pela produção dos veículos de passageiros Vectra, Astra e Corsa.

O segundo e maior complexo fica situado na cidade de São José dos Campos (SP), e possui uma área de 2.657.000 m², onde estão distribuídas as fábricas de motores, injeção de componentes plásticos, usinagem, Veículos Comerciais e de Passageiros. Este complexo é responsável pela produção dos veículos S10, Blazer, Corsa e Zafira.

O terceiro complexo foi inaugurado recentemente, no ano de 1999, na cidade de Mogi das Cruzes (SP), em uma área de 80.000 m², e destina-se à produção
de peças estampadas, de veículos que não estão mais em produção, ou seja, apenas para a reposição do mercado.

O quarto complexo está situado na cidade de Gravataí, no estado do Rio Grande do Sul, e é, atualmente, o mais moderno de toda a corporação. Este complexo possui uma área total construída de 140.000 m², distribuídos em um terreno de 386 hectares. Esta fábrica é a responsável pela produção do Celta, o primeiro veículo a ser comercializado pela internet. Este complexo industrial comporta, além da fábrica da GMB, fábricas de fornecedores que trabalham em parceria com a empresa fornecendo componentes no sistema just in time para a montadora.

Além dos complexos industriais, a General Motors do Brasil possui ainda um centro de distribuição de peças para as concessionárias, localizado em Sorocaba (SP); e uma fazenda, de 11.272 milhões de metros quadrados, conhecida como Campo de Provas de Cruz Alta, localizada em Indaiatuba (SP), onde todos os modelos da montadora são testados em laboratórios e pistas que representam condições variadas de uso, e são aprovados antes de serem liberados para venda.

A GMB foi também responsável pela implantação da fábrica de Rosário, na Argentina, onde são fabricados automóveis de passageiros e comerciais, como o Corsa e o Tracker.

<table>
<thead>
<tr>
<th>Ano</th>
<th>Participação</th>
<th>Volume de produção</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Veículos de Passageiros</td>
<td>Veículos Comerciais</td>
</tr>
<tr>
<td>1994</td>
<td>20,70%</td>
<td>13,20%</td>
</tr>
<tr>
<td>1995</td>
<td>21,10%</td>
<td>16,10%</td>
</tr>
<tr>
<td>1996</td>
<td>22,00%</td>
<td>22,90%</td>
</tr>
<tr>
<td>1997</td>
<td>23,00%</td>
<td>23,50%</td>
</tr>
<tr>
<td>1998</td>
<td>23,50%</td>
<td>22,10%</td>
</tr>
<tr>
<td>1999</td>
<td>24,00%</td>
<td>21,00%</td>
</tr>
<tr>
<td>2000</td>
<td>23,50%</td>
<td>20,40%</td>
</tr>
<tr>
<td>2001</td>
<td>24,00%</td>
<td>21,40%</td>
</tr>
</tbody>
</table>

Figura 6.1 Participação no mercado e volume de vendas
6.2 Processo de desenvolvimento de produtos da General Motors – GVDP

O processo de desenvolvimento, ou atualização, de produtos da GMB é conhecido como Global Vehicle Development Process (GVDP) e é um procedimento geral comum a toda corporação. Na GMB utiliza-se versão customizada denominada GVDP 48/22, cujo prazo máximo total é de 48 meses. Vale salientar que a versão apresentada no presente trabalho foi simplificada em cumprimento aos requisitos de sigilo da empresa.

Além de garantir a competitividade da empresa em relação ao mercado consumidor, o GVDP tem também o objetivo de exceder as expectativas do cliente e reduzir os custos do desenvolvimento. Este processo permite, ainda, a interação entre os departamentos de Engenharia de Produto e Manufatura, o desenvolvimento simultâneo de um veículo em todas as divisões e agilizar a implementação do processo de lessons learned em toda a corporação, ou seja, os problemas encontrados são compartilhados com outros grupos de desenvolvimento, evitando que aconteçam novamente nos próximos projetos.

O GVDP é marcado pelo desenvolvimento de produtos, utilizando ferramentas de análise virtual, reduzindo o alto custo da fabricação de protótipos no início do processo; os protótipos físicos são construídos apenas em um estágio avançado do desenvolvimento.

No GVDP 48/22 são contados 48 meses do início do projeto (ASI – Architecture Studies Initiation) até o início da produção (SOP – Start of Production) e 22 meses do congelamento do projeto (VDR – Verified Data Release) até o início da produção.

Deste modo, pode-se dividir o processo de desenvolvimento em duas grandes etapas: a primeira consiste no desenvolvimento conceitual do projeto que vai do ASI até o VDR; a segunda é a responsável pelo try-out do conceito e execução do planejamento; estes períodos de 26 e 22 meses, respectivamente, comportam etapas menores e subsequentes que devem ser completadas e aprovadas pelos departamentos de planejamento, engenharia de manufatura, manufatura, marketing,
design, compras, qualidade e finanças, para autorizar o início das atividades posteriores.

A “Figura 6.2 Cronograma – GVDP 48/22” mostra de modo esquemático o processo de desenvolvimento GVDP. Na primeira etapa, os principais marcos são a aprovação da arquitetura do projeto, o desenvolvimento do primeiro protótipo virtual e dos protótipos conceitual e estrutural. Estes dois últimos são responsáveis pela definição do assoalho do veículo e componentes e subsistemas, como, por exemplo, motor, rota de chicotes, peças plásticas etc. A partir deste momento, a Engenharia de Manufatura da GMB e dos fornecedores começam as suas atividades, desenvolvendo ferramentas demoradas e processos de fabricação dos componentes do veículo.

Durante a segunda etapa, do VDR ao SOP, os principais marcos são o protótipo virtual de integração, validação do protótipo, planejamento da manufatura e a “Corrida Piloto”.

Na montagem e aprovação do protótipo virtual de integração são desenvolvidos outros componentes do veículo, como por exemplo bancos, painel etc. Os problemas encontrados neste momento são corrigidos antes do inicio da construção do protótipo de validação, para tanto, existe um intervalo de 27 semanas entre estas duas fases.

O momento mais indicado para a aplicação do DFMA dentro do GVDP é durante o projeto dos protótipos conceitual, estrutural e de integração. Por se tratar de protótipos virtuais e de fases independentes, onde diferentes componentes do veículo são desenvolvidos, o processo de fabricação deve ser analisado, utilizando ferramentas de DFMA, a fim de garantir que o produto desenvolvido atenda, de modo mais amplo, todas as necessidades da manufatura. Alterações posteriores podem ainda ser realizadas, porém os custos e impactos são mais elevados.

O protótipo de validação é o primeiro veículo físico construído. A partir deste momento, o projeto final é congelado, não permitindo alterações no produto. Após a conclusão desta etapa, a Manufatura pode validar o processo de fabricação dos veículos, através da produção de um lote de veículos não vendáveis (“Corrida Piloto”). Os documentos utilizados durante todo o desenvolvimento são arquivados e utilizados nos próximos projetos.
O fim da validação da Manufatura caracteriza também o final do desenvolvimento do projeto e o início da produção.

Figura 6.2 Cronograma GVDP 48/22

6.3 A produção – linha de montagem

A montagem de veículos pode divergir, em alguns aspectos, de fábrica para fábrica; para garantir uma coerência e um melhor entendimento para o leitor, este tópico irá descrever uma fábrica específica, no caso, será uma fábrica de montagem de veículos de passageiros. Vale salientar que a montagem de veículos comerciais difere bastante da montagem de passageiros.

A fabricação de um veículo tem início na área de estamparia, onde as peças estampadas, ou seja, os componentes da carroceria são fabricados. A matéria-prima utilizada nesta etapa é composta por bobinas de chapas que são introduzidas nos
equipamentos que, utilizando ferramentas especiais, dão a forma desejada ao material, produzindo, por exemplo, as portas, o capô, a tampa traseira, laterais, etc.

Estas peças são então encaminhadas para a área de funilaria, onde são soldadas formando a carroceria do veículo.

A carroceria pronta é enviada para a área de pintura, onde são imersas em banhos, que protegem contra a corrosão e em seguida são pintadas. Quando a pintura está pronta, as carrocerias são armazenadas em um local conhecido como Banco Seletivo, onde ficam até que surja a necessidade de produção de um veículo específico, naquele modelo, cor e certos opcionais.

Na fase de montagem, o veículo passa por três grandes etapas, a Tapeçaria, Mecânica e validação, onde a Mecânica é dividida em linha aérea e linha de placas. Outras quatro etapas menores abastecem as mencionadas anteriormente, são elas a área de montagem do cockpit, portas, motor e eixo.

Quando o veículo chega na Tapeçaria, as portas da carroceria são separadas e enviadas para a montagem, em uma linha específica localizada dentro da fábrica; enquanto isso, todos os componentes que fazem parte do interior do veículo são montados na carroceria; componentes externos, como faróis, lanternas e outros também são montados nesta etapa.

O processo de montagem do cockpit é similar ao das portas, existindo uma linha paralela à Tapeçaria, responsável pelo processo de montagem e teste do cockpit. Em seguida, este componente é enviado para a montagem na Tapeçaria.
Figura 6.3 Linha da Tapeçaria

Quando a etapa da Tapeçaria é terminada, o veículo que estava sendo transportado por um skillet, transportador de piso, é transferido para um transportador aéreo, conhecido como “elefante”. Nesta fase, os operários têm acesso ao assoalho do veículo, permitindo que componentes como eixo, motor, tanque, escapamento, entre outros, sejam montados na unidade.

O motor e eixo do veículo são montados em duas linhas separadas também situadas dentro da planta; depois de prontos, são enviados para a linha de montagem, onde são posicionados nos equipamentos, junto com o radiador, escapamento e outros componentes, para posterior montagem, conhecida como marriage, ou seja, é o casamento entre a carroceria e estes componentes mecânicos que compõem o veículo. Este nome é dado devido ao sincronismo da operação: o dispositivo de montagem, paralelo ao veículo, se movimenta no sentido vertical, permitindo a montagem na unidade.
Figura 6.4 Linha Aérea

Em seguida, o veículo passa por uma plataforma onde alguns operários têm acesso ao compartimento do motor e ao interior do veículo e outros ao assoalho; neste ponto, acontecem o preenchimento do fluido de freio e algumas montagens, como a conexão da coluna de direção.

No final da linha aérea, as rodas, que já foram infladas e balanceadas em uma linha separada, são montadas e o veículo é abastecido com combustível, deixando-o pronto para entrar na linha de placas.

A linha de placas é a responsável pela conexão de mangueiras e chicotes do compartimento do motor, bem como a montagem das portas, programação de alguns módulos e abastecimento de líquido de arrefecimento, limpador de pára-brisa, óleo da transmissão automática e ar-condicionado. Para este processo, o veículo é colocado sobre um transportador de piso, que desloca não apenas a unidade, mas também os operadores, facilitando as operações.
Figura 6.5 Transferência para a Linha de Placas

No final deste processo, o veículo, já funcionando, é direcionado para a área de validação, composta pelo alinhamento de rodas e farol, teste dinâmico e elétrico, programação e teste de vazamento de água. Ao fim desta etapa, o veículo passa ainda por uma inspeção para garantir a qualidade do produto fabricado.

Figura 6.6 A Linha de Montagem
6.4 Implementação de um projeto

A implementação de qualquer alteração de produto em uma linha de montagem deve ser precedida por um planejamento e treinamento da produção. O planejamento inclui a preparação da fábrica para receber esta modificação no produto; na maioria das vezes é necessário o retrofit de equipamentos existentes e a compra de ferramentas e dispositivos que atendam as novas necessidades.

O treinamento ocorre por meio de uma “Corrida Piloto”, em que é programada uma quantidade determinada de veículos destinados ao treinamento dos operadores, supervisores, técnicos de qualidade, manuseio e todos os envolvidos com a produção.

Além do treinamento mencionado, a “Corrida Piloto” tem também o objetivo de validar o processo de manufatura, incluindo desde a sequência de fabricação até os ajustes de equipamentos. Muitas vezes, falhas e melhorias do projeto são identificadas nesta fase de implementação do produto, causando gastos inesperados para a empresa e dificultando o aprendizado da produção.

A quantidade de veículos da “Corrida Piloto” varia de acordo com as modificações realizadas no produto; para veículos totalmente novos, são fabricados, aproximadamente, 150 unidades; para pequenas alterações este número é consideravelmente menor. Quando o número de veículos é grande, a “Corrida Piloto” é dividida, normalmente, em mais duas fases com um intervalo pequeno entre elas; a primeira normalmente é mais curta e visa identificar todos os pontos falhos da produção para serem corrigidos antes do início da segunda fase.

Todas as unidades produzidas neste momento são utilizadas por vários departamentos da empresa para a realização de testes, treinamento de concessionárias, marketing, relações públicas etc.

Os problemas encontrados durante a “Corrida Piloto” são tratados através de um documento conhecido por “5 Passos”. Nele constam o departamento afetado, data, gravidade do caso, número e nome dos componentes envolvidos, frequência de ocorrência, tendência, responsável, emitente e os “5 Passos” propriamente ditos, que
são a descrição do problema, ação de contenção, causa, implementação do plano de ação e, finalmente, o resultado do processo.

Os “5 Passos” emitidos de todos os projetos são armazenados em um banco de dados e utilizados posteriormente em novos desenvolvimentos.

6.5 O DFMA na General Motors do Brasil

A GMB vem ganhando independência da matriz, no que tange ao desenvolvimento de produtos. Até alguns anos atrás, todos os projetos de veículos de passageiros eram desenvolvidos na Alemanha, com apenas pequenas adaptações para o mercado local, como por exemplo modificações de carroceria da Pick-up Corsa e Corsa Wagon. O Celta foi o primeiro veículo totalmente desenvolvido no Brasil e depois desses, outros projetos estão em andamento.

Esta independência faz com que técnicas, como o DFMA, tenham de ser difundidas pela empresa. Atualmente, apenas alguns departamentos da Engenharia de Manufatura aplicam o Design for Manufacturability em projetos, através de um formulário específico desenvolvido.

Os projetos mais recentes têm contado com a participação efetiva da Engenharia de Manufatura, responsável pelo processo de montagem, trabalhando desde o início do desenvolvimento; porém, não existe ainda um documento que oriente e guie os engenheiros para uma aplicação completa do Design for Assembly no projeto de produto.

As plantas dos EUA (North América Operations - NAO) e Europa (OPEL e SAAB) possuem grupos dedicados à aplicação do DFMA em novos produtos; para tanto, são utilizados softwares comerciais, como por exemplo o DFA – Boothroyd & Dewhurst Inc.

Na GMB, a maior dificuldade é montar um grupo exclusivo a esta atividade. Os Engenheiros de Manufatura da GMB trabalham no desenvolvimento do produto, planejamento e implementação do projeto. Portanto, para difundir esta metodologia, é necessário que a ferramenta utilizada seja simples de ser aplicada, gastando o mínimo tempo possível nesta atividade.
CAPÍTULO 7 - DESENVOLVIMENTO DE UMA FERRAMENTA PARA A APLICAÇÃO DA METODOLOGIA DFMA

7.1 Introdução e análise de dados

No Capítulo 5 explicamos o "5 Passos", uma ferramenta utilizada pela fábrica para identificar e solucionar problemas encontrados durante a "Corrida Piloto" de um produto.

Foi essa mesma ferramenta que utilizamos para identificar a necessidade de aplicação da metodologia DFMA durante o desenvolvimento de um novo veículo. Para tanto, realizamos um levantamento de casos, de problemas analisados por meio dos "5 Passos", que na empresa, são documentados de forma sistemática. Os documentos levantados foram divididos por etapa de processo, em Linha de Tapeçaria e Linha Mecânica, ou seja, duas áreas distintas da montagem final dos veículos.

Os dados da Tapeçaria incluem também a montagem do cockpit e das portas. Os da Mecânica, por sua vez, consistem em toda a linha aérea, somada a linha de placas, montagem de motor, eixo e validação das unidades.

Cada um dos "5 Passos", emitido por uma determinada "Corrida Piloto", foi analisado de modo a caracterizar a natureza de sua causa; para isso, tentamos enquadrar cada caso conforme o seguinte critério de classificação: (a) problema de produto, (b) ajuste de equipamentos, (c) treinamento e (d) dificuldade de montagem.
Salientamos que interpretamos a dificuldade de montagem mencionada como tendo sido causada por falhas que poderiam ter sido detectadas com a aplicação da metodologia DFMA durante o desenvolvimento de produto.

Verificamos que os problemas de produto encontrados foram causados por causa da maior parte das peças utilizadas durante a “Corrida Piloto” estarem ainda em fase de ajuste de processo e liberação pelos seus respectivos fornecedores.

Os ajustes de equipamentos mencionados foram encontrados, durante a “Corrida Piloto” onde estes podem, na sua maioria, ser validados para o novo produto.

A “Corrida Piloto” é, antes de tudo, uma fase de treinamento de operadores; na qual o processo de montagem, bem como as particularidades do novo produto são ensinadas àqueles que irão trabalhar na produção propriamente dita. Deste modo, é também esperado que ocorram pequenos problemas devido à “falta” de treinamento até que a fábrica esteja apta a montar este produto.

No caso de “Corrida Piloto” tomado como objeto de estudo na pesquisa, a dificuldade de montagem foi detectada em todos os problemas em que, por algum motivo, uma peça não podia ser montada corretamente devido à dificuldade de acesso, ou o operador precisava despender um esforço excessivo para conseguir montar determinado componente, ou ocorria dificuldade de posicionamento, necessidade de uso em comum de torque com outros produtos da linha, etc.

As falhas levantadas nos documentos analisados que não se enquadravam em nenhuma das situações mencionadas foram classificadas como Outros.

A “Tabela 7.1 – Classificação dos Problemas” mostra alguns exemplos de como os problemas foram analisados. Em cumprimento aos requisitos de sigilo, não poderemos informar a quantidade total dos “5 Passos” estudados. Podemos, contudo, afirmar que o total de casos ocorridos foi maior que o desejável, sendo que, a quantidade total de homens-hora dedicada no treinamento e resolução dos mesmos foi substancial.
<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>CAUSA</th>
<th>CLASSIFICAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangueira interfere com filtro de ar.</td>
<td>Falta marca para montagem correta.</td>
<td>Dificuldade de montagem - DFMA.</td>
</tr>
<tr>
<td>Interferência entre sensor e mangueira.</td>
<td>Rota do sensor errada.</td>
<td>Treinamento</td>
</tr>
<tr>
<td>Dificuldade na montagem das presilhas do tapete do portamalas.</td>
<td>Tapete com espessura fora do especificado.</td>
<td>Produto (corrigido no fornecedor).</td>
</tr>
</tbody>
</table>

Tabela 7.1 Classificação dos problemas

Verifique-se, a seguir, a "Figura 7.1 - Casos da Tapeçaria" e "Figura 7.2 - Casos da Mecânica", que apresentam a compilação dos dados analisados.

![Figura 7.1 Casos da Tapeçaria](image)

Figura 7.1 Casos da Tapeçaria
Figura 7.2 Casos da Mecânica

Estes dados nos permitiram constatar o enorme número de casos que poderiam ter sido evitados, ou ao menos percebidos, durante o desenvolvimento de produtos, se a metodologia DFMA tivesse sido aplicada em estágios anteriores de projeto e desenvolvimento. Na linha de Tapeçaria, 23% do total dos problemas identificados estão relacionados a falhas evitáveis ou previsíveis por meio da aplicação do DFMA, enquanto que, na linha Mecânica, este percentual é de 30%.

Outro aspecto importante que verificamos nestes documentos foi a distribuição temporal das ocorrências das falhas. A "Tabela 7-2 Distribuição temporal de ocorrência das falhas", mostra como estes problemas foram distribuídos ao longo de toda a "Corrida Piloto".

<table>
<thead>
<tr>
<th>Mês</th>
<th>Tapeçaria</th>
<th>Mecânica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>40,05%</td>
<td>50,00%</td>
</tr>
<tr>
<td>2°</td>
<td>15,25%</td>
<td>40,00%</td>
</tr>
<tr>
<td>3°</td>
<td>22,03%</td>
<td>5,00%</td>
</tr>
<tr>
<td>4°</td>
<td>13,56%</td>
<td>2,50%</td>
</tr>
<tr>
<td>5°</td>
<td>8,47%</td>
<td>-</td>
</tr>
<tr>
<td>6°</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7°</td>
<td>-</td>
<td>2,50%</td>
</tr>
</tbody>
</table>

Tabela 7.2 Distribuição temporal de ocorrências das falhas
Notamos que a maior parte dos problemas analisados ocorreu logo durante o primeiro mês de “Corrida Piloto”. Isto nos permite acreditar que estes casos, decorrentes de falhas tão evidentes e com implicações negativas tão obvias, poderiam ter sido facilmente detectados antecipadamente, durante o desenvolvimento do produto, através da análise de DFMA, quando os protótipos e as especificações estão ainda sendo construídos e definidos.

É certo que outros casos continuaram emergindo, porém, em sua maioria, foram decorrentes de falhas menos evidentes e naturalmente apresentaram tendência decrescente no decorrer do processo de validação da manufatura.

É importante ainda salientar que todos os problemas encontrados durante a “Corrida Piloto” são solucionados antes do início da produção. Porém, não se pode negar que o custo da correção nesta fase do projeto é demasiadamente maior que o custo que ocorreria se efetuado antecipadamente durante o desenvolvimento do projeto conceitual.

7.2 Definição dos requisitos de aplicabilidade de uma ferramenta DFMA

7.2.1 Introdução

Visando identificar os requisitos necessários para a aplicação da metodologia DFMA, realizamos uma pesquisa com um grupo focal, formado por 5 profissionais da empresa, relacionados funcionalmente com a manufatura e o desenvolvimento de produtos, que conhecem, aplicam ou são potenciais usuários da metodologia de DFMA.

Para isso, elaboramos um formulário de coleta de dados, em que cada membro do grupo pudesse apontar as principais funções que consideram relevantes em uma ferramenta de análise, bem como verificar quais são os benefícios buscados e as dificuldades em utilização de ferramentas de DFMA. O referido instrumento de pesquisa é apresentado no Anexo I deste trabalho.
7.2.2 Resultados

Elaboramos uma lista de funções relevantes para uma ferramenta de análise para DFMA e submetemos ao grupo. Solicitamos que classificassem estas funções de acordo com o critério de valores apresentado na “Tabela 7.3 – Critério de valores”.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Critério</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Irrelevante, não acrescenta valor na análise</td>
</tr>
<tr>
<td>2</td>
<td>Indiferente, informação / resultado não totalmente necessário. Não traz benefícios significativos para a análise</td>
</tr>
<tr>
<td>3</td>
<td>Razoável, facilita o trabalho com os dados e / ou acrescenta valor ao resultado final</td>
</tr>
<tr>
<td>4</td>
<td>Relevante, indispensável para a análise</td>
</tr>
</tbody>
</table>

Tabela 7.3 - Critério de valores

A “Tabela 7.4 – Funções da ferramenta de análise de DFMA” apresenta a lista de funções que utilizamos na pesquisa. Note que as funções em destaque são aquelas que identificamos através da observação e análise de ferramentas comerciais já disponíveis no mercado; as outras elaboramos por acreditarmos estarem relacionadas a funções que consideramos relevantes para uma ferramenta de análise de DFMA.
<table>
<thead>
<tr>
<th>FUNÇÃO</th>
<th>PROPORÇÃO POR GRAU DE AVALIAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCOLHA DAS UNIDADES DE CÁLCULO</td>
<td>1: 20% 2: 60% 3: 20%</td>
</tr>
<tr>
<td>ESCOLHA DA ESTRUTURA E APARIÊNCIA DA ANÁLISE</td>
<td>1: 40% 2: 40% 3: 20%</td>
</tr>
<tr>
<td>MODIFICAR LAYOUT DA TELA</td>
<td>1: 40% 2: 60%</td>
</tr>
<tr>
<td>IDENTIFICA NOME, NÚMERO E FORNECEDOR</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>IDENTIFICA VOLUME DE VENDAS</td>
<td>1: 80% 2: 20%</td>
</tr>
<tr>
<td>DEFINE CUSTO DE MÃO-DE-OBRA</td>
<td>1: 40% 2: 60%</td>
</tr>
<tr>
<td>INVESTIMENTO PARA COMPRA E RETRABALHO DE FERRAMENTAS</td>
<td>1: 60% 2: 40%</td>
</tr>
<tr>
<td>IDENTIFICA OPERAÇÃO COMO MONTAGEM E SUBMONTAGEM</td>
<td>1: 20% 2: 40% 3: 40%</td>
</tr>
<tr>
<td>DEFINE SEQUÊNCIA DE MONTAGEM</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>QUESTÕES DE DFMA</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>DEFINE O LÍDER DA ANÁLISE</td>
<td>1: 20% 2: 60%</td>
</tr>
<tr>
<td>DEFINE O OBJETIVO DA ANÁLISE</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>DEFINE O TIME DE TRABALHO</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>LISTA DE PRESENÇA DE REUNIÕES</td>
<td>1: 20% 2: 40% 3: 40%</td>
</tr>
<tr>
<td>MINUTA DE REUNIÃO / ANOTAÇÕES</td>
<td>1: 60% 2: 20%</td>
</tr>
<tr>
<td>ILUSTRACAO DO PRODUTO ANALISADO</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>SUGESTÕES PARA REPROJETO</td>
<td>1: 40% 2: 60%</td>
</tr>
<tr>
<td>SUMÁRIO DOS RESULTADOS DE CUSTOS, INVESTIMENTOS, COMPONENTES</td>
<td>1: 40% 2: 60%</td>
</tr>
<tr>
<td>CUSTO DE MÃO-DE-OBRA DO PRODUTO</td>
<td>1: 40% 2: 60%</td>
</tr>
<tr>
<td>FACILIDADE DE USO</td>
<td>1: 20% 2: 80%</td>
</tr>
<tr>
<td>TEMPO DE TREINAMENTO</td>
<td>1: 60% 2: 40%</td>
</tr>
</tbody>
</table>

Tabela 7.4 – Funções da ferramenta de análise de DFMA

Foi solicitado também, que o grupo focal consultado identificasse quais são os fatores positivos e negativos da aplicação de ferramentas de análise de DFMA, bem como as razões para a não utilização de ferramentas e os principais objetivos buscados através da aplicação da metodologia DFMA.

O resultado obtido nos permitiu separar as funções mais relevantes em dois principais grupos, o primeiro, chamado de “Primeiro plano”, contém aquelas encontradas em 80% das respostas. O segundo grupo, chamado de “Segundo plano”, contém as funções encontradas em 60% das respostas.
A “Tabela 7.5 – Funções relevantes” apresenta os resultados desta classificação. Consideramos estas 12 como as principais funções que devem aparecer em uma ferramenta de análise de DFMA.

<table>
<thead>
<tr>
<th>PRIMEIRO PLANO</th>
<th>SEGUNDO PLANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFICAR NOME, NÚMERO E FORNECEDOR</td>
<td>DEFINIR CUSTO DE MÃO-DE-OBRA</td>
</tr>
<tr>
<td>DEFINIR SEQUÊNCIA DE MONTAGEM</td>
<td>DEFINIR LIDER DA ANÁLISE</td>
</tr>
<tr>
<td>QUESTÕES DE DFMA</td>
<td>APRESENTAR SUGESTÕES PARA REPROJETO</td>
</tr>
<tr>
<td>DEFINIR OBJETIVO DA ANÁLISE</td>
<td>APRESENTAR SUMÁRIO DOS RESULTADOS DE CUSTOS, INVESTIMENTOS E COMPONENTES</td>
</tr>
<tr>
<td>DEFINIR TIME DE TRABALHO</td>
<td>CALCULAR O CUSTO DE MÃO-DE-OBRA DO PRODUTO</td>
</tr>
<tr>
<td>ILUSTRAR O PRODUTO ANÁLISADO</td>
<td>FACILIDADE DE USO</td>
</tr>
</tbody>
</table>

Tabela 7.5 - Funções relevantes para ferramenta de análise de DFMA

As figuras seguintes apresentam a compilação dos dados de algumas perguntas da pesquisa realizada. Considerando que cada pergunta tem um certo número de alternativas e que o respondente poderia escolher, para a mesma pergunta, mais de uma, a proporção percentual das respostas de cada alternativa foi calculada através da fórmula a seguir:

\[
P\% = \left(\frac{f}{N} \right) \times 100
\]

Onde:

\(P\% \) proporção percentual das respostas para a alternativa;
\(f \) número de respondentes que selecionou a alternativa de resposta;
\(N \) número total de respostas para a pergunta.
Deste modo, a “Figura 7.3 - Fatores positivos da aplicação de ferramentas de análise” nos mostrou que 50% dos resultados obtidos na pesquisa, através da pergunta 3.2 do Anexo I, estavam concentrados em dois fatores importantes, que são a disponibilidade de resultados compilados de custos e investimento e as indicações de sugestões para re-projetos.

![Diagrama de barras mostrando fatores positivos da aplicação de ferramentas de análise](image)

Figura 7.3 Fatores positivos da aplicação de ferramentas de análise

A “Figura 7.4 - Fatores negativos da aplicação de ferramentas de análise de DFMA” ilustra os dados obtidos da consulta ao grupo focal sobre os fatores negativos da aplicação de ferramentas de DFMA durante o desenvolvimento de produtos, pergunta 3.3 do Anexo I. Pudemos notar que os dois aspectos mais presentes são o custo da ferramenta e a dificuldade de aplicação. Vale ressaltar que os respondentes se basearam nos preços de mercado de ferramentas e softwares profissionais para avaliar o quesito custos.
A "Figura 7.4 Fatores negativos da aplicação de ferramentas de análise de DFMA" nos mostrou, através da pergunta 3.4 do Anexo I.

A "Figura 7.5 Razão para parar de utilizar ferramentas de análise de DFMA" nos mostrou, através da pergunta 3.8 do Anexo I, que o grupo focal pesquisado busca a redução do
número de peças do produto, redução dos custos de manufatura, aumento da padronização de peças e ferramentas e, ainda, o aumento da facilidade de montagem.

![Gráfico mostrando percentagens de redução do número de peças, redução do custo de manufatura, aumento da padronização de peças e ferramentas, aumento da facilidade de montagem e aumento da qualidade do produto.]

Figura 7.6 Principais objetivos da aplicação do DFMA

Deste modo, a partir da análise dos dados coletados, concluímos que a ferramenta ideal para a aplicação da metodologia DFMA é aquela que, além das funções apresentadas na "Tabela 7.5", atendesse os seguintes requisitos:

- permite ser utilizada sem necessidade de despender tempo com treinamento.
- possui baixo custo de aquisição.
- fácil utilização, ou seja, user-friendly.
- tempo de análise reduzido.

Os dados apresentados até aqui nos mostraram que: (a) a metodologia DFMA deve ser utilizada durante o desenvolvimento de produtos; (b) que os projetistas querem utilizar uma ferramenta para sua aplicação; (c) que a maior dificuldade de utilização de softwares e ferramentas dedicadas é a falta de tempo e de pessoal qualificado e dedicado a esta atividade; (d) o alto custo de aquisição de ferramentas muitas vezes causam impacto na compra.
Por esta razão, partimos para verificar o que o mercado já disponibiliza para as empresas. Deparamos então com o software DFA-BDI, utilizado em várias empresas do grupo General Motors. A referida ferramenta é apresentada na seção seguinte.

7.3 Softwares – Boothroyd Dewhurst Inc. – “Design for Assembly” versão 9.0

7.3.1 Introdução

Atualmente, as empresas têm buscado ferramentas que demandem o mínimo tempo de treinamento e aplicação, trazendo grandes benefícios. Pensando nisso, vários softwares de DFMA foram desenvolvidos visando ainda reduzir o tempo de desenvolvimento de produtos e facilitar a aplicação de metodologias de avaliação de projetos.

Entre todos os softwares existentes no mercado, a General Motors escolheu o “Design for Assembly (DFA-BDI)”, desenvolvido em 1982 pela empresa Boothroyd Dewhurst, Inc (BDI), para utilizar em seus desenvolvimentos; por esta razão estamos analisando esta ferramenta no presente trabalho.

Além deste software, a BDI, desenvolveu outras ferramentas que também auxiliam no desenvolvimento de produtos, tais como o Design for Manufacturability (DFM), Design for Service (DFS) e Design for Environment (DFE) que são softwares utilizados por empresas que desejam melhorar, otimizar e reduzir custos de seus produtos, durante a produção, uso e descarte.

O DFA-BDI analisa os componentes do produto com o objetivo de identificar peças desnecessárias, determinar o tempo e custo de montagem. O DFM-BDI visa selecionar materiais e processos de fabricação de peças isoladas do projeto, bem como estimar o custo de cada componente e o investimento para sua fabricação. O DFS-BDI é uma ferramenta utilizada a fim de reduzir custos e aprimorar as condições de manutenção de um produto. O DFE-BDI tem sido utilizado para reduzir
os impactos do produto no meio ambiente, seja durante sua fabricação, uso ou descarte.

O software DFA-BDI já foi atualizado diversas vezes visando aprimorar e facilitar o seu uso. A versão 9.0, liberada em 2001, disponibiliza para o usuário algumas novas ferramentas, incluindo o controle dos dados mostrados.

O software DFA-BDI quantifica o tempo de montagem, custos de mão-de-obra, simplifica a estrutura do produto, reduz custo de peças e de montagem e melhora a qualidade do produto durante o seu desenvolvimento.

Para uma análise de DFA por meios deste software é necessário que o projetista entre com os seguintes dados: (a) peças, (b) movimentos, (c) operações, (d) ferramentas, (e) manuseio, (f) sequência de montagem, (g) eficiência da fábrica, (h) custo da mão de obra, (i) investimentos para compra de equipamentos e (j) dificuldades de inserção e montagem.

O resultado final da análise apresenta relatórios com sugestões para modificação do produto de forma que atenda os princípios da metodologia do DFA, identifica peças desnecessárias, quantidade total de peças, tempo de montagem, custo de manufatura e investimento necessário.

7.3.2 Software Design for Assembly - BDI

O software Design for Assembly (DFA-BDI) foi a primeira ferramenta computacional criada para aplicação da metodologia, com o propósito de auxiliar o usuário na estimativa de custo de montagem manual de um produto, bem como estudar diversas alternativas para simplificar, reduzir custos otimizar a montagem e aprimorar o produto final.

O manual do software, versão 9.0, sugere a análise de um produto para iniciar a utilização; utilizamos aqui este mesmo exemplo para comentar e explicar a ferramenta.

A “Figura 7.7 – Fluxograma do Software DFA-BDI” apresenta a sequência de tarefas a serem executadas durante a análise DFA com o software DFA-BDI. Verifique-se que o processo de análise pode ser dividido em 5 etapas principais.
A primeira etapa visa definir o *layout* da tela e unidades de cálculos, moeda e etc; para isso, o usuário pode escolher qual a distribuição de dados e *layout* da tela que mais lhe agradam; é possível ainda a criação de um *layout* personalizado com todas as informações necessárias para aquela aplicação.

A segunda identifica o produto, volume de produção, local de fabricação, custo de mão-de-obra e eficiência da fábrica, visando calcular os custos de mão-de-obra e as perdas de processo.

A terceira tem o objetivo de descrever o processo de montagem do produto, identificando os componentes, fornecedores, quantidade, etc. A quarta etapa verifica o quanto o processo e seus componentes atendem a metodologia DFA, para isto, o software utiliza as questões de DFA que devem ser respondidas para cada peça. A quinta e última etapa mostra os relatórios obtidos que devem ser analisados pelo usuário visando aprimorar o projeto.

Descrevemos mais detalhadamente a seguir a sequência da análise realizada com o software DFA-BDI, mostrando algumas telas do programa.
A primeira tela, mostrada na “Figura 7.8 - Software DFA-BDI - Configuração do sistema”, permite que o usuário configure o sistema da maneira que mais lhe convir, selecionando as unidades de cálculo (por exemplo: sistema métrico ou inglês, milímetros ou polegadas, segundos ou minutos ou horas), unidades monetárias, taxa de câmbio e distância padrão das operações e equipamentos.

![Figura 7.8 - Software DFA-BDI - Configuração do sistema](image)

O usuário inicia então a descrição do produto, identificando o nome, número, fabricante, local e volume de fabricação; é necessário também que o custo da mão-de-obra e a eficiência da fábrica sejam determinados aqui.

As telas seguintes, “Figura 7.9 - Software DFA-BDI – Descrição do processo 1” e “Figura 7.10 - Software DFA-BDI – Descrição do Processo 2”, são onde as operações e as peças são adicionadas à análise; o usuário deve identificar, peça por peça, com o nome, número, quantidade, tipo (peça ou submontagem), modo de fixação e dimensões. O usuário deve adicionar as peças uma a uma, preenchendo todos os campos, até que todo o processo esteja descrito.
A tela mostrada na “Figura 7.11 - Software DFA-BDI – Questões de DFA”, é onde o usuário responde às clássicas perguntas sobre DFA para cada um dos componentes do produto; a partir destes dados o software consegue identificar os pontos falhos do projeto e gerar alternativas.
Podemos notar que no canto esquerdo inferior aparece uma janela com alguns resultados parciais da análise, como por exemplo, o número de peças, custo de mão-de-obra, custo do produto, etc.

![Software DFA-BDI - Questões de DFA](image)

Figura 7.11 - Software DFA-BDI – Questões de DFA

Embora a apresentação das questões se dê de forma clara, percebemos que estas não são suficientes para atender todos os problemas de montagem que podem ocorrer em uma linha onde mais de um produto é produzido. O software não se preocupa, por exemplo, em verificar se este componente pode ser padronizado com os de outros produtos visando utilizar ferramentas comuns ou reduzir inventário.

Com todos estes dados, o software pode então executar uma análise detalhada do projeto sugerindo alternativas para melhorar o produto, a manufatura e ainda reduzir custos.

Figura 7.12 *Software DFA-BDI* – Sugestões para alteração de projeto

Figura 7.13 *Software DFA-BDI* – Resumo da análise
7.4 Planilha DFMA

7.4.1 Introdução

Conforme comentamos nos capítulos anteriores, existe uma grande resistência humana na implementação de assuntos novos e desconhecidos.

Mencionamos, no item “1.5 Resistências encontradas durante a implementação do DFMA”, as mais frequentes razões para a não utilização do DFMA em novos projetos.

Analizando os dados obtidos através da pesquisa com o grupo focal e, através de entrevistas não estruturadas realizadas junto a funcionários da empresa, percebemos que a resistência, ou simples falta de motivação, à implementação da metodologia DFMA é ainda maior quando essa se dá por intermédio de um software desconhecido. Nesta condição, os funcionários precisam se familiarizar com o software e com a metodologia ao mesmo tempo, dificultando ainda mais a implementação.

Visando facilitar esta etapa de implementação, desenvolvemos uma ferramenta simples, em forma de planilha eletrônica, que pudesse difundir a metodologia, servindo como um instrumento para a introdução dos conceitos da metodologia DFMA e ainda, facilitar a capacitação de engenheiros para o treinamento em ferramentas de análise de DFMA mais sofisticadas.

A referida planilha pode ainda ser utilizada como instrumento de treinamento para aqueles profissionais que necessitam apenas de noções básicas sobre a metodologia DFMA, sem no entanto precisar se aprofundar em ferramentas complexas.

7.4.2 Planilha DFMA

A Planilha DFMA consiste em uma ferramenta desenvolvida através do software Microsoft Excel, composta por várias pastas de trabalho contendo tabelas para serem preenchidas, conforme mostra a “Figura 7.14 – Planilha DFMA”.
É importante destacar que a Planilha DFMA é uma ferramenta desenvolvida principalmente para atender as necessidades da montagem final de veículos, visto que esta etapa da produção demanda grande quantidade de mão-de-obra. Contudo, devido ao fato de utilizar os princípios básicos do DFMA, pode ser também aplicada em outras operações de fabricação e montagem, como por exemplo, nos processos de submontagem.

Para a utilização da ferramenta, recomendamos a formação de grupos de trabalho interdepartamentais, compostos por especialistas em desenvolvimento do produto, planejamento da manufatura, engenheiros de processos, etc.

Conforme comentamos no "Capítulo 4 - Metodologias Auxiliares: Engenharia Simultânea – Time de trabalho e Engenharia do Valor / Análise do Valor", o principal objetivo deste grupo multidisciplinar, que pode aproveitar experiências de diferentes profissionais com diversos pontos de vista sobre o projeto de um mesmo produto, reside nas possibilidades de se aumentar a agilidade e consistência do processo de desenvolvimento e de assegurar que o projeto de produtos atendam requisitos funcionais, técnicos, de manufatura, marketing, etc.
Conforme apresenta a "Figura 7.15 - Fluxograma da ferramenta", a ferramenta proposta é constituída de um conjunto de planilhas divididas em três partes principais:

a) Planilhas de definição de objetivo, controle do projeto/estudo e parametrização;

b) Planilhas de análise, e

c) Planilha de resultados.

As sessões seguintes apresentam cada subconjunto das planilhas.
Figura 7.15 - Fluxograma da ferramenta

2 Este fluxograma faz parte do artigo "DFMA aplicado à indústria automotiva", a ser apresentado no Congresso SAE Brasil 2002.
7.4.2.1 Planilhas de definição de objetivo, controle do projeto / estudo e parametrização

A Planilha de definição de objetivo, controle do projeto / estudo e parametrização (a) tem como principal meta direcionar a análise do desenvolvimento do produto e parametrizar dados necessários durante a análise.

O grupo montado para a realização de um estudo de DFMA deve iniciar o trabalho pela planilha Identificação, mostrada na “Tabela 7.6 - Planilha DFMA – Identificação”; onde deve identificar o projeto, ou estudo, escrevendo um nome apropriado no campo “Identificação do Projeto / Estudo”; deste modo, todas as outras páginas do relatório terão automaticamente a mesma identificação.

![Diagrama da planilha DFMA](image)

Tabela 7.6 - Planilha DFMA - Identificação

A Planilha Identificação possui ainda campo para identificação do líder e participantes do projeto / estudo, definição do objetivo do trabalho e, identificação de outras partes do produto, que podem ser afetadas com as alterações propostas nesta análise. É importante ressaltar que as definições do objetivo do trabalho e líder da análise são funções solicitadas durante a pesquisa realizada.
Vale salientar que a clara definição do objetivo é fundamental para que todos os participantes do grupo trabalhem com o mesmo propósito, alcançando mais rapidamente o resultado desejado.

A planilha *Lista de presença*, apresentada na “Tabela 7.7 - Planilha DFMA – Lista de presença”, deverá ser utilizada sempre que houver uma reunião; o objetivo desta planilha é controlar as reuniões realizadas durante o projeto / estudo, registrar os participantes e manter um histórico com comentários surgidos durante estes encontros. A planilha DFMA contém apenas uma Lista de presença, portanto, a partir da segunda reunião, sempre que necessário, o grupo deve gerar planilhas adicionais copiando o conteúdo desta planilha.

![Planilha DFMA - Lista de presença](image)

Tabela 7.7 - Planilha DFMA – Lista de presença

O objetivo da planilha *Parametrização*, mostrada na “Tabela 7.8 – Planilha DFMA – Parametrização”, é adequar as planilhas de análise, detalhadas no item “7.2.2 Planilhas de Análise”, para as necessidades do grupo.

Esta planilha contém 18 questões, utilizadas na determinação do Grau de Adequação do Projeto, formadas por critérios de eliminação de peça e perguntas de DFMA. As questões foram definidas de modo a gerar respostas em formato binário (sim/não). Para cada uma delas a planilha associa um peso. O Grau de Adequação do
Projeto é então avaliado pela soma dos pesos atribuídos às perguntas referentes aos requisitos atendidos pelo componente que estiver sendo analisado.

Os valores default da tabela de parametrização representam a média da frequência de ocorrência de falhas da Tapeçaria e Mecânica obtidas através da análise de documentos “5 Passos” de uma determinada “Corrida Piloto”; para evitarmos que questões não identificadas na análise resultassem em um peso nulo, somamos o valor 1 na média calculada de todas as questões. A frequência da ocorrência de falhas é mostrada na “Tabela 7.23 Proporção relativa do total de problemas analisados que ocorreram pelo não atendimento do requisito associado a cada pergunta”, apresentada no final deste capítulo. O grupo tem a opção de determinar parâmetros próprios ou utilizar estes valores default.

![Tabela 7.8 - Planilha DFMA - Parametrização](image)

7.4.2.2 Planilhas de análise

As Planilhas de análise (b) são as responsáveis pela análise de DFMA propriamente dita; são formadas por 11 pastas de trabalho, cada uma contendo 8 tabelas. Cada pasta é a responsável pela elaboração de uma alternativa de projeto; a primeira é chamada de “Projeto Original” e as seguintes de “Alternativa 1”, “Alternativa 2”, até a “Alternativa 10”. O grupo deve utilizar apenas o número de alternativas que for necessária para o projeto / estudo alcançar o objetivo determinado pelo grupo de trabalho.
O conteúdo básico das pastas mencionadas acima é o mesmo; o grupo deve preencher cada uma delas com os dados referentes à alternativa de projeto analisada, proporcionando o maior número de propostas para a escolha.

A primeira tabela da análise, mostrada na “Tabela 7.9 - Planilha DFMA – Custo de montagem”, visa determinar o custo de montagem do produto através da identificação da sequência de montagem, tempo padrão de cada operação, custo de mão de obra horária e eficiência da fábrica.

![Tabela 7.9 - Planilha DFMA - Custo de montagem](image)

Visando facilitar a visualização do estudo, o grupo pode utilizar a “Tabela 7.10 - Planilha DFMA – Desenho esquemático” para ilustrar a alternativa de projeto analisada.
Tabela 7.10 - Planilha DFMA - Desenho esquemático

A "Tabela 7.11 - Planilha DFMA - Custos dos componentes", calcula o custo total das peças do produto e a quantidade total de componentes envolvidos, para isso, o grupo deve listar todos os componentes, os custos individuais e as quantidades de cada um. O grupo pode utilizar esta tabela para identificar o fornecedor e engenheiro responsável visando facilitar o rápido contato quando necessário.

Tabela 7.11 - Planilha DFMA - Custo dos componentes
As planilhas “Grau de Adequação do Projeto (1)”, “(2)”, “(3)” e “(4)” determinam o Grau de Adequação do Projeto, sugerem alterações e redução do número de peças do produto, utilizando questões elaboradas através da análise de técnicas de EV / AV, critérios de eliminação de peças, princípios de DFMA e dados de produção.

Estas quatro tabelas compõem um roteiro de perguntas que serve como condutor de um processo sistematizado e abrangente de discussão e análise pelo grupo de trabalho.

A “Tabela 7-12 - Origem das Perguntas” lista as perguntas incorporadas ao roteiro, a origem de cada uma delas e ainda o objetivo buscado. Vale salientar que a segunda coluna da “Tabela 7.15 – Planilha DFMA - Grau de Adequação do Projeto (1)” (Função da Peça – Verbo + Substantivo) não consta na tabela 7.12, por não se tratar de uma questão e sim de uma ferramenta da EV/AV, conhecida como Anatomia das Funções, apresentada no capítulo 5, e utilizada para identificar possíveis peças a serem eliminadas.
<table>
<thead>
<tr>
<th>PERGUNTA</th>
<th>OBJETIVO</th>
<th>ORIGEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ESTA PEÇA É CONSIDERADA RELEVANTE OU IRELEVANTE PARA O PRODUTO?</td>
<td>ELIMINAR COMPONENTES</td>
<td>BV/AV</td>
</tr>
<tr>
<td>2. DURANTE A OPERAÇÃO DO PRODUTO, ESTA PEÇA POSSUI MOVIMENTO RELATIVO EM RELAÇÃO ÀS OUTRAS JA MONTADAS?</td>
<td>ELIMINAR OU INCLUSIVE COMPONENTES</td>
<td>CRITÉRIOS DE BOOTHROYD ET AL.</td>
</tr>
<tr>
<td>3. O MATERIAL UTILIZADO NA FABRICAÇÃO DESTA PEÇA É COMUM A OUTRAS PEÇAS DO PRODUTO?</td>
<td>COMUNIZAR MATERIAL</td>
<td>CRITÉRIOS DE BOOTHROYD ET AL.</td>
</tr>
<tr>
<td>4. ESTA PEÇA PRECISA, NECESSARIAMENTE, SER INDEPENDENTE DAS DEMAIS POR MOTIVOS DE MONTAGEM OU DESMONTAGEM?</td>
<td>ELIMINAR OU INCLUSIVE COMPONENTES</td>
<td>CRITÉRIOS DE BOOTHROYD ET AL.</td>
</tr>
<tr>
<td>5. EXISTE SIMETRIA ROTACIONAL OU ASSIMETRIA OBVIA QUE IMPEDI A MONTAGEM ERRADA?</td>
<td>IMPEDIR ERRO DE MONTAGEM</td>
<td>DFMA</td>
</tr>
<tr>
<td>6. A PEÇA PERMITE AUTO-POSIÇÕESMENTO OU POSSUI INDICAÇÃO PARA O POSICIONAMENTO CORRETO?</td>
<td>FACILITAR A MONTAGEM</td>
<td>DFMA / 5 PASSOS</td>
</tr>
<tr>
<td>7. A PEÇA FOI PROJETADA PARA EVITAR O EMARANHAMENTO DURANTE O ARMAZENAMENTO DESFICILITANDO O MANUSEIO?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>DFMA</td>
</tr>
<tr>
<td>8. A PEÇA PODE SER MONTADA SEM DIFICULDADE PELA OPERADOR, POR NÃO SER ESCORREGADIA, MUITO PEQUENA, MUITO GRANDE, ...?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>DFMA</td>
</tr>
<tr>
<td>10. A PEÇA PODE SER MONTADA COM APENAS UMA DAS MÃOS?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>DFMA</td>
</tr>
<tr>
<td>11. O OPERADOR PODE VER A OPERAÇÃO QUE ERA REALIZAR?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>DFMA</td>
</tr>
<tr>
<td>12. A PEÇA PODE SER MONTADA SEM DIFICULDADE DE INSERÇÃO DEVIDO AO ACESSO, PESO DO COMPONENTE, POSIÇÃO DE MONTAGEM,...?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>DFMA</td>
</tr>
<tr>
<td>13. A MONTAGEM Deste COMPONENTE PODE SER CONSIDERADA ERGONOMICA?</td>
<td>MELHORAR ERGONOMIA</td>
<td>DFMA</td>
</tr>
<tr>
<td>14. A OPERAÇÃO DE MONTAGEM Deste COMPONENTE PODE SER REALIZADA SEM O ESFORÇO EXCESSIVO DO OPERADOR?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>5 PASSOS</td>
</tr>
<tr>
<td>15. AS CARACTERÍSTICAS D ESTA PEÇA, SÃO COMUM A OUTROS PRODUTOS, PARA PERMITIR O USO DE FERRAMENTAS COMUNS E REDUZIR INVENTÁRIO?</td>
<td>REDUZIR INVENTÁRIO, UTILIZAR FERRAMENTAS COMUNS E FACILITAR A MONTAGEM</td>
<td>DFMA / 5 PASSOS</td>
</tr>
<tr>
<td>16. A MONTAGEM Deste COMPONENTE PODE SER CONSIDERADA SEGURA PARA O OPERADOR?</td>
<td>MELHORAR A SEGURANÇA NA MONTAGEM</td>
<td>5 PASSOS</td>
</tr>
<tr>
<td>17. O COMPONENTE PODE SER MONTADO SEM DUVIDA PARA O OPERADOR, POR EXISTIREM PEÇAS FISICAMENTE IGUAIS E COM FUNÇÕES DIFERENTES?</td>
<td>FACILITAR A MONTAGEM E REDUZIR TEMPO</td>
<td>5 PASSOS</td>
</tr>
<tr>
<td>18. A PEÇA PODE SER FACILMENTE REMOVIDA EM CASO DE NECESSIDADE DE REPARO?</td>
<td>FACILITAR RETRABALHO</td>
<td>DFMA / 5 PASSOS</td>
</tr>
</tbody>
</table>

Tabela 7.12 Origem das perguntas
A primeira pergunta da tabela acima, determina a relevância de cada componente e foi aproveitada da análise da EV/AV, pois a simples reflexão sobre a relevância das peças auxilia o grupo a identificar componentes que poderiam ser eliminados. Esta pergunta deve ser utilizada em conjunto à determinação das funções de cada componente; deste modo, o grupo identifica a função e em seguida verifica se este componente é ou não relevante para o produto.

As três perguntas com a origem identificada como “Critérios de Boothroyd; Dewhurst; Knight”, utilizam os critérios de Boothroyd; Dewhurst; Knight (1994) para verificar as necessidades da peça ser independente das demais, ser fabricada de material diferente e possuir movimento relativo em relação ao restante do conjunto. A busca de resposta a estas perguntas também auxilia a reduzir o número total dos componentes. Estas perguntas são as seguintes:

<table>
<thead>
<tr>
<th>Pergunta</th>
<th>MELHORIA DE PROJETO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Durante a operação do produto esta peça possui movimento relativo em relação às outras já montadas?</td>
<td>Se o componente não precisar do movimento relativo em relação às outras peças, pode-se pensar eliminá-lo ou incorporá-lo a outros componentes.</td>
</tr>
<tr>
<td>2. Esta peça precisa, necessariamente, ser fabricada em material diferente das demais?</td>
<td>Se o componente não precisar ser fabricado em material diferente dos demais, pode-se também pensar em incorporá-lo a outros componentes.</td>
</tr>
<tr>
<td>3. Esta peça precisa, necessariamente, ser independente das demais por motivos de montagem ou desmontagem?</td>
<td>Se o componente não precisar ser independente dos demais, pode-se verificar a possibilidade de eliminá-lo ou incorporá-lo a outros componentes.</td>
</tr>
</tbody>
</table>

Tabela 7.13 Critérios de Boothroyd

As 14 perguntas seguintes foram elaboradas através da análise dos princípios de DFMA, apresentados no “Capítulo 4 – Princípios básicos do DFMA”, e dos dados de produção apresentados no item “7.1 – Introdução e análise de dados”, deste capítulo.
Em um primeiro momento, analisamos os princípios de DFMA, encontrados em várias literaturas, e elaboramos as 14 questões mostradas na “Tabela 7-13 Origem das perguntas provenientes de 5 Passos” e denominamos a origem como DFMA.

Em seguida, voltamos para os dados de produção analisados para definir a necessidade de aplicação do DFMA mostrados no início deste capítulo, e verificamos que cada problema encontrado poderia ser transformado em uma pergunta. Deste modo elaboramos mais 6 perguntas para adicionarmos à Planilha DFMA; denominamos a origem destas como os “5 Passos”.

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>CAUSA</th>
<th>PERGUNTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangueira interfere com filtro de ar.</td>
<td>Falta marca para montagem correta.</td>
<td>A peça permite auto-posicionamento ou possui indicação para o posicionamento correto?</td>
</tr>
<tr>
<td>Falta apertadeira para fixar porca</td>
<td>Torques diferentes para mesma porca em produtos diferentes</td>
<td>A peça pode ser comunicada com outras existentes neste ou em outros produtos para permitir o uso de ferramentas comum e reduzir inventário físico?</td>
</tr>
<tr>
<td>Componente sem identificação Similiar ao componente de outro produto.</td>
<td>Falta de pintura / marca para diferenciar as peças de produtos diferentes</td>
<td>O componente pode ser montado sem dúvida para operador, por existirem peças fisicamente iguais e com funções diferentes?</td>
</tr>
</tbody>
</table>

Tabela 7.14 - Origem das perguntas provenientes dos “5 Passos”

No entanto, percebemos que 3 das perguntas elaboradas através dos “5 Passos” analisados, eram comuns aos princípios de DFMA estudados. Consideramos a origem de tais perguntas como sendo DFMA e “5 Passos”.

Antes de seguir a descrição das planilhas de análise, vale explicar o fluxograma das perguntas apresentado na “Tabela 7.14 - Fluxograma das perguntas da Planilha DFMA”, que mostra como as respostas das perguntas (sim/não) são direcionadas de modo a gerar alternativas de projeto para o grupo.
Tabela 7.15 – Fluxograma das perguntas da Planilha DFMA

Atente-se que a análise deve seguir a sequência de perguntas apresentada pelo fluxo vertical à esquerda; caso a resposta seja positiva o grupo deve avançar para a pergunta seguinte, e caso negativa o grupo deve pensar na possibilidade de alterar o projeto criando mais uma alternativa (O produto pode ser modificado para atender esta condição?).

Retornando as planilhas de análise, a “Tabela 7.15 - Planilha DFMA – Grau de adequação do projeto (1)” analisa as peças do produto, identificando os componentes que podem ser eliminados, incorporados ou substituídos por outros mais simples. As duas primeiras colunas desta tabela apresentam a ferramenta Anatomia das Funções da EV / AV, onde a função e a relevância de cada peça é determinada pelo grupo. A função deve ser descrita com apenas um verbo e substantivo, conforme explicado no “Capítulo 5 – Engenharia do Valor / Análise do
Valor”. A definição da função e relevância de cada peça do produto auxilia o grupo a identificar quais componentes podem ser eliminados.

As três perguntas seguintes estão relacionadas com os critérios de Boothroyd; Dewhurst; Knight (1994) explicados anteriormente; estas perguntas visam identificar quais componentes podem ser incorporados, substituídos ou eliminados do produto.

![Diagrama DFMA - Design for Manufacturability and Assembly](image)

Tabela 7.16 - Planilha DFMA - Grau de adequação do projeto (1)

As tabelas seguintes, “Tabela 7.16 - Planilha DFMA – Grau de Adequação do Projeto(2)”, “Tabela 7.17 - Planilha DFMA – Grau de Adequação do Projeto(3)” e “Tabela 7.18 - Planilha DFMA – Grau de Adequação do Projeto(4)”, continuam a análise de DFMA utilizando perguntas para verificar o grau de adequação do projeto em relação aos princípios de DFMA, os pontos falhos e identificar possíveis sugestões para otimizar e reduzir custos.

O Grau de Adequação do Projeto é determinado através das 18 respostas dos Critérios de eliminação de peças e das perguntas de DFMA, elaboradas através da análise dos conceitos e “5 Passos”, que devem ser respondidas apenas com sim ou não. A pasta de parametrização, descrita anteriormente, determina o peso de cada pergunta, e as respostas positivas somam o valor do peso da pergunta ao total,
contabilizando um número que, dividido pelo número total de peças do produto, representa o Grau de Adequação do Projeto.

Ao final da análise, a alternativa que apresentar maior Grau de Adequação do Projeto, ou seja, a alternativa de projeto que tiver maior compatibilidade com o DFMA, é a que mais atende os princípios de DFMA, e somado aos outros aspectos da análise o grupo pode decidir pelo melhor projeto.

<table>
<thead>
<tr>
<th>PEÇA</th>
<th>GRAU DE ADEQUAÇÃO DO PROJETO</th>
<th>OPERACAO</th>
<th>MONTAGEM DE DESEMPASTE (E/MA)]</th>
<th>OPERACAO</th>
<th>MONTAGEM DE DESEMPASTE (E/MA)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 7.17 - Planilha DFMA - Grau de adequação do projeto (2)

<table>
<thead>
<tr>
<th>PEÇA</th>
<th>GRAU DE ADEQUAÇÃO DO PROJETO</th>
<th>OPERACAO</th>
<th>MONTAGEM DE DESEMPASTE (E/MA)]</th>
<th>OPERACAO</th>
<th>MONTAGEM DE DESEMPASTE (E/MA)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 7.18 - Planilha DFMA - Grau de adequação do projeto (3)
Tabela 7.19 - Planilha DFMA - Grau de adequação do projeto (4)

Deve-se sempre lembrar que alterações no projeto em questão podem afetar outras partes do produto. Assim, conforme explicado anteriormente, deve-se relacionar, na planilha Identificação, todos as peças (componentes ou sistemas) que podem sofrer algum impacto em decorrência das alterações realizadas.

Na “Tabela 7.19 - Planilha DFMA – Investimento”, o grupo deve discriminar todos os investimentos necessários para a fabricação do produto nas condições determinadas nesta alternativa do projeto, descrevendo o item a ser comprado ou modificado e determinando uma estimativa de custo.
7.4.2.3 **Planilha de resultados**

Todos os resultados, de todas as alternativas de projeto, obtidos das análises de custos de mão-de-obra, custo do produto, grau de adequação do projeto e investimentos, são compilados em uma única tabela, mostrada na “Tabela 7.20 - Planilha DFMA – Resultados”.

Esta tabela permite uma rápida visualização e comparação entre todas as alternativas de projeto analisadas, colaborando para a escolha da melhor delas, do ponto de vista da metodologia DFMA.
7.5 Comentários finais

Analisando o software DFA-BDI, a Planilha DFMA e os dados obtidos através da pesquisa com o grupo focal, mostrada no início deste capítulo, percebemos que ambas as ferramentas atendem grande parte dos requisitos identificados.

A "Tabela 7.21 – Funções das ferramentas" mostra novamente o resultado da aplicação do instrumento de coleta de dados da pesquisa com grupo focal, mostrados no Anexo I, em relação às funções, mas com a diferença de agora identificar as funções presentes na Planilha DFMA e no software DFA-BDI.

<table>
<thead>
<tr>
<th>FUNÇÃO</th>
<th>CARACTERÍSTICAS DAS FERRAMENTAS</th>
<th>PROPORÇÃO POR GRAU DE AVALIAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DFA-BDI</td>
<td>PLANILHA DEMA</td>
</tr>
<tr>
<td>SETUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCOLHA DAS UNIDADES DE CÁLCULO</td>
<td>SIM</td>
<td>NÃO</td>
</tr>
<tr>
<td>ESCOLHA DA ESTRUTURA E APARÊNCIA DA ANÁLISE</td>
<td>SIM</td>
<td>NÃO</td>
</tr>
<tr>
<td>MODIFICAR LAYOUT DA TELA</td>
<td>SIM</td>
<td>NÃO</td>
</tr>
<tr>
<td>IDENTIFICA NOME, NÚMERO E FORNECEDOR</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>IDENTIFICA VOLUME DE VENDAS</td>
<td>SIM</td>
<td>NÃO</td>
</tr>
<tr>
<td>DEFINE CUSTO DE MÃO-DE-OBRA</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>INVESTIMENTO PARA COMPRA E RETRABALHO DE FERRAMENTAS</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>IDENTIFICA OPERAÇÃO COMO MONTAGEM E SUBMONTAGEM</td>
<td>SIM</td>
<td>NÃO</td>
</tr>
<tr>
<td>DEFINE SEQUÊNCIA DE MONTAGEM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>QUESTÕES DE DEMA</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>DEFINE O LÍDER DA ANÁLISE</td>
<td>NÃO</td>
<td>SIM</td>
</tr>
<tr>
<td>DEFINE O OBJETIVO DA ANÁLISE</td>
<td>NÃO</td>
<td>SIM</td>
</tr>
<tr>
<td>DEFINE O HÍM DE TRABALHO</td>
<td>NÃO</td>
<td>SIM</td>
</tr>
<tr>
<td>LISTA DE PRESENÇA DE REUNIÕES</td>
<td>NÃO</td>
<td>SIM</td>
</tr>
<tr>
<td>MINUTA DE REUNIÃO / ANOTAÇÕES</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>ILUSTRACAO DO PRODUTO ANALISADO</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>ENSINO DE DEMA</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>SUMÁRIO DOS RESULTADOS DE CUSTOS, INVESTIMENTOS, COMPONENTES</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>CUSTO DE MÃO-DE-OBRA DO PRODUTO</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>FACLIDIDADE DE USO</td>
<td>MÉDIA</td>
<td>ALTA</td>
</tr>
<tr>
<td>TEMPO DE TREINAMENTO</td>
<td>ALTO</td>
<td>BAIXO</td>
</tr>
</tbody>
</table>

Tabela 7.22- Funções das ferramentas
Note que destacamos agora as principais funções que identificamos como requeridas na pesquisa com grupo focal; funções estas que foram consideradas relevantes ou que facilitam a análise em 60% e 80% dos resultados.

Verificamos que ambas as ferramentas atendem grande parte das principais funções requeridas pelo grupo focal consultado. Porém, devemos destacar que a diferença mais relevante é a facilidade de uso, pois, a Planilha DFMA, por se tratar de uma planilha de MS Excel, apresenta uma maior facilidade de aprendizado que o software analisado.

Contudo, notamos que aspectos requeridos pelo grupo, como o tratamento de submontagens, devem ser incorporados em uma próxima versão desta planilha, uma vez que 40% do grupo respondente considerou este aspecto como relevante e outros 40% identificaram como função que facilitaria a análise se estivesse presente na ferramenta.

Em relação às questões de DFMA, notamos que a Planilha DFMA contém uma gama maior de perguntas que contribui para a análise de um projeto da indústria automotiva, onde vários produtos são fabricados em uma linha de montagem, fato bastante comum nas indústrias brasileiras.

Voltando a análise dos documentos “5 Passos”, mostrada no início deste capítulo, podemos dividir as porcentagens de 23% e 30% de problemas relacionados à falta da aplicação da metodologia DFMA na linha de Tapeçaria e Mecânica, respectivamente, na ocorrência das perguntas que poderiam ter resolvido cada um dos problemas. A “Tabela 7.23 Proporção relativa do total de problemas analisados que ocorreram pelo não atendimento do requisito associado a cada pergunta” mostra este resultado.
<table>
<thead>
<tr>
<th>Perguntas</th>
<th>Tapicaria</th>
<th>Mécanica</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Esta peça é considerada relevante ou irrelevante para o produto?</td>
<td>5,33%</td>
<td>2,17%</td>
<td>EVAV</td>
</tr>
<tr>
<td>2. Durante a operação do produto, esta peça possui movimento relativo em relação às outras já montadas?</td>
<td>-</td>
<td>-</td>
<td>CRITÉRIOS DE BOOTHROYD et al.</td>
</tr>
<tr>
<td>3. O material utilizado na fabricação desta peça é comum às outras peças do produto?</td>
<td>-</td>
<td>-</td>
<td>CRITÉRIOS DE BOOTHROYD et al.</td>
</tr>
<tr>
<td>4. Esta peça precisa, necessariamente, ser independente das demais por motivos de montagem ou desmontagem?</td>
<td>1,33%</td>
<td>-</td>
<td>CRITÉRIOS DE BOOTHROYD et al.</td>
</tr>
<tr>
<td>5. Existe simetria rotacional ou assimetria obvia que impeça a montagem errada?</td>
<td>5,33%</td>
<td>-</td>
<td>DFMA</td>
</tr>
<tr>
<td>6. A peça permite auto-posicionamento ou possui indicação para o posicionamento correto?</td>
<td>10,67%</td>
<td>21,74%</td>
<td>DFMA / 5 PASSOS</td>
</tr>
<tr>
<td>7. A peça foi projetada para evitar o emaranhamento durante o armazenamento ou manuseio?</td>
<td>-</td>
<td>-</td>
<td>DFMA</td>
</tr>
<tr>
<td>8. A peça pode ser montada sem dificuldade pelo operador, por não ser escorregadia, muito pequena, muito grande,...?</td>
<td>2,67%</td>
<td>-</td>
<td>DFMA</td>
</tr>
<tr>
<td>9. A peça pode ser montada ou fabricada sem a utilização de ferramenta ou dispositivo?</td>
<td>16,00%</td>
<td>32,61%</td>
<td>DFMA</td>
</tr>
<tr>
<td>10. A peça pode ser montada com apenas uma das mãos?</td>
<td>-</td>
<td>-</td>
<td>DFMA</td>
</tr>
<tr>
<td>11. O operador pode ver a operação que irá realizar?</td>
<td>9,33%</td>
<td>-</td>
<td>DFMA</td>
</tr>
<tr>
<td>12. A peça pode ser montada sem dificuldade de inserção devido ao acesso, peso do componente, posição de montagem,...?</td>
<td>1,33%</td>
<td>15,22%</td>
<td>DFMA</td>
</tr>
<tr>
<td>13. A montagem deste componente pode ser considerada ergonômica?</td>
<td>1,33%</td>
<td>-</td>
<td>DFMA</td>
</tr>
<tr>
<td>14. A operação de montagem deste componente pode ser realizada sem esforço excessivo do operador?</td>
<td>24,00%</td>
<td>4,35%</td>
<td>5 PASSOS</td>
</tr>
<tr>
<td>15. As características desta peça, são comum a outros produtos, para permitir o uso de ferramentas comuns e reduzir inventário?</td>
<td>12,00%</td>
<td>13,04%</td>
<td>DFMA / 5 PASSOS</td>
</tr>
<tr>
<td>16. A montagem deste componente pode ser considerada segura para o operador?</td>
<td>2,67%</td>
<td>-</td>
<td>5 PASSOS</td>
</tr>
<tr>
<td>17. O componente pode ser montado sem dúvida para o operador, por existirem peças fisicamente iguais e com funções diferentes?</td>
<td>4,00%</td>
<td>6,52%</td>
<td>5 PASSOS</td>
</tr>
<tr>
<td>18. A peça pode ser facilmente removida em caso de necessidade de reparo?</td>
<td>4,00%</td>
<td>4,35%</td>
<td>DFMA / 5 PASSOS</td>
</tr>
</tbody>
</table>

Tabela 7.23 Proporção relativa do total de problemas analisados que ocorreram pelo não atendimento do requisito associado a cada pergunta
Deste modo, constatamos que 24% de todos os casos onde a falta do DFMA na Tapeçaria foi notada poderiam ter sido verificados durante o projeto com a resposta à pergunta número 14 (A operação pode ser realizada sem esforço excessivo do operador?).

De outro lado, 32,61% dos casos da Mecânica iriam demonstrar, durante o desenvolvimento do projeto, a necessidade de desenvolvimento de uma ferramenta apropriada para ser utilizada durante a "Corrida Piloto", evitando assim transtornos durante esta fase. Este caso poderia ser notado tanto com a Planilha DFMA como com o software DFA-BDI.

Devemos destacar que todos os problemas identificados através das perguntas elaboradas exclusivamente pela análise dos "5 Passos" podem não ser percebidos caso a análise se apóie apenas no uso do software DFA-BDI. Verificamos que 30,67% dos casos da Tapeçaria e 10,87% da Mecânica, referentes às perguntas de número 14, 16 e 17, se enquadraram nesta situação.

Porém, apesar de considerarmos o software DFA-BDI como uma poderosa ferramenta para a aplicação da metodologia DFMA, entendemos que o mesmo deve ser utilizado por uma equipe de profissionais que conheça profundamente a metodologia DFMA e as particularidades da indústria automotiva, maximizando assim os benefícios auferidos com a sua utilização.

Cabe aqui destacar ainda que nem todas as perguntas mostradas na "Tabela 7.23 Proporção relativa do total de problemas analisados que ocorreram pelo não atendimento do requisito associado a cada pergunta" foram identificadas nos "5 Passos" documentos de produção.
<table>
<thead>
<tr>
<th>PEÇA</th>
<th>PART NUMBER</th>
<th>QUANTIDADE</th>
<th>CUSTO PEÇA (US$)</th>
<th>FORNECEDOR</th>
<th>ENG* RESPONSÁVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eixo traseiro</td>
<td>51255.0051</td>
<td>1</td>
<td>550.00</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
<tr>
<td>Mosca</td>
<td>36170.1558</td>
<td>2</td>
<td>40.00</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
<tr>
<td>Amanhecedor</td>
<td>50061.288</td>
<td>2</td>
<td>32.50</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
<tr>
<td>Blecha inferior</td>
<td>20445.678</td>
<td>2</td>
<td>12.50</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
<tr>
<td>Bucha Superior</td>
<td>20445.679</td>
<td>2</td>
<td>10.00</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
<tr>
<td>Parafuso fixação eixo</td>
<td>40215.519</td>
<td>6</td>
<td>0,37</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
<tr>
<td>Parafuso fixação amonstrador</td>
<td>40210.519</td>
<td>4</td>
<td>0,37</td>
<td>Fornecedor ABC</td>
<td>Engº Antônio</td>
</tr>
</tbody>
</table>

| TOTAL | | 19 | 2574 | | |

24/02/2002
<table>
<thead>
<tr>
<th>PEÇA</th>
<th>FUNÇÃO DA PEÇA (VERSO = SUBSTANTIVO)</th>
<th>ESTA PEÇA É CONSIDERADA RELEVANTE OU IRRELEVANTE PARA O PRODUTO?</th>
<th>DURANTE A OPERAÇÃO DO PRODUTO ESTA PEÇA POSSUI MOVIMENTO RELATIVO EM RELAÇÃO ÀS OUTRAS JÁ MONTADAS? (SIM / NÃO)</th>
<th>O MATERIAL UTILIZADO NA FABRICAÇÃO ESTA PEÇA É COMUM À OUTRAS PEÇAS DO PRODUTO? (SIM / NÃO)</th>
<th>ESTA PEÇA PRECISA, NECESSARIAMENTE, SER INDEPENDENTE DAS DEMS POR MOTIVOS DE MONTAGEM OU DESMONTAGEM? (SIM / NÃO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eixo traseiro</td>
<td>Suporte veículo</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>2. Mola</td>
<td>Reduzir impacto</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>3. Amortecedor</td>
<td>Reduzir movimento</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>4. Bueca inferior</td>
<td>Apoio componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>5. Bueca superior</td>
<td>Apoio componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>6. Parafuso fixação eixo</td>
<td>Fixar eixo</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>7. Parafuso fixação amortecedor</td>
<td>Fixar amortecedor</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>8. Parafuso superior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>9. Parafuso inferior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>10. Parafuso superior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>11. Parafuso inferior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>12. Parafuso superior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>13. Parafuso inferior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>14. Parafuso superior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>15. Parafuso inferior</td>
<td>Fixar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
</tbody>
</table>
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

ALTERNATIVA 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eixo traseiro</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>2. Mola</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td>3. Amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td>4. Bixca inferior</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td>5. Bixca Superior</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td>6. Parafuso fixação eixo</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td></td>
</tr>
<tr>
<td>7. Parafuso fixação amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td></td>
</tr>
</tbody>
</table>
GRAU DE ADEQUAÇÃO DO PROJETO (3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Etos trasiero</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>2 Mola</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>3 Amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>4 Bucle inferior</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>5 Bucle Superior</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>6 Parafuso fixação eixo</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>7 Parafuso fixação amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
</tbody>
</table>
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

ALTERNATIVA 1

GRAU DE ADEQUAÇÃO DO PROJETO (4)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eixo traseiro</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>2</td>
<td>Mola</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>3</td>
<td>Amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>4</td>
<td>Soquete inferior</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>5</td>
<td>Soquete Superior</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>6</td>
<td>Parafuso fixação eixo</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>7</td>
<td>Parafuso fixação amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

GRAU DE ADEQUAÇÃO DO PROJETO 8,40
INVESTIMENTO

<table>
<thead>
<tr>
<th>ITEM</th>
<th>GENERAL ASSEMBLY</th>
<th>OUTROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rerobusto equipamento automático montagem do eixo traseiro</td>
<td>50.000.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL PARCIAL (US$)</td>
<td>50.000.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL GERAL (US$)</td>
<td>50.000.00</td>
<td></td>
</tr>
</tbody>
</table>
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

<table>
<thead>
<tr>
<th>RESULTADOS</th>
<th>TEMPO DE MONTAGEM (SEG)</th>
<th>CUSTO MAIO-DE-CERCA (US$)</th>
<th>CUSTO DA PEÇAS (US$)</th>
<th>NÚMERO DE PEÇAS</th>
<th>INVESTIMENTO</th>
<th>EFICIÊNCIA DO PROJETO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJETO ORIGIN</td>
<td>1,77</td>
<td>0,00</td>
<td>425,74</td>
<td>19</td>
<td>50,000</td>
<td>7,84</td>
</tr>
<tr>
<td>ALTERNATIVA 1</td>
<td>1,77</td>
<td>0,00</td>
<td>425,74</td>
<td>19</td>
<td>50,000</td>
<td>8,40</td>
</tr>
<tr>
<td>ALTERNATIVA 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVA 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO III – RELATÓRIOS DO SOFTWARE DFA-BOOTHROYD & DEWHURST
Picture for Pneumatic control
Structure Chart
Boothroyd Dewhurst, Inc.

Pneumatic control
 - base
 - apply grease to area
 - piston subassembly
 - piston
 - shaft
 - piston stop
 - spring
 - cover
 - screw

Boothroyd Dewhurst, Inc
Pneumatic control

On this first window we provide the assembly name, some basic data and we check the settings for the analysis.

base

We select the "base" as the "base part" for the building of the assembly and it then becomes a theoretically necessary part.

apply grease to area

Calculates the time for the application of grease to an individual area using an applicator. Allowance is made for the time to acquire and set aside the applicator and the time to move from one area to another, identical area (repeat count > 1).

piston

The piston is a theoretically separate part because it must move relative to all other parts already assembled during operation of the product.

shaft

The shaft can theoretically be combined with the piston. It doesn't move relative to the piston, the piston could be of the same material and combination of the shaft and piston would not prevent assembly of necessary items.

piston stop

The piston stop must be separate from the base and the piston subassembly. If it were combined with the base it would not be possible to insert the piston subassembly into the base.

spring

We assume that the spring must be manufactured from a different material than other parts already assembled.

cover

The cover does not move relative to the piston stop, it can theoretically be made of the same material and would not prevent assembly of other items if combined with the piston stop.

screw

Separate fasteners never meet the minimum parts criteria because an integral fastening arrangement is always theoretically possible.
Suggestions for Redesign
Boothroyd Dewhurst, Inc.

Incorporate integral fastening elements into functional parts, or change the securing methods, in order to eliminate as many as possible of the following separate fastening elements.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>screw</td>
<td>2</td>
<td>17.90</td>
<td>29.40</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>17.90</td>
<td>29.40</td>
</tr>
</tbody>
</table>

Reduce the number of items in the assembly by combining with others or eliminating the following parts or subassemblies. Note that combining an item with another may eliminate further items such as fasteners or operations, resulting in much larger time reductions than those indicated.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>cover</td>
<td>1</td>
<td>7.26</td>
<td>11.92</td>
</tr>
<tr>
<td>Piston subassembly</td>
<td>shaft</td>
<td>1</td>
<td>8.56</td>
<td>14.06</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>15.82</td>
<td>25.68</td>
</tr>
</tbody>
</table>

Reduce separate operation times where possible. Try to improve or eliminate any which do not add value to the product and yet contribute significantly to assembly time.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>apply grease to area</td>
<td>1</td>
<td>8.05</td>
<td>13.23</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>8.05</td>
<td>13.23</td>
</tr>
</tbody>
</table>

Design locating features into mating parts of the assembly to eliminate the need for holding down the following items during the assembly process.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>cover</td>
<td>1</td>
<td>2.20</td>
<td>3.61</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>2.20</td>
<td>3.61</td>
</tr>
</tbody>
</table>
Suggestions for Redesign
Boothroyd Dewhurst, Inc.

Add assembly features such as chamfers, lips, leads, etc., to make the following items self-aligning.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>piston subassembly</td>
<td>1</td>
<td>1.50</td>
<td>2.46</td>
</tr>
<tr>
<td>Pneumatic control</td>
<td>cover</td>
<td>1</td>
<td>2.60</td>
<td>4.27</td>
</tr>
<tr>
<td>Pneumatic control</td>
<td>screw</td>
<td>2</td>
<td>3.40</td>
<td>5.58</td>
</tr>
<tr>
<td>piston subassembly</td>
<td>shaft</td>
<td>1</td>
<td>1.50</td>
<td>2.46</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>9,00</td>
<td>14.78</td>
<td></td>
</tr>
</tbody>
</table>

Redesign the assembly where possible to allow adequate access and unrestricted vision for placement or insertion of the following items.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>piston subassembly</td>
<td>1</td>
<td>2.20</td>
<td>3.61</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>2.20</td>
<td>3.61</td>
<td></td>
</tr>
</tbody>
</table>

The individual assembly items listed below nest or tangle and/or are difficult to grasp. Consider redesign of the items to eliminate or reduce their handling difficulties.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>spring</td>
<td>1</td>
<td>0.71</td>
<td>1.17</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>0.71</td>
<td>1.17</td>
</tr>
</tbody>
</table>
Review the following items and operations that may cause ergonomic difficulties for the assembly worker.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>piston subassembly</td>
<td>1</td>
</tr>
<tr>
<td>Pneumatic control</td>
<td>cover</td>
<td>1</td>
</tr>
</tbody>
</table>
Structure Chart
Boothroyd Dewhurst, Inc.

Piston redesign

- Pneumatic control
 - base
 - apply grease to area
 - piston subassembly
 - piston
 - shaft
 - piston stop
 - spring
 - cover
 - screw
Notes
Boothroyd Dewhurst, Inc.

Pneumatic control

This proposed redesign has only four parts, which is the theoretical minimum for the original design.

base

We select the "base" as the "base part" for the building of the assembly and it then becomes a theoretically necessary part.

apply grease to area

Calculates the time for the application of grease to an individual area using an applicator. Allowance is made for the time to acquire and set aside the applicator and the time to move from one area to another, identical area (repeat count > 1).

piston

The piston subassembly is replaced by a single die cast and machined part.

spring

We assume that the spring must be manufactured from a different material than other parts already assembled.

cover and stop

The piston stop and cover are replaced by an injection molded snap fit cover and stop.
Suggestions for Redesign
Boothroyd Dewhurst, Inc.

Reduce separate operation times where possible. Try to improve or eliminate any which do not add value to the product and yet contribute significantly to assembly time.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>apply grease to area</td>
<td>1</td>
<td>8.05</td>
<td>38.09</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>8.05</td>
<td>38.09</td>
</tr>
</tbody>
</table>

The individual assembly items listed below nest or tangle and/or are difficult to grasp. Consider redesign of the items to eliminate or reduce their handling difficulties.

<table>
<thead>
<tr>
<th>Parent assembly</th>
<th>Name</th>
<th>Repeat count</th>
<th>Time savings, s</th>
<th>Relative effect of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic control</td>
<td>spring</td>
<td>1</td>
<td>0.71</td>
<td>3.36</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>0.71</td>
<td>3.36</td>
</tr>
</tbody>
</table>

Boothroyd Dewhurst, Inc
Executive Summary Comparison - DFMA

Theodore Dewhurst, Inc.

domingo, 25 de agosto de 2002 10:32

Piston original, Piston redesign

<table>
<thead>
<tr>
<th></th>
<th>Piston original</th>
<th>Piston redesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product life volume</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Number of entries (including repeats)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Number of different entries</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Theoretical minimum number of items</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DFA Index</td>
<td>21,3</td>
<td>64,6</td>
</tr>
<tr>
<td>Total labor time, s</td>
<td>60,89</td>
<td>21,14</td>
</tr>
<tr>
<td>Total weight, g</td>
<td>60,00</td>
<td>56,00</td>
</tr>
<tr>
<td>Total labor cost, $</td>
<td>0,60</td>
<td>0,21</td>
</tr>
<tr>
<td>Tool or fixture cost per product, $</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Other operation cost per product, $</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Item costs (including tooling), $</td>
<td>2,82</td>
<td>2,08</td>
</tr>
<tr>
<td>Manufacturing tooling cost per product, $</td>
<td>0,25</td>
<td>0,41</td>
</tr>
<tr>
<td>Total cost per product, $</td>
<td>3,44</td>
<td>2,30</td>
</tr>
</tbody>
</table>

The chart shows a breakdown of cost per product:

- **Piston original**
 - Total cost per product, $3,44
 - Tool or fixture cost, $0,02
 - Labor cost, $0,60
 - Piece part cost, $2,57
 - Manufacturing tooling cost per product, $0,25

- **Piston redesign**
 - Total cost per product, $2,30
 - Tool or fixture cost, $0,02
 - Labor cost, $0,21
 - Piece part cost, $1,67
 - Manufacturing tooling cost per product, $0,41
Analysis Totals

Boothroyd Dewhurst, Inc.

Piston original, Piston redesign

Per product data

<table>
<thead>
<tr>
<th></th>
<th>Piston original</th>
<th>Piston redesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries (including repeats)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Number of different entries</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Total assembly time, s</td>
<td>60.89</td>
<td>21.14</td>
</tr>
<tr>
<td>Weight, g</td>
<td>60.00</td>
<td>66.00</td>
</tr>
<tr>
<td>Labor cost, $</td>
<td>0.60</td>
<td>0.21</td>
</tr>
<tr>
<td>Tool or fixture costs, $</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Other operation costs, $</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Item costs (including tooling), $</td>
<td>2.82</td>
<td>2.08</td>
</tr>
<tr>
<td>Manuf. tooling cost, $</td>
<td>0.25</td>
<td>0.41</td>
</tr>
<tr>
<td>Total cost, $</td>
<td>3.44</td>
<td>2.30</td>
</tr>
</tbody>
</table>

Production data

<table>
<thead>
<tr>
<th></th>
<th>Product life volume</th>
<th>Overall Plant Efficiency, %</th>
<th>Labor rate, $/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.000</td>
<td>85.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

Production life costs

<table>
<thead>
<tr>
<th></th>
<th>Piston original</th>
<th>Piston redesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor cost, $</td>
<td>59700.00</td>
<td>20729.00</td>
</tr>
<tr>
<td>Tool or fixture costs, $</td>
<td>1980.00</td>
<td>1630.00</td>
</tr>
<tr>
<td>Other operation costs, $</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Item costs (including tooling), $</td>
<td>282154.00</td>
<td>208068.00</td>
</tr>
<tr>
<td>Manuf. tooling cost, $</td>
<td>26154.00</td>
<td>41068.00</td>
</tr>
<tr>
<td>Total cost, $</td>
<td>343834.00</td>
<td>230397.00</td>
</tr>
</tbody>
</table>

DFA Index

<table>
<thead>
<tr>
<th>Theoretical minimum number of items</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA Index</td>
<td>21.3</td>
</tr>
</tbody>
</table>
REFERÊNCIAS BIBLIOGRÁFICAS

CAPÍTULO 8 - CONCLUSÃO

8.1 Conclusões sobre a metodologia DFMA

Neste trabalho de curso apresentamos uma ferramenta para aplicação da metodologia Design for Manufacturability and Assembly (DFMA) na indústria automotiva.

Desenvolvida com uma abordagem mais simples que softwares de mercado, esta tem o propósito de promover a difusão do DFMA no ambiente de desenvolvimento de produtos da empresa.

O desenvolvimento da ferramenta, chamada de Planilha DFMA, foi fundamentado em conceitos e princípios da metodologia descritos do decorrer do trabalho de curso. Metodologias complementares também foram aplicadas no seu desenvolvimento visando prover uma ferramenta mais abrangente e completa para o usuário.

Um dos assuntos abordados no trabalho foi o processo de desenvolvimento de produtos, onde estão expostos comentários de vários autores sobre o processo de desenvolvimento de produtos e, resumidamente, podemos dizer que o projeto do produto está dividido em:

1. Planejamento e especificações do produto, onde o objetivo é determinar quais são as exigências e necessidades do cliente.

2. Projeto básico ou conceitual, onde a idéia conceitual é criada e uma alternativa de projeto é escolhida.

3. Projeto executivo ou projeto do produto, onde o produto é literalmente desenvolvido, testado e liberado para o início da

Somando esta última divisão do desenvolvimento do produto ao que foi comentado no item “2.4 Quando aplicar o DFMA no desenvolvimento do projeto”, podemos concluir que a fase mais adequada para utilizar o DFMA é quando o projeto começa a ser criado, ou seja, durante o projeto básico ou conceitual. A sua aplicação nestes estágios preliminares de desenvolvimento pode proporcionar significativo aumento da qualidade do produto e redução de custos.

Analogamente, no cronograma GVDP, proposto para desenvolvimento e implementação do projeto, podemos indicar a aplicação do DFMA durante o projeto dos protótipos conceitual, estrutural e de integração, onde o estudo dos protótipos virtuais facilita a análise pretendida com menor custo de modificação.

Abordamos também a resistência normalmente encontrada durante a implementação de novas abordagens, como o DFMA. Este assunto nos auxiliou na justificação do tema do trabalho, pois mostra ao leitor as dificuldades e razões mais frequentes utilizadas para a não implementação da metodologia.

Destacamos no terceiro capítulo, a metodologia DFX, originada do conceito do DFMA, que visa melhorar o produto do ponto de vista da confiabilidade, qualidade, manutenção, segurança, meio ambiente, usuário e a redução do prazo de desenvolvimento.

Contudo, devemos salientar a possibilidade de aparecerem conflitos durante a aplicação das metodologias do DFX. Aspectos importantes para uma podem, às vezes, implicar na perda de algum aspecto importante de outra. Por exemplo, a aplicação do Design for Environment pode acarretar no aumento da complexidade da reciclagem ou na perda de produtividade do processo de fabricação; a aplicação do Design for Reliability pode acarretar no aumento da quantidade de componentes do produto, afetando diretamente a montagem do mesmo.

Por outro lado, existem muitos aspectos comuns entre as metodologias do DFX. Podemos citar como exemplo, a redução do número de peças de um produto; que, está presente, em praticamente, todas as metodologias mencionadas neste capítulo.
Existem outras metodologias no âmbito do DFX que não se aplicam diretamente à indústria automobilística, e por essa razão não citamos neste trabalho.\(^3\)

A Engenharia Simultânea propõe o desenvolvimento do produto em grupo multidisciplinar onde pessoas que atuam em diferentes funções possam contribuir para a análise. Deste modo, o resultado final do projeto é um produto que atenda além das necessidades da manufatura, requisitos funcionais, técnicos, de manutenção, de marketing, etc. Portanto, visando obter um melhor resultado, este trabalho propõe a utilização de grupos multidisciplinares para a aplicação da Planilha DFMA.

A EV / AV é apresentada como uma valiosa ferramenta que possibilita a simplificação do projeto através da redução do número de peças, facilitando a manufatura do produto e reduzindo o seu custo final. Analisando o aspecto comum da redução do número de peças da EV/AV e do DFMA, notamos que a utilização da técnica Anatomia das Funções poderia contribuir para a análise de DFMA; por esta razão, foi incluída na Planilha DFMA proposta e apresentada neste trabalho.

8.2 Conclusão sobre a ferramenta desenvolvida

Tendo em vista os dados apresentados, podemos perceber que (a) a aplicação do DFMA aumenta a chance de sucesso do produto, pois, dentre outros benefícios; (b) permite o desenvolvimento de um projeto em tempo reduzido, possibilita significativo aumento de qualidade; e (c) à diminuição de custos.

Os dados de problemas de fabricação obtidos através da análise de documentos referentes à aplicação dos “5 Passos” nos mostraram ainda os potenciais benefícios da aplicação do DFMA no desenvolvimento do produto. Verificamos nestes dados que uma grande proporção dos problemas encontrados poderia ter sido

\(^3\) Se o leitor tiver interesse, sugerimos consultar sobre *Design in Electronics* e *Design for Low Quantity Production*, entre outros.
resolvida durante o desenvolvimento de produtos através da aplicação da metodologia DFMA. Registramos que cerca de 24% e 30% dos problemas ocorridos nas linhas de Tapeçaria e Mecânica, respectivamente, poderiam ter sido notados durante o desenvolvimento do projeto, na hipótese de ter sido aplicado DFMA.

Os dados compilados da pesquisa realizada com o grupo focal consultado nos permitiram identificar quais os principais requisitos dos usuários para uma ferramenta de DFMA, bem como os benefícios buscados e as dificuldades encontradas em seu uso.

Verificamos, através da análise do software DFA-BDI, que este atende as necessidades do usuário. No entanto, esta ferramenta demanda muito tempo de treinamento e dedicação por parte dos usuários, tendo em vista a dificuldade de se adotar nova metodologia de trabalho com um software completamente desconhecido, dotado de extensa gama de funções e relatórios.

Pensando na importância do DFMA e nas dificuldades encontradas, notamos que a disponibilização de uma ferramenta mais simples que o software mencionado poderia auxiliar na disseminação da metodologia. Assim sendo, desenvolvemos a Planilha DFMA, para que pudesse ser adotada como um instrumento facilitador na disseminação da metodologia DFMA no ambiente da indústria automotiva.

Percebemos ainda que a Planilha DFMA pode ser utilizada, com maior ênfase, em três situações diferentes:

- Como um instrumento de treinamento na metodologia DFMA que facilite a capacitação de engenheiros para a aplicação de softwares profissionais mais completos disponíveis no mercado.4

- Como instrumento para introdução das noções básicas da metodologia DFMA para aqueles que não tem necessidade de utilizar softwares complexos. (Exemplo: membros de grupos em

4 Ver relatórios apresentados no "Anexo III - Relatórios do Software DFA-BDI – Boothroyd & Dewhurst"
projetos de Engenharia Simultânea ligados indiretamente com a análise de DFMA).

- Como complemento a softwares existentes no mercado, visando maximizar os benefícios auferíveis. Por se tratar de uma ferramenta dedicada ao ambiente da indústria automotiva, a Planilha DFMA permite identificar e solucionar problemas característicos deste setor, dificilmente identificados através da análise exclusiva com ferramentas genéricas. (Exemplo: problemas originados das perguntas elaboradas através da análise dos “5 Passos” presentes na Planilha DFMA)

Devemos salientar que esta ferramenta foi elaborada para atender principalmente as necessidades da montagem final de veículos, etapa de produção que demanda maior mão-de-obra no processo de montagem. Porém, pelo fato de ter sido fundamentada nos conceitos básicos da metodologia DFMA, pode ser facilmente adaptada para outros ambientes de fabricação, como as áreas de pintura, funilaria e estamparia.

Verificamos, através da pesquisa com o grupo focal, que os benefícios buscados através da aplicação da metodologia DFMA podem também ser alcançados com a utilização da Planilha DFMA, e não apenas com os softwares disponíveis. Já em relação às dificuldades e pontos negativos, notamos que a Planilha DFMA tem as suas vantagens, como, por exemplo, baixo custo de aquisição e a facilidade de utilização, visto que se baseia no software MS Excel, que é bastante conhecido e utilizado. Contudo, notamos que aspectos requeridos pelo grupo, não atendidos adequadamente pela ferramenta desenvolvida, devem ser incorporados em uma próxima versão desta planilha.

Deste modo, podemos concluir que uma ferramenta como a Planilha DFMA aqui apresentada atende grande parte dos requisitos do grupo focal consultado e, pode facilmente ser utilizada como meio de difusão dos conceitos de sua metodologia para, nos casos complexos que demandem ferramenta mais sofisticada pode, se necessário, ser complementada por determinado software que se mostre mais específico e dedicado.
ANEXO I – ROTEIRO PARA ENTREVISTA NA PESQUISA COM GRUPO FOCAL – APLICAÇÃO DA TÉCNICA DE DFMA:
Prezado Sr (a),

Está sendo realizada uma pesquisa visando identificar as principais funções, benefícios, dificuldades e aplicação da técnica de DFMA. Os dados obtidos aqui, serão utilizados em uma dissertação para a obtenção do título de Mestrado em Engenharia Automotiva, submetido à análise da Escola Politécnica da Universidade de São Paulo. É importante salientar que a identificação do entrevistado é optativa. Vale ressaltar ainda que os resultados serão divulgados de forma consolidada e as respostas serão mantidas em sigilo. Desde já agradeço a atenção dedicada a este trabalho.

Atenciosamente,

Andrea Arbex Rodrigues

Explicações e Orientações gerais:

A entrevista está dividida em três partes; é importante que o entrevistado responda as perguntas na ordem colocada, não avançando para a questão seguinte sem antes completar a anterior.

A primeira parte visa identificar o entrevistado, bem como o seu departamento de atuação e o número de pessoas envolvidas com a metodologia DFMA. Na segunda parte, o objetivo é verificar, na opinião do usuário, quais são as principais funções que devem ser encontradas nas ferramentas de DFMA. A terceira e última parte, visa conhecer a opinião do entrevistado, os seus objetivos e os resultados na aplicação da técnica.

1. IDENTIFICAÇÃO DO ENTREVISTADO E SEU DEPARTAMENTO

Nome: ________________________________

Departamento: ________________________________

Área de trabalho: ________________________________

Experiência na área: ________________________________
Número de funcionários da área:

Número de funcionários que aplicam a técnica do DFMA:
2. COLETA DE DADOS:

Lista-se a seguir algumas funções de softwares e planilhas elaborados para facilitar a aplicação da técnica de DFMA. Atribua valores de acordo com os critérios definidos abaixo, de acordo com a relevância de cada função na utilização desta ferramenta no desenvolvimento de produtos:

Critério:

1 - Irrelevante, não acrescenta valor à análise
2 - Indiferente, informação / resultado não totalmente necessário. Não traz benefícios significativos para a análise
3 - Razoável, facilita o trabalho com os dados e / ou acrescenta valor ao resultado final
4 - Relevante, indispensável para a análise

<table>
<thead>
<tr>
<th>FUNÇÃO</th>
<th>CRITÉRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCOLHA DAS UNIDADES DE CÁLCULO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>ESCOLHA DA ESTRUTURA E APARÊNCIA DA ANÁLISE</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>MODIFICAR LAYOUT DA TELA</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>IDENTIFICA NOME, NÚMERO E FORNECEDOR</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>IDENTIFICA VOLUME DE VENDAS</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>DEFINE CUSTO MÃO-DE-OBRA</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>INVESTIMENTO PARA COMpra E RETRABALHO DE FERRAMENTAS</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>IDENTIFICA OPERAÇÃO COMO MONTAGEM E SUBMONTAGEM</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>DEFINE SEQUÊNCIA DE MONTAGEM</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>QUESTÕES DE DFMA</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>DEFINE O LÍDER DA ANÁLISE</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>DEFINE O OBJETIVO DA ANÁLISE</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>DEFINE O TIME DE TRABALHO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>LISTA DE PRESENÇA DE REUNIÇÕES</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>MINUTA DE REUNIÃO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>ILUSTRACAO DO PRODUTO ANALISADO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>SUGESTÕES PARA REPROJETO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>SUMÁRIO DOS RESULTADOS DE CUSTOS, INVESTIMENTOS, COMPONENTES</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>CUSTO DE MÃO-DE-OBRA DO PRODUTO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>FACILIDADE DE USO</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>TEMPO DE TREINAMENTO REDUZIDO</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>
3. PERGUNTAS

3.1 Quais outras funções você considera relevantes para a aplicação da técnica?

3.2 Quais são os fatores positivos da aplicação dos softwares disponíveis no mercado? (Marque com X uma ou mais alternativa listada abaixo)

☐ Resultados compilados de custos e investimentos
☐ Indicação de sugestões para reprojeto
☐ Redução do tempo de projeto
☐ Bibliotecas com desenhos de peças
☐ Flexibilidade na manipulação dos dados
☐ Praticidade
☐ Outros - Quais?

3.3 Quais os fatores negativos da aplicação dos softwares disponíveis no mercado? (Marque com X uma ou mais alternativa listada abaixo)

☐ Dificuldade na aplicação da ferramenta
☐ Tempo de treinamento elevado
☐ Custo de aquisição da ferramenta
☐ Outros - Quais?

3.4 Você utiliza ou já utilizou softwares de DFMA? Qual a razão que o levou a parar de utilizá-lo? (Marque com X uma ou mais alternativa listada abaixo)

☐ Sim ☐ Não
☐ Dificuldade na aplicação da ferramenta
☐ Falta de tempo
☐ Falta de pessoal especializado
☐ Falta de ferramentas adequadas
☐ Baixo volume de produção
☐ Baixo custo de manufatura
☐ Outros - Quais?
3.5 Desde quando a técnica de DFMA vem sendo aplicada no seu departamento?

3.6 Quais foram os benefícios alcançados com a aplicação da técnica?

☐ Redução do número de peças
☐ Redução do custo de manufatura
☐ Aumento da padronização de peças e ferramentas
☐ Aumento da facilidade de montagem
☐ Aumento da qualidade do produto
☐ Outros - Quais?_________________

3.7 Qual a ferramenta utilizada?

☐ Software de mercado - Qual?______________
☐ Ferramenta desenvolvida pelo departamento
☐ Outros - Quais?_________________

3.8 Quais são os principais objetivos buscados na aplicação da técnica?

☐ Redução do número de peças
☐ Redução do custo de manufatura
☐ Aumento da padronização de peças e ferramentas
☐ Aumento da facilidade de montagem
☐ Aumento da qualidade do produto
☐ Outros - Quais?_________________

3.9 Outros comentários
ANEXO II – EXEMPLO: PLANILHA DFMA
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

OIIHMTOR: Andrea Arbex Rodrigues
DATA: 10/02/2002
DATA DA ÚLTIMA ANUALIZAÇÃO:

OBJETIVO: Evitar erros durante a montagem de componentes, facilitar a montagem e utilizar equipamentos existentes na fábrica para outros produtos.

<table>
<thead>
<tr>
<th>GRUPO:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOME</td>
<td>DEPARTAMENTO</td>
</tr>
<tr>
<td>Andrea Arbex Rodrigues</td>
<td>Eng. Manufatura</td>
</tr>
<tr>
<td>José Luís</td>
<td>Eng. de Produção</td>
</tr>
<tr>
<td>Maria Vicente</td>
<td>Eng. Produto</td>
</tr>
<tr>
<td>João de Paula</td>
<td>Marketing</td>
</tr>
</tbody>
</table>

ESTUDOS / PROJETOS / COMPONENTES AFETADOS POR ESTA ANÁLISE:

<table>
<thead>
<tr>
<th>NOME:</th>
<th>NUMERO</th>
</tr>
</thead>
</table>

25/02/2002
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

DATA DA REUNIÃO:
10/6/2002

GRUPO:

<table>
<thead>
<tr>
<th>NOME</th>
<th>DEPARTAMENTO</th>
<th>RAMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrea Arbez Rodrigues</td>
<td>Engº Manufatura</td>
<td>2222</td>
</tr>
<tr>
<td>José Luís</td>
<td>Engº de Produção</td>
<td>3233</td>
</tr>
<tr>
<td>Mario Vicente</td>
<td>Engº Produtos</td>
<td>4444</td>
</tr>
<tr>
<td>João de Paula</td>
<td>Marketing</td>
<td>5558</td>
</tr>
</tbody>
</table>

COMENTÁRIOS:

* O eixo traseiro é montado com o auxílio de um manipulador, permitindo a montagem com apenas uma mão, facilitando o posicionamento, a ergonomia e reduzindo esforços excessivos por parte do operador.
* A diferença da distância entre eixos não permite a utilização do equipamento automático durante a montagem; este deve ser reatualizado para atender este carro novo do veículo, pois não é possível comunicar pontos de localização da carroçaria.
* A montagem de mola e amortecedor pode gerar dúvida para o operado durante a montagem, por existirem peças semelhantes para diferentes veículos; elaborar identificação visual para facilitar a identificação.
* O torque de fixação dos parafusos precisa ser comunicado com os outros veículos da linha de produção para permitir a utilização do ferramentas de aperto comum.
* A mola permite montagem invertida; as buchas superior e inferior permitem montagem invertida; diferenciar o diâmetro dos eixos das extremidades, bem como, o diâmetro de encaixe das buchas para garantir a montagem.
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

DATA DA REUNIÃO:
10/7/2002

GRUPO:

<table>
<thead>
<tr>
<th>NOME</th>
<th>DEPARTAMENTO</th>
<th>RAMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>André Araújo Rodrigues</td>
<td>Engº Manufatura</td>
<td>2222</td>
</tr>
<tr>
<td>José Luís</td>
<td>Engº de Produção</td>
<td>3333</td>
</tr>
<tr>
<td>Mario Vicente</td>
<td>Engº Produtos</td>
<td>4444</td>
</tr>
<tr>
<td>João da Paula</td>
<td>Marketing</td>
<td>5555</td>
</tr>
</tbody>
</table>

COMENTÁRIOS:

* O eixo traseiro é montado com o auxílio de um manipulador, permitindo a montagem com apenas uma mão, facilitando o posicionamento, a ergonomia e reduzindo esforços excessivos por parte do operador.

* Equipamento automático foi re trab alhado para permitir a montagem do eixo traseiro.

* Foi elaborado um sistema cores para a identificação do amortecedor e mola, visando evitar a troca de peças.

* O torque de fixação dos parafusos foi comunitado com os outros veículos da linha de montagem visando utilizar a mesma ferramenta.

* O diâmetro dos eitos superior e inferior da mola foi diferenciado para evitar a montagem errada; os diâmetros de encaixe das buchas também foram modificados.
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

<table>
<thead>
<tr>
<th>PERGUNTA</th>
<th>PESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ESTA PEÇA É CONSIDERADA RELEVANTE OU IRRELEVANTE PARA O PRODUTO?</td>
<td>1,38</td>
</tr>
<tr>
<td>2. DURANTE A OPERAÇÃO DO PRODUTO, ESTA PEÇA EXECUTA MOVIMENTO RELATIVO EM RELAÇÃO AOS OUTROS COMPONENTES?</td>
<td>1,00</td>
</tr>
<tr>
<td>3. O MATERIAL UTILIZADO NA FABRICAÇÃO DESTA PEÇA É COMUM A OUTRAS PEÇAS DO PRODUTO?</td>
<td>1,00</td>
</tr>
<tr>
<td>4. ESTA PEÇA PRECISA, NECESSARIAMENTE, SER INDEPENDENTE DAS DEMAIS POR MOTIVOS DE MONTAGEM OU DESMONTAGEM?</td>
<td>1,07</td>
</tr>
<tr>
<td>5. EXISTE SIMETRIA ROTACIONAL OU ASSIMETRIA OBVIA QUE IMPEÇA A MONTAGEM OU DESMONTAGEM ERRADA?</td>
<td>1,27</td>
</tr>
<tr>
<td>6. A PEÇA PERMITE AUTO-POSICIONAMENTO OU POSSUI INDICAÇÃO PARA POSICIONAMENTO?</td>
<td>2,62</td>
</tr>
<tr>
<td>7. A PEÇA FOI PROJETADA PARA EVITAR O EMARANHAMENTO DURANTE O ARMAZENAMENTO, DIFICULTANDO O MANUSEIO PELO OPERADOR?</td>
<td>1,00</td>
</tr>
<tr>
<td>8. A PEÇA PODE SER MONTADA SEM DIFICULDADE PELO OPERADOR, POR NÃO SER ESCORREGADIA, MUITO PEQUENA, MUITO GRANDE?</td>
<td>1,13</td>
</tr>
<tr>
<td>9. A PEÇA PODE SER MONTADA SEM A UTILIZAÇÃO DE FERAMENTA OU DISPOSITIVO?</td>
<td>3,43</td>
</tr>
<tr>
<td>10. A PEÇA PODE SER MONTADA COM APENAS UMA DAS MÃOS?</td>
<td>1,00</td>
</tr>
<tr>
<td>11. O OPERADOR TEM VISÃO DA OPERAÇÃO?</td>
<td>1,47</td>
</tr>
<tr>
<td>12. EXISTE DIFICULTADE DE INERÇÃO DEVIDO AO ACESSO, PESO DO COMPONENTE, POSIÇÃO DE MONTAGEM, ETC?</td>
<td>1,83</td>
</tr>
<tr>
<td>13. A MONTAGEM DESTE COMPONENTE PODE SER CONSIDERADA ERGONÔMICA?</td>
<td>1,07</td>
</tr>
<tr>
<td>14. A OPERAÇÃO PODE SER REALIZADA SEM ESFORÇO EXCESSIVO DO OPERADOR?</td>
<td>2,42</td>
</tr>
<tr>
<td>15. A PEÇA PODE SER COMUNICADA COM OUTRAS EXISTENTES NO PRODUTO PARA PERMITIR O USO DE FERAMENTAS COMUNS A OUTROS PRODUTOS E REDUZIR INVENTÁRIO?</td>
<td>2,25</td>
</tr>
<tr>
<td>16. A MONTAGEM PODE SER CONSIDERADA SEGURA PARA O OPERADOR?</td>
<td>1,13</td>
</tr>
<tr>
<td>17. A MONTAGEM PODE CAUSAR DÚVIDA PARA O OPERADOR: PEÇAS FISICAMENTE IGUAIS E COM FUNÇÕES DIFERENTES?</td>
<td>1,53</td>
</tr>
<tr>
<td>18. A PEÇA PODE SER FACILMENTE REMOVIDA EM CASO DE NECESSIDADE DE REPAROS?</td>
<td>1,42</td>
</tr>
<tr>
<td>TOTAL</td>
<td>28,00</td>
</tr>
</tbody>
</table>
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

PROJETO ORIGINAL

<table>
<thead>
<tr>
<th>CUSTO MÃO-DE-OBRA (US$/HORA)</th>
<th>10</th>
</tr>
</thead>
</table>

SEQUÊNCIA DE MONTAGEM:

<table>
<thead>
<tr>
<th></th>
<th>TEMPO Padrão (h)</th>
<th>CUSTO MÃO-DE-OBRA (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Posicionar o eixo traseiro no dispositivo</td>
<td>0.27</td>
<td>0.00075</td>
</tr>
<tr>
<td>2. Posicionar 3 parafusos nos pontos de fixação do sub-frame</td>
<td>0.20</td>
<td>0.00056</td>
</tr>
<tr>
<td>3. Posicionar a bucha inferior</td>
<td>0.14</td>
<td>0.00039</td>
</tr>
<tr>
<td>4. Posicionar a mole</td>
<td>0.14</td>
<td>0.00039</td>
</tr>
<tr>
<td>5. Posicionar a bucha superior</td>
<td>0.14</td>
<td>0.00039</td>
</tr>
<tr>
<td>6. Posicionar a mola do amortecedor</td>
<td>0.20</td>
<td>0.00056</td>
</tr>
<tr>
<td>7. Posicionar a bucha do amortecedor</td>
<td>0.16</td>
<td>0.00044</td>
</tr>
<tr>
<td>8. Preparar a mola do amortecedor</td>
<td>0.16</td>
<td>0.00044</td>
</tr>
<tr>
<td>9. Fixar o eixo na carroceria com o equipamento automático</td>
<td>0.36</td>
<td>0.00100</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

1.77

0.00452

24/9/2002
<table>
<thead>
<tr>
<th>PEÇA</th>
<th>PART NUMBER</th>
<th>QUANTIDADE</th>
<th>CUSTO PEÇA (US$)</th>
<th>FORNECEDOR</th>
<th>ENGº RESPONSÁVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eixo traseiro</td>
<td>51.238.001</td>
<td>1</td>
<td>350,00</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td>Mola</td>
<td>30.702.658</td>
<td>2</td>
<td>20,00</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td>Amortecedor</td>
<td>50.001.798</td>
<td>2</td>
<td>32,50</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td>Bucha inferior</td>
<td>20.445.678</td>
<td>2</td>
<td>12,50</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td>Bucha Superior</td>
<td>20.445.679</td>
<td>2</td>
<td>10,00</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td>Parafuso fixação eixo</td>
<td>40.215.519</td>
<td>6</td>
<td>3,00</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td>Parafuso fixação amortecedor</td>
<td>40.215.519</td>
<td>4</td>
<td>0,37</td>
<td>Fornecedor AB</td>
<td>Ingº Antônio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>425,74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBS: Os part number, fornecedor, engenheiro e valores de custo são apenas ilustrativos.
GRAU DE ADEQUAÇÃO DO PROJETO (1)

<table>
<thead>
<tr>
<th>PEÇA</th>
<th>FUNÇÃO DA PEÇA (VERBO + SUBSTANTIVO)</th>
<th>ESTA PEÇA É CONSIDERADA RELEVANTE OU IRRELEVANTE PARA O PRODUTO?</th>
<th>DURANTE A OPERAÇÃO DO PRODUTO ESTA PEÇA POSSUI MOVIMENTO RELATIVO EM RELAÇÃO ÀS OUTRAS JÀ MONTADAS? (SIM / NÃO)</th>
<th>O MATERIAL UTILIZADO NA FABRICAÇÃO DESTA PEÇA É COMUM À OUTRAS PEÇAS DO PRODUTO? (SIM / NÃO)</th>
<th>ESTA PEÇA PRECISA, NECESSARIAMENTE, SER INDEPENDENTE DAS DEMAIAS POR MOTIVOS DE MONTAGEM OU DISMONTAGEM? (SIM / NÃO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eixo traseiro</td>
<td>Suportar veículo</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>2</td>
<td>Mola</td>
<td>Reduzir impacto</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>3</td>
<td>Amortecedor</td>
<td>Reduzir movimento</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>4</td>
<td>Bucha inferior</td>
<td>Aparar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>5</td>
<td>Bucha Superior</td>
<td>Aparar componente</td>
<td>Relevante</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>6</td>
<td>Parafuso fixação aro</td>
<td>Fixar aro</td>
<td>Relevante</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>7</td>
<td>Parafuso fixação amortecedor</td>
<td>Fixar amortecedor</td>
<td>Relevante</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEÇA</td>
<td>SIM</td>
<td>NÃO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Esteira</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Mola Superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Mola Inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Borda Superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Borda Inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Parede ou apoio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Peso da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Profundidade da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Diâmetro da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Diamante da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Massa da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Volumêmetro da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Distância da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Comprimento da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Diâmetro da peça</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAU DE ADEQUAÇÃO AO PROJETO (2)

<table>
<thead>
<tr>
<th>A PEÇA PODE SER MONTADA</th>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A PEÇA PODE SER MONTADA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A PEÇA PODE SER MONTADA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A PEÇA PODE SER MONTADA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXISTE ASSIMETRIA OU ASIMETRIA DE CORRETAS PARA ASIMETRIA DE CORRETAS?

<table>
<thead>
<tr>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POSIÇÃO CORRETA PARA MONTAGEM?

<table>
<thead>
<tr>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERÁ NECESSÁRIA A UTILIZAÇÃO DE ENCORRADO?

<table>
<thead>
<tr>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERÁ NECESSÁRIA A UTILIZAÇÃO DE DISPOSITIVO

<table>
<thead>
<tr>
<th>SIM</th>
<th>NÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Projeto Original
GRAU DE ADEQUAÇÃO DO PROJETO (3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eixo traseiro</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>2</td>
<td>Mola</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>3</td>
<td>Amortecedor</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>4</td>
<td>Bucha inferior</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>5</td>
<td>Bucha Superior</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>6</td>
<td>Parafuso fixação eixo</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>7</td>
<td>Parafuso fixação amortecedor</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
<td>SIM</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DFMA - DESIGN FOR MANUFACTURABILITY AND ASSEMBLY

Análise da montagem do eixo traseiro

PROJETO ORIGINAL

GRAU DE ADEQUAÇÃO DO PROJETO (4)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eixo traseiro</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>2. Mola</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>3. Amortecedor</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>4. Bucha inferior</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>5. Bucha Superior</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>6. Parafuso fixação eixo</td>
<td>Não</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>7. Parafuso fixação amortecedor</td>
<td>Não</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAU DE ADEQUAÇÃO DO PROJETO

7,04
INVESTIMENTO

<table>
<thead>
<tr>
<th>ITEM</th>
<th>GENERAL ASSEMBLY</th>
<th>OUTROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Retrabalho equipamento automático montagem do eixo traseiro</td>
<td>50.000,00</td>
</tr>
</tbody>
</table>
SEQUÊNCIA DE MONTAGEM:

<table>
<thead>
<tr>
<th></th>
<th>Posicionar o eixo traseiro no dispositivo</th>
<th>Posicionar 3 parafusos nos soquetes dos pontos de fixação do sub-frame</th>
<th>Posicionar a bucha inferior</th>
<th>Posicionar a mola</th>
<th>Posicionar a bucha superior</th>
<th>Posicionar amortecedor</th>
<th>Posicionar parafuso do amortecedor</th>
<th>Fixar o eixo na carroçaria com o equipamento automático</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.77</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CUSTO MÃO-DE-OBRA (US$/HORA):

<table>
<thead>
<tr>
<th></th>
<th>TEMPO PADRÃO (seg)</th>
<th>CUSTO MÃO-DE-OBRA (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.27</td>
<td>0.00075</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>0.00056</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>0.00039</td>
</tr>
<tr>
<td>4</td>
<td>0.14</td>
<td>0.00039</td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>0.00039</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.00056</td>
</tr>
<tr>
<td>7</td>
<td>0.16</td>
<td>0.00034</td>
</tr>
<tr>
<td>8</td>
<td>0.16</td>
<td>0.00034</td>
</tr>
<tr>
<td>9</td>
<td>0.36</td>
<td>0.00100</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análise da montagem do eixo traseiro

ALTERNATIVA 1