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Resumo

Em problemas de engenharia estrutural, existe a necessidade de criação de modelos
matemáticos para representar o fenômeno desejado, seguido de sua solução. Essa última
etapa pode ser realizada de diversas formas, por meio de soluções analíticas, ou via
métodos numéricos de baixa ou alta hierarquia. No tocante aos modelos de baixa hierarquia,
denominados modelos de ordem reduzida (MOR), as técnicas e ferramentas aplicadas para
obtê-los a partir do modelo original são de suma importância. Embora diversos trabalhos
na literatura utilizem MORs para a análise de diferentes problemas, poucos são dedicados a
abordar aspectos qualitativos do processo de geração dos modelos, além de suas vantagens
como ferramentas complementares para projetos. Tais aspectos são investigados nesta tese,
utilizando problemas da engenharia offshore como exemplos aplicados e motivadores. As
investigações se iniciam pelo caso de excitação paramétrica em barras retas e flexíveis
imersas em água. Diferentes MORs são concebidos, utilizando diferentes funções para
representar o campo de deslocamentos. Em seguida, são realizadas análises para investigar
o efeito do uso de funções de projeção mais detalhadas sobre a qualidade dos modelos
obtidos, bem como verificar qual base é capaz de produzir um modelo minimal, que, por
sua vez, apresenta vantagens em termos de investigações analíticas e esforço computacional
necessário para simulações. Algumas soluções analíticas obtidas diretamente sobre o modelo
contínuo são desenvolvidas, sendo tais soluções uma forma de modelo de ordem reduzida no
sentido em que o campo contínuo fica descrito em termos de poucas variáveis a determinar.
Para este caso, uma solução polinomial simples é desenvolvida para uso em projeto. Dando
sequência, o caso de cabos elásticos inicialmente curvos e imersos em água sob excitação
de suporte é considerado. Novamente, diferentes MORs são concebidos e comparados a
fim de se investigar a vantagem de cada um e se obter um modelo mínimo. Finalmente,
estruturas flexíveis sob vibrações induzidas pela emissão de vórtices são também objeto de
estudo. Com o uso de diferentes MORs, mostra-se como eles limitam a faixa de análise
em termos dos valores de velocidade do fluido externo nos quais podem ser aplicados.
Também é mostrado como eles podem filtrar a resposta, limitando a análise em casos de
respostas multicromáticas. A fim de reduzir ainda mais a ordem dos modelos para este
cenário, apresenta-se uma metodologia para obtenção dos modos normais não-lineares
para o problema. Isto permite a uma maior redução no número de graus de liberdade a
serem analisados, sem comprometer a qualidade dos resultados. Analisando o conjunto de
resultados apresentados, mostra-se a importância da análise detalhada do procedimento
de obtenção de MORs, principalmente no que diz respeito aos campos de deslocamento
adotados. São também mostrados os ganhos ao se obter um modelo mínimo. Tais modelos
são por fim transformados em ferramentas úteis para projetos.
Palavras-chave: Dinâmica não-linear, Modelos de ordem reduzida, Técnicas analíticas,



Excitação paramétrica, Vibrações induzidas por vórtices.



Abstract

In any problem of structural engineering, there is the need of creation of a mathematical
model to represent the desired physical phenomenon, followed by its solution. The latter
step may be done in various ways, being it through analytical solutions, or by means of
low/high-order hierarchical numerical methods. In what concerns the low-hierarchy models,
herein called reduced-order models, the technique and tools applied to extract them from
the original model are of great importance. Although there are plenty of works in the
literature using reduced-order models to analyse different problems, few works are focused
solely on addressing qualitative aspects of the generation process of such models and
their advantages as complementary design tools for engineering practice. Those aspects
are investigated in this thesis, using the offshore engineering scenario as background for
the applied examples and problem motivation. The investigations are started within the
problem of parametric excitation of straight and flexible rods immersed in water. Different
reduced-order models are conceived, using different functions to represent the displacement
field. Analyses are then carried out to investigate the effect of using more detailed projection
functions over the quality of the obtained models and which base is able to produce a
minimal model, which presents great advantages in terms of analytical investigations and
computational effort needed for simulations. Some analytical solutions directly obtained
from the continuous model are also developed, being such solutions a form of reduced
model themselves in the sense that they are able to describe the continuous field by solving
a small number of defined variables. For this case, a simple yet effective polynomial solution
is also developed for design use. Giving sequence, the case of initially curved elastic and
immersed cables under support excitation is also considered. Again, different reduced-order
models are conceived and compared in order to address the advantage of each model and
to obtain a minimal one. Finally, flexible rods under vortex-induced vibrations are also an
object of study. With the use of different reduced-order models it is shown how they limit
the range of analysis in terms of the external fluid velocity range in which they can be
applied. It is also shown how they may filter the response, limiting the analysis of cases
where multi-frequency responses are present. In order to further reduce the order of the
models for this scenario, a methodology to obtain the nonlinear normal modes for this
problem is also presented. This allows the maximum possible reduction in the number of
degrees of freedom to be analysed, without compromising the quality of the results. In the
collection of results, it is shown the importance of detailed analysis in the procedure to
obtain reduced-order models, specially in what concerns the displacement fields adopted
for the solution. It is also shown the advantages in analysis of being able to obtain a
minimal model, together with approaches to turn such models into useful design tools.
Keywords: Nonlinear dynamics, Reduced-order models, Analytical techniques, Parametric



excitation, Vortex-induced vibrations.
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Objectives and organization of the thesis

The main objective of the present thesis is to bring a discussion about the influence of
the refinement of the projection functions over the quality reduced-order models developed
with such functions. This main objective is complemented with the exposition of the
advantages of different reduced-order models based on their conception, as well as the
elaboration of analytical solutions for the models that allow it.

To achieve the proposed objectives, different problems from the offshore engineering
are selected as motivational examples. Namely, the cases of parametric excitations of
straight rods immersed in fluid, boundary imposed motion over curved elastic cables, and
vortex-induced vibrations over straight rods are the chosen problems. To each of them, a
mathematical model using partial differential equations is obtained, followed by a Galerkin
discretization procedure in order to obtain the reduced-order models. In each case, different
reduced-order models are obtained by varying the number and shape of the projection
functions. Whenever possible, analytical solutions using the method of multiple time scales
are also provided.

For a better organization of the text, the thesis is divided into seven chapters, with
its contents as follows.

In the first Chapter, a brief introduction concerning typical offshore engineering
problems is presented. Some important phenomena for design practice are presented, as
well as on how the studies of the thesis are related to the field and can contribute to it.

The second Chapter brings a literature review concerning the different phenomena
and structures involved in the discussions of the thesis. The review brings the historical
contribution on the topics of parametric excitation, vortex-induced vibrations and responses
associated with moving boundaries. It also reports the advances made in the field of curved
cable dynamics, nonlinear modes of vibration and applications of all the previous topics in
the offshore engineering field.

In the third Chapter, the basic mathematical models to describe the structural
behaviour of flexible straight rods and of curved elastic cables are derived. This chapter
is the starting point for the rest of the thesis, with all other chapters using the obtained
models.

The first application is made in Chapter four. In this one, the problem of straight
rods under parametric excitation is analysed by means of different reduced-order models and
analytical techniques. It is also developed a simplified solution with polynomial expressions
based on the obtained analytical solutions for application in electronic spreadsheets.
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The fifth Chapter tackles the problem of curved elastic cables under the action of
imposed boundary motion. The analysis is made with different reduced-order models, and
it is shown what are the main aspects in the construction of such models that cannot be
overlooked.

The case of vortex-induced vibrations is investigated in Chapter six. The structure
is again a straight rod, and different reduced-order models are obtained and analysed.
Giving sequence, a suitable reduced-order model is chosen to be further reduced by means
of its nonlinear normal modes. Some particularities exist in the construction of such modes
for this problem and are detailed.

Finally, the conclusions of the thesis are brought in Chapter 7. The chapter also
brings suggestion for future works that can be started from the results of this thesis or by
applying its suggestions in other problems.

Complementing the text, six appendices are also present in the thesis. In Appendix
A, some algebraic steps for the deductions in Chapter 3 are detailed.

In Appendix B, the expressions for the modal shapes and frequencies considering
linear and nonlinear modes of flexible rods under varying traction are deduced. This is
made considering that such modes are largely used throughout the thesis.

The problem of obtaining nonlinear modes of free vibrations for statically curved
cables is discussed in Appendix C. The cases of small or generic sag are treated, with a
closed-form solution being presented for the former and a multiple scale method approach
for the latter.

In Appendix D, a brief mathematical justification for the solvability condition of
the method of multiple time scales is presented. It is shown how the condition is the
consequence of the requirement for a solution to exist for the sequential problems that are
part of the application of the method.

Appendix E presents the tables of polynomial coefficients obtained from the results
of Chapter 4. Finally, a list of publication and works presented in international conferences
is presented in Appendix F.
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1 Introduction

With the increase of the oil consumption in the world along decades in different
industries (fuel and chemical, for example), the search for new reserves of the resource
intensified. One solution is the exploration of reserves located in regions of the ocean with
crescent depth. This leads to the demand for structural solutions that can handle the deep
water environment.

The depths occurring in practice nowadays can reach between 1000 and 3000 m,
depending on the region. In order to extract oil from depths this large, a series of long
structures are expected to be present in order to keep the operation running. In this
context, risers are the structures responsible for conveying the mixture oil-gas-water from
the seabed to the floating unit. Other kinds of risers can be found in the offshore industry,
like drilling risers or injection risers. In structural terms, risers are very slender structures
which can be put into two classifications.

Flexible risers are composed of an external polymer case with internal layers of
polymers, steel armours and carcasses in order to support internal and external pressures,
the actuating traction, asides giving the necessary structural strength. As the name suggest,
they are more flexible than the other classification. On the other hand, rigid risers are
composed of a solid and thick steel carcass, and are assembled by welding 12 meters long
parts together, while the flexible risers are made whole.

In order to control the operation, umbilical cables are also employed in the offshore
activity. Like the risers, this kind of structure is very slender and the difference lies on
the functions and the internal composition of the structure. Umbilical cables do not have
the hollow area that risers have for conveying fluid. In the cross-section of an umbilical
cable, small fluid conductors for hydro-mechanical actuation, copper wire strands, and
other types of elements, as optical fibers, for information transference and actuation can
be found.

Finally, the floating unit must be kept in position during the operation, which
sometimes is achieved by the use of tethers or also mooring lines. Those are essentially
structural elements, working under high traction values. The number, configuration and
importance of those elements is largely dependent on the type of floating unit.

The oil exploration is used as a practical motivation in this work. However, it is
important to keep in mind that similar structures can be found in other applications of
the offshore industry. Mooring lines of offshore wind turbines, vessels, wave converters
among other structures to be used in the ocean can be mentioned. Some floating unities
solutions are shown in Figure 1. Figure 2 shows some configurations for submarine cable
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structures. The applications for wind and wave converters are presented in Figures 3 and
4 respectively.

Figure 1 – Some possible floating units solutions.

Source: http://www.bluebird-electric.net.

Figure 2 – Possible configurations for offshore cable structures.

Source: http://www.genesisoilandgas.com.

All the cable structures mentioned share some common properties. They are all
very slender flexible cylinders, subject to dynamical excitations from the surrounding
environment, internal flow and/or pre-stressing, that demand a detailed structural analysis
regarding operational safety. This leads then to the main motivation for this work that is
the analytical and numerical studies on the nonlinear dynamical behaviour of this kind of
structure.
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Figure 3 – Some solutions for offshore wind turbines.

Source: https://www.firstmarinesolutions.com.

Figure 4 – Mooring system and umbilical cable for a wave turbine.

Source: Flory et al. (2016).

The first phenomenon to be expected is the parametric excitation. The floating
units are subjected to the action of the ocean waves, changing their position with time.
Since a great amount of the stiffness of very slender structures is given by the geometrical
stiffness, the time-varying position of the floating unit will be perceived by them as a
time-varying stiffness. Another phenomenon to occur are forcing terms along the structural
length when the imposed motion generates displacements of the structure in a direction
orthogonal to its axis by means of interaction with the surrounding fluid.

Secondly, due to the presence of sea currents, all those structures are subject to
vortex-induced vibrations (VIV). This phenomenon may be of great impact in terms of the
fatigue analysis. VIV leads to oscillations of the order of the structural diameter, and can
cause multi-modal response of the structure, as well as the appearance of travelling waves.
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This motivates the analysis made in the thesis about straight structures under VIV.

There are other phenomena that can occur in those structures, like dynamical
effects of internal flow and vortex self-induced vibrations (VSIV). The internal flow is
present in exploration risers and may lead to important effects over the dynamical response
of the structure. On the other hand, VSIV is a phenomenon that occurs, for example,
in catenary risers, when the motion of the structure in still fluid causes vortex-shedding,
inducing additional vibrations to the structure. Even though important, internal flow
excitations and the VSIV phenomenon are out of the scope of the thesis.

For the phenomena studied (parametric excitation and VIV), the investigations
are carried out using reduced-order models (ROMs). The use of ROMs allows for a deep
investigation of the main properties of a dynamical system by studying the behaviour
of a system with a small number of degrees of freedom (DOFs). This small number of
DOFs makes possible the use of techniques of applied nonlinear dynamics to investigate
the phenomena, like the method of multiple scales, center manifold theorem, nonlinear
normal modes, among others (see Nayfeh & Balachandran (1995)).

The use of ROMs is specially useful in the early stages of design, in which a large
number of conditions must be simulated. Another use of the ROMs is the understanding
of qualitative (and, sometimes, quantitative) aspects of response allowed by the mentioned
techniques that cannot be applied to higher-order hierarchical models, for example, the ones
based on the Finite Element Method (FEM), in a reasonable time for engineering practice.
In this scenario, the present thesis is focused on qualitative aspects in the construction
of reduced-order models (ROM). The thesis also brings advantages in using this type of
model for analysis and engineering practice. This is done by performing ROM analyses
for different scenarios of the offshore engineering, being them the cases of flexible rods,
immersed in fluid and under parametric excitation, elastic and curved cables immersed
in fluid and under the action of imposed boundary motion, and the last one is that of a
flexible rod under VIV.
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2 Literature review

In this chapter, the literature review with the basic concepts used along the thesis
is presented. Some detailed aspects are left to be developed in subsequent chapters as they
seem appropriate. The review is divided into six sections. Initially, the physical phenomena
of interest to this thesis are presented with focus on the main concepts and modelling
aspects. This is made in Section 2.1 where the phenomenon of parametric excitation is
presented, while Section 2.2 brings a review of vortex-induced vibrations (VIV).

Following, the review of the dynamics of slender structures with special attention to
the application under the occurrence of parametric excitation and/or VIV is made. Section
2.3 brings a review of the dynamics of vertical slender rods, with focus on applications to
the phenomena of interest of the thesis. In the sequence, the same type of review is made
for slender structures with curved static configuration in Section 2.4.

In the sequence, since nonlinear modes are used in the analysis of VIV, a review on
the topic is presented in Section 2.5. Finally, Section 2.6 indicates how this thesis relates
to the existing literature and with the identified open questions in the worked topics.

2.1 The parametric excitation phenomenon

Parametric excitation is the phenomenon that occurs when at least one of the
internal properties that rules the dynamical behaviour of a system varies with time, in a
time scale comparable to the expected response of such system. In order to clarify the
importance of the time scale of such variation, two hypothetical examples are posed. The
first one is of a steel beam that corrodes with time. In such case, some properties of
the beam are expected to change with time. However, the time required for the changes
to be noticeable is way larger than the periods of oscillation that the beam is expected
to undergo as a structural element. Thus, this condition is not classified as parametric
excitation. The second example is that of a pendulum under an imposed vertical motion to
its support with a period of oscillation of the same order of magnitude of the natural period
of oscillations of the pendulum. In this case the dynamical response of the pendulum will
depend on the amplitude of the imposed motion and on the ratio between the imposed
motion frequency and the natural frequency of the pendulum. This second case is qualified
as a problem of parametric excitation.

In the particular case of mechanical systems written as second-order ordinary
differential equations, one classical example of a parametrically excited system is given by
Hill’s equation, in which the stiffness of the system varies with time. Hill’s equation for a
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generic linear and undamped dynamical system of second order is written as

g̈ + f (t) g = 0. (2.1)

The function f (t) can be any periodic function of time as long as it is not the
constant function, and g is the degree of freedom (DOF) used to describe the dynamical
system. In the particular case that f is composed of a constant term and one harmonic
function, Hill’s equation becomes the well-known Mathieu’s equation, given as

g̈ + (1 + δ cos (nt)) g = 0, (2.2)

or

g̈ + (a+ 2ε cos (t)) g = 0. (2.3)

With δ and ε being small parameters representing the amplitude of the parametric
excitation while n and a are real numbers representing the ratio between the excitation
frequency and the natural frequency of the system or the square of the natural frequency
of the system, respectively. Both equations are equivalent to each other and each one has
its own advantages and drawbacks regarding results presentation, according to the desired
objective.

Regarding linear systems, the main property to be investigated in parametrically
excited systems regards the existence of limited solutions, which translates in this case
in investigating the stability of the trivial solution. The Mathieu’s equation has been
extensively studied for this purpose, since it is a simple and linear equation that allows
the realization of deep investigations in terms of the existence of stable solutions either
by numerical or analytical means. Some rich investigations on the stability of Mathieu’s
equation solutions can be found in Meirovitch (1967), Bender & Orszag (1978) and Nayfeh
& Mook (1979), among others.

The usual way of presenting the stability of Mathieu’s equation solutions is by using
the Strutt’s diagram. This diagram is a map that for (ε, a) belonging to a region of interest
in R2, which shows if the Mathieu’s equation has bounded or unbounded solutions. For
linear systems, the existence of bounded solutions implies this solution is the trivial one.
Strutt’s diagram can be obtained by different means, like the method of multiple scales or
the Floquet theory (see for example Nayfeh & Mook (1979) and Nayfeh & Balachandran
(1995)). An example of Strutt’s diagram obtained with the method of multiple scales is
presented in Fig. 5.
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Figure 5 – Strutt’s diagram for classical Mathieu’s equation. Dashed regions lead to
unbounded solutions while white regions lead to the trivial solution.

Source: Bender & Orszag (1978)

One of the most important features of Fig. 5 are the points where the solutions
are unbounded even for the amplitude of excitation approaching zero (ε 7→ 0). These
cases correspond to the so-called parametric instability condition, which for the Mathieu’s
equation as in Eq. (2.3) are given as a = i2/4, with i ∈ N0 (Bender & Orszag (1978)).

Two main points must be stated now about this type of stability chart. The first
one is that the boundaries between bounded or unbounded solution regions are affected
by adding linear damping to the system, with a reducing of the regions of unbounded
response (see Fig. 6). Secondly, the inclusion of nonlinear terms in the equations of motion
is necessary to turn the regions of unbounded response into regions where some bounded
response is obtained. This latter point is of great importance for applications of dynamical
systems where parametric excitation occurs and that will be discussed latter on the thesis
(see, for example Chapter 4).

2.2 Vortex-induced vibrations (VIV)
The second phenomenon of interest in the applications of the present research is

called vortex-induced vibrations (VIV). When solid elements are immersed in fluid flows,
some form of interaction between the solid body and the fluid is expected. This type of
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Figure 6 – Strutt’s diagram for Mathieu’s equation with damping effect. Dashed regions
lead to unbounded solutions while white regions lead to the trivial solution.

Source: Ibrahim (2008)

interaction consists the class of phenomena called fluid-structure interaction (FSI). One
possible outcome of such interactions, depending on the structural and flow conditions,
is the occurrence of a dynamical response of the structure, leading to the so called flow-
induced vibration (FIV) phenomena. VIV is one specific type of FIV. This is a nearly
resonant, self-excited and self-limited phenomenon that can occur when a bluff-body is
immersed in a fluid stream.

A bluff-body is herein defined in similar manner to that made in Meneghini (2002),
as the one in which the flow separation (or detachment) occurs in a significant portion
of its surface.. With the detachment of the flow, the free shear layers start to interact,
leading to the vortex-shedding phenomenon. A good way to understand how this occurs is
by means of the two-dimensional model described in Gerrard (1966), sketched in Fig. 7.

The arrow on the left side of the cylinder in Fig. 7 indicates the free stream direction.
The flow “a” is entrained into the growing vortex, with a vorticity opposite to the one
already existing in such vortex, diminishing its total circulation. Flow “b” is the one that
interrupts the further development of the growing vortex, avoiding it to receive more
circulation from its original shear layer and causing the detachment of the vortex. Finally,
flow “c” starts the generation of a new vortex that will restart the cycle, changing the
shear layer and forming the next vortex to be detached. Further physical details about
flow around bluff-bodies and some mathematical concepts of it can be found in Bearman
(1984).
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Figure 7 – Sketch for the vortex shedding mechanism. Two-dimensional case

Source: Gerrard (1966)

One classical example of a bluff-body is a cylinder of diameter D, which is a very
common element used for VIV investigations. The most basic set-up for investigating the
problem in experiments and mathematical modelling is that in which a rigid cylinder is
mounted on an elastic base that allows displacements only in the direction orthogonal to
the free-stream, named then cross-wise direction. This condition is herein defined as a
1-DOF VIV. The vortex shedding is started by the flow passing around the cylinder. When
the frequency of such vortex shedding is close to the natural frequency of the immersed
system, the so called lock-in occurs. Let U∞ be the free stream velocity of the flow and
ωn be the natural frequency of the system in still water1. The dimensionless parameter
reduced velocity is defined as:

Ur = U∞2π
ωnD

(2.4)

The lock-in phenomenon occurs for a range of reduced velocities typically within
3 < Ur < 12. In this situation, since the vortices are being detached with a frequency close
to the structural natural frequency, the lift force magnitude fluctuates with this same
frequency. From the structural point of view, this is the situation of a system under the
action of a nearly resonant loading. The onset of the phenomenon is independent of the
initial condition of the cylinder and no external excitation is required, reason why the
phenomenon is labelled as self-excited.

In response to the fluctuating lift force, the cylinder starts to move with increasing
amplitudes of oscillation. It would be expected, for a linear and undamped system under
1 For cylinders immersed in water, the natural frequency can be significantly different from the result

obtained with the cylinder in air. The reason for such different is the added mass, which can be
understood as the part of the hydrodynamic load in phase with the acceleration of the cylinder



46 Chapter 2. Literature review

resonant forcing, that such amplitude would grow indefinitely, but this is not the case for
VIV. The explanation is that a phenomenological nonlinearity occurs when the cylinder
starts to move since such motion interferes with the vortex shedding itself, disturbing it
and consequently disturbing the fluctuation of the lift force. Such physically nonlinear
interaction leads to a condition where the oscillations of the cylinder reaches a steady-state
regime with limited amplitude, typically of the order of the structural diameter D. A
typical response curve of an elastically mounted rigid cylinder oscillating only in the
direction transversal to the flow is shown in Fig. 8. For more details regarding 1-DOF
VIV, see Khalak & Williamson (1999).

Figure 8 – Amplitude response as a function of the reduced velocity for a rigid cylinder
under 1-DOF VIV. Black markers for experiments in water and white filled
markers for experiments in air, highlighting the key differences when the
displaced fluid mass is of an order of magnitude close to the cylinder’s mass.

Source: Williamson & Govardhan (2008)

Adding up in the complexity of the phenomenon, the cylinder can also be left to
oscillate in the direction parallel to the free stream, called in-line direction and leading to
the condition herein named 2-DOF VIV. In that case, the fluctuations on the drag force due
to the vortex shedding lead the cylinder to dynamically respond with an oscillatory motion
in the corresponding direction. The frequency of the fluctuation of the drag force is twice
that of the fluctuation of the lift force. This is naturally expected considering the alternate
fashion of the vortex shedding. This correlation, combined with the relation between
the structural stiffness in each direction, leads to various possible patterns for the plane
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motions developed by the cylinder. Figure 10 depicts the trajectories on the horizontal
plane for a cylinder under 2-DOF VIV obtained by Dahl et al. (2007) using experimental
results. Another feature of importance in the 2-DOF VIV case is the cross-wise motion
amplitude magnification due to the existence of the inline motion, with the intensity of
such magnification depending on the mass ratio parameter m∗2. For the case where those
values are very close to each other the magnification is stronger, which is illustrated in Fig.
9. More experimental results and investigations about 2-DOF VIV can be found in Jauvtis
& Williamson (2004), Stappenbelt & Lalji (2008), Blevins & Coughran (2009), Franzini et
al. (2012) and Franzini et al. (2013). For detailed reviews over VIV features, the interested
reader should consult the papers Sarpkaya (2004) and Williamson & Govardhan (2004).

Figure 9 – Amplitude response as a function of the reduced velocity for a rigid cylinder
under 2-DOF VIV.

Source: Jauvtis & Williamson (2004)

In terms of mathematical modelling, a fundamental step is to obtain a suitable
expression capable of representing the phenomenon in the fashion of a dynamical system.
2 The mass ratio parameter m∗ is defined as the ratio between the oscillating mass and the mass of fluid

displaced by the body.
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Figure 10 – Plane motion patterns for rigid cylinder under 2-DOF VIV. Reduced velocity
in the horizontal axis and structural frequency ratio between in-line and
cross-wise directions in the vertical axis.

Source: Dahl et al. (2007)

The phenomenological approach is thus the one used within this research. This approach
makes use of a nonlinear equation to represent the dynamics of a quantity that defines the
fluid-structure interaction such as, for example, the lift coefficient.

Phenomenological models are based on and calibrated with experimental data,
giving good results when working in the hypothesis and range of parameters of the
experiments employed in calibration. Different works presented models for describing
VIV with a dynamical equation for the wake (see Hartlen & Currie (1970), Iwan &
Blevins (1974), Krenk & Nielsen (1999) and Facchinetti, de Langre & Biolley (2004)). The
model presented in Facchinetti, de Langre & Biolley (2004) was obtained after different
calibrations with different equation formats considering various possibilities of coupling
between the phenomenological and the structural oscillators. The final model is a Van
der Pol oscillator for the variable that represents the wake dynamics (particularly, the
lift coefficient variation with time), coupled with the structural inertial term. In Ogink &
Metrikine (2010) a slight variation is applied to the model of Facchinetti, de Langre &
Biolley (2004), using the instantaneous lift and drag directions to decompose the force
due to the vortex wake. In this model, a geometrically exact expression of the velocity
of the cylinder was also included in the calculation of hydrodynamical forces. It is worth
noticing that with a linearization of the hydrodynamic forcing terms and a proper choice
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of the calibrated parameters, the model from Facchinetti, de Langre & Biolley (2004) can
be obtained from the model by Ogink & Metrikine (2010).

In Franzini & Bunzel (2018), a phenomenological model for the VIV-2-DOF is
presented. This model is proposed based on the one presented in Ogink & Metrikine (2010),
with the inclusion of a second wake-variable, in order to represent the effects of the wake
on the drag direction. Since there is a duality in VIV behaviour (see Fig. 10 and Dahl et
al. (2007)) and the vortex shedding causes a variation on the drag force with twice the
frequency of the variation on the lift force, a Van der Pol oscillator is also proposed for
the second wake-variable. This second oscillator is assumed to pulsate with a frequency
that is twice the one associated with the cross-flow direction. Notice, however, that this is
an ad-hoc model, proposed by the authors from investigating energy harvesting using a
piezoelectric circuit, which is a topic that will not be investigated in the thesis. Considering
the success of such studies, the basic structure of a wake-oscillator adopted in this thesis
is (see Facchinetti, de Langre & Biolley (2004), Ogink & Metrikine (2010) and Franzini &
Bunzel (2018))

q̈y + εStUr

(
q2

y − 1
)
q̇y + (StUr)

2 qy = Ayÿ. (2.5)

The variable y is the generalized coordinate representing the cross-wise displacement
of the structural model, Ay and ε are parameters obtained from experimental calibration,
while qy is the wake variable representing the effects in the same direction as y. A detailed
and concise mathematical justification for representing the effects of the wake over the
cylinder by a single variable is shown in Aranha (2004). For the case of a flexible cylinder,
all the variables are supposed to vary with a position coordinate. So, letting t be time and
s the arclength variable, then qy = qy (s, t) and y = y (s, t). For modelling methodologies
based on projections, like the Galerkin scheme, it is usual to adopt the same projection
function for the structural and the wake variables. This is an ad-hoc assumption used
within this research considering no better alternative has being stated in the literature.

2.3 Dynamics of flexible and straight rods

Both the phenomena previously explained are of interest in offshore engineering
applications, where slender structural members are under the action of such loads. For a
better organization of the review, the case of parametric excitations is considered first. In
the sequel, a review of existing research of such structures under VIV is carried out. The
specifics about free vibrations of straight flexible rods are widely known and subject to
basic courses of structural dynamics, thus not included in this review.
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2.3.1 Straight flexible rods under parametric excitation

One example of a situation where parametric excitation occurs is the lateral
vibrations of a flexible rod under the effect of a top-motion axial excitation. The examples
herein adopted corresponding to that situation are vertical risers and tension leg platform’s
(TLP) tethers. These kind of structures are subject to top-motion excitation due to the
motions of the floating unit caused by the first-order forces due to the waves. One of
the first works to investigate immersed flexible rods under top-motion excitation is Hsu
(1975). In this work, a heavy and inextensible string hanging in still fluid is subjected to
top-motion excitation. First, the linear form of the equation of motion is investigated using
the method of variables’ separation. The author obtains the vibration modes of the string
in terms of Bessel functions, and the equation that describes the modal amplitude with
time turns to be the Mathieu’s equation. Finally, a solution for the steady-state amplitude
is presented when the quadratic hydrodynamical damping is taken into account, showing
the main role that this kind of nonlinearity has on limiting the response amplitudes on
the unstable regions of the Strutt’s diagram.

In Patel & Park (1991), the response of TLP tethers under parametric excitation
is addressed. In this work, the submerged weight of the tether is negligible compared to
the mean traction along its length. This allows the authors to work as if the traction
is constant along the tether, and that the modes of vibration of the structure would be
trigonometric functions. The first mode of vibration is then used as shape function in a
Galerkin scheme, leading to a 1-DOF ROM to describe the tether dynamics. The linearized
problem is then used to create a Strutt diagram using trigonometric expansion for the
solution of the equation. The obtained diagram is reproduced in Fig. 11. Following, the
authors applied the averaging method (see Nayfeh & Mook (1979)) in order to obtain
steady-state amplitudes when the Morison’s quadratic damping is considered into the
model.

Expanding these results, Simos & Pesce (1997) carried out an investigation of
the TLP tethers under parametric excitation keeping the traction variation due to the
immersed weight of the structure. Differently from Patel & Park (1991), in this work the
bending stiffness was disregarded. A 1-DOF model was obtained using a Galerkin scheme,
employing a mode of vibration of a heavy vertical cable as shape function. Some case
studies were addressed and it was verified that when the immersed weight is not so small
compared to the mean traction of the cable, the use of trigonometric functions as shape
functions on Galerkin method can lead to significant discrepancies when compared to a
model obtained with the vibration modes of the structure, given as Bessel functions.

The investigation of the effects of parametric excitation in a structure already under
forced vibrations was considered in Patel & Park (1995). In this case, a vertical tether is
subject to both vertical and horizontal top motions. As in Patel & Park (1991), the traction
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Figure 11 – Strutt’s diagram for the model of a vertical tether. Dashed for regions of
unstable solutions and white for regions of stable solutions.

Source: Patel & Park (1991)

is considered constant along the tether and only the linear structural terms are considered
in the equation of motion. A ROM is then obtained with a Galerkin scheme to investigate
the problem, by considering that the response of the structure is the composition of four
trigonometric modes. It is shown that the number of modes was adequate to represent the
structure, since the amplitude response of the higher modes adopted was very small. Also,
the authors conclude that the motion amplitude is significantly larger in comparison to
the cases where only the parametric excitation or the forcing term are present.

In the aforementioned works, the axial dynamics was disregarded and only the linear
behaviour of the structure was considered in the equations of motion. Chatjigeorgiou (2004)
investigated the vertical tether under parametric excitation keeping the axial dynamics in
the analysis and the nonlinear structural behaviour. The equations were then treated with
a finite difference scheme and the Galerkin method, allowing for a comparison between the
results of a projection method and a numerical solution applied directly to the continuous
equations of motion. The methods presented good agreement and it was shown that
internal resonances play an important role on the amplitude of motion of the structure
under parametric excitation. It was also concluded that the nonlinear damping reduces
the effects of the internal resonances.

In Zeng et al. (2008), a vertical TLP tether under simultaneous vertical and
horizontal top motion is considered. The nonlinearities from the stretch of the structure
are kept and a Galerkin scheme using trigonometric shape functions is applied. After
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numerical simulations, a reduction of the resulting motion amplitude can be seen due to
the structural nonlinearities. Furthermore, the presence of the nonlinearities allows for the
possibility of parametric excitations occurring due to the horizontal top motion.

All of the mentioned works considered only the case of harmonic and monochromatic
parametric excitations. Multi-frequency excitations are investigated in Yang, Xiao & Xu
(2013). The axial dynamics is disregarded and, instead of keeping the nonlinearities of
the structure, the authors wrote the traction as a trigonometric series with the same
frequencies of the excitation. Stability charts are numerically obtained and it is shown that
they present significant differences when compared to the monochromatic excitation. In
Figs. 12 and 13 the stability charts for both cases, mono and multi-frequencies, are shown.

Figure 12 – Stability chart for a tether under a single frequency excitation. The horizontal
axis stands for a while the vertical one stands for ε, both according to Eq.
(2.3).

Source: Yang, Xiao & Xu (2013)

While the previous works focused on parametric excitations alone, in Yang &
Xiao (2014) the combined effect of parametric excitation and VIV is investigated. For the
structure, the strategy presented in Yang, Xiao & Xu (2013) of using a multi-frequency
traction is used, with the inclusion of the immersed weight. For the effect of vortex
shedding, a harmonic forcing term is inserted instead of a phenomenological approach. It
is shown that the parametric excitation can significantly amplify the motion amplitudes
due to VIV and that increasing the mean traction is an effective way of reducing this
amplification. Regarding the use of the phenomenological approach to investigate the
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Figure 13 – Stability chart for a tether under a multi-frequency excitation. The horizontal
axis stands for a while the vertical one stands for ε, both according to Eq.
(2.3).

Source: Yang, Xiao & Xu (2013)

concomitant occurrence of parametric excitation and VIV, a FEM approach is developed in
da Silveira et al. (2007), where the lift force is modelled with the aid of a phenomenological
model for the wake dynamics in each node of the FEM model.

Some works developed in the last decade deal with the quality of the modelling
adopted when investigating parametric excitations. Mazzilli & Dias (2015) compared
different ROMs to a FEM solution and experimental data (LIFE-MO (2013)). One of
the ROMs considered by the authors was obtained by using a Bessel-like mode (Mazzilli,
Lenci & Demeio (2014)) as shape function on Galerkin projection. The other one, was
obtained using a trigonometric function on the Galerkin scheme. The results obtained
using the Bessel-like based ROM were in good agreement with the experimental ones. In
Mazzilli, Rizza & Dias (2016) a ROM based on Bessel-like functions is also compared to
experimental data, showing good agreement with it.

In the works Franzini et al. (2016a) and Franzini et al. (2016b) the effects of
hydrodynamical coefficients are investigated using ROMs. In the former work, the ROM
is constructed with trigonometric functions, while in the latter Bessel-like functions are
used as shape functions in the Galerkin projection. These works show that the mean
drag coefficient and added mass coefficient can strongly affect the amplitude of steady-
state motion. Those works show one of the advantages of using ROMs, that is the deep
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investigation of parameters that affect a certain mechanical problem. The investigations
can be carried out with a refinement and range of parameters far greater than with
experiments, that can then be planned at some points of the parameters maps under study
for validating the obtained results.

In Franzini & Mazzilli (2016) a detailed analysis is made with a ROM obtained
using three sinusoidal functions. Comparisons are also made with a ROM obtained with a
single sinusoidal function. However, the analysis focused on the response of each degree
of freedom alone, with no deep investigation on the composed motion. One important
feature of this latter paper is that the authors present the instantaneous configuration for
some time-steps and the shape that is recovered resembles the vibration modes obtained
in Mazzilli, Lenci & Demeio (2014). This leads to two possible scenarios for decision when
creating ROMs. By one side, models with fewer DOFs allow analytical investigations to
be carried out with less effort and can produce numerical results with less computational
effort. On the other hand, depending on the mechanical problem, obtaining suitable shape
functions can be a hard or even impossible task. In that last situation, the use of a
multi-function approach with simpler shape functions chosen in an ad-hoc manner can
lead to valuable results.

Another useful result presented in some of the works (Mazzilli & Dias (2015),
Mazzilli, Rizza & Dias (2016), Franzini et al. (2016a), Franzini et al. (2016b), Franzini
& Mazzilli (2016)) is the map of post-critical amplitudes as a function of the excitation
amplitude and frequency. In this kind of representation, various useful informations about
the system’s dynamics are condensed. It is possible to verify how the range of response
of the structure varies with the excitation amplitude, how the response amplitude varies
with the excitation amplitude for a given frequency, and which sub-harmonics are excited
depending on the excitation amplitude. However, those maps were obtained using a high
number of numerical simulations, which can demand a big amount of computational time.

Notice that the aforementioned works investigate the problem using numerical
simulations. Experimental investigations can be found in Franzini et al. (2015) for the
problem of a vertical and flexible rod immersed in still fluid and subjected to parametric
excitation. The authors focus the analysis in the 1:1, 2:1 and 3:13 parametric resonances.
The analysis are carried out using a Galerkin decomposition with trigonometric shape
functions. It is shown that for the 1:1 resonance a travelling-wave is present on the response,
while for the 3:1 resonance the steady-wave corresponding to the third mode of the rod is
dominant. For the 2:1 resonance, two modes participate in the dominant response. Spectral
analysis also show that the response of the structure can be dominated by more than one
mode depending on the excitation frequency.

3 The nomenclature n:1 indicates that the motion applied to the top has frequency equal to n times the
natural frequency of the investigated mode.
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2.3.2 Straight flexible rods under VIV

For the offshore application on risers, TLP tethers and similar structures, the
behaviour of flexible bodies under the action of VIV is of great interest. Some aspects in
this situation are very different compared to the analysis of rigid and elastically mounted
cylinders under VIV. The excitation and response of the structure can occur in a multi-
modal way. Also, travelling waves due to how the excitation occurs along the structure can
have significant effects on the dynamical behaviour. In Wu, Ge & Hong (2012), a detailed
review is presented, pointing out the phenomena of travelling-waves, and multi-modal
response on slender flexible cylinders under VIV.

Some studies were carried out during the past decades for better understanding VIV
in flexible cylinders. In Chaplin et al. (2005b), an experimental study is made considering
the lower portion of the cylinder is immersed in fluid with flow, and the other portion is
immersed in still fluid. The experiments show multi-modal responses of the cylinder, where
some ranges of reduced velocity would lead to almost constant modal compositions. The
authors also found that the response is dominated by travelling waves in the transition
from a range of reduced velocity with the response dominated by one set of modes to a
range dominated by a different set of modes. Following, in Chaplin et al. (2005a) more
experiments with the same setup were conducted and compared to different numerical
solutions. At that time, the results showed the capability of the empirical models to give
results closer to the measured ones when compared to computational fluid dynamics (CFD)
simulations. The range of difference between the numerical results and the experimental
ones also shows that the phenomenon still needed investigation. It is also shown that the
development of models capable of giving reliable results with low computational effort is
still needed.

In Pesce & Fujarra (2000), experimental results indicated a jump phenomenon in
the cross-flow response as function of the reduced velocity. Following, experiments with a
cantilevered cylinder were conducted in Fujarra et al. (2001). The cylinder had different
stiffness in both directions, which allowed the authors to notice a high-speed branch to
appear in the cross-flow amplitude response. This was considered as a consequence of the
excitation of the in-line response in high velocities, leading to oscillations in the cross-wise
direction as well. Also, it was pointed out that while three branches of response are
typically found for rigid cylinders, there were only two well defined branches of response
for the flexible cylinder. The topic was revisited in an experimental campaign with the
results and analysis presented in Defensor Filho, Franzini & Pesce (2022).

Flexible cylinders under low tension and VIV were experimentally studied in Huera-
Huarte & Bearman (2009). It is shown that for lower values of geometric stiffness the
cylinder’s first mode amplitude response as a function of the reduced velocity is in good
qualitative agreement with the experiments for a rigid cylinder. However, as the applied
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traction grows, the resulting amplitudes are significantly smaller than those obtained in
rigid cylinders. This is due to the fact that some of the response of the flexible cylinder
occurs in higher modes of vibration.

In Franzini et al. (2016) experimental results of a vertical and flexible cylinder
were obtained using a direct measure of the displacements of the structure with an optical
device. The results were analysed in terms of the amplitudes of the modal responses of the
cylinder. The modal amplitude analysis shows that for the lock-in of the first mode, there
is a synchronization between the modal amplitudes in the in-line and cross-wise direction.
For the second mode lock-in, a similar condition can happen, but it was also detected a
regime of oscillation in which the cross-wise amplitudes are increased and the in-line ones
are decreased.

Following, in Franzini et al. (2018) a vertical and flexible cylinder is subject to
VIV and parametric excitation. The data is treated using the Galerkin projection. Modal
analysis were conducted and it is shown that the presence of the parametric excitation
changes the amplitude and the spectral content of the response of the cylinder. A major
feature is that the parametric excitation causes an amplification of the modal amplitude
for a wide range of reduced velocity. This feature can be seen in Fig. 14, where the response
amplitude of the first mode of vibration is shown for the cases of pure VIV and concomitant
VIV and parametric excitation in a relation of 2:1 or 3:1 of the top motion frequency with
the structure’s natural frequency.

Figure 14 – Response amplitude of the first mode of vibration for the cases of pure VIV
and concomitant VIV and parametric excitation in a relation of 2:1 or 3:1 of
the top motion frequency with the structure’s natural frequency.

Source: Franzini et al. (2018)
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2.4 Dynamics of flexible and statically curved structures
Differently from the case of straight flexible rods, the case of a curved reference

configuration deserves special attention even in the “seemingly”4 simple subject of free
vibrations. Thus, the literature review regarding statically curved structures is herein
divided into 3 subsections. First, a review regarding free vibrations and modal properties is
carried out. The review then follows with the discussions of results found in the literature
considering different forms of motion allowed to the supports of the structure. Finally, a
brief review of fluid-structure interaction is made, closing this section.

2.4.1 Free vibrations and modal properties of statically curved structures

The studies about the dynamical behaviour of cables can be tracked to the investi-
gations made by Daniel Bernoulli in 1732, where the vibrations of a cable suspended by
only one tip were analysed. Those studies were carried out in an experimental perspective,
whereas the analytical treatment of the problem has been done by Giuseppe Lagrangia
(a.k.a Joseph Lagrange) from 1760 to 1788. Lagrangia considered a discrete model for
a cable supported at both ends in the same vertical level, therefore starting the studies
concerning a catenary. Later, in 1820, Poisson published the equations of motion for a cable
element in Cartesian coordinates. Also at this time, the linear modes of free vibrations for
a horizontal catenary5 were obtained. Following that, the symmetric and antisymmetric
modes of free vibrations for a shallow horizontal catenary were obtained by Routh in 1868,
considering a maximum value of 1:10 for the ratio between the static sag and the distance
between supports. For further details concerning the history of catenary applications and
the development of mathematical models for this kind of structure the reader is referred
to Irvine & Caughey (1974) and Irvine (1981).

Those earlier studies, before Irvine & Caughey (1974), were based upon the
hypothesis that the cable is inextensible. When the concern is to obtain linear models
for cables with a large ratio between static sag and cable length, this assumption leads
to good results. This occurs due to the fact that in this situation the cable is able to
vibrate without extension, achieving that with geometric compensation between tangent
and transverse motions. Now, for the cases where the relation between static sag and
cable length becomes smaller, approaching a horizontal taut string, the inextensibility
condition is not a good approach. In fact, if one thinks about a horizontal taut string,
the transversal vibrations are a geometric impossibility for an inextensible model. The
investigation of this problem has been left aside until the discussion made by Irvine &
Caughey (1974). The authors started the discussion due to the fact that, at their time, the
4 As the reader can notice during the review, the subject is actually complex with a lot of possible

phenomena not commonly found in the study of straight structural members.
5 The nomenclature horizontal catenary is commonly found in the literature to name a catenary where

the cable ends are at the same height.
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existing expressions for the modal frequencies of a horizontal taut string and a parabolic
cable6 did not give the same results when the parabolic cable was close to a horizontal
taut string. In mathematical language, the difference lays in the transcendental equations
for the natural frequencies. The mentioned equations are (2.6) and (2.7) for the parabolic
cable and the horizontal taut string respectively.
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In Eqs. (2.6) and (2.7), L is the distance between supports and λ is a parameter
obtained through the dispersion relation, given by λ =

√
µω2/H. In this relation, µ is

the mass per unit length, ω is a natural frequency (which are the values intended to be
found) and H is the horizontal component of the traction. Aiming to solve the problem,
Irvine & Caughey (1974) wrote the geometric compatibility considering the elasticity of
the cable. In that way, Eq. (2.8) is obtained as the transcendental equation for the natural
frequencies, which can be used for both horizontal parabolic cables and taut strings.
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The parameter λI is called the Irvine parameter and is of fundamental importance
in the type of solution for the vibration modes. This parameter accounts for the elastic and
geometric effects of the cable vibrations and is given by Eq. (2.9) alongside the definition
in Eq. (2.10).
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In these equations, EA stands for the axial stiffness of the cable, d is the static sag,
s is the arclength coordinate and x is the horizontal coordinate. The shift in frequency
6 The name parabolic cable is used to refer a particular case of horizontal cables where the relation

between static sag and horizontal span is small, allowing the use of a parabolic expression to approximate
the catenary configuration.
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between the small sag horizontal cable and the taut string is then explained due to the
values assumed by λI in each case. For a small non-zero static sag, the inextensibility
condition is given by EA → ∞, which yields λI → ∞, leading Eq. (2.8) to be the same as
Eq. (2.6). On the other hand, letting the static sag to approach zero leads to λI → 0, so
that Eq. (2.8) is turned into Eq. (2.7).

Also, the investigation of Eq. (2.8) made possible for the authors to determine
conditions for the occurrence of the cross-over phenomenon. For the definition of cross-over,
one needs to consider a dynamical system where the natural frequencies are functions of a
known parameter (Irvine parameter in the case in study), and let be defined a reference
value of this parameter in order to enumerate the natural frequencies from the lowest
to the highest. The cross-over phenomenon is then defined as the situation in which the
change of the control parameter implies in a natural frequency of a certain vibration mode
to become higher than the one of a higher mode in the reference value of the parameter.
For the parabolic cable, regarding vertical oscillations and using λI = 0 as the reference
condition, three example cases can be identified:

• λ2
I < 4π2: The frequency of the first symmetric mode stays lower than that of the

first antisymmetric mode;

• λ2
I = 4π2: The frequency of the first symmetric mode becomes equal to that of the

first antisymmetric mode, defining the first cross-over situation;

• λ2
I > 4π2: The frequency of the first symmetric mode becomes higher than that of

the first antisymmetric mode, and the modal shape of the first symmetric mode
starts to have internal nodes.

This kind of analysis can be extended to values of λI that define additional cross-
over situations for the first symmetrical mode or to the behaviour of cross-over phenomenon
for other modes. The analytical predictions of Irvine & Caughey (1974) about the modal
shapes and frequencies and also regarding the cross-over situations were obtained with
good agreement in Gambhir & Batchelor (1978). In the latter, the natural modes and
frequencies were studied throughout the finite element method.

Advancing in the studies of linear vibration modes of cables, Triantafyllou (1984)
studied the problem of inclined taut cables. The solution is obtained considering that the
analysis can be divided into the superposition of two kinds of behaviours for the cable
vibrations. Firstly, the author considers the so called fast solution, where the cable is
treated as a waveguide for travelling transversal waves. In this kind of solution, the rate
of spatial change of the transversal displacement is large compared to that of the static
solution, this difference being more pronounced for higher modes. The nomenclature “fast”
is them borrowed for the spatial coordinate. Complementing the analysis, the slow solution
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is derived considering that perturbations in the tangential direction travel at the speed of
the elastic waves, resulting that, for the same frequency, the axial vibrations must have a
greater wavelength than the one of transversal vibrations, resulting in perturbations that
are slowly varying with space.

The linear modes of vibrations are then obtained as a composition of Bessel and
Airy functions and are then named hybrid modes since they will assume a shape that is a
combination of symmetric and antisymmetric functions along the cable length. How the
hybrid shape will depend on each type of the so called classical modes is dependent on
a parameter analogous to the Irvine parameter for accounting the geometric and elastic
effects. It is worth to highlight that the inclined condition changes the model in a way that
cross-overs are not possible. What happens in fact is an avoided crossings phenomenon,
that is, when the frequency of an initially symmetric mode becomes closer of the subsequent
initially antisymmetric mode, the frequency corresponding to the latter also starts to
increase with the control parameter.

Assuming quasi-static stretching, Triantafyllou & Grinfogel (1986) derive asymp-
totic equations for the vibration modes and natural frequencies of taut inclined cables.
The results are shown to be in good agreement with the predictions by Triantafyllou
(1984). The results of both works, including the observance of the existence of hybrid
modes and avoided crossings, were also experimentally obtained in Russell & Lardner
(1998). Following the investigation on inclined cables, in Pesce et al. (1999) the modes of
vibration of an inclined catenary are obtained. The axial dynamics is written as function
of the transversal one and a WKB7 (see Bender & Orszag (1978)) solution is obtained for
the vibration modes as well as an analytical approximation using Bessel functions. One
remarkable result is that the WKB solution can be applied to the problem of a catenary
riser under sea current, considering the adequate statical solution.

Regarding the nonlinear free vibrations and the frequency-amplitude dependency
of the vibration modes, initial investigations are presented in Hagedorn & Schäfer (1980),
where a shallow horizontal cable is considered. Nonlinear terms originated from the inclusion
of the cable elasticity are obtained, with the model being then discretized using the Galerkin
method with a single DOF. The solution for the frequency-amplitude dependency is then
obtained via the Lindstedt method and also through an analytical solution obtained by
considering that the system is conservative and then performing quadratures over the
mechanical energy expression. Following, in Luongo, Rega & Vestroni (1982) the same
problem is considered with the inclusion of the out-of-plane motion of the cable, with the
analysis limited to the first symmetric mode. For that, a 2-DOF model is required after
the Galerkin discretization, allowing to investigate couplings between the in-plane and
out-of-plane motions and how such couplings affect the frequency-amplitude relationship.

7 The name of the method is an acronym of the names of its creators, Wentzel, Kramers and Brillouin
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Figure 15 – First and second modes of an inclined cable. Shape variation with Irvine’s
parameter.

Source: Triantafyllou (1984)

The obtained ROM is then solved with the method of multiple time scales (MMTS),
furnishing an analytical formulation for the desired computations. The investigation of
other symmetric and antisymmetric modes for the in-plane vibrations is made in a similar
manner in Rega, Vestroni & Benedettini (1984). Extending the results regarding the
coupling and energy transfer between in-plane and out-of-plane modes, a study with a
2-DOF ROM is made in Benedettini, Rega & Vestroni (1986), with the solution obtained
using MMTS. The obtained results show the importance of considering the internal
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coupling between in-plane and out-of-plane modes under large vibrations.

Forced vibrations considering super and subharmonic resonances are investigated
with similar approaches in Benedettini & Rega (1989) (1 : 1/2 and 1 : 1/3 cases) and
Rega & Benedettini (1989) (1 : 2 and 1 : 3 cases), respectively. The resonance condition
is obtained by applying an external harmonic load in a manner to obtain the desired
conditions. The method of separation of variables is applied to the nonlinear equations,
considering linear modal shapes as spatial functions. The method of multiple scales is
applied to the resulting oscillators, allowing the authors to discuss the existence and
stability of stationary solutions.

In Srinil, Rega & Chucheepsakul (2003), the condition of small sag-to-span ratio is
dropped, considering then arbitrarily sagged and inclined cables. The nonlinear equations
of motion are treated using the finite-*difference method, applied both in space and time.
This work also treats the compatibility relation for the dynamic strain as nonlinear, while in
Benedettini, Rega & Vestroni (1986), Benedettini & Rega (1989) and Rega & Benedettini
(1989) this relation is linearized. The authors investigate the internal resonances and energy
transfer between the linear vibration modes by applying an initial condition that matches
the first mode and evaluating how the motion develops. The results show interaction
between linear modes, both in the in-plane and swing motions, addressing the necessity of
using more than one mode of vibration when considering linear modes for the construction
of reduced-order models. Following the studies, in Srinil, Rega & Chucheepsakul (2004),
the problem of a horizontal cable with arbitrary sag is considered, with particular focus
being made in exploring the internal activations between symmetric and antisymmetric
modes, as well as evaluating the enrichment of modal composition as the sag is enlarged.
Advancing on the topic of arbitrarily sagged and inclined cables, 2:1 internal resonances are
investigated in Srinil, Rega & Chucheepsakul (2006) and Srinil & Rega (2006). The former
presents the modelling of the problem together with a MMTS solution and a validation of
the model. The latter tackles the conditions for the internal resonances to occur as well
as requirements for obtaining ROMs for the problem and the formulation of nonlinear
normal modes of vibration.

In order to expand the analysis by dimensionless parameters as in Irvine & Caughey
(1974), the horizontal cable is studied in Lacarbonara, Paolone & Vestroni (2007) consider-
ing only the geometric nonlinearities, that is, linearizing the terms dependent on dynamical
perturbations in the equations of motion. Two parameters are used instead of only one as
in Irvine & Caughey (1974). The eigenvalue problem is studied considering a Ritz-Galerkin
procedure using trigonometric functions for the spatial interpolation. The authors then can
extend the results presented in Irvine & Caughey (1974) about the cross-over phenomenon
and modal shapes, showing the effects of the geometric nonlinearities measured by one
of the control parameters over those behaviours. Also, a classification based on energy
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contributions is presented for the vibration modes. Considering first the potential energy,
the division in geometric and strain energy is made. The so called geometric energy refers
to the variation in the potential energy of the system due to geometric changes in the
cable without stretching, while the strain energy nomenclature follows the widely known
internal energy of an elastic string due to strain variation. For the kinetic energy, the
comparison is made between the total kinetic energy and the kinetic energy associated
with only longitudinal motion. Finally, disregarding the cases of large portions of kinetic
energy associated with longitudinal motions, analytical expressions are developed for the
vibration modes in terms of the control parameters. Those expressions amplify the range
of applications with respect to the the predictions made in Irvine & Caughey (1974).

In Zhou, Yan & Chu (2011), the idea of using two control parameters presented in
Lacarbonara, Paolone & Vestroni (2007) is applied to inclined cables with small static
sag. The authors also use equations of motion considering linearization in the dynamic
perturbations, and the problem is treated considering a static condensation procedure. In
that way, the equation of motion for transversal vibrations can be turned into a Bessel
equation, allowing well known asymptotic results to be used. Since two parameters are
employed, it is possible to show how the static configuration affects the predictions made
with only one parameter in Triantafyllou & Grinfogel (1986).

Finally, in Mansour et al. (2018), the equations of motion for a cable supported
at both ends with arbitrary inclination are presented. The equations are geometrically
exact considering linear elasticity, and then are simplified with a linearization of the terms
dependent on the dynamic perturbations. The compatibility relation is also linearized and
analytical solutions for the linear modes considering the nonlinear effects induced by the
geometry can be obtained. The great contribution of that work is that it can collect in
one single formulation the effects studied previously.

2.4.2 Dynamics of statically curved structures with movable supports

The case in which some movement is allowed to the supporting ends of the structure
is of particular interest for the present work. One pioneer approach to that is presented in
Rega & Luongo (1980), where the linear free-vibrations of a horizontal shallow cable with
flexible supports is considered. Only in-plane vibrations are considered, with the supports
being modelled as springs in both the horizontal and the vertical directions. The study is
carried out by means of a finite difference discretization, and an investigation similar to
that in Irvine & Caughey (1974) is made.

For the specific case of prescribed motions of the supports, the initial studies
were carried out during the 90’s. In Perkins (1992) a cable with small sag is subjected
to prescribed motion in one of the supports, with such motion aligned with the local
axial direction of the equilibrium configuration. The problem is investigated by means
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of a 2-DOF ROM which accounts for the three-dimensional motion of the cable. The
model is investigated with MMTS and solutions for the frequency-amplitude relation as
well as conditions for existence of stable periodic solutions are shown. The results are
also compared to some experimental data, showing good adherence. The cable presents
parametric excitation in the out-of-plane direction and a mix of parametric and forced
excitations in the in-plane motion. This analysis is extended in Benedettini, Rega & Alaggio
(1995), where a 4-DOF ROM is adopted and an external forcing is applied to the cable
in combination to the support excitation, which now is not limited to the axial direction
of the equilibrium configuration. The investigation is also made by means of MMTS
and the existence and stability of steady-state solutions are evaluated. An experimental
investigation regarding the simultaneous effects of external forcing and imposed support
motion is made in Rega, Alaggio & Benedettini (1997). Finally, a similar analysis of that
in Benedettini, Rega & Alaggio (1995) is made in El-Attar, Ghobarah & Aziz (2000),
but considering general motions applied to both supports of the cable simultaneously.
Expanding the investigations with simultaneous external excitation and imposed boundary
motion, a bifurcation analysis is made in detail in Chen et al. (2010). By combining MMTS
and continuation analysis, the authors investigate the various types of bifurcations that
may arise and also reveal the possibility of chaotic motion.

A different approach in modelling the condition of imposed boundary motion is
made in Guo et al. (2015a). In this work, the support motion is written as a small term and
is considered to occur only in the out-of-plane direction, in a way that to the first order
of the expansions in MMTS the problem is that of fixed boundaries, with the imposed
motion effects appearing only at the level of the modulation equations. This methodology
is used again in Guo et al. (2015b), where the in-plane vertical motion of the support is
added to the problem. Following, in Guo et al. (2016a) the support is represented as a
lumped oscillator consisting of a mass attached to a linear spring and a linear dashpot.
The imposed motion is applied to this lumped element and it is shown how the tuning of
the parameters of such element influence on the type of response the cable presents.

Another effect investigated in the literature is that of asynchronicity in the motions
imposed to different supports. In Guo et al. (2016b), this is investigated for the out-of-plane
imposed motion, where it is shown the effect of the phase between support motions over
both the obtained responses and the conditions that lead to dynamical instabilities. In
turn, for the case of in-plane support excitation, this analysis is made in Guo et al. (2017).
The latter shows that the phase between support motions is responsible for enhancing the
presence of antisymmetric modes in the response, while reducing the participation of the
symmetric modes. All the cases so far presented of imposed support motion considered
small sag-to-span ratios. This assumption is dropped in the analysis made in Warminski et
al. (2016), while keeping the horizontal cable condition. Again, the problem is tackled by
means of a ROM investigated with MMTS. The bifurcations that the response undergoes
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are investigated, showing an evolution to chaotic regime as the excitation frequency is
varied.

Regarding inclined cables, the problem is investigated for taut strings. A pioneer
work is actually made for a horizontal scenario in Nayfeh, Nayfeh & Mook (1995). The
analysis is made by directly applying MMTS to the PDEs of motion, and then numerically
solving the modulation equations. Frequency-response curves are obtained for steady-state
regimes as well as scenarios of modulated responses. The solution is also compared to
experimental results, showing mostly good agreement for the stable branches of solution.
In Gonzalez-Buelga et al. (2008) focus is made on the condition of 2:1 internal resonances.
This is achieved by the input of a vertical motion imposed to one of the boundaries
with twice the frequency of the first out-of-plane mode, leading to the occurrence of
parametric excitations in the out-of-plane motion while causing forced excitations in the
in-plane motion. This latter work also presents comparisons with experimental results.
Complementing the studies considering in-plane imposed motion, in Wang & Zhao (2009)
a detailed bifurcation analysis is carried out for the problem, considering both in-plane
and out-of-plane responses.

The inclusion of out-of-plane boundary motion is made in Macdonald et al. (2010)
together with the investigation of the modal stability of any chosen vibration mode
under the combined forced and parametric excitation induced by the imposed motion. In
Macdonald (2016), the multimodal nonlinear responses under general imposed boundary
motion are investigated. In those two works, it is possible to find readily available analytical
solutions for the response amplitude and the modal stability condition together with its
boundaries. Closing the topic of taut strings, in Luongo & Zulli (2011) the effects of an
external forcing combined with the support excitation are addressed. The external forcing
in the case is due to galloping caused by a wind flow around the cable.

2.4.3 Fluid-structure interactions on statically curved structures

Note that most of the works mentioned investigated the problem of cables in air,
with water being considered in Pesce et al. (1999), but only in what matters for the statical
equilibrium configuration and linear modal effects. Some major differences can be expected
when dealing with the case where the surrounding fluid is water. In this case, the effect
of the difference of pressure of the inside and outside of the riser causes a change in the
effective traction on the riser, leading to variations of the geometric stiffness. Also, due to
sea currents and the motion of the riser, hydrodynamic forces, which are nonlinear and
mathematically complicated to deal with in analytical treatments, are expected to act on
the riser. Finally, the boundary conditions may present variation in time in addition to
the imposed motion condition, since the point where a marine cable touches the ocean
floor is not necessarily fixed. In Pesce (1997), a very detailed analysis on catenary risers is
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made. Asymptotic solutions are presented for the static problem, considering effects due
to sea current, soil stiffness and local bending stiffness on the riser ends. Also, the local
dynamical problem in the touch-down zone is investigated, and asymptotic solutions are
presented for the dynamical traction and curvature as functions of the movement of the
touch-down point. Discussions about the effects of soil stiffness and the touch-down point
movement at the dynamical response of a cable can be found in Pesce, Martins & Silveira
(2006). The effects of local domain solutions close to the touch-down zone are included in
the cable dynamics, and the results are compared to finite element simulations showing
good agreement.

Regarding inclined cables with arbitrary sag surrounded by water, the mathematical
modelling and solution presents strong challenges. In Alfosail & Younis (2018) an inclined
riser8 with arbitrary sag in the static configuration is subjected to VIV. To simplify the
mathematical modelling and the analytical treatment, the authors represent the fluid-
structure interactions by means of a harmonic forcing term in the equation of motion.
The problem is then investigated with focus on the 2:1 internal resonance condition using
MMTS. A similar analysis, with the same approach for modelling the fluid effects is made in
Alfosail & Younis (2019), with focus now on the 3:1 internal resonance condition. Both those
works show that the effects on the motion amplitude due to the additional mode activated
by internal resonance is weak. However, this additional mode significantly contributes to a
frequency shift in the response which is of great importance for fatigue analysis. Still with
the same approach for the fluid-structure interaction modelling, multi-frequency forcing
terms are considered in Alfosail & Younis (2020).

2.5 Nonlinear normal modes

One particularly interesting method of reducing the order of a dynamical system is
by means of its nonlinear modes. These modes are the extensions of the well-known linear
modes of vibration of a system, and their purpose is to reduce the motion dynamics to a
specific set in the state-space. In what concern the present thesis, the nonlinear modes are
used for analysis regarding VIV.

The beginning of the studies about nonlinear modes can be tracked back to the
works of Rosenberg, that are well detailed in the review presented in Rosenberg (1966).
The objective is the use of those nonlinear modes to analyse basic properties of a nonlinear
system, such as frequency-amplitude dependence, bifurcations and phase space trajectory
amongst others. Initial studies were focused on conservative systems with a small number
of DOFs due to the original definitions and requirements for a nonlinear mode.

In Shaw & Pierre (1993), the use of invariant manifolds to describe a nonlinear
8 The flexural stiffness is taken into account in this work.
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mode gave more generality to the subject, also allowing a broader class of systems to be
investigated with the technique. The latter work defines a nonlinear mode as a functional
relation between a set of slave coordinates and a set of master coordinates. This definition
implies the extension of a property of linear modes to the nonlinear ones, that is, if an
initial condition belongs to a certain mode, the motion remains in that mode9 in the
absence of internal resonances. The mathematical procedure to determine those functional
relations is borrowed from center manifold techniques, which involves eliminating the time
derivatives from the equations of motion.

To clarify the mathematical process, consider a discrete dynamical system that can
be put in the form of a system of first-order differential equations, with N DOFs, defined
as

ṙi = si, (2.11)
ṡi = fi (r⃗; s⃗) . (2.12)

Overdots are used to denote differentiation with time as usual, and the index i goes
from 1 to N . Let r⃗ = [r1, ..., rN ]T be the vector of generalized coordinates, s⃗ = [s1, ..., sN ]T

the vector of generalized velocities or quasi-velocities and fi (r⃗; s⃗) the generalized forces
normalized by the corresponding inertias. Note that nothing was said about the format of
the generalized forces. For the basic proposal of the idea following Shaw & Pierre (1993),
it is assumed that all coordinates can be written as functions of r1 and s1. Assuming then
(r1, s1) = (r, s), the sought relations are ri = Ri (r, s) and si = Si (r, s) for i = 1, ..., N .
Notice that R1 = r and S1 = s.

From these assumptions, all the functional relations will be represented by manifolds
mapped by a two dimensional space. This methodology can be applied for higher-order
manifolds by simply defining the functional relations in terms of more master coordinates,
generating multi-modes instead. The use of higher-order manifolds are found in systems
with internal resonances. Now, the system is put in autonomous form by using the same
substitution idea of center manifold theory. This is achieved by using the rules

d
dt = ∂

∂r
ṙ + ∂

∂s
ṡ = ∂

∂r
s+ ∂

∂s
f1 (r⃗; s⃗) . (2.13)

Applying that rule to every pair of coordinate (ri, si), an autonomous system is
obtained as

9 This property is know as invariance.
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Si = ∂Ri

∂r
s+ ∂Ri

∂s
f1 (r, R2, ..., RN ; s, S2, ..., SN) , (2.14)

fi (r, R2, ..., RN ; s, S2, ..., SN) = ∂Si

∂r
s+ ∂Si

∂s
f1 (r, R2, ..., RN ; s, S2, ..., SN) . (2.15)

The solution of these equations gives the geometry of the manifolds, however, in
general they are as difficult to solve as the initial problem. The advantage of using this
form is that it makes possible to use series expansions to find an approximated form for the
manifolds near an equilibrium solution. In Shaw & Pierre (1993), a polynomial expansion
is adopted, which, although correct, limits the analysis to small amplitudes around the
equilibrium. Once the manifolds are determined, the modal Eqs. (2.16) and (2.17) are
solved to obtain the modal dynamics for the problem.

ṙ = s, (2.16)

ṡ = f1 (r, R2, ..., RN ; s, S2, ..., SN) . (2.17)

After the integration of the modal equations, analytically or numerically, the
dynamics of all the coordinates can be assembled using the determined manifolds. Notice
that other methods commonly used in nonlinear dynamics analysis, like MMTS, can still
be applied to the system. This approach is even made easier thanks to the reduction in
the number of DOFs of the system.

From the general definition, various works have been made in order to obtain
and analyse the nonlinear modes, using different approaches. In Nayfeh, Chin & Nayfeh
(1996), systems with cubic nonlinearities are investigated in the condition of 1:1 and 3:1
internal resonances. The nonlinear modes are obtained by writing the system in complex
coordinates and applying MMTS. In King & Vakakis (1996), an energy approach is utilized
to obtain the nonlinear modes. However, this approach is limited to conservative systems.
Finally, a different approach to obtain the nonlinear modes is used in Pesheck, Pierre &
Shaw (2002) and Jiang, Pierre & Shaw (2005). In these works, the mechanical variables
are first written in the polar form, with the manifold equations being obtained in the new
set of variables. Following, a Galerkin scheme is utilized to obtain the coefficients for a
series to describe the manifold. This type of approach helps to solve the limitation of the
polynomial expansion presented in Shaw & Pierre (1993), which can rapidly lose accuracy
for large values of amplitude away from the equilibrium configuration.

Different approaches have also been developed to deal with continuous systems.
In Soares & Mazzilli (2000), planar frames are discretized by FEM and the nonlinear
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modes are obtained for the resulting system of equations. Following, in Mazzilli & Baracho
Neto (2002), a general approach to obtain the nonlinear modes with MMTS for systems
discretized by FEM. Finally, in Baracho Neto & Mazzilli (2005) the nonlinear modes for
models discretized by FEM are obtained for systems with internal resonance. A different
approach is to directly investigate the continuous equations of motion to obtain the
nonlinear modes. In Nayfeh & Nayfeh (1994) the nonlinear modes for a class of structural
systems are obtained, with a comparison being made between the analysis with the
discretized system and attacking directly the continuous equations of motion. It is shown
in the paper that the two approaches are in agreement when a complete modal basis for the
linear problem is used in the discretization procedure with the Galerkin method. In Nayfeh,
Lacarbonara & Chin (1999), a buckled beam which can undergo internal resonances is
investigated. The nonlinear modes are obtained directly from the continuous equations of
motion by means of MMTS. Following, in Lacarbonara, Rega & Nayfeh (2003) a general
analytical approach for the analysis with nonlinear modes of one dimensional structural
systems that may undergo internal resonance is presented in detail. The work keeps the
possibility of not initially straight structures and internal resonances with the 1:1, 2:1 and
3:1 frequency relations. Finally, in Lacarbonara & Rega (2003) the conditions for activation
and orthogonality of the nonlinear modes of shallow structural systems is presented.

Studies about bifurcation scenarios and the search for specific orbits in the phase
space, such as homoclinic orbits, my be found in Lenci & Rega (2007) and Lenci &
Rega (2010). In those works, buckled beams with different boundary conditions are
analysed and the continuous system is discretized by a Galerkin scheme. Some qualitative
conclusions about the homoclinic orbits and the system dynamics are then addressed
with a combination of series expansions and analytical techniques by using the invariant
manifold approach.

A detailed review about nonlinear modes, how to compute them and their use for
practical analyses is present in Kerschen et al. (2009) and Peeters et al. (2009). In these
works, it is possible to find some ways to compute the nonlinear modes, some with purely
numerical schemes. It is also shown how to make bifurcation analysis with continuation
techniques. More recently, a review on nonlinear modes and how to use them to obtain
ROMs is presented in Mazzilli, Gonçalves & Franzini (2022).

Regarding the specific application of nonlinear modes to structures undergoing
VIV, some few works can be found on the literature. In both Keber & Wiercigroch (2007)
and Keber & Wiercigroch (2008) a slender riser under VIV is investigated, the difference
lying in the inclusion of internal flow along the riser in the latter. In both works, the free
dynamics of the structure containing both axial and transversal vibrations is reduced to
a single DOF model by means of the nonlinear modes. The VIV is then considered as a
forcing term in the reduced equation of motion and the fluid variable obeys a Van der
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Pol type equation. The resulting dynamical system is then numerically integrated and
analysed. Following, in Mazzilli & Sanches (2011) a slender riser is discretized by FEM.
The structural model is reduced by means of nonlinear modes and the phenomenological
model is incorporated afterwards. Again, no functional relation considering the dynamical
system after the incorporation of the phenomenological model was investigated.

2.6 Relation of this thesis with ongoing research topics in the
literature

Keeping in mind that the main focus of this thesis concerns obtaining ROMs and
the advantages they may present for analysis, some wording regarding their formulation
is necessary. The approach to obtain ROMs in this thesis is by means of the Galerkin
projection over the PDEs of motion of the structure. The Galerkin projection ensures that
the error will be minimum within the vectorial space spanned by the adopted projection
functions basis. However, it does not guarantee the quality of the solution in the sense of
replicating the original model, with such quality being strongly dependent on the adopted
basis. The main problem is that, although some general idea of how to choose good
projection functions is known, there is no methodology to ensure a given projection basis
is actually a good one before performing comparisons with a solution obtained by other
means, such as experiments, numerical simulations using higher-order hierarchical models
or analytical solutions. Some examples of works where a comparison is made regarding the
qualitative behaviour of different order reducing techniques are Rega et al. (1999) and Guo
et al. (2020). It is noticeable, however, that focus in the qualitative aspects of conceiving
the projection basis is not common in the literature.

This thesis then sheds some light in the matter of the effects of different projection
functions, exploring even some cases where very similar functions are compared between
each other but with the small differences leading to significant changes in the obtained
results. Another explored situation is that where poor choices for the projection basis is not
solved by simply enlarging the set of projection functions. The latter case is particularly
important since it is a very present common belief that a poor representation is due
to the lack of convergence of the ROM because its projection basis is not large enough.
Sometimes, the problematic representation has its origin on qualitative aspects that must
be present on the projection function10. This type of investigation herein made also shows
a path to obtain minimalist ROMs, that is, the smallest possible ROM for a given problem
while still keeping adequate accuracy.
10 A simple mental exercise to illustrate that is the case of a damped mass-spring system. The solution is

a trigonometric function with a specific frequency and an amplitude decaying exponentially with time.
If one tries to solve it with a series of trigonometric function with constant amplitude, the desired
solution will not be achieved no matter how many terms are included in the expansion.
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Another element with room for discussions in the literature concerns the FSI,
specially for the case of statically curved elements. There are some key features regarding
the nonlinear hydrodynamic damping and the phenomenology of VIV that must be
carefully taken into account in the mathematical model. Those features however tend to
bring further complications in terms of analysis, specially when an analytical pathway
is pursued. The usage of simplifications is then common, as it can be seen in linear
approximations for the hydrodynamic nonlinear damping or assuming the VIV effects
to be a given external forcing. Both approaches, however, have drawbacks in the results.
The nonlinear damping is fundamental in the limitation of responses due to parametric
excitation as shown in Chatjigeorgiou (2004), and interferes with the arising of internal
resonances. Regarding VIV, the usage of a given forcing term eliminates from the model
the fact that the structural response influences the vortex shedding itself.

This is another point where this thesis brings contributions. The classical Morison
damping is considered in the investigations with still fluid, with techniques being presented
to tackle its mathematical complications in pursuing analytical solutions. It is also used to
show some of the advantages of refining the projection functions to obtain ROMs. In what
concerns VIV, a phenomenological approach that considers an oscillator to represent the
fluid is made, allowing for the interactions between fluid and structure to go both ways.
Although the usage of such models is already present in the literature, this thesis brings
a new way to perform an order reduction in this case by the usage of nonlinear normal
modes.

Finally, the thesis also brings novel results obtained by applying MMTS directly
over the PDEs of motion for the problem of straight structures under parametric excitation.
It is important to highlight that the common practice is to apply the method over the
ODEs of the discretized system, with few works focusing on a direct application over
the PDEs. This leaves open room for such application in various different problems. In
the particular case of the thesis, the case of parametric excitation of straight rods is
investigated with this technique. The obtained solution is then combined with some series
expansions and algebraic investigations in order to reduce it to the evaluation of a series
of polynomials. This approach then leads to the creation of a simple methodology to
create a design aiding tool using electronic spreadsheets, while it still keeps the essential
characteristics of the solution obtained with advanced techniques.
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3 Modelling flexible members in straight or
curved configurations

The first step in studying the dynamics of a structural element is to obtain an
adequate mathematical model for its behaviour, that is, the equations of motion for the
problem. This can be achieved by different approaches, for instance, using a Newtonian
or a Hamiltonian philosophy of modelling allied with either a Lagrangian or Eulerian
reference system. The choice between different types of coordinate systems or modelling
approaches can vary for each problem depending on the researcher’s objectives and what
is intended to be highlighted in the final form obtained for the equations of motion. In
this thesis, all the equations are obtained with reference to a Lagrangian system while the
choice between a Newtonian or Hamiltonian approach is case-dependent, being stated in
the appropriate portions of the text.

In this chapter, only the equations of motion for the case of free dynamics are
derived with boundary conditions closely related to the problems investigated along the
thesis. The equations obtained in that fashion are easily adjusted to the specific problems
of application with small and simple changes, thus presenting enough generality to be
herein presented in highlight. Considering that key differences are posed in the modelling
by the presence or absence of curvature in the adopted reference configuration of the
structural member, this chapter is concisely divided in two sections. Section 3.1 brings the
modelling of flexible elements that are perfectly straight in the reference configuration.
Complementary to it, Section 3.2 brings modelling discussions regarding curved flexible
elements with the dynamics contained in the same plane of the reference configuration.

3.1 Vertical flexible rods
The simplest structural model that appears in engineering problems is that of

a flexible rod that can be considered to have a perfectly straight shape in its reference
configuration. The fact that the structural element is initially straight allows for a deduction
of the equations of motion with a simpler mathematical development. That is, although
the algebraic manipulations are long and intricate, the required geometrical concepts are
quite simple.

The deduction herein presented is made using Euler angles to describe the motion
of a general cross-section, assuming that the structural element behaves within the classical
Bernoulli-Euler kinematic assumption. This hypothesis states that plane cross-sections,
initially orthogonal to the centroid axis of a rod, remains plane, undeformed and orthogonal
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to the central axis for all displacements. This hypothesis define the kinematic behaviour
of all the points of the rod as a function of the displacements of the centroid axis alone,
as is shown in the following deduction. This hypothesis is particularly suitable for very
slender structures as the ones investigated in this thesis. Non-slender structures such as
very short beams require different hypothesis to be adopted such as the one made in the
Timoshenko beam theory.

The mathematical development in this chapter for straight rods is based on the
work by da Silva (1988), with the use of appropriate simplifications when suitable. The
choice of this particular approach is due to the great generality presented in da Silva
(1988), together with its capability of easily specify when further modelling hypothesis
are made and their meaning and consequences. Some mathematical relations are obtained
in a different sequence that is considered simpler by the author of this thesis and more
straightforward from analytical geometry concepts.

3.1.1 3D Kinematics of the Bernoulli-Euler flexible rod

Consider an initially straight beam, with the centroid axis aligned with the Z
coordinate axis and with principal axis of inertia aligned with the coordinate axes X and
Y . At this point, no relationship is stated between those axes and meaningful physical
directions such as the gravity direction. This allows for a general formulation to which
small increments can be made at the final steps of modelling to relate it to specific cases
without changing the fundamentals of the modelling process.

The reference frame OXY Z is fixed, and has the origin O (Z = 0) at the centroid
of one of the ending cross sections of the rod. The unit vectors of the reference frame
are named as î, ĵ and k̂, while the corresponding displacements on each direction are
U(Z, t), V (Z, t) and W (Z, t) respectively, with t representing time. Consider also the local
cross-section frame Cgηζξ, with unit vectors η̂, ζ̂ and ξ̂ with origin at the cross-section
centroid Cg. The unit vectors are such that ξ̂ is parallel to the beam axis at the deformed
configuration, while η̂ and ζ̂ are always parallel according to the cross-section’s principal
axes that were initially aligned with the X and Y directions respectively.

One of the measures that can be defined only by means of the kinematics of
the structure is the strain measure. To that end, consider two points over the rod axis,
M = (0, 0, Z)XY Z and N = (0, 0, Z + dZ)XY Z . The positions of the points after the
rod undergoes the defined displacements are given as M∗ = (U, V, Z + W )XY Z and
N∗ = (U + dU, V + dV, Z + dZ +W + dW )XY Z respectively. The linear strain measure is,
by definition, the ratio between the increment in length of an infinitesimal fiber of the
structure and its original length. It is easier however to compute first the quadratic strain
measure εq and use it to then obtain the linear strain measure. The quadratic strain is
defined as half of the difference between the quadratic length of the fiber in the final and
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original configurations divided by the quadratic of the original length. For the case at
hand it reads

εq = lim
dZ→0

1
2

(
∥M∗N∗∥2 − ∥MN∥2

∥MN∥2

)
= 1

2 lim
dZ→0

(
dU2 + dV 2 + dW 2 + 2dZdW

dZ2

)

= W ′ + 1
2
(
U ′2 + V ′2 +W ′2

)
. (3.1)

Primes are used to denote partial differentiation with respect to the reference
coordinate Z. The relationship between linear and quadratic strain is well-known and
furnishes

εℓ =
√

1 + 2εq − 1 =
√

1 + 2W ′ + U ′2 + V ′2 +W ′2 − 1. (3.2)

Now, the final deformed configuration is described using Euler angles, through a
step-by-step procedure. For a clear understanding of the angles at each step, they are
graphically shown in Fig. 16. It is important to state that this choice is not unique, being
possible to define a total of 24 different triads of Euler angles. The ones chosen in this work
are based on da Silva (1988) and have a close relationship with commonly used quantities
in studies of flexible one-dimensional structures.

Figure 16 – Definition of the Euler angles.

Source: The author.

At the reference configuration the cross-section frame is parallel to the reference
frame, thus, η̂0//î, ζ̂0//ĵ, and ξ̂0//k̂. Initially, a rotation θy around ζ0 axis is made, leading
the cross-section frame to the new directions η̂1, ζ̂1//ζ̂0 and ξ̂1. In the sequence, a rotation
θx is applied around axis η1, leading the cross-section frame to the directions η̂2//η̂1, ζ̂2

and ξ̂2. Finally, a rotation θz is applied around axis ξ2, leading the cross-section reference
frame to η̂, ζ̂ and ξ̂//ξ̂2. Notice that this last angle θz is a purely twisting angle applied to
the structure. Although the present research does not consider torsion in the analysis made
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in further chapters, the formulation is herein made with the torsional response present for
the sake of completeness.

Before moving into further calculations, it is useful to define the rotation matrices
associated with each of those angles. Let those matrices to be identified as [θx], [θy] and
[θz] in correspondence to the angles θx, θy and θz respectively. From common linear algebra
relations, it is straightforward to write

[θy] =


cos θy 0 − sin θy

0 1 0
sin θy 0 cos θy

 , (3.3)

[θx] =


1 0 0
0 cos θx sin θx

0 − sin θx cos θx

 , (3.4)

[θz] =


cos θz sin θz 0

− sin θz cos θz 0
0 0 1

 . (3.5)

The inverse relationships are trivially given by [θi]−1 = [θi]T, with i denoting any
of the subscripts and the superscript “T” denoting simple transposition when used as a
matrix superscript. The next step is to obtain the relationship between the Euler angles
θx and θy with the Cartesian displacements. Since θz is a purely twisting angle, it is not
related to the Cartesian displacements of the points of the rod’s centroid axis and instead
is an independent DOF. A simple way to obtain the desired relations is by recalling the
computation of the tangent vector of parametrized curves from basic calculus. For a curve
Γ⃗(s), where s is any parameter used to map it, the vector given as dΓ⃗/ds is tangent to
the curve. In the particular case that s is taken as the arclength coordinate, the tangent
vector computed that way is unitary. With that, it is possible to assure that any tangent
vector to the centroid axis of the rod is a multiple of

t⃗ = U ′î+ V ′ĵ + (1 +W ′) k̂. (3.6)

This vector can be taken to the local frame by means of Eqs. (3.3) to (3.5) by
appropriate matrix multiplications. After some algebraic manipulation it is possible to
write it as
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t⃗ =
((
U ′ cos θy − (1 +W ′) sin θy

)
cos θz

)
η̂

+
((
V ′ cos θx +

(
U ′ sin θy + (1 +W ′) cos θy

)
sin θx

)
sin θz

)
η̂

+
((
V ′ cos θx +

(
U ′ sin θy + (1 +W ′) cos θy

)
sin θx

)
cos θz

)
ζ̂

−
((
U ′ cos θy − (1 +W ′) sin θy

)
sin θz

)
ζ̂

+
(
−V ′ sin θx +

(
U ′ sin θy + (1 +W ′) cos θy

)
cos θx

)
ξ̂. (3.7)

It is possible now to use a fundamental aspect of analytical geometry that is, in
the local reference frame the tangent vector must be a multiple of (0, 0, 1)ηζξ, which means
all terms in Eq. (3.7) that multiply η̂ and ζ̂ must zero out. Also, since the angle θz is
independent, the terms on cos θz and sin θz must cancel out independently, leading to

U ′ cos θy − (1 +W ′) sin θy = 0 ⇒ tan θy = U ′

1 +W ′ , (3.8)

V ′ cos θx +
(
U ′ sin θy + (1 +W ′) cos θy

)
sin θx = 0. (3.9)

Recalling that tan2 x+ 1 = sec2 x, Eq. (3.8) furnishes

U ′2

(1 +W ′)2 + 1 = 1
cos2 θy

⇒ cos θy = 1 +W ′√
(1 +W ′)2 + U ′2

, (3.10)

which leads to

sin2 θy = 1 − (1 +W ′)2

(1 +W ′)2 + U ′2
⇒ sin θy = U ′√

(1 +W ′)2 + U ′2
. (3.11)

Notice that the positive sign is adopted in both cases where a square root extraction
was applied. The reason behind this in Eq. (3.10) is to keep the angles between ±π/2,
domain where the cosine is positive. Notice that for common structural applications, not
involving rigid body motions, |W ′| ≪ 1, ensuring that (1 +W ′) > 0. In turn, the reason
for the positive sign in Eq. (3.11) is that positive angles θy geometrically implies that the
displacement U is crescent with the coordinate Z, meaning positive values of U ′ must be
related to positive values of θy. Finally, to obtain relations for θx it is now possible to
substitute Eqs. (3.10) and (3.11) in Eq. (3.9) leading to
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V ′ cos θx +
 U ′2 + (1 +W ′)2√

(1 +W ′)2 + U ′2

 sin θx = 0 ⇒ tan θx = −V ′√
(1 +W ′)2 + U ′2

. (3.12)

The process to obtain the corresponding sine and cosine of θx is exactly the same
made for θy, reason why it is not repeated and only the final results are reported in Eqs.
(3.13) and (3.14).

cos θx =

√
(1 +W ′)2 + U ′2√

(1 +W ′)2 + U ′2 + V ′2
, (3.13)

sin θx = −V ′√
(1 +W ′)2 + U ′2 + V ′2

. (3.14)

With that, all the Euler angles are defined in terms of the DOF used in this thesis,
that is U , V and W , together with the angle θz for completion. The next steps now involve
the obtaining of the strain measure in any point P of the cross-section. So far, this measure
has only being defined for points on the centroid axis as given by Eq. (3.2). For a better
assimilation, the same letters used for the local reference frame unit vectors are employed
to measure coordinates on this frame. Let then the generic point P have an associate
position vector given by

r⃗P = ηî+ ζĵ + Zk̂, (3.15)

while its position in the deformed configuration, given as point P∗ is

r⃗P∗ = ηη̂ + Uî+ ζζ̂ + V ĵ + (Z +W ) k̂. (3.16)

Notice the use of the non-deformability condition of the cross-section in the measures
over the local frame. Another assumption that is implicit in that expression for the final
position after displacements is the absence of warping of the cross-section, which would
imply adding up a term f(η, ζ, U, V,W, θz)ξ̂ to the expression, with f being a suitable
warping function for the problem of desire. Applying simple differentiation rules it is
possible to write in infinitesimal terms that

dr⃗P = dηî+ dζĵ + dZk̂, (3.17)



3.1. Vertical flexible rods 79

dr⃗P∗ = dηη̂ + U ′dsî+ dζζ̂ + V ′dsĵ + (1 +W ′) dsk̂ + C⃗ ∧
(
ηη̂ + ζζ̂

)
ds, (3.18)

with ∧ denoting the classical cross product in R3. The vector C⃗ is the “spatial angular
velocity” vector of the curve described by the displaced central axis mapped by the
coordinate Z1. This name is used since, for differentiation rules, this vector assumes
the same role as the angular velocity vector of a material point moving along a given
curve parametrized by time. It expresses how the local frame changes in all its direction
components with an advance in the mapping coordinate. For the case of the displaced
curve considered, the expression is

C⃗ = θ′
y ζ̂1 + θ′

xη̂2 + θ′
z ξ̂

=
(
θ′

y cos θx sin θz + θ′
x cos θz

)
η̂ +

(
θ′

y cos θx cos θz − θ′
x sin θz

)
η̂ +

(
θ′

z − θ′
y sin θx

)
ξ̂

= Cηη̂ + Cζ ζ̂ + Cξ ξ̂, (3.19)

with Cη, Cζ and Cξ being merely nomenclature definitions to reduce the algebraic work.
As noted in da Silva (1988), the generalized curvature vector for the rod is simply given
by C⃗/(1 + εℓ). Now, the Green strain tensor is used in order to obtain the complete set
of local strains at the generic point P after displacements. By definition, this tensor is
written as

dr⃗P∗ · dr⃗P∗ − dr⃗P · dr⃗P = 2
(
dZ dη dζ

) 
εzz εzη εzζ

εηz εηη εηζ

εζz εζη εζζ




dZ
dη
dζ

 (3.20)

The calculation involving the scalar products are cumbersome, being made in Ap-
pendix A for the sake of readability. Expanding Eq. (3.20) and collecting the correspondent
products, the components of the Green’s strain tensor are given as

εzz =

(
(1 + εℓ)

2 − 1 + (η2 + ζ2)C2
ξ +

(
ζCη − ηCζ

)2
+ 2 (1 + εℓ)

(
ζCη − ηCζ

))
2 ,

(3.21)

εzη =
−ζCξ

2 , (3.22)
1 This is obtained from Kirchhoff’s kinetic analogy.
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εzζ =
ηCξ

2 , (3.23)

εηη = εζζ = εηζ = 0. (3.24)

The consistency of the model developed so far can be verified by the constantly null
values for all the strains that would involve deformations of the cross-section. Notice also
that the distortion measures obtained this way are consistent with circular cross sections
or closed sections made of thin members. For further nomenclature simplification, it is
possible to define an auxiliary strain measure given as

ε∗ = εℓ + ζCη − ηCζ , (3.25)

which allows to write

εzz =
(1 + ε∗)2 − 1 + (η2 + ζ2)C2

ξ

2 . (3.26)

Finally, as in da Silva (1988), another simplification is made regarding strain. Along
this thesis, all the structural elements are supposed to stay within the range of strain
where the linear-elastic rheological model is valid. In this case the strain values are usually
much smaller than unity, meaning that strain measures can be linearized with respect to
other strain measures. In the case at hand, the expression for εzz is linearized with respect
to ε∗, leading to

εzz = ε∗ +
(η2 + ζ2)C2

ξ

2 . (3.27)

It is important to emphasize that the final strain measure is linearized with respect
to another strain measure and not with respect to the displacements. This is the proper
way of mathematically dealing with strains since small strains do not imply in small
displacements and linearizing the results with respect to the displacements would limit the
range of validity of the modelling carried out so far. With that, all the needed kinematic
quantities have been defined.
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3.1.2 Equations of motion

For this problem, Hamilton’s principle is chosen to proceed in obtaining the
equations of motion. For the application of the principle, the development of the expressions
for the kinetic and strain energy are needed. It is assumed that the cross-section center of
mass coincides with its centroid, which is true for a wide range of shapes and combined
designs. With that, the expression for the kinetic energy is

T =
ℓ∫

0

(
µ

2
(
U̇2 + V̇ 2 + Ẇ 2

)
+
Jξω

2
ξ

2

)
dZ. (3.28)

The quantity Jξ is the mass moment of inertia for the cross section and µ is the
mass per unit length of the structure and ωξ is the angular velocity around the ξ̂ axis.
The angular velocities around other axes are not considered since their contribution to
the total kinetic energy is negligible for slender structures for which the Bernoulli-Euler
hypothesis is valid. The strain energy of the rod following linear elasticity is written as
the volume integral

V = 1
2

y

V

(
σzzεzz + 2

(
σzηεzη + σzζεzζ

))
dV, (3.29)

where σ denotes the stress corresponding to the directions of the strains. Considering
the linear elastic model for the rod’s material and the Young E and shear G moduli, the
stresses are given as σzz = Eεzz, σzη = 2Gεzη and σzζ = 2Gεzζ , in a way that the energy
expression becomes

V =
y

V

(
Eε2

zz

2 + 2G
(
ε2

zη + ε2
zζ

))
dV, (3.30)

which, when expanded, reads

V =
y

V

(
E

2
(
ε2

ℓ + C2
ηζ

2 + C2
ζ η

2 + 2εℓCηζ − 2εℓCζη − 2CηCζηζ + εℓC
2
ξ

(
η2 + ζ2

)

+CηC
2
ξ ζ
(
η2 + ζ2

)
− CζC

2
ξ η
(
η2 + ζ2

)
+
C4

ξ

4
(
η2 + ζ2

)2
)

+
GC2

ξ

2
(
η2 + ζ2

))
dV.

(3.31)

Now, considering that the origin of the local frame is the centroid of the cross-section,
it is possible to use geometrical area integrals to simplify the expression to
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V =
ℓ∫

0

(
E

2

(
Aε2

ℓ + C2
ηIη + C2

ζ Iζ + εℓC
2
ξ

(
Iζ + Iη

)
+
C4

ξ

4 I4

)
+
GC2

ξ

2
(
Iζ + Iη

))
dZ,

(3.32)

with Iη and Iζ being the commonly known area moment of inertia, while I4 is defined as

I4 =
x

A

(
η2 + ζ2

)2
dA. (3.33)

For means of putting the strain energy expression in a form with common coefficients
used in strength of materials, Eq. (3.32) is rewritten as

V =
ℓ∫

0

(
E

2

(
Aε2

ℓ + C2
ηIη + C2

ζ Iζ + εℓC
2
ξ Ip +

C4
ξ

4 I4

)
+
GC2

ξ

2 It

)
dZ, (3.34)

where Ip is the polar moment of inertia which is always Ip = Iη + Iζ and It is the torsional
moment of inertia which is equal to Ip for circular or closed thin-walled sections but
in general is different and is computed as a function of the distortion function over the
cross-section. For the cases where It ̸= Ip the formulation in da Silva (1988) can be checked
by the reader. Considering now that the Euler angles are small, which is valid while
the displacements are small compared to the half-wave length of the expected motion
developed by the rod, the expressions for the angles are taken as linear with regard to the
displacements, as usual in the literature, leading to

θx = −V ′, (3.35)

θy = U ′, (3.36)

ωξ = θ̇z, (3.37)

while C⃗ becomes

C⃗ = −V ′′η̂ + U ′′ζ̂ + θ′
z ξ̂. (3.38)
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For small strains it is also possible to use

εℓ =
√

1 + 2εq − 1 ≈ εq. (3.39)

Finally, the term W ′2 is disregarded for being negligible compared to the others in
usual applications of flexible rods undergoing transversal displacements in engineering, as
exposed in Mazzilli et al. (2008). This assumption leads to

εℓ = W ′ + (U ′)2

2 + (V ′)2

2 . (3.40)

Proceeding then to the variational calculations required in order to apply Hamilton’s
principle, the first variation of the kinetic energy is given as

δT =
ℓ∫

0

(
µ
(
U̇δU̇ + V̇ δV̇ + Ẇ δẆ

)
+ Jξθ̇zδθ̇z

)
dZ, (3.41)

while the expression for the variation of the strain energy reads

δV =
ℓ∫

0

(
EAεℓδεℓ + EIηV

′′δV ′′ + EIζU
′′δU ′′

+EIpεℓθ
′
zδθ

′
z +

EIp

2 θ′2
z δεℓ + EI4θ

′3
z δθ

′
z +GItθ

′
zδθ

′
z

)
dZ. (3.42)

Performing integration by parts in Eq. (3.42) to drop the primes from the variation
terms leads to

δV =
[
EAεℓδW + EAU ′εℓδU + EAV ′εℓδV + EIηV

′′δV ′ − EIηV
′′′δV

]ℓ
0

+
[
EIζU

′′δU ′ − EIζU
′′′δU + EIpεℓθ

′
zδθz + EIpθ

′2
z δW + EIpU

′θ′2
z δU + EIpV

′θ′2
z δV

]ℓ
0[

EI4θ
′3
z δθz +GItθ

′
zδθz

]ℓ
0

−
ℓ∫

0

(
(EAεℓ)

′ δW + (EAU ′εℓ)
′
δU + (EAV ′εℓ)

′
δV
)

dZ

−
ℓ∫

0

((
EIpθ

′2
z

)′
δW +

(
EIpU

′θ′2
z

)′
δU +

(
EIpV

′θ′2
z

)′
δV +

(
EIpεℓθ

′
z

)′
δθz

)
dZ

−
ℓ∫

0

(
3EI4θ

′2
z θ

′′
zδθz +GItθ

′′
zδθz

)
dZ +

ℓ∫
0

(
EIηV

′′′′δV + EIζU
′′′′δU

)
dZ. (3.43)
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Other contributions to the system’s potential energy are not considered for now in
order to ensure generality to the formulation. These other terms, such as the gravitational
field, can be included by means of the variation of the work done by the external forces
acting on the rod by using the extended Hamilton’s principle. Using equations (3.41) and
(3.43), Hamilton’s principle can be applied leading to

t2∫
t1

δT − δV dt =
t2∫

t1

B.T.+
ℓ∫

0

(
(EAεℓ)

′ +
(
EIpθ

′2
z

)′
− µẄ

)
δW dZ

 dt

+
t2∫

t1


ℓ∫

0

(
(EAU ′εℓ)

′ +
(
EIpU

′θ′2
z

)′
− EIζU

′′′′ − µÜ
)
δU dZ

 dt

+
t2∫

t1


ℓ∫

0

(
(EAV ′εℓ)

′ +
(
EIpV

′θ′2
z

)′
− EIηV

′′′′ − µV̈
)
δV dZ

 dt

t2∫
t1


ℓ∫

0

((
EIpεℓθ

′
z

)′
+ 3EI4θ

′2
z θ

′′
z +GItθ

′′
z − Jξθ̈z

)
δθz dZ

 dt, (3.44)

where B.T. stands for “Boundary terms”. In order to properly evaluate the results of
such terms, the definition of the essential boundary conditions is necessary. For all the
investigations in this thesis, the rods are pinned at both ends and the axial displacement
is either null or imposed to the structure as a time series, with other boundary conditions
being out of the scope. This means that the variations δU , δV and δW are all null in both
Z = 0 and Z = ℓ. Torsion is not considered in further investigations, but for the sake of
the formulation presented here it is considered that the rotation angle is fixed at both
ends, making δθz = 0 at both of them. These conditions reduce the boundary terms to

B.T. =
[
EIηV

′′δV ′ + EIζU
′′δU ′

]ℓ
0
, (3.45)

which leads to the four natural boundary conditions

EIηV
′′(0) = EIηV

′′(ℓ) = EIζU
′′(0) = EIζU

′′(ℓ) = 0, (3.46)

as expected for pinned-pinned rods. The equations of motion for the free dynamics of the
flexible rod are given by the integral terms in Eq. (3.44) as

µẄ −
(
EA

(
W ′ + U ′2

2 + V ′2

2

)
+ EIpθ

′2
z

)′

= 0, (3.47)



3.2. Statically curved and planar flexible cables 85

µÜ + EIζU
′′′′ −

[
U ′
(
EA

(
W ′ + U ′2

2 + V ′2

2

)
+ EIpθ

′2
z

)]′

= 0, (3.48)

µV̈ + EIηV
′′′′ −

[
V ′
(
EA

(
W ′ + U ′2

2 + V ′2

2

)
+ EIpθ

′2
z

)]′

= 0, (3.49)

Jξθ̈z −
(
EIp

(
W ′ + U ′2

2 + V ′2

2

)
θ′

z +GItθ
′
z + EI4θ

′3
z

)′

= 0. (3.50)

Of particular interest of this thesis is the case of planar dynamics, which implies in
U = θz = 0 and the equations of motion become

µẄ − EA (W ′′ + V ′V ′′) = 0, (3.51)

µV̈ + EIV ′′′′ − EA

(
W ′′V ′ +W ′V ′′ + 3 (V ′)2

2 V ′′
)

= 0. (3.52)

The inclusion of different forcing terms is made in the specific cases of each
investigation in the further chapters of the thesis. Discussions regarding static condensation,
the effects of the static configuration and how to properly consider boundary imposed
motions are also made for each particular case.

3.2 Statically curved and planar flexible cables
For the cases where the reference configuration is not straight, some key differences

in modelling are introduced. Situations where this occurs are common in engineering
practice, being it for offshore, bridges or transmission lines applications. It is worth
pointing that, although the main focus of this thesis lies in structures on which the non-
straight configuration is caused by static forces only, the methodology can be applied to
known mean configurations when dynamic phenomena are considered, such as those caused
by the mean drag force in marine cables under the load of surrounding fluid flows or the
case of geometric imperfections. The generic reference configuration considered is presented
in Fig. 17, in which some definitions are brought. As it can be seen, a fixed Cartesian
frame is defined with Z being aligned with the direction of the local gravitational field
but pointing in the opposite direction. The distance between the supports is considered to
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be generic in both the horizontal and vertical directions, while the cable is considered to
present an arbitrary sag2. It is also noticed that only the planar case is modelled, with three-
dimensional scenarios not being investigated in this thesis for curved structures. A second
reference frame is defined, being the local one over which the dynamical displacements are
written, namely u for tangential displacements and v for transversal displacements. These
local displacements are taken as Lagrangian measures in this work, that is, dynamical
changes of directions of the local frame are not considered in the definitions of u and
v, meaning the local frame adopted is fixed on the reference configuration. This type
of approach is particularly useful for problems where the dynamics of the structure is
characterized as a perturbation around the reference configuration, being inspired in the
development made in Pesce (1997). It is also helpful to use the arclength coordinate s,
measured as the length of cable from the reference support, the left one in the present
study, in the static configuration. The use of the fixed Cartesian system is not prohibitive
but implies in some complications in the modelling since for the same coordinate there
can exist more than one point in the span of the cable.

Figure 17 – Basic model.

Source: The author.

Differently from the case of straight structures where the purely free dynamics has
been considered in the general modelling, here the gravity force is already included. This is
made since, in a great variety of applications, this force is the responsible for the statically
2 The sag is defined as the largest distance between the curve defined by the cable and the straight line

that passes through the supports.
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curved configuration to occur. For the present modelling, it is also adopted that the
bending stiffness and, consequently, the internal shear forces and bending moments, can be
neglected. This approach is particularly valid while the wave-length of the typical dynamic
response of the structure is significantly larger than the wave-length of flexural waves. This
is analogous to say that the geometrical stiffness is dominant over the flexural stiffness
for the dynamical behaviour of the structure. Differently from the straight configuration
scenario, here a Newtonian approach is followed. For that, consider the infinitesimal
element presented in Fig. 18, together with the forces acting over it on a general deformed
configuration.

Figure 18 – Forces on a generic segment of the cable considering planar motion.

Source: The author.

In the condition depicted in Fig. 18, the infinitesimal cable element is subject to a
total effective tension T (s) (see Chucheepsakul, Monprapussorn & Huang (2003)) at one
end and T+dT = T (s+ds) at the other. Notice also that the angling of those forces with the
horizontal direction is not the same, being θ(s)+γ(s) and θ+dθ+γ+dγ = θ(s+ds)+γ(s+ds)
at the different ends, where θ stands for the angle of the cable axis with the horizontal
direction in the reference configuration while the γ is used for the dynamic variation over
such reference condition. Now, the resultant of the internal forces for the cable element ds
are denoted as Fu and Fv for the u and v directions respectively. Decomposing the forces
T and T + dT it is possible to write for those directions that

Fu = T (s+ ds) cos (dθ + γ (s+ ds)) − T (s) cos (γ (s)) , (3.53)
Fv = T (s+ ds) sin (dθ + γ (s+ ds)) − T (s) sin (γ (s)) . (3.54)
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Asides those forces, the cable element is also under the action of external loads.
Here only gravitational and buoyancy effects are considered, with other forces due to
fluid-structure interaction being presented as opportune. That said, the “net weight”
proposition is used, defined as the weight per unit length minus the respective buoyancy,
and represented by γs. Using Newton’s second law the equations of motion are then

Fu − γsds sin θ = müds, (3.55)
Fv − γsds cos θ = mtv̈ds. (3.56)

Notice that two different inertial constants per unit length, m and mt, are used for
the acceleration terms. This is to let clearly stated that those are not necessarily equal
when fluid-structure interactions3 are considered. For the case of vibrations in air, it can
be simply stated that mt = m. Also, as usual in dynamical systems literature, overdots
are used to designate differentiation with respect to time. Now, for an useful form of the
equations of motion to be obtained, both Eqs. (3.55) and (3.56) are divided by ds and a
limit operation is made, with ds 7→ 0. This operation is trivial for the inertial and external
forcing terms, but rather involving in terms of algebra for the expressions of Fu and Fv.
For clearness of exposition, those are made separately, leading to

lim
ds 7→0

Fu

ds = lim
ds 7→0

T (s+ ds) cos (dθ + γ (s+ ds)) − T (s) cos (γ (s))
ds =

lim
ds 7→0

(
T (s+ ds) cos (γ (s+ ds)) − T (s) cos (γ (s))

ds

−T (s+ ds) sin (γ (s+ ds)) dθ +O(dθ2)
ds

)
=

T ′ cos γ − T (θ′ + γ′) sin γ, (3.57)

lim
ds 7→0

Fv

ds = lim
ds 7→0

T (s+ ds) sin (dθ + γ (s+ ds)) − T (s) sin (γ (s))
ds =

lim
ds 7→0

(
T (s+ ds) sin (γ (s+ ds)) − T (s) sin (γ (s))

ds

+T (s+ ds) cos (γ (s+ ds)) dθ +O(dθ2)
ds

)
=

T ′ sin γ + T (θ′ + γ′) cos γ. (3.58)

For the present model, differentiation with respect to s is denoted by primes. The
notation O(dθ2) used in the calculations means terms of order equal to or higher than
3 For structures immersed in fluids, for example water, the added mass may be relevant. In addition, the

added mass coefficient associated with the normal direction is not equal to the one associated with the
tangential direction.
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dθ2. This is not an approximation. These are used to express terms that, when divided
by ds, will still remain with at least a first-order term ds and thus are zero when the
limit ds 7→ 0 is taken. For further development, the tension is divided as T = Ts + Td,
where Ts designates the tension in the static configuration while Td stands for the variation
over such static component when the structure presents a dynamical response. With that
division and using Eqs. (3.57) and (3.58) into Eqs. (3.55) and (3.56) it is possible to write

(T ′
s + T ′

d) cos γ − (Ts + Td) (θ′ + γ′) sin γ − γs sin θ = mü, (3.59)
(T ′

s + T ′
d) sin γ + (Ts + Td) (θ′ + γ′) cos γ − γs cos θ = mtv̈. (3.60)

With a closer look in Eqs. (3.59) and (3.60), it is possible to identify the static
equilibrium equations, by letting Td = γ = 0, together with the elimination of the time
derivatives. With that, the expressions that define the reference configuration are given as

T ′
s − γs sin θ = 0, (3.61)
Tsθ

′ − γs cos θ = 0. (3.62)

Notice that, in the present form, Eqs. (3.61) and (3.62) are exactly the same as
the static configuration of an inextensible flexible cable (this correspondence can also be
seen in Pesce (1997)). The key difference between the cases of extensible or inextensible
cables is on the variables that must be solved in each case. For the inextensible cable, the
static equilibrium can be obtained by solving for Ts and θ, and with θ it is possible to
determine the reference planar shape. In turn, when an extensible cable is considered, the
constitutive relations must be established in order to write Ts and θ as functions of the
Cartesian coordinates X and Z of each point of the cable at rest. The main objective in
separating the static part from the remaining of the equations of motion is to solve it
beforehand by any means available, being then numerical or analytical. Substituting now
Eqs. (3.61) and (3.62) back into Eqs. (3.59) and (3.60) leads to

T ′
s (cos γ − 1) − Ts (θ′ + γ′) sin γ + T ′

d cos γ − Td (θ′ + γ′) sin γ = mü, (3.63)
T ′

s sin γ − Tsθ
′ + Ts (θ′ + γ′) cos γ + T ′

d sin γ + Td (θ′ + γ′) cos γ = mtv̈. (3.64)

So far, no simplifying hypotheses have being made for the model, besides those just
considering a planar dynamics, with the expressions obtained being exact. This framework
can also be easily adapted to consider average hydrodynamic interactions such as the mean
drag due to the existence of an external flow. Now, for the applications to be made, it is



90 Chapter 3. Modelling flexible members in straight or curved configurations

assumed that the material stays in the linear-elastic range regarding deformations, which
for marine structures engineering applications allows for the hypothesis of small strains.
With such hypothesis adopted, it is admissible to adopt that the total strain at any given
point of the structure can be decomposed as a sum of a static component with a dynamic
variation over it, written as ε ≈ εs + εd. Following the subscript convention adopted so
far, εs is the strain at the static reference configuration while εd stands for the developed
dynamical strain over it, function of both the displacements u and v. In order to define the
relation between εd and the defined displacements, it is useful to recall the Green strain
measure, also called quadratic strain εq, which is related to the linear strain by

1 + εd =
√

1 + 2εq. (3.65)

The Green strain is easier to be obtained from purely geometrical relations, by
simply observing the displacements of a generic infinitesimal element and evaluating the
proper computation, which by differential geometry furnishes

εq =
u′ − (v − uv′ + u′v) θ′ +

(
u′2 + v′2 + (uθ′)2 + (vθ′)2

)
2

 . (3.66)

It is worth noticing that the expressions exactly reduce to common expression in
the literature for straight structures if θ is set to zero. Also from differential geometry, it
is possible to obtain for the angle γ some trigonometric relationships, leading to

sin γ = (uθ′ + v′)
(1 + εd) , (3.67)

cos γ = (1 + u′ − vθ′)
(1 + εd) , (3.68)

γ = arcsin
(

(uθ′ + v′)
(1 + εd)

)
. (3.69)

Finally, a link must be made between the traction and the strain, which ultimately
establishes a link between the tension and the displacements of the structure. Since the
focus is to investigate structures surrounded by fluid, the effective tension concept must
be adopted, since the effective tension acting on a cross section in this case is not exactly
the same as the resultant of wall stress on the pipe due to the effects of the pressure
distribution of the outside and/or inside fluids. Details of the formulation regarding the
effective tension are not exposed here, being well detailed in the literature, for example
in Sparks (1984), which presents the same formulation as used in the present work. For
a detailed explanation involving the cross-section deformation due to Poisson effect the
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reader may refer to Chucheepsakul, Monprapussorn & Huang (2003). The effective tension
acting on the cable cross-section, disregarding the existence of internal fluid, is then

T = EAε+ peA, (3.70)

where pe is the pressure of the surrounding fluid at the depth of the cross-section. From
the geometry of the problem, the depth of a cross-section is given as hs − u sin θ − v cos θ,
with hs being the depth of such cross-section in the static reference configuration. Using ρ
to represent the external fluid’s specific mass, the external pressure is then given as

pe = ρg (hs − u sin θ − v cos θ) . (3.71)

Joining now Eqs. (3.70) and (3.71) together with the decomposition of tension and
strain leads to

Ts + Td = (EAεs + ρgAhs) + (EAεd − ρgA (u sin θ + v cos θ)) , (3.72)

which, taking off the static components that can be solved independently of the dynamic
part, leads to

Td = EAεd − ρgA (u sin θ + v cos θ) . (3.73)

In order to obtain a final form of the equations of motion, an expression is needed
for γ′, which can be obtained from the derivative of Eq. (3.69). After some algebraic
manipulations, one obtains

γ′ = 1
cos γ

(
(uθ′ + v′)
(1 + εd)

)′

= (1 + εd)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′

. (3.74)

Putting now together Eqs. (3.67), (3.74), (3.63) and (3.64), the equations of motion
become
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mü = T ′
s

(
u′ − vθ′ − εd

1 + εd

)
− Ts

(
(uθ′ + v′) θ′

(1 + εd) + (uθ′ + v′)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′)

− ρgA ((u′ − vθ′) sin θ + (v′ + uθ′) cos θ) (1 + u′ − vθ′)
(1 + εd) + EAε′

d

(1 + u′ − vθ′)
(1 + εd)

+
[(

(uθ′ + v′) θ′

(1 + εd) + (uθ′ + v′)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′)
(−EAεd + ρgAu sin θ + ρgAv cos θ)

]
,

(3.75)

mtv̈ = T ′
s

(uθ′ + v′)
(1 + εd) + Ts

(
(1 + u′ − vθ′) θ′

(1 + εd) +
(

(uθ′ + v′)
(1 + εd)

)′)

− ρgA ((u′ − vθ′) sin θ + (v′ + uθ′) cos θ) (uθ′ + v′)
(1 + εd) − Tsθ

′ + EAε′
d

(uθ′ + v′)
(1 + εd)

+
[(

(1 + u′ − vθ′) θ′

(1 + εd) +
(

(uθ′ + v′)
(1 + εd)

)′)
(EAεd − ρgAu sin θ − ρgAv cos θ)

]
. (3.76)

It is important to emphasize that all terms depending on the static configuration
can be considered as known functions in terms of the dynamical analysis. It is not actually
important if the static solution is given as a closed-form expression or the interpolation
function of a numerical solution as long as the analyst possess such configuration somehow.
For further usage, specially regarding projection procedures, it is helpful to define the
equations of motion as a vector of operators, with each component given by

Lu(u, v) = 0, (3.77)
Lv(u, v) = 0, (3.78)

for the axial and transversal directions respectively. Notice that, due the complexity of
Eqs. (3.75) and (3.76), the usage of symbolic computation is advised and it is made in
the present research. Thus, further simplifications of such equations are not explicitly
written. Instead, the polynomial order of expansion adopted for the variables of interest
is stated when necessary and the computations are made in a symbolic software such as
Mathematica®.
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4 Vertical and straight flexible rods under sup-
port excitation

This chapter brings investigations regarding the problem of vertical, straight and
flexible rods immersed in still fluid under the action of an imposed boundary motion.
Focusing on the offshore engineering application, such imposed motion is due to the
response of a floating unit under the action of sea waves. This motion leads to a temporal
variation of traction along the rod, which by consequence leads to a temporal variation of
its geometrical stiffness, resulting in parametric excitation.

Along the chapter, different mathematical approaches and solutions are presented
for the problem by means of analytical solutions of the PDEs, reduced-order modelling
with its numerical integration or an analytical solution of such modelling. The obtained
results are compared amongst each other and to a numerical reference obtained via the
finite element method. This allows for an investigation of the advantages and drawbacks
of each different approach and how they can be strategically combined to give support on
tasks of engineering design.

The results of this chapter are published in Vernizzi, Franzini & Lenci (2019) and
Vernizzi, Lenci & Franzini (2020), together with a presentation in the “Fourth International
Conference on Recent Advances in Nonlinear Mechanics” (RANM2019).

4.1 Discussions regarding the mathematical model
A representation of the problem is illustrated in Fig. 19. The rod’s mass per unit

length is given by µ, the axial and bending stiffness products are given respectively by
EA and EI, the length of the structure is denoted by ℓ and its immersed weight per
unit length is given by γ. It is also useful to define the static pre-tension at the bottom
section Tb, the external diameter D, a structural damping constant per unit length c for
the transversal direction and a structural damping constant per unit length ca on the axial
direction. Finally, considering the static configuration, the tension along the structure’s
length is simply given by

T (z) = Tb + γZ. (4.1)

Recalling that very long elements are of common practice in the offshore engineering,
Eq. (4.1) can impose key design limitations to the structure. It is desired that the element
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Figure 19 – Basic sketch for the problem in study.

Source: The author.

does not undergo compression along its length, that is, to not go slack. For such objective,
Tb must be positive1 with a significant margin considering that the dynamical action will
generate a temporal fluctuation of this value. However, due to the effect of self weight,
the necessary static tension applied at the top, Tt = T (ℓ) = Tb + γℓ, may be impractical
depending on the internal stresses that it may cause, limiting the range of usable lengths,
materials and conception of the structural element.

Considering the planar vibrations scenario, the equations of motion for the problem
can be obtained from Eqs. (3.51) and (3.52) by adding terms to model the fluid-structure
interaction and the structural damping. Defining ρ as the specific mass of the surrounding
fluid, CD the mean drag coefficient for the rod’s cross section and µa the potential added
mass per unit length in the direction transversal to the structure’s axis, the equations of
motion, with the use of the Morison model for the fluid-structure interaction, become

1 Negative values are uncommon in the offshore engineering but may be considered provided that the
flexural stiffness is able to avoid local bucking.
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µẄ + caẆ + γ − EA (W ′′ + V ′V ′′) = 0, (4.2)

(µ+µa) V̈ +cV̇ + 1
2ρDCD

∣∣∣V̇ ∣∣∣ V̇ −EA
(
W ′′V ′+W ′V ′′+ 3

2 (V ′)2
V ′′
)

+EIV ′′′′ =0.

(4.3)

Notice that the equations of motion are not yet accounting for the solution of
the static reference. This can be seen by the presence of the time-independent term γ in
Eq. (4.2). Let then the axial displacement be divided into static (Ws) and dynamic (Wd)
components as W = Ws +Wd. This division is not needed for the transversal displacement
since it is trivial to notice its static component is null due to the absence of any time-
independent terms in Eq. (4.3). Eliminating the terms dependent of V or Wd in Eq. (4.2)
one retains

γ = EAW ′′
s , (4.4)

which leads to

Ws = γZ2

2EA + C1Z + C2, (4.5)

with C1 and C2 being constants to be defined by means of the boundary conditions. From
the condition of fixed boundary at Z = 0, it is directly obtained that C2 = 0. The second
condition is that at the top of the structure, Z = ℓ, the tension must achieve the imposed
value Tt. Since for the static configuration this tension is simply given by

T (Z) = EAW ′
s, (4.6)

then it is necessary that

T (ℓ) = γℓ+ C1 = Tt = Tb + γℓ ⇒ C1 = Tb. (4.7)

Returning the obtained results into Eqs. (4.2) and (4.3) leads to

µẄd + caẆd − EA (W ′′
d + V ′V ′′) = 0, (4.8)
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(µ+ µa) V̈ + cV̇ + 1
2ρDCD

∣∣∣V̇ ∣∣∣ V̇ + EIV ′′′′ − γV ′ − (γZ + Tb)V ′′

− EA
(
W ′′

d V
′ +W ′

dV
′′ + 3

2 (V ′)2
V ′′
)

= 0. (4.9)

Notice that new linear terms appeared on the transversal equation of motion (Eq.
(4.9)). Those terms furnish the geometric stiffness provided by the tension along the rod,
which is also obtained in the classical literature on the subject from the term (TV ′)′. This
appearance deserves special attention, showing a modelling detail that may go overlooked
if not properly addressed. The fact that the tension contributes to the appearance of
linear terms in Eq. (4.9) ensures that it is important for some very basic properties for
the structure’s dynamics, like the natural frequencies and modes of vibration. However,
the unsuspecting modeller may look at Eqs. (4.2) and (4.3) and perform an equivocated
linearization at that step of modelling. Such linearization would eliminate the appearance
of the contribution of the tension on the linear dynamics in the transversal direction since
those terms originate from the apparently purely nonlinear terms W ′′V ′ and W ′V ′′ from
Eq. (4.3).

Moving on, different approaches may now be taken to find a solution for Eqs. (4.8)
and (4.9). Asides high hierarchy solutions such as those obtained by the finite element
approach, it is possible to either perform an order reducing scheme to the equations
of motion or directly tackle them as partial differential equations. Independently of the
adopted strategy, it is possible to choose between dealing with both equations or to perform
a reasonable static condensation procedure, eliminating one of them. In the present case,
this can be made by disregarding the axial inertial term with the argument that this term
is of small importance for the dynamical behaviour of the structure. Such hypothesis is
reasonable, specially considering pinned-pinned rods where a mainly transversal response
is expected, such as the present problem.

The static condensation herein presented is adapted from Mazzilli et al. (2008),
consisting of writing the axial displacement as a function of the transversal one. Taking
µẄd = caẆd = 0 and then integrating Eq. (4.8) leads to

W ′
d + 1

2 (V ′)2 = εd,0, (4.10)

where εd,0 is a spacial integration constant, however function of time. The nomenclature
for this constant is specifically chosen as presented since, by observing Eq. (4.10), it is
the strain occurring on the structural axis due to the displacements Wd and V . In order
to obtain the value of this constant, an averaging procedure is made by integrating Eq.
(4.10) in the domain Z ∈ [0, ℓ], leading to
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Wd|ℓ0 + 1
2

ℓ∫
0

(V ′)2 dZ = ℓεd,0 ⇒ εd,0 = Wℓ

ℓ
+ 1

2ℓ

ℓ∫
0

(V ′)2 dZ. (4.11)

The term Wℓ in the present case stands for the displacement imposed at the top
boundary of the structure. Using now Eqs. (4.10) and (4.11), the dependence on Wd in
Eq. (4.3) can be dropped, leading to the condensed form

(µ+ µa) V̈ + cV̇ + EIV ′′′′ − γV ′ − γZV ′′ − TbV
′′ − EA

ℓ
WℓV

′′

− EA

2ℓ V
′′

L∫
0

(V ′)2 dZ = −1
2ρDCD

∣∣∣V̇ ∣∣∣ V̇ . (4.12)

The static condensation procedure lets the dependence of the linear stiffness of the
structure on the top motion explicitly written in the term EAWℓV

′′/ℓ. This outcome is
one advantage of the static condensation procedure over the option of tackling the original
system of PDEs. In the original equations of motion, the top motion is merely a boundary
condition, with its effects over the transversal dynamics not being explicitly shown by the
equations. In turn, any effect that may be caused by the coupling of axial and transversal
dynamics is lost from the moment where the condensation hypothesis was stated. This
closes the modelling aspects regarding the problem at hand, with the subsequent sections
tackling the obtaining of a solution for the rod dynamics.

4.2 Reduced-order modelling
The first option herein exposed for investigating the problem at hand is the use of

reduced-order models (ROMs). This approach allows to simplify the mathematical work to
that of a system of ordinary differential equations (ODEs), with a number of DOFs defined
during the reduction process. In this thesis, the chosen method for obtaining ROMs is
the Galerkin projection, which is of classical and recurrent use in structural mechanics
and have the advantage of giving the minimum possible error within the chosen set of
projection functions. For the purpose of the analysis using ROMs, the statically condensed
model given by Eq. (4.12) is considered.

4.2.1 1-DOF reduced-order models

The first approach is to define ROMs with a single DOF. This is made because this
is the simplest possible model for the transversal vibrations of a flexible rod. It is expected
that the simplest model is also the one to be more suitable for analytical approaches to
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be applied and also to have the best computational performance in simulations. Notice
that, if the non-condensed model given by Eqs. (4.8) and (4.9) was used, the minimal
model would have two DOFs, being one for the transversal direction and one for the axial
direction. Now, it is assumed that the transversal displacement can be written as

V (Z, t) = v (t)ψ (Z) . (4.13)

The main concern regarding this assumption is the choice of the projection function
ψ. From a mathematically rigorous point of view, this function must fulfil the so-called
essential boundary conditions, which in this case are ψ(0) = ψ(ℓ) = 0. This, however, does
not guarantee the quality of the obtained results, which is dependent on the shape of
the adopted projection function. The question that now arises is how to define suitable
projection functions to ensure the desired quality of the results. Two paths are thus
explored in this research. The first one considers the use of the exact modes of vibration of
the structure under investigation. The ROM conceived this way is herein called ROM(i).
For a flexible rod under the action of its own weight the tensile force along its length varies,
which such variation influencing on the mode shape. For this case, the mode of vibration
is given in terms of “Bessel-Like” functions2, obtained in Mazzilli, Lenci & Demeio (2014),
whose expression simplified to the linear mode case is

ψb = 4

√√√√ Tb + EI (mπ/ℓ)2

Tb + EI (mπ/ℓ)2 + γZ
sin

mπ
√
Tb + EI (mπ/ℓ)2 + γZ −

√
Tb + EI (mπ/ℓ)2√

Tb + EI (mπ/ℓ)2 + γℓ−
√
Tb + EI (mπ/ℓ)2

 ,
(4.14)

where m is the number of the vibration mode to be considered in the analysis. Notice
that in the condition γ 7→ 0 the modal function ψb reduces to a sine function, which is
the mode of vibration of flexible rods under constant tension. Due to the mathematical
expression of function ψb, it is not possible to furnish closed-form expressions for the
results of the integrals that appear when the Galerkin scheme is applied to the model using
such functions. Thus, the evaluation of the constants of the ROM need to be numerically
performed. Applying Eq. (4.13) on (4.12) and using the Galerkin projection, the resulting
model is written as

α1v̈ + α2v̇ + α3v + α4Wℓv + α5v
3 + α6v̇ |v̇| = 0, (4.15)

with the definition of the parameters αi given in Tab. 1
2 The name “Bessel-Like” comes form the fact that the final expression is obtained via some approximation

approaches used in particular conditions of the Bessel equation whereas the exact solution would be
the Bessel functions themselves.
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Table 1 – Parameters for the ROM of Eq. (4.15).

Parameter Expression

α1 (µ+ µa)
ℓ∫

0

ψbψb dZ

α2 c

ℓ∫
0

ψbψb dZ

α3

ℓ∫
0

(EIψ′′′′
b ψb − γψ′

bψb − γZψ′′
bψb − Tbψ

′′
bψb) dZ

α4 −EA

ℓ

ℓ∫
0

ψ′′
bψb dZ

α5 −EA

2ℓ

ℓ∫
0

ψ′
bψ

′
b dZ

∫ ℓ

0
ψ′′

bψb dZ

α6
1
2ρDCD

ℓ∫
0

ψ2
b |ψb| dZ

From Eq. (4.15), the natural frequency of this ROM is simply given by ωb =
√
α3/α1.

Consider now a dimensionless displacement r = v/D and a dimensionless time τ = ωbt. In
addition, the top motion is taken as a monochromatic oscillation Wℓ = Dδ cos (nτ), with
n being the ratio between the top-motion frequency and the natural frequency ωb, while δ
is the dimensionless amplitude of the top motion. With those definitions, the equation of
motion for the ROM in dimensionless form reads

d2r

dτ 2 + β1
dr
dτ + (1 + β2δ cos (nτ)) r + β3r

3 + β4

∣∣∣∣∣drdτ

∣∣∣∣∣ dr
dτ = 0, (4.16)

with the parameters βi being given in Tab. 2. Notice that the number of independent
parameters is actually smaller than the number of parameters present in Eq. (4.15).

Table 2 – Parameters for the dimensionless ROM of Eq. (4.16).

Parameter Expression
β1

α2
α1ωb

β2
Dα4
α1ω

2
b

β3
D2α5
α1ω

2
b

β4
Dα6
α1

It is important to highlight that Eqs. (4.15) and (4.16) are independent of the
shape function adopted, with the difference being only on the values that the coefficients
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will assume. With that in mind, lets consider now trigonometric modes as shape functions,
that is,

ψs = sin
(
mπZ

ℓ

)
. (4.17)

The suggestion of using trigonometric functions is due to the fact that this type
of function is the actual mode of vibration of flexible rods under constant tension and
also the fact that such functions are easier for algebraic work, allowing the advantage of
obtaining a closed-form for the Galerkin scheme integrals. For the sake of clearness of
reading, the notation is changed for the ROM based on one trigonometric shape function,
from now on called ROM(ii) in this chapter, with its governing equation reading

a1v̈ + a2v̇ + a3v + a4Wℓv + a5v
3 + a6v̇ |v̇| = 0. (4.18)

Using now the same dimensionless variables as for ROM(i), keeping in mind that
for this case the natural frequency is given by ωs =

√
a3/a1, leads to

d2r

dτ 2 + b1
dr
dτ + (1 + b2δ cos (nτ)) r + b3r

3 + b4

∣∣∣∣∣drdτ

∣∣∣∣∣ dr
dτ = 0. (4.19)

For ROM(ii), the linearized natural frequency is ωs =
√
a3/a1 and its associated

dimensionless time is given by τ = ωst. The parameters ai and bi are presented in Tab. 3.

4.2.2 3-DOF reduced-order model

Now, since the modes of vibration of a flexible rod with varying tension are not
trigonometric in shape, it is expected that the representation of the structural response
by a trigonometric function may not be good enough. However, the use of closed-form
expressions for the parameters of the ROM is attractive, leading to the inspiration of
conceiving a ROM with trigonometric functions as projection basis and that, at the same
time, can represent the dynamic of the structure with a good quality. With that goal, and
inspired in the analysis made in Franzini & Mazzilli (2016), the third ROM, now called
ROM(iii), is obtained using a combination of three trigonometric functions as projection
basis. The form of the solution is thus assumed as

V (Z, t) = v1 (t)ψ1 (Z) + v2 (t)ψ2 (Z) + v3 (t)ψ3 (Z) , (4.20)

with the projection basis given by
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Table 3 – Parameters for ROM(ii).

Parameter Expression

a1 (µ+ µa) ℓ2
a2

cℓ

2
a3 EI

ℓ

2

(
mπ

ℓ

)4
+
(
mπ

ℓ

)2
(
γℓ2

4 + Tbℓ

2

)
a4

EA

2

(
mπ

ℓ

)2

a5
EAℓ

8

(
mπ

ℓ

)4

a6
2

3πρDℓCD

b1
a2
a1ωs

b2
Da4
a1ω

2
s

b3
D2a5
a1ω

2
s

b4
Da6

a1

ψ1 = sin
(
iπZ

ℓ

)
, (4.21)

ψ2 = sin
(
jπZ

ℓ

)
, (4.22)

ψ3 = sin
(
kπZ

ℓ

)
. (4.23)

The constants i, j and k are merely indexes, taken as integer numbers accordingly
to the desired modal representation. An example of strategy is to adopt j as the number
of the mode under investigation, while i and k are assumed as j − 1 and j + 1 respectively.
Applying the Galerkin projection, the equations of motion for ROM(iii) are

a1,1v̈1 + a1,2v̇1 + a1,3v1 + a1,4Wℓv1 + a1,5v2 + a1,6v3

+a1,7v
3
1 + a1,8v1v

2
2 + a1,9v1v

2
3 +MR1 = 0, (4.24)

a2,1v̈2 + a2,2v̇2 + a2,3v2 + a2,4Wℓv2 + a2,5v1 + a2,6v3

+a2,7v
3
2 + a2,8v2v

2
1 + a2,9v2v

2
3 +MR2 = 0, (4.25)
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a3,1v̈3 + a3,2v̇3 + a3,3v3 + a3,4Wℓv3 + a3,5v1 + a3,6v2

+a3,7v
3
3 + a3,8v3v

2
1 + a3,9v3v

2
2 +MR3 = 0, (4.26)

The terms MRi, i = 1, 2, 3, are the resulting components of the equations that
arise from the Morison’s drag force term after the Galerkin projection. Those terms cannot
be evaluated beforehand since now a sum of different components appears inside the
absolute value function. This leads to the necessity of evaluating this term in each step of
simulation in a numeric scheme, and a performance loss can be expected from such needed
operations. Again, the dimensionless displacements are defined as ri = vi/D, while the
dimensionless time is defined accordingly to the natural frequency of the chosen mode to
be investigated, ωt. Note that, in order to obtain this frequency, it is necessary to linearize
the system given by Eqs. (4.27) to (4.29) and solve the resulting eigenvalue problem. With
the use of the dimensionless variables the equations of motion for ROM(iii) become

r̈1 + b1,1ṙ1 +
(
b1,2 + b1,3δ cos (nπ)

)
r1 + b1,4r2 + b1,5r3

+b1,6r
3
1 + b1,7r1r

2
2 + b1,8r1r

2
3 +MR1 = 0, (4.27)

r̈2 + b2,1ṙ2 +
(
b2,2 + b2,3δ cos (nπ)

)
r2 + b2,4r1 + b2,5r3

+b2,6r
3
2 + b2,7r2r

2
1 + b2,8r2r

2
3 +MR2 = 0, (4.28)

r̈3 + b3,1ṙ3 +
(
b3,2 + b3,3δ cos (nπ)

)
r3 + b3,4r1 + b3,5r2

+b3,6r
3
3 + b3,7r3r

2
1 + b3,8r3r

2
2 +MR3 = 0. (4.29)

The parameters of Eqs. (4.27) to (4.29) are presented in table 4. The nonlinear
damping terms MRx can be put in the general form

MRx = ρD2CD

2ax,1

ℓ∫
0

ψx

∣∣∣ṙiψi + ṙjψj + ṙkψk

∣∣∣ (ṙiψi + ṙjψj + ṙkψk

)
dZ. (4.30)

Regarding this 3-DOF ROM, it is possible to find in the literature some approxi-
mated procedures to compute the natural frequency of the involved modes. In this work,
it is adopted that the linearized natural frequencies estimated by the 3-DOF ROM are the
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Table 4 – Parameters for 3-dof ROM.

Term Expression Term Expression
a1,1 (µ+ µa) ℓ/2 a1,2 cℓ/2
a2,1 (µ+ µa) ℓ/2 a2,2 cℓ/2
a3,1 (µ+ µa) ℓ/2 a3,2 cℓ/2

a1,3
EIℓ

2

(
iπ

ℓ

)4
+
(
iπ

ℓ

)2 (γℓ2

4 + Tbℓ

2

)
a1,4

EA

2

(
iπ

ℓ

)2

a2,3
EIℓ

2

(
jπ

ℓ

)4
+
(
jπ

ℓ

)2 (γℓ2

4 + Tbℓ

2

)
a2,4

EA

2

(
jπ

ℓ

)2

a3,3
EIℓ

2

(
kπ

ℓ

)4

+
(
kπ

ℓ

)2 (
γℓ2

4 + Tbℓ

2

)
a3,4

EA

2

(
kπ

ℓ

)2

a1,5 γ (iπ)2
(

2 cos (iπ) cos (jπ) − 2
(i2 − j2)2 π2

)
ij a1,6 γ (iπ)2

(
2 cos (iπ) cos (kπ) − 2

(i2 − k2)2 π2

)
ik

a2,5 a1,5

(
j

i

)2
a2,6 γ (jπ)2

(
2 cos (jπ) cos (kπ) − 2

(j2 − k2)2 π2

)
jk

a3,5 a1,6

(
k

i

)2

a3,6 a2,6

(
k

j

)

a1,7
EAℓ

8

(
iπ

ℓ

)4
a1,8

EAℓ

8

(
iπ

ℓ

)2 (jπ
ℓ

)2

a2,7
EAℓ

8

(
jπ

ℓ

)4
a2,8

EAℓ

8

(
iπ

ℓ

)2 (jπ
ℓ

)2

a3,7
EAℓ

8

(
kπ

ℓ

)4

a3,8
EAℓ

8

(
iπ

ℓ

)2 (kπ
ℓ

)2

a1,9
EAℓ

8

(
iπ

ℓ

)2 (kπ
ℓ

)2

b1,1 a1,2/
(
a1,1ω2

)
a2,9

EAℓ

8

(
jπ

ℓ

)2 (kπ
ℓ
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natural frequencies of the dynamical system given by Eqs. (4.24) to (4.26), which gives the
exact frequencies of the obtained model. However, it is possible to approximate the natural
frequencies with simpler computations. For that, the values of the natural frequencies are
taken as the natural frequency of the oscillator obtained by doing a Galerkin projection
with each of the shape functions independently as 1-DOF-ROMs. Such approximation fur-
nishes the results presented in Franzini & Mazzilli (2016). Notice that the latter approach
will give better results when the modes of vibration are closer to trigonometric functions.

4.2.3 Analytical solutions for the 1-DOF ROM

One first possible way to study the problem at hand is by means of analytical
results. For the particular case of 1-DOF ROMs (ROM (i) and ROM (ii), given respectively
by Eqs. (4.16) and (4.19)), where the spatial integral of the Galerkin projection of the
Morison term can be analytically solved, solutions using the method of multiple scales
can be found. The idea for the solution is to expand the Morison’s drag force into a
Fourier series, which is a strategy presented in Nayfeh & Mook (1979). To use the method,
a bookkeeping parameter ϵ is created in a way that the relations β1 = ζ1ϵ, β2δ = ζ2ϵ,
β3 = ζ3ϵ and β4 = ζ4ϵ hold. The solution is sought using two time scales, being them
τ0 = τ and τ1 = τϵ, leading to the form

r = r0 (τ0, τ1) + ϵr1 (τ0, τ1) , (4.31)

which turns the equation of motion into

d2r

dτ 2 + ζ1ϵ
dr
dτ + (1 + ζ2ϵ cos (nτ)) r + ζ3ϵr

3 + ζ4ϵ

∣∣∣∣∣drdτ

∣∣∣∣∣ dr
dτ = 0. (4.32)

The following operators are needed in the expansion procedure, and correct up to
order ϵ, they read

d
dτ = ∂

∂τ0
+ ϵ

∂

∂τ1
, (4.33)

d2

dτ 2 = ∂2

∂τ 2
0

+ 2ϵ ∂2

∂τ0∂τ1
. (4.34)

Applying the operators defined by Eqs. (4.33) and (4.34) in Eq. (4.32) and collecting
terms with equal powers of ϵ, it is obtained that
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∂2r0
∂τ 2

0
+ r0 = 0, (4.35)

∂2r1
∂τ 2

0
+ r1 = −2 ∂2r0

∂τ0∂τ1
− ζ1

∂r0
∂τ0

− ζ2 cos (nτ) r0 − ζ3r
3
0 − ζ4

∣∣∣∣∣∂r0
∂τ0

∣∣∣∣∣ ∂r0
∂τ0

. (4.36)

The solution for Eq. (4.35) is written as

r0 = B1 (τ1) eiτ0 + c.c., (4.37)

with i being the imaginary constant within this context and “c.c.” means the complex
conjugate of the terms before its appearance. Together with the substituting of Eq. (4.37)
into Eq. (4.36), some mathematical work is made with the quadratic term. Following
Nayfeh & Mook (1979), a Fourier series is used to write the quadratic damping terms,
allowing it to be represented as a sum of harmonic components, making it possible to
evaluate which contribution of the quadratic term is relevant for eliminating the secular
terms arising in Eq. (4.36). Regarding the effects of the parametric excitation near the
principal instability region in the Strutt’s diagram, the parameter n is defined as

n = 2 + ϵσ, (4.38)

with σ being a detuning parameter. With those assumptions, Eq. (4.36) turns into

∂2r1
∂τ 2

0
+r1 =eiτ0

(
−2idB1

dτ1
−iζ1B1−3ζ3B

2
1B

∗
1 − ζ2B

∗
1

2 eiστ1 −f1

(
r0,

dr0
dτ0

))
+c.c.+N.S.T. .

(4.39)

The function f1 stands for the unitary dimensionless frequency term arising from
the Fourier expansion of the Morison damping, while N.S.T. stands for the non-secular
terms of Eq. (4.39). Putting the complex function B1 in polar form, B1 = R1e

iθ1 , with
R1 > 03 and θ1 being real valued functions, the solvability condition is given by the
complex valued equation

−2idR1
dτ1

+ 2R1
dθ1
dτ1

− iζ1R1 − 3ζ3R
3
1 − ζ2R1

2 e−2iθ1+iστ1 −
f1

(
r0,

dr0
dτ0

)
eiθ1

= 0. (4.40)

3 Notice that assuming the amplitude of the polar form to be positive does not limit in any sense the
possible solutions to be obtained since any opposite sign results can still be obtained by a simple
rotation of π in θ1.
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Using the polar form in Eq. (4.37), it results that, at order ϵ0, r0 = 2R1 cos (τ0 + θ1).
The term of order ϵ1 must not be included since the Fourier term under evaluation is
already of order ϵ1, so taking a term of order ϵ1 in r0 would result in Fourier terms of
order ϵ3 for the quadratic damping. With that, one arrives at

f1
eiθ1

= ζ4

2π

∫ 2π

0
(−2R1 sin (τ0 + θ1)) |−2R1 sin (τ0 + θ1)| e−i(τ0+θ1)dτ0 = 16iR2

1ζ4

3π .

(4.41)

In order to obtain the solvability conditions in terms of R1 and θ1, Eq. (4.40) must
be separated into its real and imaginary parts, leading to the system of equations

2R1
dθ1
dτ1

− 3ζ3R
3
1 − ζ2R1

2 cos (−2θ1 + στ1) = 0, (4.42)

− 2dR1
dτ1

− ζ1R1 − 16R2
1ζ4

3π − ζ2R1
2 sin (−2θ1 + στ1) = 0. (4.43)

Let now the following variable change be defined as

ϕ = στ1 − 2θ1 ⇒ 2dθ1
dτ1

= σ − dϕ
dτ1

. (4.44)

Substituting now Eq. (4.44) in Eqs. (4.42) and (4.43) leads to

R1σ −R1
dϕ
dτ1

− 3ζ3R
3
1 − ζ2R1

2 cos (ϕ) = 0, (4.45)

− 2dR1
dτ1

− ζ1R1 − 16R2
1ζ4

3π − ζ2R1
2 sin (ϕ) = 0. (4.46)

The system of Eqs. (4.45) and (4.46) allows for the study of the stability of the
steady-state solutions using the Lyapunov’s indirect method. In order to obtain non-trivial
steady-state solutions for the motion amplitude, the derivatives present in Eqs. (4.45)
and (4.46) are taken as zero (steady-state condition). The trigonometric terms in those
equations are isolated, with the resulting equations being then squared and added up,
leading to

(
2σ − 6ζ3R

2
1

)2
+
(

2ζ1 + 32
3πR1ζ4

)2
= ζ2

2 . (4.47)

Notice that Eq. (4.47) is a bi-quadratic polynomial if one of the damping parameters
is considered null. If a solution with both damping contributions is desired, a numerical



4.3. Analytical solution of the PDEs of motion 107

search for the roots of the polynomial expression is needed. In turn, considering that the
hydrodynamical damping is significantly larger than the structural damping for non-trivial
solutions4, it is possible to obtain a closed-form expression for the steady-state amplitude,
written as

R2
1 =

−1024ζ2
4

9π2 + 24ζ3σ ±
√(1024ζ2

4
9π2 − 24ζ3σ

)2
− 144ζ2

3 (4σ2 − ζ2
2 )

72ζ2
3

. (4.48)

Three scenarios can arise from such solution. The first is when no real solutions
exist for R1 from Eq. (4.48). In such case, the only possible solution is the trivial one
R1 = 0 which identically solves Eqs. (4.45) and (4.46). The second scenario is when only
one real and non-zero solution exists for R1. In this case, the trivial solution is unstable
while the non-zero solution is stable. This can be concluded because, since only two
solutions exist, then one of them must be stable and the other unstable. Recall now that
the proposed solution define closed orbits in the phase space and that the problem does
not possess unbounded solutions. If in this case the non-zero value of R1 would be the
unstable solution, then, using the Poincaré-Bendixon any flow inside the circle defined by
R1 would converge to the equilibrium point (0, 0), while any flow outside of such circle
would go to infinity. Since the solution is bounded, it is proofed by contradiction that the
non-zero value of R1 is the stable solution. Finally, the third scenario occurs when two
non-zero positive solutions arise for R1. In this last scenario, the trivial and the largest of
the possible R1 solutions are stable, while the intermediary value is unstable. The proof of
the latter case is analogous as the one posed for the second case.

4.3 Analytical solution of the PDEs of motion
Another possibility to analyse the problem is by a direct approach over the PDEs

(4.8) and (4.9). For this case, it is particularly useful to render the equations dimensionless
before proceeding with the analysis. Let ω0 be the linear natural frequency of free vibrations
of a transversal mode of interest. Let now the dimensionless variables for displacements,
time, and the position along the structure be defined respectively as V = vD, Wd = wD,
τ = ω0t and Z = ℓξ. Then, the equations of motion can be rewritten as

ẅ + a1ẇ − a2w
′′ − a3v

′v′′ = 0, (4.49)
v̈ + b1v̇ + b2v

′′′′ − (b3ξ + b4) v′′ − b3v
′ − b5 (w′v′)′ − b6 (v′)2

v′′ = −b7 |v̇| v̇. (4.50)

4 This is particularly valid for the problem of parametric excitation, since the linear structural damping
is unable to ensure bounded responses, while the nonlinear damping is able to generate an energy
output that matches the energy input from the excitation.
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For the sake of simplicity and to keep the equations in a lighter format, the notations
for derivatives with respect to time and position are extended to the dimensionless variables.
The dimensionless parameters present in Eqs. (4.49) and (4.50) are shown in Table 5. For the
problem at hand, the essential boundary conditions are v (0, τ) = v (1, τ) = w (0, τ) = 0
and w (1, τ) = δ cos (nτ), where δ = Wℓ/D is the dimensionless amplitude of the top
motion, and n is the ratio between the imposed top motion frequency and the chosen
natural frequency ω0. Completing the set of boundary conditions, the natural boundary
conditions are v′′ (0, τ) = v′′ (1, τ) = 0.

Table 5 – Dimensionless parameters of Eqs. (4.49) and (4.50)

Parameter Definition Parameter Definition
a1

ca

µω0
b3

γ

(µ+ µa) ℓω2
0

a2
EA

µℓ2ω2
0

b4
Tb

(µ+ µa) ℓ2ω2
0

a3
EAD

µℓ3ω2
0

b5
EAD

(µ+ µa) ℓ3ω2
0

b1
c

(µ+ µa)ω0
b6

3EAD2

2 (µ+ µa) ℓ4ω2
0

b2
EI

(µ+ µa) ℓ4ω2
0

b7
ρD2CD

2 (µ+ µa)

A solution is then sought with MMTS for Eqs. (4.49) and (4.50). For that end, a
scaling is adopted for the dimensionless parameters by means of a bookkeeping parameter
ϵ, namely, w 7→ ϵw, v 7→ ϵv, a1 7→ ϵa1, b1 7→ ϵ2b1, b7 7→ ϵb7 and δ 7→ ϵ2δ. Within the
time domain, three different scales are adopted, resulting in τ0 = τ , τ1 = ϵτ and τ2 = ϵ2τ .
Some observations are important regarding the adopted scaling. Regarding the transversal
motion alone, Eq. (4.50), all the terms are scaled in a way that the first appearance of
each nonlinear term and the linear damping occurs at the same order in ϵ. This is made in
order to not implicitly define any of the effects as being dominant upon the others, leaving
that relationship to be established naturally by the solvability conditions. In addition,
notice that the linear damping parameters a1 and b1 are not scaled in the same manner. In
this case, the scaling of a1 is merely a mathematical choice to facilitate the algebraic work
during the solution. This happens because the term a1, in the final results, is responsible
for eliminating the presence of homogeneous solutions in the axial direction and the order
in ϵ at which this occurs does not change the final results, with the chosen scaling ensuring
this term appears as early as possible. This strategy, however, could not be used in the case
in which there are any resonances, internal or external, with the axial modes of vibration.
Proceeding with the analysis, the time differentiations over a general function f become
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ḟ = D0f + ϵD1f + ϵ2D2f, (4.51)
f̈ = D2

0f + 2ϵD0D1f + ϵ2
(
D2

1f + 2D0D2f
)
. (4.52)

The new operators D0, D1 and D2 are simply short notations for the partial
derivatives with respect to τ0, τ1 and τ2 respectively. Seeking solutions of the form
w = w0 + ϵw1 + ϵ2w2 and v = v0 + ϵv1 + ϵ2v2, applying the scaling definitions and using
Eqs. (4.51) and (4.52) on (4.49) and (4.50), collecting terms of equal powers of ϵ, leads to
three linear problems on different orders. For order ϵ0 it arises that

D2
0w0 − a2w

′′
0 = 0, (4.53)

D2
0v0 + b2v

′′′′
0 − (b3ξ + b4) v′′

0 − b3v
′
0 = 0. (4.54)

The boundary conditions must also be divided in orders accordingly to the adopted
scaling. For order ϵ0 it results in v0 (0, τ) = v0 (1, τ) = v′′

0 (0, τ) = v′′
0 (1, τ) = w0 (0, τ) =

w0 (1, τ) = 0. Following, the problem of order ϵ1 reads

ẅ1 − a2w
′′
1 = −2D0D1w0 − a1D0w0 + a3v

′
0v

′′
0 , (4.55)

v̈1 + b2v
′′′′
1 − (b3ξ + b4) v′′

1 − b3v
′
1 = −2D0D1v0 + b5 (w′

0v
′
0)

′
, (4.56)

with the boundary conditions given by v1 (0, τ) = v1 (1, τ) = v′′
1 (0, τ) = v′′

1 (1, τ) =
w1 (0, τ) = 0 and w1 (1, τ) = δ cos (nτ). Lastly, the problem of order ϵ2 is given by

ẅ2 − a2w
′′
2 = −2D0D1w1 −D2

1w0 − 2D0D2w0 − a1D0w1

− a1D1w0 + a3v
′
0v

′′
1 + a3v

′
1v

′′
0 , (4.57)

v̈2 + b2v
′′′′
2 − (b3ξ + b4) v′′

2 − b3v
′
2 = −2D0D1v1 −D2

1v0 − 2D0D2v0 − b1D0v0

+ b5 (w′
1v

′
0)

′ + b5 (w′
0v

′
1)

′ + b6 (v′
0)

2
v′′

0 − b7 |D0v0|D0v0, (4.58)

with the associated boundary conditions being v2 (0, τ) = v2 (1, τ) = v′′
2 (0, τ) = v′′

2 (1, τ) =
w2 (0, τ) = w2 (1, τ) = 0.

Notice that Eqs. (4.53) to (4.58) present the same operator structure on the left-
hand side of equality, which should be noticed it is a Sturm-Liouville operator in both
axial and transversal directions. An important feature is that, for each order, the problem
is that of a linear structure under a forcing term that is dependent on the previous order’s
solution, while the first problem is that of free vibrations of the structure, whose solution is
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widely known. Starting the solution process, notice that there is no excitation on the axial
direction of order ϵ0, which allows to drop the solution of this order in the axial direction as
made in Kloda, Lenci & Warminski (2018). Regarding the transversal problem, although
there are no direct excitation mechanisms, it is expected that responses on this order will
end up being generated due to the existence of the parametric excitation. At order ϵ0 the
problem is that of the linear free vibrations of a flexible rod under the action of a varying
tension along the structural length. In this research it shall be considered the case where a
single mode is mainly excited, so at this point multi-modal responses are being ruled out.
Let ψ0 be the modal shape associated with the problem in Eq. (4.54). Such shape can be
be given in analytical terms (see Mazzilli, Lenci & Demeio (2014) and Appendix B) as
“Bessel-like” functions, or it can be obtained by approximated or numerical means. The
fundamental point is that the shape can be obtained somehow, with the path chosen to
obtain it not being important for the present analysis. The natural frequency associated
with ψ0 is herein named ω0, being equal to 1 in dimensionless variables. This leads to the
solution of order ϵ0 to be given as

w0 = 0, (4.59)
v0 = ψ0

(
B0e

iτ0 +B0e
−iτ0

)
= ψ0B0e

iτ0 + c.c. . (4.60)

Now, Eqs. (4.59) and (4.60) are applied to the order ϵ1 problem. In the axial
direction, the problem becomes

D2
0w1 − a2w

′′
1 = a3ψ

′
0ψ

′′
0

(
B2

0e
2iτ0 +B0B0

)
+ c.c. , (4.61)

which represents a linear structure under an external forcing consisting of a time-wise
constant term and an oscillatory term with frequency 2ω0. Asides that, the boundary
condition w1 (1, τ) = δ cos (nτ) generates a component of frequency nω0 on the system
response. Since the focus is to investigate the behaviour of the structure around the main
parametric instability, it is assumed that n = 2 + ϵ2σ, with σ being a detuning parameter.
Since an undamped and linear oscillator’s response consists of components with the same
frequency as the forcing terms, the solution of Eq. (4.61) is given as

w1 = ϕ1aA1a + ϕ1bA1be
2iτ0 + c.c. . (4.62)

The detuning ϵ2σ is not present at the solution since it produces terms of higher
orders in ϵ than the ones considered at the present stage. Another hypothesis is now made,
namely, that 2ω0 is not resonant with any axial natural frequency. This is particularly
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valid for slender structures when lower modes are being considered. Looking at Eqs. (4.61)
and (4.62), it is possible to see that the axial solution is of second order with respect to
the transversal solution, which is a common assumption in problems involving hinged-
hinged flexible rods. In order to obtain the functions ϕ1aA1a and ϕ1bA1b, Eq. (4.62) is
substituted into (4.61) with terms containing the same frequency being required to vanish
independently. The obtained problems can then be solved using the method of variation
of parameters, leading to

A1a = −a3
a2

B0B0, (4.63)

A1b = −a3
a2

B2
0 , (4.64)

ϕ1a =
ξ∫

0

(ψ′
0 (s))2

2 ds− ξ

1∫
0

(ψ′
0 (ξ))2

2 dξ, (4.65)

ϕ1b =
(

−a2
a3B

2
0

δeiστ2

2 + α

) sin
(

2ξ√
a2

)
sin

(
2√
a2

) −
√
a2

2 cos
(

2ξ
√
a2

) ξ∫
0

sin
(

2s
√
a2

)
ψ′

0 (s)ψ′′
0 (s) ds

+
√
a2

2 sin
(

2ξ
√
a2

) ξ∫
0

cos
(

2s
√
a2

)
ψ′

0 (s)ψ′′
0 (s) ds =

(
−a2
a3B

2
0

δeiστ2

2 + α

)
ϕ1b,0 + ϕ1b,p.

(4.66)

Since it is not always possible to furnish a closed-form expressions for integrals
involving ψ0 and its derivatives, the auxiliary variable s is used whenever needed for
mathematical precision. The new constant α is obtained by imposing the boundary
conditions of the problems, resulting in

α =
√
a2

2 cos
(

2
√
a2

)∫ 1

0
sin

(
2ξ

√
a2

)
ψ′

0ψ
′′
0 dξ −

√
a2

2 sin
(

2
√
a2

)∫ 1

0
cos

(
2ξ

√
a2

)
ψ′

0ψ
′′
0 dξ.

(4.67)

For the transversal problem of order ϵ1, only homogeneous boundary conditions
are present, and the differential equation is

v̈1 + b2v
′′′′
1 − (b3ξ + b4) v′′

1 − b3v
′
1 = −2iψ0D1B0e

iτ0 + c.c., (4.68)
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Notice now that there is a resonant term on the right-hand side, with frequency ω0

(1 in the presented dimensionless form). From basic linear dynamical systems concepts
it is expected that this can lead to unbounded responses of v1. This case requires a
solvability condition to be furnished in order to guarantee that the solution for v1 is
bounded, otherwise the scaled expansion made would not be valid. For the case of PDEs,
this is made by using the adjoint operator together with Freedholm’s alternative theorem
(see Appendix D). Since in this case the boundary conditions are all homogeneous and
using the fact that Sturm-Liouville operators are self-adjoint, the solvability condition
is simply given by requesting the forcing term to be orthogonal to the solutions of the
left-hand side, leading to

D1B0 = 0, (4.69)

which results in B0 = B0 (τ2). Equation (4.68) also possess a homogeneous solution. This
solution is however disregarded since the operator is the same as in oder ϵ0 in which case
the homogeneous solution is considered, leading to v1 = 0. With all the order ϵ1 solutions
obtained it is possible to move on to order ϵ2. For the axial problem, it is obtained that

ẅ2 − a2w
′′
2 = −2ia1ϕ1bA1be

2iτ0 + c.c. . (4.70)

In this case, the only forcing term has frequency 2ω0 and no contributions are given
by the boundary conditions. This leads to the solution for w2 in the form

w2 = ϕ2A2e
2iτ0 + c.c., (4.71)

yet again the solution is obtained with the method of variation of parameters leading to

A2 = 2ia1
a2

A1b, (4.72)

ϕ2 = β

sin
(

2√
a2

) sin
(

2ξ
√
a2

)
−

√
a2

2 cos
(

2ξ
√
a2

) ξ∫
0

sin
(

2s
√
a2

)
ϕ1b (s) ds

+
√
a2

2 sin
(

2ξ
√
a2

) ξ∫
0

cos
(

2s
√
a2

)
ϕ1b (s) ds. (4.73)
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By means of the boundary conditions, the constant β is given as

β =
√
a2

2 cos
(

2
√
a2

)∫ 1

0
sin

(
2ξ

√
a2

)
ϕ1b dξ −

√
a2

2 sin
(

2
√
a2

)∫ 1

0
cos

(
2ξ

√
a2

)
ϕ1b dξ.

(4.74)

With that solution it is finally possible to tackle the order ϵ2 transversal problem,
which reads

v̈2 + b2v
′′′′
2 − (b3ξ + b4) v′′

2 − b3v
′
2 = −b7 |D0v0|D0v0 − 2iψ0D2B0e

iτ0 − ib1ψ0B0e
iτ0

+ b5 (ϕ′
1aψ

′
0)

′ (
A1aB0 + A1aB0

)
eiτ0 + b5 (ϕ′

1bψ
′
0)

′ (
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3iτ0 + A1bB0e
iτ0
)

+ b6 (ψ′
0)

2
ψ′′

0

(
B3

0e
3iτ0 + 3B2

0B0e
iτ0
)

+ c.c., (4.75)

Finally, the solvability condition for the order ϵ2 transversal equation can be
evaluated. Keeping in mind that terms of frequency ω0 are originated from the function
|D0v0|D0v0, the condition reads

− 2iD2B0

1∫
0

ψ2
0 dξ − ib1B0

1∫
0

ψ2
0 dξ + b5B0

(
A1a + A1a

) 1∫
0

(ϕ′
1aψ

′
0)

′
ψ0 dξ

+ b5A1bB0

1∫
0

(ϕ′
1bψ

′
0)

′
ψ0 dξ + 3b6B

2
0B0

∫ 1

0
(ψ′

0)
2
ψ′′

0ψ0 dξ = f1b7

∫ 1

0
|ψ0|ψ2

0 dξ. (4.76)

The new term f1 is the coefficient of the element with frequency ω0 that arises from
the Fourier series expansion of the Morison damping. The polar decomposition of complex
numbers is used, making B0 = Reiθ, with R and θ being real-valued functions. This allows
to split Eq. (4.76) into its real and imaginary parts, as well as to write the term f1 as

f1e
−iθ = 16iR2

3π . (4.77)

After carrying out some algebraic manipulation, a system of equations for R and θ
is obtained, given by

β1D2R + β3R + β6R |R| = δβ5R sin (στ2 − 2θ) , (4.78)
β2RD2θ + β4R

3 = −δβ5R cos (στ2 − 2θ) (4.79)
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The new parameters β are defined to simplify the notation, collecting all the relevant
integrals over the structure. The parameters β1 and β2 are normalization parameters, that
depend only on the shape function as

β1 = β2 = 2
1∫

0

ψ2
0 dξ. (4.80)

The parameter β3 is a measure of the linear damping effect on the final solution,
given by

β3 = b1

1∫
0

ψ2
0 dξ. (4.81)

The nonlinear effects of structural origin are gathered in β4 as

β4 = −2b5
a3
a2

1∫
0

(ϕ′
1aψ

′
0)

′
ψ0 dξ − αb5

a3
a2

1∫
0

(
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1b,0ψ
′
0

)′
ψ0 dξ − b5

a3
a2

∫ 1

0

(
ϕ′

1b,pψ
′
0

)′
ψ0 dξ

+ 3b6

1∫
0

ψ′′
0 (ψ′

0)
2
ψ0 dξ. (4.82)

The effect due to the existence of the top-motion is measured by β5, written as

β5 = b5
2

1∫
0

(
ϕ′

1b,0ψ
′
0

)′
ψ0 dξ. (4.83)

Finally, the effects due the Morison damping are collected in β6, given by

β6 = 16b7
3π

1∫
0

|ψ0|ψ2
0 dξ. (4.84)

In order to proceed with the solution of Eqs. (4.78) and (4.79), a variable change
is applied, defined by 2θ = στ2 − η, which leads to 2D2θ = σ −D2η. Since the objective
is to analyse steady-state solutions, the relevant derivatives are considered zero, that is,
D2η = D2R = 0. Dividing each of the remaining equations by R, squaring the results an
adding them together leads to

(β3 + β6 |R|)2 +
(
β2σ

2 + β4R
2
)2

= β2
5δ

2. (4.85)
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This equation rules the steady-state amplitude as a function of three parameters
for any given pair (δ, σ), since β2 and β5 are merely a scaling of such pair. This solution
can only be put in a closed-form expression for the particular cases of only one type of
damping being considered. Another important feature is that, from Eq. (4.85) it is possible
to obtain the backbone curve expression of the natural frequency of the rod. Taking out
the damping and excitation sources, that is, letting δ = β3 = β6 = 0, it results in

σ0 = −2β4R
2

β2
, (4.86)

where σ0 is the value of σ in the particular case of free vibrations. Due to the polar solution
adopted, it is easy to see that the frequency of oscillation is given as ω = 1 + θ̇. Recalling
that 2θ = στ2 − η, then θ̇ = ϵ2σ/2 because η̇ = 0, which ultimately leads to

ω = 1 + θ̇ = 1 − ϵ2β4R
2

β2
. (4.87)

Notice now that β2 is the square of a norm, and thus is always positive. This means
that the signal of β4, given in Eq. (4.82) and related to the nonlinear structural terms, is
what dictates if the behaviour of the structure will be that of hardening or softening in
the particular case of nonlinear free vibrations.

4.3.1 Reduction of the analytical solution to a polynomial form

Although useful, it is noticeable that the analytical solution proposed with the
MMTS directly over the PDEs of motion can be troublesome to compute. This is due to
the integrals presented in Eqs. (4.80) to (4.84). These integrals do not possess a closed
form for any shape function ψ0, even when an expression for the shape function is known.
In order to put this solution in a more “user-friendly” format to be used in design aid of
real structures, a polynomial representation of the analytical solution is sought. The shape
of the mode of interest can be written as (see Mazzilli, Lenci & Demeio (2014))

ψ0 = 4

√
Tbn

Tbn + γℓξ
sin

nπ
√
Tbn + γℓξ −

√
Tbn√

Tbn + γℓ−
√
Tbn

 , (4.88)

recalling that the adjusted traction Tbn is given by

Tbn = Tb + EI
(
nπ

ℓ

)2
. (4.89)
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This modal shape can be written as being a function of a certain parameter κ and
the mode number n as

ψ0 = 4

√
1

1 + κξ
sin

(
nπ

√
1 + κξ − 1√
1 + κ− 1

)
, (4.90)

where κ is given by

κ = γℓ

Tbn

. (4.91)

This means that almost all terms needed in the evaluation of the parameters β of
the analytical solution can be written as a function of κ and n. The exceptions to this
rule are the functions ϕ1b,0 and ϕ1b,p together with the parameter α. For those, a further
algebraic treatment will be applied when suitable. Special care must be taken with the
nature of the two parameters ruling the calculations. While κ is a real-valued parameter,
n can only assume positive integer values. Lets then consider cases where a specific mode
number is chosen, no matter which. The mode ψ0 then becomes a continuous function
of κ, which can be continuously varied within the real numbers. This ensures that the
integrals to be evaluated are also continuous functions of κ, and as such, they can be
written as a series. For simplicity of implementation, a polynomial form is then adopted
to represent all the resulting calculations. In this research, polynomials of tenth order are
adopted, with its coefficients being obtained by a least squares fitting. The data source
for the fitting is created by evaluating all the needed functions for 0 ≤ κ ≤ 10 with a
discretization step of 0.01 in κ. Let then a first polynomial be written as5

1∫
0

ψ2
0 dξ = p1 (κ) . (4.92)

The polynomial p1 allows to write the coefficients β1, β2 and β3 as

β1 = β2 = 2p1 (κ) , (4.93)

β3 = b1p1 (κ) . (4.94)
5 The equality sign is used for simplicity to denote the term that each polynomial approximately

represents.



4.3. Analytical solution of the PDEs of motion 117

A second polynomial is defined to help the evaluation β6 as

1∫
0

|ψ0|ψ2
0 dξ = p2 (κ) , (4.95)

which leads to

β6 = 16b7
3π p2 (κ) . (4.96)

Regarding β4 and β5, the issue is the dependence of a2 in the functions ϕ1b,0 and
ϕ1b,p together with the parameter α. However, the parameter a2 is the square of the
ratio between the first axial natural frequency and the frequency of the mode of interest
being analysed. Such ratio is usually large for slender structures when lower transversal
modes are the main concern, which means its inverse is a small value. This allows for an
expansion in Taylor series up to the third order in ξ to be a reasonable approximation
for the trigonometric functions that are dependent on this parameter. The expressions of
interest to be expanded are
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, (4.97)
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With those approximations, the parameter α is given as
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In a similar manner, the parameter β5 reads
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β5 = −b5
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Lastly, for parameter β4, a more cumbersome task appears. This case is dealt with
a considerable amount of polynomials defined as
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′
0)

′
ψ0 dξ = p10 (κ) , (4.101)

1∫
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0)
2
ψ0 dξ = p11 (κ) , (4.102)
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Those polynomials allow to write β4 as

β4 = − αb5a3
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With that, all the parameters are calculated using polynomials, and the solution
for the steady-state amplitudes can be computed from Eq. (4.85). One last polynomial is
now defined because the modal function computed as in Eq. (4.90) is not normalized. Let
ψ̂0 be the maximum value of ψ0 along the structural length. Then, the last polynomial is
defined as p16(κ) = ψ̂0, which leads to the steady-state amplitude
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A = 2p16(κ)R. (4.105)

In order to organize all the 16 polynomials and its coefficients, they are written in
the general form

npi (κ) =
10∑

j=0

(
n

i
Cjκ

j
)
. (4.106)

The values of the constants n
iCj are given in Appendix E.

4.4 Comparison between different approaches
Once different solutions are obtained, it is now time to evaluate the accuracy of each

one of them and to address potential advantages of each. The assessment of the correctness
of each model is made by comparison with a numerical reference obtained with simulations
using the finite element method (FEM). To that end, the in-house software Giraffe6 is
used, which has being extensively used in the literature and has its quality assured. An
important feature is that the fluid-structure interaction by means of the Morison model
adopted in the formulation herein explored is exactly the same as implemented in Giraffe,
allowing a comparison on the same modelling hypothesis. For details regarding Giraffe
and the description of the elements used by the software the reader is refereed to Gay
Neto, Martins & Pimenta (2013), Gay Neto (2016) and Gay Neto (2021). It is important
to point out that neither Giraffe, nor the family of models herein derived consider FSI
phenomena, such as VIV or VSIV. For the example adopted for comparison, consider the
structural data presented in Table 6.

Regarding the ROMs, the numerical values of the parameters obtained with the
proposed data are given in Table 7.

All the ROMs are numerically integrated by means of a Runge-Kutta scheme native
to Matlab® as the “ode45” function. In order to evaluate the steady-state amplitude Am,
the average of the values of the response peaks of the last 1% of the time-series is taken.
Together with the numerical integration, ROMs (i) and (ii) are also evaluated by means
of the MMTS solution, presented since they are 1-DOF-ROMs. Before the comparisons
can be actually made, a reconstruction of the continuous displacement field is necessary
using the ROMs results. This is simply made by using the trial assumption adopted in the
6 Giraffe is an acronym for “Generic Interface Readily Accessible for Finite Elements”, a software

developed by Prof. Alfredo Gay Neto, at the University of São Paulo, capable of performing analysis
with geometrically-exact beam elements amongst other capabilities.
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Table 6 – Data for the structural model.

Property Value
µ 948.6 kg/m

(µ+ µa) 1200.0 kg/m
EI 318.6 × 106 Nm2

γ 3433.5 N/m
EA 8541.8 × 106 N
ℓ 2000 m
ρ 1025 kg/m3

D 0.5588 m
Tb 13.133 × 106 N
c 0 Ns/m2

ca 0 Ns/m2

CD 1.0

Table 7 – Numerical values of the parameters for the ROMs.

Par. Value Par. Value Par. Value Par. Value
β1 0 β2 0.1475 β3 0.0092 × 10−2 β4 0.1072
b1 0 b2 0.3251 b3 0.0126 × 10−2 b4 0.1132
b11 0 b12 1.0075 b13 0.1451 b14 −0.3009
b15 0 b16 0.0100 × 10−2 b17 0.0400 × 10−2 b18 0.0901 × 10−2

b21 0 b22 4.0307 b23 0.5806 b24 −0.0752
b25 −0.7312 b26 0.0016 b27 0.0400 × 10−2 b28 0.0036
b31 0 b32 9.0713 b33 1.3063 b34 0
b35 −0.3250 b36 0.0081 b37 0.0901 × 10−2 b38 0.0036

construction of each of the ROMs. In the sequence, the amplitude obtained for the point
located at Z = 968 m, that is 48.4% of the rod length, is used in the comparison. This
point is chosen for being the peak along the length of the rod in the shape of the first
mode of vibration, considering the presented data. The chosen point thus presents the
largest amplitude of oscillation along the rod, being of particular interest for engineering
practice.

Now, considering the offshore engineering background motivating this research, the
imposed top-motion is considered to present a natural period within 2 and 20 seconds,
which is a typical range for sea-waves. This means that the modes that may undergo the
principal parametric resonance are those with natural period within 4 and 40 seconds.
The natural frequencies of the rod under study are presented in Table 8, accordingly to
the different models under analysis.

Complementing the comparisons regarding natural mode properties, the shape of
the first vibration mode obtained by each model is presented in Fig. 20.

By observing the obtained modal shapes and natural frequencies, it is clear that
the “Bessel-like” function (ROM(i)) is the most suitable option to represent the modal
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Table 8 – Natural frequencies of the rod modes calculated accordingly to each model.

Model Mode Frequency (rad/s) Period (s)
FEM 1 0.1833 34.3
FEM 2 0.3667 17.1
FEM 3 0.5502 11.4

ROM(i) 1 0.1836 34.2
ROM(ii) 1 0.1643 38.2
ROM(iii) 1 0.1839 34.2
ROM(iii) 2 0.3674 17.1
ROM(iii) 3 0.5552 11.3

Figure 20 – Normalized modes of vibration obtained with each model. Modal shape com-
parison.
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Source: Vernizzi, Franzini & Lenci (2019).

properties of the structure, with results presenting a superior quality even when compared
to the case of multiple trigonometric functions combined (ROM(iii)). Notice also that the
use of a single trigonometric function (ROM(ii)) does not furnish a good result for the
natural frequency, even with the modal shape not being so different than the one given by
a “Bessel-like" function.

This raises a discussion worth to be made regarding the choice of projection
functions for ROMs. General intuition would suppose that if the shape is somewhat close
to the actual vibration mode, then the results are expected to be good, which proved false
in the presented example. A possible explanation requires a qualitative look at the linear
part of the PDEs of motion, being the problem of topological order rather than simply of
numerical convergence. This because the dependency of the structural response on a term
proportional to V ′ vanishes only for the case of γ = 0, which is exactly the case whose
mode of vibration is actually a sine function. This means that the mathematical model
with the tension variation along the length has a structural difference in relation to the
model without such variation, with this structural difference reflected on the modal shape
functions, and, as the results shows, on the obtained values for the natural frequency. It is
thus expected that the results furnished by ROM(ii) will not be adequate, since not even
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the modal properties where recovered by this model with significant accuracy.

Following with the comparisons, the first one made regards the obtained analytical
solution. To that end, post-critical amplitude maps as function of the dimensionless
amplitude δ and the dimensionless excitation frequency n are presented. To build the maps,
a 600 × 600 discretization was made in the range of values for δ and n. The maps obtained
with numerical integration and with the analytical solution for ROM(i) are presented in
Figs. 21 and 22, while Fig. 23 and 24 show the corresponding maps for ROM(ii).

Figure 21 – Post-critical amplitude map for ROM(i) in color-scale. Results obtained from
the numerical integration of ROM(i); n indicating the dimensionless frequency
of the imposed motion, Am the dimensionless steady-state amplitude and δ
indicating the dimensionless amplitude of the imposed motion.

Source: Vernizzi, Franzini & Lenci (2019)

The first feature to be noticed with the observation of Figs. 21 to 24 is the good
agreement of the analytical solution with the results obtained with numerical simulations,
considering the range of validity of the analytical solution, that is, around n = 2. It
is also noticeable the discrepancy in values between ROM(i) and ROM(ii). Although
so far no comparisons have been made with the FEM reference in terms of dynamical
response, by all the discussions already presented it is expected that the model giving a
poor representation is ROM(ii). Looking now at ROM(iii), Fig. 25 brings its post-critical
amplitude map considering a range of n to generate parametric resonance up to the third
mode, while Fig. 26 shows a focused map around the parametric resonance of the first
mode only.

The first aspect that gets the attention in Figs. 25 and 26 is that the regions of
response due to the parametric excitation are very similar to each other, irrespective of
the mode being excited. Another feature is that the parametric excitation focused on the
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Figure 22 – Post-critical amplitude map for ROM(i) in color-scale based on the multi-
ple scale analysis. n indicating the dimensionless frequency of the imposed
motion, Am the dimensionless steady-state amplitude and δ indicating the
dimensionless amplitude of the imposed motion.

Source: Vernizzi, Franzini & Lenci (2019)

Figure 23 – Post-critical amplitude map for ROM(ii) in color-scale. Results obtained from
the numerical integration of ROM(ii). n indicating the dimensionless frequency
of the imposed motion, Am the dimensionless steady-state amplitude and δ
indicating the dimensionless amplitude of the imposed motion.

Source: Vernizzi, Franzini & Lenci (2019)

first mode is in good agreement with the results furnished by ROM(i).

With the ROMs addressed with the available analytical solution for the 1-DOF case,
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Figure 24 – Post-critical amplitude map for ROM(ii) in color-scale based on the multi-
ple scale analysis. n indicating the dimensionless frequency of the imposed
motion, Am the dimensionless steady-state amplitude and δ indicating the
dimensionless amplitude of the imposed motion.

Source: Vernizzi, Franzini & Lenci (2019)

Figure 25 – Post-critical amplitude map for ROM(iii) in color-scale. Results obtained
from the numerical integration of ROM(iii). n indicating the dimensionless
frequency of the imposed motion, Am the dimensionless steady-state amplitude
and δ indicating the dimensionless amplitude of the imposed motion.

Source: Vernizzi, Franzini & Lenci (2019)

the necessity now is to compare the results with the chosen reference. Due to the amount
of time required to perform each FEM simulation, the results are compared for a reduced
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Figure 26 – Post-critical amplitude map for ROM(iii) in color-scale around the principal
parametric excitation of the first mode. Results obtained from the numerical
integration of ROM(iii). n indicating the dimensionless frequency of the
imposed motion, Am the dimensionless steady-state amplitude and δ indicating
the dimensionless amplitude of the imposed motion.

Source: Vernizzi, Franzini & Lenci (2019)

set of cases rather than the post-critical maps. That said, focus is put on the primary
parametric resonance condition of the first mode, n = 2. Curves of the largest response
amplitude, occurring at the selected point of comparison (Z = 968 m, are obtained as
function of the dimensionless excitation amplitude δ, up to δ = 3, with the results being
shown in Fig. 27.

With the results in Fig. 27 it is clear that the initial insight that ROM(ii) would
not give accurate results is confirmed. Another interesting feature is that, although both
ROM(i) and (iii) are in good agreement with the reference, the adherence of ROM(i) is
better, even being ROM(i) a simpler model, of only 1-DOF. This leads to an important
conclusion regarding the modelling process, that is, investing more work on the projection
functions used for the conception of ROMs can bring advantages in the final system to be
simulated. In this case, a 1-DOF system is clearly simpler to integrate numerically than a
3-DOF one. Another advantage is the fact that the case with a single DOF allows for an
analytical solution, while the case of multiple DOFs does not due to the Morison damping.

Another way to evaluate advantages between models is by means of the computa-
tional time required to obtain each solution. All the simulations of the ROMs, the FEM
and the computations of the analytical solution were carried out in the same standard
household computer. This allows for an honest, hardware independent comparison of the
computational efficiency of each solution. For the case of the FEM simulation, the time of
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Figure 27 – Post-critical dimensionless amplitude comparison for the different models on
the principal parametric resonance (n = 2) as function of the dimensionless
amplitude of excitation δ.
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a single simulation is taken. For the ROMs, since each individual simulation is too short
in time, the effort needed to evaluate a 600×600 post-critical amplitude map is measured,
with the time of a single simulation being taken simply as the total necessary time divided
by the number of simulations. The obtained measures are shown in Table 9

Table 9 – Comparison of computational time required by each type of solution.

Model Method Simulation of a 600×600 map (s) Single simulation (s)
FEM Numerical − 1.342 × 103

ROM(i) Numerical 29.3 × 103 0.082
ROM(i) Analytical 11.5 × 10−3 3.194 × 10−8

ROM(iii) Numerical 114.9 × 103 0.319

From the presented time consumption, other advantages of the different ROMs
become clear. First of all, all the ROM-based solutions are significantly faster than the
FEM one. This highlights the potential use of ROMs in design aid since they can be
used to perform a great number of simulations in order to investigate how changes in the
parameters affect the response of the structure or to define the most important design
cases to be given a closer evaluation. This allows the designer to use the FEM only for
the critical cases, selected with the help or ROMs, to be further investigated. Another
important feature is that the analytical solution is much faster to be obtained than even
the ROM simulations. This allows for an almost real-time evaluation procedure of the
response of the structure under excitation. Highlight is made again to the fact that this
was allowed due to the use of a well-thought projection function that lead to a minimal
and accurate ROM which could be then investigated with analytical tools.
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Moving on to a different type of solution, now the analytical results obtained
with the MMTS directly over the PDEs of motion are addressed. The parameters for the
structure are kept the same as for the ROMs approach and the “Bessel-like” function is
used for the mode shape, leading to the parameters β presented in Table 10.

Table 10 – Parameters for the analytical solution.

Parameter Value
β1 0.998886
β2 0.998886
β3 0.000000
β4 −0.000333
β5 −0.036819
β6 0.095966

As it was made for the ROMs, the first step is to compare the results with the
FEM solution. Again, this is made for the case of the principal parametric excitation of
the first mode, n = 2 (or σ = 0), with an amplitude of top-excitation up to δ = 3.0. The
obtained results are shown in Fig. 28.

Figure 28 – Amplitude of response for the principal parametric instability as function
of the top motion amplitude δ. Comparison between analytical and FEM
solutions.
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From the results shown in Fig. 28, a remarkable adherence between the analytical
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and the numerical results is present, with the maximum relative difference between results
being less than 1%. This analytical solution possess an accuracy even better than any
of the ROMs explored, using an unnoticeable computational time of evaluation. In this
case, another comparison is made, being the frequency-response curves obtained with
the analytical solution against some chosen points for FEM simulation. The results are
presented in Fig. 29.

Figure 29 – Amplitude of response as function of the top motion dimensionless frequency.
Comparison between analytical and FEM solutions for three different top
motion amplitudes.
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Source: Vernizzi, Lenci & Franzini (2020).

A very good agreement between the analytical solution and the numerical reference
is shown in the results presented in Fig. 29. Notice that some responses in the dimensionless
frequencies 1 and 3 are also obtained by the numerical reference but not by the analytical
solution. This is expected since the latter is developed to give solutions around the main
parametric instability condition, n = 2. Notice however that due to their magnitude, such
responses on 1 and 3 are not of primary importance compared to the problem of n = 2.

4.4.1 Sensitivity studies with the PDE solution

After the excellent adherence presented by the analytical results with respect to
the adopted reference, now is an adequate time to present one of the main advantages of
possessing analytical solutions, which is the performing of parametric investigations. The
main reason why the analytical solution is useful to that end is the necessary computational
cost. With the analytical solution it is possible to evaluate the response of the structure
for a wide range of the governing parameters, while such evaluation with high-hierarchy
methods such as the FEM would not be feasible within an acceptable amount of time.
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The analysis is made with respect to the parameters βi since all the physical
parameters may be reduced to the former and their use in the analytical solution is direct.
The first investigation made involves β4, which represents the effects of structural and
geometrical nonlinearities. In Fig. 30, the backbone curves of the first vibration mode are
shown for different values of β4, while the other parameters are kept the same as in Table
10.

Figure 30 – Backbone curves for the first mode of vibration for different values of β4
showing the relation between the actual vibration frequency ω and the linear
natural frequency ω0.
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A strong dependence in β4 is observed in the backbone curves for large oscillation
amplitudes. Another interesting observation is that, by calibrating the structural properties
in order to obtain β4 ≈ 0, it is possible to achieve a structure whose natural frequency is
independent of the amplitude of vibration. This is of particular interest in terms of design,
specially in the early stages, since the amplitudes of vibration are an unknown, while the
typical frequencies of external sources are usually known. This may lead to scenarios of
false conclusions when those are made based only on the linear natural frequency. For
example, the linear frequency may be very different from any external excitation frequency,
leading to the assumption that the latter will not be of importance for the problem.
However, this may not be the case for when the effect of the response amplitude is taken
into account for the natural frequency, depending on the values of such amplitude and of
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β4. To better illustrate such effect, consider the cases of β4 = −0.2 shown in Fig. 31 and
β4 = 0.2 shown in Fig. 32.

Figure 31 – Amplitude of response as function of the top motion dimensionless frequency
with β4 = −0.2. The curve with the frequency of the principal parametric
instability according to the backbone curve is also shown, named “Backbone”
for the sake of the size of the legend.
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Source: Vernizzi, Lenci & Franzini (2020).

Figure 32 – Amplitude of response as function of the top motion dimensionless frequency
with β4 = 0.2. The curve with the frequency of the principal parametric
instability according to the backbone curve is also shown, named “Backbone”
for the sake of the size of the legend.
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Notice that in both cases, the dependence of the natural frequency on the amplitude
of response leads to conditions where the highest amplitudes of response are not achieved
for n = 2. Instead, they occur when the parametric excitation frequency is twice the
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nonlinear natural frequency, as represented by the golden line in both Figs. 31 and 32.
Notice also that, due to the bending of the frequency-response curves, a branch of unstable
response, represented by the dashed curves, appears. Those presented behaviours are of
great importance to fatigue analysis, specially for the hardening case, where an external
frequency that is higher than two times the linear natural frequency can actually cause
high amplitude responses, matching the worst possible case for fatigue, high variations of
stress with high frequency. On the other hand, softening may be worse from the point of
view of dynamical integrity and imperfection sensitivity of critical control parameters

Another advantage of the analytical solution is that, instead of a discrete approach
as presented in the frequency response curves, a smooth map can be obtained for wide
range of parameters in a reasonable time. As an example, consider the post-critical maps
presented in Figs. 33 to 35.

Figure 33 – Amplitude of response (A) map as function of the top motion dimensionless
frequency (n) and amplitude (δ) using the reference parameters of Table 10.

Source: Vernizzi, Lenci & Franzini (2020).

From the post-critical maps, it is clear that the influence of β4 is mainly over
the frequency dependency of the response and not on the achieved value of maximum
amplitudes. That is, all the three cases achieved the same maximum amplitude, the
only difference being the value of n for which it occurred. Notice that the information
regarding the jump phenomenon is not as explicit as in Figs. 31 and 32, which are actually
cross-sections of the maps for specific values of δ with more detailed information.

Following the investigations, consider now variations of β6 which can be seen as
variations of the CD since there is a linear dependence between both. Investigations
regarding the variation of CD are made in Franzini et al. (2016b) and Franzini et al.
(2016a) by means of the time integration of ROMs. In the present work, such investigations
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Figure 34 – Amplitude of response (A) map as function of the top motion dimensionless
frequency (n) and amplitude (δ) using β4 = −0.2.

Source: Vernizzi, Lenci & Franzini (2020).

Figure 35 – Amplitude of response (A) map as function of the top motion dimensionless
frequency (n) and amplitude (δ) using using β4 = 0.2.

Source: Vernizzi, Lenci & Franzini (2020).

are made with the analytical solution, which demands significantly less computational
time to be performed when compared to numerical integrations. In Fig. 36, the dependence
of the amplitude of response on CD is shown for different values of δ, fixing n = 2, while
keeping the other parameters as in Table 10.

As expected, the hydrodynamic damping is of paramount importance for limiting
the amplitudes of the response. It is also noticeable that, specially for smaller values of CD,
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Figure 36 – Amplitude of response as function of the drag coefficient (CD) for different
amplitudes of top motion with n = 2.
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Source: Vernizzi, Lenci & Franzini (2020).

small variations of such coefficient may lead to large differences in the response amplitude.

In the sequel, the effects of the structural damping are addressed, which presents a
linear relation with β3. Due to the fact the the damping ratio is more commonly used in
engineering rather the constant c, the former is considered for the analysis, being given as
ζ = b1/2, with b1 as presented in Tab. 10. It is known that the linear damping by itself is
not able to limit the responses due to parametric excitation (see Nayfeh & Mook (1979) for
example). That said, the results are shown in terms of the additional attenuation obtained
for the response amplitudes when the structural damping is considered. In Fig. 37, it
is reported the response amplitude as a function of CD, under the principal parametric
instability for δ = 3, for different values of damping ratio. Complementing those results,
Fig. 38 presents the amount of reduction in the response amplitude furnished due to the
presence of the structural damping with respect to the case where the structural damping
is absent (ζ = 0.0%).

The limitation of values of CD in Figs. 37 and 38 is due the fact that the percentage
of attenuation furnished by the structural damping remains constant for larger values of
CD. The main conclusion of the presented results, which are not obvious at a first look, is
that, even though the structural damping is much weaker than the nonlinear hydrodynamic
damping, it can have a significant effect over the final amplitudes of response.
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Figure 37 – Response amplitude for different values of structural damping ratios as a
function of CD, with n = 2.
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Source: Vernizzi, Lenci & Franzini (2020).

Figure 38 – Additional reduction of the response amplitude due to structural damping as
a function of CD for different structural damping ratios, with n = 2.
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4.5 Design aiding tool based on polynomial solutions

Consider now the solution proposed by means of the polynomials described in Eq.
(4.106). In order to illustrate the capability of the proposed solution, consider the structural
data presented in Tab. 11, which have been adapted from Chandrasekaran, Chandak &
Anupam (2006) and Lei et al. (2014). The cases are numbered and are referenced by such
enumeration.

Table 11 – Structural data of different rods for evaluation with the simplified polynomial
solution.

Case EA EI µ µa γ ℓ Tb CD D
MN MNm2 kg/m kg/m N/m m kN m

1 8810.6 314.1 541.9 251.4 2849.8 500 427.5 0.8 0.56
2 8810.6 314.1 541.9 251.4 2849.8 1000 854.9 0.8 0.56
3 8810.6 314.1 541.9 251.4 2849.8 1500 1282.4 0.8 0.56
4 8810.6 314.1 541.9 251.4 2849.8 2000 1709.9 0.8 0.56
5 13455.6 663.1 794.3 350.7 4352.1 1166 21291.7 1.2 0.66
6 13455.6 663.1 794.3 350.7 4352.1 834 9030.0 1.2 0.66

From the structural parameters, the first step is to calculate the equivalent tension
at the bottom support (Tbn, see Eq. (4.89)). This is made for modes 1 to 5 and the results
are presented in Tab. 12.

Table 12 – Calculated values for the equivalent traction at the bottom for each case for
modes 1 to 5. All values in kN.

Case Tb1 Tb2 Tb3 Tb4 Tb5
1 439.9 477.1 539.1 625.8 737.4
2 858.0 867.3 882.8 904.5 932.4
3 1283.8 1287.9 1294.8 1304.4 1316.8
4 1710.6 1713.0 1716.9 1722.3 1729.2
5 21296.5 21310.9 21335.0 21368.7 21412.0
6 9039.4 9067.6 9114.7 9180.5 9265.2

In the sequence, the parameter κ is calculated for each case and for the modes of
interest, following Eq. (4.91). The results are shown in Tab. 13.

Table 13 – Calculated values for the parameter κ of all cases for modes 1 to 5.

Model κ1 κ2 κ3 κ4 κ5
1 3.239 2.987 2.643 2.277 1.932
2 3.321 3.286 3.228 3.151 3.056
3 3.330 3.319 3.301 3.277 3.246
4 3.332 3.327 3.320 3.309 3.296
5 0.238 0.238 0.238 0.237 0.237
6 0.402 0.400 0.398 0.395 0.392
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In order to proceed to the calculation of the steady-state amplitude, some steps are
needed to be followed. Initially, the parameters defined in Tab. 5 must be calculated for
each structure. Following, the parameters β1 and β2 can be directly calculated using Eq.
(4.93), while parameter β6 is calculated by Eq. (4.96). Then, the parameter α is calculated
by means of Eq. (4.99), which then allows the evaluation of parameter β4 with Eq. (4.104)
and β5 using Eq. (4.100). Finally, the value R is calculated by means of Eq. (4.85), which
leads to the final step that is to evaluate the steady-state amplitude with Eq. (4.105).

The step-by-step evaluation has been made using a code in the programming
language Julia. For the comparison, the top motion excitation frequencies correspond
to periods between 3s and 30s, and the corresponding modes of vibration to undergo
parametric resonance of each case are chosen as focuses of analysis. To create a comparison
base, simulations are made with the in-house software Giraffe. The simulations are made
around the principal parametric resonance of the modes of interest of each structure, with
a discretization ∆n = 0.05 of the dimensionless excitation frequency n, using the frequency
of the first natural mode of each structure as reference. The results for case 1 are shown
in Fig. 39.

Figure 39 – Comparison between the frequency response curves obtained with the polyno-
mial (Simplified) solution or with FEM for different excitation amplitudes for
case 1. The percentages in the labels refer to how much of the critical buckling
load is induced by the amplitude of the prescribed top motion.
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As it can be seen, in the range of interest, the structure presents responses in
the first three natural modes. It is possible to see that the agreement of the simplified
solution is quite good, with a loss of representation quality near the jumps in the frequency
response curves. There are some intermediary regions between the principal parametric
response of different modes that are captured by the FEM solution. Such regions of small
values of response are characterized by multimodal behaviour, coupling the two vibration
modes that “surround” it in the response curve. In the sequel, the results for model 2 are
shown in Fig. 40.

Figure 40 – Comparison between the frequency response curves obtained with the polyno-
mial (Simplified) solution or with FEM for different excitation amplitudes for
case 2. The percentages in the labels refer to how much of the critical buckling
load is induced by the amplitude of the prescribed top motion.
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In this case, the first four natural modes present responses to the parametric
excitation. Notice also that the presence of a less sharp jump condition in the frequency
response curve led to a condition of better agreement between the simplified model and
the FEM solution. Again, the intermediary multimodal responses are present, and in a
replication of the results of case 1, their amplitudes are small. Following, the results for
case 3 are shown in Fig. 41.

Now, the first mode of vibration is not in the range of interest. Instead, modes
2 to 5 are the ones that presents responses to the excitation due to the prescribed top



4.5. Design aiding tool based on polynomial solutions 139

Figure 41 – Comparison between the frequency response curves obtained with the polyno-
mial (Simplified) solution or with FEM for different excitation amplitudes for
case 3. The percentages in the labels refer to how much of the critical buckling
load is induced by the amplitude of the prescribed top motion.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
0.00

0.25

0.50

0.75

1.00

3.5 4.0 4.5
0.00

0.25

0.50

0.75

1.00

5.0 5.5 6.0 6.5 7.0
0.00

0.25

0.50

0.75

1.00

7.0 7.5 8.0 8.5 9.0
0.00

0.25

0.50

0.75

1.00

9.0 9.5 10.0 10.5 11.0
0.00

0.25

0.50

0.75

1.00

Source: The author.

motion. In this case the agreement is even better than in the previous examples. Other
aspects follow what was already pointed out on the previous examples. Now, since no new
phenomena is obtained, the next results are not evaluated individually. The comparisons
for cases 4 to 6 are shown in Figs. 42 to 44.

With all the results exposed, some conclusions can be drawn about the polynomial
solution. In terms of agreement, all the results obtained from the simplified model are
definitively useful, being in good agreement with the FEM reference in the range of
validity of hypothesis over which the models were obtained. The multimodal responses at
intermediary values of n are thus not obtained, but considering the amplitudes obtained
with the FEM solution, such responses do not configure critical cases for engineering design.
Within the monochromatic responses, the cases in which the agreement of the simplified
model is significantly reduced it does so by furnishing a larger value. Although this is not
the best scenario from an economic point of view, it does ensure that it is furnishing a
safe result for usage.

Another highlight to be made is that joining the results of single different modes
into an unique response curve is actually feasible and furnishes a good representation
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Figure 42 – Comparison between the frequency response curves obtained with the polyno-
mial (Simplified) solution or with FEM for different excitation amplitudes for
case 4. The percentages in the labels refer to how much of the critical buckling
load is induced by the amplitude of the prescribed top motion.
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of the actual behaviour of the models. Putting all those characteristics together, it is
possible to conclude that the polynomial solution is actually safe and representative of the
structural behaviour in order to be used as a basic design tool to help offshore engineering
projects. A fundamental aspect of such solutions is that they can be easily implemented
in an electronic spreadsheet considering that the polynomial coefficients are previously
given. The use of a spreadsheet implementation allows for a real-time evaluation of the
response at desired design scenarios.
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Figure 43 – Comparison between the frequency response curves obtained with the polyno-
mial (Simplified) solution or with FEM for different excitation amplitudes for
case 5. The percentages in the labels refer to how much of the critical buckling
load is induced by the amplitude of the prescribed top motion.
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Figure 44 – Comparison between the frequency response curves obtained with the polyno-
mial (Simplified) solution or with FEM for different excitation amplitudes for
case 6. The percentages in the labels refer to how much of the critical buckling
load is induced by the amplitude of the prescribed top motion.
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5 Curved cables under support excitation

In this chapter, a flexible cable hanging between supports at different heights while
immersed in still fluid is considered. The cable is subject to an imposed vertical boundary
motion at the upper support and its responses are considered constrained to the plane of
the static configuration. Again, as previously stated, the imposed motion is considered as a
result of the response of a floating unit under the action of sea waves. However, differently
from the case of a vertical structure, this imposed motion becomes a combination of
influences in the axial and transversal directions along the structure.

For the investigation, different ROMs are formulated. A detailed discussion is made
regarding different possibilities to conceive the ROMs in order to obtain guidelines for a
proper conception of suitable models for analysis. As done for the case of vertical structures,
the results are compared to a numerical reference obtained via the finite element method.

The results of this chapter resulted in the publication Vernizzi, Lenci & Franzini
(2022) and were also presented in the “25th International Congress of Theoretical and
Applied Mechanics” (ICTAM2020+1).

5.1 Problem sketch and equations of motion

The problem under investigation is illustrated in Fig. 45. From the representation,
three particular hypothesis deserve special attention when applications in offshore engi-
neering are intended. The first one is that an ideal monochromatic harmonic motion is
applied to one of the supports of the structure. The second hypothesis is that the support
at the bottom of the structure is considered fixed, which is made in order to avoid the
complexity introduced by a moving support in the present work. Finally, the third strong
hypothesis is that no point of the hanging portion of the structure experiences contact
with the seabed.

The fixed Cartesian frame is given by the X and Z axis in the horizontal and
vertical directions, respectively, while the frame origin coincides with the bottom support.
The local frame is defined by the tangential direction u and the transversal direction v.
Notice that the problem depicted is very similar to the one presented in Fig. 17, with the
key differences being the imposed motion WL(t) and the presence of the surrounding fluid.
This allows the use of Eqs. (3.75) and (3.76) with the addition of minor correction terms,
being them the Morison damping in the transversal motion equation, and the imposed
displacement as a boundary condition. This leads them to the PDEs of motion
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Figure 45 – Sketch of an inclined hanging cable with time-varying imposed motion at one
of its supports.

Source: Vernizzi, Lenci & Franzini (2022)

mü = T ′
s

(
u′ − vθ′ − εd

1 + εd

)
− Ts

(
(uθ′ + v′) θ′

(1 + εd) + (uθ′ + v′)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′)

− ρgA ((u′ − vθ′) sin θ + (v′ + uθ′) cos θ) (1 + u′ − vθ′)
(1 + εd) + EAε′

d

(1 + u′ − vθ′)
(1 + εd)

+
[(

(uθ′ + v′) θ′

(1 + εd) + (uθ′ + v′)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′)
(−EAεd + ρgAu sin θ + ρgAv cos θ)

]
,

(5.1)

mtv̈ + 1
2ρDCDv̇ |v̇| = T ′

s

(uθ′ + v′)
(1 + εd) + Ts

(
(1 + u′ − vθ′) θ′

(1 + εd) +
(

(uθ′ + v′)
(1 + εd)

)′)

− ρgA ((u′ − vθ′) sin θ + (v′ + uθ′) cos θ) (uθ′ + v′)
(1 + εd) − Tsθ

′ + EAε′
d

(uθ′ + v′)
(1 + εd)

+
[(

(1 + u′ − vθ′) θ′

(1 + εd) +
(

(uθ′ + v′)
(1 + εd)

)′)
(EAεd − ρgAu sin θ − ρgAv cos θ)

]
, (5.2)

subjected to the boundary conditions
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u(0, t) = 0, (5.3)
v(0, t) = 0, (5.4)
u(L, t) = WL(t) sin (θL) , (5.5)
v(L, t) = WL(t) cos (θL) . (5.6)

For the sake of easiness of reading, the relevant terms for the mathematical model
are repeated here in Tab. 14.

Table 14 – Relevant terms for the mathematical model.

Symbol Meaning
m Structural mass per unit length
mt Structural transversal inertia (mass and added mass) per unit length
Ts Tension in the static configuration
εd Additional strain developed in the dynamical response
ρ Surrounding fluid specific mass
A Area of the structural cross-section
θ Angle with the horizontal in the static configuration
EA Axial stiffness product
CD Mean drag coefficient of the cross section

Finally, as made in Chapter 3, Eqs. (5.1) and (5.2) may be written using an operator
notation, resulting in

Lu(u, v) = 0, (5.7)
Lv(u, v) = 0. (5.8)

For the sake of simplicity, the same notation is kept without loss of meaning.

5.2 Reduced-order models
By a simple inspection of Eqs. (5.1) and (5.2), it is natural to conclude that their

solution by means of analytical techniques, even approximative ones, is rather cumbersome,
if even feasible at all. This stimulates the analyst to take a different approach to solve
the problem at hand. One possible way of tackling such system is by obtaining a ROM
consisting of a system of ODEs obtained from the PDEs via a Galerkin procedure. To
that end, a suitable basis of projection functions is necessary, which needs to obey the
essential boundary conditions of the problem. In order to fulfil the latter requirement, the
displacement field herein proposed is written as



146 Chapter 5. Curved cables under support excitation

u = WL (t)ϕs (s) +
n∑

k=1
Ak (t)ϕk (s) , (5.9)

v = WL (t)ψs (s) +
n∑

k=1
Bk (t)ψk (s) . (5.10)

This proposed displacement field assumes that the top motion results in an in-
stantaneous effect along the cable span according to each direction, represented by the
functions ϕs and ψs. It is thus important to highlight that such approach is quasi-static
by default. Following, in order to actually satisfy the essential boundary conditions, it is
clear that

ϕs(L) = sin θL, (5.11)
ψs(L) = cos θL, (5.12)
ϕk(0) = 0, (5.13)
ϕk(L) = 0, (5.14)
ψk(0) = 0, (5.15)
ψk(L) = 0. (5.16)

The problem now is in the specific format of each spatial function to use. Although
the Galerkin method ensures that the minimum possible error will be obtained within
a chosen set, it does not give any tools to evaluate if the chosen set is adequate for
representing the problem. Regarding the functions ϕs and ψs, there is no information
about which shape to use asides the boundary conditions. Another issue is that, due to
the presence of the surrounding fluid, the shape of these functions will dictate the shape
of an imposed forcing term that will appear in Eq. (5.2). One possible way to obtain
such functions would be to directly tackle the PDEs with analytical methods such as the
MMTS. This, however, is not yet done in the literature for the case at hand, and due to
the intricate expressions of the PDEs one can expect it to be a significantly cumbersome
task. Circumventing then the lack of information, three different sets of functions ϕs and
ψs are tried here, based on literature results obtained for somewhat similar problems. The
simplest of such possibilities is to use a linear interpolation of the boundary conditions
along the cable length, that is,

ϕs,1 =
(
s

L

)
sin θL, (5.17)

ψs,1 =
(
s

L

)
cos θL. (5.18)
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The expansion of the subscript is to indicate the set number for reference during
the analysis. This type of interpolation appears in the problem of straight structures
subjected to boundary motions, being implicit in commonly adopted static condensation
procedures (see Vernizzi, Franzini & Lenci (2019) for example). A natural question that
now arises is related to the influence of the curved static configuration over the top motion
effects. In order to try to bring some of the effect of the curved configuration, a second
set of trial functions related to the top motion is proposed. Consider now, that instead of
a linear interpolation of the boundary conditions, the projection functions also obey the
local rotation of the cross-section, resulting in

ϕs,2 =
(
s

L

)
sin θ, (5.19)

ψs,2 =
(
s

L

)
cos θ. (5.20)

Notice that this proposed set still preserves mathematical simplicity, which is often
desired in order for easiness of ROM creation. Finally, a third set is conceived, this time
letting go the requirement of simplicity while trying to use further information about
the model itself. Since the proposed displacement field in Eqs. (5.9) and (5.10) has a
quasi-static portion, the test will be to use functions that are the difference between
two static configurations of the cable, as made in Luongo & Zulli (2011). The process
consists of calculating the displacement field that leads the structure from the original
static configuration to a new static configuration where the support is moved by an unitary
displacement in the direction of WL. In particular cases of parabolic or almost inextensible
cables, such as those given by the classical catenary equation, analytical expressions can
be derived for such displacement field. However, in the general case, a numerical approach
is necessary to obtain such functions. Mathematically speaking, consider then the original
static configuration of the cable to be defined by the functions X0(s) and Z0(s) in the
horizontal and vertical directions respectively. Let then the corresponding X1(s) and Z1(s)
be the functions describing the cable static configuration after an unitary displacement in
the same direction as WL. The interpolation functions are given then as

ϕs,3 = (X1 −X0) cos θ + (Z1 − Z0) sin θ, (5.21)
ψs,3 = − (X1 −X0) sin θ + (Z1 − Z0) cos θ. (5.22)

It is important to highlight that this approach does not take into consideration the
effects of the fluid-structure interaction that occurs during the displacement, but is still
the tool available in the literature for direct usage. This third set is the last one considered
in the present work for the top motion interpolating functions.
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Giving sequence, it is now necessary to define possible sets for the functions ϕk and
ψk. Here two different objectives may be given to the sets, that is, to obtain a minimal
set with accurate results, or to obtain a somewhat larger set but described by simpler
known functions. The first set adopted, herein named ‘set(i)’, is defined by a single mode
of vibration obtained from Eqs. (5.1) and (5.2), that is, an eigenvector of the system

Lu,1(u, v) = 0, (5.23)
Lv,1(u, v) = 0, (5.24)

where Lu,1 and Lv,1 are the linear parts of the operators Lu and Lv respectively. It is
worth mentioning that, differently from the straight case, the vibration modes of curved
structures present coupled shapes in the transversal and axial directions, leading to the
condition Ak = Bk in Eqs. (5.9) and (5.10). The choice of using vibration modes is very
common in the literature, since it is expected that the response of the structure will be
a composition of the response of different modes. In that sense, this first set is the one
to ensure the minimal ROM, with a single DOF. A natural follower is then to use more
modes of vibration in the ROM, which is then the approach for ‘set(ii)’. For this case,
three consecutive modes are adopted, leading to a 3-DOF ROM.

Lastly, one may deem suitable to use simpler projection functions, specially in the
case of extensible cables since not always there will be analytical expressions available for
the vibration modes, leading to the further complications in the ROM obtaining process.
Consider then the use of trigonometric functions as basis for the set, which can be found in
the literature for the case of vertical structures in Franzini & Mazzilli (2016) and Vernizzi,
Franzini & Lenci (2019) for example. One factor that can be observed in the conclusions
of Vernizzi, Franzini & Lenci (2019) is that the use of simpler functions that are not
precisely the vibration modes leads to the need of a larger set. With that in mind, ‘set(iii)’
is composed of five sinusoidal functions for each direction. It must be remarked that,
since those functions are not the eigenvectors of Eqs. (5.23) and (5.24), the relationships
between the transversal and axial directions are not yet defined, leading to Ak ̸= Bk in
the general case. This results in a ROM with 10 DOF.

In this work, the analysis is focused on the response of the first mode of vibration,
so the first mode is considered for ‘set(i)’, the first three modes are considered for ‘set(ii)’,
while for ‘set(iii)’ the projection functions are

ϕk = ψk = sin
(
kπs

L

)
, k = 1, ..., 5. (5.25)

With all the necessary functions defined, it is now possible to apply the Galerkin
projection to obtain the ROM. With the defined sets, a total of nine different ROMs
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is possible. By utilizing the equations of motion written as in Eqs. (5.7) and (5.8), it is
possible to write the system in a vectorial way as

[Lu (u, v) ,Lv (u, v)] = [0, 0] . (5.26)

The Galerkin method is then simply defined as an inner product operation over
the vectorial Eq. (5.26), which for any case involving sets (i) and (ii) leads to

⟨[Lu (u, v) ,Lv (u, v)] , [ϕk, ψk]⟩ = 0, (5.27)

with the product being made for each mode k. The procedure is just slightly different for
the cases involving set (iii), which leads to five pairs of projections written as

⟨[Lu (u, v) ,Lv (u, v)] , [ϕi, 0]⟩ = 0, (5.28)
⟨[Lu (u, v) ,Lv (u, v)] , [0, ψi]⟩ = 0. (5.29)

By letting the inner product to be defined as the integral of the involved functions
along the cable span, the ODE for set(i) becomes simply

m1Ä1 = mqẄL + a1A1 + a2WL + a3A
2
1 + a4A1WL + a5W

2
L + a6A

3
1 + a7A

2
1WL

+ a8A1W
2
L + a9W

3
L − ζ

L∫
0

ψ1

∣∣∣ψ1Ȧ1 + ψsẆL

∣∣∣ (ψ1Ȧ1 + ψsẆL

)
ds, (5.30)

where m1, mq and each of the ai are constant values resulting from the inner product,
which will vary according to the functions ϕs and ψs of each case, while ζ is a constant
defined merely to simplify the algebra, being ζ = ρDCD/2. One feature that deserves
notice is the fact that, since the supposed displacement field involves the sum of at least
two terms with a yet to be defined value, the integral of the Morison damping term cannot
be evaluated at first. Instead, during numerical simulations this integral must be evaluated
at each time step.

Now, for the ROMs obtained using set (ii), the resulting ODE relative to each
mode k can be put in the general form
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( 3∑
i=1

mk,iÄi

)
= mk,qẄL +

( 3∑
i=1

ak,iAi

)
+ ak,qWL + bk,qW

2
L +

( 3∑
i=1

bk,iWLAi

)

+
 3∑

i=1

3∑
j=1

bk,i,jAiAj

+ ck,qW
3
L +

( 3∑
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ck,iW
2
LAi

)
+
 3∑

i=1

3∑
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ck,i,jWLAiAj


+
 3∑

i=1

3∑
j=1

3∑
l=1

ck,i,j,lAiAjAl

− ζ

L∫
0

ψk

∣∣∣∣∣
( 3∑

i=1
ψiȦi

)
+ ψsẆL

∣∣∣∣∣
(( 3∑

i=1
ψiȦi

)
+ ψsẆL

)
ds,

(5.31)

with the constants mk,i, mk,q, a, b and c being numerical values resulting from the inner
product according to each set ϕs and ψs, as in the previous case. Notice that a small
increase in the number of DOFs resulted in a large increment in the number of constants to
be defined for the ROMs. It is expected that this effect may lead to a significant difference
in computational effort to integrate the obtained model. Also, due to the large amount of
constants to be evaluated combined with the intricate expressions of the PDEs, the use of
symbolic computation is advised for the calculation of the ROM constants.

The ROMs obtained with the use of set (iii) are merely an extension of the case of
set (ii), with pairs of equations, extending the summations to five terms and considering
the couplings between the Ai with the Bi in the nonlinear terms.

5.3 Semi-analytical solution for particular models
As it has been made for the vertical case, analytical solutions may be pursued for

some forms of the obtained ROMs. One should notice however that, for the problem of
curved structures, the form of the nonlinear damping brings up a cumbersome problem
to solve. This because now, even for the simplest of the ROMs, a sum of different terms
appears inside the absolute value function, one of them being the unknown that is sought
to be obtained. One way to circumvent this problem is to use an iterative approach that
will be detailed later on. Taking now Eq. (5.30), a scaling may be proposed in which all
the constants that multiply nonlinear terms or terms depending on WL are mapped as

a 7→ ϵa, (5.32)

with ϵ being a small bookkeeping parameter and in this particular equation a being any
generic constant. An expansion is then proposed for the solution, up to order ϵ, as

A1 = A1,0 (t0, t1) + ϵA1,1 (t0, t1) , (5.33)
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where t0 and t1 are two independent time scales, defined by means of the bookkeeping
parameter as ti = ϵit. Using such definitions, two differential operators for the time
differentiations involved in the problem are useful for the subsequent analysis, been written
as

d
dt = ∂

∂t0
+ ϵ

∂

∂t1
= D0 + ϵD1, (5.34)

d2

dt2 = ∂2

∂t20
+ 2ϵ ∂2

∂t0∂t1
= D2

0 + 2ϵD0D1. (5.35)

Both operators are correct up to terms of order ϵ. Applying those operators in Eq.
(5.30) together with the proposed solution in Eq. (5.33) and then collecting terms of the
same order in ϵ leads to two sequential equations. The first of such equations, for order ϵ0,
is given as

m1D
2
0A1,0 − a1A1,0 = 0, (5.36)

while the equation of order ϵ1 reads

m1D
2
0A1,1 − a1A1,1 = −2m1D0D1A1,0 +mqẄL + a2WL

+ a3A
2
1,0 + a4A1,0WL + a5W

2
L + a6A

3
1,0 + a7A

2
1,0WL

+ a8A1,0W
2
L + a9W

3
L − ζ

L∫
0

ψ1

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ (ψ1D0A1,0 + ψsD0WL

)
ds.

(5.37)

Equation (5.36) is simply that of a linear free oscillator1, resulting in the solution
for A1,0 been written as

A1,0 = B0e
iω0t0 +B∗

0e
−iω0t0 = B0e

iωt0 + c.c., (5.38)

where i is the imaginary unity, ω0 is the natural frequency of the linear oscillator, with
ω0 =

√
−a1/m1. The symbol ∗ denotes the complex conjugate of a term and c.c. stands

for the complex conjugate of all the terms before its appearance. Focus is now placed on
the case of 1:1 resonance between the structure and the imposed motion. To that end,
1 It must be remarked here that it is expected that the constant a1 will result negative, implying a

positive sign for the linear stiffness. Any other case would generate an unstable system, with the need
for searching which is the stable equilibrium configuration. This is not the focus of the thesis.
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let WL = η sin(ω0t0). A common practice in the literature that is not made here is the
insertion of a detuning parameter in the forcing frequency. This is herein avoided since, for
this particular problem, several mathematical difficulties are imposed by such detuning in
the obtaining of steady-state solutions since they lead to a mixture of different frequencies
being summed in the absolute value function involved in the Morison damping term. This
leads to a problem where the necessary spatial integration actually depends on time as
well, without a viable solution with the techniques herein proposed. Now, substituting the
solution for A1,0 in Eq. (5.37) together with the definition for WL leads to

m1D
2
0A1,1 − a1A1,1 = −2im1ω0D1B0e

iω0t0 +
(
imqω

2
0η

2 − ia2η

2

)
eiω0t0

+ a3

(
B2

0e
2iω0t0 +B0B

∗
0

)
− ia4η

2
(
B0e

2iω0t0 −B0

)
− a5η

2

4
(
e2iω0t0 − 1

)
+ a6

(
B3

0e
3iω0t0 + 3B2

0B
∗
0e

iω0t0
)

− ia7η

2
(
B2

0e
3iω0t0 +

(
−B2

0 + 2B0B
∗
0

)
eiω0t0

)
− a8η

2

4
(
B0e

3iω0t0 + (B∗
0 − 2B0) eiω0t0

)
+ ia9η

3

8
(
e3iω0t0 − 3eiω0t0

)
+ c.c.

− ζ

L∫
0

ψ1

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ (ψ1D0A1,0 + ψsD0WL

)
ds. (5.39)

For a bounded solution to exist for this problem, the terms on the right-hand side
of the latter equation must not be in the kernel of the operator given by the left-hand
side of the same equation. For the particular case of second order ODEs systems this is
analogous to require that there are no terms on the right-hand side that oscillates with
the same frequency as any of the natural frequencies of the system. In the particular case
at hand, it must then be required that all terms with frequency ω0 must vanish, leading to

− 2im1ω0D1B0 +
imqω

2
0η

2 − ia2η

2 + 3a6B
2
0B

∗
0 + ia7

2 ηB2
0

− ia7ηB0B
∗
0 + a8

2 η
2B0 − a8

4 η
2B∗

0 − 3ia9
8 η3 + F0 = 0, (5.40)

with the new term F0 standing for any portion of the nonlinear damping that presents
frequency ω0. In order to obtain those terms, the relevant integral is separated as

L∫
0

ψ1

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ (ψ1D0A1,0 + ψsD0WL

)
ds =

D0A1,0

L∫
0

ψ2
1

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ ds+D0WL

L∫
0

ψ1ψs

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ ds.

(5.41)
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In this final format, a Fourier series expansion can be applied to each integral,
following the suggestions in Nayfeh & Mook (1979), which allows to write them as

L∫
0

ψ2
1

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ ds =
∑

j

(
fje

ijω0t0 + c.c.
)
, (5.42)

and

L∫
0

ψ1ψs

∣∣∣ψ1D0A1,0 + ψsD0WL

∣∣∣ ds =
∑

j

(
gje

ijω0t0 + c.c.
)
. (5.43)

The Fourier expansions can then be applied to Eq. (5.39), keeping in mind that
terms with frequency ω0 can be generated in the integrals via the combination of the
Fourier terms with frequencies 0 and 2ω0. This leads to

F0 = −ζ
(
iω0f0B0 − iω0f2B

∗
0 + ω0g0η + ω0g2η

2

)
. (5.44)

It is important to mention that f0 and g0 are certainly real valued parameters,
while both f2 and g2 are complex quantities in the general case. It is thus convenient to
write the last two terms as f2 = f2r + if2c and g2 = g2r + ig2c. With all the expressions
ready to advance with the solution, focus is now made on steady-state solutions, which are
obtained by letting D0

1B
0
0 = 0. Considering also the Euler representation B0 = R0e

iφ, the
solvability condition given by Eq. (5.40) can be written in terms of its real and imaginary
parts, which leads to the system of equations

−
ω2

0ηmq

2 sinφ+ a2η

2 sinφ+ ζω0f2rR0 sin 2φ− ζω0f2cR0 cos 2φ− ζω0g0η

2 cosφ

− ζω0g2rη

2 cosφ− ζω0g2cη

2 sinφ = 0 (5.45)

−
ω2

0ηmq

2 cosφ+ a2η

2 cosφ− ζω0f0R0 + ζω0f2rR0 cos 2φ+ ζω0f2cR0 sin 2φ

+ ζω0g0η

2 sinφ+ ζω0g2rη

2 sinφ− ζω0g2cη

2 cosφ = 0 (5.46)

At this point the introduction of the aforementioned iterative approach is necessary.
The problem with a direct solution lies in the fact that it is not possible to obtain the
values for the constants f0, f2, g0, and g2 without knowing the solution for A1,0. However,
it is possible to find initial guesses for such values by setting A1,0 = 0. With this first
evaluation, it is possible to solve Eqs. (5.45) and (5.46) for the variables R0 and φ, leading
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to an initial evaluation of A1,0. This first solution can then be reinserted in the scheme to
recalculate the constants f0, f2, g0, and g2, and with that, the iterative process is defined,
to be repeated until it is considered that the results converged. It is worth-mentioning
that, if there is interest in the investigation of a series of values for the imposed motion
amplitude, one way to reduce the amount of necessary computation is to proceed with an
incremental approach over the solution. This is made by setting the obtained result for
A1,0 under a given value of η as the starting point for the evaluation when η is changed.

5.4 Comparison between approaches

With the models at hand and a viable analytical solution, the path is laid to assess
the quality of each of the possible ROMs herein defined. To that end, an inclined cable
with a significant sag is chosen as example and the results are compared to a numerical
reference obtained with the FEM. In the same manner as for the vertical case, the in-house
software Giraffe is used for the FEM solution. The cable under investigation lays between
supports presenting horizontal and vertical distances between each other of 1500 m and
1800 m respectively. The necessary structural and hydrodynamic parameters are presented
in Tab. 15.

Table 15 – Structural and hydrodynamical properties for the curved structure. Adapted
from Pesce, Martins & Silveira (2006).

Property Description Value
µ Mass per length 108 kg/m
γs Immersed weight per length 727 N/m
EA Axial stiffness 2314.0 × 106 N
L Length 2452.46 m
ρ Fluid density 1025 kg/m3

D Structural diameter 0.2032 m
CD Mean drag coefficient 1.2000
Ca Added mass coefficient 1.0737

The resulting static configuration for this problem is shown in Fig. 46, where it is
possible to verify that the case at hand is not limited to small inclination or sag.

A first step in the comparison is to analyse the frequencies and modes obtained
with the FEM solution and with the PDEs. This is done specially because the equations of
motion as presented in Eqs. (5.1) and (5.2) are in a format not commonly presented in the
literature. This becomes then an indication of the correctness of the obtained equations.
In order to obtain the modes and frequencies directly from the PDEs, a native solver
from Mathematica® is applied. Such solver uses an internal finite element scheme over the
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Figure 46 – Calculated static configuration for the structure using the data in Tab. 15.
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Source: Vernizzi, Lenci & Franzini (2022)

furnished PDEs. The convergence of both the Giraffe and Mathematica® solutions can be
verified in Tabs. 16 and 17 respectively.

Table 16 – Natural frequencies (rad/s) obtained for the first five modes of vibration using
the in-house software Giraffe as function of the number of elements along the
cable length.

Mode Number of elements
10 25 50 100 200

1 0.1984 0.1983 0.1983 0.1983 0.1983
2 0.3150 0.3147 0.3147 0.3147 0.3147
3 0.4419 0.4402 0.4402 0.4402 0.4402
4 0.5570 0.5524 0.5522 0.5522 0.5522
5 0.6838 0.6723 0.6719 0.6719 0.6719

With the convergence of both methods addressed it is now possible to compare
them between each other. The natural frequencies for the first five modes of vibration are
shown in Tab. 18, while the modal shapes for the first three modes are shown in Fig. 47.

From the results presented so far some conclusions can be drawn. The first one
is that there are no meaningful differences in any of the mode shapes obtained, which
indicates that the obtained PDEs in the alternative format herein presented are indeed
correct. Regarding the natural frequency, the relative differences between the FEM solution
and the PDEs do not exceed 1% (see Tab. 18), reinforcing the previous conclusion.

Regarding the obtained ROMs, the natural frequencies calculated from their
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Table 17 – Natural frequencies (rad/s) obtained for the first five modes of vibration using
the Mathematica® eigensystem solver over the PDEs of motion as a function
of the maximum element size set for the software (in meters).

Mode Maximum element size [m]
1000 500 100 10 1

1 0.2740 0.2184 0.2000 0.1998 0.1998
2 0.6042 0.3630 0.3172 0.3167 0.3167
3 0.9051 0.5541 0.4441 0.4431 0.4431
4 1.3733 0.8416 0.5575 0.5558 0.5558
5 2.1746 1.1399 0.6791 0.6762 0.6762

Table 18 – Comparison of the natural frequencies obtained for the structure considering
the FEM or a direct obtaining from the PDEs.

Mode Model Freq. [rad/s] Rel. diff. %
1 FEM 0.1983 -
1 PDE 0.1998 0.76
2 FEM 0.3147 -
2 PDE 0.3167 0.64
3 FEM 0.4402 -
3 PDE 0.4431 0.66
4 FEM 0.5522 -
4 PDE 0.5557 0.63
5 FEM 0.6719 -
5 PDE 0.6762 0.64

Figure 47 – Comparison between transversal modal shapes obtained by the FEM and a
direct application over the PDEs of motion. Blue lines are used for the FEM
while red lines are used for the direct solution. First mode indicated by circles,
second mode by crosses and third mode by diamonds.
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respective ODE systems are presented in Tab. 19. Also, since set (iii) does not make use
of the natural modes of vibration of the structure, it becomes necessary to verify if such
set is able to recover those modes. This can be verified by the modal shape comparisons
present in Fig. 48.

Table 19 – Comparison of the natural frequencies obtained for the structure considering
the FEM and the ROMs.

Mode Model Freq. [rad/s] Rel. diff. %
1 FEM 0.1983 -
1 ROM(i) 0.1996 0.66
1 ROM(ii) 0.1995 0.61
1 ROM(iii) 0.1885 −4.94
2 FEM 0.3147 -
2 ROM(i) - -
2 ROM(ii) 0.3170 0.76
2 ROM(iii) 0.3351 6.48
3 FEM 0.4402 -
3 ROM(i) - -
3 ROM(ii) 0.4435 0.76
3 ROM(iii) 0.5610 27.44

Figure 48 – Comparison between transversal modal shapes obtained by a direct application
over the PDEs of motion and the recovery achieved by the trigonometric shape
functions of set (iii). Red lines are used for the direct solution while black
lines are used for the recovery by trigonometric function. First mode indicated
by circles, second mode by crosses and third mode by diamonds.
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Concerning the modal shape recovery by set (iii), it is possible to see that the
adherence is good, however with visible small differences. Recalling the case for vertical
structures, the fact that the difference is small does not ensure by itself that the model
will give a good representation. Focusing on the obtained natural frequencies it is possible
to see that the relative error is insignificant for the ROMs based on the vibration modes,
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while for set (iii) the errors are of noticeable magnitude, with the value obtained for the
third mode natural frequency being very far off the correct one. This already anticipate,
for the curved case, some expectations drawn from the straight structures, that is, a basis
that can recover modal shapes is not necessarily good for the mathematical representation
of the model.

Following now to further comparisons, steady-state results obtained from numerical
simulations are compared. Each simulation was carried out through 1000 seconds, value
that proved to be enough to achieve such regimes. The integrations of the ROMs are
made with a Runge-Kutta scheme, native to the Matlab® ode45 function, while Giraffe
uses its own Newmark method. For the sake of simplifying the nomenclature, since a
total of 9 different ROMs are analysed, they are named ROMi,j, with i indicating the
number of the set used as DOF projection functions, while j indicates the number of
the type of interpolation of the top motion used in the ROM. Initially, a top motion
amplitude of 1 meter is considered, with frequency matching the one of the first natural
mode obtained with the PDEs using the Mathematica® solver. For ROMs of the type
ROM1,j, the simulation results are presented as amplitude scalograms in Fig. 49.

Figure 49 – Amplitude scalograms of the transversal response of the structure in steady-
state regime. (a) FEM solution. (b) Numerical integration of ROM1,1. (c)
Numerical integration of ROM1,2. (d) Numerical integration of ROM1,3.

(a)

(b) (c) (d)

Source: Vernizzi, Lenci & Franzini (2022)

It is easy to notice that the results from the FEM simulation are not qualitatively
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recovered by ROM1,1 or ROM1,2. The obtained amplitudes in both cases are significantly
different from the FEM results, while the wave pattern formed is certainly not the same.
In turn, ROM1,3 gives an adherent result regarding the achieved amplitude in steady-state
regime and in the resulting wave-pattern. Those results already give a glimpse that there
are features of major importance regarding the adopted function to represent the effects
of the imposed motion. In order to give more detail about the structural behaviour,
considering ROM1,3 that presented the best results in this first comparison, the time series
and phase-space portraits of 4 different cross-sections are compared with the FEM results
in Fig. 50. The chosen cross-sections are those of s/L values equal to 0.2, 0.4, 0.6 and 0.8.

The figure shows that the response along the length is in fact well recovered by
ROM1,3, with the resulting differences being small. It is also noticeable that the response
frequency is visually the same, with an almost constant phase-shift that is due to the
accumulation in the simulation time of the very small difference between such frequencies. In
order to complement those results, Tab. 20 brings the maximum displacement amplitude
achieved in each of the investigated cross-sections for ROM1,3 and the FEM solution.
Another result is shown in Fig. 51, which brings three snapshots for each of the compared
solutions. A relative scheme is used to choose the instant of the snapshots to avoid
discrepancies due to the phase shift between results. To that end, in any simulation a
reference time is taken when the amplitude of motion achieves its minimum value for the
cross-section at s/L = 0.2. This time is used for one of the snapshots, while the other two
are taken after intervals of time equal to 1/8 and 1/4 of the natural period of the first
mode.

Table 20 – Comparison between the FEM and ROM1,3 results for the maximum amplitude
of motion at different cross-sections. Results in meters.

s/L FEM ROM1,3
0.2 1.5165 1.4452
0.4 1.2470 1.0795
0.6 0.9074 0.9652
0.8 0.5570 0.6801

Combining the time series displayed, the amplitude values in Tab. 20 and the
snapshots taken, it is possible to conclude that ROM1,3 presents good results in comparison
to the FEM solution. For sure some improvements can be made but the quality obtained
is certainly useful for analysis. Proceeding them to check how the results can be further
enhanced by the use of a larger number of projection functions, the comparisons between
the FEM solution and ROMs2,j start with the scalograms presented in Fig. 52.

The first result to draw attention is that, yet again, the top motion interpolations
of type 1 and 2 are not able to ensure a satisfactory adherence with the reference result,
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Figure 50 – Time series and phase-space portraits comparison between ROM1,3 (Red lines
with crosses markers) and the FEM (blue line without markers) solution for a
top motion amplitude of 1m. a) Time series for the cross-section at s/L = 0.8.
b) Phase-space portrait for the cross-section at s/L = 0.8. c) Time series for
the cross-section at s/L = 0.6. d) Phase-space portrait for the cross-section at
s/L = 0.6. e) Time series for the cross-section at s/L = 0.4. f) Phase-space
portrait for the cross-section at s/L = 0.4. g) Time series for the cross-section
at s/L = 0.2. h) Phase-space portrait for the cross-section at s/L = 0.2.

700 750 800 850 900 950 1000

-1

0

1

-1 0 1

-0.2

0

0.2

700 750 800 850 900 950 1000

-1

0

1

-1 0 1

-0.2

0

0.2

700 750 800 850 900 950 1000

-1

0

1

-1 0 1

-0.2

0

0.2

700 750 800 850 900 950 1000

-1

0

1

-1 0 1

-0.2

0

0.2

Source: Vernizzi, Lenci & Franzini (2022)



5.4. Comparison between approaches 161

Figure 51 – Snapshots of the structural configuration for a reference instant correspondent
to the occurrence of a peak in the response of the cross-section at s/L =
0.2 (lines without markers), an instant occurring 1/8 of the period of the
structural response (lines with diamond markers) after the reference, and
an instant occurring 1/4 of the period of the structural response (lines with
diamond markers) after the reference. Comparison between FEM solution
(blue continuous line) with ROM1,3 (red dashed line).
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even though now there are more projection functions involved. Those two cases furnished
amplitudes that are significantly different from the reference, together with a wave-pattern
that, although closer than the ones obtained with ROM1,1 and ROM1,2, are still far from
the expected result. On the other hand, the results obtained with the use of ROM2,3 are
very close to the reference, with barely any difference in the scalogram. For a more detailed
analysis, the same complementary figures and results as made for ROM1,3 are brought
here. The time series and phase-space portraits of different cross-sections are shown in Fig.
53, while the maximum amplitude achieved by each of the same cross-sections are exposed
in Tab. 21. Finally, three different snapshots as already defined before are shown in Fig.
54.

Table 21 – Comparison between the FEM and ROM2,3 results for the maximum amplitude
of motion at different cross-sections. Results in meters.

s/L FEM ROM2,3
0.2 1.5165 1.4553
0.4 1.2470 1.2579
0.6 0.9074 0.8998
0.8 0.5570 0.5656
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Figure 52 – Amplitude scalograms of the transversal response of the structure in steady-
state regime. (a) FEM solution. (b) Numerical integration of ROM2,1. (c)
Numerical integration of ROM2,2. (d) Numerical integration of ROM2,3.

(a)

(b) (c) (d)

Source: Vernizzi, Lenci & Franzini (2022)

Comparing the adherence of ROM2,3 with ROM1,3 it is clear that the enrichment
of the projection basis by using more modes of vibration leads to more accurate results,
being them on wave-patterns, maximum amplitudes or instantaneous configurations. It is
important to notice however, that such improvements are not translated to the other two
cases of top motion interpolation functions. This indicates that there is something more
that is necessary for a good representation using ROMs based on the Galerkin scheme
than just an enlargement of the projection basis until convergence is acquired. In order
to settle the question regarding that aspect, the results of ROMs3,j are now investigated,
starting with the scalograms in Fig. 55.

With the latter results, it is clear that the increase in the number of projection
functions can enhance the obtained results, but it does not necessarily ensure convergence
to a correct solution. Evaluating first what occurs when using types 1 and 2 of top motion
interpolation functions, it is possible to see that the motion amplitude is somewhat close to
the reference, but the wave pattern and the position at which the maximum displacement
occurs are definitely not the same. Considering the third type of top motion interpolation,
the result presents a better adherence, yet it is still worse than the one presented by
ROM2,3. Again, for a more detailed analysis of the results, the time series and phase-space



5.4. Comparison between approaches 163

Figure 53 – Time series and phase-space portraits comparison between ROM2,3 (Black
lines with circle markers) and the FEM (blue line without markers) solution
for a top motion amplitude of 1m. a) Time series for the cross-section at
s/L = 0.8. b) Phase-space portrait for the cross-section at s/L = 0.8. c)
Time series for the cross-section at s/L = 0.6. d) Phase-space portrait for the
cross-section at s/L = 0.6. e) Time series for the cross-section at s/L = 0.4.
f) Phase-space portrait for the cross-section at s/L = 0.4. g) Time series for
the cross-section at s/L = 0.2. h) Phase-space portrait for the cross-section at
s/L = 0.2.
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Figure 54 – Snapshots of the structural configuration for a reference instant correspondent
to the occurrence of a peak in the response of the cross-section at s/L =
0.2 (lines without markers), an instant occurring 1/8 of the period of the
structural response (lines with diamond markers) after the reference, and
an instant occurring 1/4 of the period of the structural response (lines with
diamond markers) after the reference. Comparison between FEM solution
(blue continuous line) with ROM2,3 (black dotted line).

-2 -1 0 1

0

0.2

0.4

0.6

0.8

1

Source: Vernizzi, Lenci & Franzini (2022)

portraits of different cross-sections are shown in Fig. 56, the maximum observed amplitudes
are shown in Tab. 22, and the snapshots in chosen instants are brought in Fig. 57

Table 22 – Comparison between the FEM and ROM3,3 results for the maximum amplitude
of motion at different cross-sections. Results in meters.

s/L FEM ROM3,3
0.2 1.5165 1.4553
0.4 1.2470 1.2579
0.6 0.9074 0.8998
0.8 0.5570 0.5656

The results confirm that ROM3,3 is able to furnish good values for the maximum
displacement amplitudes when the whole length of the cable is considered, but when
particular points are taken, it becomes clear that such values are obtained in the wrong
positions. The combination of the exposed results allows some conclusions to be drawn. The
first one is that the interpolation functions concerning the imposed top motion play a major
role on the success of the conceived ROMs, with a greater number of projection functions
not being able to correct the flaws introduced by a poor choice of such interpolation
functions. The second one is that by opting for a simpler format of the projection function,
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Figure 55 – Amplitude scalograms of the transversal response of the structure in steady-
state regime. (a) FEM solution. (b) Numerical integration of ROM3,1. (c)
Numerical integration of ROM3,2. (d) Numerical integration of ROM3,3.

(a)

(b) (c) (d)

Source: Vernizzi, Lenci & Franzini (2022)

a significant amount of spatial representation quality is lost, not being recovered with the
effort of using a larger number of projection functions. This highlights the importance of a
qualitative analysis of the projection basis adopted when conceiving ROMs via projection
methods and how the matter of accuracy of such models cannot be simply solved with
larger models, even with the chosen basis being able to recover modal features. Recall
that set (iii) is able to satisfactorily recover the frequency and shape of the first vibration
mode, which is the main mode under excitation in this analysis.

With the conclusions about the importance of the interpolation functions for the
top motion transmission settled, the analysis can move to further investigations, now
taking into account only models of the form ROMi,3. It has been mentioned so far that
the frequency of the resulting motion is adequately recovered by the ROMs by means of a
visual inspection over the obtained time series. In order to further clarify this reading, the
spectral content of the solution for the different models are shown in Figs. 58 to 61.

It is possible to visualize that in all cases the spectra are concentrated around the
region of the natural frequency of the first mode, indicating that the conclusion stated
beforehand about the good recovering of the response frequency is actually correct. Notice
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Figure 56 – Time series and phase-space portraits comparison between ROM3,3 (Magenta
lines with square markers) and the FEM (blue line without markers) solution
for a top motion amplitude of 1m. a) Time series for the cross-section at
s/L = 0.8. b) Phase-space portrait for the cross-section at s/L = 0.8. c)
Time series for the cross-section at s/L = 0.6. d) Phase-space portrait for the
cross-section at s/L = 0.6. e) Time series for the cross-section at s/L = 0.4.
f) Phase-space portrait for the cross-section at s/L = 0.4. g) Time series for
the cross-section at s/L = 0.2. h) Phase-space portrait for the cross-section at
s/L = 0.2.
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Figure 57 – Snapshots of the structural configuration for a reference instant correspondent
to the occurrence of a peak in the response of the cross-section at s/L =
0.2 (lines without markers), an instant occurring 1/8 of the period of the
structural response (lines with diamond markers) after the reference, and
an instant occurring 1/4 of the period of the structural response (lines with
diamond markers) after the reference. Comparison between FEM solution
(blue continuous line) with ROM3,3 (magenta dash-dot line).
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Figure 58 – Spanwise amplitude spectra along the cable length considering the FEM
solution for a top motion amplitude of 1m, with the frequency normalized by
the natural frequency of the first vibration mode f0.

Source: Vernizzi, Lenci & Franzini (2022)



168 Chapter 5. Curved cables under support excitation

Figure 59 – Spanwise amplitude spectra along the cable length considering the ROM1,3
solution for a top motion amplitude of 1m, with the frequency normalized by
the natural frequency of the first vibration mode f0.

Source: Vernizzi, Lenci & Franzini (2022)

Figure 60 – Spanwise amplitude spectra along the cable length considering the ROM2,3
solution for a top motion amplitude of 1m, with the frequency normalized by
the natural frequency of the first vibration mode f0.

Source: Vernizzi, Lenci & Franzini (2022)

however that all the ROMs filter the spectral content in this region, while the FEM
simulations present results with a broad band of frequency contribution. The origin of such
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Figure 61 – Spanwise amplitude spectra along the cable length considering the ROM3,3
solution for a top motion amplitude of 1m, with the frequency normalized by
the natural frequency of the first vibration mode f0.

Source: Vernizzi, Lenci & Franzini (2022)

result is likely due to the fact that the transmission of the top motion does not occur in a
quasi-static manner, but in reality by means of travelling waves advancing along the cable
length. This also contributes to explain the small differences in the geometrical response
of the ROMs compared to the FEM solution, even for the best scenario obtained with
ROM2,3.

So far, all the results were restrained to the case of 1m of top motion amplitude. It
is now necessary to address the capability of the ROMs to reproduce results considering
larger excitations. As made for the spectral analysis, only models of the type ROMsi,3 are
considered to that end. For the scenario of a top motion of 3m the resulting scalograms
are shown in Figs. 62 to 65. In turn, Figs. 66 to 69 bring the analogous results for a top
motion amplitude of 5m.

In order to obtain a clearer visualization for the best performing model, ROM2,3,
the time series and phase-space portraits for selected cross-sections are shown in Figs. 70
and 71 for the scenarios of 3m and 5m of top motion amplitude respectively.

From the scalograms it is clear that all the explored ROMs have a good degree of
agreement with the reference, being the best result furnished by ROM2,3 and the worst by
ROM3,3, with the major difference being in the spatial reconstruction of the displacement
field. Notice also that, as the top motion amplitude is increased, more differences in wave
pattern start to appear in all the ROMs. This can be due to the greater importance of
the travelling waves that transfer the top motion effects, which are not reproduced in
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Figure 62 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 3m, FEM solution.

Source: Vernizzi, Lenci & Franzini (2022)

Figure 63 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 3m, ROM1,3 solution.

Source: Vernizzi, Lenci & Franzini (2022)

the approach taken for the ROM construction. Checking the selected cross-sections, it is
possible to notice that, although the scalograms reveal a mismatch in the wave-pattern, in
general ROM2,3 is able to furnish an adequate representation of the displacements along
the structural length. The results also let clear that for larger top motion amplitudes, a
further enrichment of the ROM would be necessary. Considering the conclusions made so
far, such enrichment should be focused on the top motion interpolation functions.

Complementing the results shown, the maximum achieved amplitude considering
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Figure 64 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 3m, ROM2,3 solution.

Source: Vernizzi, Lenci & Franzini (2022)

Figure 65 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 3m, ROM3,3 solution.

Source: Vernizzi, Lenci & Franzini (2022)

the different models, disregarding the position in which they occur, are shown in Fig. 72
as a function of the impose top motion amplitude. Aside the simulations results, the figure
also presents the response curve obtained with the proposed iterative solution using the
MMTS.

The maximum values are often valuable for design purposes. To that end, it is clear
that all the ROMs presented suitable results. Care must be taken, however, when such
results are converted to other properties such as strain, since for that the shape of the
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Figure 66 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 5m, FEM solution.

Source: Vernizzi, Lenci & Franzini (2022)

Figure 67 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 5m, ROM1,3 solution.

Source: Vernizzi, Lenci & Franzini (2022)

cable is of major importance. Notice as well that the proposed solution with the MMTS
closely follows ROM1,3, which is the model over which it is based. Another remark is that
all the conclusions about the behaviour of ROM1,3 can be extended to the MMTS solution,
since the only difference in both of them is in how to obtain the steady-state amplitude
of the involved DOF, while the displacement field in both cases is essentially the same.
The advantage of the MMTS solution is that it can furnish the steady-state solution with
less computational effort than the integration of the corresponding ROM. This ability
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Figure 68 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 5m, ROM2,3 solution.

Source: Vernizzi, Lenci & Franzini (2022)

Figure 69 – Amplitude scalogram of the transversal response of the structure in steady-
state regime considering a top motion amplitude of 5m, ROM3,3 solution.

Source: Vernizzi, Lenci & Franzini (2022)

however, is limited to the number of DOFs of the associated ROM. The iterative method
quickly becomes inefficient as the number of DOFs increase. Those results reinforce the
importance of obtaining the minimal ROM with enough representation quality, which is
achieved by a deep investigation on how to form the projection basis itself.

Another important aspect regarding the ROMs concerns their computational
advantage over larger models such as the ones based on the FEM. To show how each of the
conceived ROMs behave in that sense, Tab. 23 brings the simulation times necessary for



174 Chapter 5. Curved cables under support excitation

Figure 70 – Time series and phase-space portraits comparison between ROM2,3 (Black
lines with circle markers) and the FEM (blue line without markers) solution
for a top motion amplitude of 3m. a) Time series for the cross-section at
s/L = 0.8. b) Phase-space portrait for the cross-section at s/L = 0.8. c)
Time series for the cross-section at s/L = 0.6. d) Phase-space portrait for the
cross-section at s/L = 0.6. e) Time series for the cross-section at s/L = 0.4.
f) Phase-space portrait for the cross-section at s/L = 0.4. g) Time series for
the cross-section at s/L = 0.2. h) Phase-space portrait for the cross-section at
s/L = 0.2.

Source: Vernizzi, Lenci & Franzini (2022)

the integration of each model. All the simulations where carried out in the same standard
microcomputer with a 7th generation i7 processor.
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Figure 71 – Time series and phase-space portraits comparison between ROM2,3 (Black
lines with circle markers) and the FEM (blue line without markers) solution
for a top motion amplitude of 5m. a) Time series for the cross-section at
s/L = 0.8. b) Phase-space portrait for the cross-section at s/L = 0.8. c)
Time series for the cross-section at s/L = 0.6. d) Phase-space portrait for the
cross-section at s/L = 0.6. e) Time series for the cross-section at s/L = 0.4.
f) Phase-space portrait for the cross-section at s/L = 0.4. g) Time series for
the cross-section at s/L = 0.2. h) Phase-space portrait for the cross-section at
s/L = 0.2.

Source: Vernizzi, Lenci & Franzini (2022)

From the computational effort point of view, the advantage of the ROMs is clear.
More than that, it is easy to see how the smallest ROM can present a significant economy
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Figure 72 – Comparison of the maximum transversal displacement along the cable length
for the case of 1:1 resonance as a function of the imposed motion amplitude.
All curves consider the third type of top motion interpolation (quasi-static
solution).
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Table 23 – Time spent for the numerical simulation of one single scenario for each approach
investigated.

Model Time spent [s]
FEM 744.95

ROM1,3 0.14
ROM2,3 0.43
ROM3,3 8.20

in the necessary time of simulation, specially if a large number of scenarios is scheduled to
take place in a design process.

A final aspect that is now explored is the capability of a ROM to recover qualitatively
good results considering top motion frequencies not exactly tuned in the 1:1 resonance.
To that end, ROM1,3 is simulated for some pairs of top motion amplitude and frequency,
with the results being compared to FEM solutions in Fig. 73. It is possible to visualize
that the ROM is able to maintain a consistent adherence to the numerical reference under
the tested frequency variation.
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Figure 73 – Comparison of the maximum transversal displacement along the cable length
between the FEM and the ROM1,3 solutions as a function of the imposed
motion frequency for three different top motion amplitudes.
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6 Vertical and straight flexible rods under
vortex-induced vibrations

This chapter brings investigations regarding the problem of vertical, straight and
flexible rods immersed in fluid under the action of VIV. This scenario is typical in offshore
engineering, being usually associated with fatigue analysis due to the always existing sea-
currents and the resonant characteristics of VIV. The development of minimal models that
can accurately represent the problem is of great interest for design aid in this case, since
simulations with high hierarchical models including the FSI can be very time consuming.

Along the chapter, different ROMs based on the Galerkin projection are investigated
for the problem. As made for the case of parametric excitations, the models are evaluated
in terms of the necessary number of projection functions against the complexity of such
functions in order to well represent the problem. In the sequel, after defining a minimal
ROM to represent the dynamical problem, a systematic way of obtaining nonlinear modes
for this particular problem is presented, in order to further reduce the number of DOFs in
the ROM, thus reducing even more the computational effort of evaluating it.

The results within this chapter where motivated by an initial study presented in the
“XVIII International Symposium on Dynamic Problems of Mechanics” (DINAME2019),
and were presented in the first edition of the “International Conference on Nonlinear
Solid Mechanics” (ICoNSoM2019) and in the “International Conference on Engineering
Vibration, 2020” (ICoEV2020).

6.1 Mathematical model

The problem now under investigation is that of a vertical and flexible cylinder,
pinned at both ends, under the action of a sea current with velocity U∞. This model is
illustrated in Fig. 74. The structure has structural mass and the added mass per unit
length given by µ and µa respectively. The products of axial and bending stiffness are given
by EA and EI, respectively, the length is given by ℓ and the immersed weight by γs. The
Cartesian reference frame is also shown in Fig. 74, with the Y axis being orthogonal to the
plane of the figure, forming a positive system XY Z, with the corresponding displacements
being given as U , V and W respectively.

The structure is also considered to be under the action of a previously applied
tension, given by T (0) = Tb at the bottom, resulting in a distribution along the length
given by Eq. (6.1)
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Figure 74 – Basic sketch for the studied problem.

Source: The author.

T (Z) = Tb + γsZ. (6.1)

Considering the spatial vibrations case, the equations of motion for the problem
can be obtained from Eqs. (3.47) to (3.50) with the addition of terms to represent the VIV,
which is herein made via a phenomenological approach, and the immersed weight. Let
then the forces acting on the structure due to VIV to be represented by fx and fy in the X
and Y directions respectively. No forcing is considered in the axial direction, implying in
fz = −γs. This is made since any term in such direction is caused by skin friction, which
is much smaller than the effects at the directions orthogonal to the structure’s axis. The
equations of motion become

(µ+ µa) Ü + EIU ′′′′ − EA

(
U ′
(
W ′ + (U ′)2

2 + (V ′)2

2

))′

= fx, (6.2)

(µ+ µa) V̈ + EIV ′′′′ − EA

(
V ′
(
W ′ + (U ′)2

2 + (V ′)2

2

))′

= fy, (6.3)

µẄ − EA

(
W ′ + (U ′)2

2 + (V ′)2

2

)′

+ γs = 0. (6.4)

Notice that the torsional DOF is not present in the equations. This is simply
obtained by considering that the term θ′

z is of the same order as V ′2 and U ′2. With such
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hypothesis1, the torsional problem decouples from the other ones when terms up to the
cubic order are considered.

Now, prior to continuing with the development, it is important to recall that the
static displacements at the axial direction caused by the applied tension will generate
linear stiffness terms in the transversal equations. In order to obtain such terms, the axial
displacement is decomposed in W = Ws + Wd, where Ws and Wd are, respectively, the
static and dynamic portions of the total axial displacement. This static displacement is
simply given as

Ws = TbZ

EA
+ γsZ

2

2EA, (6.5)

which leads to the equations of motion to be written as

(µ+ µa) Ü + EIU ′′′′ − ((Tb + γsZ)U ′)′ − EA

(
U ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

= fx,

(6.6)

(µ+ µa) V̈ + EIV ′′′′ − ((Tb + γsZ)V ′)′ − EA

(
V ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

= fy,

(6.7)

µẄd − EA

(
W ′

d + (U ′)2

2 + (V ′)2

2

)′

= 0. (6.8)

The next step is to incorporate the phenomenological model to the structural
equations of motion. This process consists of defining new variables, each with its own
equation of motion, and how such variables are used to describe the loads fx and fy. Three
different possibilities are explored in this thesis, one for planar and two for three-dimensional
vibrations, each of them being described in the following.

6.1.1 Planar vibrations model

The first model considered is that of planar vibrations of the structure, considering
that it is somehow restricted to vibrate only in the Y direction. As a consequence, in
this model the in-line displacement is considered as U = 0. For the phenomenological
model, the one presented in Facchinetti, de Langre & Biolley (2004) is adapted. The model
consists of a variable named "wake variable", denoted by q, which obeys a Van der Pol
1 Such hypothesis must be carefully evaluated according to the structure under investigation. In this

thesis the focus lies on very long structures and in the absence of direct torsional loads, which allows
the use of the hypothesis. Another possibility of breaking that hypothesis include the cases where
internal resonances between torsional and transversal modes occur.
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equation with a forcing term proportional to the acceleration of the structure. Herein the
wake variable q is considered as a continuous variable along the length of the structure.
The only forcing term is then given by

fy = 1
2ρU

2
∞DC

0
L

q

q
− CD

4πSt

ωsρD
2V̇ , (6.9)

leading to the equations of motion

(µ+ µa) V̈ + EIV ′′′′ − ((Tb + γsZ)V ′)′ − EA

(
V ′
(
W ′

d + (V ′)2

2

))′

+ CD

4πSt

ωsρD
2V̇ = 1

2ρU
2
∞DC

0
L

q

q
, (6.10)

µẄd − EA

(
W ′

d + (V ′)2

2

)′

= 0, (6.11)

q̈ + εyωs

(
q2 − 1

)
q̇ + ω2

sq =
Ay

D
V̈ . (6.12)

In the equations, CD is the mean drag coefficient of the cross section, St is the
Strouhal number, ρ is the specific mass of the surrounding fluid, D is the external diameter
of the structure, C0

L is the oscillation amplitude of the lift coefficient of a stationary
cylinder, q = 2 is the amplitude of steady-state regime of the Van der Pol oscillator, ωs is
the vortex shedding frequency, while Ay and εy are experimentally calibrated coefficients.
Some details concerning the adopted model must be mentioned. The first one is that the
phenomenological model and its parameters were calibrated for a rigid cylinder mounted
on an elastic base. The use of this model for a continuous structure is a stretch of its
capabilities and calibration. However, this model is still able to reproduce some qualitative
aspects of the phenomenon, which is already considered enough for the objective of this
thesis that is to investigate ROMs obtained from a mathematical model written as a
system of PDEs. This discussion is retaken in detail in the conclusions.

Giving sequence to the mathematical modelling, Eqs. (6.10) to (6.12) are made
dimensionless with some variable definitions. First, the space and time coordinates as
well as the displacements are made dimensionless by defining ξ = Z/ℓ, τ = ωnt, v = V/D

and w = Wd/D. The natural frequency ωn is the one expected to be excited in the
lock-in condition, chosen accordingly to each problem. The definitions for the reduced
velocity, Ur = U∞2π/ωnD and the relation between the natural and shedding frequencies
ωs = ωnUrSt are also necessary. With such definitions and some algebraic manipulations,
the equations of motion become
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v̈ + ρD2CDUr

4π (µ+ µa) v̇ + EIv′′′′

(µ+ µa)ω2
nℓ

4 − (Tb + γsℓξ) v′′

(µ+ µa)ω2
nℓ

2 − γsv
′

(µ+ µa)ω2
nℓ

−
EAD

(
w′v′′ + w′′v′ + 3D

2ℓ
(v′)2 v′′

)
(µ+ µa)ω2

nℓ
3 = ρC0

LU
2
rD

2

16π2 (µ+ µa)q, (6.13)

ẅ − EA

µω2
nℓ

2

(
w′′ + D

ℓ
v′v′′

)
= 0, (6.14)

q̈ + ϵUrSt

(
q2 − 1

)
q̇ + (UrSt)

2 q = Ayv̈. (6.15)

Without loss of comprehensiveness, the dots and primes are kept as indicative of
derivatives, but with respect to the dimensionless time and length when dimensionless
equations are considered. This system of dimensionless equations can then be solved using
different approaches, which will be discussed later in this chapter.

6.1.2 Spatial vibrations with a single wake variable VIV model

In this model, the structure is let free to oscillate in the X direction as well,
liberating it to perform 3D motions. In what concerns the phenomenological model,
different approaches may be used. In this thesis, a single wake variable is kept and the
oscillations of the drag coefficient are not taken into account. This model is incomplete
from the phenomenological point of view, since fluctuations of the drag coefficient do occur.
Still, this is made without loss of generality of the investigations carried out in this thesis,
with further refinements of the phenomenological model itself being left to future works. In
order to proceed with this model, the relative velocity between the surrounding fluid and
the structure must be properly written, accounting the three-dimensional characteristics of
the motion. This is needed in order to write the lift and drag forces and later decompose
them in the directions in which the equations of motion are written. Consider then the
geometrical description of the involved velocities made in Fig. 75.

Figure 75 – Relative velocity composition

Source: The author.
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By performing vectorial algebra over the elements present in Fig. 75, it is possible
to obtain that

cos β = U∞ − U̇

Ut

, (6.16)

sin β = −V̇
Ut

, (6.17)

Ut =
√(

U∞ − U̇
)2

+ V̇ 2. (6.18)

Using classical expressions for the drag and lift forces, it is then possible to write
fx and fy as

fx = 1
2ρU

2
t D (−CL sin β + CD cos β) , (6.19)

fy = 1
2ρU

2
t D (CL cos β + CD sin β) . (6.20)

The lift and drag coefficients in Eqs. (6.19) and (6.20) are written in generic form.
When the particular model herein adopted is considered, they are respectively given as
CL = C0

Lq/q and CD = CD. With the hydrodynamic forces defined, the equations of
motion are given by

(µ+ µa) Ü + EIU ′′′′ − ((Tb + γsZ)U ′)′ − EA

(
U ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

= 1
2ρD

√(
U∞ − U̇

)2
+ V̇ 2

(
CLV̇ + CD

(
U∞ − U̇

))
, (6.21)

(µ+ µa) V̈ + EIV ′′′′ − ((Tb + γsZ)V ′)′ − EA

(
V ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

= 1
2ρD

√(
U∞ − U̇

)2
+ V̇ 2

(
CL

(
U∞ − U̇

)
− CDV̇

)
, (6.22)

µẄd − EA

(
W ′

d + (U ′)2

2 + (V ′)2

2

)′

= 0, (6.23)

q̈ + εyωs

(
q2 − 1

)
q̇ + ω2

sq =
Ay

D
V̈ . (6.24)

The presence of the square roots in the forcing terms is an issue for the subsequent
definition of ROMs, since it would require them to be evaluated at each time-step of
simulation. As a simplification, the square roots are expanded in series so the resulting
expressions for the forcing terms are correct up to first order. This is done so the resulting
model is analogous to the one used for the planar vibrations and can have the necessary
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integrals of the Galerkin projection to be evaluated only once. It is important to mention
now that the nonlinearity simplified by this procedure is the Morison term2. The reader
may recall that this term is of fundamental importance in the definition of the steady-state
regime in the case of parametric excitations, and it is known that its linear form cannot
represent this qualitative behaviour. In the case now at hand, however, the steady-state
regime is ensured by the coupling with the Van der Pol equation, with the impact of the
Morison term on its full form being more of a quantitative than a qualitative importance.
Using the proposed expansion, it then follows that

(µ+ µa) Ü + EIU ′′′′ − ((Tb + γsZ)U ′)′ − EA

(
U ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

=

ρDCDU
2
∞

2 − ρDCDU∞U̇ , (6.25)

(µ+ µa) V̈ + EIV ′′′′ − ((Tb + γZ)V ′)′ − EA

(
V ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

=

ρDC0
LU

2
∞q

4 − ρDCDU∞V̇

2 , (6.26)

µẄd − EA

(
W ′

d + (U ′)2

2 + (V ′)2

2

)′

= 0, (6.27)

q̈ + εyωs

(
q2 − 1

)
q̇ + ω2

sq =
Ay

D
V̈ . (6.28)

Now, recalling the dimensionless variables ξ = Z/ℓ, τ = ωnt, v = V/D and
w = Wd/D, with the inclusion of u = U/D, the equations of motion can be written as

ü+ ρD2CDUr

2π (µ+ µa) u̇+ EIu′′′′

(µ+ µa)ω2
nℓ

4 − (Tb + γsℓξ)u′′

(µ+ µa)ω2
nℓ

2 − γsu
′

(µ+ µa)ω2
nℓ

−
EAD

(
w′u′′ + w′′u′ + D

2ℓ

(
3 (u′)2 u′′ + 2v′v′′u′ + (v′)2 u′′

))
(µ+ µa)ω2

nℓ
3 = ρD2CDU

2
r

8π2 (µ+ µa) , (6.29)

v̈ + ρD2CDUr

4π (µ+ µa) v̇ + EIv′′′′

(µ+ µa)ω2
nℓ

4 − (Tb + γsℓξ) v′′

(µ+ µa)ω2
nℓ

2 − γsv
′

(µ+ µa)ω2
nℓ

−
EAD

(
w′v′′ + w′′v′ + D

2ℓ

(
2u′u′′v′ + (u′)2 v′′ + 3 (v′)2 v′′

))
(µ+ µa)ω2

nℓ
3 = ρC0

LU
2
rD

2

16π2 (µ+ µa)q,

(6.30)

ẅ − EA

µω2
nℓ

2

(
w′′ + D

ℓ
(u′u′′ + v′v′′)

)
= 0, (6.31)

q̈ + εyUrSt

(
q2 − 1

)
q̇ + (UrSt)

2 q = Ayv̈. (6.32)

Notice that the terms from the phenomenological model in Eq. (6.30) are exactly
the same as the ones in Eq. (6.13).
2 This is recognized by noticing that for a generic function f it results that f

√
f2 = f |f |.
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6.1.3 Spatial vibrations with two wake variables VIV model

Finally, a model with two DOF to represent the wake dynamics is presented. This
model is an extension of the one present in Franzini & Bunzel (2018) to the continuum, in
the same fashion as it was made for the one DOF case. Now, the drag coefficient can be
modelled in accordance with its observed physical behaviour. Naming qy the variable for
the wake in the Y direction and qx the analogous in the X direction. The lift and drag
coefficients are then given as

CL = C0
L

qy

qy

= C0
L

qy

2 , (6.33)

CD = CD + C0
D

qx

qx

= C + C0
D

qx

2 . (6.34)

For this case, Eqs. (6.21) to (6.24) are still valid to model the structure, however,
a new oscillator must be added to the system, given by

q̈x + 2εxωs

(
q2 − 1

)
q̇x + (2ωs)

2 qx = Ax

D
Ü. (6.35)

Expanding the square roots in polynomial series and keeping in the equation only
the resulting linear terms, the equations of motion can be written as

(µ+ µa) Ü + EIU ′′′′ − ((Tb + γsZ)U ′)′ − EA

(
U ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

=

ρDCDU
2
∞

2 + ρDC0
DU

2
∞qx

4 − ρDCDU∞U̇ , (6.36)

(µ+ µa) V̈ + EIV ′′′′ − ((Tb + γsZ)V ′)′ − EA

(
V ′
(
W ′

d + (U ′)2

2 + (V ′)2

2

))′

=

ρDC0
LU

2
∞qy

4 − ρDCDU∞V̇

2 , (6.37)

µẄd − EA

(
W ′

d + (U ′)2

2 + (V ′)2

2

)′

= 0, (6.38)

q̈y + εyωs

(
q2

y − 1
)
q̇y + ω2

sqy =
Ay

D
V̈ , (6.39)

q̈x + 2εxωs

(
q2

x − 1
)
q̇x + (2ωs)

2 qx =
Ay

D
Ü. (6.40)

Using now the dimensionless variables already defined, the equations of motion can
be rewritten as
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ü+ ρD2CDUr

2π (µ+ µa) u̇+ EIu′′′′

(µ+ µa)ω2
nℓ

4 − (Tb + γsℓξ)u′′

(µ+ µa)ω2
nℓ

2 − γsu
′

(µ+ µa)ω2
nℓ

−EAD
(
w′u′′ + w′′u′ + D

2ℓ

(
3 (u′)2 u′′ + 2v′v′′u′ + (v′)2 u′′

))
(µ+ µa)ω2

nℓ
3 = F0 + ρD2U2

rC
0
Dqx

16π2 (µ+ µa) ,

(6.41)

v̈ + ρD2CDUr

4π (µ+ µa) v̇ + EIv′′′′

(µ+ µa)ω2
nℓ

4 − (Tb + γsℓξ) v′′

(µ+ µa)ω2
nℓ

2 − γsv
′

(µ+ µa)ω2
nℓ

−
EAD

(
w′v′′ + w′′v′ + D

2ℓ

(
2u′u′′v′ + (u′)2 v′′ + 3 (v′)2 v′′

))
(µ+ µa)ω2

nℓ
3 = ρC0

LU
2
rD

2

16π2 (µ+ µa)qy,

(6.42)

ẅ − EA

µω2
nℓ

2

(
w′′ + D

ℓ
(u′u′′ + v′v′′)

)
= 0, (6.43)

q̈y + εyUrSt

(
q2

y − 1
)
q̇y + (UrSt)

2 qy = Ayv̈, (6.44)

q̈x + 2εxUrSt

(
q2

x − 1
)
q̇x + (2UrSt)

2 qx = Axü. (6.45)

The constant drag force per unit length F0 is given by

F0 = ρD2U2
rCD

8π2 (µ+ µa) . (6.46)

With this, the definition of continuous models in the scope of this research is
complete.

6.2 Definition of Reduced-order models for vertical beams under
vortex-induced vibrations
The next step of the investigation is the definition of ROMs for the analysis of

the problem at hand. In this research, they are obtained by using a Galerkin projection
on the equations of motion. Observing Eqs. (6.29) and (6.30), it is possible to see that
the equations in the directions X and Y have the same mathematical structure. With
that in mind, the investigation concerning the quality of different ROMs is made for the
case of planar motion for simplicity. To that end, let four different ROMs to be conceived,
differing from each other by the set of functions as projection basis for the transversal
motion. Again, the advantage of more complex functions over simpler ones is investigated.
Recalling that the Bessel-like functions given in Mazzilli, Lenci & Demeio (2014) are a
good approximation for the transversal vibration modes of vertical structures under a
tension that varies linearly in the structural length, two of the ROMs are conceived with
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such functions. Let then ROM(i) be written in terms of a single Bessel-like function, while
ROM(ii) uses three of such functions. In addition, as made for the case of parametric
excitations, let ROM(iii) and ROM(iv) to be written in terms of trigonometric functions,
with the former using one function and the latter using three. In what concerns the axial
direction, a single trigonometric function is used in all the ROMs. Notice that the axial
vibration modes are actually given by sine functions.

The question that now arises is how to define a projection function for the wake-
variable. Recalling that VIV is a resonant phenomenon and that an oscillator synchronism
exist between the structural motion and the vortex shedding in the lock-in condition, a
reasonable trial is to use for the wake-variable the same projection as for the transversal
motion. With all the basis defined, the trial expansion for the Galerkin projection is given
as

u (ξ, τ) = ϕ (ξ)w1 (τ) , (6.47)
v (ξ, τ) =

∑
i

ψi (ξ) vi (τ) , (6.48)

q (ξ, τ) =
∑

i

ψi (ξ) qi (τ) . (6.49)

Where ϕi and ψi are the projection functions for the axial and transversal directions
respectively. With some algebraic work the ROMs with a single function in the transversal
direction can be written as

ẅ1 + α1w1 + α2v
2
1 = 0, (6.50)

v̈1 + Urβ1v̇1 + β2v1 + β3wv1 + β4v
3
1 + U2

r β5q1 = 0, (6.51)
q̈1 + Urζ1q̇1 + Urζ2q

2
1 q̇1 + U2

r ζ3q1 + ζ4v̈1 = 0, (6.52)

with αj, βj and ζj being constants resulting from the projection integrals, with different
values accordingly to each ROM. In the sequel, the ROMs for the cases of three different
functions in the transversal direction composing the displacement field can be written in
the form
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ẅ + α1,1w + α1,2v
2
1 + α1,3v

2
2 + α1,4v

2
3 + α1,5v1v2 + α1,6v1v3 + α1,7v2v3 = 0, (6.53)

v̈i + Urβi,1v̇i + βi,2v1 + βi,3v2 + βi,4v3 + βi,5v
3
1 + βi,6v

2
1v2 + βi,7v

2
1v3 + βi,8v1v

2
2

+ βi,9v1v2v3 + βi,10v1v
2
3 + βi,11v

3
2 + βi,12v

2
2v3 + βi,13v2v

2
3 + βi,14v

3
3 + βi,15wv1

+ βi,16wv2 + βi,17wv3 + U2
r βi,18qi = 0, (6.54)

q̈i + Urζi,1q̇i + Urq
2
1

(
ζi,2q̇1 + ζi,3q̇2 + ζi,4q̇3

)
+ Urq

2
2

(
ζi,5q̇1 + ζi,6q̇2 + ζi,7q̇3

)
+ Urq

2
3

(
ζi,8q̇1 + ζi,9q̇2 + ζi,10q̇3

)
+ Urq1q2

(
ζi,11q̇1 + ζi,12q̇2 + ζi,13q̇3

)
+ Urq1q3

(
ζi,14q̇1 + ζi,15q̇2 + ζi,16q̇3

)
+ Urq2q3

(
ζi,17q̇1 + ζi,18q̇2 + ζi,19q̇3

)
+ U2

r ζi,20qi + ζi,21v̈i = 0, (6.55)

with the index i varying from 1 to 3 to form the complete set of ODEs.

In order to evaluate the quality of each of the ROMs, they are integrated using a
fourth order Runge-Kutta scheme, using the native ode45 function in Matlab. A reference
condition to serve as comparison base for the results is obtained with a finite difference
scheme applied at the continuum equations of motion. Central differences are used in both
space and time discretization and the first two time-steps are given to the simulation in
order to obtain an explicit linear scheme. The structural properties of a real riser, extracted
from Sparks (2002), are presented in table 24. The parameters and properties required for
the wake-oscillator are presented in Tab. 25. These parameters are the ones used in all the
examples from now on, with any minor change being explicitly mentioned.

Table 24 – Structural properties of a flexible riser.

Property Value
(µ+ µa) 1200 kg/m
EI 318.6 × 106 Nm2

γs 3433.5 N/m
EA 8541.8 × 106 N
L 2000 m
D 0.5588 m
Tb 633000 N
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Table 25 – Properties for the fluid-structure interaction model adapted from Franzini &
Bunzel (2018).

Property Value
ρ 1025 kg/m3

CD 1.1856
C0

L 0.3842
St 0.1932
εy 0.05
Ay 4

The first comparison made is for the natural frequency obtained with each ROM.
To this end, a reference obtained with the finite element method (FEM) using Giraffe
is also presented. The natural frequencies for the first three modes are shown in Tab.
26. It is possible to verify that there is a very good agreement between the ROMs using
Bessel-like projection functions with the reference. It can also be seen that the ROMs
based on trigonometric functions have some discrepancy with the reference case, achieving
a relative difference of more than 10% for the frequency of the third mode.

Table 26 – Natural frequencies obtained for the modelled structure.

Mode Model Frequency (rad/s)
1 FEM 0.0788
1 ROM(i) 0.0786
1 ROM(ii) 0.0786
1 ROM(iii) 0.0914
1 ROM(iv) 0.0809
2 FEM 0.1598
2 ROM(ii) 0.1594
2 ROM(iv) 0.1692
3 FEM 0.2408
3 ROM(ii) 0.2402
3 ROM(iv) 0.2864

The next comparison made concerns the amplitude of response curve as function
of the reduced velocity Ur. This comparison is of fundamental importance for the VIV
analysis. In Fig. 76, the amplitude of response curves are shown for all the models, including
the finite difference reference, labelled “reference” in the figures from now on. In Fig.
77, only the ROMs with one projection function in the transversal direction are shown
together with the reference. Finally, in Fig. 78, the ROMs with three projection functions
in the transversal direction are shown together with the results obtained with the finite
differences method.
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Figure 76 – Amplitude of steady-state response as function of the reduced velocity for
different models. For the reference model, the motion of the point of maximum
displacement according to the locked-in mode is considered.
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Figure 77 – Amplitude of steady-state response as function of the reduced velocity for
different models.
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It is possible to see that the models based on Bessel-like functions are the ones with
better agreement. ROM(iv) has a good agreement in the lock-in of the first mode only,
but a similar quality can be achieved with ROM(i) with a single projection function in the
transversal direction. It is also possible to notice that the use of the same projection function
for the transversal motion and the wake variable seems adequate. Another characteristic
that is easily visible is that the ROMs have a maximum reduced velocity up to which they
produce suitable results. This is expected since greater values of Ur result in lock-in within
higher modes, not contained within the projection basis adopted. This highlights the
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Figure 78 – Amplitude of steady-state response as function of the relative velocity for
different models.
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importance of defining beforehand the expected range of solicitation in order to conceive
smaller ROMs. Another feature present in the reference solution are “spikes” of amplitude
in certain narrow bands of Ur. To clarify why this happens further analysis are carried-out.

Considering the clear disadvantage of using the trigonometric functions in the
projection for this case, the next analysis are carried out only with ROMs (i) and (ii).
Focus is made in the transition zones of response, near amplitude jumps. To that end,
consider the range of reduced velocities shown in Fig. 79. In the figure, four values of Ur

are also indicated by black vertical lines, being them Ur = 8.6, Ur = 20.6, Ur = 22.0 and
Ur = 25.0. A more detailed investigation is now carried for such values.

Beginning with the case of Ur = 8.6, the analysis is made by means of the spectral
content of the response obtained by the different models. The spectral content of the
response obtained with ROMs (i) and (ii), as well as for the reference solution, can be
seen in Fig. 80.

By checking the values in Tab. 26, it is possible to see that the natural frequencies
of the structure follow an almost linear relation with the mode number. That said, the
spectral content in Fig. 80 clearly shows that, for Ur = 8.6, both ROM (ii) and the
reference solution obtain a response concentrated on the second mode of vibration. This
mode is not included in ROM (i), which is then unable to predict the dominance of the
lock-in of the second mode over that of the first mode. This however does not diminish
the value of ROM (i), since, as it can be seen in detail in Fig. 77, this model is able to
give a good prediction of the structural response on the entire region where the first mode
response dominates the dynamics. In a design scenario where such a region is of interest,
this ROM is clearly suitable for analysis.
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Figure 79 – Amplitude of steady-state response as function of the relative velocity for
different models. For the reference model, the motion of the point of maximum
displacement according to the locked-in mode is considered.
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Figure 80 – Spectrum components comparison between different models for Ur = 8.6.
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Another feature present in the spectral content is the apparent filtering of frequencies
in the ROMs results. This is likely due to the adoption of the same projection functions for
the transversal displacements and the wake variable, whereas in the reference solution the
wake variable can give responses as governed by its ruling equation without spatial shape
restrictions. This filtering in the response frequency is also able to justify the difference
that exists between the reference and ROM (ii) in terms of the steady-state amplitude.

Following, the case of Ur = 20 is investigated, where the first spike in the amplitude
response can be noticed in the reference solution, while the ROM is unable to recover such
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behaviour. The spectral content of the responses given by the reference and ROM (ii) are
shown in Fig. 81.

Figure 81 – Spectrum components comparison between different models for Ur = 20.
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In this case, two aspects deserve attention. The first one is that, in the reference
solution, a significant contribution from the fourth mode of vibration is present. This is
one of the factors that contributes to the discrepancy of the ROM, since the latter does
not possess the fourth mode in its conception. The second aspect is that there is some
contribution of the second mode in the reference solution that is not present in the ROM
solution, even though the ROM possess the second mode on its basis. This exhibits again
the filtering behaviour of the conceived ROMs, which in turn shows that such spikes in
the amplitude response cannot be recovered by them, at least using the projection basis
herein defined. Complementing this analysis, consider the phase space diagram in Fig. 82.
It is interesting to notice that, although ROM (ii) is unable to capture the multi-frequency
response, it obtained a trajectory that is close to the average between both limits of the
torus developed by the reference solution.

Finally, Figs. 83 and 84 illustrate the limitation of ROM (ii) in obtaining frequencies
of modes that are higher than the ones used in the projections functions of its basis, as
expected. It is noteworthy however, that in both cases the ROM is able to furnish a good
estimate of the steady-state amplitude.

Another interesting phenomenon to point out is what happens to the reconstitution
of the displacement field along the entire structure using the results furnished by the
ROMs when evaluations are made moving outside their ideal range of application. To that
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Figure 82 – Phase-space comparison between different models for Ur = 20. For the reference
model, the motion of the point of maximum displacement according to the
locked-in mode is considered.
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Figure 83 – Spectrum components comparison between different models for Ur = 22.
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end, the displacement field at Ur = 25 is shown in Fig. 85 for the reference solution and
for ROMs (ii) and (iv).

As it can be seen, although none of the ROMs (ii) or (iv) can recover the correct
displacement field for that mode in lock-in, ROM (iv) also presents a more serious
qualitative problem. While ROM (ii) presents the largest displacement near the bottom of
the structure, in agreement with the reference and with what is expected from the problem
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Figure 84 – Spectrum components comparison between different models for Ur = 25.
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Figure 85 – Comparison of displacement field obtained with different models for Ur = 25.
Snapshots taken with 1/24 of the response period as sampling.
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since the tension is smaller at the bottom, ROM (iv) brings an inverse result, with larger
displacements near the top. This indicates another advantage in the use of more detailed
projection functions, that is, the range in which its results may be somewhat stretched.
This can be done since some qualitative aspects of the displacement field are still kept by
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ROM (ii), with a steady-state amplitude that is not far from the actual response. Care,
however, must be taken with the frequency, specially for fatigue analysis, highlighting the
importance for the analyst to know beforehand the limitations of the ROMs in use.

With all the results presented so far, some considerations can be made about the
use of ROMs for flexible structures undergoing VIV. First of all, the idea of a ROM
is to use the smallest possible number of DOFs without significant quality loss in the
obtained solution when compared to a reference. As the results show, this is possible by
adopting even only one or a small number of projection functions close to the modes
that are in lock-in, as long as care is taken to adequately choose the modes to be in the
projection according to the expected reduced velocities to be relevant for the evaluated
scenario. Following, the actual modes of vibration are better than approximations with
trigonometric functions, not just from a quantitative point of view but also the qualitative
behaviour of the structure, even in the cases where their geometrical difference is small.
This conclusion was already made for the case of parametric excitations, reinforcing that
it is a behaviour of trying to input a shape function that does not obey the mathematical
structure of the represented problem.

Another important detail concerns the case in which the free stream velocity varies
with the depth. In such condition, multiple modes can be excited together, and for a good
representation of the ROM all of the modes of interest must be incorporated.

6.3 Analysis of planar VIV with invariant manifolds
In possession of a minimal ROM that can furnish good results in qualitative and

quantitative terms for the represented mode, further mathematical treatment is now made
in order to reduce even further the number of DOFs in the problem. To this end, the NNMs
as defined in Shaw & Pierre (1993) are sought for the system of ODEs describing the
ROM, with the intention of reducing the number of DOFs from 3 to 1 for the planar case.
The task at hand is not simple, with some key mathematical difficulties in the process.
The discussion in this section starts with trials to obtain the manifolds that represent the
NNMs using polynomial expansions, as proposed in Shaw & Pierre (1993).

6.3.1 The limitation of polynomial expressions for the manifolds

The use of polynomial series to obtain invariant manifolds that can represent the
NNMs of the problem at hand is a very attractive idea due to the apparent simplicity
of proceeding in that manner. This strategy is the one followed in Shaw & Pierre (1993)
and it allows to obtain the solution using a step-by-step procedure. The idea is to solve
the coefficients for the linear part of the manifold equations, then use these results to
compute the coefficients of the quadratic terms, and so on for cubic and higher-order
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terms. Another advantage is that, from an algebraic point of view, polynomials are easier
to handle than other types of mathematical terms such as exponentials or trigonometric
functions. In order to investigate this approach, first the equations of motion of the ROM
for the planar model with one DOF for the VIV in dimensionless form are recalled (Eqs.
(6.50) to (6.52)), being given as

ẅ1 + α1w1 + α2v
2
1 = 0, (6.56)

v̈1 + Urβ1v̇1 + β2v1 + β3w1v1 + β4v
3
1 + U2

r β5q1 = 0, (6.57)
q̈1 + Urζ1q̇1 + Urζ2q

2
1 q̇1 + U2

r ζ3q1 + ζ4v̈1 = 0. (6.58)

To simplify this first investigation, the axial dynamics is disregarded, leading to

v̈1 + Urβ1v̇1 + β2v1 + β4v
3
1 + U2

r β5q1 = 0, (6.59)
q̈1 + Urζ1q̇1 + Urζ2q

2
1 q̇1 + U2

r ζ3q1 + ζ4v̈1 = 0. (6.60)

Now, the auxiliary variables r and s are defined as v1 = r, v̇1 = s, together with the
functional representation q1 = R(r, s) and q̇1 = S(r, s). Using the chain rule for derivatives
and the equation of motion for q1, it is possible to obtain the differential equations that
define the geometry of the manifolds represented by R and S as

S = ∂R

∂r
s+ ∂R

∂s

(
−Urβ1s− β2r − β4r

3 − U2
r β5R

)
, (6.61)

− Urζ1S − Urζ2R
2S − U2

r ζ3R − ζ4

(
−Urβ1s− β2r − β4r

3 − U2
r β5R

)

= ∂S

∂r
s+ ∂S

∂s

(
−Urβ1s− β2r − β4r

3 − U2
r β5R

)
. (6.62)

In order to proceed with the investigation, it is considered the value Ur = 6 as
example, which is around the first peak of lock-in for VIV. For the solution of the manifold
equations, trials with two different polynomial expansions are made, one up to cubic order
terms and the other up to fifth-order terms. The expressions for the manifolds of the two
modes (indicated by indexes 1 and 2 near the manifold variable from now on) obtained
with a cubic series are presented in Eqs. (6.63) to (6.66), while the ones obtained with a
fifth-order series are presented in Eqs. (6.67) to (6.70). The numerical procedure to obtain
all the necessary constants was implemented in Mathematica®. Note that the terms up
to cubic order in the fifth-order expansions are exactly the same as the ones obtained in
the cubic expansions, as expected from the step-by-step procedure used to obtain such
constants. The geometry of these manifolds are shown in figures 86 to 89.
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R1 = −10.6468r + 12.6109r3 + 16.4605s− 27.8736r2s+ 20.0202rs2 − 33.8843s3,

(6.63)

S1 = −19.9991r + 38.6426r3 − 6.82112s− 27.9595r2s+ 84.7255rs2 − 16.5716s3,

(6.64)

R2 = −4.41074r − 1.08734r3 − 7.50425s− 1.65443r2s− 1.89416rs2 − 2.47202s3,

(6.65)

S2 = 8.02958r + 1.98221r3 − 1.97409s+ 1.61731r2s+ 6.18687rs2 + 0.945111s3,

(6.66)

R1 = −10.6468r + 12.6109r3 − 6.12521r5 + 16.4605s− 27.8736r2s+ 58.3758r4s

+ 20.0202rs2 − 48.5358r3s2 − 33.8843s3 + 141.628r2s3 − 47.9115rs4 + 85.0898s5,

(6.67)

S1 = −19.9991r + 38.6426r3 − 81.358r5 − 6.82112s− 27.9595r2s+ 152.901r4s

+ 84.7255rs2 − 392.273r3s2 − 16.5716s3 + 346.644r2s3 − 375.38rs4 + 163.603s5,

(6.68)

R2 = −4.41074r − 1.08734r3 − 0.31006r5 − 7.50425s− 1.65443r2s− 0.87950r4s

− 1.89416rs2 − 1.24399r3s2 − 2.47202s3 − 2.23775r2s3 − 1.1207rs4 − 1.49509s5,

(6.69)

S2 = 8.02958r + 1.98221r3 + 1.04189r5 − 1.97409s+ 1.61731r2s+ 1.72151r4s

+ 6.18687rs2 + 5.11809r3s2 + 0.94511s3 + 4.18195r2s3 + 5.71863rs4 + 1.99361s5.

(6.70)

Now, the dynamics of the system is simply given by Eq. (6.59), by substituting the
expressions of q1 and q̇1 using the correspondent manifolds. In order to verify the quality
of the obtained models, the resulting time-series using the nonlinear modes and the one
obtained by integrating the original ROM are presented in Figs. 90 to 94.

What can be observed is that one of the obtained nonlinear modes in each case dies
out and the remaining one gives the actual response. In the case of the cubic polynomial,
the time series has the same qualitative behaviour as the reference scenario, however, the
magnitude of the response is far from correct. In turn, the fifth-order polynomial gave
an unbounded solution, which shows that increasing the order of the polynomial for the
manifold does not solve this specific problem. Two possibilities are then raised to explain
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Figure 86 – Manifolds describing the first nonlinear mode obtained with a cubic polynomial
series.

(a) Manifold R. (b) Manifold S.

Source: The author.

Figure 87 – Manifolds describing the second nonlinear mode obtained with a cubic poly-
nomial series.

(a) Manifold R. (b) Manifold S.

Source: The author.

the origin of such problem. The first one is that for the VIV case, the manifolds may
need to be governed by more than one single pair of master coordinates (multi-mode
approach). The second possibility is that the problem is intrinsic to the use of a polynomial
expression for the manifolds. The first possibility is the first one to be tried in this research,
using as motivation the use of modes with more master variables in systems with internal
resonance, commonly found in the literature. This approach requires a system with more
than two DOFs, so, as initial step, recall the model for spatial vibrations with a 2 DOF
wake oscillator, given as
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Figure 88 – Manifolds describing the first nonlinear mode obtained with a fifth order
polynomial series.

(a) Manifold R. (b) Manifold S.

Source: The author.

Figure 89 – Manifolds describing the second nonlinear mode obtained with a fifth order
polynomial series.

(a) Manifold R. (b) Manifold S.

Source: The author.
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nℓ

2 − γsu
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nℓ
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(
w′u′′ + w′′u′ + D

2ℓ

(
3 (u′)2 u′′ + 2v′v′′u′ + (v′)2 u′′
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nℓ
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0
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Figure 90 – Time series obtained by the first nonlinear mode using the cubic polynomial
series.
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Figure 91 – Time series obtained by the second nonlinear mode using the cubic polynomial
series.
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Figure 92 – Time series obtained by the first nonlinear mode using the fifth order polyno-
mial series.

Source: The author.

v̈ + ρD2CDUr
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nℓ
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′

(µ+ µa)ω2
nℓ
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EAD
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2u′u′′v′ + (u′)2 v′′ + 3 (v′)2 v′′

))
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3 = ρC0

LU
2
rD

2

16π2 (µ+ µa)qy,

(6.72)
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Figure 93 – Time series obtained by the second nonlinear mode using the fifth order
polynomial series.

Source: The author.

Figure 94 – Time series reference obtained by simulating the original ROM.

Source: The author.

ẅ − EA

µω2
nℓ

2

(
w′′ + D

ℓ
(u′u′′ + v′v′′)

)
= 0, (6.73)

q̈y + εyUrSt

(
q2

y − 1
)
q̇y + (UrSt)

2 qy = Ayv̈, (6.74)

q̈x + 2εxUrSt

(
q2

x − 1
)
q̇x + (2UrSt)

2 qx = Axü. (6.75)

For this particular case, the values Ay = 2, Ax = 12, εy = 0.0107, εx = 0.6,
St = 0.17 and C0

D = 0.2 are considered. Using a single projection function for each variable
in the Galerkin projection, it is possible to obtain a ROM in the format

ü1 + Urη1u̇1 + η2u1 + η4u
3
1 + U2

r η5qx1 + η6v
2
1u1 = U2

r f0, (6.76)
v̈1 + Urβ1v̇1 + β2v1 + β4v

3
1 + U2

r β5qy1 + β6u
2
1v1 = 0, (6.77)

q̈y1 + Urζ11q̇y1 + Urζ12q
2
y1q̇y1 + U2

r ζ13qy1 + ζ14v̈1 = 0, (6.78)
q̈x1 + Urζ21q̇x1 + Urζ22q

2
x1q̇x1 + U2

r ζ23qx1 + ζ24ü1 = 0. (6.79)

Again, for simplicity, the axial dynamics is disregarded in the ROM. Now the
master variables are chosen as v1 = r, v̇1 = s, qy1 = g and q̇y1 = h. In the case of a single
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pair of master variables, a cubic expansion requires nine coefficients for each manifold
to be determined. Now, with two pairs of master coordinates, 34 coefficients are needed
for each of the manifolds to achieve cubic order, and an extra term is needed to deal
with the constant f0 in the axial direction. Due to their size, these expansions are not
described here, being a merely extension of the ones already presented. The difference in
the total number of terms makes clear a key difficulty in finding nonlinear modes, that
is, the exponentially increasing mathematical work for more complex models with larger
number of DOFs. The slave variables are now given by u1 = R(r, s, g, h), u̇1 = S(r, s, g, h),
qx1 = G(r, s, g, h) and q̇x1 = H(r, s, g, h). The expressions obtained for these manifolds,
with the aid of symbolic computation, are given as

R = 0.279248 − 0.000493696r2 − 0.000122043rs− 0.000938322s2

+ 7.71181 × 10−6rg + 3.90256 × 10−6sg + 2.73002 × 10−7g2 − 1.71964 × 10−6rh

− 0.0000287658sh+ 1.15147 × 10−7gh− 1.10979 × 10−7h2 (6.80)
S = 0.000121448r2 + 0.000903459rs+ 0.000168565s2

− 5.128 × 10−6rg − 7.94554 × 10−6sg − 2.37213 × 10−8g2 + 0.0000359637rh
+ 6.25783 × 10−6sh+ 9.91404 × 10−8gh+ 1.12726 × 10−7h2 (6.81)
G = −0.000335625r2 − 0.00732494rs− 0.000513751s2

− 0.000109359rg − 0.0000791923sg − 2.16965 × 10−6g2 − 0.000172324rh
+ 0.0000932933sh+ 1.34127 × 10−6gh+ 2.3224 × 10−6h2 (6.82)
H = 0.00742303r2 + 0.00129498rs− 0.00719859s2

+ 0.0000750388rg − 0.000214475sg − 3.1741 × 10−6g2 − 0.000210524rh
− 0.000265911sh− 6.77234 × 10−6gh+ 1.39194 × 10−6h2 (6.83)

As it can be seen by the coefficients of terms involving g and h in the equations, the
influence of the wake-oscillator variable in the manifolds is small. Since the manifolds are
now four dimensional, two of the coordinates must be fixed in order to properly represent
them in a three dimensional figure. Considering that, as pointed out, the dominant variables
over the manifolds are r and s, for geometrical visualization the other two are fixed as
g = 0 and h = 0. The manifolds for that condition are presented in Figs. 95 and 96.

Finally, the time series obtained for the variables of interest, u, v, qy and qx, are
presented in Figs. 97 to 100. The results of integration of the full ROM used as reference
are shown together with the former for comparison.

As it can be seen, in this case the integrated modal equations, relative to v and
qy, gave good results. However, the slave variables had a poor representation. The wake
variable qx has a negligible activation using the nonlinear modes. On the other hand,
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Figure 95 – Manifolds describing the nonlinear mode using four master variables. g = 0
and h = 0.

(a) Manifold R. (b) Manifold S.

Source: The author.

Figure 96 – Manifolds describing the nonlinear mode using four master variables. g = 0
and h = 0.

(a) Manifold G. (b) Manifold H.

Source: The author.

the displacement u had its qualitative behaviour recovered, but with a bad evaluation of
the amplitude of oscillation. Different trials with two pairs of master variables were also
investigated but not herein reported. Namely they are, using v and u to define the pairs of
master variables or using qy and qx. All of these trials lead to poor results, which indicates
that the problem lies in the polynomial representation of the manifolds and not in the
variables that rule them.
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Figure 97 – Time series of the coordinate v. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

Figure 98 – Time series of the coordinate qy. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

Figure 99 – Time series of the coordinate u. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.
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Figure 100 – Time series of the coordinate qx. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

6.3.2 Polar coordinate approach

Since the polynomial expansion does not furnish suitable representations for the
nonlinear modes, a different approach is proposed. The idea is adapted from Pesheck,
Pierre & Shaw (2002), and it consists of applying a coordinate transformation in the ROM
and using the new coordinates as a master pair for the nonlinear mode. First, the planar
ROM is recalled, given as

ẅ1 + α1w + α2v
2
1 = 0, (6.84)

v̈1 + Urβ1v̇1 + β2v1 + β3w1v1 + β4v
3
1 + U2

r β5q1 = 0, (6.85)
q̈1 + Urζ1q̇1 + Urζ2q

2
1 q̇1 + U2

r ζ3q1 + ζ4v̈1 = 0. (6.86)

Now, a coordinate transformation is proposed as

v1 = ρv cosϕ, (6.87)
v̇1 = −ρv sinϕ. (6.88)

With some algebraic work, the second order equation for the transversal motion
can then be written as a system of first order differential equations given as

ρ̇v =
(
β2ρv cosϕ+ β3wρv cosϕ+ β4 (ρv cosϕ)3

)
sinϕ

+
(
U2

r β5q1 − ρv cosϕ− Urβ1ρv sinϕ
)

sinϕ, (6.89)

ϕ̇ = −Urβ1 sinϕ cosϕ+ sin2 ϕ

+ (β2ρv cosϕ+ β3wρv cosϕ+ β4 (ρv cosϕ)3 + U2
r β5q1)

cosϕ
ρv

. (6.90)
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The problem is then divided into two sub-problems in order to result in an easier
computation of the nonlinear modes. The first problem is to obtain the nonlinear mode to
describe the axial displacement in terms of the transversal one for the free vibrations of
the structure. This is made because the wake-oscillator does not excite directly the axial
motion, thus, a representation of the axial dynamics as dependent only on the transversal
one is likely suitable. This nonlinear mode is particularly easy to obtain with the polynomial
approach and it gives good results. With some abuse of notation to represent the nonlinear
modes, the functional relationships for the axial direction are given as

w1 = −0.000182418r2, (6.91)
ẇ1 = −0.000365037rs. (6.92)

The presence of only second order terms is not a surprise, since the term dependent
on the transversal displacement in Eq. (6.84) is a quadratic term. The geometry of these
manifolds are given in Fig. 101. For representation, the notation v1 = r and v̇1 = s is used.

Figure 101 – Manifolds describing the nonlinear mode for the axial displacement.

(a) Manifold for w. (b) Manifold for ẇ.

Source: The author.

Following, the wake variable is represented by the manifolds q1 = R and q̇1 = S.
Differently from the polynomial expansions, the manifolds are now sought in the form

R =
(
a1ρv + a2ρ

3
v

)
cosϕ+

(
a3ρv + a4ρ

3
v

)
sinϕ, (6.93)

S =
(
b1ρv + b2ρ

3
v

)
cosϕ+

(
b3ρv + b4ρ

3
v

)
sinϕ. (6.94)

One aspect that should be noticed is that the use of polar coordinates allows to
obtain more detailed geometries than those furnished by polynomials. Another aspect that
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deserves attention is that the proposed shape of the manifolds does not include quadratic
terms in the amplitude variable ρv. This is made since the presence of v1 in the equation for
q1 can only occur by means of linear and cubic terms. In fact, trials were made considering
the possibility of terms depending on ρ2

v. However, as expected, those terms resulted null
asides very small numerical residues. Following, a Galerkin procedure is used to determine
the coefficients of the trial manifold in a similar manner to the one made in Pesheck, Pierre
& Shaw (2002). After numerical computations, the expressions for the manifolds result in

R = 3.39515ρ3
v sinϕ+ 0.497565ρ3

v cosϕ− 11.8168ρv sinϕ− 5.89219ρv cosϕ, (6.95)
S = −1.55053ρ3

v sinϕ+ 3.72556ρ3
v cosϕ+ 7.06644ρv sinϕ− 12.8473ρv cosϕ. (6.96)

The geometry of these manifolds are represented in Figs. 102 to 104. In these
figures, it is possible to see that the obtained manifolds have a richer geometry when
compared to the ones obtained with a polynomial expansion.

Figure 102 – Manifolds describing the nonlinear mode for the wake variable.

(a) Manifold R. (b) Manifold S.

Source: The author.

As made for the polynomial case, to evaluate the quality of the results furnished by
the obtained nonlinear modes, the time series for each of the relevant variables are shown
in Figs. 105 to 107. In Figs. 108 and 109, the phase space portrait for v and q are shown.
Finally, in Figs. 110 and 111, the results of the reference simulation are plotted over the
manifolds, to verify the geometric accuracy of the former.

From the time series, it is possible to conclude that the use of nonlinear modes with
this approach furnishes good results, with a slight difference in the duration of the transient
regime only. The difference between the nonlinear mode solution and the reference is more
visible in the wake variable. Checking the phase space portraits, it is possible to see that
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Figure 103 – Manifolds describing the nonlinear mode for the wake variable. View of the
r axis.

(a) Manifold R. (b) Manifold S.

Source: The author.

Figure 104 – Manifolds describing the nonlinear mode for the wake variable. View of the
s axis.

(a) Manifold R. (b) Manifold S.

Source: The author.

Figure 105 – Time series of the coordinate v. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

the qualitative behaviour of the response is also recovered. It is also possible to conclude
that the nonlinear mode can be further refined for a better representation of the wake



6.3. Analysis of planar VIV with invariant manifolds 211

Figure 106 – Time series of the coordinate q. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

Figure 107 – Time series of the coordinate w. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

Figure 108 – Phase portrait of the coordinate v. Reference in blue and nonlinear mode
solution in red.

Source: The author.

variable. This last conclusion can be also visualized in the points of the reference solution
plotted over the obtained manifold. The problem of performing more refinements is that
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Figure 109 – Phase portrait of the coordinate q. Reference in blue and nonlinear mode
solution in red.

Source: The author.

Figure 110 – Reference solution (red dots) over the defined manifold for the variable q.

Source: The author.

Figure 111 – Reference solution (red dots) over the defined manifold for the variable u.

Out[109]=

Source: The author.

the mathematical computations quickly become impractical due to the time demanded for
their evaluation, when possible.
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6.4 Analysis of spatial VIV with one wake variable using invariant
manifolds
With a working methodology to obtain the nonlinear modes that recovers good

results for the planar case by means of the polar coordinate approach, it is now possible
to analyse the spatial vibrations of the structure, still using a single variable for the
phenomenological model. Recalling the defined models, the ROM in this case is written as

ẅ1 + α1w1 + α2v
2
1 + α3u

2
1 = 0, (6.97)

ü1 + Urη1u̇1 + η2u1 + η4u
3
1 + η6v

2
1u1 = U2

r f0, (6.98)
v̈1 + Urβ1v̇1 + β2v1 + β4v

3
1 + U2

r β5qy1 + β6u
2
1v1 = 0, (6.99)

q̈1 + Urζ1q̇1 + Urζ2q
2
1 q̇1 + U2

r ζ3q1 + ζ4v̈1 = 0. (6.100)

The definitions v1 = r, v̇1 = s, q1 = R and q̇1 = S are kept. The model is the same
as the one used for the polynomial approach. Here, both the axial and in-line displacements
are not directly excited by the wake variable (noted by the absence of q1 in the equations
for w and u), so, to simplify the mathematical work, the nonlinear modes to represent w
and u are obtained for the free vibrations case, including the constant mean drag force f0.
In both cases the manifolds are obtained with a cubic polynomial expansion, leading to
the expressions

w = −0.0000265027r − 0.000165451r2 − 3.59373 × 10−6r3 − 0.0000264854s
+ 0.00002034rs− 4.62794 × 10−6r2s+ 0.0000171023s2

− 4.62175 × 10−6rs2 − 3.60025 × 10−6s3, (6.101)

ẇ = 0.0000255973r − 0.0000196548r2 + 4.47505 × 10−6r3 − 0.0000224967s
− 0.000367105rs− 1.13945 × 10−6r2s+ 0.0000151951s2

+ 2.61448 × 10−6rs2 − 3.00423 × 10−6s3
1, (6.102)

u = 0.28078 + 0.0000757086r − 0.000264001r2 − 0.0000100968r3 − 0.000108288s
− 0.0000789569rs+ 0.0000530442r2s− 0.000526985s2 + 0.0000551515s3, (6.103)

u̇ = 0.000106362r + 0.0000723737r2 − 0.0000494571r3 + 0.0000911053s
+ 0.00049728rs− 0.0000337798r2s+ 0.0000810668s2

− 0.0000548185rs2 − 0.0000246287s3 (6.104)
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The geometries of these manifolds are given in Figs. 112 and 113. Note that the
presence of the cross-wise motion does not give qualitative changes in the axial manifolds,
even though it introduces terms that are not quadratic in v1 in the expressions for the
axial manifolds.

Figure 112 – Manifolds describing the nonlinear mode for the axial motion.

(a) Manifold for w. (b) Manifold for ẇ.

Source: The author.

Figure 113 – Manifolds describing the nonlinear mode for the cross-wise motion.

(a) Manifold for u. (b) Manifold for u̇.

Source: The author.

For the manifolds representing the wake variable, no significant difference from the
ones presented in Figs. 103 and 104 is present, thus they are not repeated. The results for
this model are also in good agreement with the simulation of the full ROM, with some
discrepancies in the axial and cross-wise displacements. These features can be verified in
the time series presented in Figs. 114 to 117. The phase space portraits are very similar to
the planar case and thus are not shown.
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Figure 114 – Time series of the coordinate v. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

Figure 115 – Time series of the coordinate q. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

Figure 116 – Time series of the coordinate w. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

It is possible to see that there is an extra frequency in the response furnished
by the nonlinear modes in the axial and cross-wise motions. One of the possibilities for
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Figure 117 – Time series of the coordinate u. Reference (Ref) and nonlinear mode solution
(NM).

Source: The author.

that is the use of the nonlinear modes of free vibrations as an approximation for these
variables. The complexity of mathematically solving these nonlinear modes together with
the manifold for the wake variable, rather than separated as it was done, is significantly
higher. This is then left as suggestion for further works. Finally, the geometrical adherence
of the nonlinear modes to the simulation of the full ROM can be seen in Figs. 118 to
120. It is possible to see that the results of the full ROM are neighbouring the obtained
nonlinear modes, showing that only some refinement of these modes is needed for even
better results.

Figure 118 – Reference solution (red dots) over the defined manifold for the variable q.

Source: The author.
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Figure 119 – Reference solution (red dots) over the defined manifold for the variable w.

Source: The author.

Figure 120 – Reference solution (red dots) over the defined manifold for the variable u.

Source: The author.
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7 Conclusions and suggestions for further
works

The focus of the thesis is on the investigation of qualitative aspects regarding the
construction of reduced-order models (ROM). Another aspect is the evaluation of the
advantages in using this type of model for analysis and engineering practice. To do so,
different scenarios, common to the offshore engineering field, were chosen as background
for motivation. The first scenario is that of flexible rods, immersed in fluid and under
parametric excitation. The second one is that of elastic and curved cables, immersed in
fluid and under the action of imposed boundary motion. Finally, the last case is that of
vortex-induced vibrations (VIV) of a flexible rod.

Some procedures for the investigation are the same for all three cases. Initially, a
model described by partial differential equations (PDE) is obtained for each case, being
then discretized with a Galerkin projection. This step is what turns the PDE model into a
ROM. In order to evaluate qualitative aspects on the constructions of such ROMs, different
projection basis are used for the Galerkin projection in each scenario.

For the problem of parametric excitation of straight and flexible rods, it is shown
that a more detailed projection function, in this case a “Bessel-like” function, can furnish
accurate results using only a single degree of freedom (DOF) in the projection. In turn,
when simpler functions are used, like trigonometric functions, the number of DOFs for
accurate representation is larger. It is interesting that, in the investigated case, the
difference in shape between the “Bessel-like” function and a sine function is very small.
However, the difference in the mathematical structure of both functions led significantly
different results between a ROM with a single “Bessel-like” function and one with a single
sine function in the projection basis. For the trigonometric case, three DOFs were needed
for an accurate representation. This is a novel work in the literature in the sense that
it investigate qualitative advantages in using different projection functions containing
differences in their mathematical structures.

The use of a single DOF by means of adopting the “Bessel-like” function leads
to the straightforward advantage of a smaller computational effort needed to simulate
the model. This, however, is not the only advantage. Since only one DOF is involved, it
is possible to deal with the nonlinear Morison damping with ease in order to obtain an
analytical solution for the response of the structure, which is not readily feasible with a
larger model. The solution obtained with the method of multiple time scales (MMTS) is
much more efficient in terms of computational effort than any other type of solution, since
it requires a simple algebraic procedure to obtain the response of the structure.



220 Chapter 7. Conclusions and suggestions for further works

Still in the problem of a straight rod under parametric excitation, an innovative
analytical solution obtained by applying MMTS directly on the PDEs is also presented.
This procedure has the advantage of not involving any assumption over the displacement
field, and is not affected by discretization steps. The analytical solution is then used to
perform some parametric studies about the phenomenon, revealing, amongst other aspects,
that the nonlinear Morison damping is able to magnify the effects of a small structural
damping when both are combined, in the sense that the effective amplitude reducing
provided by the presence of the structural damping is more pronounced if the Morison
damping is present. This analytical solution is also converted into a simplified version using
polynomial terms to evaluate the structural response. This allows the implementation of
such rich solution into an electronic spreadsheet for usage as a design aiding tool. Such
tool can be used in real time, since all evaluations are purely algebraic, in order to furnish
results for conditions of interest.

Giving sequence to the investigations, the scenario of a statically curved and
immersed elastic cable under support motion is investigated. In the thesis, only the case
of planar motion is considered, showing that there is still plenty of room for future works
in the field. It is important to highlight that there is a significant amount of works in
the literature for this type of excitation but restricted to vibrations in air. The analysis
carried-out considering the fluid-structure interaction by means of the Morison model
for this particular scenario is novel. Following what is made for the straight structure
case, different ROMs are obtained and compared. A key factor revealed in this analysis is
that an interpolating function to distribute the top motion along the structural length is
required, and it plays a major role on the quality of the obtained models. It is shown that,
a poorly detailed function for this interpolation leads to a ROM that is not accurate, and
it cannot be improved by the mere addition of more DOFs to the model. This shows that
the quality of the functions to represent the displacement field is responsible to define if
the solution of the ROM will converge to the actually right response.

It is also developed an iterative procedure to evaluate the steady-state response in
this case by analytical means using the MMTS. This is made in order to deal with a sum
of terms that appears inside the Morison damping expression, which involves the absolute
value function and thus any summations are not easily treatable. This procedure is also an
innovative contribution of the thesis. An important aspect is that the computational effort
for such procedure quickly grows with the number of DOFs of the model, becoming more
computationally costly than integrating the ROM. This highlights another advantage of
searching for projection functions with good quality, in order to reduce the number of
DOFs, allowing for a better application of analytical techniques. Closing the matter, the
solution proposed in the thesis involves a quasi-static hypothesis over the displacement
field, in which the top motion is instantaneously transferred to the entire cable by means
of the adopted interpolating function. The results shows that the creation of ROM may be
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further enhanced if a dynamical approach is developed for this portion of the displacements.

Moving on to the case of VIV, a phenomenological approach is used to model
the problem. This approach enlarges the number of DOFs involved in order to obtain
a solution. Again, different ROMs are obtained, and it is made an hypothesis that the
wake-variable follows the same spatial distribution as the transversal displacement. The
results show that this approach leads to satisfactory quantitative evaluations compared
to a numerical solution of the PDE model. However, this usage hinders the ability of the
ROM to obtain multifrequency responses, working as an imposed filter. The ROMs, when
built with more detailed projection functions, are able to furnish suitable results in the
region of interest, around the lock-in condition.

In the case of VIV, since the wake-variable must be present in the ROM and the
axial dynamics is kept as well, the smallest possible number of DOFs for the ROM is 3
considering its construction with the Galerkin method. In order to further reduce such
number, the nonlinear modes of vibration for this particular problem are sought. To the
best of the author’s knowledge, this is one of the first works in the literature to obtain the
nonlinear modes considering the wake oscillator in the equations of motion. The approach
that can be found in the literature is that in which the nonlinear modes of the structure
are obtained without considering the wake oscillator, which is later added to the model in
an ad-hoc manner. During the development, it is shown that the classical approach of using
polynomials to describe the manifolds representing the nonlinear modes is inadequate for
this problem. Instead, a coordinate transformation is proposed. This allows writing the
system in polar coordinates. In the new system, the nonlinear modes can be defined with
the aid of further Galerkin projections, now over the manifold equations. The results show
that this procedure leads to qualitatively good ROMs with a single DOF. This means
that, with the right choice of projection functions and with the effort of obtaining the
nonlinear modes, an analyst may represent the phenomena of interest and perform the
necessary analysis in a very small system, saving significant computation effort.

For a fast systematic visualization of the conclusions, Tab. 27 brings a summary of
the main conclusions regarding the reduced-order modelling of the three different problems
investigated along the thesis.

With that, it is considered that the thesis is able to answer questions about the
influence of simplifying or not the projection functions used in the construction of ROMs.
It also clarifies the advantages of pursuing and obtaining the smallest possible ROM
that furnishes accurate results. In addition, analytical considerations are made aiming at
obtaining analytical solutions, of great value for assessing the main aspects of the dynamic
behaviour and for obtaining closed-form solutions for important quantities such as the
steady-state amplitude of responses. Pathways on how obtaining ROMs are also addressed
and discussed, showing the corresponding strengths and drawbacks. The thesis also brings
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the application of advanced techniques over the models obtained after the application of
the Galerkin procedure, rather than simply numerically integrating such models. This
allows for faster computations and to obtain all the possible stable and unstable branches
within the capabilities of each model. Such applications, together with further algebraic
work, also allow for the development of simple formulations and tools to be used in design
practice, without the need of advanced computational resources. Still, some refinements
can be done in the investigations, and further uses of the ROMs and procedures herein
developed can be made. That said, a list of possible future works is:

• Obtain analytical solutions directly from the PDEs for straight structures under
parametric excitation considering the existence of internal resonances;

• Investigation of the range of applicability of different ROMs for straight structures
under parametric excitation with multiple simultaneous frequencies;

• Use wave analysis techniques to develop better proposals of displacement fields for
the problem of elastic cables under imposed boundary motion;

• Analysis of the quality of different ROMs for the three-dimensional dynamics of
elastic cables under imposed boundary motion;

• Create and investigate better representations for the spatial distribution of the
wake-variable for the analysis of flexible structures under VIV.

• Develop a continuation technique over the procedure to obtain the nonlinear modes
for flexible structures under VIV in order to verify the evolution of such modes with
the variation of the reduced velocity;

• Combine the results for VIV and for elastic cables to investigate the case of curved
structures under VIV;

• Perform correlations with experimental data and proceed to modelling enhancement;

• Investigation of the dynamics of statically curved cables under VIV and/or parametric
excitation considering unilateral contact;

• Extend the results, analysis and conclusions concerning the creation of ROMs to other
problems (for example, vortex-self-induced vibrations, VSIV), using the similarity
between the mathematical structure of the continuous models to generate insights
on how to proceed in different scenarios.
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Table 27 – Shortened exposition of the main conclusions obtained with the investigation
of different ROMs in the problems worked in the thesis.

Straight rod under
parametric excitation

Statically curved cable
under support motion

Straight rod under
VIV

Number of
functions

Can be reduced to a
single one if the proper
choice of function is
made.

Two functions are the
minimum needed, one
for a single degree of
freedom and one for in-
terpolating the effect
of the imposed bound-
ary motion

Can be reduced to a
single one if the proper
choice of function is
made, however it lim-
its the range of re-
duced velocities that
can be investigated

Quality of
projection
functions

Functions of lesser
quality with respect to
the vibration modes
may be used, with the
drawback of requiring
a larger number of
functions for better
results

The quality of the
functions that inter-
polate the effects of
the imposed motion
are of paramount im-
portance, with the use
of functions with less
quality leading to in-
correct results which
can not be enhanced
with the use of ad-
ditional functions. Re-
garding the degrees of
freedom of the cable,
less rich functions lead
to the need of a greater
amount of them to be
used

Functions with worse
quality may be used at
the expense of requir-
ing a larger amount
of projection functions
for the quality of the
model

Main out-
comes

The possibility of the
reduction to a single
DOF by means of us-
ing richer projection
functions allows for
fast numerical integra-
tions and the obtain-
ing of an analytical so-
lution

The interpolation
of the effects of the
top motion must be
carefully addressed for
a good representation.
Also, due to the
need of a minimum
of two functions for
the displacement
field composition and
the presence of the
Morison damping,
a purely analytical
solution is not feasible,
requiring the aid of
numerical iterations to
be obtained

It is possible to ob-
tain a ROM with good
results using a single
DOF for the structural
part, given a suitable
projection function is
used. Obtaining then
the NNMs for the prob-
lem, it is possible to re-
duce the system even
further by writing the
wake DOF as function
of the structural DOF
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APPENDIX A – Algebraic steps for the
formulation of the equations of motion of

straight flexible rods

In this appendix some algebraic steps used in the derivation of the equations
of motion for straight beam are shown. More precisely, the steps herein presented are
necessary to expand Eq. (3.20). First of all, the unit vectors of the Cartesian frame, î, ĵ
and k̂, are written in the local frame as

î =
(
cos θz cos θy + sin θz sin θx sin θy

)
η̂ +

(
− sin θz cos θy + cos θz sin θx sin θy

)
ζ̂

+ cos θx sin θy ξ̂ = iηη̂ + iζ ζ̂ + iξ ξ̂, (A.1)
ĵ = sin θz cos θxη̂ + cos θz cos θxζ̂ + cos θx cos θy ξ̂ = jηη̂ + jζ ζ̂ + jξ ξ̂, (A.2)
k̂ =

(
− cos θz sin θy + sin θz sin θx cos θy

)
η̂ +

(
sin θz sin θy + cos θz sin θx cos θy

)
ζ̂

+ cos θx cos θy ξ̂ = kηη̂ + kζ ζ̂ + kξ ξ̂. (A.3)

The expression for dr⃗P∗ becomes then

dr⃗P∗ = ds
(
(1 +W ′)kη + U ′iη + V ′jη + dη

)
η̂

+ ds
(
(1 +W ′)kζ + U ′iζ + V ′jζ + dζ

)
ζ̂ + ds

(
(1 +W ′)kξ + U ′iξ + V ′jξ + dξ

)
ξ̂

+ ds
(
−Cξζη̂ + Cξηζ̂ +

(
Cηζ − Cζη

)
ξ̂
)
. (A.4)

Now, keeping in mind that

i2η + i2ζ + i2ξ = j2
η + j2

ζ + j2
ξ = k2

η + k2
ζ + k2

ξ = 1, (A.5)

it follows that
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dr⃗P∗ · dr⃗P∗ = ds2
(
(1 +W ′)2 + U ′2 + V ′2 + C2

ξ ζ
2 + C2

ξ η
2 + C2

ηζ
2 + C2

ζ η
2
)

+ 2dsdζ
(
(1 +W ′) kζ + U ′iζ + V ′jζ + Cξη

)
+ 2dsdη

(
(1 +W ′) kη + U ′iη + V ′jη − Cξζ

)
+ dη2 + dζ2

+ ds2
(
2 (1 +W ′)U ′

(
iηkη + iζkζ + iξkξ

)
+ 2 (1 +W ′)V ′

(
jηkη + jζkζ + jξkξ

)
+2U ′V ′

(
iηjη + iζjζ + iξjξ

))
+ ds2

(
−2Cξζ

(
(1 +W ′) kη + U ′iη + V ′jη

)
+ 2Cξη

(
(1 +W ′) kζ + U ′iζ + V ′jζ

)
+2

(
Cηζ − Cζη

) (
(1 +W ′) kξ + U ′iξ + V ′jξ

))
. (A.6)

The first aspect to be noticed is that iηjη + iζjζ + iξjξ, iηkη + iζkζ + iξkξ and
jηkη + jζkζ + jξkξ are all zero since they are the evaluation of inner products between the
unit vectors of the Cartesian frame, happening to be written in the local frame. In the
sequence, it is possible to write the components of the vectors in terms of the displacements
rather than in terms of the Euler angles θx and θy, leading to, for i

iη = cos θz

(1 +W ′)√
(1 +W ′)2 + U ′2

− sin θz

U ′V ′√
(1 +W ′)2 + U ′2 + V ′2

1√
(1 +W ′)2 + U ′2

,

(A.7)

iζ = − sin θz

(1 +W ′)√
(1 +W ′)2 + U ′2

− cos θz

U ′V ′√
(1 +W ′)2 + U ′2 + V ′2

1√
(1 +W ′)2 + U ′2

,

(A.8)

iξ = U ′√
(1 +W ′)2 + U ′2 + V ′2

, (A.9)

then for j

jη = sin θz

√
(1 +W ′)2 + U ′2√

(1 +W ′)2 + U ′2 + V ′2
, (A.10)

jζ = cos θz

√
(1 +W ′)2 + U ′2√

(1 +W ′)2 + U ′2 + V ′2
, (A.11)

jξ = V ′√
(1 +W ′)2 + U ′2 + V ′2

, (A.12)

and finally for k
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kη = − cos θz

U ′√
(1 +W ′)2 + U ′2

− sin θz

V ′ (1 +W ′)√
(1 +W ′)2 + U ′2 + V ′2

1√
(1 +W ′)2 + U ′2

,

(A.13)

kζ = sin θz

U ′√
(1 +W ′)2 + U ′2

− cos θz

V ′ (1 +W ′)√
(1 +W ′)2 + U ′2 + V ′2

1√
(1 +W ′)2 + U ′2

,

(A.14)

kξ = 1 +W ′√
(1 +W ′)2 + U ′2 + V ′2

. (A.15)

With such definitions, it is possible to evaluate some additional terms in the
equations, being them

(1 +W ′) kξ + U ′iξ + V ′jξ =
√

(1 +W ′)2 + U ′2 + V ′2 = 1 + εℓ, (A.16)
(1 +W ′) kη + U ′iη + V ′jη = 0, (A.17)
(1 +W ′) kζ + U ′iζ + V ′jζ = 0. (A.18)

This lets clear that a significant amount of terms in dr⃗P∗ · dr⃗P∗ are actually null.
This leads to

dr⃗P∗ · dr⃗P∗ = dη2 + dζ2 + 2dsdζCξη − 2dsdηCξζ

+ ds2
(

(1 + εℓ)
2 − 1 +

(
η2 + ζ2

)
C2

ξ +
(
ζCη − ηCζ

)2
+ 2 (1 + εℓ)

(
ζCη − ηCζ

))
.

(A.19)

With this last expression, the algebraic steps are completed.





241

APPENDIX B – Vibration modes of rods
under varying traction

In this appendix, the mathematical procedure presented in Mazzilli, Lenci & Demeio
(2014) is detailed, with some observations made when considered valuable to do so. This
is made considering the extensive use of the formulation presented in the paper along this
thesis.

The work starts with the equation of motion for transversal vibrations of a vertical
beam under varying tension, already considering the static condensation procedure shown
in Mazzilli et al. (2008). The resulting equation can be obtained from Eq. (4.12) by
removing the damping terms and the top-motion excitation, leading to

µV̈ + EIV ′′′′ − γsV
′ − (γsZ + Tb)V ′′ − EA

2ℓ V
′′

ℓ∫
0

(V ′)2 dZ = 0. (B.1)

The potential added mass µa is also not indicated since it is merely a change in the
value of the inertial term for the case at hand. The authors proceed with an application of
the Galerkin method in the temporal domain rather than the spatial one, which is not
commonly found in the literature for this type of analysis. Let then the solution to be
sought as

V (Z, t) = v(Z) sinωt, (B.2)

with ω being a natural frequency of the structure. The Galerkin projection in this case
can be defined as an integral over one period of vibration, resulting in the equation for the
modal shapes given by

EIv′′′′ − γsv
′ − (γsZ + Tb) v′′ − 3EA

8ℓ v′′
ℓ∫

0

(v′)2 dZ − µω2v̈ = 0. (B.3)

Now, considering the typical scenario of the offshore engineering, the geometrical
stiffness is usually dominant over the flexural stiffness in the global behaviour. This
motivates for an adaptation of Eq. (B.3) into a cable-like equation. To that end, consider
the function N(Z), named fictitious additional ‘normal’ force given as
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EIv′′′′ − 3EA
8ℓ v′′

ℓ∫
0

(v′)2 dZ = −Nv′′. (B.4)

With that, the equation for the modal shapes becomes

(N + (γsZ + Tb)) v′′ + γsv
′ + µω2v̈ = 0, (B.5)

which is the equation of transverse motions of a cable under varying traction. In order to
compute N , an approximation is introduced in Mazzilli, Lenci & Demeio (2014), namely,
it is given as N = N0n, where N0n is the solution of Eq. (B.4) when the linear modes of a
beam under constant normal force are used, that is,

v = v0n sin
(
nπZ

ℓ

)
. (B.6)

The constant n is the number of the sought mode of vibration. Due to the nonlinear
term present in Eq. (B.4), the value of the fictitious normal force is dependent on the
amplitude of vibration v0n, leading to a dependence of both the modal shape and the
natural frequency on the amplitude of response. It is important to highlight that the
nonlinearity at hand always introduces a hardening effect for the case of imposed boundary
motion. Following, for a given amplitude v0n, Eq. (B.5) becomes the Bessel equation,
whose solution is given in terms of the Bessel functions of first and second kind with order
zero. Finally, considering the typical range of values of the structural parameters involved,
it is possible to obtain an analytical expression for the solutions of Eq. (B.5) by means of
an asymptotic approach as detailed in Mazzilli, Lenci & Demeio (2014). Considering the
linear modes, that is, setting v0n = 0 in the evaluation of N0n, this procedure leads to the
solution

v = 4

√√√√ Tb + EI (nπ/ℓ)2

Tb + EI (nπ/ℓ)2 + γsZ
sin

nπ
√
Tb + EI (nπ/ℓ)2 + γsZ −

√
Tb + EI (nπ/ℓ)2√

Tb + EI (nπ/ℓ)2 + γsℓ−
√
Tb + EI (nπ/ℓ)2

 ,
(B.7)

which is the modal shape used for vertical structures along this thesis. For further details,
specially regarding the nonlinear extension of the vibration modes, the reader is refered to
Mazzilli, Lenci & Demeio (2014).
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APPENDIX C – Non-linear modes of
statically curved flexible cables

In this appendix the results regarding nonlinear modes of free vibrations of cables
with curved static configuration are shown. The results were presented at the “IUTAM
Symposium on Exploiting Nonlinear Dynamics for Engineering Systems” (ENOLIDES2018)
and at the “10th European Nonlinear Dynamics Conference” (ENOC2022), and also
resulted in a publication in Vernizzi, Franzini & Pesce (2019).

Two different cases are found within this appendix. In the first one, the nonlinear
vibrations of a cable with small sag are considered. The small sag hypothesis allows for
some simplifications that result in the possibility of closed-form expressions to be obtained
for the problem. In the second case, the problem of arbitrarily sagged cables in considered,
with the investigation being made with the direct application of the MMTS over the PDEs
of motion of the structure. The latter approach for the problem at hand does not allow for
closed-form expression to be obtained due to the complexity of the involved expressions.
It is however possible to automatize the process of obtaining the nonlinear modes with
the aid of symbolic computation.

C.1 Nonlinear free vibrations of a cable with small sag
In this first part of the present appendix, the problem of a cable with small sag is

considered, which has been presented at ENOLIDES2018 and is also published in Vernizzi,
Franzini & Pesce (2019). The simplification adopted are mentioned along the text when
appropriate, and allow for a similar use of the techniques presented in Mazzilli, Lenci &
Demeio (2014). A closed-form solution is obtained, and at the end of this section it is
shown that the nonlinear effect over inclined cable with small sag is that of hardening.

C.1.1 Mathematical modelling and solution

The basic model is that of Eqs. (3.59) and (3.59) with the same inertia in both
directions (vibrations in air). Considering that the dynamic variation of the angle with
the horizontal γ is small, the trigonometric terms may be linearized, resulting in

[T ′
s − γs sin θ] + T ′

d − (Ts + Td) (θ′ + γ′) γ = mü, (C.1)
[Tsθ

′ − γs cos θ] + (Tsγ)′ + (Tdγ)′ + Tdθ
′ = mv̈. (C.2)
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The brackets in Eqs. (C.1) and (C.2) separate the portion of the equations of
motion referent to the static equilibrium. In the sequence, a static condensation procedure
is applied. Following Mazzilli et al. (2008) and Pesce et al. (1999), the inertial term in the
tangential direction is disregarded. This eliminates the dynamical coupling between the
two directions of motion. This procedure greatly simplifies the algebraic steps to obtain a
closed-form solution, with the drawback of limiting the phenomena that can be explored
with this model. In particular, the cross-over and the veering occurrences as shown in
Irvine & Caughey (1974) and Triantafyllou (1984) cannot be investigated.

In addition, a scaling is proposed to simplify Eq. (C.1). Such scaling considers v of
unity order, implying that v′ is of order ϵ, which is a small parameter. The static curvature,
θ′, and the additional one, γ′ ≈ v′′, are of order ϵ2. This hypothesis limits the number
of wavelengths that can be considered in the investigated modes, since a large number
of them implies in larger additional dynamic curvature. Finally, considering the scaling
between tangential and transversal displacements presented in Irvine & Caughey (1974),
Td is of order ϵ. Collecting terms only on the smallest power of ϵ in Eq. (C.1) leads to

EAε′
d − Tsv

′θ′ − Tsv
′v′′ = 0 (C.3)

where the relations Td = EAεd
1 and γ = v′ were used. Using a dummy variable ξ, the

integration of Eq. (C.3) leads to

EAεd = C1 +
s∫

0

Tsv
′θ′ dξ +

s∫
0

Tsv
′v′′ dξ. (C.4)

At this point it is useful to express the strain measure in terms of u and v.
Considering the ordering hypothesis already presented, it is given as

εd = u′ − vθ′ + (v′)2

2 . (C.5)

Following Mazzilli et al. (2008), the constant C1 is obtained by means of a spatial
averaging of Eq. (C.4), leading to

C1 = EA

2ℓ

ℓ∫
0

(v′)2 ds− EA

ℓ

ℓ∫
0

vθ′ ds− 1
ℓ

ℓ∫
0

∫ s

0
Tsv

′θ′ dξ ds− 1
ℓ

ℓ∫
0

s∫
0

Tsv
′v′′ dξ ds. (C.6)

1 Since the problem at hand is of a cable vibrating in air, no terms of surrounding fluid pressure appear
contributing to the effective traction.
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The decoupled transversal equation of motion becomes

θ′

C1 +
s∫

0

Tsv
′θ′ dξ +

s∫
0

Tsv
′v′′ dξ

+ (Tsv
′)′ + Tsv

′2 (θ′ + v′′)

+ v′′

C1 +
s∫

0

Tsv
′θ′ dξ +

s∫
0

Tsv
′v′′ dξ

 = µv̈. (C.7)

As made in Mazzilli, Lenci & Demeio (2014), it is considered that the case of
a dynamical response governed by a single mode, with the use of a temporal Galerkin
scheme, adopting a solution of the form

v = ψ (s) sin (ωt) . (C.8)

The equation that defines the shape of the vibration modes is then

−EAθ′

ℓ

ℓ∫
0

ψθ′ ds− θ′

ℓ

ℓ∫
0

 s∫
0

Tsψ
′θ′ dξ

 ds+ θ′
s∫

0

Tsψ
′θ′ dξ + T ′

sψ
′ + Tsψ

′′ + 3
4Tsψ

′2ψ′′

+3EA
8ℓ ψ′′

ℓ∫
0

(ψ′)2 ds− 3
4ℓψ

′′
ℓ∫

0

s∫
0

Tsψ
′ψ′′ dξ ds+ 3

4ψ
′′

s∫
0

Tsψ
′ψ′′ dξ + µω2ψ = 0.

(C.9)

Now, a fictitious ‘normal force’ N is defined as

−EAθ′

ℓ

ℓ∫
0

ψθ′ ds− θ′

ℓ

ℓ∫
0

(∫ s

0
Tsψ

′θ′ dξ
)

ds+ θ′
s∫

0

Tsψ
′θ′ dξ + 3

4Tsψ
′2ψ′′

+3EA
8ℓ ψ′′

ℓ∫
0

(ψ′)2 ds− 3
4ℓψ

′′
ℓ∫

0

s∫
0

Tsψ
′ψ′′ dξ ds+ 3

4ψ
′′

s∫
0

Tsψ
′ψ′′ dξ = Nψ′′. (C.10)

This fictitious normal force can be numerically evaluated by means of a Galerkin
projection, adopting for example a set of sinusoidal functions for ψ in such evaluation.
Keeping in mind that the case at hand is that of a catenary with small sag, it is possible
to approximate the static traction by a linear function with small error (see Pesce et
al. (1999)). Letting then Ts ≈ T = α+ βs, the equation that rules the modal shape ψn,
containing n half-waves along the cable span, associated with the fictitious normal force
Nn is written as
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(
T +Nn

)
ψ′′

n + T
′
ψ′

n + µω2
nψn = 0, (C.11)

with ωn being the natural frequency of the desired mode. Defining now a = β/µω2
n,

Tbn = α + Nn and Ttn = α + ℓβ + Nn, it is possible to write a variable transformation
given by

z = 2ωn

β

√
µ (Tbn + βs), (C.12)

s = az2

4 − Tbn

β
. (C.13)

Now, Eq (C.11) becomes

d2ψn

dz2 + 1
z

dψn

dz + ψn = 0. (C.14)

The solution of this equations by means of an asymptotic approach can be found
in Mazzilli, Lenci & Demeio (2014), which leads to the natural frequency

ωn = nπ

2ℓ√µ

(√
Ttn +

√
Tbn

)
, (C.15)

and the modal shape

ψn = 4

√
Tbn

Tbn + βs
sin (z − z0) . (C.16)

The expression may be written in the original coordinate s by means of the
transformation

z =

√
Tbn + βs

√
Ttn −

√
Tbn

nπ. (C.17)

C.1.2 Numerical example

In order to illustrate the behaviour of the nonlinear modes, consider a cable with
EA = 22970 kN, D = 1.57 cm and µ = 1.29 kg/m. The cable is hanged between two
supports with a vertical distance given by h = 200 m and a horizontal distance given by
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d = 100 m, with a static equilibrium length of ℓ = 223.73 m. In Fig. 121, the linear and
nonlinear modes with n = 20 are presented, considering a response amplitude equal to
An = 3D. As it can be seen, there is no noticeable difference in the modal shapes, which
is expected since the modal amplitude in this case is small.

Figure 121 – Mode n =20, linear solution in red and non-linear in blue with An = 3D.

Source: Vernizzi, Franzini & Pesce (2019).

In the sequence, in Figs. 122 and 123 the linear and nonlinear modes with n = 10
and n = 20 are presented, considering now a modal amplitude of An = 20D2. The difference
in the modal shapes is now highlighted, including alterations in the position of nodal
points and in the rate of change of the vibration amplitude along the cable length. It is also
possible to notice that higher modes are more affected by nonlinearities when compared
to lower ones.

Figure 122 – Mode n = 10, linear solution in red and non-linear in blue with An = 20D.

Source: Vernizzi, Franzini & Pesce (2019).

2 Usually, the physical phenomena involved in cable applications hardly achieve such magnitude. This
however is used in this work for a better illustration of the nonlinear effects over both the modal shapes
and frequencies.
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Figure 123 – Mode n = 20, linear solution in red and non-linear in blue with An = 20D.

Source: Vernizzi, Franzini & Pesce (2019).

Finally, the effects of the nonlinearities over the natural frequencies are shown in
Tab. 28. The modes are identified using the number of half-waves n present in the modal
shape. It is possible to conclude that for this type of configurations the nonlinearities lead
to a hardening behaviour of the cable, increasing the natural frequencies with the vibration
amplitude. Such effect is clearly more significant for higher modes. The results in Tab. 28
are shown in graphical form by means of the backbone curves presented in Fig. 124.

Table 28 – Frequencies comparison (rad/s).

n Linear An = 1D An = 3D An = 5D An = 10D An = 20D
2 2.617 2.626 2.627 2.628 2.635 2.665
3 3.926 3.980 3.983 3.988 4.013 4.109
5 6.543 6.556 6.568 6.593 6.706 7.141
10 13.086 13.098 13.196 13.389 14.260 17.310
15 19.629 19.670 19.998 20.639 23.406 32.169
20 26.171 26.269 27.041 28.521 34.619 52.317
30 39.257 39.587 42.135 46.812 64.338 109.205
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Figure 124 – Backbone curves for the cable in study, being ωn0 the natural frequency of
the linear problem.

Source: Vernizzi, Franzini & Pesce (2019).
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C.2 Nonlinear free vibrations of generic hanging cables

Now, the problem of an inclined cable with generic sag is considered, which has
been presented at ENOC2022. The analysis is mainly made using the aid of symbolic
computation in the software Mathematica®.

C.2.1 Multiple scale solution

The mathematical model under consideration is composed of the PDEs given in
Eqs. (3.75) and (3.76), reproduced in the sequence for clearness.

mü = T ′
s

(
u′ − vθ′ − εd

1 + εd

)
− Ts

(
(uθ′ + v′) θ′

(1 + εd) + (uθ′ + v′)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′)

− ρgA ((u′ − vθ′) sin θ + (v′ + uθ′) cos θ) (1 + u′ − vθ′)
(1 + εd) + EAε′

d

(1 + u′ − vθ′)
(1 + εd)

+
[(

(uθ′ + v′) θ′

(1 + εd) + (uθ′ + v′)
(1 + u′ − vθ′)

(
(uθ′ + v′)
(1 + εd)

)′)
(−EAεd + ρgAu sin θ + ρgAv cos θ)

]
,

(C.18)

mtv̈ = T ′
s

(uθ′ + v′)
(1 + εd) + Ts

(
(1 + u′ − vθ′) θ′

(1 + εd) +
(

(uθ′ + v′)
(1 + εd)

)′)

− ρgA ((u′ − vθ′) sin θ + (v′ + uθ′) cos θ) (uθ′ + v′)
(1 + εd) − Tsθ

′ + EAε′
d

(uθ′ + v′)
(1 + εd)

+
[(

(1 + u′ − vθ′) θ′

(1 + εd) +
(

(uθ′ + v′)
(1 + εd)

)′)
(EAεd − ρgAu sin θ − ρgAv cos θ)

]
. (C.19)

Considering only terms that are correct up to the cubic order, it is possible to write
the equations of motion as

mü+ L1,u(u, v) + L2,u(u, v) + L3,u(u, v) = 0, (C.20)
mtv̈ + L1,v(u, v) + L2,v(u, v) + L3,v(u, v) = 0, (C.21)

where the indexes of the differential operators L indicate the order of each operator and
from which equation it originates from. To exemplify, L2,v is the differential operator that
contains only quadratic order terms and is originated from the transversal equation of
motion. It is also important to remind that the nonlinear operators are, in general, not
commutative, that is, L(u, v) ̸= L(v, u) for the nonlinear operators. In order to apply the
MMTS, three time scales are created, and the displacement fields are written as
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u = ϵu1 + ϵ2u2 + ϵ3u3, (C.22)
v = ϵv1 + ϵ2v2 + ϵ3v3, (C.23)
t0 = t, (C.24)
t1 = ϵt, (C.25)
t2 = ϵ2t. (C.26)

As usual, ϵ is a small bookkeeping parameter. The time scales proposed lead to the
definition of the operators

D0 = ∂

∂t0
, (C.27)

D1 = ∂

∂t1
, (C.28)

D2 = ∂

∂t2
, (C.29)

∂2

∂t2
= D2

0 + ϵ(2D0D1) + ϵ2(D2
1 + 2D0D2). (C.30)

Expanding the equations of motion, applying the different time scales and collecting
terms of equal order of ϵ leads to three sequential problems. The problem of order ϵ1 is
given as

mD2
0u1 + L1,u(u1, v1) = 0, (C.31)

mtD
2
0v1 + L1,v(u1, v1) = 0, (C.32)

with the associated boundary conditions of that order being u1(t, 0) = 0, v1(t, 0) = 0,
u1(t, ℓ) = 0 and v1(t, ℓ) = 0. For order ϵ2, the problem is written as

mD2
0u2 + L1,u(u2, v2) = −2D0D1u1 − L2,u(u1, v1), (C.33)

mtD
2
0v2 + L1,v(u2, v2) = −2D0D1v1 − L2,v(u1, v1), (C.34)

with its boundary conditions being u2(t, 0) = 0, v2(t, 0) = 0, u2(t, ℓ) = 0 and v2(t, ℓ) = 0.
Finally, the problem or order ϵ3 reads
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mD2
0u3 + L1,u(u3, v3) = −2D0D1u2 − 2D0D2u1

−
(
L2,u(u1, v2) + L2,u(u2, v1) + L3,u(u1, v1)

)
, (C.35)

mtD
2
0v3 + L1,v(u3, v3) = −2D0D1v2 − 2D0D2v1

−
(
L2,v(u1, v2) + L2,v(u2, v1) + L3,v(u1, v1)

)
, (C.36)

subjected to the boundary conditions u3(t, 0) = 0, v3(t, 0) = 0, u3(t, ℓ) = 0 and v3(t, ℓ) = 0.
The solution to the problem of order ϵ1 given in Eqs. (C.31) and (C.32) are the linear
modes of vibration of the structure. Such solution can be put in the vectorial form

U⃗1 = {u1, v1} = B(t1, t2){ϕn, ψn}e(iωnt0) + c.c.. (C.37)

The choice for a vectorial representation will be justified in the application on the
subsequent problems. In Eq. (C.37), ϕn and ψn are the axial and transversal shapes of the
nth mode of vibration of the structure, with associated linear natural frequency ωn and B
is its modulated amplitude. The natural modes and frequencies are obtained numerically
by Mathematica®. Applying the solution of first order to Eqs. (C.33) and (C.34) leads to

mD2
0u2 + L1,u(u2, v2) = −2iωn(D1B)e(iωnt0)ϕn

−
(
B2e(2iωnt0) +BB∗

)
L2,u(ϕn, ψn) + c.c., (C.38)

mtD
2
0v2 + L1,v(u2, v2) = −2iωn(D1B)e(iωnt0)ψn

−
(
B2e(2iωnt0) +BB∗

)
L2,v(ϕn, ψn) + c.c.., (C.39)

Now, in order to proceed, a solvability condition must be applied to Eqs. (C.38)
and (C.39). This is done by applying the Fredholm Alternative Theorem (See Appendix
D) to ensure a solution exists for those equations. For that, consider the adjoint problem
that is given by

mD2
0u+ L1,u(u, v) = 0, (C.40)

mtD
2
0v + L1,v(u, v) = 0, (C.41)

where the overbar is used to denote the adjoint quantities. Notice that inertial terms are
self-adjoint. For the particular case of cables hanging of fixed supports, the boundary
conditions are also self-adjoint. From the latter system of equations, the correspondent
modes of vibration of the adjoint problem are obtained, being labelled ϕn and ψn. Since all



C.2. Nonlinear free vibrations of generic hanging cables 253

involved boundary terms evaluate to zero, the condition of Fredholm Alternative Theorem
in this case reduces to ensure that the forcing vector composed of the forcing terms in Eqs.
(C.38) and (C.39) is orthogonal to the adjoint modes. This conditions leads to

−2iωn(D1B)
ℓ∫

0

ϕnϕn + ψnψn ds = 0, (C.42)

with i denoting the imaginary constant. In this application, it is used the hypothesis that
no internal resonances are activated, resuming the evaluation to the only single mode of
vibration considered in Eq. (C.37). This solvability condition implies in B = B(t2), that
is, no modulation occurs at the time scale t1. Returning this condition to Eqs. (C.38) and
(C.39) and solving the remaining terms leads to the solution of order ϵ2 being

u2 = B2e(2iωnt0)ϕ2,a +BB∗ϕ2,b + c.c., (C.43)
v2 = B2e(2iωnt0)ψ2,a +BB∗ψ2,b + c.c.. (C.44)

The new spatial functions ϕ2,a, ϕ2,b, ψ2,a and ψ2,b are obtained from

− 4mω2
nϕ2,a + L1,u(ϕ2,a, ψ2,a) = −L2,u(ϕn, ψn), (C.45)

− 4mtω
2
nψ2,a + L1,v(ϕ2,a, ψ2,a) = −L2,v(ϕn, ψn), (C.46)

L1,u(ϕ2,b, ψ2,b) = −L2,u(ϕn, ψn), (C.47)
L1,v(ϕ2,b, ψ2,b) = −L2,u(ϕn, ψn), (C.48)

subjected to the same boundary conditions of the main problem. With the solution of
order ϵ2 defined, it is now possible to move on to the order ϵ3 problem, which is now
written as

mD2
0u3 + L1,u(u3, v3) = (−2iωn(D2B)e(iωnt0)ϕn + c.c.)

−
(
L2,u(u1, v2) + L2,u(u2, v1) + L3,u(u1, v1)

)
, (C.49)

mtD
2
0v3 + L1,v(u3, v3) = (−2iωn(D2B)e(iωnt0)ψn + c.c.)

−
(
L2,v(u1, v2) + L2,v(u2, v1) + L3,v(u1, v1)

)
. (C.50)

For a better evaluation of the solvability condition, the operators are expanded
in terms according to each of its resulting frequencies. Such terms are in relations of 1:1,
2:1, 3:1 and 4:1 with the natural frequency ωn, and, in this work, it is considered that
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no internal resonances of the types 2:1, 3:1 and 4:1 exist. The collection of terms and
operations are made with symbolic computation, being written as

mD2
0u3 + L1,u(u3, v3) = −2iωn(D2B)e(iωnt0)ϕn + (Γ0,uaBB

∗ + Γ0,ub(BB∗)2)
+ Γ1,uB

2B∗e(iωnt0) + (Γ2,uaB
2 + Γ2,ubB

3B∗)e(2iωnt0) + Γ3,uB
3e(3iωnt0)

+ Γ4,uB
4e(4iωnt0) + c.c., (C.51)

mtD
2
0v3 + L1,v(u3, v3) = −2iωn(D2B)e(iωnt0)ψn + (Γ0,vaBB

∗ + Γ0,vb(BB∗)2)
+ Γ1,vB

2B∗e(iωnt0) + (Γ2,vaB
2 + Γ2,vbB

3B∗)e(2iωnt0) + Γ3,vB
3e(3iωnt0)

+ Γ4,vB
4e(4iωnt0) + c.c.. (C.52)

The terms Γ are not reported since they can be excessively lengthy and not directly
treatable, making the use of symbolic computation mandatory in this procedure. Using
orthogonality conditions, and recalling that no internal resonances are being considered,
the solvability condition for this order reads

−2iωn(D2B)
ℓ∫

0

ϕnϕn + ψnψn ds+B2B∗
ℓ∫

0

ϕnΓ1,u + ψnΓ1,v ds = 0. (C.53)

Let now B = R
2 e

iβ, with R and β being real-valued functions. By separating the
imaginary and real parts of the solvability condition leads to

D2R = 0, (C.54)
D2β = R2Λ ⇒ β = β0 +R2Λt2, (C.55)

where

Λ =
−

ℓ∫
0
ϕnΓ1,u + ψnΓ1,v ds

8ωn

ℓ∫
0
ϕnϕn + ψnψn ds

. (C.56)

With the use of the solvability condition, Eqs. (C.51) and (C.52) can be numerically
solved to obtain u3 and v3. The final solution may then be written as

u = Am cos
((
ωn + A2

mΛ
)
t+ β0

)
ϕn + ϵ2u2 + ϵ3u3, (C.57)

v = Am cos
((
ωn + A2

mΛ
)
t+ β0

)
ψn + ϵ2v2 + ϵ3v3, (C.58)
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where the amplitude Am is related to R by am = ϵR. In the final solution, the relation
between the amplitude of vibration and the natural frequency is also shown, being given as

ω = ωn

(
1 + A2

mΛ
ωn

)
, (C.59)

where it is clear that the sign of Λ defines if the behaviour of the structure will be of
hardening or softening. Recall also that the solutions of order ϵ2 and ϵ3 contain terms that
do not oscillate, meaning that the average configuration of the nonlinear modes is not the
static one.

C.2.2 Numerical examples

In order to illustrate the type of results that can be obtained with the developed
solution, some examples are presented. To that end, consider the data presented in Tab.
29, and a chord distance between supports of 2350 m.

Table 29 – Common data for the worked examples.

Property Value
m 108.0 kg/m
mt 141.0 kg/m
γs 727.0 N/m
EA 2314.0 × 106 N
ρ 1025 kg/m3

D 0.5588 m
H 680.5 × 103 N

The parameter H is the horizontal component of the traction of the cable at
the bottom support. Consider now four different scenarios for evaluation. Scenario (i) is
defined by an inclination angle of 30 degrees between supports. Following, scenario (ii) is
defined also with an inclination of 30 degrees between support, but the horizontal traction
at the bottom support is reduced to 475 × 103 N. In scenario (iii), an inclination of 60
degrees is considered. Finally, in scenario (iv) an inclination of 60 degrees is repeated with
an increment on the transversal inertia to mt = 207.0 kg/m. For scenario (i) the static
configuration, the modal shape and the backbone curve of the first mode of vibration
are shown in Figs. 125 to 127. In all scenarios, the amplitude considered to evaluate the
modal shapes is of 100D. Notice that this level of amplitude is quite large for a series of
phenomena, being herein used for illustrative purposes.

In this first example, asides the influence over the natural frequency, the changes
are small. It is possible to see a slight difference in the modal shape when the nonlinear
mode is considered, as well as a small average deviation from the static configuration. One
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Figure 125 – Static configuration of the cable for scenario (i).

0 500 1000 1500 2000

-200

0

200

400

600

800

1000

1200

x [m]

z
[m

]

Source: The author.

Figure 126 – Linear, nonlinear and average configuration of the first mode of vibration for
scenario (i).
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condition that leads to more noticeable nonlinear effects is the reduction of the linear
stiffness of a structure. That said, consider now the results in Figs. 128 to 130, relative to
scenario (ii).

As expected, the nonlinear effects indeed produced more visible effects in this
case. There is a significant difference between the linear and nonlinear modes, as well
as a noticeable shift in the position of the nodal point. The average configuration of the
nonlinear mode is also more pronounced. One interesting aspect is that the greater effects
over the modal shapes occur with the counterpart of a less significant influence over the
natural frequency, as it can be seen by the values achieved in the backbone curve. Moving
further into the examples, the influence of the inclination is shown in scenario (iii), with
the correspondent results being presented in Figs. 131 to 133.

Comparing the results of scenario (iii) with scenario (i) it is possible to notice that
the influence of the nonlinear terms over the modal shapes and frequencies is significantly
larger when the inclination is risen. It is interesting to notice that the influence over the
modal shape is more visible in the second half-wave in the modal shape, while in scenario
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Figure 127 – Backbone curve of the first mode of vibration for scenario (i).
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Figure 128 – Static configuration of the cable for scenario (ii).
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(ii) the reducing of the linear stiffness lead to significant changes over the entire span of
the cable. Regarding the average configuration of the nonlinear mode, notice that while
for the small inclination case there were both negative and positive values, in scenario (iii)
the average configuration has the same sign in all the cable length. Finally, the effects of
different inertia between the directions of motion is shown in scenario (iv) by means of the
results shown in Figs. 131 to 133. Recall that in problems involving immersed structures,
the added mass coefficients in the transversal and tangential directions are not the same.

As it can be seen, the effects of the variation of inertial terms is restricted to the
amplitude-frequency relation, as it can be seen by the values of the backbone curve. In
what concerns the modal shapes, no difference can be noticed.
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Figure 129 – Linear, nonlinear and average configuration of the first mode of vibration for
scenario (ii).
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Figure 130 – Backbone curve of the first mode of vibration for scenario (ii).
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C.3 Final remarks
This appendix presented two different approaches for obtaining nonlinear modes of

vibration for elastic cables. In one of them, the condition of small sag is adopted, while in
the second this requirement is dropped. It is expected that the techniques and explanations
herein provided can be useful for future researches and analysts as tools for more complex
analysis and for order reducing purposes.
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Figure 131 – Static configuration of the cable for scenario (iii).
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Figure 132 – Linear, nonlinear and average configuration of the first mode of vibration for
scenario (iii).
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Figure 133 – Backbone curve of the first mode of vibration for scenario (iii).
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Figure 134 – Static configuration of the cable for scenario (iv).
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Figure 135 – Linear, nonlinear and average configuration of the first mode of vibration for
scenario (iv).
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Figure 136 – Backbone curve of the first mode of vibration for scenario (iv).
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APPENDIX D – A mathematical justification
for the solvability condition of the MMTS

In this appendix, some mathematical background is presented in order to justify
some steps on the application of MMTS. This is made since the method is largely used
along the present thesis, and also because, although there is plenty of materials showing
the procedures for the application of the method, it is hard to find, if even possible, texts
with a detailed description of the mathematical reason behind some steps.

This appendix starts then with the classical application, which involves the solution
of dynamical systems governed by an ODE of second order. Following, the justification is
made for general systems of ODEs. Finally, the case of PDEs is evaluated, with a clear
mathematical statement on how to obtain the solvability condition.

D.1 Justification for an ODE of second order
The case of a single ODE of second order is the most common example of application

of MMTS. Many textbooks have examples regarding this particular problem, for instance,
Nayfeh (1973), Bender & Orszag (1978), Nayfeh & Mook (1979), Nayfeh & Balachandran
(1995), and certainly many others. To clarify this exposition, consider the general second
order ODE given by

ẍ+ ω2x = f(x, ẋ, t), (D.1)

where f is a generic function, commonly nonlinear. The general procedure of any solution
using MMTS involves solving a sequence of oscillators obtained from a proper scaling of
the original one in Eq. (D.1), which can be put on the general format

D2
0xi + ω2xi = fi−1. (D.2)

In Eq. (D.2), D0 is the partial derivative operator with respect to the base time-
scale t0, xi is the solution of order i and fi−1 is a function, usually nonlinear, composed
of all the solutions up to order i − 1. This is simply the problem of a linear oscillator,
without damping, presentiong a natural frequency ω under the action of known forcing
terms. Since the main hypothesis on the scaling used on the method is that the solutions



264 APPENDIX D. A mathematical justification for the solvability condition of the MMTS

occur in different orders, it is then expected that the solution of each individual problem
given in Eq. (D.2) exists and it is bounded. From basic results for linear oscillators it is
easy to see that, for this case, such conditions are satisfied when there are no terms in
fi−1 with frequency ω. Hence the common explanation found in classical textbooks that
the solvability is ensured by eliminating resonant terms.

D.2 Justification for a generic system of ODEs
Suppose now that one is interested in applying MMTS to a system of ODEs.

Consider also that this system is not necessarily of an oscillator, and not necessarily being
a system of second order. In general form, the system of ODEs is given as

Ax⃗ = F(x⃗, ˙⃗x, t). (D.3)

This time, A is a known linear differential operator applied to the vector x⃗, while
F is a generic vectorial function. Holding to the main aspect of the MMTS that is, a
sequence of simpler problems that can be solved and then used as input for the subsequent
problem, the general form at order i is given as

A0x⃗i = Fi−1(x⃗, ˙⃗x). (D.4)

The operator A0 is identical in form to A, the difference being only in the fact
that it operates with derivatives on the first time scale rather than on the original time
coordinate. Analogous to the case of a single equation, Fi−1 contains only terms involving
solutions of order i − 1 or smaller. The first idea that comes to mind is to look into
the mathematical meaning of the natural frequencies and modes of vibration, leading to
the use of the eigenvectors of the homogeneous problem A0x⃗i = 0. It would be then an
initial attempt to define the solvability condition as requiring the forcing terms Fi−1 to be
orthogonal to the eigenvectors of the homogeneous problem, thus ensuring the existence of
a particular solution for Eq. (D.4). This however is only true for self-adjoint systems. The
actual solvability conditions must be obtained with the use of the Fredholm Alternative
Theorem. This theorem states that Eq. (D.4) has a solution if and only if

〈
Fi−1, v⃗

〉
= 0

for all v⃗ satisfying A∗
0v⃗ = 0, that is, the eigenvectors of the homogeneous adjoint problem,

with the angles indicating the operation of a suitable inner product. This ensures that, for
self-adjoint systems, the adoption of the eigenvectors of A0x⃗i = 0 is indeed correct. The
adjoint operator is defined as

⟨A0x⃗i, v⃗⟩ = ⟨x⃗i, A∗
0v⃗⟩ . (D.5)
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From the definition of the adjoint operator it is easy to verify that the condition
actually holds when v⃗ are eigenvectors of the adjoint homogeneous problem, by doing

〈
Fi−1, v⃗

〉
= ⟨A0x⃗i, v⃗⟩ = ⟨x⃗i, A∗

0v⃗⟩ =
〈
x⃗i, 0⃗

〉
= 0. (D.6)

A final remark is now made on a possible approximation and simplifying procedure,
that is, to consider only one of the eigenvectors of the homogeneous problem to be
significant in the response, and then performing the evaluation of the solvability condition
only for the corresponding eigenvector of the adjoint problem. This is feasible when internal
resonances in the original problem are not under consideration. Otherwise, the adequate
span of eigenvectors and their adjoint counterparts must be considered.

With the exposed, it is possible to conclude that the intermediary steps for the
solution with MMTS is simply a consequence of a mathematical condition for the existence
of such solutions. Note however that nothing ensures that the adopted scaling will lead to
the actual correct solution for the problem. Alongside it, no guarantees are made regarding
if the expansion in the different scales is actually capable of obtaining the correct solution
for a given problem.

D.3 Justification for a generic system of PDEs
Finally, focus is placed on the case of systems governed by PDEs. The use of

MMTS on such systems can be found in the literature, however, the actual derivation and
reasoning behind the definition of the solvability conditions are often obscure, without
a proper didactic exposure on how to obtain such condition and where do they come
from. This is particularly troublesome for the PDE case since boundary conditions may
play a significant role on the solvability, even in cases where the operator is self-adjoint,
since the self-adjointness of the operator does not ensure that the corresponding boundary
conditions are also self-adjoint. Let then a system of PDEs to be defined as

Ax⃗ = F(x⃗, ˙⃗x, t). (D.7)

Notice that the generic expression is the same as for the case of the system of ODEs.
The only difference is that now the operator A involves partial derivatives accordingly to
all the involved coordinates, including time, and the vector of variables x⃗ is a function of
multiple coordinates as well. Yet again, the general problem to be solved at each step of
MMTS is given by

A0x⃗i = Fi−1(x⃗, ˙⃗x). (D.8)
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Let now the inner product between two vectorial functions u⃗ and v⃗ to be defined as

⟨u⃗, v⃗⟩ =
∫
Ω

u⃗ · v⃗ dΩ, (D.9)

where the centralized dot indicates the classical scalar product between vectors and Ω
is the domain of the problem with exception to the time coordinate. Since the operator
A0 in this case comprises derivatives applied to the functions over which it operates, the
process to obtain the adjoint operator A∗

0 involves the use of integration by parts. In this
case, the definition of the adjoint leads to

⟨A0x⃗i, v⃗⟩ = ⟨x⃗i, A∗
0v⃗⟩ + B(Ω). (D.10)

The new term B represents the resulting boundary conditions that appear from the
process of integrating by parts the left-hand side in order to obtain the adjoint operator.
The Fredholm Alternative now becomes given by

〈
Fi−1, v⃗

〉
= B. (D.11)

Here the importance of the boundary conditions is evident. It must be remarked
that there are cases in which B is identically null, but this is not true for any problems.
Common scenarios in the dynamics of slender structures that are significantly affected
by the existence of such terms are those of applied forces at the boundaries or springs
positioned at the ends of the structure.

For the particular cases where the method is applied in this thesis, it results that
B = 0.
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APPENDIX E – Coefficients for the
polynomial solution of vertical rods under

parametric excitation

In this appendix the coefficients for the polynomial solution obtained in Chapter 4
are presented.
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