• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.3.2021.tde-09092021-094829
Document
Author
Full name
Robinson Siqueira Garcia
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2021
Supervisor
Committee
Avesani Neto, José Orlando (President)
Ehrlich, Mauricio
Zornberg, Jorge Gabriel
Title in Portuguese
Modelagem analítica de solos reforçados com geocélulas: aplicação na obtenção do fator de melhora do módulo (MIF) e do comportamento tensão/deformação da célula.
Keywords in Portuguese
Geossintéticos
Infraestrutura de transportes
Mecânica dos solos
Abstract in Portuguese
Geocélulas são geossintéticos tridimensionais que reforçam o solo, pelo acréscimo de confinamento, aumentando a sua rigidez e reduzindo a deformabilidade da camada reforçada como um todo, permitindo que a engenharia de infraestrutura de transportes utilize esse benefício para potenciais otimizações de projetos e estruturas. O incremento de rigidez da camada reforçada com geocélula pode ser expressa pelo fator de melhora do módulo (MIF), razão do módulo elástico da camada com e sem o reforço, utilizando o mesmo solo de preenchimento. A pesquisa realizada desenvolveu um equacionamento analítico capaz de modelar o comportamento tensão-deformação das células e seu material de preenchimentos. O modelo desenvolvido considera o aumento de confinamento gerado pelas paredes da geocélula, a não linearidade do comportamento do solo (utilizando o modelo hiperbólico), os esforços de compactação do solo (que gera um efeito de protensão), a contribuição da rigidez e da geometria da geocélula e a compatibilidade de deformações de forma a permitir o cálculo do MIF da camada reforçada e das deformações e solicitações na parede da célula. A modelagem desenvolvida permitiu a criação de ábacos adimensionais para a direta aplicação do modelo, facilitando sua aplicação na engenharia geotécnica e de infraestrutura de transportes. A análise paramétrica mostrou que a rigidez relativa entre o solo e a geocélula e as tensões de compactação são os parâmetros de maior influência no MIF e nas deformações induzidas nas paredes das células. Por fim, o modelo foi avaliado com resultados de ensaios de campo e laboratório no qual foi possível verificar uma satisfatória capacidade de previsão dos resultados, confirmando sua aplicabilidade na prática da engenharia.
Title in English
Analytical modeling of geocell reinforced soils: application in obtaining the modulus improvement factor (MIF) and the stress/strain behavior of the cell.
Keywords in English
Composite
Confinement
Geocell
MIF
Transport Infrastructure
Abstract in English
Geocells are three-dimensional geosynthetics that enhance the soil by increasing confinement, improving the stiffness, and reducing the deformability of the reinforced layer, allowing transport infrastructure engineering to use this benefit for potential optimizations of design and structures. The enhancement of stiffness of the geocell reinforced layer can be expressed by the modulus improvement factor (MIF), which is the ratio of the elastic modulus of the reinforced and unreinforced layer. This research developed an analytical equation capable of modeling the stress-strain behavior of cells and infill stuff. The model considers the higher confinement generated by the geocell walls, the non-linearity of the soil behavior (by using the hyperbolic model), the soil compaction efforts (which apply a prestressing effect), the contribution of the geocell wall stiffness, its geometry, and the compatibility of deformations to allow calculating the MIF of the reinforced layer and the strains and efforts in the geocell walls. The modeling developed allowed creating dimensionless charts for directly applying its results, which facilitates using the model in geotechnical and transport infrastructure engineering. The parametric analysis showed that the relative stiffness between the soil and the geocell and the compaction stresses are the most influential parameters on MIF and induced strains of the geocell walls. Finally, an evaluation of the model by comparison with results of field and laboratory tests verified a satisfactory ability to predict the results, confirming its applicability to engineering practice.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-09-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.