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RESUMO

FACCIO JÚNIOR, C. J. Uma formulação de contato C1 baseada em splines:
aplicações têxteis. 2023. Tese (Doutorado em Engenharia Civil) – Escola Politécnica,
Universidade de São Paulo, São Paulo, 2023.

O contato entre corpos é um fenômeno complexo que envolve interação mecânica, atrito,
transferência de calor, entre outros fatores. Uma abordagem comum (e conveniente) para
interação mecânica em um ambiente de elementos finitos é usar diretamente a geometria
dos elementos para formular a interação por contato. A principal desvantagem dessa
abordagem está na existência de arestas agudas formadas, por exemplo, pela junção de
elementos finitos retiĺıneos ou não-suaves que podem levando a singularidades de contato.
Para contornar este problema, particularmente no contexto de contatos viga-a-viga, o pre-
sente trabalho propõe uma formulação de elementos de contato baseada em curvas splines
C1. A formulação baseada em splines é desenvolvida para lidar com cenários de contato
conforme (distribúıdo) e não-conforme (pontual). Uma estratégia de três critérios é intro-
duzida para auxiliar no processo de tomada de decisão entre cenários de contato conforme
e não-conforme. A formulação baseada em splines proposta pode ser anexada diretamente
a qualquer formulação envolvendo elementos finitos de viga quadráticos, garantindo uma
descrição suave para esses elementos. Uma lei espećıfica de interação de contato normal
não-linear e um modelo reológico para atrito já estabelecido, ambos com contribuições
elásticas e viscosas, são adotados aumentando as possibilidades em aplicações práticas.
Para demonstrar algumas possibilidades de aplicação, vários exemplos são explorados,
incluindo comparações diretas com uma formulação de contato superf́ıcie-a-superf́ıcie e
uma formulação alternativa de contato suave, além de exemplos desafiadores envolvendo
contatos conformes e não-conformes e aplicações têxteis.

Palavras-chave: Spline. Contato normal não-linear. Atrito. Contato pontual. Contato
conforme.



ABSTRACT

FACCIO JÚNIOR, C. J. A C1 spline-based contact formulation: textile applica-
tions. 2023. Thesis (Doctorate in Civil Engineering) – Polytechnic School, University of
São Paulo, São Paulo, 2023.

The contact between bodies is a complex phenomenon that involves mechanical inter-
action, frictional sliding, and heat transfer, among others. A common (and convenient)
approach for mechanical interaction in a finite element framework is to directly use the
geometry of the elements to formulate the contact. The main drawback lies in the sharp
corners that occur when straight or non-smooth finite elements are connected leading
eventually to contact singularities. To circumvent this issue, particularly in the con-
text of beam-to-beam contact, the present work proposes contact formulation based on
smooth C1 continuous spline contact elements. The spline-based formulation is designed
to handle conformal (distributed) and non-conformal (pointwise) contact scenarios. A
three-criterion strategy is introduced to aid in the decision-making process between con-
formal and non-conformal contact. The proposed spline-based formulation, which can be
directly attached to any quadratic beam finite element formulation, guarantees a smooth
description for the whole set of elements, where contact takes place. A specific nonlinear
normal contact interaction law and an established rheological model for friction, both with
elastic and viscous damping contributions, are adopted increasing robustness in practical
applications. To demonstrate this robustness several examples are explored including di-
rect comparisons with a similar surface-to-surface formulation and an alternative smooth
contact scheme and challenging examples involving conformal and non-conformal contacts
and textile applications.

Keywords: Spline. Nonlinear normal contact. Friction. Pointwise contact. Conformal
contact.
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1 CONTEXT

This thesis condenses three papers produced by the candidate and co-authors [1, 2,

3] during the doctorate program. These papers are not chronologically presented in this

thesis. The overall objective of the candidate project was to advance in the modeling of dry

fabrics materials considering beam elements and contact formulations. All papers’ results

were developed within the Giraffe finite element solver [4]. The Giraffe is a finite element

solver initially developed by the supervisor that is specially devoted to geometrically

non-linear structural elements and contact formulations.

The first paper developed by the candidate and co-author, see [1], is focused on com-

paring results obtained from biaxial tension experiments and from the computational

modeling of textiles, see Figure 1a. In [1] textile models are defined as a combination

of a geometrically-exact beam theory and a well-established surface-to-surface contact

formulation [5, 6]. This paper proved that this modeling strategy of textiles is capable

of qualitatively reproducing biaxial tension experimental results. Moreover, this work

showed the existence of multiple contact pairs where a single one would be expected, see

Figure 1b. The existence of multiple contact pairs as seen in [1] is due to the contact sur-

faces’ definition that is locally, and not entirely, smooth. In this sense, only C0 continuity

is granted at the interface of contact surfaces simply joined. The existence of multiple

contact forces served as motivation for the development of a C1 contact formulation based

on a spline description.

The first work with the C1 spline-based contact formulation developed by the candi-

date and co-authors is presented in [2]. The formulation presented in this work includes

a nonlinear normal contact constitutive law and a frictional law with their corresponding

elastic and dissipative contributions. Despite the reasonable number of possibilities in-

volving the C1 contact formulation and their constitutive laws, the formulation developed

in [2] is limited to pointwise (non-conformal) contact scenarios, see Figure 2.

Moreover, conformal contact scenarios are particularly important in the dry fabrics

field to model, for example, multiple fibers composing a yarn. This limitation and ap-
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(a) Experimental results from [7] and
computational results from [1].

(b) Normal contact forces from the
computational model.

Figure 1: Comparison between experimental and computational results of the biaxial
mechanical behavior of a textile. Extracted from [1].

Figure 2: Non-conformal contact with the spline-based contact formulations. Extracted
from [2].

plication motivated the candidate and co-authors to produce another paper including a

three-criterion numerical strategy to handle conformal contact scenarios using the recent

C1 spline-based contact formulation [3], see Figure 2. The paper with the C1 spline-based

formulation to handle conformal contact scenarios is currently under review.

This thesis presents, according to the candidate’s point of view, the main results and

conclusions of the three papers produced. Moreover, it highlights the connection between

these papers in proposing a contact model with a broad range of applications in the textile

field.
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Figure 3: Conformal contact with the spline-based contact formulations.
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2 INTRODUCTION

Mechanical contact between bodies is a relevant phenomenon in numerous practical

applications, such as railways, cables, textile mechanics, and material forming, among

others. However, its modeling is a non-trivial task from a physical-engineering perspective,

since it can involve complex geometries, distinct constitutive equations, heat transfer,

wear, and chemical reactions, among other effects. In engineering practical applications,

it is particularly important to consider normal and tangential (friction) forces. There are

several possibilities involving the contact modeling of solids considering them as rigid or

flexible bodies. The Finite Element Method (FEM) is, however, particularly appealing

when dealing with flexible bodies. In this context, it is convenient for contact formulations

to take advantage of the underlying discretization leading to approaches such as node-to-

node, node-to-surface, and surface-to-surface. For beam-to-beam contact, though, specific

approaches need to be employed.

In node-to-node contact formulations [8, 9], the contact-candidate material points are

defined a priori. The main drawback is the difficulty in predicting such points for large

deformation scenarios if classical finite element discretizations are used, an exception is

the virtual element method that allows node-to-node contact discretization even for large

deformations, see [10]. In classical node-to-surface formulations [11, 12], a slave material

point is projected during the deformation onto a master surface. Assuming a pointwise

interaction, this approach defines the gap between the slave point and the master surface.

It is able to handle large deformation scenarios. The main disadvantage is that the method

has issues in passing the patch test, particularly when considering curved contact surfaces

(see e.g.: [13, 14]). In surface-to-surface formulations [15, 16], the contact contribution to

the weak form is directly calculated according to the contact interface area. This approach

can be understood as an advancement when compared to the node-to-surface technique

since the constraint is directly prescribed in the weak form considering its integral term

with no a priori simplifications.

Unlike other mentioned contact approaches, the interaction involving beam elements
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demands particular formulations [17, 18]. These may vary according to the beam cross-

section, the approximation degree of the beam element (within a finite-element scheme),

the degrees of freedom of the beam, the coordinate description of the beam, etc. Moreover,

contact characterization depends deeply on the geometric description of the elements

involved in every modeling technique. Even when considering locally smooth contact

elements, a complete geometric description with a particular continuity level for the whole

structure is highly desirable. Some immediate benefits of smooth discretizations are the

absence of possible normal force jumps in the case of sliding between contact elements, a

more precise geometric description for path-dependent tangential contact, and a potential

reduction in the number of initially straight beam finite elements, frequently employed to

describe in an approximated way a curved part.

Even considering smooth contact formulations, geometrical contact characterization

is still a particular problem. Mathematically, one can present distinct descriptions for

contacting elements involved. When addressing the problem of defining the contact patch

on the interface only a few closed-form solutions are available. The seminal works of

Hertz [19, 20] present some closed-form solutions for contact problems considering curva-

ture radii of surfaces and adopting linear elastic materials.

In this context, a common approach for contact modeling is to combine a contact for-

mulation with a solid/structural model. A compelling option for solid/structural model

is, as mentioned, the FEM. The main advantage of FEM formulation is its great ver-

satility with a myriad of applications. Moreover, FEM formulations introduce always a

discretization of the problem domain (here including the contact surfaces), which can lead

to difficulties in handling contact. These strategies, however, are deeply dependent on the

discretization level of FEM meshes that are usually C0. Moreover, sharp corners in C0

meshes lead to singularities in normal vector description, which can potentially lead to

convergence difficulties. To circumvent this issue a possible procedure is to decouple the

contact formulation from the solid/structural model by introducing a smooth geometric

description such as splines, Bézier curves, or Hermite polynomials, see [21, 22, 23, 24,

2]. The objective of these smooth geometrical descriptions is to avoid possible continuity

issues related to ill-defined geometries.

In a hypothetical scenario in which contact is characterized as pointwise, it is possible

to formulate the contact interaction through a pair of material points (in distinct bodies

or within a body, in case of self-contact). Material points can be viewed as locations

where contact forces act, while geometrical entities, such as surfaces or curves, define do-

mains where they are searched for. Figure 4a illustrates a just-touching pointwise contact
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(a) Non-conformal (pointwise) contact in-
teraction.

(b) Conformal (distributed) contact inter-
action.

Figure 4: Contact interaction between two bodies.

interaction. The determination of material points is classically defined as the minimum

distance between a pair of geometrical entities from bodies (closest point projection). The

minimum distance problem between two bodies can be geometrically interpreted as find-

ing a line segment that respects some orthogonality conditions associated with the body’s

description. Moreover, the minimum distance problem uniqueness, and by consequence

the orthogonality conditions, relies on the convexity of the contact problem. In cases of

non-convexity, the existence and/or uniqueness of the contact problem is not granted.

Though these cases may seem like an exception, they are frequently observed in practical

problems involving conformal contact. Figure 4b illustrates a conformal contact scenario

with distributed contact forces. In such cases, an alternative approach is to weak the

orthogonality conditions by fixing a priori one or more coordinates at geometrical enti-

ties. This procedure can be regarded as a degeneration of the original contact problem as

seen in [25, 26, 27, 28]. A detailed discussion regarding degeneration of contact problems

involving surfaces is presented in [29].

2.1 Brief Description on the State-of-Art

The idea of smooth contact elements is not new. Therefore many authors dedicated

efforts toward that direction. In [30] a master-slave formulation for the contact of surfaces

described with splines and Bézier curves including friction is presented and explored in

simulations with large deformations. In [31] a variational formulation is developed for

the frictional contact in 2D involving surfaces described with splines and cubic Hermite

polynomials. In [21] a surface-to-surface formulation based on C1 cubic splines is presented

for the normal and tangential contact in 2D applications. The mechanical constraints

are imposed by Lagrange multipliers within a formulation using variational inequalities.

Similar formulations can be found in earlier work, see, for two-dimensional for three-

dimensional discretizations, respectively, in [32] and in [22]. In [33] a smooth segment

described by three Hermite polynomials is introduced to model the beam centerline of two
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3D adjacent finite elements. The author focuses on frictional contact ruled by a penalty

method for beams with circular cross-section without rotational degrees-of-freedom. In

[34] the concept of proximity zones to formulate the contact in a smooth way is introduced.

Woven fabrics are investigated with this contact formulation which is based on the penalty

method. In [35], the formulation is extended to more complex problems such as the

knot tightening with multiple yarns. In [36] a curve-to-curve geometrically-exact contact

formulation in a covariant form is consistently developed. It can be viewed either as the

contact between sharp edges of full 3D bodies (edge-to-edge) or as the contact of beams’

centerlines (beam-to-beam). For that, the contact elements are depicted in terms of a

Frenet-Serret model for 3D curves. This formulation also includes normal and tangential

interactions imposed by the penalty method.

In [23] a surface-to-surface contact formulation based on NURBS is combined in an

Isogeometric Analysis (IGA) framework. This formulation is applied to frictionless con-

tact. In [37] a mortar-based frictional contact formulation with NURBS is presented.

The NURBS contact elements are directly inherited from IGA elements. A similar strat-

egy is adopted in [38] for modeling dry woven fabrics. In [39] beam finite elements and

contact elements are described by C1 Hermite polynomials in a variational manner. The

formulation is applied for normal contact of slender circular beams considering a penalty

potential contribution to the weak form. In [26] a geometrically-exact beam theory for

elliptical cross-sections is combined with Bézier curves to describe a surface-to-surface

contact formulation. In [40], a geometrically-exact beam theory in the context of IGA is

presented that describes contact by splines as centerlines. For the contact modeling, a

Differential Variational Inequality (DVI) including normal and tangential formulations is

adopted.

Moreover, only a few works presented strategies to properly address conformal beam-

to-beam contact scenarios. In [36, 41], several cases of contact problems existence and

uniqueness are discussed in terms of curvature vectors (κv) and tangent vectors (τ ). As a

solution for contact problem convexity issues, the authors propose a generalized minimum

distance search procedure including not only surfaces but also corners and edges. This

procedure can be interpreted as a degeneration of the original surface-to-surface contact

problem in the herein terminology, taken from works [25, 27].

In [42, 43], a beam contact formulation including normal and frictional interactions is

introduced to handle very acute angles defined by beam centerlines. The author proposed

a strategy that, from a single pointwise interaction, introduces two additional pairs of

contact points enhancing the contact description. The proposed strategy, however, relies
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on the existence of an initial single closest point projection to later add the pair of contact

points. As a consequence, the proposed strategy seems to be non-suitable for representing

conformal contact scenarios.

In [34, 35, 44, 45], a particular strategy is developed to handle normal and tangential

contact scenarios. The idea involves several steps including closest point detection, as

in classical master-slave contact formulations, proximity zones to limit convective coor-

dinates span and, finally, intermediate geometries to project candidate points to contact.

The contact formulation is successfully applied to textile simulations of dozens of yarns.

To handle conformal contact, an alternative method based on the average of beams cen-

terlines tangents is defined for the intermediate geometries.

In [46, 47, 39], cubic Hermite polynomials with C1 continuity are used to describe

beam centerlines and normal contact interactions. In [46] a line-to-line formulation is

developed to handle conformal contact of beams. The authors evaluate the existence and

uniqueness of contact problems by the angle defined by the beam centerlines (contact

angle), the closest point distance, and the curvature of the beam centerline. In [47] an

all-angle beam contact (ABC) approach is presented to automatically switch between

point-to-point and line-to-line contact formulations. The transition between these formu-

lations is derived in a variationally consistent manner and a force-based model, but the

presentation is limited to frictionless interaction. In [39] the ABC contact formulation is

expanded incorporating a geometrically-exact Simo-Reissner beam theory.

2.2 Objective

The objective of this work is to propose a general spline-based smooth contact formula-

tion for conformal and non-conformal beam-to-beam contact, with circular cross-sections.

A particular numerical strategy based on three criteria is introduced to handle confor-

mal contact scenarios. The spline nature guarantees a smooth description of the contact

surfaces of structures as a whole, represented by a set of elements.

Other specific thesis objectives are:

• Develop a contact formulation that can be used together with general beam struc-

tural formulations, even with a non-smooth FEM mesh;

• Consider normal and tangential contact interactions with their elastic and dissipa-

tive contributions;
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• Test the contact formulation in challenging problems involving conformal and non-

conformal scenarios and their transitions;

• Apply the proposed contact formulation in numerical examples in textile applica-

tions.

2.3 Organization

This work is structured as follows. In Chapter 3 the spline-based C1-continuous

formulation for conformal and non-conformal contact is introduced with the normal and

tangential interaction contributions. In Chapter 4 the geometrically-exact beam kinemat-

ics and constitutive matrix are briefly presented and the main references are mentioned.

The Giraffe finite element solver is introduced and the spline-based contact formulation

implementation is described. An originally developed software to aid in the textile mod-

eling in the Giraffe solver is presented. In Chapter 5 numerous examples of conformal and

non-conformal contacts are explored. These examples include several studies including

static and dynamic simulations, normal and frictional contact, nonlinear interface law,

etc. In Chapter 6 some examples in the context of dry fabrics modeling are explored. The

objective of these examples is to provide a glimpse of applications in the textiles field. In

Chapter 7 the conclusions regarding the C1 spline-based contact formulation developed

are drawn and some future works are proposed.
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3 SPLINE-BASED CONTACT FORMULATION

This chapter presents the spline-based contact formulation for conformal and non-

conformal scenarios, including normal and tangential interactions [2, 3].

3.1 Spline-Based Surface

A possible way to mathematically construct a spline is to recursively calculate specific

basis functions from a specific vector known as knot vector. The knot vector is a non-

decreasing vector of real numbers that sets, through knot spans, convective coordinate

spans for the whole spline. The knot vector also controls the continuity level between

spline elements. The continuity between two spline elements is equal to Cp−m where

“p” is the degree and “m” is the multiplicity of the value in the knot vector. Since the

objective is to work with quadratic splines with C1 continuity, all knot span values are

taken with multiplicity m = 1, except at the first and last values which are defined with

multiplicity m = 3 to enforce interpolation. For the proposed formulation the knot vector

is assumed as uniform, which means that knot vector values are equally spaced.

Considering a given knot vector, it is possible to define spline basis functions as

Ni,0(ξ) =

1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ).

(3.1)

where ξ is the convective coordinate with Ni,p(ξ) being recursively (using the Cox-de

Boor formula [48]) calculated according to a desirable degree “p”. The Ni,p(ξ) terms

are considered only if the denominator is not zero to avoid indeterminations. Figure 5
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illustrates step-by-step the procedure to produce five quadratic basis functions based on

a knot vector equal to Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}. The dashed lines in Figure 5 indicate

the three knot spans.

(a) Constant functions.
(b) Linear functions. (c) Quadratic functions.

Figure 5: Basis functions calculated based on a knot vector Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}
for two quadratic beam elements. Dashed lines represent the knot spans (spline ele-
ments) [2].

It is possible to note that for any given value of ξ in the constant, linear, or quadratic

basis, the sum of the functions equals unity, see Figure 5. This characteristic implies

that these functions can be used to split a given information (e.g. value or vector) with

no losses. Moreover, Figure 5 also shows that the quadratic basis function preserves C1

continuity not only inside the knot spans but also between them. Once the basis functions

are established, the spline is defined as

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi. (3.2)

where C(ξ) represents the physical mesh, Ni,p(ξ) are the basis functions and Pi are the

control points defining a control mesh. The control mesh is an interpolatory mesh defined

by control points while the physical mesh, which is often non-interpolatory, stands for the

spline geometric description [49, 50].

Figure 6a illustrates a spline with a solid line (divided into two black lines and a red

curve obtained for each knot span) representing the physical mesh and a dashed line with

control points in orange representing the control mesh. Though any control mesh could be

used to produce the spline, the defined control mesh was intentionally adopted to represent

two straight quadratic finite elements. The particular choice of finite element nodes

as control points highlights the link between the spline formulation and the structural

formulation. Additionally, it shows how the spline smoothes the eventual sharp edges of

classical straight finite elements discretization. The spline is, therefore, an approximation

of the finite elements geometry. Moreover, this approximation can be reduced by refining
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Table 1: Control points representing two quadratic finite elements simply joined.

P1 = (0, 0, 0)
P2 = (0, 1, 1)
P3 = (0, 2, 2)
P4 = (1, 2, 2)
P5 = (2, 2, 2)

the finite elements mesh. The spline in Figure 6a combines the quadratic basis functions

presented in Figure 5c and the control points presented in Table 1.

Considering the spline definition, it is feasible now to establish a spline-based surface

by sweeping a circular profile along the whole spline curve in space. In this surface rep-

resentation, the spline depicts a centerline while a circle radius characterizes the outer

surface. Figure 6b illustrates a spline-based surface directly obtained from the spline pre-

sented in Figure 6a. A major advantage of spline-based surfaces is their natural smooth-

ness, guaranteed by the spline definition. Moreover, it permits the definition of a desired

continuity level in advance. In this work, a quadratic spline formulation with C1 conti-

nuity is adopted through all spline elements, except at the tips, where the spline is taken

as interpolatory at control points. The choice for the quadratic spline formulation is the

simplest one, keeping a minimum desirable smoothness.

x

y
z

(a) Spline control mesh represented by the
dashed line with control points in orange.
Spline physical mesh represented by the
black lines and red curve. The red curve
represents a single patch defined by a knot
span.

(b) Spline-based surface obtained by sweep-
ing a circular profile along the whole spline
curve in space.

Figure 6: Spline and spline-based surface [2].

Though Figure 6b illustrates a spline-based surface that may be associated with a



33

single body, it is convenient for contact formulations to split that surface into smaller parts.

These parts, which can be viewed as contact elements, hold all necessary geometrical

information. For the proposed contact formulation a contact element consists of a spline

element linked with a knot span and a radius. It is important to observe that the procedure

of splitting the original spline into spline elements should preserve all original geometric

properties.

Considering then quadratic basis functions and a generic knot span [ξi, ξi+1[ with

ξi ̸= ξi+1 the corresponding spline element knot vector is defined as

Ξi = {ξi−2, ξi−1, ξi, ξi+1, ξi+2, ξi+3} (3.3)

where Ξi represents a subdomain of the original knot vector ξ. Figure 7 illustrates ba-

sis functions calculated for the spline elements based on the original knot vector Ξ =

{0, 0, 0, 1/3, 2/3, 1, 1, 1} presented in Figure 5.

(a) Ξ1 = {0, 0, 0, 1/3, 2/3, 1}. (b) Ξ2 = {0, 0, 1/3, 2/3, 1, 1}. (c) Ξ3 =
{0, 1/3, 2/3, 1, 1, 1} [2].

Figure 7: Basis functions calculated for the spline elements based on the original knot
vector Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}.

As shown in Figure 7, each spline element comprises a set of three basis functions,

in contrast to the five basis functions presented in Figure 5c. In fact, the basis functions

presented in Figure 5c and Figure 7 are the same, except for the knot spans imposed

according to the spline element in the analysis. Moreover, as each basis function is

uniquely associated with a control point, see (3.2), it is possible to define control points

that rule each spline element.

Therefore, a spline element is completely defined by a knot vector (based on the

original knot vector) and a set of control points (according to the control mesh). Following

the proposed formulation with quadratic spline elements, a set of three control points is

necessary for each spline element.

Figure 8a to 8c illustrate the physical mesh of three spline elements based on the

original spline of Figure 6a. Figure 8d to 8f present the corresponding spline-based surface
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regions associated with the original spline-based surface presented in Figure 6b. Such

regions are to be used herein to establish contact elements.

It is noteworthy that some points are shared between spline elements since they share

basis functions (in different knot spans). This fact implies that contacts acting simulta-

neously in neighbor spline elements may affect a particular shared control point at the

same time. Additionally, the number of spline elements is different to the number of

finite elements. The number of spline elements is equal to the number of valid knot spans

(ξi ̸= ξi+1) in the knot vector. For example, in the example here discussed for 2 quadratic

finite elements 3 spline elements are necessary. Considering quadratic spline elements

combined with quadratic finite elements simply joined (nfe), the number of contact ele-

ments is nse = 2nfe − 1.

(a) Knot span [0, 1/3[. (b) Knot span [1/3, 2/3[. (c) Knot span [2/3, 1[.

(d) Surface region obtained
from the knot span [0, 1/3[.

(e) Surface region obtained
from the knot span [1/3, 2/3[.

(f) Surface region obtained
from the knot span [2/3, 1[.

Figure 8: Representation of three spline elements and three spline-based surface regions
based on the original spline presented in Figure 5 [2].
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3.2 Normal Contact Formulation

Contact is characterized by the mechanical interaction between two bodies, taking

place on portions of the surface of bodies (or within the same body, in the case of self-

contact). In this work, each pair of contact elements uniquely defines a pointwise action-

reaction.

The search for contact pairs is usually performed, roughly in two phases. The first

phase consists of a global search. This phase aims to quickly identify pairs of contact

elements prone to contact. This search uses a simple pinball check associated with points

concerning contact elements [51]. In the pinball check a radius is defined for each contact

element. These radii are then used to evaluate which contact pairs are prone to contact.

Figure 9a highlights in red color a pair of spline elements from splines ΓA and ΓB which

are prone to contact according to the pinball overlap.

Once all pairs of contact candidates are defined by the global search, a local search

is performed. This local search seeks points at both contact elements where the contact

interaction may take place. This nonlinear search can involve complex surfaces and is de-

noted as the Local Contact Problem (LCP). A detailed discussion of the LCP is presented

in [29]. Moreover, depending on the configuration of the contact elements in space, there

might be cases for which the LCP is ill-defined (such as conformal contact).

Considering however an LCP solution, corresponding to materials points, it is possi-

ble to formulate the contact interaction. In the case of penetration, an interface law is

applied and its corresponding potential is calculated. Alternatively, one may adopt La-

grange multipliers to impose the non-penetration condition. The main drawback of using

Lagrange multipliers is the lack of a physical interface law that may be quite convenient

to represent contact interaction. The global and local contact searches are repeated at

each simulation’s time-step as the model evolves.

Figure 9b illustrates a LCP solution c̄T = [c̄A, c̄B]T for two spline elements ΓA and ΓB.

The red vector g indicates the minimum distance, or closest point projection, between

ΓA and ΓB. From now on, a LCP solution is indicated by a set of convective coordinates

c̄T = [c̄A c̄B]T = [ξ̄A ξ̄B]T .

Contact elements are often described in terms of convective coordinates and general-

ized displacements. This kind of formalism is very useful for contact problems as shown

for beams, shells, and general polyhedra [5, 6, 52]. Moreover, this formalism permits

some mathematical manipulations (known as LCP degenerations) to handle specifically
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Γ𝐴  

Γ𝐵  

(a) Rough contact search considering two
splines ΓA and ΓB with three spline ele-
ments each.

(b) LCP solution c̄A and c̄B of two splines
ΓA and ΓB. Gap vector g representing the
minimum distance between ΓA and ΓB.

Figure 9: Representations of the rough contact search and the local contact search [2].

challenging conformal contact scenarios, see [27, 29]. In this work, the spline coordinates

are defined as the convective coordinates. Furthermore, the generalized displacements are

taken as translational displacements associated with the control points inherited from the

finite element mesh. An immediate effect of this approach is a significant simplification

of the LCP when compared to surfaces [29]. Within this approach, the LCP leads to a

minimum distance problem involving two spline elements.

The convective coordinates range of validity of spline elements is naturally linked to

their knot spans. As a result, it is convenient to describe the convective coordinates of

the spline elements ΓA and ΓB respectively as cA = ξA and cB = ξB. It is still convenient

to combine these values into a single vector of convective coordinates c as

c =

[
cA

cB

]
=

[
ξA

ξB

]
(3.4)

The generalized displacements of any contact element should encompass, as much as

possible, the degrees-of-freedom involved in the contact element deformation. For a spline

element, defined by three control points, three displacement vectors are necessary. The

generalized displacements of the spline elements ΓA and ΓB can be therefore expressed

by dA = [uT
AA uT

AB uT
AC ] and dB = [uT

BA uT
BB uT

BC ]. In this context, rotational degrees-

of-freedom are not included in the contact formulation description, though present in the

finite element formulation. Such particularity leads to a broader and more versatile ap-

proach since only nodal positions and generalized displacements are necessary. Figure 10

illustrates the generalized displacements dA at the three control points from a spline el-
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ement. Once again, it is convenient to concatenate the generalized displacements into a

single vector d as

d =

[
dA

dB

]
= [uT

AA uT
AB uT

AC uT
BA uT

BB uT
BC ]T (3.5)

Figure 10: Spline element in black with a gray dashed line control mesh and orange control
points. Red arrows indicating generalized displacements uAA, uAB, and uAC , which rule
the position of control points [2].

Finally, the spline elements ΓA and ΓB, prone to contact, are fully parametrized by

their convective coordinate cA and cB, and their generalized displacement vectors dA and

dB. The relation between the contact elements and the spline formulation is highlighted

by the convective coordinate cA and cB taken respectively as ξA and ξB and by the

generalized displacement vectors d embedded in the points Pi of the control mesh. Thus,

the spline elements ΓA and ΓB are defined as

ΓA(cA,dA) = CA(ξA) and

ΓB(cB,dB) = CB(ξB).
(3.6)

With that, one can properly quantify and address contact interaction. An important

value to characterize the contact interaction is the effective gap. A scalar effective gap ge

is defined as

ge = ĝe(c,d) = ∥ΓA − ΓB∥−(rA + rB), (3.7)

where rA and rB are the beam cross-section radii associated with ΓA and ΓB, respectively.

A negative sign of ge characterizes the contact interaction. The quantity ge is always

evaluated at an LCP solution c̄, which corresponds to material points in spline elements
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that present the minimum distance for a given configuration defined by d̄ (see Figure 9b).

Note that the scalar ge is calculated with respect to the spline convective coordinates. This

strategy is only valid for circular cross-sections that sweep the spline as the center [17].

Moreover, it is convenient now to formally introduce two important vectors associated

with two spline elements ΓA and ΓB, the gap vector g and its normal n. The gap vector

g is given by

g = ĝ(c,d) = ΓA − ΓB, (3.8)

and its normal n, by definition, follows from

n = n̂(c,d) =
ΓA − ΓB

∥ΓA − ΓB∥
. (3.9)

The gap vector g is particularly important since it mathematically expresses the

contact elements’ distance with all variables regarding the convective coordinates and

degrees-of-freedom. Considering then a gap vector g, it is convenient to define an objective

function f1 associated with a quadratic expression of the distance between the spline

elements. The objective function f1 is defined, considering the gap vector g in (3.8), as

f1 =
1

2
g · g. (3.10)

The LCP can be in consequence calculated as a stationary point of the objective

function f1, representing geometrically an orthogonality condition. In this context, the

LCP can be expressed as

r = ∇f1 =

[
ΓA,ξA ·g
−ΓB,ξB ·g

]
=

[
0

0

]
(3.11)

where r is a residual function, with ΓA,ξA and ΓB,ξB denoting partial derivatives with

respect to their own convective coordinates. Once the condition presented in (3.11) is

fulfilled, a LCP solution is obtained as a pair of convective coordinates corresponding

to material points in each spline element within their valid knot spans (see Figure 9b).
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A trust-region (TR) optimization framework [53, 54] is adopted to solve the nonlinear

system expressed in (3.11).

Furthermore, it is still convenient to introduce a Hessian matrix H concerning the

objective function f1. The Hessian matrix H is calculated as

H = r,c = ∇2f1 =

[
g · ΓA,ξAξA +ΓA,ξA ·ΓA,ξA −ΓB,ξB ·ΓA,ξA

−ΓB,ξB ·ΓA,ξA −g · ΓB,ξBξB +ΓB,ξB ·ΓB,ξB

]
. (3.12)

The Hessian matrix presented in (3.12) is very useful in the characterization of a LCP

solution c̄ as further presented.

3.2.1 Normal Interaction Law

Once the penetration value is determined, one needs a method to impose the non-

penetration mechanical constraint. The Lagrange multipliers method is a possibility, with

the drawback of the introduction of extra unknowns, but with the capability of imposing

the non-penetration condition exactly. The penalty method is another possible choice,

allowing controlled penetrations. The penalty method can however be used to introduce

local geometric effects by embedding these in an interface law, activated by a penetration

evaluation given by the modulus of ge.

The definition of an interface (compliance) law is a central issue on this context. The

compliance law of a pointwise fashioned contact should be able to capture the geometry

(sharp, smooth, imperfections, etc.) and the material (elastic, viscoelastic, plastic, etc.)

behavior of the bodies in contact. The classical work by Hertz presented the elastic normal

contact problem involving some well-defined geometries parametrized by quadrics, able

to represent locally the surfaces of spheres and cylinders [19]. In practical problems, the

contact interaction between bodies is often characterized by a nonlinear interface law.

In this work, a broad nonlinear normal elastic force fne is adopted. The compliance law

associated with fne is defined as

fne = ϵe1|ge|ϵe2
(

ge

|ge|

)
n (3.13)

where ϵe1 and ϵe2 are parameters to be defined. The dotted line in Figure 11 illustrates a

nonlinear compliance law for ϵe1 = 4E6 mN/m2.613 and ϵe2 = 2.613.
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Figure 11: Normal contact compliance law from [55] proposed for fne as red marks and
approximated by a power trendline as a black solid line. Compliance law adopted in the
numerical example of textile shear [2].

Though simple, equation (3.13) embraces several scenarios when combined with the

pointwise contact interaction. It allows, for example, to impose compliance laws di-

rectly obtained from experiments, regardless of the overwhelming complexity of contact

micromechanics. Another possibility for a normal interface law is a nonlinear law that

behaves as a barrier, see [52].

Additionally, to account for dissipative effects, a linear damper is introduced in the

normal interaction law. This normal damper is defined as

fnd = cndġn (3.14)

where cnd is the damping constant and ġn is the normal relative velocity at the con-

tact interface in normal direction as detailed in [27]. The normal force is then defined,

considering elastic and dissipative contributions, as

fn = fne + fnd. (3.15)

3.3 Tangential Contact Formulation

The frictional force depends on the contact evolution during a certain time period.

A possible way to quantify this force is to establish a tangential gap vector gt. The

tangential gap can be viewed as a measure of the relative sliding of material points in

contact.
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To define the tangential gap, it is convenient first to define two auxiliary vectors as γ∆
A

and γ∆
B . These vectors denote, in each spline element ΓA and ΓB, the contact trajectory

of a material point between two consecutive configurations. From now on the superscript

∆ stands for a change from configurations “i” to “i+ 1” within a time step, as illustrated

in Figure 12. For sufficiently smooth surfaces and small timesteps, the contact trajectory

vectors γ∆
A and γ∆

B can be defined as

γ∆
A = ΓA(ci+1

A ,di+1
A ) − ΓA(ciA,d

i+1
A ), and

γ∆
B = ΓB(ci+1

B ,di+1
B ) − ΓB(ciB,d

i+1
B ).

(3.16)

Despite the fixed generalized displacements d at instant “i + 1”, the convective co-

ordinates c of two consecutive timesteps are necessary. This characteristic enforces the

history-dependency of the frictional forces. Figure 12 illustrates the contact trajectory

vectors γ∆
A and γ∆

B .

Figure 12: Representation of the frictional contact of two splines Γi+1
A and Γi+1

B at con-
figuration “i + 1”. The red arrows indicate the sliding paths γ∆

A and γ∆
B , and the normal

direction ni+1 [2].

It is possible now, considering two contact trajectory vectors γ∆
A and γ∆

B , to estimate a

vector defined by the difference of both as γ∆
AB = (−γ∆

A +γ∆
B ). This vector γ∆

AB represents

the difference between the trajectories of both contacting bodies’ material points, during

a timestep. However, to evaluate the frictional behavior, only the tangential part of γ∆
AB

is necessary. It is possible to observe in Figure 12 that γ∆
A , γ∆

B , and consequently γ∆
AB are

not based on the spline-based contact surface, but only in the spline-curve. This strategy

represents a simplification, as long as frictional moments are neglected. The formulation,

however, is still suitable for simulations involving slender beams (small radius). The

tangential part of γ∆
AB, which represents a measure for the incremental tangential gap g∆

t ,

is defined as
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g∆
t = γ∆

AB − (γ∆
AB · ni+1)ni+1 = (I − ni+1 ⊗ ni+1)γ∆

AB (3.17)

where ni+1 is the contact normal vector at configuration “i+1”. It is possible to compute

the tangential gap g∆
t as

g∆
t = (I−ni+1⊗ni+1)

(
(ΓA(ciA,d

i+1
A ) − ΓB(ciB,d

i+1
B )

)
= (I−ni+1⊗ni+1)ĝn(ci,di+1) (3.18)

where ci is a vector containing the convective coordinates at configuration “i” and di+1

is a vector containing the generalized displacements at configuration “i + 1”. Observe

that (3.18) has no terms associated with ΓA(ci+1
A ,di+1

A ) and ΓB(ci+1
B ,di+1

B ). These terms are

actually zero since they are, by construction, parallel to ni+1. A more detailed discussion

of (3.18) can be found in [6] and [27].

The tangential gap expressed in (3.18) represents the contribution of a single timestep

to measure the relative sliding. However, to represent the whole contribution accumulated

over time it is necessary to consider the contribution of all timesteps in a simulation. For

that, it is convenient to define the total tangential gap gi+1
t as

gi+1
t = g∆

t + Q∆gi
t (3.19)

where Q∆ is a rotation tensor that guarantees that the previous accumulated tangential

gap gi
t is always updated from direction ni to ni+1. As detailed in [27], it is possible to

prove that ni+1 = Q∆ni which implies that Q∆ is just an operator mapping ni to ni+1.

Among other possibilities, in this work, the Rodrigues rotation vector eα is adopted to

construct the rotation tensor Q∆. Therefore, the rotation tensor Q∆ is expressed as

Q∆ = I +
4

4 + α2

(
Eα +

1

2
E2

α

)
(3.20)

where α = 2tan(θ∆/2) with θ∆ = asin∥ni × ni+1∥, and Eα = skew(eα) with eα = αe

being e the rotation direction.
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3.3.1 Tangential Interaction Law

The frictional force is modeled by the Coulomb Law as presented in [56]. The proposed

rheological model includes two sliding devices, an elastic part and a dissipative (viscous)

part with static and dynamic friction coefficients that are considered to compute a trial

friction force and test it against the Coulomb limit. Figure 13 illustrates the rheological

model adopted including two sliding devices indicated with the numbers 1 and 2. This

model is based on the formulations presented in [6] and [27].

𝐟𝑡𝑒  

𝐟𝑡𝑑  

𝜇‖𝐟𝑛
𝑖+ 1‖ 

𝜇‖𝐟𝑛
𝑖+ 1‖ 

Figure 13: Rheological model for the frictional interaction including two sliding devices
(1 and 2), an elastic contribution, and a dissipative contribution [2].

The elastic contribution to the frictional interaction f te is a linear function, defined

with respect to the tangential gap presented in (3.19),

f te = ϵteg
i+1
t (3.21)

where ϵte is the so-called tangential penalty stiffness.

The viscous contribution to the friction force f td depends on the relative sliding ve-

locity ġt at the interface, see [29],

f td = ctdġt (3.22)

where ctd is the tangential viscous damping coefficient.

With these two contributions, it is possible to define a frictional “trial” force f trial

composed of an elastic part and a viscous part

f trial = f te + f td. (3.23)

Note that, though both terms f te and f td occur in the instantaneous contact tangent
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plane, they may not be parallel. Now it is convenient to introduce the frictional contact

direction ti+1 expressed as

ti+1 =
f trial

∥f trial∥
. (3.24)

It is still possible to check the “stick-slide” status of the Coulomb model (2) in Fig-

ure 13 by comparing the magnitude of the frictional trial force in (3.23) and the magnitude

of the normal contact force in (3.15) multiplied by the friction coefficient µ. Considering

a friction coefficient µ, taken as static or dynamic according to the previous time status

(sliding/sticking), the status of the sliding device is called “stick” if ∥f trial∥≤ µ∥f i+1
n ∥ and

“slide”, otherwise.

In a “stick” scenario, the current frictional force f i+1
t is equal to f trial as presented

in (3.23). In this case, the frictional force f i+1
t is expressed as

f i+1
t = f trial = f te + f td. (3.25)

However, for a “slide” scenario the frictional force f i+1
t is limited, according to the

dynamic friction coefficient µd. Therefore, the frictional force f i+1
t is taken as

f i+1
t = µd∥f i+1

n ∥ti+1. (3.26)

It is still necessary to consider the contribution of the sliding device (1) in Figure 13.

For that, a similar procedure to the one used for the Coulomb sliding is adopted. To

check the “stick-slide” status of the rheological model a comparison is made between

the magnitude of the frictional elastic contribution, see (3.21), and the magnitude of

the normal contact force, see (3.15), multiplied by a friction coefficient µ. Considering

a friction coefficient µ, taken as static or dynamic according to the previous status of

Coulomb sliding, the status of the rheological sliding is “stick” if ∥f te∥≤ µ∥f i+1
n ∥ and

“slide” otherwise.

In a rheological sliding “stick” scenario, no correction is necessary of the tangential

gap definition presented in (3.19). However, in a rheological sliding “slide” scenario, a

specific tangential sliding gap gt slide is necessary, see [27]. This tangential sliding gap
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gt slide is defined as

gt slide = gi+1
t − µd∥f i+1

n ∥
ϵte

f te
∥f te∥

. (3.27)

It is possible to include the tangential sliding gap contribution gt slide due to rheolog-

ical sliding in an updated tangential gap gi+1
t updated. The updated tangential gap gi+1

t updated

is then defined as

gi+1
t updated = gi+1

t − gt slide =
µd∥f i+1

n ∥
ϵte

f te
∥f te∥

. (3.28)

Finally, the tangential force and the corresponding tangential gap can be summarized

as

f i+1
t =

f te + f td if “stick” in Coulomb sliding

µd∥f i+1
n ∥ti+1 if “slide” in Coulomb sliding

gi+1
t =

g∆
t + Q∆gi

t if “stick” in rheological sliding

µd∥f
i+1

n ∥
ϵte

f te

∥f te∥
if “slide” in rheological sliding.

(3.29)

3.4 Contact Problem Degeneration

The LCP expresses a set of orthogonality conditions of a pair of geometrical entities

considering their convective coordinates. When there is no distinction between the ge-

ometric entities involved, the LCP is named “master-master”. The LCP orthogonality

conditions can be weakened, however, for any particular reason, by fixing a priori one or

more convective coordinates. In this case, the orthogonality conditions are amended and

the geometrical entities are unevenly treated. In this context, according to the selection

of orthogonality conditions, the LCP can be modified, for instance, to a “curve-to-node”

or a “node-to-node” contact problem. A degeneration is herein regarded as the process

of weakening a master-master LCP by fixing one or more convective coordinates [25].

For the proposed spline-based contact formulation only two convective coordinates cA

and cB, respectively associated with ΓA and ΓB, are involved in a master-master LCP.
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As a result, a master-slave LCP degeneration corresponds to fixing one of the convective

coordinates, cA or cB. Once a degeneration process is adopted, it is still necessary to

choose a convective coordinate value. In this work, every time a degeneration takes

place in ΓA or ΓB the corresponding convective coordinate is fixed for simplicity as the

knot span mean value. The choice for this particular value seeks a fair contact forces

distribution to the structural model according to the spline basis functions. Moreover,

the superscript (·)∗ is adopted to indicate a fixed convective coordinate or a spline element

where degeneration takes place. The process of fixing the convective coordinates can be

expressed as

c̄∗A =
ξAi

+ ξAi+1

2
with Γ∗

A, and

c̄∗B =
ξBi

+ ξBi+1

2
with Γ∗

B

(3.30)

with [ξAi
, ξAi+1

[ and [ξBi
, ξBi+1

[ representing respectively the knot spans of ΓA and ΓB.

Figure 14a and Figure 14b illustrate the master-slave LCP solutions when degeneration

takes place respectively in ΓA and ΓB. The master-slave LCP solutions presented in

Figure 14 were, in fact, obtained from the original master-master LCP solution presented

in Figure 9b.

ΓB  

ΓA  

𝐠  

c
_

B

c
_

A * 

* 

(a) LCP with Γ∗
A.

ΓA  

ΓB  

𝐠  

c
_

A 

c
_

B
*

*

(b) LCP with Γ∗
B.

Figure 14: LCP degenerations [3].

One of the consequences of LCP degeneration is a reduction of the orthogonality

relations. In this, a simple master-slave LCP is considered with a single orthogonality

condition defined as

rA = ΓA,ξA ·g = 0 with Γ∗
B, and

rB = −ΓB,ξB ·g = 0 with Γ∗
A.

(3.31)
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Moreover, the Hessian matrix H is also simplified to a single value. When degeneration

takes place in ΓA or ΓB the Hessian is no longer a matrix, but a scalar H given by

HAA = g · ΓA,ξAξA +ΓA,ξA ·ΓA,ξA with Γ∗
B, and

HBB = −g · ΓB,ξBξB +ΓB,ξB ·ΓB,ξB with Γ∗
A.

(3.32)

3.4.1 Contact Solution Characterization

A crucial aspect of the here proposed numerical strategy is the identification of non-

convexity or non-strict-convexity of the LCP. For that, one may introduce the so-called

LCP characterization, as a spectral analysis of the Hessian H for a given LCP solution c̄.

This will be seen as a reliable tool for the decision-making on the acceptance or rejection

of an LCP solution c̄, such as, in case of rejection, how to proceed. The original LCP

Hessian eigenvalues are denoted as λ1 and λ2. For degenerated contact problems, however,

a single eigenvalue λ1 is evaluated. The eigenvalue λ1 is, in fact, equal to the Hessian in

this simplified case, as it is expressed by a single value HAA or HBB.

The here-discussed technique is not capable of identifying complex non-uniqueness

scenarios, such as multiple pointwise solutions between wavy geometrical entities. In-

stead, it is devoted to identifying non-uniqueness cases stemming from conformal contact

problems, to be useful in the particular beam-to-beam contact search, considering pairs

of spline-based curves, as already here presented.

To illustrate the contact solution characterization, several contact scenarios are an-

alyzed taking as basis two ill-defined geometric contact problems. In some cases, the

LCP solution is not unique. These cases are presented here in 2D for convenience, but

the formulation adopted and the conclusions drawn are directly extensible for 3D cases.

The contact cases analyzed are presented in Figure 15a and Figure 15b respectively as a

curved contact problem and a straight contact problem.

(a) Curved contact problem. (b) Straight contact problem.

Figure 15: Cases with ill-defined LCP solution [3].
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Consider now, for both contact cases, two spline elements ΓA and ΓB with equal basis

functions defined as

N2,2(ξ) =
1

2
(2 − 3ξ)2

N3,2(ξ) = −3

2
+ 9ξ − 9ξ2

N4,2(ξ) =
1

2
(1 − 3ξ)2

(3.33)

within a valid convective coordinate range of [1/3, 2/3[. These spline basis functions are

illustrated in Figure 5b. Despite using the same basis functions, ΓA and ΓB represent

different curves as defined by their control meshes in Table 2, similarly as presented in

Figure 8. Moreover, in these studies only the y coordinates of the extreme nodes are

perturbed. It is possible to observe in Table 2 that two new variables hA and hB were

introduced, respectively, for ΓA and ΓB. This is done to easily modify the overall spline

elements’ shapes.

Control mesh for ΓA Control mesh for ΓB

PA2 = (0, 0.1 + hA) PB2 = (0,−0.1 − hB)
PA3 = (1, 0.1) PB3 = (1,−0.1)
PA4 = (2, 0.1 + hA) PB4 = (2,−0.1 − hB)

Table 2: Control meshes for ΓA and ΓB with new variables hA and hB [3].

Considering then the spline basis functions in (3.33) and the control meshes detailed

in Table 2, it is possible to establish the spline elements ΓA and ΓB as

ΓA(hA) =
4∑

i=2

Ni,2PAi

ΓB(hB) =
4∑

i=2

Ni,2PBi
.

(3.34)

Figure 16 illustrates the spline elements ΓA and ΓB respectively in blue and green

colors with their corresponding control meshes in gray adopting hA = 1 and hB = 1.

For the configuration presented in Figure 16, the LCP solution is trivial and equals

c̄T = [0.5, 0.5]T . Moreover, Hessian eigenvalues analysis presented further are performed

considering in principle a LCP solution equals c̄T = [0.5, 0.5]T . Non-trivial LCP solutions

are discussed when necessary.
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Figure 16: Spline elements ΓA and ΓB respectively in blue and green with their control
meshes in gray for hA = 1 and hB = 1 [3].

3.4.1.1 Curved Contact Problem

The objective of this study is to illustrate the evaluation of the Hessian H eigenvalues

λ1 and λ2 behavior for a curved contact problem with possible non-unique LCP solutions.

The study here developed is similar to the one presented in [29]. In [29], however, the

authors are interested in a surface-to-surface contact problem involving thus four eigen-

values. The analysis here proposed starts from the trivial case illustrated in Figure 16,

which has a unique solution, and proceeds step-by-step by modifying the overall shape

of a single spline element. To perform this analysis a value of hB = 1 is fixed while sev-

eral values of hA are considered. Figure 17 depicts the eigenvalues evolution for several

hA values, depicting also for each case a simple visualization of the geometrical shapes

involved in the LCP considered.

hA  

Figure 17: Hessian matrix eigenvalues evolution for a fixed hB = 1 and several hA values
for a curved conformal contact scenario [3].

It is possible to observe that both eigenvalues λ1 and λ2 decrease as ΓA approaches

a scenario with non-unique LCP solution. The cases with hA = 1, hA = 0.5, hA =

0, and hA = −0.5 present both positive Hessian eigenvalues that are associated with

straightforward LCP solutions. Moreover, it is noteworthy that the lower eigenvalue λ2

is negative when hA = −1 and hA = −1.2.

When hA = −1 both curves present exactly the same shape, as the control points

are simply shifted. These curves, however, do not represent a curved conformal contact
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scenario. See [36] for a discussion regarding contact problems involving conformal curves.

The conformal contact involving splines is, however, quite uncommon as producing offset

curved splines is a non-trivial task [57, 58]. For this particular configuration, the LCP is

characterized as a saddle with three LCP solutions, similarly as observed in [29]. The first

LCP solution considered is c̄T = [0.5, 0.5]T . This solution does not represent the closest

point projection, instead, it is a saddle point. The two other symmetric solutions (not

illustrated) are intersections that occur in the extensions of the spline elements which are

away from the knot spans range of interest. Therefore only c̄T = [0.5, 0.5]T is considered

a valid LCP solution for the analysis.

When hA = −1.2 the LCP also presents three solutions c̄1 = [0.788675, 0.788675],

c̄2 = [0.5, 0.5], and c̄3 = [0.211325, 0.211325]. However, as observed in the previous

analysis, only c̄2 is considered a valid feasible solution, since c̄1 and c̄3 are not in the

valid knot span of [1/3, 2/3[. In fact, a configuration with spline intersections is not

of practical interest, as it would denote an extreme penetration scenario, as the spline

curves represent beam centerlines, and the contact mechanical action occurs on the beam

surfaces, considering proper cross-sections dimensions as defined in the gap expression

(3.8). An intersection LCP solution near valid knot spans can be interpreted as a scenario

of a possible proper contact interaction handled by neighbor spline elements due to the

C1 continuity (see [29]).

3.4.1.2 Straight Contact Problem

In this section, the aim is to evaluate the Hessian H eigenvalues λ1 and λ2 evolution

for a straight conformal contact scenario. To perform this study a value hB = 0, that is

equivalent to a straight line, is fixed while several hA values are tested. A value of hA = 1

is initially adopted. The Hessian eigenvalues λ1 and λ2 evolution according to the hA

values are presented in Figure 18.

The results in Figure18 show that the eigenvalues decrease as ΓA approaches scenarios

with non-unique LCP solutions. This figure shows that both Hessian eigenvalues are

positive hB = 1 and hB = 0.5. These cases correspond to trivial unique LCP solutions.

Moreover, it is possible to note in Figure 18 that the lower eigenvalue λ2 is zero when

hA = 0 and negative when hA = −0.5.

When hA = 0 a perfect straight conformal contact scenario is defined. In this scenario,

there are infinite LCP solutions. Despite that, for any valid LCP solution, the Hessian

eigenvalues are constant with a zero λ2.
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hA  

Figure 18: Hessian matrix eigenvalues evolution for a fixed hB = 0 and several hA values
for a straight conformal contact scenario.

When hA = −0.5 the LCP presents three valid (within the knot-span) solutions (each

one with corresponding pairs of Hessian eigenvalues). The LCP solutions and eigenvalues

of H when hA = −0.5 are presented in Table 3. Though valid concerning spline elements

knot spans, the LCP solutions c̄1 and c̄3 correspond to a very unlikely contact scenario of

very large penetration, as such LCP solutions c̄1 and c̄3 correspond to intersections of the

spline elements. This particular scenario results in a null gap vector, see (3.8). In practical

problems, these spline intersections would represent an unfeasible contact scenario with

extreme penetrations, as long as our gap measurement considers radial offsets together

with the distance between beam centerlines. Finally, the last LCP solution c̄2 is indeed a

saddle point with negative λ2.

c̄1 = [0.629099, 0.629099] λ1 = 18.7003
λ2 = 0.649723

c̄2 = [0.5, 0.5] λ1 = 17.6688
λ2 = −0.343826

c̄3 = [0.370901, 0.370901] λ1 = 18.7003
λ2 = 0.649723

Table 3: LCP solutions with their corresponding eigenvalues of H when hA = −0.5.

3.5 Numerical Strategy & Algorithm

The previous section shows that, in practice, one is interested in finding the LCP

solution corresponding to a minimum distance problem, and neither an intersection (which

is also mathematically characterized as a minimum) nor a saddle solution. Therefore, the

scenario of interest is characterized by positive eigenvalues of the Hessian of the LCP, for

the found solution.

To avoid problematic cases of spline intersections, that represent extreme penetrations,
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the gap vector direction is monitored in contact interactions. This monitoring consists

of calculating the dot product of the gap direction in two subsequent configurations.

If the result is positive, the contact interaction is accepted. Otherwise, the contact is

rejected and the simulation is cut back in time. Moreover, for a given found LCP solution,

a non-positive eigenvalue λ2 is obtained we propose the degeneration of the LCP, in

order to modify and recover a solution of interest. A small tolerance tolc should be

introduced to handle near straight conformal contact scenarios with approximately zero

Hessian eigenvalue λ2.

The proposed numerical strategy consists of evaluating, simultaneously, three numer-

ical criteria of an LCP solution c̄ to decide if it should be accepted, rejected, or undergoes

a degeneration process. The three numerical criteria evaluated are:

1. The availability (convergence) of an LCP solution;

2. The location of a determined LCP solution, with respect to the valid range of the

convective coordinates;

3. The contact problem characterization.

The objective of the first numerical criterion is to handle contact problems for which

a LCP solution diverges. In the proposed formulation the LCP is always expressed as a

minimum distance problem of C1 smooth curves representing beam centerlines. More-

over, a robust trust-region (TR) optimization framework [53, 54] is adopted to calculate

LCP solutions. However, when for some numerical reason the LCP solution diverges,

a degeneration procedure is considered. The LCP solution divergence may be caused,

for example, when a Hessian eigenvalue is zero, as in the scenario of perfect conformal

contact.

The second criterion consists of a simple verification concerning the valid convective

range of spline elements prone to contact. When searching for an LCP solution c̄, the

convective coordinates are not restricted to valid knot spans. Therefore, an LCP solution

c̄ result may result in one or more non-feasible convective coordinates. In this case, the

solution is rejected and degeneration is again considered. The second criterion can be

expressed as

ξAi
(1 − tolξ) ≤ c̄A < ξAi+1

(1 + tolξ), and

ξBi
(1 − tolξ) ≤ c̄B < ξBi+1

(1 + tolξ).
(3.35)
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where a small toleration parameter tolξ is introduced. The objective of the tolerance tolξ

is to handle particular conformal contact scenarios involving large deformations between

spline elements.

The third criterion is based on the contact solution c̄ characterization concerning the

LCP solution (see Section 3.4.1). The objective of this criterion is to identify cases in

which the solution c̄ is, in fact, a minimum. A similar procedure is presented in [29] to

characterize the contact of surfaces, in that context to modify the strategy while solving

a contact problem.

The previous subsections explored numerical criteria to identify and characterize cases

for which a LCP degeneration should be considered. However, it is still necessary to estab-

lish an algorithm to properly define the contact problem workflow. Figure 19 illustrates

the LCP solution numerical workflow.

The numerical workflow starts with a LCP between two spline elements that are prone

to contact. After that, all three criteria are evaluated for the decision-making process with

respect to a LCP solution c̄. If all requirements are simultaneously met then the LCP

solution c̄ is accepted and the workflow ends.

Otherwise, if at least one criterion fails, the LCP undergoes a degeneration process

with Γ∗
A. There is no particular criterion to define which spline element is ΓA or ΓB, this

choice is arbitrary. Alternatively, one may adopt a criterion that evaluates both Γ∗
A and

Γ∗
B and adopts the one with a lower gap value. Moreover, when degeneration occurs, the

LCP is reduced to a single convective coordinate that, in this case, with Γ∗
A, is c̄B. The

LCP solution c̄B is then verified with three criteria. These criteria are equivalent to the

ones initially adopted for c̄. If all criteria for c̄B are met, the LCP solution is accepted

and the process ends.

If at least one criterion is not met, another degeneration process takes place, now

considering Γ∗
B. The LCP is therefore reduced to a single variable c̄A. Again all three

criteria are verified. If all criteria are met the LCP solution is accepted and the process

ends. Otherwise, the LCP solution is rejected and the process ends.

When degenerating the LCP, it is always assumed that in one of the curves, the

solution is known and given as in (3.30), as a simple choice that seems valid for sufficiently

refined meshes. The refinement will introduce the representation of a distributed contact

action as a set of pointwise contact actions, according to the degeneration introduced.

The choice of fixing convective coordinates in the middle of spline elements also seeks a

better distribution of pointwise contact interactions.
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Figure 19: LCP solution workflow [3].
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4 STRUCTURAL THEORY

This chapter presents a brief overview of the structural theory adopted with the spline-

based contact formulation. Moreover, the Giraffe finite element solver is briefly introduced

and the implementations associated with the contact formulation are described. The

geometrically-exact beam theory adopted is detailed in [59, 60, 61].

Finally, an originally developed software for the modeling of textiles in the Giraffe

solver is presented [1].

4.1 Kinematics

The proposed contact formulation is directly attachable to any quadratic beam for-

mulation. In this work a nonlinear geometrically-exact structural formulation is adopted.

The foundations for the geometrically-exact formulations were first presented in the sem-

inal works of Simo[62, 63, 64]. The objective of this subsection is not to present in detail

the geometrically-exact beam formulation, which can be found in [65, 66, 67]. However,

for a better understanding of the model kinematics, the displacement field, and the con-

stitutive matrix are presented next. The position of a generic point x of a beam element

is defined as

x = ζer
3 + u + Qar, (4.1)

where ζ is a convective coordinate that lies in the beam axis, er
3 is an axis oriented along

the beam axis straight in the reference configuration, u is the beam axis displacement, Q

is a rotation tensor for a given cross-section that maps the reference configuration to the

current configuration, and ar is a vector that reads all points of the cross-section in the

reference configuration. This kinematics represents a Timoshenko beam model. Figure 20
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illustrates the displacement field presented in (4.1). The generic point position presented

in (4.1) is, for now, completely arbitrary, and therefore can experience large displacements

and finite rotations.

Figure 20: Representation of the displacement field of a generic point x according to the
geometrically-exact beam theory adopted [1].

A possible option to write the rotation tensor presented in (4.1) is using Rodrigues

parameters, as presented in (3.20). It is important to note that the kinematic treatment

presented in (4.1) is geometrically-exact, in other words, is not limited to small displace-

ments and rotations (see [63, 64, 65]). This is the kinematic assumption employed for all

simulations and examples shown in this work.

4.2 Constitutive Matrix

Next, infinitesimal strains are considered with the exclusive objective of illustrating

the derivation of the constitutive matrix behavior for related generalized stress/strain.

In this context, assuming that only small rotations occur, it is possible to consider the

Rodrigues rotation tensor as Q ≈ I +A, where A is a skew-symmetric tensor defined by

A =


0 −α3 α2

α3 0 −α1

−α2 α1 0

 , (4.2)

where α1, α2, and α3 are rotations concerning respectively e1, e2 and e3. The position

of a generic point x can be rewritten considering small rotations and the cross-section

position (ar = x1e
r
1 + x2e

r
2) as
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x = ζer
3 + u + (I + A)(x1e

r
1 + x2e

r
2). (4.3)

Considering the displacement of a material point x, it is possible now to calculate the

deformation gradient as F by

F = x,1⊗er
1 + x,2⊗er

2 + x′ ⊗ er
3 (4.4)

where (·),1, (·),2, and (·)′ denote, respectively, partial derivatives with respect to x1, x2,

and x3. As a result, the deformation gradient F yields

F = I + Aer
1 ⊗ er

1 + Aer
2 ⊗ er

2 + (u′ + A′ar) ⊗ er
3. (4.5)

From the deformation gradient F, it is possible to obtain a strain measure ∇S as

∇S = F− I. (4.6)

The strain measure ∇S of F then leads to ∇S = Aer
1⊗er

1+Aer
2⊗er

2+(u′+A′ar)⊗er
3

or, in a matrix form, to

∇S =


0 −α3 u′

1 − α′
3x2

α3 0 u′
2 + α′

3x1

−α2 α1 u′
3 + α′

1x2 − α′
2x1

 . (4.7)

Assuming now that only small strains take place again only to derive the constitutive

matrix, it is reasonable to calculate the infinitesimal strain tensor E defined by

E =
1

2

(
∇S + ∇ST

)
. (4.8)

The Green-Lagrange strain tensor E yields
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E =


0 0 1

2
(u′

1 − α′
3x2 − α2)

0 1
2

(u′
2 + α′

3x1 + α1)

Sym. u′
3 + α′

1x2 − α′
2x1

 . (4.9)

It is suitable to introduce two generalized strain vectors of great relevance to beam

kinematics. The former vector called η is associated with generalized beam axial strains

and is defined as

η = u′ −α× er
3 =


u′
1 − α2

u′
2 + α1

u′
3

 . (4.10)

The latter vector called κ is the specific rotation, defined as

κ =


α′
1

α′
2

α′
3

 . (4.11)

The Green-Lagrange strain tensor E can be rewritten considering the generalized

strain vectors η and κ, and a convenient Voigt notation as

γ =


γ13

γ23

γ33

 =


η1 − κ3x2

η2 + κ3x1

η3 + κ1x2 − κ2x1

 . (4.12)

Additionally, considering the generalized Hooke’s law, the beam model stress-strain

relation can be expressed as

τ =


Gγ13

Gγ23

Eϵ33

 (4.13)

where E and G are, respectively the Young’s Modulus and the Shear Modulus. The group
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of equations in (4.13) represent the stress components acting in any material point. There-

fore, the total equivalent forces and moments in each direction can be simply obtained by

integration as

n =

∫
A

τ13dAe
r
1 +

∫
A

τ23dAe
r
2 +

∫
A

τ33dAe
r
3 and

m =

∫
A

x2τ33dAe
r
1 −

∫
A

x1τ33dAe
r
2 +

∫
A

(x1τ23 − x2τ13)dAe
r
3 .

(4.14)

The development of equations in (4.14) yields

n1 =

∫
A

τ13dA = kGAη1 −GS1κ3,

n2 =

∫
A

τ23dA = kGAη2 −GS2κ3,

n3 =

∫
A

τ33dA = EAη3 + ES1κ1 + ES2κ2,

m1 =

∫
A

x2τ33dA = ES1η3 + EI1κ1 + EI12κ2,

m2 = −
∫
A

x1τ33dA = ES2η3 + EI12κ1 + EI2κ2, and

m3 =

∫
A

x1τ23 − x2τ13dA = −GS1η1 −GS2η2 + GI0κ3 ,

(4.15)

where k is the shear correction factor and the concepts of first moments of area (S1 and

S2), second moments of area (I1 and I2), product of inertia (I12), and the polar moment of

inertia (I0) were introduced. The first moments of area S1 and S2, the second moments of

area I1 and I2, the product of inertia I12, and the polar moment of inertia I0 are defined,

in this context, as
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S1 =

∫
A

x2dA,

S2 = −
∫
A

x1dA,

I1 =

∫
A

x2
2dA,

I2 =

∫
A

x2
1dA,

I12 = −
∫
A

x1x2dA, and

I0 =

∫
A

(x2
1 + x2

2)dA .

(4.16)

Finally, it is possible to rearrange the terms in (4.15) to explicitly group generalized

forces and moments, generalized strains, and the constitutive matrix as



n1

n2

n3

m1

m2

m3


=



GA 0 0 0 0 −GS1

GA 0 0 0 −GS2

EA ES1 ES2 0

EI1 EI12 0

EI2 0

Sym. GI0





η1

η2

η3

κ1

κ2

κ3


, (4.17)

or in a more compact way as

σ = Dε . (4.18)

It is seen in equation (4.17) that a polar moment of inertia I0 appears, where a

torsional inertia It would be expected. In fact, the polar moment of inertia I0 results

from the initial hypothesis of null warping [68, 66]. A detailed formulation including

arbitrary beam axis and warping in beam kinematics are presented in [68, 66].

When connecting the here shown constitutive equation evaluation with the desired

large displacement and finite rotation kinematics, one has to employ the generalized

strains presented in (4.17) always back-rotated to the reference configuration to avoid

objectivity issues associated with finite rotations. This mapping transformation is, in

fact, necessary since infinitesimal strains are assumed for the constitutive matrix while
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finite displacements and rotations are considered for the geometrically-exact theory.

4.3 Weak Form

To establish the equilibrium equations for the model, a convenient possibility is to

employ the weak form. The contributions of the internal forces, external loads, inertial

forces, and contact (normal and frictional) forces are included. Each contribution is briefly

presented as follows. From now on the δ(·) symbol is adopted for variation of quantities,

also known as test functions.

By introducing some convenient notations and after some mathematical manipulation,

it is possible to calculate from the displacement field presented in (4.1) a vector containing

generalized forces and moments σ written with respect to the reference configuration and

a vector containing the generalized axial strains and specific rotations ε back-rotated [69,

66]. With that, the internal forces contribution of all elements to the weak form δWi is

defined as

δWi =
∑

elements

∫ l

0

σ · δεdζ, (4.19)

where l is the length of the beam element in the reference configuration (see Figure 20).

Considering a vector q̄ containing the external generalized loads per reference length unit

and a vector δd containing the virtual displacement/rotation associated with a beam

cross-section, the contribution of the external loads to the weak form δWe is defined as

δWe =
∑

elements

∫ l

0

q̄ · δddζ. (4.20)

To account for the contribution of the inertial forces, it is necessary to introduce a

vector f containing the inertial forces and moments (see [59, 66] for details). Therefore,

the inertial forces contribution δT of all elements is defined as

δT =
∑

elements

∫ l

0

f · δddζ. (4.21)
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The normal contact contribution to the weak form δWn is simply defined by the

normal force in (3.15) and the virtual normal gap vector in (3.8) for all contact pairs as

δWn =
∑

contacts

(
fn · δg

)
. (4.22)

A normal contact contribution to the weak form and its corresponding tangential stiff-

ness matrix, assuming a simplified interface law, are explicitly presented in Appendix 7.1.

The frictional contact contribution to the weak form δWt considering again all contact

pairs is defined by the frictional force and the virtual tangential gap vector, see (3.29), as

δWt =
∑

contacts

(
f i+1
t · δgi+1

t

)
. (4.23)

It is important to observe that the contact is ultimately defined based on the spline ge-

ometry, though their contributions are incorporated in their corresponding nodes degrees-

of-freedom. Finally, all contributions to the weak form yield

δWi − δWe + δT + δWn + δWt = 0. (4.24)

4.4 Giraffe Finite Element Solver

For the numerical examples in this work, the Giraffe finite element solver is used [4].

The Giraffe solver already includes geometrically-exact beam and shell formulations [70,

71], master-master contact formulations of surfaces, and their degenerations [5, 6, 52,

27]. The Giraffe solver has been successfully used in challenging applications such as

wind turbine blades [68], buckling of pipelines [72, 73], offshore risers [74, 59, 75, 60], and

textiles [1].

4.4.1 Spline-Based Contact Implementation

The objective of this section is not to present in detail the spline-based contact for-

mulation, but to provide an overview of the classes considered for implementation.

The proposed spline-based contact formulation is implemented in the Giraffe finite
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element solver. To implement the spline-based contact formulation several classes were

added in the original C++ object-oriented Giraffe code. These new classes were based

on similar classes for the sake of conciseness and organization. The spline-based contact

formulation is fully defined in the following classes.

• Spline

• SplineElement

• SplineElementPair

• SplineElement SplineElement

• SPContactData

• SPSP

The Spline class contains all the necessary information to geometrically characterize

the spline in space. The main data in this class are the nodes (control points), the knot

vector, and the radius. The SplineElement class contains specific information about a

spline element as a contact element. Therefore, an spline element contains basically three

nodes, a radius, and nodal degrees-of-freedom information.

The SplineElementPair contains information on a pair of spline elements in which

contact is prone to occur. This class effectively performs the search for an LCP solu-

tion. Moreover, this class characterizes found LCP solutions (see Section 3.4.1). The

SplineElement SplineElement class performs the normal and tangential contact contri-

butions to the weak form. It is important to mention that the specific codes for these

contributions were generated with the aid of the Mathematica® AceGen plug-in [76].

The SPContactData class contains all information regarding a pair of spline elements

prone to contact. Some important information in this class are the normal gap vector,

the tangential gap vector, and the LCP solution convective coordinates. Finally, the SPSP

class contains information regarding the normal and tangential interface laws adopted,

the allocation of memory, the rough pinball search, and the memory allocation.

4.4.2 Textile Modeling

The Giraffe finite element solver is a powerful tool for various applications. For the

textile modeling, however, an original software was developed in C# to combine the

Giraffe solver with a specialized software for textiles, the TexGen® [77].
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The TexGen® software is an open-source well-established option for the geometric

modeling of textiles that has been used in several mechanical studies. The TexGen® also

includes a key feature that permits recording and running Pyhton scripts. This feature

was used as an interface to exchange information with TexGen®.

Textile modeling is defined in three steps. In the first step, the developed software

creates a Python script containing general geometric parameters such as the number of

yarns in each direction yn, the in-plane yarn spacing ys, the out-of-plane yarn spacing

or gap yg, the yarn horizontal length yl, and some interpolating points for the yarns

centroidal axis. Figure 22 illustrates these parameters.

Figure 21 shows the developed software interface.

Figure 21: Original developed software for integrating the Giraffe solver with the TexGen®

software.

Additionally, an indirect relative crimp measure parameter yc is introduced. This

relative crimp, which is a percentual value, indicates how yarns in both directions are

relatively placed from the textile plane keeping the gap between them. In this context,

a crimp of yc = 100% means that yarns in both directions are equally distant from the

textile plane while a crimp of yc = 0% means that yarns in the “x” direction are exactly

at the textile plane as seen in Figure 23.

In the second step, the TexGen® software imports the Python script file and generates

a model file containing detailed information on each yarn centroidal axis. Finally, in the
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(a) Yarns length yl and in-plane spacing ys. (b) Yarns gap (out-of-plane spacing) yg.

Figure 22: Textile geometric parameters [1].

(a) yc = 100%. (b) yc = 0%.

Figure 23: Yarns relative crimp [1].

third step, the developed software imports back the TexGen® model file and generate

a specific input file for the simulation in the Giraffe solver. Figure 24 illustrates the

modeling strategy. This final geometry is an approximation based on beam straight

elements of Bézier curves such as in TexGen®.

Figure 24: Textile modeling strategy [1].
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5 NUMERICAL EXAMPLES

This chapter presents several applications of the spline-based contact problem in chal-

lenging problems involving conformal and non-conformal scenarios [2, 3].

5.1 Non-conformal Contact

The examples in this section are, whenever possible, compared with a non-smooth

surface-to-surface contact formulation developed in [5, 6]. For the sake of convenience, in

this section, surface-to-surface contact formulation results are indicated with “SS” while

spline-based contact formulation results are indicated as “SP”.

5.1.1 Perpendicular Beams

In this example, three quasi-static simulations are performed using both, “SS” and

“SP”, contact models. The example consists of the modeling of two cantilever beams that

are perpendicular to each other. A displacement is prescribed at the tip of one beam,

to introduce contact occurrence. The adopted time scale is used only to impose the

displacements gradually. In all simulations of this example, each beam is 3m long with a

radius of 0.06m and is composed of 15 elements. Moreover, a material with an Young’s

Modulus of 2E9N/m2 and a Poisson ratio of 0.3 is considered. In these simulations Point

A and Point B are respectively located at (2.5, 0, 0.3)m and (0, 2.5, 0)m.

5.1.1.1 Normal Contact

The first analysis considers only normal contact with a linear interface law. A two-

step static simulation is employed. During the first step, a “z” displacement is prescribed
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at node A and during the second step, a “y” displacement is prescribed at the same point.

Figure 25 illustrates the prescribed displacements. In the 1st solution-step a displacement

uz1 = 0.5 m is applied in 1s and in the 2nd solution-step a displacement uy2 = 2 m is

applied in 1 s. In this simulation the normal interface law parameters ϵe1 = 1E7 N/m

and ϵe2 = 1 are adopted.

𝑢𝑧1

xy
z

A
B 𝑢𝑦2

Figure 25: Representation of perpendicular beams model example with prescribed dis-
placements [2].

The resulting reactions forces and moments are presented at point B in Figure 26a

and Figure 26b. The graphs in both figures show practically the same reaction response

for the “SP” and “SS” contact descriptions.

-5.0E+02

0.0E+00

5.0E+02

1.0E+03

1.5E+03

0.0 0.5 1.0 1.5 2.0

F
or

ce
 (

N
)

Time (s)

FX SP

FY SP

FZ SP

FX SS

FY SS

FZ SS

(a) Force reactions in point B.
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(b) Moment reactions in point B.

Figure 26: Reactions obtained at point B in the perpendicular beams contact example
with normal contact [2].

Figure 27 illustrates some instants of the simulation with normal contact forces ob-

tained by both contact models. The red arrows indicate the forces obtained from the

“SP” model and the blue arrows obtained from the “SS” model. As highlighted in Fig-

ure 28, the difference in both contact formulations is negligible. The spline-based contact

is represented in Figure 28a and the surface-to-surface contact is represented in Figure 28b

with the normal forces at each beam surface.
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(a) Normal contact at 1 s. (b) Normal contact at 2 s.

Figure 27: Perpendicular beams contact with red arrows and blue arrows representing
respectively the “SP” model and the “SS” model. Simulation includes normal contact
only [2].

(a) “SP” contact model. (b) “SS” contact model.

Figure 28: Detailed view of the normal contact forces representation [2].

5.1.1.2 Normal & Tangential Contact

In this simulation, normal and tangential contact interactions are considered. The

normal contact parameters adopted are ϵe1 = 1E7 N/m and ϵe2 = 1 while the tangential

contact parameters are ϵte = 1E6 and µs = µd = 0.3.

The reaction forces and the reaction moments of point B are presented in Figure 29a

and Figure 29b. Again, these results demonstrate that the spline-based contact response is

very similar to the surface-to-surface contact, even considering the tangential contribution.

However, there is a slight difference in the results at time 1s. Figure 29c and Figure 29d

present force and moments reactions at point B from 0.9 s to 1.1 s. The difference

between the “SP” and “SS” formulations naturally rises from the distinct material points

where the tangential forces are acting at. In spline-based contact, tangential forces are

applied at the beam centerline while in surface-to-surface contact tangential forces are

applied at the surface. This issue is discussed and illustrated in [78]. The spline-based

tangential contact definition neglects moments that may arise from the surface to the
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beam centerline. However, as seen in this simulation, the relevance of this approximation

depends highly on the beam slenderness and the contact interaction.
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(c) Force reactions from 0.9 s to 1.1 s.
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(d) Moment reactions from 0.9 s to 1.1 s.

Figure 29: Reactions obtained for point B in the perpendicular beams contact example
with normal and tangential contact [2].

Figure 30 depicts the contact of beams with normal and frictional forces at selected

configurations. The forces in red and the forces in blue were respectively obtained from

the “SP” model and the “SS” model.

5.1.1.3 Normal & Tangential Contact with Rotations

In the third simulation, an axial rotation is included in the displacement imposed at

the second solution-step. In the 1st solution-step a displacement uz1 = 0.5 m is applied in

1 s and in the 2nd solution step a displacement uy2 = 2 m and a rotation θy2 = 25 rad are

simultaneously applied in 1 s. The prescribed displacement field is illustrated in Figure 31.

The reaction forces and moments at point B are presented in Figure 32. The results

show very similar behavior for “SP” and “SS” in terms of “z” force and “y” moment.

However, the results for FX are different, except for the “x” moment which is negligible.

The reason for this difference lies in the tangential contact definition as mentioned in the

previous simulation. While the contact parameters for this simulation were the same as

in the previous cases, the large prescribed rotation increased the relevance of the surface
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(a) Normal and tangential contact at
1 s.

(b) Normal and tangential contact at
1.96 s.

Figure 30: Perpendicular beams contact with red arrows and blue arrows representing
respectively the “SP” contact model and the “SS” contact model. Simulation including
normal and tangential contact [2].
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Figure 31: Representation of perpendicular beams model example with prescribed dis-
placements including rotation [2].
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(b) Moment reactions.

Figure 32: Reactions obtained for point B in the perpendicular beams contact example
with normal and tangential contact including rotations [2].

Figure 33 illustrates the normal and tangential contact of the beams at two instants.

In this figure, the red arrows stand for the results with “SP” model while the blue arrows

stand for the results with the “SS” model. Figure 34 highlights the orientation difference

in the frictional forces obtained in both models due to the prescribed rotation.
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(a) Normal and tangential contact at
1 s.

(b) Normal and tangential contact at
1.96 s.

Figure 33: Perpendicular beams contact with red arrows and blue arrows representing
respectively the “SP” contact model and the “SS” contact model. The simulation includes
normal and tangential contact with rotations [2].

Figure 34: Perpendicular beams contact with red arrows and blue arrows representing
respectively the “SP” contact model and the “SS” contact model. The simulation includes
normal and tangential contact with rotations. Top view at instant 1.96 s [2].

5.1.1.4 Basis Functions, Objectivity, and Convergence

The objective of this subsection is to comment on three relevant aspects in the context

of the proposed contact formulation: the spline basis functions’ influence on the contact

forces distribution, the consistency in an objectivity test, and the convergence behavior.

To show the spline basis influence on the contact forces nodal distribution, a static

simulation with prescribed displacements as presented in Figure 25 is performed. In the

1st solution-step a displacement uz1 = 0.25 m is applied in 1 s and in the 2nd solution-

step a displacement uy2 = 2 m is applied in 1 s. In this simulation only normal contact

interaction is considered with the parameters ϵe1 = 1E7 N/m and ϵe2 = 1.

In this simulation, however, all nodes in the beam with prescribed displacements are

taken as a single rigid body. The objective of this assumption is to collect the reaction

forces in some nodes to analyze the contact forces distribution. Figure 35 presents the “z”

reaction forces obtained on 5 beam nodes as presented in Table 4. Figure 35a presents
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Table 4: Initial position of nodes taken for basis function analysis.

P1 = (0, 2.5, 0.8)
P2 = (0, 2.5, 0.9)
P3 = (0, 2.5, 1.0)
P4 = (0, 2.5, 1.1)
P5 = (0, 2.5, 1.2)

the reaction forces in a simulation with the spline-based formulation while Figure 35b

presents the reaction forces in a simulation with the surface-to-surface contact formulation.

The results show that peak values of the “SP” formulation are lower than the “SS”

formulation due to the spline basis functions nature. Moreover, the “SP” model reaction

forces reproduce the smooth C1 shape of the spline basis functions considered, as expected.
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(a) “SP” contact model.
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(b) “SS” contact model.

Figure 35: Basis functions influence on the nodal reaction forces on five nodes [2].

The second relevant aspect is the formulation consistency when undergoing large dis-

placements and rotations. To analyze the model’s robustness, an objectivity test involving

three solution-steps is proposed. The displacements adopted for the objectivity test are

illustrated in Figure 36 and detailed in Table 12 (see Appendix 7.1).

In the first solution-step (0 s ≤ t < 1 s), a displacement is imposed at point B to

induce contact. In the second solution-step (1 s ≤ t < 2 s), displacements and rotation

are imposed at points A and B to simulate a rotation in the “xy” plane. In the third

solution-step (2 s ≤ t < 3 s), displacements and rotations are imposed in point B while

rotations are imposed in point B to simulate a rotation in the “xz” plane.

The reaction forces and moments on point B in each direction during the objectiv-

ity test are presented in Figure 37. In this figure, the results indicated as “FT” and

“MT” represent, respectively, the reaction force and moment magnitudes. The results in

Figure 37 show that despite large displacements and rotations, reaction forces and mo-

ments magnitudes are kept as expected. Figure 38 presents some configurations during
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(c) Displacements between 2 s ≤ t < 3 s.

Figure 36: Prescribed displacements adopted in the objectivity test [2].

the objectivity test.
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Figure 37: Reaction forces and moments on point B in the objectivity test [2].

The last relevant aspect of the proposed formulation is the convergence behavior.

Figure 39 presents some convergence results for the numerical example (i) with respect to

three distinct uniform meshes composed of 30, 60, and 120 elements for each beam and

respectively indicated as “M1”, “M2”, and “M3”. Figure 39a presents the tip displace-

ments of the beam fixed at point B. Figure 39b shows the internal forces at the first beam

element next to point B. In this figure “N1”, “N2”, and “N3” are respectively associated

with shear force in the “y” global direction, shear force in the “z” global direction, and

axial force in the “x” global direction, all in the reference configuration. This conver-

gence study demonstrates that the mesh initially adopted is sufficiently refined for the
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(a) 1 s. (b) 2 s.

(c) 3 s.

Figure 38: Normal contact force at some configurations in the objectivity test [2].

simulations proposed.
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Figure 39: Convergence analysis for the perpendicular beams numerical example 5.1.1.1
for three different meshes with 30, 60, and 120 elements in each beam indicated respec-
tively with suffixes “1”, “2”, and “3” [2].

5.1.2 Octagonal Ring

The objective of this example is to compare the spline-based smooth formulation

with the surface-to-surface formulation in contact scenarios with finite element corners

without refinements. This example consists of imposing displacements on a cantilevered

beam to induce contact with a fixed octagonal ring made of beam elements. Figure 40

describes the model setup and the imposed displacements. Figure 41 shows the finite
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Table 5: Octagonal ring example simulation data. The variable t is the total simulation
time.

Simulation data

Displ. 1st

solution-step (m) and
simulation time (s)

ux1 = 0.8 Displ. 2nd

solution-step (m) and
simulation time (s)

u2 =

{
ux2 = 2.7− 2.7cos

(
t−1
25

)
uy2 = 2.7sin

(
t−1
25

)
1 50π

element mesh in black color with nodes in orange color and the contact surfaces “SP” and

“SS” in gray color. In this simulation, a material with E = 200E9 N/m2, Poisson ratio

ν = 0.3, and a specific mass of 3000 kg/m3 is considered. The straight beam is composed

of three elements with a radius of 0.2 m and a length of 18 m. Point A is located at

(3.5, 0,−17) m. The octagonal ring is composed of 16 beam elements with a radius of

0.1 m. The octagonal ring is centered at (0, 0, 0) m and has a side of 2.2961 m.

Two dynamic solution-steps are prescribed in this simulation. In the first solution-

step an “x” displacement is defined at point A to introduce the first contact. After

that, a combination of “x” and “y” displacements are defined to prescribe a circular

displacement around the octagonal ring. The simulation data for this example is pre-

sented in Table 5. This simulation is performed in a dynamic framework with an adap-

tative time-step ranging from 1E − 4 s to 1 s and Newmark integration parameters

β = 0.3 and γ = 0.55 (see [79]). The following contact parameters are considered, normal

interface law ϵe1 = 1E7 N/m, normal interface law ϵe2 = 1, normal damping coeffi-

cient cnd = 1E4 Ns/m, static friction coefficient µs = 0.55, dynamic friction coefficient

µd = 0.4, tangential penalty parameter ϵte = 1E5 N/m, frictional damping coefficient

ctd = 0 Ns/m.

x

y

z

A

𝑢𝑥1𝑢2

Figure 40: Representation of ring model example with prescribed displacements [2].

The reaction forces at point A are presented in Figure 42a and, in detail, in Figure 42b.

The norm of the normal and tangential forces are shown in Figure 42c and, in detail, in

Figure 42d. Figure 43 depicts contact forces at several simulation instants. At the very

beginning, there is an impact caused by the first contact of the cantilever beam with

the octagonal ring. The effect of this first contact, however, rapidly decays as observed



76

(a) “SP”. (b) “SS”.

(c) “SP” detail. (d) “SS” detail.

Figure 41: Octagonal ring model finite element mesh in black color with nodes in orange
color and contact surfaces in gray color [2].

between 0 s and 3 s. On the other hand, there is, during the whole simulation, a high-

frequency oscillation triggered by stick-slide frictional contact with different frictional

coefficients. This behavior is observed around 71 s and 129 s. At these instants, a

maximum normal force occurs simultaneously with a stick-slide frictional interaction.

The maximum normal forces always occur at the corners of the octagonal ring since they

are more distant from the ring’s center. Again, the proposed model can handle impacts

and static/dynamic frictional contact interaction in challenging scenarios involving finite

element corners.

The results in Figure 42b and Figure 42d reflect the difference between the “SP”

and the “SS” contact strategies. Both models present very similar responses until 12 s.

Approximately at this instant, the “SP” model passes the first octagonal corner. The

“SS” model instead continues until 17 s when it passes the corner kink and then diverges.

5.1.3 Wave-shaped Obstacle

The objective of this example is to compare the spline-based smooth contact in corners

defined by two adjacent finite elements with the surface-to-surface contact described by

multiple finite elements. For that, simulations involving the contact of a cantilevered

beam with a wave-shaped obstacle are proposed.

Several prescribed displacements are imposed in a cantilevered beam to induce contact
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Figure 42: Reactions forces for point A and normal and friction forces obtained in the
ring obstacle contact example [2].

with a wave obstacle consisting of beam elements. Figure 44 describes the model setup

with displacements imposed at point A and the wave obstacle that is fixed at points B and

C. In this simulation, a material with E = 200E9 N/m2, a Poisson ratio of ν = 0.3, and

a specific mass of 8000 kg/m3 is considered. The straight beam is composed of two beam

elements of radius 0.1 m and has a length of 6 m. Point A is located at (−0.2,−5.5, 0.3) m.

The wave obstacle is composed of four beam elements with a radius of 0.1 m and a side

of
√

4.5 m ≈ 2.12132 m. Points B and C are respectively located at (0, 0, 0) m and

(6, 0, 0) m. Figure 45 shows the finite element meshes in black with the nodes in orange

and the contact surfaces in gray. In this simulation, five dynamic solution-steps are

defined. The simulation data is presented in Table 6. This simulation is performed in

a dynamic framework with Newmark parameters β = 0.3 and γ = 0.55 (see [79]) and

an adaptative time-step ranging from 1E − 2 s to 1E − 1 s. Moreover, the following

contact parameters are adopted, normal interface law parameter ϵe1 = 1E7 N/m, normal

interface law parameter ϵe2 = 1, normal damping coefficient cnd = 1E1 Ns/m, static and

dynamic friction coefficients µs = µd = 0.3, tangential penalty parameter ϵte = 1E5 N/m,

and frictional damping parameter ctd = 1E1 Ns/m.

The reaction forces at point A are presented in Figure 46a and the norm of the
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(a) 0.9 s. (b) 1 s. (c) 1.11 s.

(d) 70.14 s. (e) 71.14 s. (f) 77.14 s.

Figure 43: Normal and tangential contact forces at several instants of the ring obstacle
example [2].
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Figure 44: Representation of wave-shaped model example with prescribed displace-
ments [2].

normal (Fn) and friction forces (Fat) are depicted in Figure 46b. Figure 47 demonstrates

the normal and tangential contact at some relevant simulation instants. The results

show an increasing normal and tangential force due to contact from 10 s to 20 s the

displacement imposed in the horizontal direction. After that, the forces slightly decrease

while the displacement follows the wave obstacle just before 30 s. Around that instant, the

cantilevered beam approaches the peak of the wave obstacle leading to a slight decrease

at 30 s. From 30 s to 40 s the cantilevered beam swings around the wave obstacle

finally passing the top. Then, the cantilevered beam goes to the valley of the wave with

the minimum normal force at 45 s. An analogous behavior occurs until the end of the

simulation. This simulation underlines that the proposed formulation is able to smooth

sharp finite element corners and can handle the contact conveniently.

Additionally, the results in Figure 46a show that both contact formulations have

very similar responses until approximately 30 s. A few seconds later, the reaction forces
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(a) “SP”. (b) “SS”.

Figure 45: Wave-shaped obstacle finite element meshes in black color with nodes in orange
color and contact surfaces in gray color [2].

Table 6: Wave-shaped obstacle example simulation data.

Simulation data

Displ. 1st solution-step (m)
and simulation time (s)

ux1 = 0.95
20

Displ. in each subsequent

solution-step (2nd to 5th)
(m) and simulation time in
each subsequent
solution-step (s)

u2 =

{
ux2 = 1.7

uy2 = 0.75
u3 =

{
ux3 = 2.45

uy3 = 0
ux4 = 3.95

u5 =

{
ux5 = 4.7

uy5 = 0.75
u6 =

{
ux6 = 5.45

uy6 = 0

10

decrease on the “SP” simulation while keeps increasing on the “SS” model. Similar

behavior is also observed in Figure 46b. It is possible to assume, by observing the “SP”

model, that the kinks play an important role. When the cantilevered beam passes the first

kink, there is an abrupt change in the contact direction. This effect is seen in the “SP”

model “x” reaction force just after 30 s. After that, the contact forces keep increasing,

see Figure 46b, as the cantilevered beam reaches the second kink. However, around 40 s

the “SS” model diverges.
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Figure 46: Reactions forces for point A and normal and friction forces obtained in the
wave-shaped obstacle contact example [2].



80

(a) 20 s. (b) 30 s.

(c) 32 s. (d) 45.04 s.

Figure 47: Normal and tangential contact forces at several instants of the wave-shaped
obstacle example [2].

5.1.4 Alternative Smooth Contact Formulation

The objective of this numerical example is to compare the proposed spline-based con-

tact formulation with an alternative smooth contact formulation. To achieve this goal a

simulation that reproduces an example from Magliulo, Zilian, and Beex [24] is adopted.

The authors’ strategy consists of producing smooth surfaces based on beam centerlines

approximated by Bézier curves in beam corners. There are, however, three main differ-

ences that should be noted: the contact surface geometry, the contact interaction strategy,

and the compliance law. In [24] the contact surface is defined by beams with elliptical

cross-section while in the present work only beams with circular cross-section are adopted.

Moreover, in [24] contact interaction is treated in a surface-to-surface master-slave frame-

work while in this work a pointwise master-master strategy is adopted. Moreover, as the

spline contact model is decoupled from the structural theory it is possible to produce a

simulation that combines an elliptical cross-section with a circular contact surface as pre-

sented in Figure 48a. Finally, in [24] a combination of cubic and quadratic normal contact

potentials is adopted while in this particular example, a resulting quadratic potential is

considered.

The simulation setup is defined by two initially straight, perpendicular, and elliptical

cross-section beams in a single touch configuration at their mid-span, see Figure 48b.

A material with Young’s Modulus of 100GPa and Poisson ratio of 0.3 is adopted [24].
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Table 7: Displacement field adopted to reproduce perpendicular beams simulation. Ro-
tations were applied around the beam center.

Time (s) Displacement Field Time (s) Displacement Field
0 s ≤ t < 1 s ua2 = −1.5 cm 3 s ≤ t < 4 s θa2 = −π

6
rad

1 s ≤ t < 2 s
ua1 = 0.5cos(π/4) cm

4 s ≤ t < 5 s
ua1 = −0.5cos(π/4) cm

ua3 = 0.5sin(π/4) cm ua3 = −0.5sin(π/4) cm
2 s ≤ t < 3 s θa2 = π

6
rad 5 s ≤ t < 6 s ua2 = 1.5 cm

Moreover, each beam is composed of 16 beam elements with an elliptical cross-section

of radius 0.3cm and 0.1cm, and a length of 8cm [24]. The simulation is defined by 6

displacement fields of one second each imposed at the boundaries of one beam to induce

contact. The simulation is static and, therefore, the time variable is used only to gradually

impose displacements. The other beam boundary displacements and rotations are fixed.

The displacement field adopted is presented in Table 7. The displacement field depicted in

Table 7 was based on figures presented in [24], as illustrated in Table 8. A normal contact

interface law parameter ϵe1 = 1E8 N/m and a normal contact interface law parameter

ϵe2 = 1 are adopted for this simulation.

(a) Beams with structural elliptical
cross-section and circular contact sur-
face.

(b) Initial configuration and orienta-
tion extracted from [24].

Figure 48: Models overview [2].

The horizontal beam left end, see orientation in Table 8, reactions for both contact

formulations are presented in Figure 49. In this figure, the dashed line results indicated as

“MZB” were extracted from [24] and solid line results were obtained in the spline-based

contact formulation. The results in Figure 49a show that both formulations present very

similar reactions despite the formulation differences. It is possible to note, however, more

oscillations in the “SP” model when compared to the “MZB” model between 1 s and 5 s.

This oscillation is caused by the pointwise contact interaction and the contact surface

geometry assumptions. These characteristics lead to contact components that would not

be expected in [24]. This effect is also observed in the results of Figure 49b between 1 s

and 5 s. These results show higher “SP” model reactions when compared to the “MZB”
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Table 8: Simulation overview comparative figures at several time steps.

Extracted from [24] Present work

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s
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model due to the differences mentioned. It is possible to consider, then, that both models

could represent the proposed problem considering their own advantages and limitations.
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Figure 49: Horizontal beam left end reaction forces as illustrated in Table 8. Reaction
forces indicated as MZB adapted from [24]. Extracted from [2].

5.2 Conformal Contact

5.2.1 Twisting Beams

The objective of this example is to test the proposed numerical strategy in a 3D

near-conformal contact scenario. In this example, cantilevered beams are twisted at their

ends. Moreover, two models are adopted, the former with two beams (TB1), and the

latter with seven beams (TB2). Though friction may be not negligible at beams’ surfaces,

only normal contact interaction is considered in this example.

Figure 50 illustrates the twisting beams simulation setup for TB1. To impose the

twisting a rigid element connecting the beams’ ends is defined (points B and D) while

a rotation is imposed at its middle point (point E) [80]. The simulation setup for TB2

is similar to TB1, however with seven beams. Simulation TB2 is defined by one central

beam CD with six equally spaced instances of beam AB around. Figure 51 presents the

front view of TB1 and TB2 with the rigid elements defined.

All beams in this example are composed of 25 elements with a total length of 5 m and

a radius of 0.049 m. The distance between beam centerlines is 0.1 m for TB1. For TB2 a

0.1 m distance is also adopted, taking as reference the central beam and the rotated copies

of AB. For both simulations, a rotation θx = 4π is imposed with a total simulation time

of 10 s. The simulation is used only to gradually impose the displacements as TB1 and

TB2 are performed quasi-statically. A material with E = 2E9 N/m2 and Poisson ratio

of ν = 0.3 is adopted. A linear normal penalty parameter of 5.5E5 N/m is considered.
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Figure 50: Twisting beams simulation setup for TB1 [3].

(a) TB1. (b) TB2.

Figure 51: Front view with rigid elements [3].

The axial and moment reactions evolution at point E are presented in Figure 52. This

figure shows that the reaction evolution is more intense in TB2 when compared with TB1.

This is an expected result since outside beams in TB2 experience higher elongations than

beams in TB1. The final TB2 reaction is almost ten times greater than TB1 reaction.

Figure 53 presents the axial force in the final configuration for TB1 and TB2. This

figure shows, as expected, an almost homogeneous axial forces distribution for TB1 and

a radial symmetric forces distribution for TB2. It is still possible to observe some com-

pression at the tips of beam AB in TB2. This effect is caused by the substantial beams’

penetration in contrast to boundary constraints. Figure 53 also illustrates the final con-

figuration of normal contact forces for TB1 and TB2. In the final configuration, TB1

presents 46 contact pairs while TB2 shows 116 contact pairs. This example shows that

the proposed formulation could handle near conformal contact scenarios even considering

large deformations.

5.2.2 Sliding Beams

The objective of this example is to explore the proposed numerical strategy in a

scenario where a beam slides on the top of another beam with normal contact interaction.

The main challenge in this example lies in switching contact interactions between different

spline elements with large deformations.
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Figure 52: Twisting beams example axial and moment reaction force at point E [3].

Figure 54 illustrates the example setup. In this example, each beam is composed of

15 beam elements with a radius of 0.06 m. Both beams are 3 m long with an initial

overlapping projection of 1 m in the x axis and z gap of 0.3 m. Moreover, a material

with Young’s Modulus E = 2E9 N/m2 and Poisson ratio ν = 0.3 is considered. A linear

normal penalty parameter 1E6 N/m is assumed for the contact interactions. Friction is

not considered in this example.

The static simulation is performed in two solution-steps. The time parameter in this

example is used only to gradually impose the displacements. In the first solution-step

a uz1 = 1.5 displacement is imposed in 5 s. After, in the second solution-step, a ux2

displacement is applied in 10 s.

The reaction forces and moment at point E are presented in Figure 55. This figure

shows two clearly different stiffness behaviors at the distinct solution-steps. From 0 s

to 5 s, the reactions are mainly ruled by beams’ bending. After, from 5 s to 10s, an x

displacement is imposed changing the models’ stiffness response. Figure 56 shows several

normal contact configurations as the contact interactions move along spline elements.

5.2.3 Parallel Beams

The objective of this example is to explore the proposed formulation in challenging

conformal contact scenarios. For that, an example first presented in [25] as “Contact

between points and surfaces (master-slave)” is considered. It is important to mention

that in [25] beams’ cross-sections are defined as super ellipsis with exponent n = 10

with surface-to-surface contact interaction. Instead, in this work circular cross-sections

are adopted with beam-to-beam contact interaction. The circular cross-sections are con-

sidered in this example only to formulate the contact interaction while all beam finite

elements characteristics are kept. Figure 57 illustrates the contact elements in red and
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(a) TB1. (b) TB2.

(c) TB1. (d) TB2.

Figure 53: Twisting beams example final configuration normal contact forces [3] and
internal axial forces.

the beam elements in gray.

The initial configuration is illustrated in Figure 58. The example is defined by a beam

AB that is 3 m long and a beam CD that is 1.5 m long, both with a radius of 0.1 m.

The beams are in the xy plane with the same middle point x coordinate middle and a

y gap of 0.2 m. In beam CD, displacements and rotations are fixed at both ends. The

simulation consists of imposing a displacement uy = 0.5 m in the middle of AB to induce

contact with CD. This simulation is performed in a quasi-statically with a duration of 1 s.

Time is used only to gradually impose the displacements. A material of Young’s Modulus

E = 2E9 N/m2 and Poisson ratio ν = 0.3 is adopted.

Two simulations are analyzed in this example. The former simulation (PB1) objective

is to compare the proposed formulation with the results presented in [25]. The latter

simulation (PB2) objective is to increase the problem complexity by introducing frictional
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Figure 54: Parallel beams sliding simulation setup [3].

-4.00E+03

-3.00E+03

-2.00E+03

-1.00E+03

0.00E+00

1.00E+03

0 2 4 6 8 10

F
or

ce
 (

N
)

Time (s)

FX FZ

(a) Reaction forces x and z.

-10000

-8000

-6000

-4000

-2000

0

2000

0 2 4 6 8 10

M
om

en
t (

N
.m

)

Time (s)

MY

(b) Reaction moment y.

Figure 55: Reaction forces and moment at point E [3].

contact interaction. A linear normal penalty parameter of 1E7 N/m is adopted for PB1

and PB2. A tangential penalty of 1E6 N/m with frictional coefficient µs = 0.3 is adopted

for PB2.

Figure 60a presents the y reaction forces at point E for PB1 in red, for PB2 in red

marks, and the reactions from [25] in red. It is possible to note in this figure that the

results from PB1 and from [25] are almost identical until approximately 7 s. After that,

the spline-based contact formulation presents slightly higher reaction values. Moreover,

Figure 59 illustrates the final configuration obtained for simulation PB1 and as presented

in [25]. This figure shows that both final configurations are similar, though more reaction

forces are observed in PB1. These results indicate that the higher stiffness observed in PB1

is associated with more contact pairs. The number of contact pairs becomes particularly

relevant in high-penetration scenarios.

The axial internal force in the middle element of beam AB analyzes the friction

effects in this simulation. Figure 60b presents the axial internal forces evolution for both

simulations, PB1 and PB2. Figure 60c presents the y direction displacement difference

between simulations PB1 and PB2 at the middle node of AB. These results show that

friction substantially increases the middle element compression. Moreover, it shows that

friction reduces beam penetrations resulting in a final higher compression in the middle of

beam AB. Figure 61 presents the normal and frictional contact forces evolution for PB2.
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(a) Normal forces at t =
3.02 s.

(b) Normal forces at t =
4.02 s.

(c) Normal forces at t =
5.02 s.

(d) Normal forces at t =
8.02 s.

(e) Normal forces at t =
9.02 s.

(f) Normal forces at t = 10 s.

Figure 56: Sliding beams example normal forces [3].

Figure 57: Parallel beams example. Contact elements in red and beam elements in gray [3].

5.2.4 Rotating Beam

In this example, the proposed numerical strategy is tested in a problem where the local

contact problem should automatically switch between degenerated and non-degenerated

formulations, therefore changing from non-conformal/conformal contact, and vice-versa.

The example setup is presented in Figure 62. In this example, beams AB and CD

are composed of 15 elements with a total length of 3m and a radius of 0.06m. These

beams are orthogonally oriented such that their projection intersection in the xy plane

is at 2.5m from points A and C. Their centerlines are separated in the z direction by a

0.3m gap. The beam AB presents one end clamped (point A) and the other end (point B)

constrained for y direction displacements. In beam BC, the displacements are imposed in

point C while point D is set free.

The simulation is performed in two quasi-static solution-steps. In the first solution-

step contact is induced in two initially perpendicular beams. After, in the second solution-

step, one beam rotates on the top of another including conformal contact scenarios. The
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Figure 58: Parallel beams simulation setup [3].

(a) Simulation PB1. (b) Extracted from [25].

Figure 59: Parallel beams example final configuration [3].
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Figure 60: Parallel beams example results [3].
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(a) Normal forces at t =
0.71 s.

(b) Normal forces at t =
0.81 s.

(c) Normal forces at t = 1 s.

(d) Frictional forces at t =
0.71 s.

(e) Frictional forces at t =
0.81 s.

(f) Frictional forces at t =
1 s.

Figure 61: Parallel beams simulation PB2 normal and frictional forces [3].

simulation displacements are detailed in Table 9. The time parameter is used only to

gradually impose the displacements. In this example, a material with Young’s Modulus

2E9 N/m2 and a Poisson ratio of ν = 0.3 is considered. Moreover, a linear normal penalty

parameter of 1E6 N/m is adopted.
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A

𝜃𝑧2
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D

𝑢𝑦2

𝑢𝑥2

𝑢𝑧1

Figure 62: Rotating beams example simulation setup [3].

Displacements
Displ. 1st solution-step (m) uy1 = 0.4t
Duration 1st solution-step (s) 1

Displ. 2nd solution-step (m,rad) ux2 = −2.5cos(π(t−1)
19

+ π
2
)

uy2 = 2.5sin(π(t−1)
19

+ 3π
2

) + 2.5

θz = π(t−1)
19

Duration 2nd solution-step (s) 19

Table 9: Rotating beam example displacements data.

Figure 63a presents the reaction forces at point C. These results show that the z and x

reactions stay constant during the beam rotation. Moreover, the y reaction symmetrically

changes, as expected, due to the beam rotation. The contact formulation status during

the simulation is presented in Figure 63b with “O” indicating an original LCP and “D”
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a degenerated LCP. This figure shows that from 10.4 s to 11.11 s there are degenerated

contact pairs effectively involved in the simulation as beams become aligned.

Figure 63c presents the normal contact forces acting in beam CD. In this figure, the

total normal contact force is indicated as Fn while other contact forces are indicated as

Fn1 to Fn5. This figure shows that the total normal contact force remains constant during

the whole beam rotation. In fact, the total normal contact force Fn is equal to Fn3 in the

major part of the simulation where there is no degeneration. However, when degeneration

takes place, the total normal contact force Fn splits into five contact forces, Fn1 to Fn5.

It is noteworthy that the splitting process does not occur instantaneously, but gradually

by introducing and removing contact forces according to simulation evolution. Figure 63d

presents in detail the normal contact forces splitting from 9 s to 12 s. Figure 67 shows

the normal contact forces evolution in several configurations.

The results in Figure 63 prove that the proposed numerical strategy is consistent in

going back and forth between non-degenerated and degenerated formulations. Moreover,

it could maintain the total contact force even considering the challenging transitions to

conformal contact scenarios.
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Figure 63: Rotating beam example results [3].
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(a) Normal forces at t =
9.82 s.

(b) Normal forces at t =
10.12 s.

(c) Normal forces at t =
10.49 s.

(d) Normal forces at t =
10.66 s.

(e) Normal forces at t =
10.84 s.

(f) Normal forces at t =
11.11 s.

Figure 64: Rotating beam example normal forces [3].

5.2.5 Beam Rotating on Arc

The objective of this example is again to explore a scenario where automatic degen-

eration is necessary. In this example, which is based on [47], orthogonal contact of a

straight beam and an arc is initially imposed. After that, rotations are defined at beam

ends inducing conformal contact scenarios.

Figure 65 illustrates the simulation setup. The simulation is defined by a beam AB

that is composed of seven elements with length 2 and radius of 0.01, and an arc composed

of 31 beam elements and radius 0.01. The arc is in fact discretized with straight beam

elements and smooth contact elements due to the spline-based formulation. The arc radius

is one.

The beam and the arc are initially orthogonally oriented in a just-touch configura-

tion. To impose the displacements a rigid node set is defined at point C to control the

displacements of points A and B. Point C is initially defined as the middle point of beam

AB. The arc is clamped at both ends (points D and E) with z displacements fixed along

the whole length.

The simulation is divided into two quasi-static solution-steps. In the first solution-

step a displacement uy = 0.28 is imposed at point C in 10 s. After that, in the second

solution-step, a full rotation θz = 2π is imposed at point C in 10 s. Time is used only to

gradually impose the displacements. A material with Young’s Modulus 1E9 and Poisson

ratio ν = 0.3 is adopted. Moreover, an axial stiffness reduction factor of 100 (0.01 EA) is

adopted for beam AB as in [47].
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Two simulations are proposed for this example. The former simulation (RA1) objec-

tive is to compare the proposed formulation with the results presented in [47]. In this

case, only normal contact interaction is considered with a normal penalty parameter of

1E5. In the latter simulation (RA2), however, normal and frictional contact interactions

are considered. For simulations RA2 a normal penalty parameter 1E5 is also considered

with a tangential penalty parameter 1E4 and a frictional coefficient µs = 0.3.
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Figure 65: Beam rotating on arc simulation setup [3].
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Figure 66: Beam rotating on arc results [3].

Figure 66a presents the contact forces in the y direction for RA1 and RA2 respectively

in black and gray, and the results adapted from [47]. This figure shows, from 0 s to

10 s, a clear gap between the spline-based contact formulation (RA1 and RA2) and the

formulation proposed by [47]. This gap, however, gradually reduces up to very similar final

contact forces for all three simulations at 10 s. This difference is likely to be associated

with the contact interface law that is nonlinear in [47] and linear in simulations RA1 and

RA2.

From 10 s to 20 s, all models present similar reactions with peaks around 12.5 s

and 17.5 s. These instants represent singular conformal contact configurations where the

beam is exactly aligned with the arc. The peak values in Figure 66a can be interpreted

as a “snap-through” phenomenon as also observed in [47]. Moreover, the results from
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RA2 indicate that friction may play a critical role during the “snap-through” phase. It

is possible to observe in Figure 66a that friction drastically affects the normal reaction

while peak values are kept.

Figure 66b shows the magnitude of the normal contact force (Fn) and the frictional

force (Fat) for RA2. It is possible to observe in this figure that the normal contact force

is reduced but does not vanish in frictional contact scenarios. Figure 67 illustrates several

configurations around the “snap-through” stage of RA2.

(a) Normal forces at t =
12.40 s.

(b) Normal forces at t =
12.50 s.

(c) Normal forces at t =
12.55 s.

(d) Frictional forces at t =
12.37 s.

(e) Frictional forces at t =
12.50 s.

(f) Frictional forces at t =
12.55 s.

Figure 67: Beam rotating on arc contact forces for RA2 [3].
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6 TEXTILE APPLICATIONS

This chapter is particularly dedicated to numerical examples involving textile appli-

cations [2]. The last example recovers a study for the biaxial tension behavior of textiles

presented in [68] including now the spline-based contact formulation results. This study

served as a great motivation for the spline-based contact formulation developed.

6.1 Knot Tighten

In this example, the proposed formulation is applied in a self-contact scenario. The

tightening of a knot is analyzed based on the procedure presented in [35]. This simu-

lation is performed as a static simulation with three solution-steps using three distinct

displacement fields. The time presented in each solution-step is used only to impose the

displacements gradually. Figure 68 illustrates the considered displacement fields. The

objective of the first displacement field is to bend the beam into a “heart shape”. The

second displacement aims to slightly tighten the knot. Finally, with the last prescribed

displacement, the tips are pulled and the knot is effectively tightened.

In this simulation, a material with E = 1E6 N/m2 and Poisson ratio ν = 0.3 is

considered. The beam is composed of 40 elements with a radius of 0.15 m and a length

of 40 m. Points A and B are fixed during the whole simulation and are initially located

respectively at (0, 0, 0) m and (0, 0, 40) m. Points C and D are initially located respectively

at (0, 0, 15) m and (0, 0, 25) m. Additionally, a constraint is added to the model at the

beginning of the second prescribed displacement field at points C and D. The objective

of this constraint is to fix the “x” displacement at points C and D to avoid rotations

during the knot tightening. To induce self-contact the beam model is divided into two

equal parts. These parts are then joined by a special constraint that imposes the same

displacements and rotations employing Lagrange multipliers, see e.g. [81]. The simulation

data are detailed in Table 10. This simulation is performed in a static framework with an



96

Table 10: Knot tighten example simulation data.

Simulation data

Displ. 1st solution-step (m)
and simulation time (s)

ux1 = 0.3 uy1 = 15 uz1 = 22 θx1 = 1.5π
5

Displ. 2nd solution-step (m)
and simulation time (s)

ux2 = 3.5 θz2 = 0.5π
3

Displ. 3rd solution-step (m)
and simulation time (s)

ux3 = 9
7

adaptative time-step ranging from 1E−4 s to 5E−1 s. The following contact parameters

are adopted, normal interface law parameter ϵe1 = 1E6 N/m, and normal interface law

parameter ϵe2 = 1.
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Figure 68: Representation of knot tightening model example with prescribed displace-
ments [2].

The reaction force components at point A for the “SP” and the “SS” contact models

are depicted in Figure 69. From 0 s to 5 s only the “z” direction force is relevant since the

heart shape is being formed. After that, from 5 s to 8 s, when the knot starts the tighten-

ing process, the “x” force increases with the first beam contact appearing at 7 s as shown

in Figure 70. Finally, when the knot is effectively tightened, the magnitude of the “x”

force drastically increases while the “y” reduces since the tip moves away from the knot’s

center. Figure 69 shows that both contact models present almost the same result until

approximately 7s when the “SS” model finally diverges. The simulation underlines that

the proposed formulation is robust and can handle smoothly challenging scenarios such

as the simultaneous sliding of contact elements present in the knot tightening modeling.

Figure 71 depicts several instants of this simulation.



97

-1.40E+02

-1.00E+02

-6.00E+01

-2.00E+01

2.00E+01

0 3 6 9 12 15

F
or

ce
 (

N
)

Time (s)

FX SP

FY SP

FZ SP

FX SS

FY SS

FZ SS

Figure 69: Reactions force components at point A obtained in the knot tightening contact
example [2].

(a) Side view. (b) Top view.

Figure 70: First contact instant at 7 s in the knot tightening contact example [2].

6.2 Textile Shear

The application of the proposed formulation to a problem with multiple contacts with

friction and a nonlinear normal interface law is the subject of this example. The “SS”

contact model is not adopted in this example since the nonlinear normal interface law

as considered in this work is not available in this formulation. A square plain textile

sample with 20 yarns (10 in each direction) is defined. The sample is subjected to a

shear simulation that reproduces an experimental test known as picture-frame [82]. The

picture-frame test consists of a rigid square trellis frame where a diagonal displacement is

imposed leading to shear in the textile. The objective of the picture-frame test lies in the

characterization of yarn’s rotation (shear angle) with respect to the applied shear force.

The experimental apparatus is modeled by four rigid body elements connecting the

yarn’s tips on each side of the square sample [83]. Additionally, a pilot node for each

rigid body is defined in the corner of the square sample. The pilot node controls the

rigid body motion and, as a consequence, the yarns’ tip displacement [80]. Figure 72a

and Figure 72b illustrate the textile model and the displacement field imposed on the

pilot nodes. Two pilot nodes are defined in each point A and B. The pilot nodes in point

A have the same displacement ux and uy, but opposite rotations θz to reproduce the
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(a) 5 s. (b) 7 s. (c) 8.5 s.

(d) 9.8 s. (e) 12.65 s. (f) 15 s.

Figure 71: Normal contact forces at several instants in the knot tightening example [2].

Table 11: Textile shear example simulation data.

Simulation data

Displacement (mm, rad)
and simulation time (s)

ux = 2.63802 uy = 2.63802 θz = 0.32
1.6

picture-frame experiment. An analogous idea is applied to both nodes in point B.

In this simulation, a material with tensile stiffness of 38000 N , Poisson ratio of ν = 0.2,

and specific mass of 2540 kg/m3 is considered. Moreover, each yarn is composed of 52

beam elements with a radius of 0.2 mm. The yarns’ centerlines in-plane “xy” length is

20mm with a spacing of 1.6 mm. The out-of-plane “z” spacing between yarns’ surfaces is

0.02 mm. Point A and B are respectively located at (0, 0, 0) mm and (20, 20, 0) mm. The

textile geometry and material data are based on the plain weave presented in [68], however,

adapted here to a circular cross-section. The normal nonlinear interface law is based on the

yarn’s crushing law presented in [55], which was obtained through a 3D FEM simulation.

Figure 11 illustrates the normal contact interface law adopted as a dotted line and the

interface law extracted from [55] as a solid line. The proposed simulation is performed

in a single dynamic solution-step. The simulation data are detailed in Table 11. This

simulation is performed in a dynamic framework with Newmark parameters β = 0.3 and

γ = 0.5 (see [79]) with an adaptative time-step ranging from 1E−4 s to 1E−1 s. Moreover,

the following contact parameters are considered, normal interface law parameter ϵe1 =

4E6 N/m2.613, normal interface law parameter ϵe2 = 2.613, static and dynamic frictional

coefficients µs = µd = 0.1, and frictional penalty parameter ϵte = 1E1.

Figure 73a shows the textile configuration at the end of the simulation. The final

textile configuration with multiple normal contact forces and frictional contact forces are
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Figure 72: Representation of textile shear model example with prescribed displace-
ments [2].

presented in Figure 73b and Figure 73c. The results demonstrate that the spline-based

formulation can handle multiple contacts including a nonlinear normal interface law and

friction.

(a) Final configuration. (b) Normal contact forces. (c) Frictional contact forces.

Figure 73: Model results obtained at the end of the textile shear example simulation [2].

The relationship between the shear angle and the normalized shear force is presented

in Figure 74. The shear angle γ is defined as γ = 90 − 2θ, where 2θ is the current

angle formed by the rigid elements at point A or B during the simulation [82]. The

shear force Fs is calculated based on the pulling force F and the frame configuration θ as

Fs = F/(2cos(θ)) [82]. The normalized shear forceFs norm is simply defined, considering

the frame’s length equals to the fabric’s length sample, as Fs norm = Fs/Lframe. While

it is not the objective of this example to develop a deep analysis of the textile shear

mechanics, the results of Figure 69 show a good qualitative response when compared to

the experimental results presented in [82] for shear angles above 25°.
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Figure 74: Shear angle response with respect to the normalized shear force applied [2].

6.3 Biaxial Tension

The objective of this example is to reproduce the results for the biaxial tension mod-

eling of a plain woven glass fabric presented in [1]. In that work a surface-to-surface

contact formulation is combined with a geometrically-exact beam model, both with el-

liptical cross-sections, to reproduce biaxial tension experimental results from [7]. In this

example, however, a circular cross-section is adopted according to the spline-based con-

tact formulation while the same elliptical cross-section is considered for the beam model.

A similar strategy is adopted in example 5.2.3.

The biaxial tension experiment consists of simultaneously imposing displacements in

both main textile directions (warp and weft) while forces are measured. The ratio between

strains is defined as k = εwarp/εweft, where εwarp and εweft are, respectively, the strains

in the warp “x” and the weft “y” directions. The biaxial tension simulation setup is

illustrated in Figure 75.

𝑧

𝑥𝑦

𝑢𝑥

𝑢𝑥

𝑢𝑦

𝑢𝑦

Figure 75: Biaxial tension model setup.

The complete geometric characterization of the beam model is presented in [1] and

combines a pre-processor with the well-established software for textile modeling TexGen®

[77]. In this example, a glass fabric with tensile stiffness (EA) of 38000 N , a Poisson ratio

of 0.2, and a specific mass of 2540 kg/m3 is considered. The ellipsoidal beam semi-major

axis is 1.136364 mm and the semi-minor axis is 0.2840909 mm. For the spline-based
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contact surface, the ellipsoidal semi-minor axis is taken as the radius. A bending stiffness

reduction factor of 10−1 is adopted to reduce the lower moment of inertia. This reduction

factor is assumed with the objective of reproducing the almost null bending stiffness of real

textiles. The simulations are dynamically performed with Newmark parameters β = 0.3

and γ = 0.5 [79]. A linear normal penalty parameter of 3.5E5 N/m is adopted in [1],

though normal penalty parameters ϵ1 = 1.5E6 N/m and ϵ2 = 1 are adopted in this work.

Friction is not considered in this example. The textile sample is composed of six yarns

in each direction with an in-plane length of 40.90909 mm, an in-plane spacing between

yarns of 4.54545 mm, and an out-of-plane spacing between yarns surfaces of 0.11364 mm.

Fixed displacements and free rotations are adopted as boundary conditions for all yarns in

this example. Figure 76 illustrates the beam model in gray and the spline-based contact

surface in red.

Figure 76: Biaxial tension models. Spline-based contact surface in red and structural
beam model rendered in gray.

The results for k = 1, k = 2, and k = 0.5 as experimentally obtained in [7], modeled

with surface-to-surface contact as in [1], and calculated with the spline-based contact for-

mulation are presented. Figure 77a shows that the results from “Surface” and “Spline”

are almost identical, though shifted from the experimental result. This shift is, how-

ever, caused by the gap adopted between contact surfaces to avoid initial overlapping [1].

Figures 77b and 77c show, however, significant differences between the results from “Sur-

face” and “Spline”. These results highlight the spline-based contact formulation feature

of smoothing kinks formed by straight beam elements. The smoothing of beam elements

kinks leads to slight differences in yarns’ curvature that become more relevant when k ̸= 1.

It is possible however to consider the spline-based contact formulation results qualitatively

good, in particular when compared to the experimental results.

Figure 78 presents normal contact forces obtained from the biaxial tension simulation

in [1] and from the spline-based contact formulation. It is possible to note that a single

contact force is present in each yarn’s contact region instead of multiple forces in [84]. In
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Figure 77: Biaxial tension results, “Experimental” in black from [7], “Surface” in blue
from [1], and “Spline” in red from the spline-based contact formulation.

the surface-to-surface formulation, each contact element is described as smooth surfaces

based on superellipse cross-sections, though only C0 continuity is granted at their inter-

faces. In the spline-based formulation, however, the contact surface is smoothly described

as a whole with C1 continuity and circular cross-section. These different geometric de-

scriptions certainly play a role in contact interaction. Another important aspect of this

simulation is the normal linear penalty coefficients considered. In the spline-based con-

tact formulation, a higher linear penalty is considered since multiple contact pairs become

single-contact interactions. In this example, single-contact interactions may be seen as an

advantage since they allow the use of particular nonlinear interface laws experimentally

obtained.
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(a) Surface-to-surface contact formula-
tion. Extracted from [1].

(b) Spline-based contact formulation.

Figure 78: Normal contact forces obtained from the biaxial modeling of a glass fabric
plain weave for k = 1.
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7 CONCLUSIONS

A spline-based C1 smooth formulation for beam-to-beam contact to handle conformal

and non-conformal contact was developed. The proposed contact formulation seeks to

smoothly describe structures as a whole regardless of any particular structural formulation

and displacement magnitude. Though the formulation was detailed for C1 continuity, the

ideas presented can be easily expanded to higher-order formulations.

The spline description guarantees continuity not only within the contact elements but

for the whole contact surface. Another advantage of the spline-based formulation lies in

the simplicity of the geometric description that uses only one convective coordinate to

depict the centerline. As a result, the Local Contact Problem (LCP) reduces to a mini-

mization problem. However, the lack of an additional convective coordinate neglects the

effects of surface contacts with respect to the centerline. This work assumes a normal and

tangential contact formulation including elastic and viscous contributions. A nonlinear

interaction law was introduced for normal contact.

The three criteria introduced showed to be reliable in the decision-making regarding

an LCP solution. The degeneration procedure of fixing a priori one of the convective

coordinates regarding the numerical criteria proved to be effective in handling complex

contact scenarios. The choice for this procedure highlights the strategy’s simplicity while

putting into evidence its robustness.

The spline contact model was successfully applied to several problems. In the per-

pendicular beam example, the proposed formulation was compared to a more complex

but well-established surface-to-surface contact formulation. The results of this example

showed that the spline contact formulation is accurate for thin beams where the cross-

section size is not important. The spline contact formulation was also compared with

an alternative smooth contact formulation with sufficiently good results considering the

different approaches. The non-conformal numerical examples showed that the strategy is
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capable of automatically switching between degenerated and non-degenerated scenarios.

The proposed contact formulation also showed great potential in dry fabrics consid-

ering the integration between the Giraffe solver and the TexGen® software [77]. The

natural spline smooth description is quite desirable in these applications where large de-

formations are likely to occur. Moreover, the spline-based contact was able to reproduce

single-contact interactions when expected. This characteristic is also of particular inter-

est since it permits the use of experimentally obtained interaction laws, even including

frictional effects.

7.1 Future Works

Some direct extensions of this work would be the increase in the degree of the spline

contact elements and the inclusion of rotational degrees of freedom in the spline contact

formulation to consider surface moments with respect to beam centerlines.

The main advantage of increasing the degree of the spline elements lies in smoothing

the contact interaction due to the spline continuity, depending on the needs of the struc-

ture in analysis. Moreover, the contact forces would be distributed to more nodes (control

points) according to the spline degree. The drawback of increasing the spline degree is

that the spline-based surface is more likely to differ from the actual finite element mesh.

The inclusion of degrees of freedom could be done similarly as proposed in [36, 41],

however considering the spline elements description. In [36, 41] a Frenet-Serret description

is adopted for the contact formulation. The advantage of this approach is the existence

of normal and binormal vectors that enable rotation measurements.

Finally, it is possible to conceive several practical applications of the present work in

the textile modeling field. Some possible applications are:

• Adoption of experimental yarns crushing law for the normal contact interaction;

• Adoption of experimental frictional coefficients;

• Modeling of multiple fibers as a single yarn;

• Applications involving 3D fabric modeling;

• Manufacturing of woven composite materials.
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Table 12: Objectivity test simulation displacements.
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APPENDIX B

This appendix aims to develop the normal contact weak form contribution and the

corresponding tangent operator for a contact between two spline elements ΓA and ΓB.

The weak form contributions and the tangent operator are initially symbolic calculated.

After the necessary matrices are explicitly express considering the spline-based contact

formulation. The procedure here is similar to the one developed in [5] for surfaces.

7.1 Weak Form Contribution

For convenience, a simple linear normal contact law is adopted. Consider now, for

this purpose a normal interface law fn defined as

fn = ϵge, (7.1)

where ϵ is a linear penalty parameter and ge is an effective gap vector associated with ΓA

and ΓB. The effective gap vector is parallel to the normal direction (n = g/∥g∥) with

the magnitude of the effective gap, see (3.7). It is possible now to write a normal contact

potential Wn as

Wn =
1

2
ϵge · ge. (7.2)

The normal contact potential Wn can be then derived with respect to the convective

coordinates c (see (3.4)) and generalized displacements d (see (3.5) and Figure 10) to

obtain the normal contact force contribution to the weak form. The normal contact force

contribution of a pair of spline elements yields

δWn = ϵge · δge, (7.3)
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where the symbol δ is adopted to indicate the variation of quantities. The variation of

the effective gap vector δge can be then expressed as

δge = ge,c δc + ge,d δd, (7.4)

where a notation p,q = ∂p/∂q is introduced to represent partial derivatives. It is possible

now to find a relation between δc and δd considering the linearization of the orthogonality

conditions, which implies that δr = o2 since bmr = o2. A notation om is adopted to

express zero matrices of order m. The linearization of the orthogonality conditions can

be written as

δr = r,c δc + r,d δd = o2. (7.5)

Moreover, the linearization δr can be rearranged as

r,c δc = −r,d δd → δc = −(r,c )−1r,d δd → δc = Dδd, (7.6)

where the operator D is introduced. The D operator expresses the relation between δc

and δd. The D operator is therefore formally defined as

D = −(r,c )−1r,d . (7.7)

It is possible now to express the linearization of the effective gap vector δge considering

the D operator as

δge = (ge,c D + ge,d )δd. (7.8)

Finally, the normal contact contribution to the weak form can be expressed by con-

sidering only variations with respect to the generalized displacements as
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δWn = ϵge ·
(

(ge,c D + ge,d )δd
)

. (7.9)

7.2 Contact Tangent Operator

To obtain the contact tangent operator it is necessary to develop a linearization of

the weak form. The linearization of the presented weak form leads to

∆(δWn) = δge · ϵ∆ge + ϵ∆(δge) · ge, (7.10)

where the symbol ∆ is introduced to express variation of quantities. It is possible to note

that to calculate this tangent operator it is necessary to develop two more terms, ∆ge

and ∆(δge). The ∆ge term can be directly developed with the same strategy presented

in (7.8) as

∆ge = (ge,c D + ge,d )∆d. (7.11)

The expansion of ∆(δge) leads to

∆(δge) = ∆(ge,c δc + ge,d δd) = ∆(ge,c )δc + ∆(ge,d )δd, (7.12)

where the direct linearizations ∆ge,c and ∆ge,d. Again, these linearizations can be de-

veloped with the same strategy presented in 7.8. The ∆ge,c term leads to

∆ge,c = ge,cc ∆c + ge,cd ∆d

∆ge,c = (ge,cc D + ge,cd )∆d,
(7.13)

while the ∆ge,d term leads to
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∆ge,d = ge,dc ∆c + ge,dd ∆d

∆ge,d = (ge,dcD + ge,dd )∆d.
(7.14)

By adopting these expressions, it is possible now to more explicitly rewrite ∆(δge) as

∆(δge) =
(

(ge,cc D + ge,cd )∆d D + (ge,dcD + ge,dd )∆d
)
δd. (7.15)

Finally, the contact tangent operator can be now expressed considering only virtual

quantities associated with generalized displacements as

∆(δWn) = (ge,c D + ge,d )δd · ϵ(ge,c D + ge,d )∆d

+ ϵ
(

(ge,cc D + ge,cd )∆d D + (ge,dcD + ge,dd )∆d
)
δd · ge.

(7.16)

7.3 Equations

In the matrices presented below NA
i , NA

i+1, and NA
i+2 are the basis functions associated

with uAA, uAB, uAC and, similarly, NB
i , NB

i+1, and NB
i+2 are the basis functions associated

with uBA, uBB, uBC .

ge,c =

[
uAAN

A
i ,ξA +uBAN

A
i+1,ξA +uCAN

A
i+2,ξA

−uABN
B
i ,ξB −uBBN

B
i+1,ξB −uCBN

B
i+2,ξB

]
(7.17)

ge,d =



NA
i

NA
i+1

NA
i+2

−NB
i

−NB
i+1

−NB
i+2


(7.18)
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ge,cc =[
uAAN

A
i ,ξAξA +uBAN

A
i+1,ξAξA +uCAN

A
i+2,ξAξA 0

0 −uABN
B
i ,ξBξB −uBBN

B
i+1,ξBξB −uCBN

B
i+2,ξBξB

]
(7.19)

ge,dd = o6x6 (7.20)

ge,cd =

[
NA

i ,ξA NA
i+1,ξA NA

i+2,ξA 0 0 0

0 0 0 −NB
i ,ξB −NB

i+1,ξB −NB
i+2,ξB

]
(7.21)

ge,dc =



NA
i ,ξA 0

NA
i+1,ξA 0

NA
i+2,ξA 0

0 −NB
i ,ξB

0 −NB
i+1,ξB

0 −NB
i+2,ξB


(7.22)

D =[
−NA

i ,ξA
DA −NA

i+1,ξA
DA −NA

i+2,ξA
DA 0 0 0

0 0 0
NB

i ,ξB
DB

NB
i+1,ξB
DB

NB
i+2,ξB
DB

]
(7.23)

with

DA = uAAN
A
i ,ξAξA +uBAN

A
i+1,ξAξA +uCAN

A
i+2,ξAξA

DB = uABN
B
i ,ξBξB +uBBN

B
i+1,ξBξB +uCBN

B
i+2,ξBξB

(7.24)
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[1] FACCIO JÚNIOR, Celso Jaco; GAY NETO, Alfredo. Challenges in representing

the biaxial mechanical behavior of woven fabrics modeled by beam finite elements

with contact. Composite Structures, v. 257, p. 113330, fev. 2021. ISSN

02638223. DOI: 10.1016/j.compstruct.2020.113330. Dispońıvel em:

¡https://linkinghub.elsevier.com/retrieve/pii/S0263822320332566¿.
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¡https://linkinghub.elsevier.com/retrieve/pii/S0045782515003837¿.

[12] KHOEI, Amir R.; BIABANAKI, S. O.R.; PARVANEH, S. M. 3D dynamic

modeling of powder forming processes via a simple and efficient node-to-surface

contact algorithm. Applied Mathematical Modelling, v. 37, n. 1-2, p. 443–462,

jan. 2013. ISSN 0307904X. DOI: 10.1016/j.apm.2012.03.010. Dispońıvel em:
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Dispońıvel em: ¡http://dx.doi.org/10.1016/j.cma.2010.04.012¿.

[37] TEMIZER, I.; WRIGGERS, P.; HUGHES, T. J.R. Three-dimensional

mortar-based frictional contact treatment in isogeometric analysis with NURBS.

Computer Methods in Applied Mechanics and Engineering, Elsevier B.V.,

v. 209-212, p. 115–128, 2012. ISSN 00457825. DOI: 10.1016/j.cma.2011.10.014.
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¡http://dx.doi.org/10.1016/j.cma.2016.05.012¿.

[47] MEIER, Christoph; WALL, Wolfgang A.; POPP, Alexander. A unified approach

for beam-to-beam contact. Computer Methods in Applied Mechanics and

Engineering, Elsevier B.V., v. 315, p. 972–1010, 2017. ISSN 00457825. DOI:

10.1016/j.cma.2016.11.028. arXiv: 1607.08853. Dispońıvel em:
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¡http://link.springer.com/10.1007/978-3-642-59223-2¿.

[51] BELYTSCHKO, Ted; NEAL, Mark O. Contact-impact by the pinball algorithm

with penalty and Lagrangian methods. International Journal for Numerical

Methods in Engineering, v. 31, n. 3, p. 547–572, mar. 1991. ISSN 10970207.

DOI: 10.1002/nme.1620310309. Dispońıvel em:
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