• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2014.tde-26122014-122046
Document
Author
Full name
Paulo Salvador Britto Nigro
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2014
Supervisor
Committee
Pimenta, Paulo de Mattos (President)
Campello, Eduardo de Morais Barreto
Coda, Humberto Breves
Proença, Sergio Persival Baroncini
Silva, Emílio Carlos Nelli
Title in English
An adaptive model order reduction for nonlinear dynamical problems.
Keywords in English
BFGS
Galerkin projection
Model reduction
Nonlinear dynamic analysis
POD
Abstract in English
Model order reduction is necessary even in a time where the parallel processing is usual in almost any personal computer. The recent Model Reduction Methods are useful tools nowadays on reducing the problem processing. This work intends to describe a combination between POD (Proper Orthogonal Decomposition) and Ritz vectors that achieve an efficient Galerkin projection that changes during the processing, comparing the development of the error and the convergence rate between the full space and the projection space, in addition to check the stability of the projection space, leading to an adaptive model order reduction for nonlinear dynamical problems more efficient. This model reduction is supported by a secant formulation, which is updated by BFGS (Broyden - Fletcher - Goldfarb - Shanno) method to accelerate convergence of the model, and a tangent formulation to correct the projection space. Furthermore, this research shows that this method permits a correction of the reduced model at low cost, especially when the classical POD is no more efficient to represent accurately the solution.
Title in Portuguese
Um modelo de redução de ordem adaptativo para problemas dinâmicos não-lineares.
Keywords in Portuguese
Análise dinâmica não-linear
BFGS
Modelo de redução
POD
Projeção de Galerkin
Abstract in Portuguese
A Redução de ordem de modelo é necessária, mesmo em uma época onde o processamento paralelo é usado em praticamente qualquer computador pessoal. Os recentes métodos de redução de modelo são ferramentas úteis nos dias de hoje para a redução de processamento de um problema. Este trabalho pretende descrever uma combinação entre POD (Proper Orthogonal Decomposition) e vetores de Ritz para uma projecção de Galerkin eficiente que sofre alterações durante o processamento, comparando o desenvolvimento do erro e a taxa de convergência entre o espaço total e o espaço de projeção, além da verificação de estabilidade do espaço de projeção, levando a uma redução de ordem do modelo adaptativo mais eficiente para problemas dinâmicos não-lineares. Esta redução de modelo é assistida por uma formulação secante, que é atualizado pela formula de BFGS (Broyden - Fletcher- Goldfarb - Shanno) com o intuito de acelerar a convergência do modelo, e uma formulação tangente para a correção do espaço de projeção. Além disso, esta pesquisa mostra que este método permite a correção do modelo reduzido com baixo custo, especialmente quando o clássico POD não é mais eficiente para representar com precisão a solução.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-01-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.