• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2021.tde-21122021-103525
Document
Author
Full name
Osvaldo Dario Quintana Ruiz
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2021
Supervisor
Committee
Campello, Eduardo de Morais Barreto (President)
Alves, José Luis Drummond
Fancello, Eduardo Alberto
Fernandes, Carlos Manuel Tiago Tavares
Yee, Cheng Liang
Title in English
A coupled thermo-mechanical model for the simulation of discrete particle systems in advanced manufacturing.
Keywords in English
Advanced manufacturing and 3D printing
Discrete element method (DEM)
Discrete element method (DEM)Particles
Multiphysical particle systems
Particles
Thermo-mechanical effects
Abstract in English
Modern industry, such as in aerospace, automotive, biomedical and military fields, has adopted advanced manufacturing (such as particle sintering-like processes and other 3D printing) as a rapid and efficient alternative for manufacturing industrial parts. Also, state-of-the-art techniques in the civil engineering industry include 3D concrete printing and cement-based additive manufacturing processes. All these techniques invariably include thermally-active particles, such as sintering powders and functionalized cementitious materials. The purpose of this work is to present a thermo-mechanical model for the simulation of problems involving thermo-mechanically-active particles forming discrete particles systems in advanced manufacturing. Our approach is based on the Discrete Element Method (DEM), combined with lumped heat transfer equations to describe the various thermal phenomena that may take place for such systems. Particles motion and their thermal states over time are computed under the influence of body (e.g., gravitational) forces, contact and friction forces (and the related moments w.r.t. the particles centers), adhesive forces as well as applied heat from external devices, heat transfer through conduction (upon contact with other particles and objects), convective cooling and radiative effects. Phase transformation, which may be critical in certain applications, is also considered. A numerical scheme is presented for solution of the models equations. We then develop direct, large-scale numerical simulations to illustrate the validity of the proposed scheme and its practical use to the simulation of modern advanced manufacturing processes.
Title in Portuguese
Um modelo acoplado termo-mecânico para a simulação de sistemas discretos de partículas em manufatura avançada.
Keywords in Portuguese
Aglutinação
Cimento
Concreto
Efeitos termomecânicos
Indústria 4.0
Materiais granulares
Método dos elementos discretos
Partículas
Sinterização
Abstract in Portuguese
A indústria moderna, em especial os setores aeroespaciais, de defesa, automotivo e biomédico, recentemente começou a adotar a manufatura avançada (como processos de sinterização e aglutinação de partículas e outros processos de impressão em 3D) como uma alternativa rápida e eficiente para a fabricação de peças. Além disso, técnicas mais recentes na indústria da construção civil estão começando a utilizar a impressão de concreto em 3D e processos de manufatura aditiva a base de cimento. Todas essas técnicas invariavelmente incluem partículas termicamente ativas, como pós de sinterização e materiais granulares cimentícios. O objetivo desde trabalho é apresentar um modelo computacional termomecânico para o estudo e simulação de problemas envolvendo partículas termicamente ativas constituindo sistemas dinâmicos discretos na manufatura avançada. A abordagem é baseada no método dos elementos discretos (MED), combinado com equações de transferência de calor para descrever os diversos fenômenos de origem térmica. As posições das partículas e suas temperaturas ao longo do tempo são calculadas sob a influência de forças de campo (por exemplo, gravitacionais), forças de contato e atrito (e seus respectivos momentos em relação aos centros das partículas), forças de adesão, assim como do calor aplicado a partir de dispositivos externos, da transferência de calor por condução (a partir do contato com outras partículas ou objetos), e do resfriamento por convecção e radiação. Mudança de fase, que pode ser crítica em algumas aplicações, também é considerada. O trabalho apresenta um procedimento numérico para solução das equações do modelo, além de uma série de simulações numéricas para validar e ilustrar o esquema proposto e o seu uso prático em processos que envolvem manufatura avançada.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-01-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.