• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.3.2014.tde-26122014-122046
Documento
Autor
Nombre completo
Paulo Salvador Britto Nigro
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2014
Director
Tribunal
Pimenta, Paulo de Mattos (Presidente)
Campello, Eduardo de Morais Barreto
Coda, Humberto Breves
Proença, Sergio Persival Baroncini
Silva, Emílio Carlos Nelli
Título en inglés
An adaptive model order reduction for nonlinear dynamical problems.
Palabras clave en inglés
BFGS
Galerkin projection
Model reduction
Nonlinear dynamic analysis
POD
Resumen en inglés
Model order reduction is necessary even in a time where the parallel processing is usual in almost any personal computer. The recent Model Reduction Methods are useful tools nowadays on reducing the problem processing. This work intends to describe a combination between POD (Proper Orthogonal Decomposition) and Ritz vectors that achieve an efficient Galerkin projection that changes during the processing, comparing the development of the error and the convergence rate between the full space and the projection space, in addition to check the stability of the projection space, leading to an adaptive model order reduction for nonlinear dynamical problems more efficient. This model reduction is supported by a secant formulation, which is updated by BFGS (Broyden - Fletcher - Goldfarb - Shanno) method to accelerate convergence of the model, and a tangent formulation to correct the projection space. Furthermore, this research shows that this method permits a correction of the reduced model at low cost, especially when the classical POD is no more efficient to represent accurately the solution.
Título en portugués
Um modelo de redução de ordem adaptativo para problemas dinâmicos não-lineares.
Palabras clave en portugués
Análise dinâmica não-linear
BFGS
Modelo de redução
POD
Projeção de Galerkin
Resumen en portugués
A Redução de ordem de modelo é necessária, mesmo em uma época onde o processamento paralelo é usado em praticamente qualquer computador pessoal. Os recentes métodos de redução de modelo são ferramentas úteis nos dias de hoje para a redução de processamento de um problema. Este trabalho pretende descrever uma combinação entre POD (Proper Orthogonal Decomposition) e vetores de Ritz para uma projecção de Galerkin eficiente que sofre alterações durante o processamento, comparando o desenvolvimento do erro e a taxa de convergência entre o espaço total e o espaço de projeção, além da verificação de estabilidade do espaço de projeção, levando a uma redução de ordem do modelo adaptativo mais eficiente para problemas dinâmicos não-lineares. Esta redução de modelo é assistida por uma formulação secante, que é atualizado pela formula de BFGS (Broyden - Fletcher- Goldfarb - Shanno) com o intuito de acelerar a convergência do modelo, e uma formulação tangente para a correção do espaço de projeção. Além disso, esta pesquisa mostra que este método permite a correção do modelo reduzido com baixo custo, especialmente quando o clássico POD não é mais eficiente para representar com precisão a solução.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-01-14
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.