• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.3.2016.tde-24082016-080545
Documento
Autor
Nombre completo
Jorge Carvalho Costa
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2015
Director
Tribunal
Pimenta, Paulo de Mattos (Presidente)
Barros, Felício Bruzzi
Fernandes, Carlos Manuel Tiago Tavares
Gay Neto, Alfredo
Proenca, Sergio Persival Baroncini
Título en inglés
Essential boundary and interface conditions in the meshless analysis of shells.
Palabras clave en inglés
Meshless methods
Multi-region problems
Nitsche's method
Shear deformable shells
Shells
Resumen en inglés
Meshless methods provide a highly continuous approximation field, convenient for thin structures like shells. Nevertheless, the lack of Kronecker Delta property makes the formulation of essential boundary conditions not straightforward, as the trial and test fields cannot be tailored to boundary values. Similar problem arise when different approximation regions must be joined, in a multi-region problem, such as kinks, folds or joints. This work presents three approaches to impose both kinematic conditions: the well known Lagrange Multiplier method, used since the beginning of the Element Free Galerkin method; a pure penalty approach; and the recently rediscovered alternative of Nitsche's Method. We use the EFG discretization technique for thick Reissner-Mindlin shells and adapt the weak form as to separate displacement and rotational degrees of freedom and obtain suitable and separate stabilization parameters. This approach enables the modeling of discontinuous shells and local refinement on multi-region problems.
Título en portugués
Condições essenciais de contorno e interface na análise de cascas com métodos sem malha.
Palabras clave en portugués
Cascas (Engenharia)
Cisalhamento
Método de Nitsche
Métodos sem malha
Problemas multi-regiões
Resumen en portugués
Métodos sem malha geram campos de aproximação com alta continuidade, convenientes para estruturas finas como cascas. No entanto, a ausência da propriedade de Delta de Kronecker dificulta a formulação de condições essenciais de contorno, já que os campos de aproximação e teste não podem ser moldados aos valores de contorno. Um problema similar aparece quando diferentes regiões de aproximação precisam ser juntadas em um problema multi-regiões como dobras, vincos ou junções. Este trabalho apresenta três métodos de imposição ambas condições cinemáticas: o já conhecido método dos multiplicadores de Lagrange, usado desde o começo do método de Galekin sem elementos (EFG); uma abordagem de penalidade pura; e o recentemente redescoberto método de Nitsche. Nós usamos a técnica de discretização com EFG para cascas espessas de Reissner-Mindlin e adaptamos a forma fraca de forma a separar graus de liberdade de deslocamento e rotação e obter coeficientes de estabilização diferentes e apropriados. Essa abordagem permite a modelagem de cascas discontínuas e o refinamento local em problemas multi-regiões.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2016-08-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.