• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.3.2021.tde-18012022-124410
Documento
Autor
Nome completo
Fabio Gasparotto Boaventura
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2021
Orientador
Banca examinadora
Mendes, André Bergsten (Presidente)
Brinati, Marco Antonio
Rangel, Maria do Socorro Nogueira
Título em português
Uma abordagem matheuristic para o problema de alocação de cargas no convés de navios de apoio offshore.
Palavras-chave em português
Otimização combinatória
Otimização linear e não linear
Otimização matemática
Problema da mochila bidimensional
Problemas de corte e empacotamento
Programação matemática
Resumo em português
Esta dissertação apresenta uma abordagem matheuristic com três estágios para o problema de alocação de carga geral no convés de navios de apoio offshore com múltiplas entregas. Uma característica operacional encontrada nas atividades de apoio à exploração de petróleo é que uma única embarcação deve levar suprimentos, em geral, a mais de um destino offshore. Além das clássicas restrições de não sobreposição de cargas e que todas as cargas devem estar integralmente contidas no convés do navio, somam-se as seguintes restrições: conjuntos de cargas com determinadas características devem permanecer juntas (e.g. mesmo destino); cargas perigosas têm uma região pré-determinada no convés do navio; existem áreas reservadas onde não se pode posicionar nenhuma carga; o número de cargas refrigeradas é restrito ao número de pontos de energia no convés do navio; e existem cargas que devem obrigatoriamente ser embarcadas. Todas essas imposições configuram este problema, cujo objetivo é maximizar a somatória das prioridades (valor) das cargas embarcadas. Este problema, é uma variação do clássico problema da mochila bidimensional, de classe NP-difícil. Assim, neste trabalho propõe-se resolver instâncias originadas a partir de dados reais e, portanto, com aplicações práticas e em escala real, por meio de uma abordagem matheuristic com três estágios, que utilizada modelos de otimização matemática linear e não linear em sua solução.
Título em inglês
A matheuristic approach to the cargo allocation problem on the main deck of offshore supply vessels.
Palavras-chave em inglês
Combinatorial optimization
Cutting and packing problems
Linear and non-linear optimization
Mathematical modeling
Two-dimensional knapsack problem
Resumo em inglês
This dissertation presents a matheuristic approach for the problem of general cargo allocation on the deck of platform supply vessels with multiple deliveries. An operational characteristic found in activities to support oil exploration is that a single vessel, usually, should take supplies to more than one offshore unit. In addition to the classic constraints of non-overlapping loads and that all loads must be fully contained within the vessel, the following constraints are added: sets of loads with certain characteristics must remain nearby or grouped (e.g., same destination); dangerous goods have a predetermined area on the vessel`s main deck; there are reserved areas which should be free of cargo; the number of refrigerated loads is bounded by the number of power outlets on the ship's deck; and there are cargoes that must be loaded. All these impositions constitute the problem herein studied. The objective is to maximize the sum of the priorities (value) of the loaded cargoes. This problem is a variation of the classic two-dimensional knapsack problem, which is NP-hard. This work proposes to solve instances originated from real data and, therefore, with practical and real-scale applications, through a matheuristic approach with three stages, which uses linear and non-linear mathematical programming models on its solution.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-01-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.